2 minute read
Tagbo Niepa, PhD
Assistant Professor
926 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261 P: 412-383-4265
tniepa@pitt.edu
Dr. Niepa is an Assistant Professor of Chemical and Petroleum Engineering with an expertise in microbial interactions with biointerfaces. He received a PhD in Chemical Engineering with honors from Syracuse University, focusing on electrochemical treatment of surfaceattached and drug-resistant bacteria. Upon graduating, He joined the University of Pennsylvania as a Postdoctoral Fellow for Academic Diversity. At UPenn, he worked with Professors Kathleen Stebe and Daeyeon Lee in Chemical and Biomolecular Engineering, in collaboration with Professor Mark Goulian in Biology to develop new methods to study microbial dynamics in artificial microniches. He deciphered the interfacial properties of bacterial films at oil-water interfaces. This expertise provides a platform for him to make unique contributions to diverse fields ranging from microbialbased methods of oil recovery to the development of technologies having applications for personalized therapeutics, or in high-throughput screening of currently unculturable microbial communities relevant to biotechnology and drug discovery. His efforts in bioelectrochemistry led to the design of patent winning technologies for controlling of microbial pathophysiology with bioelectrical systems. Also, Dr. Niepa is a co-founder of Helios Innovative Technologies Inc. (now PurpleSun Inc.), a medical device company that develops automated sterilization systems to fight bacterial cross-contamination and hospital acquired-infections.
Research Interests
Our mission is to decipher how the interfacial properties of materials affect the physiological response of microorganisms and thereby develop new strategies to minimize the deleterious and optimize the beneficial activities of cells. The physicochemical mechanisms that regulate microbial growth in various settings remain poorly understood for reasons linked not only to the versatility of the microorganisms but also to the challenge of designing new platforms to study or control them. Our translational research program elucidates these mechanisms by developing sustainable control strategies for microbes relevant to health, industry and the environment. We are pursuing three interrelated research thrusts to: (1) Eliminate pathogenic microbial communities (biofilms) associated with implantable devices using conductive-substrate interfaces; (2) Model pathogenic and beneficial microbial communities (microbiomes) in artificial microniches made of soft biomaterial; and (3) Control beneficial interfacial biofilms using surface active compounds. Building upon the understanding of the electrophysiology of highly drug-tolerant bacteria to cure chronic infections, we target the design of alternative ways to control microbial persistence and pathogenicity with conductive-substrates incorporated in medical devices. In our second thrust, we develop porous, semi-permeable or polyelectrolyte membranes (soft nanomaterials) for biotechnological applications. We direct their metabolic activity towards desired ends, e.g., the creation of new materials and bioproducts. Finally, our third thrust addresses interfacial phenomena influencing the metabolic activity of bacteria at fluid interfaces. By characterizing the interfacial and metabolic properties of bacterial films, we aim to elaborate new surface-active molecules to prevent the biodeterioration of economically relevant food and pharmaceutical products, while promoting crude oil remediation.