2 minute read

Götz Veser, PhD

Nickolas A. DeCecco Professor

806 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261 P: 412-624-1042

gveser@pitt.edu

Götz Veser obtained a Diploma in chemical engineering at the University of Karlsruhe (now Karlsruhe Institute of Technology) and a PhD in physical chemistry at the Fritz Haber Institute, Berlin (with R. Imbihl and G. Ertl). Following two years as FeodorLynen Postdoctoral Fellow with Lanny Schmidt at the University of Minnesota, he returned to Germany as research associate at the University of Stuttgart and research group leader at the MaxPlanck-Institute for Coal Research (Mülheim an der Ruhr). In 2002, he joined the University of Pittsburgh. Dr. Veser’s research interests are in catalytic reaction engineering with a focus on natural gas conversion and related energy technologies. Among his recent honors and awards are the Career Award of the National Science Foundation (2005), the R.A. Glenn Award of the Fuel Chemistry Division of the American Chemical Society (2007), and invited plenaries at the 6th World Congress on Oxidation Catalysis (Lille, France; 2009) and the 10th Natural Gas Conversion Symposium (Doha, Qatar; 2013), Dr. Veser is also RUA faculty at the U.S. Department of Energy’s National Energy Technology Laboratory, and currently serves on the editorial boards of multiple journals in the area of reaction engineering.

Process Intensification

“Process Intensification” (PI) is a conceptual approach to reaction engineering with the aim to radically reduce the physical and/or energy footprint of existing processes. The Veser group is developing intensified process schemes for natural gas conversion, focused on multifunctional reactor concepts via dynamic reactor operation. These include heatintegrated reactors via reverse-flow operation and so-called “chemical looping”, a reactor concept originally proposed for clean combustion but with broad applicability in fuel processing.

(G. Veser, “Multiscale process intensification for catalytic partial oxidation of methane: From nanostructured catalysts to integrated reactor concepts,” Catal. Today, 157 (2010) 24)

Nanomaterials for Catalysis

Tailoring of materials structure and composition on the nano- and subnanometer scale has enabled the “ engineering” of functional materials with unprecedented precision. Nanomaterials are hence becoming key enablers for a wide range of emerging technologies. The Veser lab is developing new approaches to endow nanomaterials with the stability and robustness required to withstand the often extremely demanding conditions of industrial catalytic processes.

(A. Cao et al.; PhysChemChemPhys., 12 (2010) 13499)

Nanotoxicity

Despite increasing evidence that nanomaterials can show significantly elevated toxicity, they are finding increasingly widespread application in consumer products ranging from cosmetics over clothing to consumer electronics. There is hence urgency to establish appropriate toxicity tests for this emerging class of materials. In collaboration with colleagues at UPMC, the Veser group is developing zebrafish assays as a fast screening tool for nanotoxicity. To-date, they have demonstrated that nanostructuring can have profound impact on the fate and toxicity of these materials, and can serve as an effective means to counter their toxicity. 58

This article is from: