Technologicalgreennessandlong-run performance
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht), M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht), M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Previousresearchanalyzesthe short-runperformance of greenstocks.
Greenstocksareidentifiedasthosewith:
▶ LowerGHGemissions.
▶ HigherESG(orE)scores.
(e.g.,MonasteroloanddeAngelis(2020);BoltonandKacperczyk(2021, 2023);Avramovetal.(2022);P´astoretal.(2021,2022);Zerbib(2022); Aswanietal.(2023))
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
However,therearetwo significantchallenges:
▶ Greennessconfusion.
lackofproperunderstandingofwhatconstitutesgreenness
▶ Greenwashingconcerns.
firms’attempttolookgreenerthantheyactuallyare
Also,littleisknownaboutgreenstocks’ long-runperformance. (see,e.g.,Edmans,2023).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
A long-termperspective isimportantforatleasttworeasons:
▶ Greentech becomes moreaccessible and lesscostly overtime. likeanyothertechnology
fullpotentialonlyobservablewithsomedelay overtakingfossilintermsofcapacity/performance(IEA2023)
▶ Regulatoryandmeasurement uncertainty decreaseovertime.
− betterunderstandingofgreenness
− greatercross-countrycooperation
Asaresult, greenfirms graduallyimproveandbecomemoreattractive.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Tothisend,itiscrucialtostudyinvestmentsin greentechnology.
▶ Long-runoriented. importantfor decarbonization goal(ParisAgreement)
▶ Structuralnature. lessproneto misreporting and greenwashing
Thisisthefocusofourpaper:welookat investmentsingreen-tech capacity andtheirimpactonlong-runvaluecreation(5years).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Incontemporaneousresearch,Edmans(2023)arguesthatsustainability shouldfocuson long-termvaluecreation:
▶ Justlikeanyothertypeof firm-levelinvestment.
▶ Sustainabilitytargetsrepresenta meanstoanend.
▶ Moveawayfrom off-the-shelfmetrics.
Throughourfocuson greentech,webuilda morecomprehensive perspective ofwhatconstitutesgreennessandwhyitmattersforthe low-carbontransition (“doingwellbygoinggreen”).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Inouranalysis,weidentify twodynamics:
▶ Shortrun.Fundamentalsdonotchange.
greentech/regulationsarefixed stockpricemainlyreflectsgreenpreferences(P > F , E (R) < 0)
▶ Longrun.Fundamentalsdochange.
greentechdevelopments/morestringentregulations
someinvestorsreviseexpectationsslowly(P < F , E (R) > 0).
Keymechanism:evaluatingnewinformationis costly (Hirshleiferand Teoh,2003),especiallyifofhighlytechnicalnature(suchasgreentech).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Wefindthat greentechstocks earn higherlong-runreturns:
▶ 1σ ↑ greentech −→ 15.1%increasein5ystockreturns.
▶ Noreversals:suggestinggradualimpoundingofinformation.
Consistentwiththeinformationstory, greenfirms alsoexhibit:
▶ better(andlessvolatile) futureoperatingperformance;
▶ agradualandsteadyincreasein futurevaluations.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Wealsostudythe marketreaction to greentechdisclosure:
▶ Disclosureofhightechgreenness −→ higherlong-runreturns. wrtdisclosureoflowgreenness
wrtnon-publishers(nodisclosure)
▶ Effectismorepronouncedafterthe ParisAgreement.
intuition:regulatoryshock
ResultsarestrongerforgreentechcomparedwithGHGandESG disclosure,suggestingthatmarketsprimarily reward sustainability measuresof moretangiblenature suchastechnology.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Finally,westudythe marketreaction to greentechdisclosure regardless ofthedegreeofgreenness.
Firmscan decidewhethertodisclose howgreentheyare:
▶ Onlyafewfirmsalreadydisclose,otherfirmsareunknown.
▶ Thenonlygreenerfirmsshouldhaveanincentivetodisclose.
Wefindthatthestockmarket rewards disclosingfirmswith higher long-runreturns.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Ourpapercontributestoaburgeoningliteratureon climatefinance.
(e.g.,Giglioetal.,2021;EdmansandKacperczyk,2022).
Previousresearchfinds mixedevidence on greenassetreturns:
▶ MeasuringGHG:Levelsv.Intensity.
(Aswanietal.,2023;BoltonandKacperczyk,2023)
▶ MeasuringESG:Ratingdisagreement.
(Avramovetal.,2022;Bergetal.,2023)
▶ Measuringreturns:Expectedv.Realized.
(P´astoretal.,2021,2022;Atilganetal.,2023)
▶ Greenpreferences v. Riskconsiderations.
(Alessietal.,2021;P´astoretal.,2021;Zerbib,2022)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Ourfindingsstresstheimportanceofconsideringa longtimehorizon.
Tworeasons:
▶ Marketlearning (e.g.,HirshleiferandTeoh,2003). fullytakesplaceonlyinthelongrun
▶ Mispricingisarbitragedaway (e.g.,Greenwood,2005). reducingdiscrepancyexpectedv.realizedreturns
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
Recentstudieslookat greentech through patents (e.g.,Kuangand Liang,2022;Cohenetal.,2023;Hegeetal.,2023;RezaandWu,2023).
Thisisalsoa tangiblemetric ofgreenness,but:
▶ Impactona firm’soperations isunclear(howwide?).
(Boltonetal.,2023)
▶ Impacton firmvalue ismixed.
(e.g.,Andriosopoulosetal.,2022;Hegeetal.,2023)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Conversely,wefocusonthe green-techprofileofrevenues. Weobserveutilityfirms’ energytechnologyprofile (%revenues) relatedtoenergycomingfromboth renewable and fossilfuel sources.
▶ Moredirect andcomprehensive measureoftechgreenness.
▶ Morestructuralimpact onfirms’operations.
Moregenerally,ourlong-runfindingssupporttheviewthatgreen innovationis path-dependent (Aghionetal.,2016;Boltonetal.,2023).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Weconsidertheassetpricingmodelfrom HirshleiferandTeoh(2003).
Thesetupincludes:
▶ Onestock.
− wlog(e.g.,Chenetal.,2002;HongandSraer,2013)
intuition:isolatepricingdeterminants(noportfolioanalysis)
▶ Twoinvestortypes.
informed(akaarbitrageurs,or“typeA”)
uninformed(akanaivetraders,or“typeN”)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Eachinvestorcan expendresources c onpayingattentiontoinformation, orsparetheresourcesbutalsoendupwithlessinformation.
Withthisinmind:
▶ f (c)= probabilitythataninvestor neglectsrelevantinformation.
− proportionofnaivetradersintheeconomy
− takenasexogenouslygiven
▶ f ′ (c) < 0,i.e.,moreeffortleadstofewerevaluationmistakes.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Theeconomyhas threedates:
▶ Time0.Investorsformexpectations.
▶ Time1. New publicinformationarrivesaboutfirmvalue. (investorstradewitheachother)
▶ Time2.Adividendisrealizedandtheeconomyends. (investorsreceivethefinalpayoff)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Notethatthereis noprivateinformation amonginvestors,everythingis public!But processinginformationis costly.
Naiveinvestors,however:
▶ donotrecognize theirlackofattention;
▶ then donotlearn fromthemarketprice;
▶ specifically,they missthenewinfo attime1. (neglect iswlog,partialrevision wouldyieldsameresults)
Weapplythissetuptostudythepriceofa greentechstock.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Information(cont’d)
Asin Chenetal.(2002),weassumethatthestock’sinitialfundamental value(attime0)isequalto F + ϵ,where ϵ ∼ N(0, 1).
Attime1,newinfoarrivesongreentechandmodifiesthefundamental valueto F +∆+ ϵ.
▶ Arbitrageurscorrectlyincorporate ∆.
▶ Naivetradersdonot.
Intuition:greentechis difficulttoevaluate andcanonlybepricedby expendingresources c (whicharbsdo).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Weassumethat naiveinvestors:
▶ havea pro-socialpreference forgreenfirms(e.g.,RiedlandSmeets, 2017;Barberetal.,2021;Dittmannetal.,2023);
▶ therefore derivedirectutility frominvestingingreenfirmsoverand abovetheexpectedmonetarypayoff.
Arbitrageurs donot(forsimplicityandwlog).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Pro-socialinvestors arethosewhoexhibitapreferenceforESG characteristics,suchas:
▶ Morallysoundfirms(HongandKacperczyk,2009).
▶ FirmsthatlowCEO-workerpaygaps(Panetal.,2022).
▶ Environmentally-friendlyfirms(RiedlandSmeets,2017).
Greenpreferences characterize retailinvestors and mutualfunds. (e.g.,HartzmarkandSussman,2019;Bri`ereandRamelli,2022)
Suchinvestorsarerelatively lesssopshisticated than hedgefunds. (e.g.,Chenetal.,2002;HongandSraer,2013,2016)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Investorshave:
▶ W0 =initialwealthendowment;
▶ x0 =percapitaendowmentofthestock.
Terminalconsumption isthen:
C = W0 + x0S1 + x(S2 − S1), (1)
where S1 and S2 representthe stockprice attimes1and2.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Totalutility ofinvestortype ϕ canbeexpressedas:
U ϕ (x ϕ )= uϕ (x ϕ )+ v ϕ (x ϕ ), (2)
where:
uϕ (x ϕ )= E ϕ 1 x ϕ (S2 S1) γ 2 varϕ 1 x ϕ S2 , (3)
v ϕ (x ϕ )= x ϕ g ϕ with g ϕ ≡ 0if ϕ = A
g > 0if ϕ = N , (4) are additivelyseparablecomponents (e.g.,Lopes,1987;Conlisk,1993; ShefrinandStatman,2000;Barberisetal.,2001).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Aninvestoroftype ϕ thensolves:
max {x ϕ } E ϕ 1 x ϕ (S2 − S1) − γ 2 var ϕ 1 x ϕ S2 + x ϕ g ϕ , (5)
where:
▶ γ =coefficientof absoluteriskaversion;
▶ g =coefficientindicating greenpreferences.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht) Technologicalgreennessandlong-runperformance
The marketclearing conditionis:
fx N +(1 f )x A = x0, (6)
where:
▶ x N , x A arethetwodemands(fromthefirst-orderconditions);
▶ x0 isthesecurity’ssupply(given).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
The equilibriumprice isthen:
S1 = fE N 1 (S2)
mispricing +(1 − f ) E A 1 (S2) fundamentals , (7)
whichrepresentsa weightedaverageofvaluations ofinvestortypes.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Substitutingintotheequation,weobtain:
S1 = fE N 1 (S2)+(1 − f )E A 1 (S2)= = F +∆ fundamentals +(1 f )(g ∆) mispricing . (8)
Inthepresenceofpositivefundamentalnews,the greentechstock:
▶ Trades belowitsfundamentalvalue if∆ > g .
▶ Thatis,ifthenewsshockislargeenough.
▶ Examples:earnings;regulatoryshocks;techimprovement.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Definingstockreturnsindollarterms(wlog)asinChenetal.(2002):
E1(r2) ≡ E1(S2) − S1 = = F +∆ − (F +∆+(1 − f )(g − ∆))= =(1 − f )(∆ − g ), (9)
the greentechstock yields positiveexpectedreturns if∆ > g .
Wetestthesehypothesesnext.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Oursampleincludes globalutilityfirms:
▶ financial/accountingdatafor1,000firmsfrom77countries;
▶ dataon green-techcapacity on165firmsfrom31countries;
Thesampleperiodisfrom2011to2021.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
The medianfirm inoursampleexhibits:
▶ Marketcapof e5.99billion.
▶ PPEof e3.92billion.
▶ Marketbetaof0.7.
▶ Salesgrowthof4%.
The large and stable natureofthesefirmsmakesthem easiertoevaluate, with lessroomformispricing (e.g.,BakerandWurgler,2006,2007; Bakeretal.,2012).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Themedianfirm’s greenenergycapacity (expressedasapercentageof totalenergycapacity)includes:
▶ Solar(0.9%).
▶ Waste(0.7%).
▶ Wind(6.3%).
▶ Hydro(15.7%).
▶ Nuclear(18.5%).
Fossilenergycapacity includesgas(32.8%)andcoal(33.2%),sothe medianfirmisthenpredominantly fossil.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Weusethisinformationtoconstructafirm-level indexoftechnological greenness,whichexhibitsthefollowingrange:
▶ Maxscore:+1(indicatingentirely greenfirms).
▶ Minscore:-1(indicatingentirely brownfirms).
Baselinespecification:(solar + waste + wind ) green − (gas + coal ) brown .
(hydro isalreadyestablished; nuclear iscontroversial)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Thisindexgrants severalimportantadvantages withrespecttoESG scores(E),GHGemissions(G),andpatents(P):
▶ Directlyidentifiesenergycapacityinvestments(=P,G,E).
▶ Includesgreenactivitiesinadditiontobrownones(=P,G).
▶ Allowsfordirectcomparisonsacrossfirms(=P,Glevels).
▶ Lesspronetomisreportingorgreenwashing(=P,G,E).
Drawback:smallsamplesize.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Our maintestequation isasfollows:
yi ,t+h = αt + βxi ,t + γ ′ Zi ,t + ϵi ,t+h . (10) where
▶ y =stockreturnoffirm i overperiod t + h;
▶ x = indexoftechnologicalgreenness (standardized);
▶ Z =setoffirm-levelaccountingmeasuresascontrols.
▶ αt =yearFE.
Standarderrorsareclusteredbyfirm(wefindsimilarresultsusing alternativespecifications).
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Firm-levelcontrols: book-to-marketratio;
− naturallogarithmofmarketcapandPPE;
− leverage;
− ratiobetweencapitalexpendituresandtotalassets;
− currentstockreturn;
− growthinsalesandearnings-per-share;
− returnonequity; annualizedvolatilityofdailystockreturns.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
(1)(2)(3)(4)(5)
Returnt+1Returnt+2Returnt+3Returnt+4Returnt+5
TechGreenness0.0220***0.0231***0.0360***0.0468***0.0269** 2.773.194.314.182.20
ControlsYYYYY
YearFEYYYYY
Observations1095942793652524
R-squared0.10740.10600.12890.12220.0844
Greentechpositivelypredictsfuturestockreturns.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
(1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
TechGreenness0.0522***0.0883***0.1335***0.1511***
3.604.514.944.19
ControlsYYYY
YearFEYYYY
Observations942793652524
R-squared0.10590.13960.19400.2068
Greentechpositivelypredictsfuturecumulativestockreturns.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht) Technologicalgreennessandlong-runperformance
Wefindsimilarresults:
▶ Controllingformarketbeta(fewerobs).
▶ Includinghydroandnuclearenergysources.
▶ Estimatingalternativespecifications.
− FirmFEandclusteringbyyear.
− FirmandyearFE.
PooledOLSregressionswithfirm-yearclustering. Fama-MacBethregressions.
Takeaway:robustresultsandnoreversals,consistentwiththemodel’s predictionof gradualimpoundingofinformation overtime.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Caveat:highlong-runstockreturnsmayalsoreflecta riskpremium for adoptinguncertaingreentechnologies.
Therefore,westudythe economicchannel underlyingourresults:
▶ Futurevaluations.
▶ Futureoperatingperformance.
▶ Cross-countryvariationinfinancialdevelopment.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Thepriorsfor futurevaluations areasfollows:
▶ Infostory implies gradualincrease invaluations
initialunderpricing: P < F , E (R) > 0
impoundingofinfo: P −→ F
▶ Riskstory implies decrease invaluations.
impoundingofariskpremium: P ↓, E (R) > 0
− intuition:investorsshunthestock
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
(1)(2)(3)(4)(5)
MBt+1MBt+2MBt+3MBt+4MBt+5
TechGreenness0.0321*0.0601*0.0943**0.1311**0.1799*** 1.831.832.262.472.79
ControlsYYYYY
YearFEYYYYY
Observations1095942793652524
R-squared0.68580.53310.47070.39830.3848 Greentechpositivelypredictsfuturevaluations.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
Thepriorsfor operatingperformance areasfollows:
▶ Infostory implies betterperformance.
− intuition:greentechmakesfirmsmoreefficient
▶ Riskstory implies worseperformance.
− intuition:greentechmakesfirmoperationsmoreuncertain
WelookatboththefirstandthesecondmomentofROE.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
(1)(2)(3)(4)(5)
ROEt+1ROEt+2ROEt+3ROEt+4ROEt+5
TechGreenness0.0103***0.0132***0.0180***0.0174***0.0164**
2.812.833.333.042.60
ControlsYYYYY
YearFEYYYYY
Observations1095942793652524
R-squared0.21600.12550.11890.10940.1146
Greentechpositivelypredictsfutureoperatingperformance.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
(1)(2)(3)(4)
Cum.ROE1-2Cum.ROE1-3Cum.ROE1-4Cum.ROE1-5
TechGreenness0.0220***0.0372***0.0589***0.0760***
2.702.792.992.95
ControlsYYYY
YearFEYYYY
Observations942793652524
R-squared0.26190.27340.27910.2556
Greentechpositivelypredictsfuturecumulativeoperatingperformance.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
(1)(2)(3)(4)(5)
SDROEt+1SDROEt+2SDROEt+3SDROEt+4SDROEt+5
TechGreenness-0.0077***-0.0059**-0.0068**-0.0073**-0.0066
-2.61-1.99-2.10-2.00-1.65
ControlsYYYYY
YearFEYYYYY
Observations1095942793652524
R-squared0.25440.33530.23640.17840.1658
Greentechnegativelypredictsvolatilityoffutureoperatingperformance. S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht) Technologicalgreennessandlong-runperformance
Wefindsimilarresultsalsofor marketbeta asdependentvariable.
Greentechfirms thenseemtoexhibit:
▶ Loweridiosyncraticrisk.
▶ Lowersystematicrisk.
Riskexplanation forhighreturnsseemsunlikely!
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Ahighdegreeofcountry-level financialdevelopment (FD)easesaccessto externalfinance (e.g.,RajanandZingales,1998).
Thisisacrucialrequirementforstructural greentechinvestments,soour resultsshouldbestrongerinhigh-FDcountries.
Wetestthisconjectureexploting cross-countryvariation inFD.
▶ FD=totalbankingcredit /realGDP.
− intuition:ourfirmsdependondebt,sobankingsystemiskey
▶ Wepredeterminethisvariable asa1975-1990average.
− addresspotentialendogeneityissues
− smoothoutboomsandbustsinthefinancialsystem
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Allcountries (1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
TechGreenness0.0264*0.0545**0.0971***0.1095** 1.852.452.902.52
TechGreenness × BankingFD0.0654***0.0859***0.0995**0.1195** 3.593.212.532.36
BankingFD0.0060-0.0063-0.0267-0.0431 0.30-0.22-0.68-0.87 ControlsYYYY
YearFEYYYY
Observations937789649522
R-squared0.11690.15240.20980.2283
Greentechpositivelypredictsfuturecumulativestockreturns,especially infinanciallydevelopedcountries.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
OECDcountriesonly
(1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
TechGreenness0.0355**0.0481*0.05170.0692 2.061.911.541.44
TechGreenness × BankingFD0.0969***0.1401***0.1924***0.2299*** 4.164.504.904.45
BankingFD-0.0096-0.0081-0.0046-0.0297 -0.40-0.24-0.10-0.48 ControlsYYYY
YearFEYYYY
Observations650554460372
R-squared0.15250.18050.23380.2261
Greentechpositivelypredictsfuturecumulativestockreturnsespecially infinanciallydevelopedcountries,morestronglysointheOECD.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Allcountries (1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
TechGreenness-0.01250.00750.04630.0422 -0.680.250.980.68
TechGreenness × HighFDDummy0.1119***0.1369***0.1479**0.1868** 4.263.552.552.41
HighFDDummy-0.0389-0.0827*-0.1374**-0.1744** -1.31-1.90-2.22-2.21 ControlsYYYY YearFEYYYY
Observations942793652524
R-squared0.12620.16680.22820.2500
Greentechpositivelypredictsfuturecumulativestockreturnsinthemost financiallydevelopedcountries.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Altogether, greentechfirms exhibit:
▶ higherlong-runreturns;
▶ highervaluations;
▶ betteroperatingperformance.
Thisinformationisimpoundedprimarilyin efficientfinancialmarkets.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Inthelastpartofthepaper,westudythe marketreaction toafirm’s greennessdisclosure.
Thisanalysisalsoallowsustoexploitthe extendedsample:
▶ the165firmsthatdisclosetechgreenness;
▶ +theremaining835firmsthatdonot.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Wedivideourempiricaltestsin threeparts:
▶ Disclosureof technologicalgreenness.
− Top30%,bottom30%,non-publishers
▶ Horserace withalternativemeasuresofgreenness.
− Top30%greentech,top30%ESG,bottom30%GHG(scope1)
▶ Marketreactionafter ParisAgreement andthe Trumpelection. two-yearreturnsafter2016,worldv.US
Publishersinoursample: Tech =13%, ESG =20%, GHG =12%.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Weexpectthemarkettoreward greentechdisclosure.
▶ Topgreentech publishersarelikelythe greenestinthesample.
▶ Bottomgreentech publishersarelikely greenerthannon-publishers.
Intuition:itisonlyoptimaltodiscloseforfirmsthatbelievetobe reasonablygreen withrespecttoallothers.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
Top30%TechGreenness0.1461***0.2615***0.3784***0.4289*** 4.495.145.174.49
YearFEYYYY
Observations4410376731552580
R-squared0.06700.06170.06170.0692
Top30%green-techpublishersearnhigherlong-runstockreturnsthan non-publishers.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
Greentechdisclosure:Bottom30%v.Non-publishers
(1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
Bottom30%TechGreenness0.0542*0.0840*0.1056*0.1197 1.931.901.771.60
YearFEYYYY
Observations4417378531772605
R-squared0.06750.06050.05490.0603
Bottom30%green-techpublishersearn(weakly)higherlong-runstock returnsthannon-publishers.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
(1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
Publisher0.0699***0.1182***0.1620***0.1810***
3.013.313.292.94
YearFEYYYY
Observations5082434036312965
R-squared0.06170.05650.05420.0611
Green-techpublishers(nomatterhowgreen)earnhigherlong-runstock returnsthannon-publishers.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
Next,wecarryouta horserace between greennessmeasures:
▶ Top30%TechGreenness.
▶ Top30%ESG.
▶ Bottom30%GHG.
Correlations: ρT ,E =0.31, ρT ,G =0.16, ρE ,G =0.32.
(p-value < 0.001forall)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
(1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
Top30%TechGreenness0.1170***0.2079***0.3131***0.3572***
3.924.384.493.85
Top30%ESG0.03630.0771**0.0963*0.1239*
1.562.141.901.83
Bottom30%GHG0.0749**0.1273***0.1962***0.2180**
2.292.593.032.54
YearFEYYYY
Observations5082434036312965
R-squared0.06440.06290.06540.0731
Top30%green-techpublishersearnhigherlong-runstockreturnsthan non-publishers,controllingfortopESGandbottomGHGpublishing.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
(1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
Top30%TechGreenness0.1174***0.2107***0.3115***0.3577***
3.954.454.473.83
Top30%E-score0.03350.06340.0980*0.1091
1.351.621.831.56
Bottom30%GHG0.0789**0.1379***0.2071***0.2384***
2.452.883.312.91
YearFEYYYY
Observations5082434036312965
R-squared0.06440.06260.06550.0728
Top30%green-techpublishersearnhigherlong-runstockreturnsthan non-publishers,controllingfortopEandbottomGHGpublishing.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
(1)(2)(3)(4)
Cum.Returns1-2Cum.Returns1-3Cum.Returns1-4Cum.Returns1-5
TechGreennessPublisher0.0534**0.0829**0.1106**0.1237*
2.262.252.161.89
ESGPublisher0.01710.03920.06500.0620
0.580.861.100.83
GHGPublisher0.03560.0737*0.1030**0.1285**
1.341.852.042.08
YearFEYYYY
Observations5082434036312965
R-squared0.06240.05870.05800.0650
Green-techpublishers(nomatterhowgreen)earnhigherlong-runstock returnsthannon-publishers,controllingforESGandGHGpublishing.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht) Technologicalgreennessandlong-runperformance
Dep.Variable:Cum.Returns1-2(1)(2)(3)(4)
Top30%TechGreenness0.1263**0.1233*** 2.463.15
Top30%TechGreenness × 20160.1709***0.0763** 3.502.06
Top30%TechGreenness × 2016 × US-0.2138***-0.2246*** -2.92-3.07
Top30%ESG0.0281-0.0286 0.44-0.46
Top30%ESG × 20160.3114***0.2561*** 4.164.32
Top30%ESG × 2016 × US-0.2054***-0.1158** -2.75-2.13
Bottom30%GHG0.1135**0.1132** 2.022.50
Bottom30%GHG × 20160.2046***0.0695 2.931.56
Bottom30%GHG × 2016 × US-0.2302***-0.0880* -3.61-1.93
ControlsYYYY
Observations5082508250825082
R-squared0.03720.03640.03640.0415
PAeffectforgreentechdisclosureonlyholdsoutsidetheUS,controlling forESGandGHGdisclosure
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Inthispaper,westudythe long-runperformance of greentechfirms.
Consistentwithourtheoreticalarguments,greentechfirmsexhibit:
▶ Positivelong-runreturns. especiallyinmoreefficientfinancialmarkets
− disclosinggreentechinfoisrewardedinitsownright
▶ Highervaluations.
− consistentwithgradualimpoundingofinformation
▶ Betteroperatingperformance.
− bothmoreprofitableandlessvolatile inlinewiththefundamentalsstory
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Investingingreenstocksthenseemstobe lucrative inthe longrun. Notjustsociallyresponsible!
Thisisan importantresult:
▶ Financialperformanceofgreenassetsislargelydebated,butstill largelyfocusedonthe shortrun.
▶ Transitiontoa greenereconomy mayentailmoreeconomic advantagesthanpreviouslythought.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
Technologicalgreennessandlong-runperformance
Ourfindingsmakeacasefortheintroductionof systematic requirements for techgreennessdisclosure.
▶ Stockmarketsaroundtheworldseemtorecognizeit.
▶ Setsuptherightincentivesforfirmstogogreen.
Overall,thisisfoodforthoughtfor policymakers.
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)
S.Battiston(UZurich,UVenice),I.Monasterolo(UUtrecht),M.Montone(UUtrecht)