870
CMDT 2013
21
Electrolyte & Acid-Base Disorders Kerry C. Cho, MD
ASSESSMENT OF THE PATIENT The diagnosis and treatment of fluid and electrolyte disorders are based on (1) careful history, (2) physical examination and assessment of total body water and its distribution, (3) serum electrolyte concentrations, (4) urine electrolyte concentrations, and (5) serum osmolality. The pathophysiology of electrolyte disorders is rooted in basic principles of total body water and its distribution across fluid compartments.
A. Body Water and Fluid Distribution Total body water is different in men than in women, and it decreases with aging (Table 21–1). Approximately 50-60% of total body weight is water; two-thirds (40% of body weight) is intracellular, while one-third (20% of body weight) is extracellular. One-fourth of extracellular fluid (5% of body weight) is intravascular. Water may be lost from either or both compartments (intracellular and extracellular). Changes in total body water content are best evaluated by documenting changes in body weight. Effective circulating volume may be assessed by physical examination (eg, blood pressure, pulse, jugular venous distention). Quantitative measurements of effective circulating volume and intravascular volume may be invasive (ie, central venous pressure or pulmonary wedge pressure) or noninvasive (ie, inferior vena cava diameter and right atrial pressure by echocardiography) but still require careful interpretation.
excretion (Fe) of an electrolyte X (Fex) calculated from a spot urine sample: F E x (%) =
A low fractional excretion indicates renal reabsorption (high avidity or electrolyte retention), while a high fractional excretion indicates renal wasting (low avidity or electrolyte excretion). Thus, the fractional excretion helps the clinician determine whether the kidney’s response is appropriate for a specific electrolyte disorder.
D. Serum Osmolality Solute concentration is measured by osmolality. Osmoles per kilogram of water is osmolality; osmoles per liter of solution is osmolarity. At physiological solute concentrations (normally 285–295 mosm/kg), the two measurements are clinically interchangeable. Tonicity refers to osmolytes that are impermeable to cell membranes. Differences in osmolyte concentration across cell membranes lead to osmosis and fluid shifts, stimulation of thirst, and secretion of antidiuretic hormone (ADH). Substances that easily permeate cell membranes (eg, urea, ethanol) are ineffective osmoles that do not cause fluid shifts across fluid compartments. Serum osmolality can be estimated from the following formula:
B. Serum Electrolytes
Osmolality =
The cause of electrolyte disorders may be determined by reviewing the history, underlying diseases, and medications.
C. Evaluation of Urine The urine concentration of an electrolyte indicates renal handling of the electrolyte and whether the kidney is appropriately excreting or retaining the electrolyte. A 24-hour urine collection for daily electrolyte excretion is the gold standard for renal electrolyte handling, but it is slow and onerous. A more convenient method is the fractional
Urine X/Serum X × 100 0 Urine Cr/Serum Cr
2(Na+ mEq/L) +
Glucose mg/dL BUN mg/dL + 2.8 18
(1 mosm/L of glucose equals 180 mg/L and 1 mosm/L of urea nitrogen equals 28 mg/L). Sodium is the major extracellular cation; doubling the serum sodium in the formula for estimated osmolality accounts for counterbalancing anions. A discrepancy between measured and estimated osmolality of > 10 mosm/kg suggests an osmol gap, which is the presence of other unmeasured osmoles such as ethanol, methanol, isopropanol, and ethylene glycol (see Table 38–5).