Logic & proofs structures

Page 1

Logic and Proof Structures

Proofs Workshop

Notation p, q

propositions which may be true or false

¬p

not p it is not the case that p

p∧q

p and q are both true

p∨q

p is true or q is true, or both are true

p⇒q

if p p q p q

p⇔q

p is true if and only if q is true p iff q p is a necessary and sufficient condition for q.

p is true then q is true implies q only if q if p is a sufficient condition for q is a necessary condition for p

Truth Tables p

q

p∧q

p∨q

p⇒q

p⇔q

T T F F

T F T F

T F F F

T T T F

T F T T

T F F T

Logical Equivalence Let P and Q be logical expressions. Then P is logically equivalent to Q, P ≡ Q, if and only if P and Q have the same truth table. Methods of Proof Direct To prove p ⇒ q, assume p is true and deduce q must be true. Contrapositive To prove p ⇒ q, it is sufficient to prove ¬q ⇒ ¬p: assume q is false, deduce p must be false. ie (¬q ⇒ ¬p) ≡ (p ⇒ q)

Shirleen Stibbe

p

q

p⇒ q

¬q

¬p

¬q ⇒ ¬p

T T F F

T F T F

T F T T

F T F T

F F T T

T F T T

http://www.shirleenstibbe.co.uk


Proof by contradiction To prove p, it is sufficient to prove ¬p ⇒ false: assume p is false and deduce a contradiction (falsehood). ie (¬p ⇒ false) ≡ p p

¬p

false

¬p ⇒ false

T F

F T

F F

T F

Proof of a biconditional: Method 1: Prove p ⇒ q and q ⇒ p, ie (p ⇔ q) ≡ (p ⇒ q) ∧ (q ⇒ p) p

q

p⇔ q

p⇒q

q⇒p

(p ⇒ q) ∧ (q ⇒ p)

T T F F

T F T F

T F F T

T F T T

T T F T

T F F T

Alternatively: (p ⇒ q) ∧ (¬p ⇒ ¬q) or (q ⇒ p) ∧ (¬q ⇒ ¬p) using contrapositives. Method 2: Prove that both are true, or neither is true, ie (p ⇔ q) ≡ (p ∧ q) ∨ (¬p ∧ ¬q) p

q

p⇔ q

¬p

¬q

p∧q

¬p ∧ ¬q

(p ∧ q) ∨ (¬p ∧ ¬q)

T T F F

T F T F

T F F T

F F T T

F T F T

T F F F

F F F T

T F F T

Shirleen Stibbe

http://www.shirleenstibbe.co.uk


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.