2 minute read

Sarah Haig, PhD

Assistant Professor

707 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261 P: 412-624-9881

sjhaig@pitt.edu

PhD, Civil and Environmental Engineering, University of Glasgow, UK MSci, Microbiology, University of Glasgow, UK Research Group Page: www.haiglab.net Follow us on Twitter @SarahJaneHaig

Understanding and Using Microbes to Improve our Built Environment

Today the water industry faces a huge challenge in supplying a sustainable, energy efficient, and safe supply of drinking water to an increasing world population. Research in the Haig group combines environmental microbiology, environmental chemistry, and public health to advance water quality with a focus on drinking water systems. Specifically, we are interested in the development of novel technologies to detect degraders of emerging contaminants. We are also interested in assessing and developing new mitigation approaches, such as the design of new surface plumbing material to reduce pathogen growth, in-building plumbing and exploring the ability to augment and manage existing microbial communities within engineered systems to optimize performance.

Does Drinking Water Pose a Threat to Human Health?

In the U.S. and other high-income countries, the majority of infectious disease deaths result from respiratory tract infections, many of which are caused by bacterial opportunistic pathogens (OPs) such as Legionella pneumophila. OPs are typically referred to as organisms that normally pose little threat to healthy individuals but can cause infection in immunocompromised people (e.g., the very young, elderly or individuals with chronic diseases or infection). Given the increase in reports attributing waterborne infectious disease outbreaks to OPs, as well as their presence in municipally treated drinking water, it is important to gain a better understanding of how household drinking water contributes to the acquisition of OPs. Our research aims to understand the biogeography of OPs throughout building water and explore the impact of various OP risk mitigation strategies.

Removing Contaminants with Microbes

Increasing demand for drinking water has led and continues to lead to the reuse of water sources of varying quality, including treated wastewater. As a result, water treatment plants need to remove contaminants such as metals and pharmaceuticals which can affect human and environmental health. Unfortunately, our existing treatment systems do not completely remove these contaminants, therefore efforts must be made to improve their removal. Biological removal approaches, such as the addition of microbial contaminant degraders, are somewhat faster, more economical, and energy efficient compared to physical and chemical approaches. Our research aims to develop “real time” methods capable of identifying and isolating potential microbial contaminant degraders and enriching such organisms into existing systems in order to improve contaminant removal.

This article is from: