Hygiene Management in Water Systems
Verification of water hygiene in professional quality systems ISO 22000/HACCP – total bacteria in minutes
ETV TECHNOLOGY VERIFICATION · US-EPA · 2012
– total bacteria in minutes ROBUST TECHNOLOGY FOR USE ON-SITE Use the technology for on-site assessment of total bacterial load in water samples Get timely results and reduce down-time of critical water systems Respond quickly and maintain control
EASY SAMPLING AND ANALYSIS The analysis is based on a highly sensitive fluorescence technology
Enzyme substrate
Fluorophore
The fluorescence signal is directly proportional to the content of bacteria The BactiQuant®-water is a patented technology in use worldwide
Bacteria
For our customers Water Hygiene Quality Control is an indispensable requirement Condair, a customer of BactiQuant since 2006, has developed a comprehensive hygiene system, HACCP, under ISO 22000. This HACCP system is based on firm instructions and procedures for the sale, manufacture, installation and service of humidification systems. Condair service engineers carry mobile BactiQuant®-water equipment for rapid evaluation of water hygiene quality. The field equipment allows for on-site
evaluation of feed water quality, posttreatment verification of cleaning and disinfection as well as rapid bacteriological trouble shooting. Condair is the world’s leading manufacturer of commercial and industrial humidification and evaporative cooling products and systems, setting standards with regard to energy efficiency and hygienic solutions. Condair export to over 50 countries throughout the world.
BQW-value indicate level of bacterial load in water samples BQW-value
CFU /ml equivalent
10
10-100
100
100 -1000
1000
1000-10000
10000
10000 –100000+
The CFU equivalent is based on total bacterial counts using R2A agar, 35°C, 48 hours.
Service technician from Condair is conducting a water hygiene verification on-site. The portable analysis equipment saves valuable time and lowers logistical costs. All technicians using the system are certified users and have been trained according to the standards and protocols described by BactiQuant.
Testimonial In all adiabatic humidifiers, water hygiene is a very important issue. Water is atomized, evaporated and absorbed in the surrounding air - and if the water contains bacteria’s they will also be transferred to the air. As a supplier of professional humidification solutions to many different industries where hygiene is critical, we need to have a rapid, robust and reliable tool to test our systems in the field. With the BQ test we are able to prove, that the water we add to the air is safe for humans and products. Hygiene tests in the field - on site, is an essential part of the verification procedure of our certified ISO 22.000 HACCP Hygiene Management System. With success, we have been using the BQ test equipment since 2006 and have more than 90 certified users throughout our organization in Europe and North America. It’s a great tool for our field technicians, not only for verification of hygiene level, but also to do on site diagnosis on contaminated systems. Instead of waiting days for results, we can proceed and act immediately and make sure that our systems are safe, when we leave the customer. This saves us a lot of money and time every year, and - best of all - our customers are happy and feels safe.” LEO RASMUSSEN, SENIOR TECHNICAL ADVISER Condair Technology & Innovation Group.
Hazard Analysis and Critical Control Points (HACCP) HACCP is a systematic approach to reduce the risk of biological, chemical and physical hazards in production processes. The HACCP approach has been successfully applied to water quality management in the past two decades. The HACCP approach is based on the identification of critical control points, establishing critical limits, corrective actions and procedures for ensuring the HACCP system is working as intended. ISO 22000 specifies the requirements for a quality management system based on the HACCP principles.
Introduction
Introduction Methodology
Metho
M. Miller* and G. Zupin**
Microbial Waterutility quality in by water utilities d.o.o. and the industry is largely based part The water utili * and Mycometer, Science oersholm, Denmark water is testing operated Komunala and is located in the western Microbial Water quality testing in water utilities the industryD isTU largely based Park, HThe on traditional culture methods grab sampling. If deviations arehours detected a and 7 of The on-line The on-line system was and configured to run a sample every 12 at 7 am (E-‐mail: mmiller@mycometer.com; zofupin@microbium.si) on traditional culture methods and grab sampling. If deviations are detected a pm. The measu new sample is measurement taken 1-3 days later stretched and actionfrom is taken. are often thContaminations th of pm. The period the 4 of November to the 15 new sample is taken 1-3 days later and action is taken. Contaminations are often ** Microbium, Ljublanja, Slovenia December, 201 not detected before the Bactiquant water has on-line reached the consumers or has been December, 2017. The analysis result is reported as a Bactiquant not detected before the water has reached the consumers or has been water value (B incorporated in industrial study a value new rapid on-line bacteria water value (BQWv).processes. The BQWvInisthis a surrogate for total bacterial presence or incorporated in industrial processes. In this study a new rapid on-line bacteria Total Viable C sensorTotal was Viable evaluated in an operational environment in a Slovenian Utility. Count (TVC). The on-line system makes use of a Water statistical process sensor was evaluated in an operational environment in a Slovenian Water Utility. control (SPC) The results showed a clear causality betweenis heavy rainfalls anddata concomitant control (SPC) algorithm. This algorithm applied to historic in a CCP (ISO The results showed a clear causality between heavy rainfalls and concomitant 11462-1:2001/ water11462-1:2001/-2:2010). quality issues in a ground water reservoir. The system will results allow into the The SPC allows a translation of analysis water quality issues in a ground water reservoir. The system will allow the operational de BactiQuant offer an online solution, which operator to predict water quality issues related to precipitation events as well as a can be commissioning in a matter of hours. operational decisions. Baselines for normal are established at each CCP and operator to predict water quality issues related to precipitation events as well as a operational thr tool to monitor and verify the effect of operational actions to counter sudden The water utility is operated by Komunala d.o.o. and is located in the western part operational threshold values are derived from the SPC algorithm in each control Microbial Waterand quality testing in water utilities and the industry is largely based tool topromptly monitor verify the effect of operational actions to counter sudden quantifies the content of bacteria microbial The online system can analyze and report point. water quality issues. of The on-line system was configured to run a sample every 12 hours at 7 am and 7 point. on traditional microbial water culture quality methods issues. and grab sampling. If deviations are detected a th of th of in water systems. BactiQuant online can the results up to 12 times per day (24 hours). pm. The measurement period stretched from the 4 November to the 15 new sample is taken 1-3 days later and action is taken. Contaminations are often December, 2017. Thecombination Bactiquant on-line analysis result is reportedand as a Bactiquant not detected before the water at has critical reached thecontrol consumers points or has been be implemented The unique of handheld water value (BQWv). The BQWv is a surrogate value for total bacterial presence or incorporated in industrial processes. In this study a new rapid on-line bacteria water system inUtility. online provides an unprecedented Total Viabletechnology Count (TVC). The on-line system makes use of a statistical process sensorthroughout was evaluated in anthe operational environment in a network Slovenian Water control (SPC) algorithm. This algorithm is applied to historic data in a CCP (ISO The results showed a clear causality between heavy rainfalls and concomitant industries, water utilities and aquaculture comprehensive capability to react and follow 11462-1:2001/-2:2010). The SPC allows a translation of analysis results into water quality issues in a ground water reservoir. The system will allow the The data in fig 1400 The in figure 1 shows transient periods baseline production facilities. Theto precipitation online system is as a operational decisions. Baselines fordeviations normal of arestable established each CCPrange and updataon water quality in aat BQW-values, wide 1400 operator to predict water quality issues related events as well superseded by 1200 superseded by short periods of significant increases in BQW-values. The data operational threshold values are derived from the SPC algorithm in each control tool 1200 to monitor integrated and verify the effect of operational actions to counter sudden also shows a c easily in any water system and of water types. 1000 also shows a clear coincidence of heavy precipitation events (lower graph) and point. microbial water quality issues. 1000 increased BQW increased BQW-values (upper graph). There were two precipitation events 800 showing more 800 showing more than 65 mm of rain/day and one prolonged event that took place 600 over several da 600 over several days, with 40 to 50+ mm of rain / day, showing a concomitant 400 dramatic incre 400 dramatic increase in BQW-value. Three rain incidents with 20 – 40 mm of rain did not result i 200 did not result in significant changes in BQW-value. The data indicate that the 200 precipitation im 0 precipitation impact on water quality depends on the amount of precipitation 0 and/or the dura The data figure 1ofshows transient periods of stable baseline BQW-values, and/or the in duration precipitation. 0,3 70 1400 0,3 70 superseded by short periods of significant increases in BQW-values. The data 60 chlor rain 1200 0,25 Chlorine deter 60 chlor rain 0,25 also shows a clear coincidence of heavy precipitation events (lower graph) and Chlorine determinations coincided with two of the precipitation events in start 50 1000 November and 0,2 50 increased BQW-values (upper graph). were two precipitation events November and end of December (lowerThere graph). In both cases the increased 0,2 40 precipitation a 800 40 precipitation andthan BQW-values followed byprolonged a drop in chlorine showing more 65 mm of were rain/day and one event that took place 0,15 0,15 concentration 30 600 over several days, with 40 to 50+ mmchange of rainin/ day, concentration corroborating a sudden watershowing quality.a concomitant 30 0,1 0,1 400 dramatic increase in BQW-value. Three rain incidents with 20 – 40 mm of20rain 20 The data also i 0,05 did data not result in significant changes in BQW-value. data indicate The also indicate that the contaminations due to The heavy rainfall canthat be 10the 0,05 200 10 flushed out of precipitation impact on water quality depends on the amount of precipitation flushed out of the system within a 12 hour period. 0 0 00 0 and/or the duration of precipitation. 0,3 70 Date Date Figure 1 : 60 chlor rain Chlorine determinations coincided with two of the precipitation events in start Figure 10,25 : 50 November and end of December (lower graph). In both cases the increased 0,2 40 Theof on-line system was evaluated awere Slovenian water The precipitation and BQW-values followed by utility. a dropwater in chlorine Data from a Slovenian utility showing coincident episodes heavy rainfall eventsin and concomitant The on-line system was evaluated in a Slovenian water utility. The 0,15 water source in the utility is ground water, which is influenced by concentration corroborating a sudden change in water quality. 30 quality issues a rawwater, water reservoir monitored by BactiQuant online. water source in the utility in is ground which is influenced by The operationa 0,1 surface water. The operational value of the on-line system is manifold; the data allows the 20 surface water. water utility to water utility to predict the risk of bacterial contamination related to rainfall The data also indicate that the contaminations due to heavy rainfall can be 0,05 10 events. The location becausewithin the water suspected that heavy events. flushedwas outchosen of the system a 12utility hour period. The location was chosen because the water utility suspected that heavy 0 0 rainfall events resulted in surface water infiltrations that overloaded the rainfall events resulted in surface water infiltrations that overloaded the The events can sediment capacity resulting in transport bacterial The filtration events can be closely monitored and theofeffect of operational actions can sediment filtration capacity resulting in transport Date of bacterial be verified in n contaminants andinorganic residues through the sediment into the chlorination, be verified near-real time. These actions include adjusting Figure 1 : ADVANTAGES: contaminants and organic residues through the sediment into the increasing flus ground water. flushing or even turning off the water source until baseline values increasing ground water. have been re-e have been re-established. The on-line system was evaluated in a Slovenian water utility. The Implementation of an on-line system would allow a monitoring water source in the utility is ground which influenced by Implementation of an on-line systemwater, would allow is a monitoring Eliminates labor intensive sampling and analysis -operational easy to install frequency could reveal clear to be established The that valueaof the causality on-line system is manifold;between the data allows the surface water. frequency that could reveal a clear causality to be established between heavy rain events and concomitant quality issues. waterfall utility to predict the risk ofwater bacterial contamination related to rainfall and move around heavy rain fall events and concomitant water quality issues. events. The location was chosen because the water utility suspected that heavy Online bacterial monitoring/ minute based 24/7 results. analysis rainfall events resulted in surface water infiltrations that overloaded the The events can be closely monitored and the effect of operational actions can sediment filtration capacity resulting inwithin transport of bacterial of the analysis. results reported minutes be verified in near-real time. These actions include adjusting chlorination, contaminants and organic residues through the sediment into the flushing or even turning off the water source until baseline values High accuracy. Larger sample sizes with bacteriaincreasing concentrated ground water. have been re-established.
Results & Discussion
BQW-value
BQW-value
Results & Discussion
4.11 5.11. 6.11. 7.11. 8.11. 9.11. 10.11. 11.11. 12.11. 13.11. 14.11. 15.11. 16.11. 17.11. 18.11. 19.11. 20.11. 21.11. 22.11. 23.11. 24.11. 25.11. 26.11. 27.11. 28.11. 29.11. 30.11. 1.12. 2.12. 3.12. 4.12. 5.12. 6.12. 7.12. 8.12. 9.12. 10.12. 11.12. 12.12. 13.12. 14.12. 15.12.
Conclu
Conclusions
4.11 5.11. 6.11. 7.11. 8.11. 9.11. 10.11. 11.11. 12.11. 13.11. 14.11. 15.11. 16.11. 17.11. 18.11. 19.11. 20.11. 21.11. 22.11. 23.11. 24.11. 25.11. 26.11. 27.11. 28.11. 29.11. 30.11. 1.12. 2.12. 3.12. 4.12. 5.12. 6.12. 7.12. 8.12. 9.12. 10.12. 11.12. 12.12. 13.12. 14.12. 15.12.
Chlorine mg/l
mm rain / day
4.11 5.11. 6.11. 7.11. 8.11. 9.11. 10.11. 11.11. 12.11. 13.11. 14.11. 15.11. 16.11. 17.11. 18.11. 19.11. 20.11. 21.11. 22.11. 23.11. 24.11. 25.11. 26.11. 27.11. 28.11. 29.11. 30.11. 1.12. 2.12. 3.12. 4.12. 5.12. 6.12. 7.12. 8.12. 9.12. 10.12. 11.12. 12.12. 13.12. 14.12. 15.12.
Chlorine mg/l BQW-value
mm rain / day Chlorine mg/l
Results & Discussion
mm rain / day
Introduction
- Revolutionizing microbial monitoring Methodology
Conclusions
through filtration minimizing the risk of false positives.
Implementation of an on-line system would allow a monitoring frequency Early that couldwarning reveal a clear system. causality to beResults established accessible between heavy rain fall events and concomitant water quality issues.
from all platforms. Sets off an alarm if the result is deviating from normal.
The unique combination of handheld and online technology will provide an unprecedented comprehensive capability to react with maximum flexibility in a pollution event. BactiQuant online also detects bacteria associated with particles and bacteria that are difficult to culture on plates
Blokken 75 DK-3460 Birkerød
Tel. +45 39 16 10 72 info@bactiquant.com
www.bactiquant.com