Project 2 Extension of a R. C. Bungalow Building Structures (ARC 2522/2523)
Individual Extension Proposal Report Ong Wei Hoow (0304468) Mr Adib (Tutor)
Extension Proposal
Architectural Plans 1:150 1. Ground Floor Plan
ONG WEI HOOW 0304468
Page 2
2. First Floor Plan
ONG WEI HOOW 0304468
Page 3
3. Roof Plan
ONG WEI HOOW 0304468
Page 4
Extension Proposal
Structural Plans 1:150 1. Foundation Layout Plan
ONG WEI HOOW 0304468
Page 5
2. Ground Floor Layout Plan
Demolished Structure
ONG WEI HOOW 0304468
Page 6
3. First Floor Layout Plan
Demolished Structure
ONG WEI HOOW 0304468
Page 7
4. Roof Layout Plan
Demolished Structure
ONG WEI HOOW 0304468
Page 8
3D Sketch-up Extension Model Perspectives
ONG WEI HOOW 0304468
Page 9
Quantify Dead Loads Acting on Structure Beam Self-Weight (Assume that initial beam size 150 mm x 300mm) = Beam Size x Concrete Density = 0.15 m x 0.3 m x 24 kN/m3 = 1.08 kN/m Ground Floor Dining: Slab thickness = 150 mm Slab self-weight = 0.15 m x 24 kN/m3 = 3.6 kN/m2 Store: Slab thickness = 150 mm Slab self-weight = 0.15 m x 24 kN/m3 = 3.6 kN/m2 Mini Bar: Slab thickness = 150 mm Slab self-weight = 0.15 m x 24 kN/m3 = 3.6 kN/m2 Brick Wall: = Wall Height x Thickness x Density = 3.4 m x 0.15 m x 19 kN/m3 = 9.69 kN/m
First Floor Bath Room: Slab thickness = 100 mm Slab self-weight = 0.1 m x 24 kN/m3 = 2.4kN/m2 Guest Room: Slab thickness = 150 mm Slab self-weight = 0.15 m x 24 kN/m3 = 3.6 kN/m2
ONG WEI HOOW 0304468
Gym Room: Slab thickness = 150 mm Slab self-weight = 0.15 m x 24 kN/m3 = 3.6 kN/m2 Study Room: Slab thickness = 150 mm Slab self-weight = 0.15 m x 24 kN/m3 = 3.6 kN/m2 Brick Wall: = Wall Height x Thickness x Density = 2.8 m x 0.15 m x 19 kN/m3 = 7.98 kN/m
Quantify Live Loads Acting on Structure Ground Floor Dining: 2.0 kN/m2 Store: 2.5 kN/m2 Mini Bar: 2.0 kN/m2 First Floor Bath Room: 2.0 kN/m2 Guest Room: 2.0 kN/m2 Gym Room: 5.0 kN/m2 Study Room: 2.5 kN/m2 (According to 4th schedule of UBBL for live load according to the function of the space.) Page 10
Identify One Way or Two Way Slab Indicating the Distribution of Load from Slab to Beam Ly = Longer side of slab LX = Shorter side of slab
When Ly / LX > 2, it is a one way slab. When Ly / LX < 2 or =2, it is a two way slab.
Ground Floor Dining = 4000 mm / 2800 mm = 1.42 < 2 (two way slab) Store = 2800 mm / 2200 mm = 1.27 < 2 (two way slab) Mini Bar = 2800 mm / 1300 mm = 2.15 > 1 (one way slab) = 2800m m / 1500 mm = 1.87 < 2 (two way slab)
First Floor Bath Room = 1800 mm / 1500 mm = 1.2 < 2 (two way slab)
Ground Floor Layout Plan 1:150
Guest Room = 2800 mm / 2200 mm = 1.27 < 2 (two way slab) = 1800 mm / 1300 mm = 1.38 < 2 (two way slab) Gym Room = 2800 mm / 2200 mm = 1.27 < 2 (two way slab) Study Room: = 2800 mm / 1300 mm = 2.15 > 1 (one way slab) = 2800 m / 1500 m = 1.87 < 2 (two way slab)
First Floor Layout Plan 1:150
Load Distribution Diagram To identify how much load would be transferred from the slab to each adjacent beam
Ground Floor Layout Plan 1:100
First Floor Layout Plan 1:100
12 | P a g e
Beam Analysis Calculation Ground Floor Beam, B / 1-2 1) Carries self-weight â&#x20AC;&#x201C; Dead Load 2) Slab Dead Load & Live Load > A-B / 1-2 (one way slab) > B-C / 1-2 (two way slab) Beam Self weight
= Beam size x concrete density = 0.15 m x 0.3 m x 24 kN/m3 = 1.08 kN/m
Dead Load on slab A-B / 1-2 (one way slab) Load is transferred to beam B / 1-2 in a UDL form. Dead load from slab A-C / 1-2 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (1.3 m / 2) = 2.34 kN/m
Dead Load on slab B-C / 1-2 (two way slab) Load is transferred to beam B / 1-2 in a trapezoidal form. Convert it into UDL. Dead load from slab B-C / 1-2 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (1.5 m / 2) = 2.70 kN/m
Total Dead Load Total for 1-2 = 1.08 kN/m + 2.34 kN/m + 2.70 kN/m = 6.12 kN/m
13 | P a g e
14 | P a g e
Live Load on slab A-C / 1-2 (one way slab) Load is transferred to beam B / 1-2 in a UDL form. Live load from slab A-C / 1-2 = Live load on slab x (LX / 2) = 2 kN/m2 x (1.3 m / 2) = 1.3 kN/m
Live Load on slab A-C / 3-4 (two way slab) Load is transferred to beam B / 1-2 in a trapezoidal form. Convert it into UDL. Live load from slab A-C / 3-4 = Live load on slab x (LX / 2) = 2kN/m2 x (1.5 m / 2) = 1.5 kN/m Total Live Load Total for 1-2 = 1.3 kN/m + 1.5 kN/m = 2.8 kN/m
15 | P a g e
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively. Dead load 1-2
= 6.12 kN/m x 1.4 = 8.57 kN/m
Live load 1-2
= 2.8 kN/m x 1.6 = 4.48 kN/m
Ultimate load 1-2
= 8.57 kN/m + 4.48 kN/m = 13.05 kN/m
Reactions ΣMA = 0 = R2 (2.8) – 13.05 (2.8) (2.8/2) = 2.8 R2 – 51.16 R2 = 18.27 kN ΣFy
R1
=0 = R2 + R1 – 13.05 (2.8) = 18.27 + R1 – 36.54 = R1 – 18.27 = 18.27 kN
16 | P a g e
Conclusion The size of beam B / 1-2 should be 125 mm x 250 mm (1 % of reinforcement) with 20 kNm of Bending Moment Capacity.
17 | P a g e
Beam Analysis Calculation Ground Floor Beam, 2 / A-C 1) Carries self-weight – Dead Load 2) Slab Dead Load & Live Load > A-C / 2-3 (two way slab) > B-C / 1-2 (two way slab) 3) Brick wall – Dead Load 4) Point Load of Beam B / 1-2 = 18.27 kN Beam Self weight
= Beam size x concrete density = 0.15 m x 0.3 m x 24 kN/m3 = 1.08 kN/m
Brick wall weight
= Wall Height x Thickness x Density = 3.4 m x 0.15 m x 19 kN/m3 = 9.69 kN/m
Dead Load on slab A-C / 2-3 (two way slab) Load is transferred to beam 2 / A-C in a trapezoidal form. Convert it into UDL. Dead load from slab A-C / 2-3 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (2.2 m / 2) = 3.96 kN/m Dead Load on slab B-C / 1-2 (two way slab) Load is transferred to beam 2 / A-C in a trapezoidal form. Convert it into UDL. Dead load from slab B-C / 1-2 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (1.5 m / 2) = 2.70 kN/m
Total Dead Load Total for A-B = 1.08 kN/m + 9.69 kN/m + 3.96 kN/m = 14.73 kN/m Total for B-C = 1.08 kN/m + 9.69 kN/m + 3.96 kN/m + 2.70 kN/m = 17.43 kN/m
18 | P a g e
19 | P a g e
Live Load on slab A-C / 1-2 (two way slab) Load is transferred to beam 2 / A-C in a trapezoidal form. Convert it into UDL. Live load from slab A-C / 2-3 = Live load on slab x (LX / 2) = 2.5 kN/m2 x (2.2 m / 2) = 2.75 kN/m Live Load on slab A-C / 3-4 (two way slab) Load is transferred to beam 2 / A-C in a trapezoidal form. Convert it into UDL. Live load from slab B-C / 1-2 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (1.5 m / 2) = 1.50 kN/m Total Live Load Total for A-B = 2.75 kN/m Total for B-C = 2.75 kN/m + 1.50 kN/m = 4.25 kN/m
20 | P a g e
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively. Dead load A-B Dead load B-C
= 14.73 kN/m x 1.4 = 20.62 kN/m = 17.43 kN/m x 1.4 = 24.40 kN/m
Live load A-B Live load B-C
= 2.75 kN/m x 1.6 = 4.4 kN/m = 4.25 kN/m x 1.6 = 6.8 kN/m
Ultimate load A-B Ultimate load B-C
= 20.62 kN/m + 4.4 kN/m = 25.02 kN/m = 24.40 kN/m + 6.8 kN/m = 31.20 kN/m
Reactions ΣMA = 0 = RA (1.3+1.5) – 31.20 (1.5) (1.5/2) – 25.02 (1.3) (1.3/2 + 1.5) – 18.27 (1.5) = 2.8 RA – 35.1 – 69.93 – 27.41 = 2.8 RA – 132.44 RA = 47.3 kN ΣFy
RB
=0 = RA + RB – (31.2 x 1.5) – (25.02 x 1.3) – 18.27 = 47.30 + RB – 46.8 – 32.53 – 18.27 = RB – 50.3 = 50.30 kN
21 | P a g e
Conclusion The size of beam 2 / A-C should be 125 mm x 300 mm (1.5 % of reinforcement) with 55 kNm of Bending Moment Capacity.
22 | P a g e
Beam Analysis Calculation Ground Floor Beam, A / 1-3 1) Carries self-weight – Dead Load 2) Slab Dead Load & Live Load > A-B / 1-2 (one way slab) > A-C / 2-3 (two way slab) 3) Brick wall – Dead Load 4) Point Load of Beam 2 / A-C = 44.04 kN Beam Self weight
= Beam size x concrete density = 0.15 m x 0.3 m x 24 kN/m3 = 1.08 kN/m
Brick wall weight
= Wall Height x Thickness x Density = 3.4 m x 0.15 m x 19 kN/m3 = 9.69 kN/m
Dead Load on slab A-B / 1-2 (one way slab) Load is transferred to beam A / 1-3 in a UDL form. Dead load from slab A-B / 1-2 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (1.3 m / 2) = 2.34 kN/m
Dead Load on slab A-C / 2-3 (two way slab) Load is transferred to beam A / 1-3 in a trapezoidal form. Convert it into UDL. Dead load from slab A-C / 2-3 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (2.2 m / 2) = 3.96 kN/m
Total Dead Load Total for 1-2 = 1.08 kN/m + 9.69 kN/m + 2.34 kN/m = 13.11 kN/m Total for 2-3 = 1.08 kN/m + 9.69 kN/m + 3.96 kN/m = 14.73 kN/m
23 | P a g e
24 | P a g e
Live Load on slab A-B / 1-2 (one way slab) Load is transferred to beam A / 1-3 in a UDL form. Live load from slab A-B / 1-2 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (1.3 m / 2) = 1.3 kN/m Live Load on slab A-C / 2-3 (two way slab) Load is transferred to beam A / 1-3 in a trapezoidal form. Convert it into UDL. Live load from slab A-C / 2-3 = Live load on slab x (LX / 2) = 2.5 kN/m2 x (2.2 m / 2) = 2.75 kN/m Total Live Load Total for 1-2 = 1.3 kN/m Total for 2-3 = 2.75 kN/m
25 | P a g e
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively. Dead load 1-2 Dead load 2-3
= 13.11 kN/m x 1.4 = 18.35 kN/m = 14.73 kN/m x 1.4 = 20.62 kN/m
Live load 1-2 Live load 2-3
= 1.3 kN/m x 1.6 = 2.08 kN/m = 2.75 kN/m x 1.6 = 4.4 kN/m
Ultimate load 1-2 Ultimate load 2-3
= 18.35 kN/m + 2.08 kN/m = 20.43 kN/m = 20.62 kN/m + 4.4 kN/m = 25.02 kN/m
Reactions ΣMA = 0 = R3 (2.2+2.8) – 20.43 (2.8) (2.8/2) – 25.02 (2.2) (2.2/2 + 2.8) – 47.30 (2.8) = 5 R3 – 80.09 – 214.67 – 132.44 = 5 R3 – 427.2 R3 = 85.44 kN ΣFy
R4
=0 = R3 + R4 – (25.02 x 2.2) – (20.43 x 2.8) – 47.30 = 85.44 + R4 – 55.04 – 57.2 – 47.30 = R4 – 74.1 = 74.10 kN
26 | P a g e
Conclusion The size of beam A / 1-3 should be 125 mm x 600 mm (1 % of reinforcement) with 150 kNm of Bending Moment Capacity.
27 | P a g e
Beam Analysis Calculation First Floor Beam, B / 4-5 1) Carries self-weight – Dead Load 2) Slab Dead Load & Live Load > A-B / 4-5 (two way slab) > B-C / 4-5 (two way slab) 3) Brick wall – Dead Load
Beam Self weight
= Beam size x concrete density = 0.15 m x 0.3 m x 24 kN/m3 = 1.08 kN/m
Brick wall weight
= Wall Height x Thickness x Density = 2.8 m x 0.15 m x 19 kN/m3 = 7.98 kN/m
Dead Load on slab A-B / 4-5 (two way slab) Load is transferred to beam B / 4-5 in a trapezoidal form. Convert it into UDL Dead load from slab A-B / 4-5 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (1.3 m / 2) = 2.34 kN/m
Dead Load on slab B-C / 4-5 (two way slab) Load is transferred to beam B / 4-5 in a trapezoidal form. Convert it into UDL. Dead load from slab B-C / 4-5 = Dead load on slab x (LX / 2) = 2.4 kN/m2 x (1.5 m / 2) = 1.8 kN/m
Total Dead Load Total for 4-5 = 1.08 kN/m + 7.98 kN/m + 2.34 kN/m + 1.80 kN/m = 13.2 kN/m
28 | P a g e
29 | P a g e
Live Load on slab A-C / 1-2 (one way slab) Load is transferred to beam B / 4-5 in a trapezoidal form. Convert it into UDL. Live load from slab A-B / 4-5 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (1.3 m / 2) = 1.3 kN/m
Live Load on slab A-C / 3-4 (two way slab) Load is transferred to beam B / 4-5 in a trapezoidal form. Convert it into UDL. Live load from slab B-C / 4-5 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (1.5 m / 2) = 1.5 kN/m Total Live Load Total for 4-5 = 1.3 kN/m + 1.5 kN/m = 2.8 kN/m
30 | P a g e
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively. Dead load 4-5
= 13.2 kN/m x 1.4 = 18.48 kN/m
Live load 4-5
= 2.8 kN/m x 1.6 = 4.48 kN/m
Ultimate load 4-5
= 18.48 kN/m + 4.48 kN/m = 22.88 kN/m
Reactions ΣMA = 0 = R5 (1.8) – 22.88 (1.8) (1.8/2) = 1.8 R5 – 37.07 R5 = 20.59 kN ΣFy
R4
=0 = R5 + R4 – 22.88 (1.8) = 20.59 + R4 – 41.18 = R4 – 20.59 = 20.59 kN
31 | P a g e
Conclusion The size of beam B / 4-5 should be 125 mm x 250 mm (1 % of reinforcement) with 20 kNm of Bending Moment Capacity.
32 | P a g e
Beam Analysis Calculation First Floor Beam, 4 / A-C 1) Carries self-weight – Dead Load 2) Slab Dead Load & Live Load > A-C / 3-4 (two way slab) > A-B / 4-5 (two way slab) > B-C / 4-5 (two way slab) 3) Brick wall – Dead Load (From B-C) 4) Point Load of Beam B / 4-5 = 20.59 kN
Beam Self weight
= Beam size x concrete density = 0.15 m x 0.3 m x 24 kN/m3 = 1.08 kN/m
Brick wall weight
= Wall Height x Thickness x Density = 2.8 m x 0.15 m x 19 kN/m3 = 7.98 kN/m
Dead Load on slab A-C / 3-4 (two way slab) Load is transferred to beam 4 / A-C in a trapezoidal form. Convert it into UDL Dead load from slab A-C / 3-4 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (2.2 m / 2) = 3.96 kN/m Dead Load on slab A-B / 4-5 (two way slab) Load is transferred to beam 4 / A-C in a trapezoidal form. Convert it into UDL Dead load from slab A-B / 4-5 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (1.3 m / 2) = 2.34 kN/m
Dead Load on slab B-C / 4-5 (two way slab) Load is transferred to beam 4 / A-C in a trapezoidal form. Convert it into UDL. Dead load from slab B-C / 4-5 = Dead load on slab x (LX / 2) = 2.4 kN/m2 x (1.5 m / 2) = 1.8 kN/m
Total Dead Load Total for A-B = 1.08 kN/m + 3.96 kN/m + 2.34 kN/m = 7.38 kN/m Total for B-C = 1.08 kN/m + 3.96 kN/m + 7.98 kN/m + 1.80 kN/m = 14.82 kN/m 33 | P a g e
34 | P a g e
Live Load on slab A-C / 3-4 (two way slab) Load is transferred to beam 4 / A-C in a trapezoidal form. Convert it into UDL. Live load from slab A-C / 3-4 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (2.2 m / 2) = 2.2 kN/m Live Load on slab A-B / 4-5 (two way slab) Load is transferred to beam 4 / A-C in a trapezoidal form. Convert it into UDL. Live load from slab A-B / 4-5 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (1.3 m / 2) = 1.3 kN/m Live Load on slab B-C / 4-5 (two way slab) Load is transferred to beam 4 / A-C in a trapezoidal form. Convert it into UDL. Live load from slab B-C / 4-5 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (1.5 m / 2) = 1.5 kN/m Total Live Load Total for A-B = 2.2 kN/m + 1.3 kN/m = 3.5 kN/m Total for B-C = 2.2 kN/m + 1.5 kN/m = 3.7 kN/m
35 | P a g e
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively. Dead load A-B Dead load B-C
= 7.38 kN/m x 1.4 = 10.33 kN/m = 14.82 kN/m x 1.4 = 20.75 kN/m
Live load A-B Live load B-C
= 3.5 kN/m x 1.6 = 5.60 kN/m = 3.7 kN/m x 1.6 = 5.92 kN/m
Ultimate load A-B Ultimate load B-C
= 10.33 kN/m + 5.60 kN/m = 15.93 kN/m = 20.75 kN/m + 5.92 kN/m = 26.67 kN/m
Reactions ΣMA = 0 = RA (1.3+1.5) – 26.67 (1.5) (1.5/2) – 15.93 (1.3) (1.3/2 + 1.5) – 20.59 (1.5) = 2.8 RA – 30 – 44.52 – 30.89 = 2.8 RA – 105.41 RA = 37.65 kN ΣFy
RB
=0 = RA + RB – (26.67 x 1.5) – (15.93 x 1.3) – 20.59 = 37.65 + RB – 40 – 20.71 – 20.59 = RB – 43.66 = 43.66 kN
36 | P a g e
Conclusion The size of beam 4 / A-C should be 125 mm x 300 mm (1 % of reinforcement) with 38 kNm of Bending Moment Capacity.
37 | P a g e
Beam Analysis Calculation First Floor Beam, A / 3-5 1) Carries self-weight – Dead Load 2) Slab Dead Load & Live Load > A-C / 3-4 (two way slab) > A-B / 4-5 (two way slab) 3) Brick wall – Dead Load 4) Point Load of Beam 4 / A-C = 33.97 kN
Beam Self weight
= Beam size x concrete density = 0.15 m x 0.3 m x 24 kN/m3 = 1.08 kN/m
Brick wall weight
= Wall Height x Thickness x Density = 2.8 m x 0.15 m x 19 kN/m3 = 7.98 kN/m
Dead Load on slab A-C / 3-4 (two way slab) Load is transferred to beam A / 3-5 in a trapezoidal form. Convert it into UDL Dead load from slab A-C / 3-4 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (1.3 m / 2) = 2.34 kN/m
Dead Load on slab A-B / 4-5 (two way slab) Load is transferred to beam A / 3-5 in a trapezoidal form. Convert it into UDL. Dead load from slab A-B / 4-5 = Dead load on slab x (LX / 2) = 3.6 kN/m2 x (2.2 m / 2) = 3.96 kN/m
Total Dead Load Total for 3-4 = 1.08 kN/m + 7.98 kN/m + 2.34 kN/m = 11.4 kN/m Total for 4-5 = 1.08 kN/m + 7.98 kN/m + 3.96 kN/m = 13.02 kN/m
38 | P a g e
39 | P a g e
Live Load on slab A-C / 3-4 (two way slab) Load is transferred to beam A / 3-5 in a trapezoidal form. Convert it into UDL. Live load from slab A-C / 3-4 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (1.3 m / 2) = 1.3 kN/m
Live Load on slab A-B / 4-5 (two way slab) Load is transferred to beam A / 3-5 in a trapezoidal form. Convert it into UDL. Live load from slab A-B / 4-5 = Live load on slab x (LX / 2) = 2.0 kN/m2 x (2.2 m / 2) = 2.2 kN/m Total Live Load Total for 3-4 = 1.3 kN/m Total for 4-5 = 2.2 kN/m
40 | P a g e
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively. Dead load 3-4 Dead load 4-5
= 11.40 kN/m x 1.4 = 15.96 kN/m = 13.02 kN/m x 1.4 = 18.23 kN/m
Live load 3-4 Live load 4-5
= 1.3 kN/m x 1.6 = 2.08 kN/m = 2.2 kN/m x 1.6 = 3.52 kN/m
Ultimate load 3-4 Ultimate load 4-5
= 15.96 kN/m + 2.08 kN/m = 18.04 kN/m = 18.23 kN/m + 3.52 kN/m = 21.75 kN/m
Reactions ΣMA = 0 = R5 (1.8+2.2) – 18.04 (2.2) (2.2/2) – 21.75 (1.8) (1.8/2 + 2.2) – 37.65 (2.2) = 4 R5 – 43.66 – 121.37 – 82.83 = 4 R5 – 247.86 R5 = 61.97 kN ΣFy
R3
=0 = R5 + R3 – 18.04 (2.2) – 21.75 (1.8) – 37.65 = 61.97 + R3 – 39.69 – 39.15 – 37.65 = R4 – 54.52 = 54.52 kN
41 | P a g e
Conclusion The size of beam A / 3-5 should be 125 mm x 400 mm (1 % of reinforcement) with 75 kNm of Bending Moment Capacity.
42 | P a g e
Load Distribution Diagram To identify Distribution of Load from Slab to Column by using the tributary area method
Ground Floor Layout Plan 1:100
First Floor Layout Plan 1:100 43 | P a g e
Roof Layout Plan 1:100
44 | P a g e
Column Analysis Calculation (Tributary Area Method) To identify how much load would be transferred from slab to column Column A/1 Dead Load Roof
Brick Wall = 7.98 kN/m x (0.65 m + 2.50 m) = 25.18 kN
Flat Roof Slab Slab thickness = 200 mm Slab self-weight = 0.20 m x 24 kN/m3 = 4.8 kN/m2
TOTAL DEAD LOAD OF FIRST FLOOR = 5.85 kN + 3.40 kN + 25.18 kN = 34.43 kN
Area = 1.4 m x 2.5 m = 3.5 m2
Ground Floor
Dead Load of Flat Roof Slab = 4.8 kN/m2 x 3.5 m2 = 16.8 kN
Slab (Mini Bar) = 3.6 kN/ m2 x (0.65m x 2.50m) = 5.85 kN
Beam Self-Weight = 1.08 kN/m x (1.4 m + 2.5 m) = 4.21 kN
Beam Self-Weight = 1.08 kN/m x (0.65 m + 2.5 m) = 3.40 kN
TOTAL DEAD LOAD OF ROOF = 16.8 kN + 4.21 kN = 21.01 kN
Brick Wall = 9.69 kN/m x (0.65 m + 2.50 m) = 30.52 kN
First Floor Slab (Study Room) = 3.6 kN/m2 x (0.65 m x 2.50 m) = 5.85 kN Beam Self-Weight = 1.08 kN/m x (0.65 m + 2.5 m) = 3.40 kN
TOTAL DEAD LOAD OF GROUND FLOOR = 5.85 kN + 3.40 kN + 30.52 kN = 39.77 kN
TOTAL DEAD LOAD FROM ROOF TO FOUNDATION 21.01 kN + 34.43 kN + 39.77 kN = 95.21 kN
45 | P a g e
Live Load Roof Live Load of Flat Roof Slab = 0.5 kN/m2 x 3.5m2 = 1.75 kN First Floor Slab (Study Room) = 2.5 kN/m2 x (0.65 m x 2.50 m) = 4.06 kN Ground Floor Slab (Mini Bar) = 2.0 kN/ m2 x (0.65m x 2.50m) = 3.25 kN TOTAL LIVE LOAD FROM ROOF TO FOUNDATION 1.75 kN + 4.06 kN + 3.25 kN = 9.06 kN Ultimate Load 95.21 kN x 1.4 + 9.06 kN x 1.6 = 147.79 kN Assumption fcu = 30 N/mm2 (concrete strength) fy = 250 N/mm2 (yield strength of steel) Ac = 125 x 225 = 28125 mm2 (cross section of concrete column) Asc = 28125 mm2 x 2 % = 562.5 mm2 (steel content in a column) N (capacity of concrete) = 0.4 fcuAc + 0.8 Ascfy = 0.4 (30) (28125) + 0.8 (562.5) (250) = 450 000 N = 450 kN Conclusion N (capacity of concrete) = 0.4 fcuAc + 0.8 Ascfy = 0.4 (30) (100 x 100) + 0.8 (100 x 100 x 2%) (250) = 120 000 N + 40 000 N = 160 000 N = 160 kN The suitable size of column A/1 is 100 mm x 100 mm, which can sustain ultimate load of 147.79 kN.
Column A/4 Dead Load Roof Flat Roof Slab Slab thickness = 200 mm Slab self-weight = 0.20 m x 24 kN/m3 = 4.8 kN/m2
Beam Self-Weight = 1.08 kN/m2 x (1.4 m + 1.4 m + 4.5 m) = 7.88 kN Brick Wall = 7.98 kN/m x (1.4 m + 4.5 m) = 47.08 kN TOTAL DEAD LOAD OF FIRST FLOOR = 22.68 kN + 7.88 kN + 47.08 kN = 77.64 kN
Area = 1.4 m x 4.5 m = 6.3 m2 Dead Load of Flat Roof Slab = 4.8 kN/m2 x 6.3 m2 = 30.24 kN Beam Self-Weight = 1.08 kN/m2 x (1.4 m + 1.4 m + 4.5 m) = 7.88 kN TOTAL DEAD LOAD OF ROOF = 30.24 kN + 7.88 kN = 38.12 kN
Ground Floor Slab (Store) = 3.6 kN/m2 x (1.4 m x 2.5 m) = 12.6 kN Slab (Dining) = 3.6 kN/m2 x (1.4 m x 2.0 m) = 10.08 kN Dead Load of Two Slabs = 14.04 kN + 12.24 kN = 22.68 kN
First Floor Slab (Gym Room) = 3.6 kN/m2 x (1.4 m x 2.5 m) = 12.6 kN Slab (Guest Room) = 3.6 kN/m2 x (1.4 m x 2.0 m) = 10.08 kN Dead Load of Two Slabs = 12.6 kN + 10.08 kN = 22.68 kN
Beam Self-Weight = 1.08 kN/m2 x (1.4 m + 1.4 m + 4.5 m) = 7.88 kN Brick Wall = 9.69 kN/m x (1.4 m + 4.5 m) = 57.17 kN TOTAL DEAD LOAD OF GROUND FLOOR = 22.68 kN + 7.88 kN + 57.17 kN = 87.73 kN
TOTAL DEAD LOAD FROM ROOF TO FOUNDATION 38.12 kN + 77.64 kN + 87.73 kN = 203.49 kN
Live Load Roof Live Load of Flat Roof Slab = 0.5 kN/m2 x 6.3 m2 = 3.15 kN First Floor Slab (Gym Room) = 5.0 kN/m2 x (1.4 m x 2.5 m) = 17.5 kN Slab (Guest Room) = 1.5 kN/m2 x (1.4 m x 2.0 m) = 4.2 kN Live Load of Two Slabs = 17.5 kN + 4.2 kN = 21.7 kN Ground Floor Slab (Store) = 2.5 kN/m2 x (1.4 m x 2.5 m) = 8.75 kN Slab (Dining) = 2.0 kN/m2 x (1.4 m x 2.0 m) = 5.60 kN Live Load of Two Slabs = 8.75 kN + 5.60 kN = 14.35 kN TOTAL LIVE LOAD FROM ROOF TO FOUNDATION 3.15 kN + 21.7 kN + 14.35 kN = 39.20 kN Ultimate Load 203.49 kN x 1.4 + 39.20 kN x 1.6 = 347.61 kN
48 | P a g e
Assumption fcu = 30 N/mm2 (concrete strength) fy = 250 N/mm2 (yield strength of steel) Ac = 125 x 225 = 28125 mm2 (cross section of concrete column) Asc = 28125 mm2 x 2 % = 562.5 mm2 (steel content in a column) N (capacity of concrete) = 0.4 fcuAc + 0.8 Ascfy = 0.4 (30) (28125) + 0.8 (562.5) ( 250) = 450 000 N = 450 kN
Conclusion N (capacity of concrete) = 0.4 fcuAc + 0.8 Ascfy = 0.4 (30) (125 x 200) + 0.8 (125 x 200 x 2%) (250) = 300 000 N + 100 000 N = 400 000 N = 400 kN The suitable size of column A/4 is 125 mm x 200 mm, which can sustain ultimate load of 347.61 kN.
49 | P a g e
Column C/6 Dead Load Roof Flat Roof Slab Slab thickness = 200 mm Slab self-weight = 0.20 m x 24 kN/m3 = 4.8 kN/m2
Brick Wall = 7.98 kN/m x (1.4 m + 1.4 m + 2.0 m) = 38.30 kN TOTAL DEAD LOAD OF FIRST FLOOR = 6.72 kN + 3.67 kN + 38.30 kN = 48.72 kN Ground Floor
Area = 1.4 m x 2.0 m = 2.8 m2 Dead Load of Flat Roof Slab = 4.8 kN/m2 x 2.8 m2 = 13.44 kN Beam Self-Weight = 1.08 kN/m2 x (1.4 m + 2.0 m) = 3.67 kN TOTAL DEAD LOAD OF ROOF = 13.44 kN + 3.67 kN = 17.11 kN
First Floor Slab (Bath Room) = 2.4 kN/m2 x (1.4 m x 2.0 m) = 6.72 kN Beam Self-Weight = 1.08 kN/m x (1.4 m + 2.0 m) = 3.67 kN
Slab (Dining) = 3.6 kN/ m2 x (1.4 m x 2.0 m) = 10.08 kN Beam Self-Weight = 1.08 kN/m x (1.4 m + 2.0 m) = 3.67 kN Brick Wall = 9.69 kN/m x (1.4 m + 2.0 m) = 32.95 kN TOTAL DEAD LOAD OF GROUND FLOOR = 10.08 kN + 3.67 kN + 32.95 kN = 46.7 kN
TOTAL DEAD LOAD FROM ROOF TO FOUNDATION 17.11 kN + 37.52 kN + 48.72 kN = 103.35 kN
Live Load Roof Live Load of Flat Roof Slab = 0.5 kN/m2 x 2.8 m2 = 1.75 kN First Floor Slab (Bath Room) = 2.0 kN/m2 x (1.4 m x 2.0 m) = 5.6 kN Ground Floor Slab (Dining) = 2.0 kN/ m2 x ((1.4 m x 2.0 m) = 5.6 kN TOTAL LIVE LOAD FROM ROOF TO FOUNDATION 1.75 kN + 5.6 kN + 5.6 kN = 12.95 kN Ultimate Load 103.35 kN x 1.4 + 12.95 kN x 1.6 = 165.41 kN Assumption fcu = 30 N/mm2 (concrete strength) fy = 250 N/mm2 (yield strength of steel) Ac = 125 x 225 = 28125 mm2 (cross section of concrete column) Asc = 28125 mm2 x 2 % = 562.5 mm2 (steel content in a column) N (capacity of concrete) = 0.4 fcuAc + 0.8 Ascfy = 0.4 (30) (28125) + 0.8 (562.5) (250) = 450 000 N = 450 kN Conclusion N (capacity of concrete) = 0.4 fcuAc + 0.8 Ascfy = 0.4 (30) (125 x 100) + 0.8 (125 x 100 x 2%) (250) = 150 000 N + 50 000 N = 200 000 N = 200 kN The suitable size of column C/6 is 125 mm x 100 mm, which can sustain ultimate load of 165.41 kN.
Column C/4 Dead Load Roof Flat Roof Slab Slab thickness = 200 mm Slab self-weight = 0.20 m x 24 kN/m3 = 4.8 kN/m2
Beam Self-Weight = 1.08 kN/m2 x (1.4 m + 3.75 m) = 5.56 kN Brick Wall = 7.98 kN/m x (1.4 m + 3.75 m) = 41.10 kN TOTAL DEAD LOAD OF FIRST FLOOR = 18.9 kN + 5.56 kN + 41.1 kN = 65.56 kN
Area = 1.4 m x 3.75 m = 5.25 m2 Dead Load of Flat Roof Slab = 4.8 kN/m2 x 5.25 m2 = 25.20 kN Beam Self-Weight = 1.08 kN/m2 x (1.4 m + 3.75 m) = 5.56 kN TOTAL DEAD LOAD OF ROOF = 25.20 kN + 5.56 kN = 30.76 kN
Ground Floor Slab (Store) = 3.6 kN/m2 x (1.4 m x 1.75 m) = 8.82 kN Slab (Dining) = 3.6 kN/m2 x (1.4 m x 2.0 m) = 10.08 kN Dead Load of Two Slabs = 8.82 kN + 10.08 kN = 18.9 kN
First Floor Slab (Gym Room) = 3.6 kN/m2 x (1.4 m x 1.75 m) = 8.82 kN Slab (Guest Room) = 3.6 kN/m2 x (1.4 m x 2.0 m) = 10.08 kN Dead Load of Two Slabs = 8.82 kN + 10.08 kN = 18.9 kN
Beam Self-Weight = 1.08 kN/m2 x (1.4 m + 3.75 m) = 5.56 kN Brick Wall = 9.69 kN/m x (1.4 m + 3.75 m) = 49.9 kN TOTAL DEAD LOAD OF GROUND FLOOR = 18.9 kN + 5.56 kN + 49.9 kN = 73.36 kN
TOTAL DEAD LOAD FROM ROOF TO FOUNDATION 30.76 kN + 65.56 kN + 73.36 kN = 169.68 kN
Live Load Roof Live Load of Flat Roof Slab = 0.5 kN/m2 x 5.25 m2 = 2.63 kN First Floor Slab (Gym Room) = 5.0 kN/m2 x (1.4 m x 1.75 m) = 12.25 kN Slab (Guest Room) = 1.5 kN/m2 x (1.4 m x 2.0 m) = 4.2 kN Live Load of Two Slabs = 12.25 kN + 4.2 kN = 16.45 kN Ground Floor Slab (Store) = 2.5 kN/m2 x (1.4 m x 1.75 m) = 6.13 kN Slab (Dining) = 2.0 kN/m2 x (1.4 m x 2.0 m) = 5.60 kN Live Load of Two Slabs = 6.13 kN + 5.60 kN = 11.73 kN TOTAL LIVE LOAD FROM ROOF TO FOUNDATION 2.63 kN + 16.45 kN + 11.73 kN = 30.81 kN Ultimate Load 169.68 kN x 1.4 + 30.81 kN x 1.6 = 286.85 kN
53 | P a g e
Assumption fcu = 30 N/mm2 (concrete strength) fy = 250 N/mm2 (yield strength of steel) Ac = 125 x 225 = 28125 mm2 (cross section of concrete column) Asc = 28125 mm2 x 2 % = 562.5 mm2 (steel content in a column) N (capacity of concrete) = 0.4 fcuAc + 0.8 Ascfy = 0.4 (30) (28125) + 0.8 (562.5) ( 250) = 450 000 N = 450 kN
Conclusion N (capacity of concrete) = 0.4 fcuAc + 0.8 Ascfy = 0.4 (30) (125 x 150) + 0.8 (125 x 150 x 2%) (250) = 225 000 N + 75 000 N = 300 000 N = 300 kN The suitable size of column C/4 is 125 mm x 225 mm, which can sustain ultimate load of 286.85 kN.
54 | P a g e
Reference Ann, S.P. (2014).Part 1: Frame It Up. Retrieved 19 June from http://www.powtoon.com/p/euyoG1UdTcD/
Ann, S.P. (2014).Part 2: Quantify Loads. Retrieved 19 June from http://www.powtoon.com/p/dyVdvydgVOY/
Ann, S.P. (2014).Part 3: Distributing Load from Slab to Beam. Retrieved 19 June from http://www.powtoon.com/p/eQ0DDLd4PWg/
Ann, S.P. (2014).Part 4: Load Diagram from Beam. Retrieved 19 June from http://www.powtoon.com/p/foCn6KNsJx1/
MDC Legal Advisers. (2006). Uniform Building By-Laws. Malaysia : MDC Publishers Retrieved 19 June from http://www.scribd.com/doc/30457115/13282147-uniform-building-by-laws
55 | P a g e