PREALGEBRA AND INTRODUCTORY ALGEBRA 6TH EDITION BY ELAYNE MARTIN -GAY 2025 INSTRUCTORS SOLUTIONS MAN

Page 1

SOLUTIONS MANUAL


PREALGEBRA AND INTRODUCTORY ALGEBRA 6TH EDITION BY ELAYNE MARTIN -GAY 2025 INSTRUCTORS SOLUTIONS MANUL C TRIMBLE AND ASSOCIATES Contents

Chapter 1

1

Chapter 2

42

Chapter 3

71

Chapter 4

101

Chapter 5

164

Chapter 6

209

Chapter 7

253

Chapter 8

284

Chapter 9

324

Chapter 10

368

Chapter 11

414

Chapter 12

454

Chapter 13

507

Chapter 14

569

Chapter 15

613

Chapter 16

647

Appendix

698

Practice Final Exam

704



Chapter 1 5. In a whole number, each group of 3 digits is called a period.

Section 1.2 Practice Exercises 1. The place value of the 8 in 38,760,005 is millions.

6. The place value of the digit 4 in the whole number 264 is ones.

2. The place value of the 8 in 67,890 is hundreds. 7. hundreds 3. The place value of the 8 in 481,922 is tenthousands.

8. To read (or write) a number, read from left to right.

4. 54 is written as fifty-four. 9. 80,000 5. 678 is written as six hundred seventy-eight. 10. Dachsund 6. 93,205 is written as ninety-three thousand, two hundred five.

Exercise Set 1.2

7. 679,430,105 is written as six hundred seventynine million, four hundred thirty thousand, one hundred five.

2. The place value of the 5 in 905 is ones.

8. Thirty-seven in standard form is 37.

6. The place value of the 5 in 79,050,000 is tenthousands.

4. The place value of the 5 in 6527 is hundreds.

9. Two hundred twelve in standard form is 212. 10. Eight thousand, two hundred seventy-four in standard form is 8,274 or 8274.

8. The place value of the 5 in 51,682,700 is tenmillions. 10. 316 is written as three hundred sixteen.

11. Five million, fifty-seven thousand, twenty-six in standard form is 5,057,026. 12. 4,026,301 = 4,000,000 + 20,000 + 6000 + 300 + 1 13. a. Find Australia in the “Country” column. Read from left to right until the “bronze” column is reached. Australia won 22 bronze medals. b. Find the countries for which the entry in the “Total” column is greater than 60. The United States, China, ROC, and Great Britain won more than 60 medals. Vocabulary, Readiness & Video Check 1.2 1. The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... are called whole numbers. 2. The number 1286 is written in standard form. 3. The number “twenty-one” is written in words. 4. The number 900 + 60 + 5 is written in expanded form.

12. 5445 is written as five thousand, four hundred forty-five. 14. 42,009 is written as forty-two thousand, nine. 16. 3,204,000 is written as three million, two hundred four thousand. 18. 47,033,107 is written as forty-seven million, thirty-three thousand, one hundred seven. 20. 254 is written as two hundred fifty-four. 22. 105,447 is written as one hundred five thousand, four hundred forty-seven. 24. 1,110,000,000 is written as one billion, one hundred ten million. 26. 11,239 is written as eleven thousand, two hundred thirty-nine. 28. 202,700 is written as two hundred two thousand, seven hundred. 30. Four thousand, four hundred sixty-eight in standard form is 4468.

Copyright © 2025 Pearson Education, Inc.

1


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

32. Seventy-three thousand, two in standard form is 73,002. 34. Sixteen million, four hundred five thousand, sixteen in standard form is 16,405,016.

74. answers may vary 76. A quadrillion in standard form is 1,000,000,000,000,000. Section 1.3 Practice Exercises

36. Two million, twelve in standard form is 2,000,012.

1.

4135  252 4387

2.

47, 364  135,898 183, 262

38. Six hundred forty thousand, eight hundred eighty-one in standard form is 640,881. 40. Two hundred thirty-four thousand in standard form is 234,000.

1 1 11

42. One thousand, eight hundred fifteen in standard form is 1815. 44. Two hundred sixty million, one hundred thirtyeight thousand, five hundred sixty-nine dollars in standard form is $260,138,569. 46. Seven hundred fifteen in standard form is 715. 48. 789 = 700 + 80 + 9 50. 6040 = 6000 + 40 52. 20,215 = 20,000 + 200 + 10 + 5

3. Notice 12 + 8 = 20 and 4 + 6 = 10. 12 + 4 + 8 + 6 + 5 = 20 + 10 + 5 = 35 12 2

4.

6432 789 54  28 7303

5. a.

54. 99,032 = 90,000 + 9000 + 30 + 2

b. 20  8 = 12 because 12 + 8 = 20

56. 47,703,029 = 40,000,000 + 7,000,000 + 700,000 + 3000 + 20 + 9

c.

93  93 = 0 because 0 + 93 = 93.

d.

42  0 = 42 because 42 + 0 = 42.

58. Mount Baker erupted in 1792, which is in standard form.

6. a.

9143  122 9021

Check: 9021  122 9143

b.

978  851 127

Check:

7. a.

69 7 49 64 8

60. Mount Shasta and Mount St. Helens have each had two eruptions listed. 62. Mount St. Helens has an eruption listed in 1980. All other eruptions listed in the table occurred before this one. 64. More Golden retrievers are registered than German shepherds.

68. The maximum height of an average-size standard dachsund is 9 inches. 70. The largest number is 77,753. 72. Yes

127  851 978

8 17

66. French bulldogs are second in popularity. 24 is written as twenty-four.

2

14  6 = 8 because 8 + 6 = 14.

Check: 648  49 697

2 12

b.

326  245 81

Copyright © 2025 Pearson Education, Inc.

Check:

81  245 326


ISM: Prealgebra and Introductory Algebra

c.

1234  822 412

Check:

412  822 1234

40 0 1 6 4 2 3 6

7. 865  95 = 770 8. 76  27 = 49 9. 147  38 = 109

9 3 1010

8. a.

Chapter 1: The Whole Numbers

Check:

236  164 400

10. 366  87 = 279 11. 9625  647 = 8978 12. 10,711  8925 = 1786

9

Vocabulary, Readiness & Video Check 1.3

910 10

b.

10 0 0 762 238

Check:

238  762 1000

9. 2 cm + 8 cm + 15 cm + 5 cm = 30 cm The perimeter is 30 centimeters. 10. 647 + 647 + 647 = 1941 The perimeter is 1941 feet. 11.

15, 759 458 15, 301 The radius of Neptune is 15,301 miles. 

12. a.

The country with the fewest threatened amphibians corresponds to the shortest bar, which is Peru.

b. To find the total number of threatened amphibians for Brazil, Peru, and Mexico, we add. 110 78  191 379 The total number of threatened amphibians for Brazil, Peru, and Mexico is 379. Calculator Explorations

1. The sum of 0 and any number is the same number. 2. In 35 + 20 = 55, the number 55 is called the sum and 35 and 20 are each called an addend. 3. The difference of any number and that same number is 0. 4. The difference of any number and 0 is the same number. 5. In 37  19 = 18, the number 37 is the minuend, the 19 is the subtrahend, and the 18 is the difference. 6. The distance around a polygon is called its perimeter. 7. Since 7 + 10 = 10 + 7, we say that changing the order in addition does not change the sum. This property is called the commutative property of addition. 8. Since (3 + 1) + 20 = 3 + (1 + 20), we say that changing the grouping in addition does not change the sum. This property is called the associative property of addition. 9. To add whole numbers, we line up place values and add from right to left.

2. 76 + 97 = 173

10. We cannot take 7 from 2 in the ones place, so we borrow one ten from the tens place and move it over to the ones place to give us 10 + 2, or 12.

3. 285 + 55 = 340

11. triangle; 3

4. 8773 + 652 = 9425

12. To find the additional money needed to purchase, subtract the savings account amount from the purchase price.

1. 89 + 45 = 134

5. 985 + 1210 + 562 + 77 = 2834 6. 465 + 9888 + 620 + 1550 = 12,523

Copyright © 2025 Pearson Education, Inc.

3


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

Exercise Set 1.3 2.

27  31 58

4.

37  542 579

6.

23 45  30 98

8.

236  6243 6479

111

20.

26 582 4 763  62, 511 67,882 1 11 2 1 2

22.

504, 218 321, 920 38, 507  594, 687 1, 459, 332

24.

957  257 700

Check:

700  257 957

26.

55  29 26

Check:

26  29 55

28.

674  299 375

Check:

375  299 674

30.

300  149 151

Check:

151  149 300

32.

5349  720 4629

Check: 4629  720 5349

34.

724  16 708

Check: 708  16 724

36.

1983  1914 69

Check:

1

1

10.

17, 427  821, 059 838, 486

12.

3 5 8 5 7 28

11

11

22

14.

64 28 56 25  32 205 11 2

16.

16 1056 748  7770 9590 1 111

18.

4

6789 4321  5555 16, 665

1

1

1

Copyright © 2025 Pearson Education, Inc.

69  1914 1983


ISM: Prealgebra and Introductory Algebra

11 1 1

38.

40, 000  23, 582 16, 418

Check:

6050  1878

Check:

16, 418  23, 582 40, 000 111

40.

4172

4172  1878 6050 11 11

42.

62, 222  39,898 22, 324

44.

986  48 938

Check:

22, 324  39,898 62, 222

80 93 17 9 2 201

1

802  6487 7289 The sum of 802 and 6487 is 7289. 62. “Find the total” indicates addition. 12

89 45 2 19  341 496 The total of 89, 45, 2, 19, and 341 is 496.

66. “Increased by” indicates addition. 712  38 750 712 increased by 38 is 750.

48. 10, 000  1786 8214

68. “Less” indicates subtraction. 25  12 13

1 11

50.

60. “Find the sum” indicates addition.

64. “Find the difference” indicates subtraction. 16  5 11 The difference of 16 and 5 is 11.

2

46.

Chapter 1: The Whole Numbers

12, 468 3 211  1 988 17, 667

25 less 12 is 13.

52. 3 + 4 + 5 = 12 The perimeter is 12 centimeters. 54. Opposite sides of a rectangle have the same length. 9 + 3 + 9 + 3 = 12 + 12 = 24 The perimeter is 24 miles.

70. “Subtracted from” indicates subtraction. 90  86 4 86 subtracted from 90 is 4.

56. 6 + 5 + 7 + 3 + 4 + 7 + 5 = 37 The perimeter is 37 inches.

72. Subtract 7953 million from 8687 million. 8687  7953 734 The world’s projected population increase is 734 million.

58. The unknown vertical side has length 3 + 5 = 8 feet. The unknown horizontal side has length 8 + 4 = 12 feet. 8 + 3 + 4 + 5 + 12 + 8 = 40 The perimeter is 40 feet.

74. Subtract the discount from the regular price. 276  69 207 The first-year price is $207.

Copyright © 2025 Pearson Education, Inc.

5


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

76.

78.

164, 000  40, 000 204, 000 The total U.S. land area drained by the Ohio and Tennessee sub-basins is 204,000 square miles.

94. North Carolina has the fewest Aldi locations.

189, 000  75, 000 114, 000 The Upper Mississippi sub-basin drains 114,000 square miles more than the Lower Mississippi sub-basin.

98. The total number of Aldi locations in the states listed is 1335. 1335  923 2258 There are 2258 Aldi locations in the United States.

80. Opposite sides of a rectangle have the same length. 60 + 45 + 60 + 45 = 210 The perimeter is 210 feet. 82.

84.

59, 320  55, 492 3 828 They traveled 3828 miles on their trip. 299, 345  259, 516 558,861 The total number of F-Series trucks and Silverados sold during the first six months of 2022 was 558,861.

96. 211 + 92 + 203 + 98 + 92 + 123 + 91 + 152 + 146 + 127 = 1335 The total number of Aldi locations in the ten states listed is 1335.

11 1

100.

102. The minuend is 2863 and the subtrahend is 1904. 104. The minuend is 86 and the subtrahend is 25. 106. answers may vary 21

108.

86. The shortest bar corresponds to the quietest reading. Leaves rustling is the quietest. 88.

90.

100  70 30 The difference in sound intensity between live rock music and loud television is 30 dB.

19 214 49  651 933 The given sum is incorrect, the correct sum is 933. 11

112.

6

773 659  481 1913 The given sum is correct. 1 2

110.

119  99 20 The difference in volume between the mid-size and a sub-compact car is 20 cubic feet.

92. Opposite sides of a rectangle have the same length. 18 + 12 + 18 + 12 = 60 The perimeter of the puzzle is 60 inches.

605  9779 10, 384 The total highway mileage in Kansas is 10,384 miles.

389  89 478 The given difference is correct.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

11

114.

Chapter 1: The Whole Numbers

3. a.

To round 3474 to the nearest hundred, observe that the digit in the tens place is 7. Since this digit is at least 5, we add 1 to the digit in the hundreds place. The number 3474 rounded to the nearest hundred is 3500.

b.

To round 76,243 to the nearest hundred, observe that the digit in the tens place is 4. Since this digit is less than 5, we do not add 1 to the digit in the hundreds place. The number 76,243 rounded to the nearest hundred is 76,200.

c.

To round 978,965 to the nearest hundred, observe that the digit in the tens place is 6. Since this digit is at least 5, we add 1 to the digit in the hundreds place. The number 978,865 rounded to the nearest hundred is 979,000.

7168  547 7715 The given difference is incorrect. 7615  547 7068

116.

10, 244  8 534 1 710

118. answers may vary Section 1.4 Practice Exercises 1. a.

To round 57 to the nearest ten, observe that the digit in the ones place is 7. Since the digit is at least 5, we add 1 to the digit in the tens place. The number 57 rounded to the nearest ten is 60.

b. To round 641 to the nearest ten, observe that the digit in the ones place is 1. Since the digit is less than 5, we do not add 1 to the digit in the tens place. The number 641 rounded to the nearest ten is 640. c.

2. a.

To round 325 to the nearest ten observe that the digit in the ones place is 5. Since the digit is at least 5, we add 1 to the digit in the tens place. The number 325 rounded to the nearest ten is 330. To round 72,304 to the nearest thousand, observe that the digit in the hundreds place is 3. Since the digit is less than 5, we do not add 1 to the digit in the thousands place. The number 72,304 rounded to the nearest thousand is 72,000.

b.

To round 9222 to the nearest thousand, observe that the digit in the hundreds place is 2. Since the digit is less than 5, we do not add 1 to the digit in the thousands place. The number 9222 rounded to the nearest thousand is 9000.

c.

To round 671,800 to the nearest thousand, observe that the digit in the hundreds place is 8. Since this digit is at least 5, we add 1 to the digit in the thousands place. The number 671,800 rounded to the nearest thousand is 672,000.

4. 49 25 32 51 98

rounds to rounds to rounds to rounds to rounds to

5.

3785  2479

6.

11 16 19  31

50 30 30 50 + 100 260

rounds to rounds to

rounds to rounds to rounds to rounds to

4000  2000 2000 10 20 20 + 30 80

The total distance is approximately 80 miles. 7.

18, 617  1 607

rounds to rounds to

18,600  1 600 17, 000 The difference in the reported number of pertussis cases between 2019 and 2021 was 17,000.

Vocabulary, Readiness & Video Check 1.4 1. To graph a number on a number line, darken the point representing the location of the number. 2. Another word for approximating a whole number is rounding.

Copyright © 2025 Pearson Education, Inc.

7


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

3. The number 65 rounded to the nearest ten is 70, but the number 61 rounded to the nearest ten is 60. 4. An exact number of products is 1265, but an estimate is 1000. 5. 3 is in the place value we’re rounding to (tens), and the digit to the right of this place value is 5 or greater, so we need to add 1 to the 3. 6. On a number line, 22 is closer to 20 than to 30. Thus, 22 rounded to the nearest ten is 20. 7. Each circled digit is to the right of the place value being rounded to and is used to determine whether or not we add 1 to the digit in the place value being rounded to. Exercise Set 1.4 2. To round 273 to the nearest ten, observe that the digit in the ones place is 3. Since this digit is less than 5, we do not add 1 to the digit in the tens place. The number 273 rounded to the nearest ten is 270. 4. To round 846 to the nearest ten, observe that the digit in the ones place is 6. Since this digit is at least 5, we add 1 to the digit in the tens place. The number 846 rounded to the nearest ten is 850. 6. To round 8494 to the nearest hundred, observe that the digit in the tens place is 9. Since this digit is at least 5, we add 1 to the digit in the hundreds place. The number 8494 rounded to the nearest hundred is 8500. 8. To round 898 to the nearest ten, observe that the digit in the ones place is 8. Since this digit is at least 5, we add 1 to the digit in the tens place. The number 898 rounded to the nearest ten is 900. 10. To round 82,198 to the nearest thousand, observe that the digit in the hundreds place is 1. Since this digit is less than 5, we do not add 1 to the digit in the thousands place. The number 82,198 rounded to the nearest thousand is 82,000. 12. To round 42,682 to the nearest ten-thousand, observe that the digit in the thousands place is 2. Since this digit is less than 5, we do not add 1 to the digit in the ten-thousands place. The number 42,682 rounded to the nearest ten-thousand is 40,000.

8

14. To round 179,406 to the nearest hundred, observe that the digit in the tens place is 0. Since this digit is less than 5, we do not add 1 to the digit in the hundreds place. The number 179,406 rounded to the nearest hundred is 179,400. 16. To round 96,501 to the nearest thousand, observe that the digit in the hundreds place is 5. Since this digit is at least 5, we add 1 to the digit in the thousands place. The number 96,501 rounded to the nearest thousand is 97,000. 18. To round 99,995 to the nearest ten, observe that the digit in the ones place is 5. Since this digit is at least 5, we add 1 to the digit in the tens place. The number 99,995 rounded to the nearest ten is 100,000. 20. To round 39,523,698 to the nearest million, observe that the digit in the hundred-thousands place is 5. Since this digit is at least 5, we add 1 to the digit in the millions place. The number 39,523,698 rounded to the nearest million is 40,000,000. 22. Estimate 7619 to a given place value by rounding it to that place value. 7619 rounded to the tens place is 7620, to the hundreds place is 7600, and to the thousands place is 8000. 24. Estimate 7777 to a given place value by rounding it to that place value. 7777 rounded to the tens place is 7780, to the hundreds place is 7800, and to the thousands place is 8000. 26. Estimate 85,049 to a given place value by rounding it to that place value. 85,049 rounded to the tens place is 85,050, to the hundreds place is 85,000, and to the thousands place is 85,000. 28. To round 41,529 to the nearest thousand, observe that the digit in the hundreds place is 5. Since this digit is at least 5, we add 1 to the digit in the thousands place. Therefore 41,529 miles rounded to the nearest thousand is 42,000 miles. 30. To round 60,149 to the nearest hundred, observe that the digit in the tens place is 4. Since this digit is less than 5, we do not add 1 to the digit in the hundreds place. Therefore, 60,149 days rounded to the nearest hundred is 60,100 days.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

32. To round 334,696,947 to the nearest million, observe that the digit in the hundred-thousands place is 6. Since this digit is at least 5, we add 1 to the digit in the millions place. Therefore, 334,696,947 rounded to the nearest million is 335,000,000. 34. To round 74,686 to the nearest hundred, observe that the digit in the tens place is 8. Since this digit is at least 5, we add 1 to the digit in the hundreds place. Therefore, $74,686 rounded to the nearest hundred is $74,700. 36. 2022: To round 13,700,000,000 to the nearest billion, observe that the digit in the hundredmillions place is 7. Since this digit is at least 5, we add 1 to the digit in the billions place. The number 13,700,000,000 rounded to the nearest billion is 14,000,000,000. 2021: To round 15,100,000,000 to the nearest billion, observe that the digit in the hundredmillions place is 1. Since this digit is less than 5, we do not add 1 to the digit in the billions place. The number 15,100,000,000 rounded to the nearest billion is 15,000,000,000. 38.

52 33 15  29

rounds to rounds to rounds to rounds to

50 30 20 + 30 130

555  235

rounds to rounds to

560  240 320

4050 3133  1220

rounds to rounds to rounds to

4100 3100  1200 8400

Chapter 1: The Whole Numbers

50. 542 + 789 + 198 is approximately 540 + 790 + 200 = 1530. The answer of 2139 is incorrect. 52. 5233 + 4988 is approximately 5200 + 5000 = 10,200. The answer of 9011 is incorrect. 54.

89 rounds to 90 97 rounds to 100 100 rounds to 100 79 rounds to 80 75 rounds to 80  82 rounds to + 80 530 The total score is approximately 530.

56.

588 689 277 143 59  802

rounds to rounds to rounds to rounds to rounds to rounds to

600 700 300 100 100 + 800 2600 The total distance is approximately 2600 miles.

58.

1360  1240

rounds to rounds to

1400  1200 200

The difference in price is approximately $200. 40.

42.

44.

1989  1870

rounds to rounds to

2000  1900 100

46.

799 1655  271

rounds to rounds to rounds to

800 1700 + 300 2800

60.

64 41  133

rounds to rounds to rounds to

60 40 + 130 230

The total distance is approximately 230 miles. 62.

6615  1737

rounds to rounds to

6600  1700 8300 The total enrollment is approximately 8300 students.

64. 588 hundred-thousands is 58,800,000 in standard form. 58,800,000 rounded to the nearest million is 59,000,000. 58,800,000 rounded to the nearest ten-million is 60,000,000.

48. 522 + 785 is approximately 520 + 790 = 1310. The answer of 1307 is correct.

66. 433 hundred-thousands is 43,300,000 in standard form. 43,300,000 rounded to the nearest million is 43,000,000. 43,300,000 rounded to the nearest ten-million is 40,000,000.

Copyright © 2025 Pearson Education, Inc.

9


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

68. 5698, for example, rounded to the nearest ten is 5700. 70. The largest possible number that rounds to 1,500,000 when rounded to the nearest hundredthousand is 1,549,999.

6. Area  length  width  (360 miles)(280 miles)  100,800 square miles The area of Wyoming is 100,800 square miles. 7.

72. answers may vary 74.

5950 7693  8203

rounds to rounds to rounds to

6 000 7 700  8 200 21, 900

The perimeter is approximately 21,900 miles.

16  45 80 640 720 The printer can print 720 pages in 45 minutes.

8. 5 84  420 12  3  36

Section 1.5 Practice Exercises 1. a.

The total cost is $456.

60=0 9.

b. (1)8 = 8 c.

(50)(0) = 0

d. 75  1 = 75 2. a.

6(4 + 5) = 6  4 + 6  5

163  391

rounds to rounds to

200  400 80,000 There are approximately 80,000 words on 391 pages.

Calculator Explorations

b.

30(2 + 3) = 30  2 + 30  3

1. 72  48 = 3456

c.

7(2 + 8) = 7  2 + 7  8

2. 81  92 = 7452

5

3. a.

29  6 174

420  36 456

3. 163  94 = 15,322 4. 285  144 = 41,040 5. 983(277) = 272,291

44

b.

648  5 3240

6. 1562(843) = 1,316,766 Vocabulary, Readiness & Video Check 1.5 1. The product of 0 and any number is 0.

4.

5.

1 0

306  81 306 24 480 24, 786 726  142 1 452 29 040 72 600 103, 092

2. The product of 1 and any number is the number. 3. In 8  12 = 96, the 96 is called the product and 8 and 12 are each called a factor. 4. Since 9  10 = 10  9, we say that changing the order in multiplication does not change the product. This property is called the commutative property of multiplication.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 5. Since (3  4)  6 = 3  (4  6), we say that changing the grouping in multiplication does not change the product. This property is called the associative property of multiplication. 6. Area measures the amount of surface of a region.

Chapter 1: The Whole Numbers

22.

9021  3 27, 063

24.

91  72 182 6370 6552

26.

526 23 1 578 10 520 12, 098

7. Area of a rectangle = length  width. 8. We know 9(10 + 8) = 9  10 + 9  8 by the distributive property. 9. distributive

10. to show that 8649 is actually multiplied by 70 and not by just 7 11. Area is measured in square units, and here we have meters by meters, or square meters; the answer is 63 square meters, or the correct units are square meters.

28.

12. Multiplication is also an application of addition since it is addition of the same addend. Exercise Set 1.5

30.

2. 55  1 = 55 4. 27  0 = 0 6. 7  6  0 = 0 8. 1  41 = 41

34. (240)(1)(20) = (240)(20) = 4800 36.

12. 6(1 + 4) = 6  1 + 6  4 14. 12(12 + 3) = 12  12 + 12  3 79  3 237

18.

638  5 3190

20.

882  2 1764

720  80 57, 600

32. (593)(47)(0) = 0

10. 5(8 + 2) = 5  8 + 5  2

16.

708 21 708 14 160 14,868 

38.

1357  79 12 213 94 990 107, 203 

807 127

5 649 16 140 80 700 102, 489 40.

1234 567 8 638 74 040 617 000 699, 678 

Copyright © 2025 Pearson Education, Inc.

11


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

42.

44.

426  110 4 260 42 600 46,860 1876  1407 13 132 750 400 1 876 000 2, 639, 532

62.

3310  3 9930

64.

14  8 112 There are 112 grams of fat in 8 ounces of hulled sunflower seeds.

66.

34  14 136 340 476 There are 476 seats in the room.

46. Area  (length)(width)  (13 inches)(3 inches)  39 square inches Perimeter  length  width  length  width  13  3 13  3  32 inches

68. a. b.

48. Area  (length)(width)  (25 centimeters)(20 centimeters)  500 square centimeters Perimeter  length  width  length  width  25  20  25  20  90 centimeters 50.

52.

982  650

rounds to rounds to

1000  700 700, 000

111  999

rounds to rounds to

100  1000 100, 000

20 3 60 There are 60 apartments in the building.

70. Area  (length)(width)  (60 feet)(45 feet)  2700 square feet The area is 2700 square feet. 72. Area  (length)(width)  (776 meters)(639 meters)  495,864 square meters The area is 495,864 square meters. 74.

64  17 448 640 1088 The 17 flash drives hold 1088 GB.

76.

365  3 1095 A cow eats 1095 pounds of grain each year.

54. 2872  12 is approximately 2872  10, which is 28,720. The best estimate is b. 56. 706  409 is approximately 700  400, which is 280,000. The best estimate is d. 58. 70 12  (7 10) 12  7  (10 12)  7 120  840

5  4 = 20 There are 20 apartments on one floor.

60. 9  900 = 8100

1 2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

78.

Chapter 1: The Whole Numbers 98. 57  3 = 171 57  6 = 342 The problem is

13  16 78 130 208 There are 208 grams of fat in 16 ounces.

100. answers may vary

Cost per person

Person

Number of persons

Student

24

$5

$120

102. 3  161 = 483 2  479 = 958 483 + 958 + 254 = 1695 LeBron James scored 1695 points during the 20212022 regular season.

Nonstudent

4

$7

$28

Section 1.6 Practice Exercises

Children under 12

5

$2

$10

80.

Total Cost

Cost per Category

1. a.

8 9 72 because 8  9 = 72.

$158 b.

82. 3  26 = 78 There were 78 million Americans age 65+ in 2022. 84.

57  63

126  8 118

40  5 = 8 because 8  5 = 40. 24

c.

 4 because 4  6 = 24.

6 2. a.

7

 1 because 1  7 = 7.

7 b. 5  1 = 5 because 5  1 = 5.

86. 47 + 26 + 10 + 231 + 50 = 364 88.

90.

c.

19  4 76 The product of 19 and 4 is 76.

d. 4  1 = 4 because 4  1 = 4.

14  9 23 The total of 14 and 9 is 23.

10  10 because 10  1 = 10. 1

f.

21  21 = 1 because 1  21 = 21.

3. a.

4  5 = 5 + 5 + 5 + 5 or 4 + 4 + 4 + 4 + 4

b. answers may vary 96.

e.

0

92. 11 + 11 + 11 + 11 + 11 + 11 = 6  11 or 11  6 94. a.

31  50 1550

11 1 11 because 11  1 = 11.

b. c.

 0 because 0  7 = 0.

7 0 8 0 because 0  8 = 0. 7  0 is undefined because if 7  0 is a number, then the number times 0 would be 7.

d. 0  14 = 0 because 0  14 = 0.

Copyright © 2025 Pearson Education, Inc.

13


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

4. a.

b.

818 6 4908 48 10 6 48 48 0 Check: 818  6 4908 553 4 2212 20 21 20 12 12 0 Check: 553

b.

Check: 5100  9 = 45,900

6. a.

5. a.

251 753 6 15 15 03 3 0 Check: 251  3 753 

b.

3

7

304 2128 21 02 0 28 28 0

4

234 R 3 939 8 13 12 19 16 3

Check: 234  4 + 3 = 939

 4 2212 c.

5 100 9 45, 900 45 09 9 000

657 R 2 5 3287 30 28 25 37 35 2 Check: 657  5 + 2 = 3287

7. a.

9067 R 2 9 81, 605 81 06 0 60 54 65 63 2 Check: 9067  9 + 2 = 81,605

Check: 304  7 = 2128

1 4

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

b.

4

Chapter 1: The Whole Numbers

12. Find the sum and divide by 7.

5827 R 2 23, 310 20 33 3 2 11 8 30 28 2

18 4 7 126 7 7 35 56 16 56 9 0 3  52 126 The average time is 18 minutes.

Check: 5827  4 + 2 = 23,310

Calculator Explorations 524 R 12 8. 17 8920 85 42 34 80 68 12

1. 848  16 = 53 2. 564  12 = 47 3. 5890  95 = 62 4. 1053  27 = 39

49 R 60 9. 678 33, 282 27 12 6 162 6 102 60

5.

32,886  261 126

6.

143, 088  542 264

7. 0  315 = 0 8. 315  0 is an error.

57 10. 3 171 15 21 21 0 Each student got 57 printer cartridges. 44 532 48 52 48 4 There will be 44 full boxes and 4 printers left over.

11. 12

Vocabulary, Readiness & Video Check 1.6 1. In 90  2 = 45, the answer 45 is called the quotient, 90 is called the dividend, and 2 is called the divisor. 2. The quotient of any number and 1 is the same number. 3. The quotient of any number (except 0) and the same number is 1. 4. The quotient of 0 and any number (except 0) is 0. 5. The quotient of any number and 0 is undefined. 6. The average of a list of numbers is the sum of the numbers divided by the number of numbers. 7. 0 8. zero; this zero becomes a placeholder in the quotient.

Copyright © 2025 Pearson Education, Inc.

15


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers 9. 202  102 + 15 = 20,619 10. This tells us we have a division problem since division may be used to separate a quantity into equal parts. 11. addition and division Exercise Set 1.6

526 26. 4 2104 20 10 8 24 24 0 Check: 526  4 = 2104

2. 72  9 = 8 4. 24  6 = 4 6. 0  4 = 0 8. 38  1 = 38 49 10.

12.

14.

1

49 45 5 9 12 is undefined 0

16. 6  6 = 1 18. 7  0 is undefined

28.

0 30

Check: 0  30 = 0 7 30. 8 56 56 0 Check: 7  8 = 56 11 32. 11 121 11 11 11 0 Check: 11  11 = 121

20. 18  3 = 6 34. 7 22. 5

17 85 5 35 35 0

Check: 17  5 = 85

24. 8

80 640 64 00

Check: 80  8 = 640

1 6

0

60 R 6 426 42 06

Check: 60  7 + 6 = 426 413 R 1 36. 3 1240 12 04 3 10 9 1 Check: 413  3 + 1 = 1240

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

55 R 2 38. 3 167 15 17 15 2 Check: 55  3 + 2 = 167 833 R 1 40. 4 3333 32 13 12 13 12 1 Check: 833  4 + 1 = 3333 32 42. 23 736 69 46 46 0 Check: 32  23 = 736 48 2016 168 336 336 0 Check: 48  42 = 2016

44. 42

44 R 2 1938 176 178 176 2 Check: 44  44 + 2 = 1938

46. 44

Chapter 1: The Whole Numbers

612 R 10 48. 12 7354 72 15 12 34 24 10 Check: 612  12 + 10 = 7354 405 50. 14 5670 56 07 0 70 70 0 Check: 405  14 = 5670 52.

39 R 9 64 2505 192 585 576 9 Check: 39  64 + 9 = 2505

47 54. 123 5781 492 861 861 0 Check: 47  123 = 5781 96 R 52 56. 240 23, 092 21 60 1 492 1 440 52 Check: 96  240 + 52 = 23,092

Copyright © 2025 Pearson Education, Inc.

17


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

201 R 50 58. 203 40,853 40 6 25 0 253 203 50

3 040 68. 214 650, 560 642 85 0 8 56 8 56 00 0 0

Check: 201  203 + 50 = 40,853 303 R 63 60. 543 164, 592 162 9 1 69  0 1 692 1 629 63

70.

Check: 303  543 + 63 = 164,592 13 62. 8 104 8 24 24 0 603 R 2 64. 5 3017 30 01 0 17 15 2 1714 R 47 66. 50 85, 747 50 35 7 35 0 74 50 247 200 47

1 8

13 R 3 7 94 7 24 21 3 The quotient is 13 R 3.

3 R 20 72. 32 116 96 20 116 divided by 32 is 3 R 20. 15 R 3 78 5 28 25 3 The quotient is 15 R 3.

74. 5

58 4930 425 680 680 0 There are 58 students in the group.

76. 85

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

252000 78. 21 5292000 42 109 105 42 42 0 Each person received $252,000.

Chapter 1: The Whole Numbers

16 88. 320 5280 320 2080 1920 160 There are 16 whole feet in 1 rod. 30 6 180 18 00

3

90. 412 80. 14 5768 56 16 14 28 28 0 The truck hauls 412 bushels on each trip.

37 26 15 29 51  22 180 Average 

180  30 6 169 5 845 5 34 30 45 45

21

82. Lane divider = 25 + 25 = 50 105 50 5280 50 28 0 280 250 30 There are 105 whole lane dividers. 23 R 1 84. 8 185 16 25 24 1 Yes, there is enough for a 22-student class. There is one 8-foot length and 1 additional foot of rope left over. That is, she has 9 feet of extra rope. 16 96 6 36 36 0 The players each scored 16 touchdowns.

92.

121 200 185 176  163 845

0 Average 

845  169 5

2

94.

92 96 90 85 92  79

6

89 534 48 54 54 0

534 Average 

86. 6

96.

53 40  30 123

534  89 6 41 3 123 12 03 3 0

The average temperature is 41.

Copyright © 2025 Pearson Education, Inc.

19


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

120. answers may vary Possible answer: 2 and 2

11

98.

100.

23 407 92  7011 7533

122.

712  54 2 848 35 600 38, 448

102.

712  54

86 46  10  10 76 36  10  10 66 26  10  10 56 16  10  10 46 6 Therefore, 86  10 = 8 R 6.

Mid-Chapter Review

658

1

1.

9 R 25 106. 31 304 279 25

42 63  89 194

2.

7006  451 6555

108. The quotient of 200 and 20 is 200  20, which is choice b.

3.

87  52 174 4350 4524

0 104.

 0 because 0  23 = 0

23

110. 40 divided by 8 is 40  8, which is choice c.

112.

1, 955, 000, 000 7,820, 000, 000 4 38 36 22  20 20 2 0 0 000 000 The advertisers shown spent an average of $1,955,000,000. 2, 700, 000, 000 1, 980, 000, 000 1, 540, 000, 000  1, 600, 000, 000 7,820, 000, 000

4

562 4. 8 4496 40 49 48 16 16 0 5. 1  67 = 67 36 is undefined. 0

114. The average will decrease; answers may vary.

6.

116. No; answers may vary Possible answer: The average cannot be less than each of the four numbers.

7. 16  16 = 1

118. 84  21 = 4 The width is 4 inches. 2 0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 8. 5  1 = 5 9. 0  21 = 0 10. 7  0  8 = 0 11. 0  7 = 0 12. 12  4 = 3 13. 9  7 = 63

Chapter 1: The Whole Numbers

1099 R 2 21. 7 7695 7 06 0 69 63 65 63 2

14. 45  5 = 9 15.

207  69 138

16.

207  69 276

17.

3718  2549 1169

1

11

1861 18.  7965 9826 182 R 4 19. 7 1278 7 57 56 18 14 4 20.

1259 63 3 777 75 540 79, 317

111 R 1 22. 9 1000 9 10 9 10 9 1 663 R 24 23. 32 21, 240 19 2 2 04 1 92 120 96 24 1 076 R 60 24. 65 70, 000 65 50  0 5 00 4 55 450 390 60

25.

4000  2963 1037

26. 10, 000  101 9 899

Copyright © 2025 Pearson Education, Inc.

21


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers 27.

38. 432,198 rounded to the nearest ten is 432,200. 432,198 rounded to the nearest hundred is 432,200. 432,198 rounded to the nearest thousand is 432,000.

303  101 303 30 300 30, 603

39. 6 + 6 + 6 + 6 = 24 6  6 = 36 The perimeter is 24 feet and the area is 36 square feet.

28. (475)(100) = 47,500 1

29.

62  9

40. 14 + 7 + 14 + 7 = 42 14  7 98 The perimeter is 42 inches and the area is 98 square inches.

71 The total of 62 and 9 is 71. 30.

62  9 558 The product of 62 and 9 is 558.

41.

6 R8 31. 9 62 54 8 The quotient of 62 and 9 is 6 R 8. 32.

62  9 53 The difference of 62 and 9 is 53.

33.

200  17 183 17 subtracted from 200 is 183.

34.

432  201 231 The difference of 432 and 201 is 231.

35. 9735 rounded to the nearest ten is 9740. 9735 rounded to the nearest hundred is 9700. 9735 rounded to the nearest thousand is 10,000.

13 9  6 28 The perimeter is 28 miles.

42. The unknown vertical side has length 4 + 3 = 7 meters. The unknown horizontal side has length 3 + 3 = 6 meters. 3 4 3 7 6 3 26 The perimeter is 26 meters. 3

Average 

36. 1429 rounded to the nearest ten is 1430. 1429 rounded to the nearest hundred is 1400. 1429 rounded to the nearest thousand is 1000. 37. 20,801 rounded to the nearest ten is 20,800. 20,801 rounded to the nearest hundred is 20,800. 20,801 rounded to the nearest thousand is 21,000.

2 2

24 5 120 10 20 20 0

19 43. 15 25 37  24 120

Copyright © 2025 Pearson Education, Inc.

120 5

 24


ISM: Prealgebra and Introductory Algebra

124 4 496 4 09 8 16 16 0

12

44.

108 131 98  159 496

Average 

496

 124

4 45.

28, 547  26, 372 2 175 The Twin Span Bridge is longer by 2175 feet.

46.

329  18 2632 3290 5922 The amount spent on toys is $5922.

Section 1.7 Practice Exercises

Chapter 1: The Whole Numbers

12. 36 [20  (4  2)]  43  6  36 [20  8]  43  6  36 12  43  6  36 12  64  6  3  64  6  61 13.

25  8  2  33 25  8  2  27  2(1) 2(3  2) 25 16  27  2 14  2 7

14. 36  6  3  5  6  3  5  18  5  23 15. Area  (side)2  (12 centimeters)2  144 square centimeters The area of the square is 144 square centimeters. Calculator Explorations 1. 46  4096

1. 8  8  8  8  84

2. 56  15, 625

2. 3 3  3  33

3. 55  3125

3. 10 10 10 10 10  105

4. 76  117, 649

4. 5  5  4  4  4  4  4  4  52  46

11

5. 2 5. 4  4  4  16

 2048

2

6. 68  1, 679, 616

6. 73  7  7  7  343 7. 74  53  2526 7. 111  11

8. 124  84  16, 640

8. 2  3  2  3  3  18 2

9. 63  75  43  10 = 4295

9. 9  3  8  4  27  8  4  27  2  25

10. 8  22 + 7  16 = 288

10. 48  3 22  48  3  4  16  4  64

11. 4(15  3 + 2)  10  2 = 8

11. (10  7)4  2  32  34  2  32  81 2  9  8118  99

12. 155  2(17 + 3) + 185 = 300

Copyright © 2025 Pearson Education, Inc.

23


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

Vocabulary, Readiness & Video Check 1.7

24. 81  8

1. In 25  32, the 2 is called the base and the 5 is called the exponent.

26. 54  5  5  5  5  625

2. To simplify 8 + 2  6, which operation should be performed first? multiplication

28. 33  3 3 3  27

3. To simplify (8 + 2)  6, which operation should be performed first? addition 4. To simplify 9(3  2)  3 + 6, which operation should be performed first? subtraction 5. To simplify 8  2  6, which operation should be performed first? division

30. 43  4  4  4  64 32. 83  8 8  8  512 34. 112  1111  121 36. 103  10 10 10  1000 38. 141  14

6. exponent; base 7. 1

40. 45  4  4  4  4  4  1024

8. division, multiplication, addition

42. 5  32  5  3  3  45

9. The area of a rectangle is length  width. A square is a special rectangle where length = width. Thus, the area of a square is

44. 2  72  2  7  7  98

side  side, or (side)2.

48. 100  10  5 + 4 = 10  5 + 4 = 50 + 4 = 54

Exercise Set 1.7 2. 5  5  5  5  5

46. 24 + 6  3 = 24 + 18 = 42

50. 42  7  6 = 6  6 = 0 4

52. 32 

4. 6  6  6  6  6  6  6  67

8

54. 3  4 + 9  1 = 12 + 9 = 21

6. 10 10 10  103

693

8. 4  4  3  3  3  4  3 2

56.

3

10. 7  4  4  4  7  43

32

9

3

16. 62  6  6  36 18. 63  6  6  6  216

9

1

9

2

62.

40  8 2

5 3 20. 35  3  3 3 3  3  243

3

3

2

3

2

48 48  3 25  9 16

64. (9  7)  (12 + 18) = 2  30 = 60

 111111111111  1

5(12  7)  4 66.

2 4

63

60. 5  (10 15)  9  3  5  25  9  3  125  25  81 27  5  81 27  113

14. 6  6  2  9  9  9  9  62  2  94

22. 1



58. 62  (10  8)  62  2  36  2  72

12. 4  6  6  6  6  4  64

12

 32  4  36

2

2

5 18

Copyright © 2025 Pearson Education, Inc.

5(5)  4 25 18

25  4

21   3 25 18 7 


ISM: Prealgebra and Introductory Algebra 68. 18  7  0 = undefined 3

84. [15  (11  6)  22 ]  (5 1)2  [15  5  22 ]  42  [15  5  4]  42  [3  4]  42

3

70. 2  3  (100 10)  2  3 10  8  3 10  24 10  14

 7  42  7 16  23

72. [40  (8  2)]  25  [40  6]  25  34  25  34  32 2 74. (18  6) [(3  5)  2]  (18  6)  (8  2)  3  (8  2)  3 16  19 76. 35 [32  (9  7)  22 ] 10  3  35 [32  2  22 ] 10  3  35 [9  2  4] 10  3  35  7 10  3  5 10  3  5  30  35 78.

Chapter 1: The Whole Numbers

86. 29 {5  3[8  (10  8)]  50}  29 {5  3[8  2]  50}  29 {5  3(16)  50}  29 {5  48  50}  29  3  26 88. Area of a square  (side)2  (9 centimeters)2  81 square centimeters Perimeter  4(side)  4(9 centimeters)  36 centimeters 90. Area of a square  (side)2

52  23 14 25  8 1 18 18     9 10  5  4 1 4 2  4 1 4 8  4 2

3  92 3  812 80. 3(10  6)  22    2 1 1 3(4) 84  3(4)  4 1 84  12  4 1 84  8 1 84  7  12 82. 10  2  33  2  20  10  2  27  2  20  5  27  2  20  5  54  20  39

 (41 feet)2  1681 square feet Perimeter = 4(side) = 4(41 feet) = 164 feet 92. The statement is true. 94. 49  4  4  4  4  4  4  4  4  4 The statement is false. 96. (2 + 3)  (6  2) = (5)  (4) = 20 98. 24  (3 2  2)  5  24  (6  2)  5  24  8  5  3 5  15 100. The total perimeter is 1260 feet. 4  1260 = 5040 The total charge is $5040. 102. 253  (45  7  5)  5  253  (45  35)  5  253  (10)  5  15, 625 10  5  156, 250  5  781, 250 104. answers may vary

Copyright © 2025 Pearson Education, Inc.

25


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

Section 1.8 Practice Exercises 1. x  2 = 7  2 = 5 2. y(x  3) = 4(8  3) = 4(5) = 20 3.

y  6 18  6 24   4 x 6 6

4. 25  z3  x  25  23  1  25  8  1  18 5.

5(F  32) 5(41 32) 5(9) 45    5 9 9 9 9

6. 3( y  6)  6 3(8  6) 0 6 3(2) 0 6 6  6 True Yes, 8 is a solution. 7. 5n + 4 = 34 Let n be 10. 5(10)  4 0 34 50  4 0 34 54  34 False No, 10 is not a solution. Let n be 6. 5(6)  4 0 34 30  4 0 34 34  34 True Yes, 6 is a solution. Let n be 8. 5(8)  4 0 34 40  4 0 34 44  34 False No, 8 is not a solution. 8. a.

Twice a number is 2x.

b.

8 increased by a number is 8 + x or x + 8.

c.

10 minus a number is 10  x.

d.

10 subtracted from a number is x  10.

e.

The quotient of 6 and a number is 6  x or

6

.

x Vocabulary, Readiness & Video Check 1.8 1. A combination of operations on letters (variables) and numbers is an expression. 2. A letter that represents a number is a variable. 2 6

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

3. 3x  2y is called an expression and the letters x and y are variables. 4. Replacing a variable in an expression by a number and then finding the value of the expression is called evaluating the expression. 5. A statement of the form “expression = expression” is called an equation. 6. A value for the variable that makes an equation a true statement is called a solution. 7. When a letter and a variable are next to each other, the operation is an understood multiplication. 8. When first replacing f with 8, we don’t know if the statement is true or false. 9. decreased by Exercise Set 1.8 2.

a

b

a+b

ab

ab

ab

24

6

24 + 6 = 30

24  6 = 18

24  6 = 144

24  6 = 4

a

b

a+b

ab

ab

ab

298

0

298 + 0 = 298

298  0 = 298

298  0 = 0

298  0 is undefined.

4.

6.

a

b

a+b

ab

ab

ab

82

1

82 + 1 = 83

82  1 = 81

82  1 = 82

82  1 = 82

8. 7 + 3z = 7 + 3(3) = 7 + 9 = 16 10. 4yz + 2x = 4(5)(3) + 2(2) = 60 + 4 = 64 12. x + 5y  z = 2 + 5(5)  3 = 2 + 25  3 = 24 14. 2y + 5z = 2(5) + 5(3) = 10 + 15 = 25 16. y3  z  53  3  125  3  122 18. 3yz 2 1  3(5)(3)2 1  3 5  9 1  135 1  136 20. 3  (2 y  4)  3  (2  5  4)  3  (10  4)  3 6 9 22. x4  ( y  z)  24  (5  3)  24  2  16  2  14

Copyright © 2025 Pearson Education, Inc.

27


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

24.

8 yz 8  5  3 120   8 15 15 15

26.

6  3x 6  3(2) 6  6 12    4 z 3 3 3

28.

2z  6 2  3  6 6  6 12    4 3 3 3 3

30.

70 15 70 15 70 15     7 5  2   2 y z 2  5 3 10 3

32. 3x2  2x  5  3 22  2  2  5  3 4  2  2  5  12  4  5  11 34. (4 y  3z)2  (4  5  3 3)2  (20  9)2  292  841 36. (xz  5)4  (2  3  5)4  (6  5)4  14  1 38. 3x( y  z)  3  2(5  3)  3  2(8)  6(8)  48 40. xz(2 y  x  z)  2  3(2  5  2  3)  2  3(10  2  3)  2  3(9)  6(9)  54 42.

44.

2 8

6z  2 y 6  3  2  5  4 4 18 10  4 28  4 7 F

50

59

68

77

5(F  32) 9

5(50  32) 5(18)   10 9 9

5(59  32) 5(27)   15 9 9

5(68  32) 5(36)   20 9 9

5(77  32) 5(45)   25 9 9

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

46. Let n be 9. n2  7 92 0 7 7  7 True Yes, 9 is a solution. 48. Let n be 50. 250  5n 250 0 5(50) 250  250 True Yes, 50 is a solution. 50. Let n be 8. 11n  3  91 11(8)  3 0 91 88  3 0 91 91  91 True Yes, 8 is a solution. 52. Let n be 0. 5(n  9)  40 5(0  9) 0 40 5(9) 0 40 45  40 False No, 0 is not a solution. 54. Let x be 2. 3x  6  5x 10 3(2)  6 0 5(2) 10 6  6 0 10 10 0  0 True Yes, 2 is a solution. 56. Let x be 5. 8x  30  2x 8(5)  30 0 2(5) 40  300 10 10  10 True Yes, 5 is a solution. 58. n + 3 = 16 Let n be 9. 9  3 0 16 12  16 False Let n be 11. 11 3 0 16 14  16 False Let n be 13. 13  3 0 16 16  16 True 13 is a solution.

Chapter 1: The Whole Numbers

60. 3n = 45 Let n be 15. 315 0 45 45  45 True Let n be 30. 3 30 0 45 90  45 False Let n be 45. 3 45 0 45 135  45 False 15 is a solution. 62. 4n + 4 = 24 Let n be 0. 4  0  4 0 24 0  4 0 24 4  24 False Let n be 5. 4  5  40 24 20  4 0 24 24  24 True Let n be 10. 4 10  4 0 24 40  4 0 24 44  24 False 5 is a solution. 64. 6(n + 2) = 23 Let n be 1. 6(1 2) 0 23 6(3) 0 23 18  23 False Let n be 3. 6(3  2) 0 23 6(5) 0 23 30  23 False Let n be 5. 6(5  2) 0 23 6(7) 0 23 42  23 False None are solutions. 66. 9x  15 = 5x + 1 Let x be 2. 9  2 15 0 5  2 1 18 15 0 10 1 3  11 False Let x be 4. 9  4 15 0 5  4  1 36 15 0 20  1 21  21 True Copyright © 2025 Pearson Education, Inc.

29


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

Let x be 11. 9 1115 0 5 11 1 99 15 0 55 1 84  56 False 4 is a solution.

100. As F gets larger,

5(F  32) 9

gets larger.

Chapter 1 Vocabulary Check 1. The whole numbers are 0, 1, 2, 3, ...

68. The sum of three and a number is 3 + x. 70. The difference of a number and five hundred is x  500. 72. A number less thirty is x  30.

76. A number divided by 11 is x  11 or

x

. 11

78. The quotient of twenty and a number, decreased 20 by three is  3. x 80. The difference of twice a number, and four is 2x  4. 82. Twelve subtracted from a number is x  12. 84. The sum of a number and 7 is x + 7. 86. The product of a number and 7 is 7x. 88. Twenty decreased by twice a number is 20  2x. 90. Replace x with 3 and y with 5. 6y + 3x = 6(5) + 3(3) = 30 + 9 = 39

5. To find the area of a rectangle, multiply length times width. 6. The digits used to write numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. 7. A letter used to represent a number is called a variable. 8. An equation can be written in the form “expression = expression.” 9. A combination of operations on variables and numbers is called an expression. 10. A solution of an equation is a value of the variable that makes the equation a true statement. 11. A collection of numbers (or objects) enclosed by braces is called a set. 12. The 21 above is called the sum.

92. Replace x with 3 and y with 5. x3  4 y  33  4(5)  27  20  47

13. The 5 above is called the divisor. 14. The 35 above is called the dividend.

94. 2(x  y)2  2(23  72)2  2(95)2  2(9025)  18, 050

15. The 7 above is called the quotient. 16. The 3 above is called a factor.

96. 16 y  20x  x3  16  72  20  23  233  1152  460 12,167  12,859 x

3. The position of each digit in a number determines its place value. 4. An exponent is a shorthand notation for repeated multiplication of the same factor.

74. A number times twenty is 20x.

98.

2. The perimeter of a polygon is its distance around or the sum of the lengths of its sides.

is the smallest; answers may vary.

17. The 6 above is called the product. 18. The 20 above is called the minuend. 19. The 9 above is called the subtrahend. 20. The 11 above is called the difference.

3 21. The 4 above is called an addend.

3 0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 1 Review

Chapter 1: The Whole Numbers

16.

583  279 304

17.

428  21 449

18.

819

1. The place value of 4 in 7640 is tens. 2. The place value of 4 in 46,200,120 is tenmillions. 3. 7640 is written as seven thousand, six hundred forty.

1

4. 46,200,120 is written as forty-six million, two hundred thousand, one hundred twenty.

 21 840

5. 3158 = 3000 + 100 + 50 + 8 6. 403,225,000 = 400,000,000 + 3,000,000 + 200,000 + 20,000 + 5000 7. Eighty-one thousand, nine hundred in standard form is 81,900.

19.

10. Locate Middle East in the first column and read across to the number in the 2022 column. There were 212,000,000 Internet users in Middle East in 2022.

18  49 67

28  39 67

15.

462  397 65

91 3623  497 4211 82 1647  238 1967 11

23.

74 342  918 1334 The sum of 74, 342, and 918 is 1334. 2

24.

49 529  308 886 The sum of 49, 529, and 308 is 886.

25.

25,862  7 965 17,897 7965 subtracted from 25,862 is 17,897.

1

14.

8000 92 7908

11

22.

1

13.

12 1

21.

11. Locate the smallest number in the 2016 column. Oceania/Australia had the fewest Internet users in 2016. 12. Locate the largest number in the 2013 column. Asia had the greatest number of Internet users in 2013.

4000 86 3914

20.

8. Six billion, three hundred four million in standard form is 6,304,000,000. 9. Locate Europe in the first column and read across to the number in the 2022 column. There were 750,000,000 Internet users in Europe in 2022.

Copyright © 2025 Pearson Education, Inc.

31


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

26.

39, 007  4 349 34, 658 4349 subtracted from 39,007 is 34,658.

27.

205  7318 7523 The total distance is 7523 miles.

36.

490  250 240 The balance increased by $240 from June to August.

1

1 11

28.

62, 589 65, 340  69, 770 197, 699 Their total earnings were $197,699.

29. 40 + 52 + 52 + 72 = 216 The perimeter is 216 feet. 30. 11 + 20 + 35 = 66 The perimeter is 66 kilometers. 31.

32.

653  341 312 The number of Internet users in Africa increased by 312 million or 312,000,000. 543  350 193 There were 193 million or 193,000,000 more Internet users in Latin America/Caribbean than in North America in 2022.

33. Find the shortest bar. The balance was the least in May. 34. Find the tallest bar. The balance was the greatest in August. 35.

3 2

280  170 110 The balance decreased by $110 from February to April.

37. To round 43 to the nearest ten, observe that the digit in the ones place is 3. Since this digit is less than 5, we do not add 1 to the digit in the tens place. The number 43 rounded to the nearest ten is 40. 38. To round 45 to the nearest ten, observe that the digit in the ones place is 5. Since this digit is at least 5, we add 1 to the digit in the tens place. The number 45 rounded to the nearest ten is 50. 39. To round 876 to the nearest ten, observe that the digit in the ones place is 6. Since this digit is at least 5, we add 1 to the digit in the tens place. The number 876 rounded to the nearest ten is 880. 40. To round 493 to the nearest hundred, observe that the digit in the tens place is 9. Since this digit is at least 5, we add 1 to the digit in the hundreds place. The number 493 rounded to the nearest hundred is 500. 41. To round 3829 to the nearest hundred, observe that the digit in the tens place is 2. Since this digit is less than 5, we do not add 1 to the digit in the hundreds place. The number 3829 rounded to the nearest hundred is 3800. 42. To round 57,534 to the nearest thousand, observe that the digit in the hundreds place is 5. Since this digit is at least 5, we add 1 to the digit in the thousands place. The number 57,534 rounded to the nearest thousand is 58,000. 43. To round 39,583,819 to the nearest million, observe that the digit in the hundred-thousands place is 5. Since this digit is at least 5, we add 1 to the digit in the millions place. The number 39,583,819 rounded to the nearest million is 40,000,000. 44. To round 768,542 to the nearest hundredthousand, observe that the digit in the tenthousands place is 6. Since this digit is at least 5, we add 1 to the digit in the hundred-thousands place. The number 768,542 rounded to the nearest hundred-thousand is 800,000.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

2

45.

Chapter 1: The Whole Numbers

54. 25(9)(4) = 225(4) = 900 or 25(4)(9) = 100(9) = 900

3785 648  2866

rounds to rounds to rounds to

3800 600  2900 7300

5925  1787

rounds to rounds to

5900  1800 4100

57.

630 192 271 56 703 454  329

rounds to rounds to rounds to rounds to rounds to rounds to rounds to

600 200 300 100 700 500  300 2700

586  29 5 274 11 720 16, 994

58.

242  37 1694 7260 8954

59.

642 177 4 494 44 940 64 200 113, 634

55. 26  34  0 = 0 56. 62  88  0 = 0

46.

47.

They traveled approximately 2700 miles. 48.

837, 427, 045  664, 099,841

rounds to rounds to

The population of Europe was approximately 837,000,000 and the population of Latin America/Caribbean was approximately 664,000,000. The difference in population was about 173,000,000. 49.

837,000,000  664,000,000 173,000,000

60.

347  129 3 123 6 940 34 700 44, 763

61.

1026  401 1 026 410 400 411, 426

62.

2107 302 4 214 632 100 636, 314

276  8 2208

50.

349  4 1396

51.

57  40 2280

52.

69  42 138 2760 2898

53. 20(7)(4) = 140(4) = 560

Copyright © 2025 Pearson Education, Inc.

33


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers 63. “Product” indicates multiplication. 250  6 1500 The product of 6 and 250 is 1500.

4 R2 72. 4 18 16 2 Check: 4  4 + 2 = 18

64. “Product” indicates multiplication. 820  6 4920 The product of 6 and 820 is 4920.

73. 918  0 is undefined.

65.

32  15 160 320 480

38  11 38 380 418

480  418 898 The total cost is $898. 66.

17, 265  20 345, 300 The total cost for 20 students is $345,300.

68. Area  (length)(width)  (25 centimeters)(20 centimeters)  500 square centimeters 69.

70.

36

Check:

7 7 49

4

Check:

9 4 36

9

19 R 7 76. 8 159 8 79 72 7 Check: 19  8 + 7 = 159 24 R 2 626 52 106 104 2

Check: 24  26 + 2 = 626

78. 19

7

7

35 R 15 680 57 110 95 15

Check: 35  19 + 15 = 680

5 R2 71. 5 27 25 2 Check: 5  5 + 2 = 27 34

Check: 0  668 = 0

33 R 2 75. 5 167 15 17 15 2 Check: 33  5 + 2 = 167

77. 26

67. Area  (length)(width)  (13 miles)(7 miles)  91 square miles

49

74. 0  668 = 0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

18 R 2 83. 5 92 5 42 40 2 The quotient of 92 and 5 is 18 R 2.

506 R 10 79. 47 23, 792 23 5 29 0 292 282 10

21 R 2 86 8 06 4 2 The quotient of 86 and 4 is 21 R 2.

Check: 506  47 + 10 = 23,792

80. 53

Chapter 1: The Whole Numbers

84. 4

907 R 40 48,111 47 7 41 0 411 371 40

27 85. 24 648 48 168 168 0 27 boxes can be filled with cans of corn.

Check: 907  53 + 40 = 48,111 2793 R 140 81. 207 578, 291 414 164 2 144 9 19 39 18 63 761 621 140

13 22,880 17 60 5 280 5 280 0 There are 13 miles in 22,880 yards.

86. 1760

Check: 2793  207 + 140 = 578,291 2012 R 60 82. 306 615, 732 612 37 0 3 73 3 06 672 612

87. Divide the sum by 4. 76 49 32  47 204 The average is 51.

4

51 204 20 04 4 0

88. Divide the sum by 4.

60 Check: 2012  306 + 60 = 615,732

23 85 62  66 236 The average is 59.

Copyright © 2025 Pearson Education, Inc.

4

59 236 20 36 36 0

35


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

105. (6  4)3 [102  (3 17)]  (6  4)3 [102  20]

89. 82  8  8  64

 (6  4)3 [100  20]

90. 5  5  5  5  125 3

 23  5  85  40

91. 5  92  5  9  9  405 92. 4 102  4 10 10  400

106. (7  5)3 [92  (2  7)]  (7  5)3 [92  9]

93. 18  2 + 7 = 9 + 7 = 16

 (7  5)3 [81 9]

94. 12  8  4 = 12  2 = 10

 23  9  89  72

5(62  3)  5(36  3) 5(33) 165 95. 32  2  9  2  11  11  15

5  7  3 5 107.

96. 7(163 8)  7(8)  56  7 8 8 2

2(11  32 ) 4 8 111

108. 97. 48  8  2 = 6  2 = 12

35 15

2(11 9)

3(9  23)

32 11 3(9  8)

20 2(2) 21 3(1)

20

4

21 3

5

7

98. 27  9  3 = 3  3 = 9

109. Area  (side)2  (7 meters)2  49 square meters

99. 2  3[15  (20 17)  3]  5  2  2  3[15  3  3]  5  2  2  3[1  3  3]  5  2  2  3[1  9]  5  2  2  3 10  5  2  2  30 10  42

110. Area  (side)2  (3 inches)2  9 square inches

100. 21 [2  (7  5) 10]  8  2 4

 21[24  2 10]  8  2  21[16  2 10]  8  2  21 4  8  2  21 4 16

111.

2x

z

25 2

10

5

2

112. 4x  3 = 4  5  3 = 20  3 = 17 113. x  7  5  7 is undefined. y 0 114.

y

0

55

5x

0

0

25

3 3 115. x  2z  5  2  2  125  2  2  125  4  121

 33 2 2 101. 19  2(3  2 )  19  2(9  4)  19  2(5)  19 10

9 2 2 102. 16  2(4  3 )  16  2(16  9)  16  2(7)  16 14 2

103. 4  5  2  7 = 20  14 = 6

116.

7  x 7  5 12   2 3z 3 2 6

117. ( y  z)2  (0  2)2  22  4 100 118.

x

y

3

100 5

0

 20  0  20

3

119. Five subtracted from a number is x  5. 120. Seven more than a number is x + 7.

104. 8  7  3  9 = 56  27 = 29 36

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

121. Ten divided by a number is 10  x or

10

Chapter 1: The Whole Numbers 175  25 0 150 150  150 True 175 is a solution.

.

x 122. The product of 5 and a number is 5x. 123. Let n be 5. n 12  20  3 5 12 0 20  3 17  17 True Yes, 5 is a solution. 124. Let n be 23. n  8  10  6 23  8 0 10  6 15  16 False No, 23 is not a solution. 125. Let n = 14. 30  3(n  3) 30 0 3(14  3) 30 0 3(11) 30  33 False No, 14 is not a solution. 126. Let n be 20. 5(n  7)  65 5(20  7) 0 65 5(13) 0 65 65  65 True Yes, 20 is a solution. 127. 7n = 77 Let n be 6. 7  6 0 77 42  77 False Let n be 11. 7 11 0 77 77  77 True Let n be 20. 7  20 0 77 140  77 False 11 is a solution. 128. n  25 = 150 Let n be 125. 125  25 0 150 100  150 False Let n be 145. 145  25 0 150 120  150 False Let n be 175.

129. 5(n + 4) = 90 Let n be 14. 5(14  4) 0 90 5(18) 0 90 90  90 True Let n be 16. 5(16  4) 0 90 5(20) 0 90 100  90 False Let n be 26. 5(26  4) 0 90 5(30) 0 90 150  90 False 14 is a solution. 130. 3n  8 = 28 Let n be 3. 3(3)  8 0 28 9  8 0 28 1  28 False Let n be 7. 3(7)  8 0 28 21 8 0 28 13  28 False Let n be 15. 3(15)  8 0 28 45  80 28 37  28 False None are solutions. 131.

485  68 417

132.

729  47 682

133.

732  3 2196

134.

629 4

2516

Copyright © 2025 Pearson Education, Inc.

37


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

22

135.

374 29  698 1101 21

136.

593 52  766 1411

458 R 8 137. 13 5962 52 76 65 112 104 8 237 R 1 138. 18 4267 36 66 54 127 126 1 139.

1968  36 11 808 59 040 70,848

140.

5324  18 42 592 53 240 95,832

141.

2000  356 1644

142.

9000  519 8481

38

143. To round 842 to the nearest ten, observe that the digit in the ones place is 2. Since this digit is less than 5, we do not add 1 to the digit in the tens place. The number 842 rounded to the nearest ten is 840. 144. To round 258,371 to the nearest hundredthousand, observe that the digit in the tenthousands place is 5. Since this digit is at least 5, we add 1 to the digit in the hundred-thousands place. The number 258,371 rounded to the nearest hundred-thousand is 300,000. 145. 24  4  2 = 6  2 = 12 146. (15  3)  (8  5)  (18)(3)  54  6 8 1 9 23  1 147. Let n be 9. 5n  6  40 5  9  6 0 40 45  6 0 40 39  40 False No, 9 is not a solution. 148. Let n be 3. 2n  6  5n 15 2(3)  6 0 5(3) 15 6  6 0 15 15 0  0 True Yes, 3 is a solution. 53 1714 160 114 96 18 There are 53 full boxes with 18 left over.

149. 32

150.

27  2 54

8 4 32

54  32 86 The total bill before taxes is $86.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 1 Getting Ready for the Test 1. In the number 28,690,357,004, the digit 5 is in the ten-thousands place; D. 2. In the number 28,690,357,004, the digit 8 is in the billions place; E. 3. In the number 28,690,357,004, the digit 6 is in the hundred-millions place; F. 4. In the number 28,690,357,004, the digit 0 to the far left is in the millions place; B. 5. To simplify 6  3  2, the first operation to perform is multiplying 3  2; C. 6. To simplify (6  3)  2, the first operation to perform is subtracting 3 from 6; B. 7. To simplify 6  3  2, the first operation to perform is dividing 6 by 3; D. 8. To simplify 6 + 3  2, the first operation to perform is adding 6 and 3; A.

9. 5 23  58  40; C 10. Since 35  5 = 7, the expression is a  b; B. 11. since 35  5 = 175, the expression is ab; D. 12. Since 35  5 = 30, the expression is a  b; A. 13. Since 35 + 5 = 40, the expression is a + b; C. 1

3. 59 Chapter 1 Test  82 1. 82,426 141 in words is eighty-two thousand, four hundred twenty-six. 2. Four hundred two thousand, five hundred fifty in standard form is 402,550.

4.

600  487 113

Chapter 1: The Whole Numbers

5.

496  30 14,880

6. 69

766 R 42 52,896 48 3 4 59 4 14 456 414 42

7. 23  52  2  2  2  5  5  200 8. 98  1 = 98 9. 0  49 = 0 10. 62  0 is undefined. 11. (24  5)  3  (16  5)  3  11 3  33

12. 16  9  3 4  7  16  3  4  7  16 12  7  28  7  21 13. 61  23  6  2  2  2  48 14. 2[(6  4)2  (22 19)2 ] 10  2[22  32 ] 10  82 2[4  9] 10 5 410 2 2[13] 10 62 40  26 10 79 10  36 15. 5698  1000 = 5,698,000 16. Divide the sum by 5.

84 Copyright © 2025 Pearson Education, 90 Inc.  95 410 The average is 82.

10 0

39


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

17. To round 52,369 to the nearest thousand, observe that the digit in the hundreds place is 3. Since this digit is less than 5, we do not add 1 to the digit in the thousands place. The number 52,369 rounded to the nearest thousand is 52,000. 18.

6289 5403  1957

rounds to rounds to rounds to

6 300 5 400 + 2 000 13,700

19.

4267  2738

rounds to rounds to

4300  2700 1600

20.

21.

22.

107  15 92 15  107 122

53  16 318 530 848

129  12 258 1290 1548

848  1548 2396 The total cost is $2396.

Area  (side)2  (5 centimeters)2  25 square centimeters

107  15 535 1070 1605

29. Perimeter  (20 10  20 10) yards  60 yards Area  (length)(width)  (20 yards)(10 yards)  200 square yards 30. Replace x with 2. 5(x3  2)  5(23  2)  5(8  2)  5(6)  30 31. Replace x with 7 and y with 8. 3x  5 3(7)  5 21 5 16    1 2y 2 8 16 16

17 493 29 203 203 0 Each can cost $17.

24. 29

40

27.

28. Perimeter  (5  5  5  5) centimeters  20 centimeters

7 R2 23. 15 107 105 2

25.

26. 45  8 360 There are 360 calories in 8 tablespoons of white granulated sugar.

32. a.

The quotient of a number and 17 is x  17 or x . 17

b. Twice a number, decreased by 20 is 2x  20.

320  139 91 The higher-priced one is $91 more.

33. Replace n with 6. 5n 11  19 5(6) 110 19 30 110 19 19  19 True 6 is a solution.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 1: The Whole Numbers

34. n + 32 = 4n + 2 Replace n with 0. 0  32 0 4(0)  2 32 0 0  2 32  2 False Replace n with 10. 10  32 0 4(10)  2 42 0 40  2 42  42 True Replace n with 20. 20  32 0 4(20)  2 52 0 80  2 52  82 False 10 is a solution.

Copyright © 2025 Pearson Education, Inc.

41


Chapter 2 Section 2.1 Practice Exercises 1. a.

If 0 represents the surface of the earth, then 3805 below the surface of the earth is 3805.

b. If zero degrees Fahrenheit is represented by 0F, then 85 degrees below zero, Fahrenheit is represented by 85F. 2. 3. a.

0 > 5 since 0 is to the right of 5 on a number line.

b.

3 < 3 since 3 is to the left of 3 on a number line.

c.

7 > 12 since 7 is to the right of 12 on a number line.

4. a.

|6| = 6 because 6 is 6 units from 0.

b.

|4| = 4 because 4 is 4 units from 0.

c.

|12| = 12 because 12 is 12 units from 0.

5. a. b. 6. a.

The opposite of 14 is 14. The opposite of 9 is (9) or 9. |7| = 7

b. |4| = 4 c.

(12) = 12

7. |x| = |6| = 6 8. The planet with the highest average daytime surface temperature is the one that corresponds to the bar that extends the furthest in the positive direction (upward). Venus has the highest average daytime surface temperature. Vocabulary, Readiness & Video Check 2.1 1. The numbers ...3, 2, 1, 0, 1, 2, 3, ... are called integers. 2. Positive numbers, negative numbers, and zero together are called signed numbers. 3. The symbols “<” and “>” are called inequality symbols. 4. Numbers greater than 0 are called positive numbers while numbers less than 0 are called negative numbers. 5. The sign “<” means is less than and “>” means is greater than. 6. On a number line, the greater number is to the right of the lesser number. 7. A number’s distance from 0 on the number line is the number’s absolute value. 8. The numbers 5 and 5 are called opposites.

42

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

9. number of feet a miner works underground 10. The tick marks are labeled with the integers. 11. 0 will always be greater than any of the negative integers. 12. 8; |8| = 8 13. A negative sign can be translated into the phrase “opposite of.” 14. Lake Eyre Exercise Set 2.1 2. If 0 represents the surface of the water, then 25 feet below the surface of the water is 25. 4. If 0 represents sea level, then 282 feet below sea level is 282. 6. If 0 represents 0 degrees Fahrenheit, then 134 degrees above zero is +134. 8. If 0 represents the surface of the ocean, then 14,040 below the surface of the ocean is 14,040. 10. If 0 represents a loss of $0, then a loss of $400 million is 400 million. 12. If 0 represents 0 Celsius, then 10 below 0 Celsius is 10. Since 5 below 0 Celsius is 5 and 10 is less than 5, 10 (or 10 below 0 Celsius) is cooler. 14. From the blue map, the coldest temperature on record for the state of Arkansas is 29F. 16. 18.

20. 22. 24. 8 < 0 since 8 is to the left of 0 on a number line. 26. 12 < 10 since 12 is to the left of 10 on a number line. 28. 27 > 29 since 27 is to the right of 29 on a number line. 30. 13 > 13 since 13 is to the right of 13 on a number line. 32. |7| = 7 since 7 is 7 units from 0 on a number line. 34. |19| = 19 since 19 is 19 units from 0 on a number line. 36. |100| = 100 since 100 is 100 units from 0 on a number line. 38. |10| = 10 since 10 is 10 units from 0 on a number line.

Copyright © 2025 Pearson Education, Inc.

43


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

80. |8| = 8 |4| = 4 Since 8 < 4, |8| < |4|.

40. The opposite of 8 is negative 8. (8) = 8 42. The opposite of negative 6 is 6. (6) = 6 44. The opposite of 123 is negative 123. (123) = 123 46. The opposite of negative 13 is 13. (13) = 13 48. |11| = 11

82. (38) = 38 Since 22 < 38, 22 < (38). 84. If the number is 13, then the absolute value of 13 is 13 and the opposite of 13 is 13. 86. If the opposite of a number is 90, then the number is 90 and its absolute value is 90. 88. The ‘bar’ that is equal to 0 corresponds to Lake Maracaibo, so Lake Maracaibo has an elevation at sea level.

50. |43| = 43 52. |18| = 18

90. The bar that extends second to the farthest in the negative direction corresponds to Lake Eyre, so Lake Eyre has the second lowest elevation.

54. (27) = 27 56. (14) = 14

92. The smallest number on the graph is 269C, which corresponds to helium.

58. |29| = 29 60. |x| = |8| = 8

94. The number on the graph closest to +300C is 280C, which corresponds to phosphorus.

62. |x| = |10| = 10

96. 9 + 0 = 9

64. |x| = |32| = 32

98. 66. |x| = |1| = 1 68. 4 > 17 since 4 is to the right of 17 on a number line.

72. |17| = 17 (17) = 17 Since 17 < 17, |17| < (17).

|5|, (4), 23, |10|.

76. 45 < 0 since 45 is to the left of 0 on a number line.

44

362 37  90 489

102. |10| = 10, 23  8, |5| = 5, and (4) = 4, so the numbers in order from least to greatest are

74. |24| = 24 (24) = 24 Since 24 = 24, |24| = (24).

78. |45| = 45 |0| = 0 Since 45 > 0, |45| > |0|.

1

100.

70. |8| = 8 |4| = 4 Since 8 > 4, |8| > |4|.

20  15 35

104. 14  1, (3) = 3, |7| = 7, and |20| = 20, so the numbers in order from least to greatest are |7|, 14, (3), |20|. 106. 33  27, |11| = 11, (10) = 10, 4 = 4, |2| = 2, so the numbers in order from least to greatest are |11|, 4, |2|, (10), and 33.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

|0| = 0; since 0 < 4, then |0| > 4 is false.

9. 54 + 20 = 34

b.

|4| = 4; since 4 = 4, then |4| > 4 is false.

10. 7 + (2) = 5

c.

|5| = 5; since 5 > 4, then |5| > 4 is true.

11. 3 + 0 = 3

d. |100| = 100; since 100 > 4, then |100| > 4 is true.

12. 18 + (18) = 0

108. a.

13. 64 + 64 = 0

110. (|(7)|) = (|7|) = 7 112. False; consider 0, where |0| = 0 and 0 is not positive. 114. True; zero is always less than a positive number since it is to the left of it on a number line. 116. No; b > a because b is to the right of a on the number line. 118. answers may vary

14. 6 + (2) + (15) = 4 + (15) = 11 15. 5  (3) 12  (14)  2 12  (14)  14  (14) 0 16. x + 3y = 6 + 3(2) = 6 + 6 = 0 17. x + y = 13 + (9) = 22 18. Temperature at 8 a.m.  7  (4)  (7)  3  (7) 4 The temperature was 4F at 8 a.m.

120. no; answers may vary Section 2.2 Practice Exercises 1.

Calculator Explorations 1. 256 + 97 = 159 2. 811 + (1058) = 247

2. 3. 6(15) + (46) = 44 4. 129 + 10(48) = 351 5. 108,650 + (786,205) = 894,855

3.

6. 196,662 + (129,856) = 326,518 Vocabulary, Readiness & Video Check 2.2 4. |3| + |19| = 3 + 19 = 22 The common sign is negative, so (3) + (19) = 22.

1. If n is a number, then n + n = 0.

5. 12 + (30) = 42

2. Since x + n = n + x, we say that addition is commutative.

6. 9 + 4 = 13

3. If a is a number, then (a) = a.

7. |1| = 1, |26| = 26, and 26  1 = 25 26 > 1, so the answer is positive. 1 + 26 = 25

4. Since n + (x + a) = (n + x) + a, we say that addition is associative.

8. |2| = 2, |18| = 18, and 18  2 = 16 18 > 2, so the answer is negative. 2 + (18) = 16

5. Negative; the numbers have different signs and the sign of the sum is the same as the sign of the number with the larger absolute value, 6.

Copyright © 2025 Pearson Education, Inc.

45


Chapter 2: Integers and Introduction to Solving Equations

ISM: Prealgebra and Introductory Algebra

6. Negative; the numbers have the same sign (both are negative) and we keep this common sign in the sum. 7. The diver’s current depth is 231 feet below the surface. Exercise Set 2.2 2.

6 + (5) = 11 4.

10 + (3) = 7 6.

9 + (4) = 5 8. 15 + 42 = 57 10. |5| + |4| = 5 + 4 = 9 The common sign is negative, so 5 + (4) = 9. 12. 62 + 62 = 0 14. |8|  |3| = 8  3 = 5 8 > 3, so the answer is positive. 8 + (3) = 5 16. 8 + 0 = 8 18. |9|  |5| = 9  5 = 4 9 > 5, so the answer is negative. 5 + (9) = 4 20. |6| + |1| = 6 + 1 = 7 The common sign is negative, so 6 + (1) = 7. 22. |23| + |23| = 23 + 23 = 46 The common sign is negative, so 23 + (23) = 46. 24. |400| + |256| = 400 + 256 = 656 The common sign is negative, so 400 + (256) = 656. 26. |24|  |10| = 24  10 = 14 24 > 10, so the answer is positive. 24 + (10) = 14

46

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 28. |8|  |4| = 8  4 = 4 8 > 4, so the answer is negative. 8 + 4 = 4 30. |89|  |37| = 89  37 = 52 89 > 37, so the answer is negative. 89 + 37 = 52 32. |62|  |32| = 62  32 = 30 62 > 32, so the answer is positive. 32 + 62 = 30 34. |375|  |325| = 375  325 = 50 375 > 325, so the answer is negative. 325 + (375) = 50 36. |56| + |33| = 56 + 33 = 89 The common sign is negative, so 56 + (33) = 89.

Chapter 2: Integers and Introduction to Solving Equations 68. The sum of 49, 2, and 40 is 49 + (2) + 40 = 51 + 40 = 11. 70. 0 + (248) + 8 + (16) + (28) + 32 = 248 + 8 + (16) + (28) + 32 = 240 + (16) + (28) + 32 = 256 + (28) + 32 = 284 + 32 = 252 The diver’s final depth is 252 meters below the surface. 72. Since 6 < 3, Smith won Round 4. 74. The bar for 2021 has a height of 94,680 so the net income in 2021 was $94,680,000,000. 76.

38. 1 + 5 + (8) = 4 + (8) = 4 40. 103 + (32) + (27) = 135 + (27) = 162 42. 18  (9)  5  (2)  9  5  (2)  14  (2)  12 44. 34  (12)  (11)  213  22  (11)  213  11  213  224 46. 12 + (3) + (5) = 15 + (5) = 20 48. 35 + (12) = 47

57, 410 94, 680  99,800 251,890 The total net income for 2020, 2021, and 2022 was $251,890,000,000.

78. 14 + (5) + (8) + 7 = 9 + (8) + 7 = 1 + 7 = 8 Their total score was 8. 80. 10,412 + (1786) + 15,395 + 31,418 = 12,198 + 15,395 + 31,418 = 3197 + 31,418 = 34,615 The net income for all the years shown is $34,615. 82. 60 + 43 = 17 Georgia’s all-time record low temperature is 17F.

50. 3 + (23) + 6 = 20 + 6 = 14 52. 100 + 70 = 30 54. (45) + 22 + 20 = 23 + 20 = 3 56. 87 + 0 = 87

84. 10,924 + 3245 = 7679 The depth of the Aleutian Trench is 7679 meters. 86. 91  0 = 91

58. 16  6  (14)  (20)  10  (14)  (20)  24  (20)  44 60. x + y = 1 + (29) = 30

88.

400  18 382

90. answers may vary

62. 3x + y = 3(7) + (11) = 21 + (11) = 10

92. 4 + 14 = 10

64. 3x + y = 3(13) + (17) = 39 + (17) = 22

94. 15 + (17) = 32

66. The sum of 30 and 15 is 30 + 15 = 15. Copyright © 2025 Pearson Education, Inc.

47


Chapter 2: Integers and Introduction to Solving Equations

6. 3 + 4 + (23) + (10); all the subtraction operations are rewritten as additions in one step rather than changing one operation at a time as you work from left to right.

96. True 98. True 100. answers may vary

7. to follow the order of operations

Section 2.3 Practice Exercises

8. The warmest temperature is 263F warmer than the coldest temperature.

1. 13  4 = 13 + (4) = 9 2. 8  2 = 8 + (2) = 10

Exercise Set 2.3

3. 11  (15) = 11 + 15 = 26

2. 6  (6) = 6 + 6 = 0

4. 9  (1) = 9 + 1 = 8

4. 15  12 = 15 + (12) = 3

5. 6  9 = 6 + (9) = 3

6. 2  5 = 2 + (5) = 3

6. 14  5 = 14 + (5) = 19

8. 12  (12) = 12 + 12 = 24

7. 3  (4) = 3 + 4 = 1

10. 25  (25) = 25 + 25 = 0

8. 15  6 = 15 + (6) = 21

12. 2  42 = 2 + (42) = 44

9. 6  5  2  (3)  6  (5)  (2)  3  11 (2)  3  13  3  10

14. 8  9 = 8 + (9) = 1

10. 8  (2)  9  (7)  8  (2)  (9)  7  6  (9)  7  3  7 4 11. x  y = 5  13 = 5 + (13) = 18 12. 3y  z = 3(9)  (4) = 27 + 4 = 31 13. 29,028  (1312) = 29,028 + 1312 = 30,340 Mount Everest is 30,340 feet higher than the Dead Sea. Vocabulary, Readiness & Video Check 2.3 1. It is true that a  b = a + (b). b

3. To evaluate x  y for x = 10 and y = 14, we replace x with 10 and y with 14 and evaluate 10  (14). d 4. The expression 5  10 equals 5 + (10). c 5. additive inverse

16. 17  63 = 17 + (63) = 46 18. 844  (20) = 844 + 20 = 864 20. 5  8 = 5 + (8) = 13 22. 12  (5) = 12 + 5 = 7 24. 16  45 = 16 + (45) = 29 26. 22  10 = 22 + (10) = 32 28. 8  (13) = 8 + 13 = 5 30. 50  (50) = 50 + 50 = 0 32. 35 + (11) = 46 34. 4  21 = 4 + (21) = 17 36. 105  68 = 105 + (68) = 173

2. The opposite of n is n. a

48

ISM: Prealgebra and Introductory Algebra

38. 86  98 = 86 + (98) = 12 40. 8  4  1 = 8 + (4) + (1) = 4 + (1) = 3 42. 30 18 12  30  (18)  (12)  12  (12) 0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

44. 10  6  (9) = 10 + (6) + 9 = 16 + 9 = 7

74. 384  (505) = 384 + 505 = 121 The difference in elevation is 121 feet.

46. 15  (8)  4  15  (8)  (4)  23  (4)  27

76. 236  (505) = 236 + 505 = 269 The difference in elevation is 269 feet.

48. 23  (17)  (9)  23 17  (9)  40  (9)  31 50. (9) 14  (23)  9  (14)  (23)  5  (23)  28

78. 512  (92) = 512 + 92 = 604 The difference in elevation is 604 feet. 80. 52  (92) = 52 + 92 = 40 The difference in elevation is 40 feet. 82. 845  (162) = 845 + 162 = 1007 The difference in temperature is 1007F.

52. 6  (8)  (12)  7  6  8  (12)  (7)  2  (12)  (7)  10  (7)  17

84. 6037  4948 = 6037 + (4948) = 1089 The trade balance was 1089 thousand barrels of crude oil per day that week.

54. 5  (18)  (21)  2  5  (18)  21 (2)  13  21 (2)  8  (2) 6

88. Add a number and 36 is x + (36).

86. The difference of 3 and a number is 3  x.

96 90.

56. x  y = 7  1 = 7 + (1) = 8

3

58. x  y = 9  (2) = 9 + 2 = 11 60. 2x  y = 2(8)  (10) = 16 + 10 = 26 62. 2x  y = 2(14)  (12) = 28 + 12 = 40 92. 64. From the graph, the maximum and minimum temperatures for Texas are 120F and 23F. 120  (23) = 120 + 23 = 143 The temperature extreme for Texas is 143F. 66. The state with the hottest maximum is California. The maximum and minimum temperatures for California are 134F and 45F. 134  (45) = 134 + 45 = 179 The temperature extreme for California is 179F. 68. 134  (80) = 134 + 80 = 214 Therefore, 134F is 214F warmer than 80F. 70. 93 18  26  93  (18)  (26)  75  (26)  49 $49 is now owed on the account. 72. 13,796  (21,857) = 13,796 + 21,857 = 35,653 The difference in elevation is 35,653 feet.

 32

3 32 96 9 06 6 0

51  89 459 4080 4539

94. answers may vary 96. 4  8 = 4 + (8) = 12 98. 3  (10) = 3 + 10 = 7 100. |12|  |5| = 12  5 = 12 + (5) = 7 102. |8|  |8| = 8  8 = 0 104. |23|  |42| = 23  42 = 23 + (42) = 19 106. |2  (6)| = |2 + 6| = |4| = 4 |2|  |6| = 2  6 = 2 + (6) = 4 Since 4  4, the statement is false. 108. no; answers may vary

Copyright © 2025 Pearson Education, Inc.

49


Chapter 2: Integers and Introduction to Solving Equations

ISM: Prealgebra and Introductory Algebra

3. The quotient of two negative numbers is a positive number.

Section 2.4 Practice Exercises 1. 3  8 = 24 2. 5(2) = 10

4. The quotient of a negative number and a positive number is a negative number.

3. 0  (20) = 0

5. The product of a negative number and zero is 0.

4. 10(5) = 50

6. The quotient of 0 and a negative number is 0.

5. 8(6)(2) = 48(2) = 96

7. The quotient of a negative number and 0 is undefined.

6. (9)(2)(1) = 18(1) = 18 7. (3)(4)(5)(1) = 12(5)(1) = 60(1) = 60 4 8. (2)  (2)(2)(2)(2)  4(2)(2)  8(2)  16

9. 82  (8 8)  64 42 10.

7

9. We can find out about sign rules for division because we know sign rules for multiplication.

 6

10. that ab means a  b 11. The phrase “lost four yards” in the example translates to the negative number 4.

11. 16  (2) = 8 12.

80  8 10

13.

6 is undefined. 0

14.

0 7

8. When a negative sign is involved in an expression with an exponent, parentheses tell you whether or not the exponent applies to the negative sign. In Video Notebook Number 3, (3)2, the exponent applies to everything within the parentheses, so 3 is squared; in Video Notebook Number 4, 32, the exponent does not apply to the sign and only 3 is squared.

Exercise Set 2.4 2. 5(3) = 15 4. 7(2) = 14 6. 9(7) = 63

0

8. 6(0) = 0

15. xy = 5  (8) = 40

10. 2(3)(7) = 6(7) = 42

16. x  12  4 y 3

12. 8(3)(3) = 24(3) = 72

17. total score = 4  (13) = 52 The card player’s total score was 52. Vocabulary, Readiness & Video Check 2.4 1. The product of a negative number and a positive number is a negative number.

14. 2(5)(4) = 10(4) = 40 16. 3(0)(4)(8) = 0 18. 2(1)(3)(2) = 2(3)(2) = 6(2) = 12 20. 24  (2)(2)(2)(2)  4(2)(2)  8(2)  16

2. The product of two negative numbers is a positive number.

50

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

4 22. (1)  (1)(1)(1)(1)  1(1)(1)  1(1) 1

Chapter 2: Integers and Introduction to Solving Equations

62.

64.

0 14 63 9

0

 7

24. 43  (4  4  4)  64 66. 480  (8)  26. (3)  (3)(3)  9 2

28. 90  (9) = 10 30.

32.

56

68.

 7

8

 60

36  12 3 3

8

70. 2  (2  2  2)  8

32  8 4

72. (11)2  (11)(11)  121 74. 1(2)(7)(3) = 2(7)(3) = 14(3) = 42

34. 13 is undefined. 0 0

36.

38.

480

76. (1)33  1, since there are an odd number of factors.

0

15

78. 2(2)(3)(2) = 4(3)(2) = 12(2) = 24

24 2 12

80.

56  43 168 2240 2408 56  43 = 2408

82.

23  70 1610 70  (23) = 1610

40. 0(100) = 0 42. 6  2 = 12 44. 12(13) = 156 46. 9(5) = 45 48. 7(5)(3) = 35(3) = 105

84. ab = 5(1) = 5

50. (5)2  (5)(5)  25 52. 

30  6 5

54. 

49  7 7

86. ab = (8)(8) = 64 88. ab = (9)(6) = 54 90.

56. 15  3 = 5

x 9   3 y 3 x

92.

58. 6(5)(2) = 30(2) = 60 60. 20  5  (5)  (3)  100  (5)  (3)  500  (3)  1500

y

0 5

0

94. x  10  1 y 10

Copyright © 2025 Pearson Education, Inc.

51


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations 96. xy = 20  (5) = 100 x 20   4 y 5

120. 2015 to 2021 is 6 years. 1 969 6 11,814 6 58 5 4 41 36 54 54 0 1969 fewer birds would be banded per year, or 1969 birds per year.

98. xy = 3  0 = 0 x 3  is undefined. y 0 100. 63  (3) = 21 The quotient of 63 and 3 is 21. 102.

49 5 245 49(5) = 245 The product of 49 and 5 is 245.

104. The quotient of 8 and a number is

122. a. 8

or

x 8  x. 106. The sum of a number and 12 is x + (12). 108. The difference of a number and 10 is x  (10). 110. Multiply a number by 17 is x  (17) or 17x. 112. A loss of $400 is represented by 400. 7  (400) = 2800 His total loss was $2800. 114. A drop of 5 degrees is represented by 5. 6  (5) = 30 The total drop in temperature was 30 degrees. 116. 1  (39) = 39 The melting point of rubidium is 39C. 118. 11  (70) = 770 The melting point of strontium is 770C.

27,200  12,700 = 14,500 There were about 14,500 more digital non3D movie screens in 2021 than in 2011. This is a change of 14,500 screens.

b. 2011 to 2021 is 10 years. 1 450 10 14, 500 10 45 4 0 50 50 00 The average change was 1450 screens per year. 124. 3(7  4)  2  52  3  3  2  52  3 3  2  25  9  2  25  9  50  59 126. 12  (4  2) + 7 = 12  2 + 7 = 6 + 7 = 13 128. 9(11) = 99 130. 4 + (3) + 21 = 7 + 21 = 14 132. 16  (2) = 16 + 2 = 14 134. The product of an even number of negative numbers is positive, so the product of ten negative numbers is positive.

52

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

136. (1)50 and (7)20 are positive since there are an even number of factors. Note that (7)20  (1)50 since (1)50  1. (1)55 and (7)23 are negative since there are an odd number of factors. Note that (7)23  (1)55 since (1)55  1. 015  0

The numbers from least to greatest are

Chapter 2: Integers and Introduction to Solving Equations 17. 8(6)(1) = 48(1) = 48 18. 18  2 = 9 19. 65 + (55) = 10 20. 1000  1002 = 1000 + (1002) = 2 21. 53  (53) = 53 + 53 = 106 22. 2  1 = 2 + (1) = 3

(7)23 , (1)55 , 015 , (1)50 , (7)20 . 23.

0

0

47

138. answers may vary Mid-Chapter Review 24. 1. Let 0 represent 0F. Then 50 degrees below zero is represented by 50 and 122 degrees above zero is represented by +122 or 122.

36 4 9

25. 17  (59) = 17 + 59 = 42 26. 8 + (6) + 20 = 14 + 20 = 6

2.

95  19 5

3. 0 > 10 since 0 is to the right of 10 on a number line.

27.

4. 4 < 4 since 4 is to the left of 4 on a number line.

28. 9(100) = 900

5. 15 < 5 since 15 is to the left of 5 on a number line. 6. 2 > 7 since 2 is to the right of 7 on a number line. 7. |3| = 3 because 3 is 3 units from 0. 8. |9| = 9 because 9 is 9 units from 0.

30. 4  (8) 16  (9)  4  (8)  (16)  9  12  (16)  9  28  9  19 31.

105 is undefined. 0

32. 7(16)(0)(3) = 0 (since one factor is 0)

9. |4| = 4

33. Subtract 8 from 12 is 12  (8) = 12 + 8 = 4.

10. (5) = 5 11. The opposite of 11 is 11.

34. The sum of 17 and 27 is 17 + (27) = 44.

12. The opposite of 3 is (3) = 3. 13. The opposite of 64 is 64.

29. 12  6  (6) = 12 + (6) + 6 = 18 + 6 = 12

35. The product of 5 and 25 is 5(25) = 125. 36. The quotient of 100 and 5 is

14. The opposite of 0 is 0 = 0. 15. 3 + 15 = 12

37. Divide a number by 17 is

16. 9 + (11) = 20

100 5

 20.

x or x  (17). 17

38. The sum of 3 and a number is 3 + x. Copyright © 2025 Pearson Education, Inc.

53


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations 39. A number decreased by 18 is x  (18). 40. The product of 7 and a number is 7  x or 7x. 41. x + y = 3 + 12 = 9 42. x  y = 3  12 = 3 + (12) = 15

10. 4[6  5(3  5)]  7  4[6  5(2)]  7  4[6 10]  7  4(4)  7  16  7  23 11. x2  (15)2  (15)(15)  225

43. 2y  x = 2(12)  (3) = 24  (3) = 24 + 3 = 27 44. 3y + x = 3(12) + (3) = 36 + (3) = 33 45. 5x = 5(3) = 15 y 12 46.   4 x 3

2

14. 4  x2  4  (8)2  4  64  60 15. average sum of numbers  number of numbers 17  (1)  (11)  (13)  (16)  (13)  2  7 35  7  5 The average of the temperatures is 5F.

2. 24  (2)(2)(2)(2)  16 3. 3 62  3(6  6)  3 36  108 25

25  5 5(1) 5 18  6 12  3 3 1 4

Calculator Explorations

3

6. 30  50  (4)  30  50  (64)  80  (64)  16 7.

1.

120  360  48 10

2.

4750  250 2  (17)

3.

316  (458)  258 28  (25)

4.

234  86  74 18  16

23  (4)2 15  8 16 1  8 1  9

8. 2(2  9)  (12)  3  2(7)  (12)  3  14  (12)  3  26  3  29 9. (5)  8  (3)  23  (5) 8  (3)  23  (5) 8  (3)  8  40  (3)  8  43  8  35

54

2

13. x  y  (6)  (3)  36  (3)  33

1. (2)4  (2)(2)(2)(2)  16

5.

12. 5 y2  5(4)2  5(16)  80 5 y2  5(4)2  5(16)  80

Section 2.5 Practice Exercises

4.

x2  (15)2  (15)(15)  225

Vocabulary, Readiness & Video Check 2.5 1. To simplify 2  2  (3), which operation should be performed first? division 2. To simplify 9  3  4, which operation should be performed first? multiplication

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

3. The average of a list of numbers is sum of numbers . number of numbers

26. 7  6  6  5  (10)  42  6  5  (10)  42  30  (10)  12  (10) 2

4. To simplify 5[9 + (3)]  4, which operation should be performed first? addition

28. 7  (5)2  7  25  18

5. To simplify 2 + 3(10  12)  (8), which operation should be performed first? subtraction

30.

6. To evaluate x  3y for x = 7 and y = 1, replace x with 7 and y with 1 and evaluate 7  3(1). 7. A fraction bar means divided by and it is a grouping symbol. 8. to make sure that the entire value of 2, including the sign, is squared 9. Finding an average is a good application of both order of operations and adding and dividing integers. Exercise Set 2.5 2. 24  (2)(2)(2)(2)  16

3  7  72  4  72  4  72  4  49  196

32. 10  53  7  10 125  7  1250  7  1257 34. 82  (5  2)4  82  34  64  81  17 36. |12  19|  7 = |7|  7 = 7  7 = 1 38. (2)3  (8)  8 40. (2  7)2  (4  3)4  (5)2 14  25 1  25 42. 3 15  (4)  (16)  12  (4)  (16)  12  (4)  (16)  48  (16) 3

4. (2)4  (2)(2)(2)(2)  16

44. (20  5)  5 15  (25)  5 15  5 15  20

6. 5  23  5  8  40

46. 3(8  3)  (4) 10  3(5)  (4) 10  15  (4) 10  1110 1

8. 10  23  12 = 13  12 = 25 10. 8 + 4(3) = 8 + 12 = 4 12. 7(6) + 3 = 42 + 3 = 39 14. 12 + 6  3 = 12 + 2 = 10 16. 5  9  4  20  5  36  20  41 20  21 18.

20.

20 15  5  5  1 1 88

 88  8 8  3 11

22. 7(4)  (6) = 28 + 6 = 22 24. [9  (2)]3  [7]3  343

48. (4 12)  (8 17)  (8)  (9)  72 50. (4  4)  (8  8) = (1)  (1) = 2 52. (11 32 )3  (11 9)3  23  8 54. 3(4  8)2  5(14 16)3  3(4)2  5(2)3  3(16)  5(8)  48  (40)  88 56. 12 [7  (3  6)]  (2  3)3  12 [7  (3)]  (2  3)3  12  (7  3)  (1)3  12 10  (1)  2  (1) 1 Copyright © 2025 Pearson Education, Inc.

55


Chapter 2: Integers and Introduction to Solving Equations

58.

10(1)  (2)(3)  10  6  2[8  (2  2)] 2[8  (4)] 16  2(2) 16  4  4

60. 2[6  4(2  8)]  25  2[6  4(6)]  25  2[6  (24)]  25  2(18)  25  36  25  11 62. x  y  z  2  4  (1)  2  4 1  6 1  5

ISM: Prealgebra and Introductory Algebra

40  (20)  (10)  (15)  (5) 5 90  5  18

82. average 

84. The two lowest scores are 20 and 5. 5  (20) = 5 + 20 = 15 The difference between the two lowest scores is 15. 20  (5)  (5) 30   10 3 3 The average of the scores is 10.

86. average 

88. no; answers may vary 90. 90  45 = 2 92. 45 + 90 = 135

64. 5x  y  4z  5(2)  4  4(1)  10  4  (4)  14  (4)  18

94. 3 + 5 + 3 + 5 = 16 The perimeter is 16 centimeters.

66. x2  z  (2)2  (1)  4  (1)  3 4x 4(2) 8 68.    2 y 4 4

96. 17 + 23 + 32 = 72 The perimeter is 72 meters. 98. (7  3  4)  2 = (21  4)  2 = 17  2 = 34 100. 2  (8  4  20) = 2  (2  20) = 2  (18) = 36 102. answers may vary

70. z 2  (4)2  16

104. answers may vary

72. x2  (3)2  9

106. (17)6  (17)(17)(17)(17)(17)(17)  24,137, 569

74. 3x2  3(3)2  3(9)  27 2

2

76. 3  z  3  (4)  3 16  13 78. 3z 2  x  3(4)2  (3)  3(16)  3  48  3  51 18  (8)  (1)  (1)  0  4 6 24  6  4

80. average 

56

108. 3x2  2x  y  3(18)2  2(18)  2868  3(324)  (36)  2868  972  (36)  2868  936  2868  1932 110. 5(ab  3)b  5(2  3  3)3

Copyright © 2025 Pearson Education, Inc.

 5(6  3)3  5(3)3  5(27)  135


ISM: Prealgebra and Introductory Algebra

7.

Section 2.6 Practice Exercises 1.

Chapter 2: Integers and Introduction to Solving Equations

4x  3  5 4(2)  3 0 5 830 5 5  5 True Since 5 = 5 is true, 2 is a solution of the equation.

2.

3.

y  6  2 y  6  6  2  6 y4 Check: y  6  2 46 0 2 2  2 True The solution is 4. 2  z  8 2  8  z  8  8 10  z Check: 2  z  8 2 0 10  8 2  2 True The solution is 10.

4. x  2  90  (100) x  88  (100) x  12 The solution is 12. 5.

3y  18 3y 18  3 3 3 18 y 3 3 y  6 Check: 3y  18 3(6) 0 18 18  18 True The solution is 6.

6.

32  8x 32 8x  8 8 32 8  x 8 8 4  x Check: 32  8x 32 0 8(4) 32  32 True The solution is 4.

3y  27 3y 27  3 3 3 27 y 3 3 y9 Check: 3y  27 3 9 0  27 27  27 True The solution is 9. x

8. 4 

4 x

7

 4  7 4 4  x  4  7 4 x  28 x 7 Check: 4 28 4 0 7 7  7 True The solution is 28. Vocabulary, Readiness & Video Check 2.6 1. A combination of operations on variables and numbers is called an expression. 2. A statement of the form “expression = expression” is called an equation. 3. An equation contains an equal sign (=) while an expression does not. 4. An expression may be simplified and evaluated while an equation may be solved. 5. A solution of an equation is a number that when substituted for the variable makes the equation a true statement. 6. Equivalent equations have the same solution. 7. By the addition property of equality, the same number may be added to or subtracted from both sides of an equation without changing the solution of the equation. 8. By the multiplication property of equality, both sides of an equation may be multiplied or divided by the same nonzero number without changing the solution of the equation. Copyright © 2025 Pearson Education, Inc.

57


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

9. an equal sign

12.

10. We can add the same number to both sides of an equation and we’ll have an equivalent equation. Also, we can subtract the same number from both sides of an equation and have an equivalent equation. 11. To check a solution, we go back to the original equation, replace the variable with the proposed solution, and see if we get a true statement.

Check:

14.

2. y 16  7 9 16 0  7 7  7 True

4.

a  23  16 7  23 0 16 16  16 False Since 16 = 16 is false, 7 is not a solution of the equation.

6.

3k  12  k 3(6) 0 12  (6) 18 012  6 18  18 True Since 18 = 18 is true, 6 is a solution of the equation.

8.

10.

2(b  3)  10 2(2  3) 010 2(1) 0 10 2  10 False Since 2 = 10 is false, 2 is not a solution of the equation. f  4  6 f  4  4  6  4 f  10 Check: f  4  6 10 0  6 6  6 True The solution is 10.

58

s  7  15 8  7 0 15 15  15 True

The solution is 8.

Exercise Set 2.6

Since 7 = 7 is true, 9 is a solution of the equation.

s  7  15 s  7  7  15  7 s  8

1 y 7 1 7  y  7  7 6  y Check: 1  y  7 10  6 7 1  1 True The solution is 6.

16. 50  40  5  z 10  5  z 15  z Check: 50  40  5  z 50  40  5 0 15 10  5 0 15 15  15 True The solution is 15. 18.

6 y  48 6 y 48  6 6 6 48 y 6 6 y 8 Check: 6 y  48 6(8) 0 48 48  48 True The solution is 8.

20.

2x  26 2x 26  2 2 2 26 x  2 2 x  13 Check: 2x  26 2(13) 0 26 26  26 True The solution is 13.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

22.

24.

n  5 11 n 11  11 (5) 11 11  n  11 (5) 11 n  55 n  5 Check: 11 55 0 5 11 5  5 True The solution is 55. 7 y  21 7 y 21  7 7 7 21 y 7 7 y  3 Check: 7 y  21 7  (3) 0  21 21  21 True

Chapter 2: Integers and Introduction to Solving Equations

30.

3y  27 3y 27  3 3 3 27 y 3 3 y  9 The solution is 9.

32.

n  4  48 n  4  4  48  4 n  44 The solution is 44.

34.

The solution is 48. x 36. 9 

28.

9x  0 9x 0  9 9 9 0 x  9 9 x0 Check: 9x  0 9  0 0 0 0  0 True The solution is 0. 31x  31 31x 31  31 31 31 31  x  31 31 x 1 Check: 31x  31 311 0  31 31  31 True The solution is 1.

9 x

 9

 9  (9) 9  x  9  (9) 9 x  81 The solution is 81. 9

The solution is 3. 26.

36  y 12 36 12  y 12 12 48  y

38. z = 28 + 36 z=8 The solution is 8. 40.

11x  121 11x 121  11 11 11 121 x  11 11 x  11 The solution is 11. n

42. 5

 20

5n

 5  (20) 5 5  n  5  (20) 5 n  100 The solution is 100.

Copyright © 2025 Pearson Education, Inc.

59


Chapter 2: Integers and Introduction to Solving Equations

ISM: Prealgebra and Introductory Algebra

44. 81  27x 81 27x  27 27 81 27  x 27 27 3  x The solution is 3. 46. A number increased by 5 is x + (5). 48. The quotient of a number and 20 is x  (20) or

x . 20

50. 32 multiplied by a number is 32  x or 32x. 52. Subtract a number from 18 is 18  x. 54.

56.

n  961  120 n  961 961  120  961 n  841 The solution is 841. y  1098 18 y 18   18 1098 18 18  y  18 1098 18 y  19, 764 The solution is 19,764.

58. answers may vary 60. answers may vary Chapter 2 Vocabulary Check 1. Two numbers that are the same distance from 0 on a number line but are on opposite sides of 0 are called opposites. 2. The absolute value of a number is that number’s distance from 0 on a number line. 3. The integers are ..., 3, 2, 1, 0, 1, 2, 3, .... 4. The negative numbers are numbers less than zero. 5. The positive numbers are numbers greater than zero. 6. The symbols < and > are called inequality symbols. 7. A solution of an equation is a number that when substituted for the variable makes the equation a true statement. 8. The average of a list of numbers is

60

sum of numbers

. number of numbers

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

9. A combination of operations on variables and numbers is called an expression. 10. A statement of the form “expression = expression” is called an equation. 11. The sign “<” means is less than and “>” means is greater than. 12. By the addition property of equality, the same number may be added to or subtracted from both sides of an equation without changing the solution of the equation. 13. By the multiplication property of equality, both sides of an equation may be multiplied or divided by the same nonzero number without changing the solution of the equation. Chapter 2 Review 1. If 0 represents sea level, then 1572 feet below sea level is 1572. 2. If 0 represents sea level, then an elevation of 11,239 feet is +11,239. 3. 4. 5. |11| = 11 since 11 is 11 units from 0 on a number line. 6. |0| = 0 since 0 is 0 units from 0 on a number line. 7. |8| = 8 8. (9) = 9 9. |16| = 16 10. (2) = 2 11. 18 > 20 since 18 is to the right of 20 on a number line. 12. 5 < 5 since 5 is to the left of 5 on a number line. 13. |123| = 123 |198| = 198 Since 123 > 198, |123| > |198|. 14. |12| = 12 |16| = 16 Since 12 > 16, |12| > |16|. 15. The opposite of 18 is 18. (18) = 18 16. The opposite of 42 is negative 42. (42) = 42 17. False; consider a = 1 and b = 2, then 1 < 2. 18. True Copyright © 2025 Pearson Education, Inc.

61


Chapter 2: Integers and Introduction to Solving Equations

19. True

ISM: Prealgebra and Introductory Algebra

37. |43| + |108| = 43 + 108 = 151 The common sign is negative, so 43 + (108) = 151.

20. True 21. |y| = |2| = 2

38. |100| + |506| = 100 + 506 = 606 The common sign is negative, so 100 + (506) = 606.

22. |x| = |(3)| = |3| = 3 23. |z| = |(5)| = |5| = 5

39. 15 + (5) = 20 The temperature at 6 a.m. is 20C.

24. |n| = |(10)| = |10| = 10 25. The bar that extends the farthest in the negative direction corresponds to elevator D, so elevator D extends the farthest below ground. 26. The bar that extends the farthest in the positive direction corresponds to elevator B, so elevator B extends the highest above ground. 27. |5|  |3| = 5  3 = 2 5 > 3, so the answer is positive. 5 + (3) = 2

40. 127 + (23) = 150 The diver’s current depth is 150 feet. 41. 7  (6)  (2)  (2)  13  (2)  (2)  15  (2)  17 Her total score was 17. 42. 19  10 = 19 + (10) = 9 The team’s score was 9.

28. |18|  |4| = 18  4 = 14 18 > 4, so the answer is positive. 18 + (4) = 14 29. |16|  |12| = 16  12 = 4 16 > 12, so the answer is positive. 12 + 16 = 4 30. |40|  |23| = 40  23 = 17 40 > 23, so the answer is positive. 23 + 40 = 17

43. 12  4 = 12 + (4) = 8 44. 12  4 = 12 + (4) = 16 45. 7  17 = 7 + (17) = 24 46. 7  17 = 7 + (17) = 10 47. 7  (13) = 7 + 13 = 20 48. 6  (14) = 6 + 14 = 8 49. 16  16 = 16 + (16) = 0

31. |8| + |15| = 8 + 15 = 23 The common sign is negative, so 8 + (15) = 23.

50. 16  16 = 16 + (16) = 32

32. |5| + |17| = 5 + 17 = 22 The common sign is negative, so 5 + (17) = 22.

52. 5  (12) = 5 + 12 = 7

33. |24|  |3| = 24  3 = 21 24 > 3, so the answer is negative. 24 + 3 = 21 34. |89|  |19| = 89  19 = 70 89 > 19, so the answer is negative. 89 + 19 = 70 35. 15 + (15) = 0 36. 24 + 24 = 0 62

51. 12  (12) = 12 + 12 = 0

53. (5) 12  (3)  5  (12)  (3)  7  (3)  10 54. 8  (12) 10  (3)  8  (12)  (10)  3  20  (10)  3  30  3  27 55. 600  (92) = 600 + 92 = 692 The difference in elevations is 692 feet.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 56. 142 125  43  85  142  (125)  43  (85)  17  43  (85)  60  (85)  25 The balance in the account is 25.

Chapter 2: Integers and Introduction to Solving Equations

74.

72  9 8

75.

38  38 1

57. 223  245 = 223 + (245) = 22 You are 22 feet or 22 feet below ground at the end of the drop.

76.

58. 66  (16) = 66 + 16 = 82 The total length of the elevator shaft for elevator C is 82 feet.

77. A loss of 5 yards is represented by 5. (5)(2) = 10 The total loss is 10 yards.

59. |5|  |6| = 5  6 = 5 + (6) = 1 5  6 = 5 + (6) = 1 |5|  |6| = 5  6 is true.

78. A loss of $50 is represented by 50. (50)(4) = 200 The total loss is $200.

60. |5  (6)| = |5 + 6| = |1| = 1 5 + 6 = 11 Since 1  11, the statement is false.

45 9

 5

79. A debt of $1024 is represented by 1024. 1024  4 = 256 Each payment is $256. 80. A drop of 45 degrees is represented by 45. 45  5 or 45  9 = 5 9 The average drop each hour is 5F.

61. 3(7) = 21 62. 6(3) = 18 63. 4(16) = 64

81. (7)2  (7)(7)  49

64. 5(12) = 60

82. 72  (7  7)  49

65. (5)2  (5)(5)  25 66. (1)5  (1)(1)(1)(1)(1)  1

83. 5  8 + 3 = 3 + 3 = 0 84. 3 12  (7) 10  9  (7) 10  2 10  8

67. 12(3)(0) = 0 68. 1(6)(2)(2) = 6(2)(2) = 12(2) = 24 69. 15  3 = 5 70.

71.

72.

73.

24 8 0 3

3

0

85. 10 + 3  (2) = 10 + (6) = 16 86. 5  10  (3) = 5  (30) = 5 + 30 = 35 87. 16  (2)  4 = 8  4 = 32 88. 20  5  2 = 4  2 = 8 89. 16  (3) 12  4  16  (36)  4  16  (9) 7

46 is undefined. 0

90. 12 10  (5)  12  (2)  14

100

3 2 3 2 91. 4  (8  3)  4  (5)  64  25  39

5

 20

92. (3)3  90  27  90  117 Copyright © 2025 Pearson Education, Inc.

63


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

93.

94.

(4)(3)  (2)(1) 12  2 10  5   2 10  5 5 4(12 18) 

10  (2  3)

 

4(6)

24

10  (5)

105.

 12

2

18  25  (30)  7  0  (2) 6 18  6

95. average 

106.

 3 96. average  45  (40)  (30)  (25) 4 140  4  35 97. 2x  y = 2(2)  1 = 4  1 = 5

99.

100. 101.

102.

8x  72 8x 72 8  8 8 72 x  8 8 x  9 The solution is 9.

107. 20  7  y 13  y The solution is 13. 108.

98. y2  x2  12  (2)2  1 4  5

10x  30 10x 30  10 10 10 30 x  10 10 x  3 The solution is 3.

3x 3(2) 6    1 6 6 6

x  31  62 x  31 31  62  31 x  31 The solution is 31. n

5 y  x 5(1)  (2) 5  2 7  7    y 1 1 1 2n  6  16 2(5)  6 016 10  6 0 16 16  16 False Since 16 = 16 is false, 5 is not a solution of the equation.

109. 4 

4 n

 11

 4  (11) 4 4  n  4  (11) 4 n  44 The solution is 44. x 110. 2 

2 x

 13

 2 13 2 2  x  2 13 2 x  26 The solution is 26.

2(c  8)  20 2(2  8) 0  20 2(10) 0  20 20  20 True Since 20 = 20 is true, 2 is a solution of the equation.

103.

n  7  20 n  7  7  20  7 n  13 The solution is 13.

111.

n 12  7 n 12 12  7 12 n  19 The solution is 19.

104.

5  n  15 5 15  n  15 15 20  n The solution is 20.

112.

n  40  2 n  40  40  2  40 n  38 The solution is 38.

64

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 113. 36  6x 36 6x  6 6 36 6  x 6 6 6 x The solution is 6.

Chapter 2: Integers and Introduction to Solving Equations

129.

3 2 4 3 2 4 130. 5(7  6)  4(2  3)  2  5(1)  4(1)  2  5(1)  4(1) 16

 5  4 16  1 16  17

114. 40  8 y 40 8 y  8 8 40 8  y 8 8 5  y The solution is 5.

131.

n  9  30 n  9  9  30  9 n  21 The solution is 21.

132.

n 18  1 n 18 18  118 n  17 The solution is 17.

133.

4x  48 4x 48  4 4 4 48 x  4 4 x  12 The solution is 12.

134.

9x  81 9x 81  9 9 9 81 x  9 9 x  9 The solution is 9.

115. 6 + (9) = 15 116. 16  3 = 16 + (3) = 19 117. 4(12) = 48 118.

84

 14  6 14  6 20    20 7  2(3) 7  (6) 1

 21

4 119. 76  (97) = 76 + 97 = 21 120. 9 + 4 = 5 121. 18  9 = 27 The temperature on Friday was 27C. 122. 11 + 17 = 6 The temperature at noon on Tuesday was 6C. 123. 12,923  (195) = 12,923 + 195 = 13,118 The difference in elevations is 13,118 feet. 124. 32 + 23 = 9 His financial situation can be represented by 9 or $9. 2 3 2 3 125. (3  7)  (6  4)  (4)  (2)  16  8  2

126. 3(4  2)  (6)  32  3(6)  (6)  32  3(6)  (6)  9  18  (6)  9  12  9 3

135.

n   100 2 n 2   2 100  2 2  n  2 100 2 n  200 The solution is 200.

127. 2  4  3  5  2 12  5  10  5  5 128.

4  6  5 1  4  30 1  26 1  25 Copyright © 2025 Pearson Education, Inc.

65


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

y 136. 1 1 1

1 y

x

 3

13.

 1(3)

3

y3 The solution is 3.

14.

Chapter 2 Getting Ready For the Test 1. The opposite of 2 is (2) = 2; A.

1. 5 + 8 = 3 2. 18  24 = 18 + (24) = 6

3. The absolute value of 2 is |2| = 2 because 2 is 2 units from 0 on a number line; A.

3. 5  (20) = 100

4. The opposite of 2 is 2; B.

4. 16  (4) = 4

5. For xy, the operation is multiplication; C.

5. 18 + (12) = 30

6. For 12(+3), the operation is multiplication; C.

6. 7  (19) = 7 + 19 = 12

7. For 12 + 3, the operation is addition; A.

7. 5  (13) = 65

12 8. For , the operation is division; D. 3

8.

9. For 4 + 6  2, the operation of multiplication is performed first, since multiplication and division are performed before addition and subtraction; C.

66

5

5

10. 14  |20| = 14  20 = 14 + (20) = 6

x  2  4 x  2  2  4  2 x  2 Choice B is correct.

25

9. |25| + (13) = 25 + (13) = 12

10. For 4 + 6  2, the operation of division is performed first, since multiplication and division are performed before addition and subtraction; D.

12.

x2  4 x22  42 x2 Choice A is correct.

Chapter 2 Test

2. The absolute value of 2 is |2| = 2 because 2 is 2 units from 0 on a number line; A.

3x 6  3 3 x  2 Choice B is correct.

6

 3(6)    3  x  18 Choice D is correct.

1  y  1(3)

11. 3x  6

 x3

11. |5|  |10| = 5  10 = 50 10   10  12. 2  5 5 

13. 8 + 9  (3) = 8 + (3) = 11 14. 7  (32) 12  5  7  (32)  (12)  5  39  (12)  5  51 5  46 15. (5)3  24  (3)  125  24  (3)  125  (8)  125  8  117

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

17. (7)2  7  (4)  49  7  (4)  7  (4)  28

28. Subtract the elevation of the Romanche Gap from the elevation of Mount Washington. 6288  (25,354) = 6288 + 25,354 = 31,642 The difference in elevations is 31,642 feet.

18. 3  (8  2)3  3  63  3  216  3  (216)  213

29. Subtract the depth of the lake from the elevation of the surface. 1495  5315 = 1495 + (5315) = 3820 The deepest point of the lake is 3820 feet below sea level.

16. (5  9)2  (8  2)3  (4)2  (6)3  16  216  3456

4 19.

20.

21.

82

2 16

4

64   2  4  2  (4)  2 2 16

3(2) 12 6 12 18   2 1(4  5) 1(9) 9 25  30

2

2(6)  7

5

2

12  7

(5)2 5

22. 5(8) [6  (2  4)]  (12 16)

30. average 

5

 5

4

 4

9n 45 9  9 9  n  45 9 9 n5 The solution is 5.

 5(8) [6  (2)]  (12 16)2  5(8)  (6  2)  (4)2

n 33. 7 

7 n

4

 7  4 7 7  n  7  4 7 n  28

23. 7x  3y  4z  7(0)  3(3)  4(2)  0  (9)  8  9  8  17

The solution is 28.

24. 10  y2  10  (3)2  10  9  1 25.

16

b. A number subtracted from 20 is 20  x. 32. 9n  45

2

 5(8)  8  (4)2  5(8)  8 16  40  8 16  48 16  32

4

The product of a number and 17 is 17  x or 17x.

31. a.

25

12  (13)  0  9

6  1  3(2)  2 y 2(3) 6

3z

26. A descent of 22 feet is represented by 22. 4(22) = 88 Tui is 88 feet below sea level. 27. 129  (79)  (40)  35  50  (40)  35  10  35  45 Their new balance can be represented by 45 or $45.

34.

x 16  36 x 16 16  36  16 x  20 The solution is 20.

35. 20  8  8  x 12  8  x 4  x The solution is 4. Cumulative Review Chapters 12 1. The place value of 3 in 396,418 is hundredthousands. 2. The place value of 3 in 4308 is hundreds. 3. The place value of 3 in 93,192 is thousands.

Copyright © 2025 Pearson Education, Inc.

67


ISM: Prealgebra and Introductory Algebra

Chapter 2: Integers and Introduction to Solving Equations

4. The place value of 3 is 693,298 is thousands. 5. The place value of 3 in 534,275,866 is tenmillions. 6. The place value of 3 in 267,301,818 is hundredthousands. 7. a.

7 < 7 since 7 is to the left of 7 on a number line.

b.

0 > 4 since 0 is to the right of 4 on a number line.

c.

9 > 11 since 9 is to the right of 11 on a number line.

8. a.

12 > 4 since 12 is to the right of 4 on a number line.

b.

13 > 31 since 13 is to the right of 31 on a number line.

14. Subtract the cost of the camera from the amount in her account. 762  237 525 She will have $525 left in her account after buying the camera. 15. To round 568 to the nearest ten, observe that the digit in the ones place is 8. Since this digit is at least 5, we add 1 to the digit in the tens place. The number 568 rounded to the nearest ten is 570. 16. To round 568 to the nearest hundred, observe that the digit in the tens place is 6. Since this digit is at least 5, we add 1 to the digit in the hundreds place. The number 568 rounded to the nearest hundred is 600. 17.

4725  2879

rounds to rounds to

4700  2900 1800

9. 13  2  7  8  9  (13  7)  (2  8)  9  20 10  9  39

18.

8394  2913

rounds to rounds to

8000  3000 5000

10. 11 3  9 16  (11 9)  (3 16)  20 19  39

19. a.

c.

11.

12.

82 < 79 since 82 is to the left of 79 on a number line.

7826  505 7321 Check:

b. 20(4 + 7) = 20  4 + 20  7 c. 7321  505 7826

20. a.

3285  272 3013 Check:

2(7 + 9) = 2  7 + 2  9 5(2 + 12) = 5  2 + 5  12

b.

9(3 + 6) = 9  3 + 9  6

c.

4(8 + 1) = 4  8 + 4  1

21.

631  125 3 155 12 620 63 100 78,875

22.

299  104 1 196 29 900 31, 096

3013  272 3285

13. Subtract 7257 from the radius of Jupiter. 43, 441  7 257 36,184 The radius of Saturn is 36,184 miles.

68

5(6 + 5) = 5  6 + 5  5

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

23. a. b.

42  7 = 6 because 6  7 = 42. 64

 8 because 8  8 = 64.

8

c. 24. a.

7 3 21 because 7  3 = 21. 35

 7 because 7  5 = 35.

5 b. 64  8 = 8 because 8  8 = 64.

c.

12 4 48 because 12  4 = 48.

741 25. 5 3705 35 20 20 05 5 0 Check: 741  5 3705 456 26. 8 3648 32 44 40 48 48 0 Check: 456 8 3648

Chapter 2: Integers and Introduction to Solving Equations

27. number of cards number of number of   for each person cards employees  238 19 12 R 10 19 238 19 48 38 10 Each employee will receive 12 gift cards. There will be 10 gift cards left over. 28.

cost of each total   number of tickets ticket cost  324  36 9 36 324 324 0 Each ticket cost $9.

29. 92  9  9  81 30. 53  5  5  5  125 31. 61  6 32. 41  4 33. 5  62  5  6  6  180 34. 23  7  2  2  2  7  56 35.

7  2  3  32 7  2  3  9 7  6  9 10      2 5(2 1) 5(1) 5 5

36.

62  4  4  23 36  4  4  8  37  25 37  52 36 16  8 12 60  12 5 

37. x + 6 = 8 + 6 = 14 38. 5 + x = 5 + 9 = 14

Copyright © 2025 Pearson Education, Inc.

69


Chapter 2: Integers and Introduction to Solving Equations

ISM: Prealgebra and Introductory Algebra

|9| = 9 because 9 is 9 units from 0.

45. 7  3 = 21

b.

|8| = 8 because 8 is 8 units from 0.

46. 5(2) = 10

c.

|0| = 0 because 0 is 0 units from 0.

47. 0  (4) = 0

40. a.

|4| = 4 because 4 is 4 units from 0.

48. 6  9 = 54

39. a.

b. |7| = 7 because 7 is 7 units from 0. 41. 2 + 25 = 23 42. 8 + (3) = 5 43. 2a  b = 2(8)  (6) = 16  (6) = 16 + 6 = 22 44. x  y = 2  (7) = 2 + 7 = 5

70

49. 3(4  7)  (2)  5  3(3)  (2)  5  9  (2)  5  11 5  16 50. 4  8(7  3)  (1)  4  8(4)  (1)  4  32  (1)  4  32 1  28 1  27

Copyright © 2025 Pearson Education, Inc.


Chapter 3 14. 4(2x) = (4  2)x = 8x The perimeter is 8x centimeters.

Section 3.1 Practice Exercises 1. a.

8m  14m = (8  14)m = 6m

15. 3(12y + 9) = 3  12y + 3  9 = 36y + 27 The area of the garden is (36y + 27) square yards.

b. 6a + a = 6a + 1a = (6 + 1)a = 7a c.

 y2  3y2  7  1y2  3y2  7

Vocabulary, Readiness & Video Check 3.1

 (1  3) y2  7  2 y2  7

1.

2. 6z  5  z  4  6z  5 1z  (4)  6z 1z  5  (4)  (6 1)z  5  (4)  7z  1

14 y2  2x  23 is called an expression while 14 y2 , 2x, and 23 are each called a term. 2. To multiply 3(7x + 1), we use the distributive property.

3. 6y + 12y  6 = 18y  6

3. To simplify an expression like y + 7y, we combine like terms.

4. 7 y  5  y  8  7 y  (5) 1y  8  7 y 1y  (5)  8  8y  3

4. By the commutative properties, the order of adding or multiplying two numbers can be changed without changing their sum or product.

5. 7 y  2  2 y  9x 12  x  7 y  2  (2 y)  (9x) 12  (1x)  7 y  (2 y)  (9x)  (1x)  2 12  9 y 10x 14

5. The term 5x is called a variable term while the term 7 is called a constant term.

6. 6(4a) = (6  4)a = 24a

7. By the associative properties, the grouping of adding or multiplying numbers can be changed without changing their sum or product.

7. 8(9x) = (8  9)x = 72x 8. 8(y + 2) = 8  y + 8  2 = 8y + 16 9. 3(7a  5) = 3  7a  3  5 = 21a  15

6. The term z has an understood numerical coefficient of 1.

8. The terms x and 5x are like terms and the terms 5x and 5y are unlike terms.

10. 6(5  y) = 6  5  6  y = 30  6y

9. For the term 3x2 y, 3 is called the numerical coefficient.

11. 5(2 y  3)  8  5(2 y)  5(3)  8  10 y 15  8  10 y  23

10. because the original expression contains like terms and we can combine like terms 11. distributive property

12. 7(x 1)  5(2x  3)  7(x)  (7)(1)  5(2x)  5(3)  7x  7 10x 15  3x  22

12. The 20 is outside the parentheses, so the distributive property does not apply to it. 13. addition; multiplication; P = perimeter; A = area

13. ( y 1)  3y 12  1( y 1)  3y 12  1 y  (1)(1)  3y 12   y 1  3y 12  2 y  13

Exercise Set 3.1 2. 8y + 3y = (8 + 3)y = 11y 4. 7z  10z = (7  10)z = 3z

Copyright © 2025 Pearson Education, Inc.

71


Chapter 3: Solving Equations and Problem Solving 6. 5b  8b  b = (5  8  1)b = 4b 8. 8y + y  2y  8y = (8 + 1  2  8)y = 1y = y 10. 5b  4b + b  15 = (5  4 + 1)b  15 = 2b  15 12. 4(4x) = (4  4)x = 16x 14. 3(21z) = (3  21)z = 63z

ISM: Prealgebra and Introductory Algebra 42. a  4  7a  5  a  7a  4  5  (1 7)a  4  5  6a 1 44. m  8n  m  8n  m  m  8n  8n  (1 1)m  (8  8)n  2m  0n  2m 46. 5(x 1) 18  5  x  5 118  5x  5 18  5x  13

16. 13(5b) = (13  5)b = 65b 18. 3(x + 1) = 3  x + 3  1 = 3x + 3 20. 4(y  6) = 4  y  4  6 = 4y  24 22. 8(8y + 10) = 8  8y + (8)  10 = 64y  80 24. 5(6  y)  2  5(6)  5( y)  2  30  5 y  2  5 y  30  2  5 y  28

48. 3(x  2) 11x  3 x  3 2 11x  3x  6 11x  3x 11x  6  8x  6 50. 8(1 v)  6v  8 1 (8)  v  6v  8  8v  6v  2v  8 52. 5 y  4  9 y  y 15  5 y  9 y  y  4 15  (5  9 1) y  4 15  13y  11

26. 10  4(6d  2)  10  4  6d  4  2  10  24d  8  24d 10  8  24d  2 28. 3(5  2b)  4b  3(5)  (3)(2b)  4b  15  6b  4b  6b  4b 15  2b 15 30. 8z  5(6  z)  20  8z  5  6  5  z  20  8z  30  5z  20  8z  5z  30  20  13z  50 32. 3(5x  2)  2(3x 1)  3 5x  3 2  2  3x  2 1  15x  6  6x  2  15x  6x  6  2  21x  4 34. (5x 1) 10  1(5x 1) 10  1 5x  (1)(1) 10  5x 110  5x  9 36. x + 12x = (1 + 12)x = 13x 38. 12x + 8x = (12 + 8)x = 4x

54. 2(x  4)  8(3x 1)  2  x  (2)  4  8  3x  8 1  2x  8  24x  8  2x  24x  8  8  22x 16 56. 6x  4  2x  x  3  6x  2x  x  4  3  (6  2 1)x  4  3  7x 1 58. 5(c  2)  7c  5  c  5  2  7c  5c 10  7c  5c  7c 10  12c  10 60. 8(m  3)  20  m  8  m  8  3  20  m  8m  24  20  m  8m  m  24  20  9m  4 62. 5(2a  3) 10a  5  2a  5  3 10a  10a 15 10a  10a 10a 15  15

40. 8r + s  7s = 8r + (1  7)s = 8r  6s 72

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 64. (7 y  2)  6  1(7 y  2)  6  1 7 y  (1)(2)  6  7 y  2  6  7 y  8 66. (12b  20)  5(3b  2)  1(12b  20)  5(3b  2)  1(12b)  (1)(20)  5(3b)  5(2)  12b  20 15b 10  12b 15b  20 10  3b  10

Chapter 3: Solving Equations and Problem Solving 84. Area = (length)  (width) = 50  40 = 2000 The area is 2000 square feet. 86. Perimeter  2  (length)  2  (width)  2 120  2 80  240 160  400 The perimeter is 400 feet so the rancher needs 400 feet of fencing. 88. x + x + x  14 = (1 + 1 + 1)x  14 = 3x  14 The perimeter is (3x  14) inches.

68. b  2(b  5)  b  2  b  2  5  b  2b 10  3b 10

90. 15 + 23 = 8

70. 3x  4(x  2) 1  3x  4  x  4  2 1  3x  4x  8 1  1x  7  x  7

94. 8 + (8) = 0

92. 7  (4) = 7 + 4 = 3

72. 3x + x + 7 + 4x + 12 + 5x = 3x + x + 4x + 5x + 7 + 12 = (3 + 1 + 4 + 5)x + 7 + 12 = 13x + 19 The perimeter is (13x + 19) feet. 74. 3z 1 5z 1  3z  5z 1 1  (3  5)z 11  8z  2 The perimeter is (8z + 2) meters. 76. 6(9y + 1) = 6  9y + 6  1 = 54y + 6 The perimeter is (54y + 6) kilometers. 78. Area  (length)  (width)  (5x)  (8)  (5 8)x  40x The area is 40x square centimeters. 80. Area  (length)  (width)  11(z  6)  11 z 11 6  11z  66 The area is (11z  66) square meters. 82. Area  (length)  (width)  12(2x  3)  12  2x 12  3  24x  36 The area is (24x + 36) square feet.

96. 2(4x 1)  2(4x)  (2)(1)  8x  (2)  8x  2 The expressions are not equivalent. 98. 8(ab) = 8  ab = 8ab The expressions are not equivalent. 100. 12 y  (3y 1)  12 y  (1)(3y 1)  12 y  (1)(3y)  (1)(1)  12 y  3y 1 The expressions are equivalent. 102. 6(x  5)  2  6  x  6  5  2  6x  30  2  6x  32 The expressions are not equivalent. 104. The order of the terms is changed. This is the commutative property of addition. 106. The order of the terms is changed, but the grouping is not. This is the commutative property of addition. 108. Add the areas of each rectangle. 12(3x  5)  4(5x 1)  12  3x 12  5  4  5x  4 1  36x  60  20x  4  36x  20x  60  4  56x  64 The total area is (56x  64) square kilometers.

Copyright © 2025 Pearson Education, Inc.

73


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving 110. 76(268x + 592)  2960 = 76  268x + 76  592  2960 = 20,368x + 44,992  2960 = 20,368x + 42,032 112. answers may vary 114. answers may vary

5. 4 10  4 y  5 y 14   y 14 1y  1 1 14  y 6.

13x  4(3x 1) 13x  4  3x  4 1 13x  12x  4 13x 12x  12x  4 12x x  4

7.

5 y  2  17 5 y  2  2  17  2 5 y  15 5 y 15  5 5 y3 Check: 5 y  2  17 5(3)  2 017 15  2 0 17 17  17 True The solution is 3.

Section 3.2 Practice Exercises 1.

2.

3.

x  6  1 3 x  6  2 x  6  6  2  6 x  8 Check: x  6  1 3 8  6 0 1 3 2  2 True The solution is 8. 10  2m  4m 10  2m 10 2m  2 2 5  m Check: 10  2m  4m 10 0 2(5)  4(5) 10 0 10  (20) 10 0 10  20 10  10 True The solution is 5. 8  6  2 

a 3 a

3 a 3(2)  3 3 3 3(2)   a 3 6  a 4. 6 y 1  7 y  17  2 6 y  7 y 1  17  2 y 1  19 y 1 1  19  1 y  20

8. 4(x  2)  60  2 10 4x  8  60  2 10 4x  68  8 4x  68  68  8  68 4x  60 4x 60  4 4 x  15 9. a. b.

5 decreased by a number is 5  x.

c.

Three times a number is 3x.

d.

A number subtracted from 83 is 83  x.

e.

The quotient of a number and 4 is

x 4

or

x  . 4 10. a. b.

74

The sum of 3 and a number is 3 + x.

The product of 5 and a number, decreased by 25, is 5x  25. Twice the sum of a number and 3 is 2(x + 3).

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

c.

The quotient of 39 and twice a number is 39 39  (2x) or . 2x

Vocabulary, Readiness & Video Check 3.2 1. The equations 3x = 51 and 3x  51 are called 3 3 equivalent equations. 2. The difference between an equation and an expression is that an equation contains an equal sign, while an expression does not. 3. The process of writing 3x + 10x as 7x is called simplifying the expression.

Chapter 3: Solving Equations and Problem Solving 8. 100  15 y  5 y 100  20 y 100 20 y  20 20 5 y 10. 3x  11 2 3x  9 3x 9  3 3 x  3 12.

2 

6. By the multiplication property of equality, y = 8 and 3  y = 3  8 are equivalent equations. 7. Simplify the left side of the equation by combining like terms.

y

16.

9. addition property of equality 10. because order matters with subtraction

2.

4.

x7  23 x7 5 x77  57 x  2 1 8  n  2 7  n  2 7  2  n  2  2 9  n

6. 10 y  y  45 9 y  45 9 y 45  9 9 y5

4 z

14. 5 y  9 y  14  (14) 4 y  28 4 y 28  4 4 y7

8. Simplify the left side of the equation by using the distributive property.

Exercise Set 3.2

z

4 z 4  (2)  4  4 8 z

4. For the equation 5x  1 = 21, the process of finding that 4 is the solution is called solving the equation. 5. By the addition property of equality, x = 2 and x + 7 = 2 + 7 are equivalent equations.

20  22 

 32  52 3 y  20 3 y 3  3(20) 3 y  60

18. 3  5x  4x  13 3  x  13 3  x  3  13  3 x  16 20. 7 10  4x  6  3x 3 x6 3 6  x 6  6 9x 22.

6(3x 1)  19x 6  3x  6 1  19x 18x  6  19x 18x 18x  6  19x 18x 6 x

Copyright © 2025 Pearson Education, Inc.

75


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving 24.

17x  4(4x  6) 17x  4  4x  4  6 17x  16x  24 17x 16x  16x 16x  24 x  24

26.

28z  9(3z  2) 28z  9  3z  9  2 28z  27z 18 28z  27z  27z  27z 18 z  18

28.

2(1 3y)  7 y 2  (1)  (2)(3y)  7 y 2  6y  7y 2  6y  6y  7y  6y 2 y

30.

3y 12  0 3y 12 12  0 12 3y  12 3y 12  3 3 y4

32.

5m 1  46 5m 11  46 1 5m  45 5m 45  5 5 m9

34.

11  3t  2 11 2  3t  2  2 9  3t 9 3t  3 3 3  t

36.

76

4(3y  5)  14 y 4  3y  4  5  14 y 12 y  20  14 y 12 y 12 y  20  14 y 12 y 20  2 y 20 2 y  2 2 10  y

38.

5(x  6)  2  8 5  x  5  6  10 5x  30  10 5x  30  30  10  30 5x  20 5x 20  5 5 x4

40.

2(x  5)  2  8  4 2  x  2  5  2  12 2x 10  2  12 2x 12  12 2x 12 12  12 12 2x  0 2x 0  2 2 x0

42.

x  63  10x x  x  63  10x  x 63  9x 63 9x  9 9 7  x

44. 35  (3)  3(x  2) 17 35  3  3 x  3 2 17 38  3x  6 17 38  3x 11 38 11  3x 11 11 27  3x 27 3x  3 3 9 x 46. 7  (10)  x  5 7 10  x  5 17  x  5 17  5  x  5  5 22  x 48.

y  8  5 1 y  8  6 y  8  8  6  8 y2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 50. y  6 y  20 5 y  20 5y 20  5 5 y  4

Chapter 3: Solving Equations and Problem Solving

64.

52. 6x  5  35 6x  30  6x 30   6 6  x  5

66. 10x  11x  5  9  5 x5 4 x55  45 x  1

54.

x 12 x 5  12

9 14 

12  (5)  12  60  x 56.

y 68.

6 y

x 12

6 y

8x  8  32 6 

8x  8  8  32  8 8x  40 8x 40  8 8 x5 58. 30  t  9t 30  10t 30 10t 10  10 3  t 60. 42  20  2x 13x 22  11x 22 11x  11 11 2  x 62.

10x  6(2x  3) 10x  6  2x  6  3 10x  12x 18 10x 12x  12x 12x 18 2x  18 2x 18 2  2 x9

65 y  8(8 y  9) 65 y  8 8 y  8  9 65 y  64 y  72 65 y  64 y  64 y  64 y  72 y  72

6 y

 6  (1)  6 1 7

 6  7 6 y  42

70. 8x  4  6x  12  22 8x  6x  4  10 2x  4  10 2x  4  4  10  4 2x  6 2x 6  2 2 x  3 72.

4(x  7)  30  3  37 4  x  4  7  30  3  37 4x  28  30  34 4x  58  34 4x  58  58  34  58 4x  24 4x 24  4 4 x  6

74. Negative eight plus a number is 8 + x. 76. A number subtracted from 12 is 12  x. 78. Twice a number is 2x. 80. The quotient of negative six and a number is 6 6 6  x or or  . x x Copyright © 2025 Pearson Education, Inc.

77


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

82. Negative four times a number, increased by 18 is 4x + 18.

108.

84. Twice a number, decreased by thirty is 2x  30. 86. The product of 7 and a number, added to 100 is 100 + 7x. 88. The difference of 9 times a number, and 1 is 9x  1. 90. Twice the sum of a number and 5 is 2[x + (5)] or 2(x  5). 92. The quotient of ten times a number and 4 is 10x  (4) or

10x 10x . or  4 4

94. The quotient of 20 and a number, decreased by 20  3 or  20 three is (20  x)  3 or  3. x x 96. The bars with length less than $500 correspond to cities with daily costs less than $500. The cities with daily costs less than $500 are Oslo and Riyadh. 98. For a business traveler, the daily cost is $524 for Stavanger, $497 for Oslo, and $528 for Stockholm. 524 + 497 + 528 = 1549 The combined daily cost is $1549. 100. answers may vary 102. no; answers may vary 104. answers may vary x 106.

 4 6  57

13 x  4096  78,125 13 x  74, 029 13 x 13  13 (74, 029) 13 x  962, 377

y  (8)2  20  (2)2 10 y  64  20  4 10 y  64  20  4 10 y  48 10 y 10   10  48 10 y  480

110. 4(x 11)  90  86  25  5x 4(x 11)  90  86  32  5x 4(x 11)  36  5x 4x  44  36  5x 4x  8  5x 4x  4x  8  5x  4x 8  x Mid-Chapter Review 1. 7x  5y + 14 is an expression because it does not contain an equal sign. 2. 7x = 35 + 14 is an equation because it contains an equal sign. 3. 3(x  2) = 5(x + 1)  17 is an equation because it contains an equal sign. 4. 9(2x + 1)  4(x  2) + 14 is an expression because it does not contain an equal sign. 5. To simplify an expression, we combine any like terms. 6. To solve an equation, we use properties of equality to find any value of the variable that makes the equation a true statement. 7. 7x + x = (7 + 1)x = 8x 8. 6y  10y = (6  10)y = 4y 9. 2a + 5a  9a  2 = (2 + 5  9)a  2 = 2a  2 10.

6a 12  a 14  6a  a 12 14  (6 1)a 12 14  5a  26

11. 2(4x + 7) = 2  4x + (2)  7 = 8x  14 12. 3(2x  10) = 3(2x)  (3)(10) = 6x + 30 78

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 13. 5( y  2)  20  5  y  5  2  20  5 y 10  20  5 y  10 14. 12x  3(x  6) 13  12x  3 x  3 6 13  12x  3x 18 13  (12  3)x 18 13  15x  31 15. Area  (length)  (width)  3(4x  2)  3 4x  3 2

Chapter 3: Solving Equations and Problem Solving 20. 6  (5)  x  5 65  x5 11  x  5 11 5  x  5  5 6x Check: 6  (5)  x  5 6  (5) 0 6  5 650 65 11  11 True The solution is 6. x

 12x  6 The area is (12x  6) square meters.

21.

16. Perimeter = x + x + 2 + 7 = 2x + 9 The perimeter is (2x + 9) feet. 17.

12  11x 14x 12  3x 12 3x  3 3 4  x Check: 12  11x 14x 12 0 11(4) 14(4) 12 0  44  56 12  12 True The solution is 4.

The solution is 15. 22.

18. 8 y  7 y  45 15y  45 15y 45  15 15 y  3 Check: 8 y  7 y  45 8(3)  7(3) 0  45 24  (21) 0  45 45  45 True The solution is 3. 19.

x 12  45  23 x 12  22 x 12 12  22  12 x  10 Check: x 12  45  23 10 12 0  45  23 22  22 True The solution is 10.

 14  9 3 x  5 3 x 3  3(5) 3 x  15 x  14  9 Check: 153 0 14  9 3 5  5 True

z  23  7 4 z  30 4 z 4   4  (30) 4 z  120 z  23  7 Check: 4 120 0  23  7 4 30  30 True The solution is 120.

23. 6  2  4x  1 3x 4  x  1 4 1  x  11 5  x Check: 6  2  4x 1 3x 6  2 0 4(5) 1 3(5) 4 0  20 115 4  4 True The solution is 5.

Copyright © 2025 Pearson Education, Inc.

79


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

24.

5  8  5x  10  4x 3  x 10 3 10  x 10 10 13  x Check: 5  8  5x 10  4x 5  8 0 5(13) 10  4(13) 3 0  65 10  52 3  3 True The solution is 13.

25.

6(3x  4)  19x 6  3x  6  4  19x 18x  24  19x 18x 18x  24  19x 18x 24  x Check: 6(3x  4)  19x 6[3(24)  4] 0 19(24) 6(72  4) 0  456 6(76) 0  456 456  456 True

28. 8  (14)  80 y  20  81y 22  y  20 22  20  y  20  20 42  y Check: 8  (14)  80 y  20  81y 8  (14) 0  80(42)  20  81(42) 22 0 3360  20  3402 22  22 True The solution is 42. 29.

3x 16  10 3x 16 16  10 16 3x  6 3x 6  3 3 x2 Check: 3x 16  10 3(2) 16 0 10 6 16 0 10 10  10 True The solution is 2.

30.

4x  21  13 4x  21 21  13  21 4x  8 4x 8  4 4 x2 Check: 4x  21  13 4  2  21 0 13 8  210 13 13  13 True The solution is 2.

The solution is 24. 26.

25x  6(4x  9) 25x  6  4x  6  9 25x  24x  54 25x  24x  24x  24x  54 x  54 Check: 25x  6(4x  9) 25(54) 0 6[4(54)  9] 1350 0 6(216  9) 1350 0 6(225) 1350  1350 True The solution is 54.

27. 36x 10  37x  12  (14) x 10  12 14 x 10  2 x 10 10  2 10 x  12 36x 10  37x  12  (14) Check: 36(12) 10  37(12) 0 12  (14) 432 10  444 0 12 14 2  2 True The solution is 12.

80

31. 8z  2z  26  (4) 10z  26  4 10z  30 10z 30  10 10 z  3 8z  2z  26  (4) Check: 8(3)  2(3) 0 26  (4) 24  6 0 26  4 30  30 True The solution is 3.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

32. 12  (13)  5x 10x 25  5x 25 5x  5 5 5 x Check: 12  (13)  5x 10x 12  (13) 0 5(5) 10(5) 25 0 25  50 25  25 True The solution is 5.

38. The quotient of 10 and a number is 10  x or 10 . x

33.

4(x  8) 11  3  26 4  x  (4) 8 11  3  26 4x  32 11  23 4x  43  23 4x  43  43  23  43 4x  20 4x 20  4 4 x  5 Check: 4(x  8) 11  3  26 4(5  8) 110 3  26 4(3) 110  23 12 110  23 23  23 True The solution is 5.

34.

6(x  2) 10  4 10 6  x  (6)(2) 10  4 10 6x 12 10  14 6x  22  14 6x  22  22  14  22 6x  36 6x 36  6 6 x6 Check: 6(x  2) 10  4 10 6(6  2) 10 0  4 10 6(4) 10 0 14 24 10 0 14 14  14 True The solution is 6.

35. The difference of a number and 10 is x  10. 36. The sum of 20 and a number is 20 + x. 37. The product of 10 and a number is 10x.

39. Five added to the product of 2 and a number is 2x + 5. 40. The product of 4 and the difference of a number and 1 is 4(x  1). Section 3.3 Practice Exercises 1.

7x 12  3x  4 7x 12 12  3x  4 12 7x  3x 16 7x  3x  3x 16  3x 4x  16 4x 16  4 4 x  4 Check: 7x 12  3x  4 7(4)  210 3(4)  4 28 12 0 12  4 16  16 True The solution is 4.

2.

40  5 y  5  2 y 10  4 y 45  5 y  6 y 10 45  5 y  45  6 y 10  45 5 y  6 y  55 5 y  6 y  6 y  55  6 y y  55 Check: 40  5 y  5  2 y 10  4 y 40  5(55)  5 0  2(55) 10  4(55) 40  275  5 0 110 10  220 320  320 True The solution is 55.

3.

6(a  5)  4a  4 6a  30  4a  4 6a  30  4a  4a  4  4a 2a  30  4 2a  30  30  4  30 2a  34 2a 34  2 2 a  17 The solution is 17.

Copyright © 2025 Pearson Education, Inc.

81


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

4.

4(x  3) 1  13 4x 12 1  13 4x 13  13 4x 13 13  13 13 4x  0 4x 0  4 4 x0 Check: 4(x  3) 1  13 4(0  3) 1 013 12 1 0 13 13  13 True The solution is 0.

5. a.

Vocabulary, Readiness & Video Check 3.3 1. An example of an expression is 3x  9 + x  16, while an example of an equation is 5(2x + 6)  1 = 39. x 2. To solve  we use the multiplication 10, 7 property of equality. 3. To solve x  7 = 10, we use the addition property of equality. 4. To solve 9x  6x = 10 + 6, first combine like terms.

The difference of 110 and 80 is 30 translates to 110  80 = 30.

b.

The product of 3 and the sum of 9 and 11 amounts to 6 translates to 3(9 + 11) = 6.

c.

The quotient of 24 and 6 yields 4 24 translates to  4. 6

5. To solve 5(x  1) = 25, first use the distributive property. 6. To solve 4x + 3 = 19, first use the addition property of equality. 7. the addition property of equality; to make sure we get an equivalent equation 8. remove parentheses; the distributive property

Calculator Explorations 9. gives; amounts to 1. Replace x with 12. 76(12  25) = 988 Yes

Exercise Set 3.3 2.

7x 1  8x  4 7x  7x 1  8x  7x  4 1  x  4 1 4  x  4  4 5  x

4.

5x  3  2x 18 5x  3  3  2x 18  3 5x  2x 15 5x  2x  2x  2x 15 3x  15 3x 15  3 3 x  5

6.

4  7m  3m  4 4  7m  7m  3m  7m  4 4  4m  4 4  4  4m  4  4 0  4m 0 4m  4 4 0m

2. Replace x with 35. 47  35 + 862 = 783 Yes 3. Replace x with 170. 170 + 562 = 392 3  (170) + 900 = 390 No 4. Replace x with 18. 55(18 + 10) = 440 75  (18) + 910 = 440 Yes 5. Replace x with 21. 29  (21)  1034 = 1643 61  (21)  362 = 1643 Yes 6. Replace x with 25. 38  25 + 205 = 745 25  25 + 120 = 745 No 82

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 8.

57 y 140  54 y 100 57 y 140  54 y  54 y  54 y 100 3y 140  100 3y 140 140  100 140 3y  240 3y 240  3 3 y  80

10. 2x 10  3x  12  x  20 2x  3x 10  12  20  x 5x 10  32  x 5x  x 10  32  x  x 6x 10  32 6x 10 10  32 10 6x  42 6x 42  6 6 x  7 12. 19x  2  7x  31 6x 15 19x  7x  2  3115  6x 12x  2  16  6x 12x  6x  2  16  6x  6x 6x  2  16 6x  2  2  16  2 6x  18 6x 18  6 6 x3 14. 22  42  4(x 1) 20  4x  4 20  4  4x  4  4 16  4x 16 4x  4 4 4  x 16.

Chapter 3: Solving Equations and Problem Solving 18.

3(z  2)  5z  6 3z  6  5z  6 3z  3z  6  5z  3z  6 6  2z  6 6  6  2z  6  6 0  2z 0 2z  2 2 0 z

20.

1( y  3)  10 1y  3  10  y  3  10  y  3  3  10  3  y  13  y 13  1 1 y  13

22.

4  3c  4(c  2) 4  3c  4c  8 4  3c  3c  4c  3c  8 4  c  8 4  8  c  8  8 12  c

24. 4(3t  4)  20  3  5t 12t 16  20  3  5t 12t  4  3  5t 12t  5t  4  3  5t  5t 7t  4  3 7t  4  4  3  4 7t  7 7t 7  7 7 t 1 26.

3x  51 3x 51  3 3 x  17

28.

y  6  11 y  6  6  11 6 y  5

30.

7  z  15 7  7  z  15  7 z  8 1(z)  18 z  8

2(x  5)  8  0 2x 10  8  0 2x 18  0 2x 18 18  0 18 2x  18 2x 18  2 2 x  9

Copyright © 2025 Pearson Education, Inc.

83


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

32.

2 10  12 

z

7n  5  12n 10 7n  5  7n  12n 10  7n 5  5n 10 5 10  5n 10 10 15  5n 15 5n  5 5 3n

50.

10w  8  w 10 10w  w  8  w  w 10 9w  8  10 9w  8  8  10  8 9w  18 9w 18  9 9 w  2

52.

4  7m  3m 4  7m  7m  3m  7m 4  4m 4 4m  4 4 1 m

54.

10  4v  6  0 4v 16  0 4v 16 16  0 16 4v  16 4v 16  4 4 v  4

56.

2(z  2)  5z 17 2z  4  5z 17 2z  4  2z  5z 17  2z 4  3z 17 4 17  3z 17 17 21  3z 21 3z  3 3 7  z

z 10

7 y  3  38 7 y  3  3  38  3 7 y  35 7 y 35  7 7 y5 2b  5  7 2b  5  5  7  5 2b  12 2b 12  2 2 b6

38.

4x 11x  14 14 7x  28 7x 28  7 7 x4

40.

5(3y  2)  16 y 15 y 10  16 y 15 y 15 y 10  16 y 15 y 10  y

42. 9  20  19x  4 18x 11  x  4 11 4  x  4  4 15  x 44. 9(x  2)  25  19 19 9x 18  25  38 9x  7  38 9x  7  7  38  7 9x  45 9x 45  9 9 x5

84

48.

10

120  z

36.

6 y  8  3y  7 6 y  3y  8  3y  3y  7 3y  8  7 3y  8  8  7  8 3y  15 3y 15  3 3 y5

10 z

10  (12)  10 

34.

46.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

58.

4  3c  2(c  2) 4  3c  2c  4 4  3c  2c  2c  2c  4 4c  4 4c4  44 c0

78. y3  3xyz  (1)3  3(3)(1)(0)  1 0  1 80. ( y)3  3xyz  [(1)]3  3(3)(1)(0)  13  0  1 0 1

60. 4(2t  5)  21  7t  6

82. The first step in solving 3x + 2x = x  4 is to add 3x and 2x, which is choice c.

8t  20  21  7t  6 8t 1  7t  6 8t  7t 1  7t  7t  6 t 1  6 t 11  6 1 t  5

84. The first step in solving 9  5x = 15 is to subtract 9 from both sides, which is choice c. 86. The error is in the second line. 37x 1  9(4x  7) 37x 1  36x  63 37x 11  36x  63 1 37x  36x  64 37x  36x  36x  64  36x x  64

62. 14  4(w  5)  6  2w 14  4w  20  6  2w 4w  6  6  2w 4w  2w  6  6  2w  2w 6w  6  6 6w  6  6  6  6 6w  12 6w 12  6 6 w2 64.

Chapter 3: Solving Equations and Problem Solving

88. 32  x  (9)3 9x  729 9x 729  9 9 x  81

6(5  c)  5(c  4) 30  6c  5c  20 30  6c  5c  5c  5c  20 30  c  20 30  30  c  20  30 c  50

90.

66. The difference of 30 and 10 equals 40 translates to 30  10 = 40. 68. The quotient of 16 and 2 yields 8 translates to 16  8. 2

x  452  542 x  2025  2916 x  2025  2025  2916  2025 x  891

92. no; answers may vary Section 3.4 Practice Exercises 1. a.

“Four times a number is 20” is 4x = 20.

b.

“The sum of a number and 5 yields 32” is x + (5) = 32.

70. Negative 2 times the sum of 3 and 12 is 30 translates to 2(3 + 12) = 30.

c.

“Fifteen subtracted from a number amounts to 23” is x  15 = 23.

72. Seventeen subtracted from 12 equals 29 translates to 12  17 = 29.

d.

“Five times the difference of a number and 7 is equal to 8” is 5(x  7) = 8.

e.

“The quotient of triple a number and 5 gives 3x  1. 1” is 3x  5 = 1 or 5

74. From the height of the 2015 bar, 132 million or 132,000,000 returns were filed electronically in 2015. 76. answers may vary

Copyright © 2025 Pearson Education, Inc.

85


Chapter 3: Solving Equations and Problem Solving 2. “The sum of a number and 2 equals 6 added to three times the number” is x  2  6  3x x  x  2  6  3x  x 2  6  2x 2  6  6  6  2x 4  2x 4 2x  2 2 2  x 3. Let x be the distance from Denver to San Francisco. Since the distance from Cincinnati to Denver is 71 miles less than the distance from Denver to San Francisco, the distance from Cincinnati to Denver is x  71. Since the total of the two distances is 2399, the sum of x and x  71 is 2399. x  x  71  2399 2x  71  2399 2x  71  71  2399  71 2x  2470 2x 2470  2 2 x  1235 The distance from Denver to San Francisco is 1235 miles. 4. Let x be the amount her son receives. Since her husband receives twice as much as her son, her husband receives 2x. Since the total estate is $57,000, the sum of x and 2x is 57,000. x  2x  57, 000 3x  57, 000 3x 57, 000  3 3 x  19, 000 2x = 2(19,000) = 38,000 Her husband will receive $38,000 and her son will receive $19,000. Vocabulary, Readiness & Video Check 3.4 1. The phrase is “a number subtracted from 20” so 20 goes first and we subtract the number from that. 2. The phrase is “three times the difference of some number and 5.” The “difference of some number and 5” translates to the expression x  5, and in order to multiply 3 times this expression, we need parentheses around the expression.

86

ISM: Prealgebra and Introductory Algebra

3. The original application asks for the fastest speeds of a pheasant and a falcon. The value of x is the speed in mph for a pheasant, so the falcon’s speed still needs to be found. Exercise Set 3.4 2. “Five subtracted from a number equals 10” is x  5 = 10. 4. “The quotient of 8 and a number is 2” is 8  2. x 6. “Two added to twice a number gives 14” is 2x + 2 = 14. 8. “Five times a number is equal to 75” is 5x = 75. 10. “Twice the sum of 17 and a number is 14” is 2(17 + x) = 14. 12. “Twice a number, subtracted from 60 is 20” is 60  2x  20 60  60  2x  20  60 2x  40 2x 40  2 2 x  20 14. “The sum of 7, 9, and a number is 40” is 7  9  x  40 16  x  40 16 16  x  40 16 x  24 16. “Eight decreased by a number equals the quotient of 15 and 5” is 15 8 x  5 8 x  3 88 x  38 x  5 x 5  1 1 x5 18. “The product of a number and 3 is twice the sum of that number and 5” is 3x  2(x  5) 3x  2x 10 3x  2x  2x  2x 10 x  10

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 20. “Five times the sum of a number and 2 is 11 less than the number times 8” is 5(x  2)  8x 11 5x 10  8x 11 5x  5x 10  8x  5x 11 10  3x 11 10 11  3x 11 11 21  3x 21 3x  3 3 7x 22. “Seven times the difference of some number and 1 gives the quotient of 70 and 10” is 70 7(x 1)  10 7(x 1)  7 7x  7  7 7x  7  7  7  7 7x  14 7x 14  7 7 x2 24. “Twice a number equals 25 less triple that same number” is 2x  25  3x 2x  3x  25  3x  3x 5x  25 5x 25  5 5 x5 26. The equation is x + 4x = 50. x  4x  50 5x  50 5x 50  5 5 x  10 Maryland has 10 electoral votes, and Texas has 4(10) = 40 electoral votes.

Chapter 3: Solving Equations and Problem Solving

28. Let x be the width of the playing surface for wheelchair pickleball play. Since the length of the playing surface is 14 feet less than twice the width, the length of the playing surface is 2x  14. Since the total of the width and length is 118 feet, the sum of x and 2x  14 is 118. x  2x 14  118 3x 14  118 3x 14 14  118 14 3x  132 3x 132  3 3 x  44 2x  14 = 2(44)  14 = 88  14 = 74 The width of the playing surface for wheelchair pickleball play is 44 feet and the length of the playing surface is 74 feet. 30. Let x be the width of the playing surface for new construction of pickleball courts. Since the length of the playing surface is the width increased by 30 feet, the length of the playing surface is x + 30. Since the total of the width and length is 98 feet, the sum of x and x + 30 is 98. x  x  30  98 2x  30  98 2x  30  30  98  30 2x  68 2x 68  2 2 x  34 The width of the playing surface for new construction of a pickleball court is 34 feet and the length of the playing surface is 34 feet + 30 feet = 64 feet. 32. Let x be the number of rulers for Liechtenstein. Since Norway has had three times as many rulers as Liechtenstein, Norway has had 3x rulers. Since the total number of rulers for both countries is 56, the sum of x and 3x is 56. x  3x  56 4x  56 4x 56  4 4 x  14 Thus, Liechtenstein has had 14 rulers and Norway has had 3(14) = 42 rulers.

Copyright © 2025 Pearson Education, Inc.

87


Chapter 3: Solving Equations and Problem Solving

ISM: Prealgebra and Introductory Algebra

34. Let x be the 2021 average daily circulation (in thousands) of The New York Times. Since the average daily circulation of The Wall Street Journal was 367 thousand more than that of The New York Times, the average daily circulation of The Wall Street Journal was x + 367. Since the total circulation of the two papers averaged 1027 thousand per day, the sum of x and x + 367 was 1027. x  x  367  1027 2x  367  1027 2x  367  367  1027  367 2x  660 2x 660  2 2 x  330 The average daily circulation of The New York Times in 2021 was 330 thousand and the average daily circulation of The Wall Street Journal was 330 + 367 = 697 thousand.

40. Let x be the distance from Los Angeles to Tokyo. Since the distance from New York to London is 2001 miles less than the distance from Los Angeles to Tokyo, the distance from New York to London is x  2001. Since the total of the two distances is 8939, the sum of x and x  2001 is 8939. x  x  2001  8939 2x  2001  8939 2x  2001 2001  8939  2001 2x  10, 940 2x 10, 940  2 2 x  5470 The distance from Los Angeles to Tokyo is 5470 miles.

36. Let x be the recognition value (in billions of dollars) of Google. Since the recognition value of Amazon is $23 billion more than that of Google, the recognition value of Amazon is x + 23. Since the total recognition value of the two brands is $527 billion, the sum of x and x + 23 is 527. x  x  23  527 2x  23  527 2x  23  23  527  23 2x  504 x  252 The recognition value of Google is $252 billion, and the recognition value of Amazon is $252 + $23 = $275 billion. 38. Let x be the price of Hasbro Game Night. Since the price of Mario Kart 8 is $44 more than the price of Hasbro Game Night, the price of Mario Kart 8 is x + 44. Since the total of the two prices is $74, the sum of x and x + 44 is 74. x  x  44  74 2x  44  74 2x  44  44  74  44 2x  30 x  15 The price of Hasbro Gam Night is $15, and the price of Mario Kart 8 is $15 + $44 = $59.

88

42. Let x be the top speed (in miles per hour) of an IndyCar Series car. Since the top speed of an NHRA Top Fuel dragster is 102 mph faster than the top speed of an IndyCar Series car, the top speed of an NHRA Top Fuel dragster is x + 102. Since the combined top speed for these two cars is 574 mph, the sum of x and x + 102 is 574. x  x  102  574 2x  102  574 2x 102 102  574 102 2x  472 2x 472  2 2 x  236 The top speed of an IndyCar Series car is 236 mph, and the top speed of an NHRA Top Fuel dragster is 236 + 102 = 338 mph. 44. Let x be the 2022 Vermont population of Indigenous peoples. Since the 2022 California population of Indigenous peoples was 101 times that of Vermont, the 2022 California population of Indigenous peoples was 101x. Since the total of these two populations was 816,000, the sum of x and 101x is 816,000. x 101x  816, 000 102x  816, 000 102x 816, 000  102 102 x  8000 The 2022 Vermont population of Indigenous peoples was 8000, and the 2022 California population of Indigenous peoples was 101(8000) = 808,000.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

46. Let x be the speed of the truck. Since the speed of the car is twice that of the truck, the speed of the car is 2x. Since the combined speed is 105 miles per hour, the sum of x and 2x is 105. x  2x  105 3x  105 3x 105  3 3 x  35 The speed of the truck is 35 miles per hour and the speed of the car is 2(35) = 70 miles per hour. 48. Let x be the value of the plow. Since the tractor is worth seven times as much as the plow, the tractor is worth 7x. Since their combined worth is $1200, the sum of x and 7x is 1200. x  7x  1200 8x  1200 8x 1200  8 8 x  150 The plow is worth $150 and the tractor is worth 7($150) = $1050. 50. Let x be the maximum length (in yards) of a soccer field for under-6-year-olds. Since the maximum length of a under-13-year-old soccer field is 80 yards longer than the length for under6-year-olds, the maximum length for a under-13-year-old soccer field is x + 80. Since the total length for these two categories of soccer fields is 140 yards, the sum of x and x + 80 is 140. x  x  80  140 2x  80  140 2x  80  80  140  80 2x  60 2x 60  2 2 x  30 The maximum length of a soccer field for under6-year-olds is 30 yards, and the maximum length of a under-13-year-old soccer field is 30 + 80 = 110 yards. 52. Let x be the number of points scored by the University of Connecticut Huskies. Since the South Carolina Gamecocks scored 15 points more than the Huskies, the Gamecocks scored x + 15 points. Since the total number of points scored by the two teams was 113, the sum of x and x + 15 is 113.

Chapter 3: Solving Equations and Problem Solving x  x 15  113 2x 15  113 2x 15 15  113 15 2x  98 2x 98  2 2 x  49 x + 15 = 49 + 15 = 64 The South Carolina Gamecocks scored 64 points. 54. Let x be the amount (in millions of dollars) that is estimated to be spent on TV advertising in 2026. Since it is estimated that the amount spent on digital advertising will be $320,830 million more than will be spent on TV advertising, the amount estimated to be spent on digital advertising is x + 320,830. Since the total amount estimated to be spent on digital and TV advertising in 2026 is $450,110 million, the sum and x + 320,830 is 450,110. x  x  320,830  450,110 2x  320,830  450,110 2x  320,830  320,830  450,110  320,830 2x  129, 280 2x 129, 280  2 2 x  64, 640 x + 320,830 = 64,640 + 320,830 = 385,470 The amount estimated to be spent on TV advertising in 2026 is $64,640 million, and the amount estimated to be spent on digital advertising is $385,470 million. 56. To round 82 to the nearest ten, observe that the digit in the ones place is 2. Since this digit is less than 5, we do not add 1 to the digit in the tens place. 82 rounded to the nearest ten is 80. 58. To round 52,333 to the nearest thousand, observe that the digit in the hundreds place is 3. Since this digit is less than 5, we do not add 1 to the digit in the thousands place. 52,333 rounded to the nearest thousand is 52,000. 60. To round 101,552 to the nearest hundred, observe that the digit in the tens place is 5. Since this digit is at least 5, we add one to the digit in the hundreds place. 101,552 rounded to the nearest hundred is 101,600. 62. yes; answers may vary

Copyright © 2025 Pearson Education, Inc.

89


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

64. Use P = A + C, where P = 165,000 and A = 156,750. P  AC 165, 000  156, 750  C 165, 000 156, 750  156, 750 156, 750  C 8250  C The agent will receive $8250. 66. Use P = C + M where P = 12 and C = 7. PCM 12  7  M 12  7  7  7  M 5M The markup is $5. Chapter 3 Vocabulary Check 1. An algebraic expression is simplified when all like terms have been combined. 2. Terms that are exactly the same, except that they may have different numerical coefficients, are called like terms. 3. A letter used to represent a number is called a variable. 4. A combination of operations on variables and numbers is called an algebraic expression. 5. The addends of an algebraic expression are called the terms of the expression. 6. The number factor of a variable term is called the numerical coefficient. 7. Replacing a variable in an expression by a number and then finding the value of the expression is called evaluating the expression for the variable. 8. A term that is a number only is called a constant. 9. An equation is of the form expression = expression. 10. A solution of an equation is a value for the variable that makes an equation a true statement. 11. To multiply 3(2x + 1), we use the distributive property. 12. By the multiplication property of equality, we may multiply or divide both sides of an equation by any nonzero number without changing the solution of the equation.

90

13. By the addition property of equality, the same number may be added to or subtracted from both sides of an equation without changing the solution of the equation. Chapter 3 Review 1. 3y + 7y  15 = (3 + 7)y  15 = 10y  15 2.

2 y 10  8 y  2 y  8 y 10  (2  8) y 10  6 y 10

3. 8a  a  7 15a  8a  a 15a  7  (8 1 15)a  7  6a  7 4. y  3  9 y 1  y  9 y  3 1  (1 9) y  3 1  8 y  2 5. 2(x + 5) = 2  x + 2  5 = 2x + 10 6. 3(y + 8) = 3  y + (3)  8 = 3y  24 7. 7x  3(x  4)  x  7x  3  x  3  4  x  7x  3x 12  x  7x  3x  x 12  (7  3 1)x 12  11x  12 8. (3m  2)  m 10  1(3m  2)  m 10  1 3m  (1)  2  m 10  3m  2  m 10  3m  m  2 10  (3 1)m  2 10  4m 12 9. 3(5a  2)  20a 10  3  5a  3  2  20a 10  15a  6  20a 10  15a  20a  6 10  (15  20)a  6 10  5a  4 10. 6 y  3  2(3y  6)  6 y  3  2  3y  2  6  6 y  3  6 y 12  6 y  6 y  3 12  (6  6) y  3 12  12 y  9

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 11. 6 y  7 11y  y  2  6 y 11y  y  7  2  (6 11 1) y  7  2  16 y  5 12. 10  x  5x 12  3x  x  5x  3x 10 12  (1 5  3)x 10 12  1x  2  x2

Chapter 3: Solving Equations and Problem Solving

 22.

23.

n 18  10  (2) n 18  10  2 n 18  12 n 18 18  12 18 n  6

24.

c  5  13  7 c  5  6 c  5  5  6  5 c  1

25.

7x  5  6x  20 x  5  20 x  5  5  20  5 x  25

26.

17x  2(8x  4) 17x  2 8x  2  4 17x  16x  8 17x 16x  16x 16x  8 x  8

27.

5x  7  3 5x  7  7  3  7 5x  10 5x 10  5 5 x  2

28.

14  9 y  4 14  4  9 y  4  4 18  9 y 18 9 y  9 9 2  y

13. Perimeter = 2(2x + 3) = 2  2x + 2  3 = 4x + 6 The perimeter is (4x + 6) yards. 14. Perimeter = 4  5y = 20y The perimeter is 20y meters. 15. Area  (length)  (width)  3(2x 1)  3 2x  31  6x  3 The area is (6x  3) square yards. 16. Add the areas of the two rectangles. 10(x  2)  7(5x  4)  10  x 10  2  7  5x  7  4  10x  20  35x  28  10x  35x  20  28  (10  35)x  20  28  45x  8 The area is (45x + 8) square centimeters. 17.

z  5  7 z  5  5  7  5 z  2

18.

3x  10  4x 3x  3x  10  4x  3x 10  x

19. 3y  21 3y 21  3 3 y  7 20. 3a  15 3a 15  3 3 a5 21.

x 2 6 x 6   6  2 6 x  12

y  3 15 y 15   15  (3) 15 y  45

29.

z

 8  (6) 4 z  8  6 4 z  2 4 z 4   4  (2) 4 z  8

Copyright © 2025 Pearson Education, Inc.

91


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

30. 1 (8)  9 

x

37.

2(x  4) 10  2(7) 2  x  2  4 10  14 2x  8 10  14 2x  2  14 2x  2  2  14  2 2x  12 2x 12  2 2 x  6

38.

3(x  6) 13  20 1 3 x  (3)  6 13  19 3x 18 13  19 3x  31  19 3x  31 31  19  31 3x  12 3x 12 3  3 x4

5 x

5 x 5  (9)  5  5 45  x 31. 6 y  7 y  100 105  y  5  y 5  1 1 y5 32. 19x 16x  45  60 3x  15 3x 15 3  3 x  5 33.

34.

35.

36.

92

9(2x  7)  19x 9  2x  9  7  19x 18x  63  19x 18x 18x  63  19x 18x 63  x

39. The product of 5 and a number is 5x.

5(3x  3)  14x 5  3x  5  3  14x 15x 15  14x 15x 15x 15  14x 15x 15  x

42. The quotient of 2 and a number is 2  x or

3x  4  11 3x  4  4  11 4 3x  15 3x 15  3 3 x5 6 y  1  73 6 y  1 1  73 1 6 y  72 6 y 72  6 6 y  12

40. Three subtracted from a number is x  3. 41. The sum of 5 and a number is 5 + x. 2 x 2

or  . x 43. The product of 5 and a number, decreased by 50 is 5x  50. 44. Eleven added to twice a number is 2x + 11. 45. The quotient of 70 and the sum of a number and 70 6 is 70  (x + 6) or . x6 46. Twice the difference of a number and 13 is 2(x  13). 47.

2x  5  7x 100 2x  2x  5  7x  2x 100 5  5x 100 5 100  5x 100 100 105  5x 105 5x  5 5 21  x

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

48.

6x  4  x  66 6x  6x  4  x  6x  66 4  7x  66 4  66  7x  66  66 70  7x 70 7x  7 7 10  x

49.

2x  7  6x 1 2x  2x  7  6x  2x 1 7  4x 1 7 1  4x 11 8  4x 8 4x  4 4 2 x

50.

5x 18  4x 5x  5x 18  4x  5x 18  9x 18 9x  9 9 2x

51.

5(n  3)  7  3n 5n 15  7  3n 5n  3n 15  7  3n  3n 2n 15  7 2n 15 15  7 15 2n  22 2n 22  2 2 n  11

52.

7(2  x)  4x 1 14  7x  4x 1 14  7x  4x  4x  4x 1 14  3x  1 14 14  3x  114 3x  15 3x 15  3 3 x  5

Chapter 3: Solving Equations and Problem Solving 53. 6x  3  (x)  20  5x  7 6x  3  x  20  5x  7 7x  3  27  5x 7x  5x  3  27  5x  5x 2x  3  27 2x  3  3  27  3 2x  30 2x 30  2 2 x  15 54.

x  25  2x  5  2x 10 25  3x  15  2x 25  3x  2x  15  2x  2x 25  x  15 25  25  x  15  25 x  10

55.

3(x  4)  5x  8 3x 12  5x  8 3x  3x 12  5x  3x  8 12  2x  8 12  8  2x  8  8 4  2x 4 2x  2 2 2  x

56.

4(x  3)  2x  48 4x 12  2x  48 4x  2x 12  2x  2x  48 6x 12  48 6x 12 12  48 12 6x  36 6x 36  6 6 x  6

57. 6(2n 1) 18  0 12n  6 18  0 12n 12  0 12n 12 12  0 12 12n  12 12n 12  12 12 n  1

Copyright © 2025 Pearson Education, Inc.

93


Chapter 3: Solving Equations and Problem Solving

68. “The difference of a number and 3 is the quotient 8 of 8 and 4” is x  3  . 4

58. 7(3y  2)  7  0 21y 14  7  0 21y  21  0 21y  21  21  0  21 21y  21 21y 21  21 21 y 1 59.

95x 14  20x 10 10x  4 95x 14  30x 14 95x 14 14  30x 14 14 95x  30x 95x  30x  30x  30x 65x  0 65x 0  65 65 x0

60. 32z 11 28z  50  2z  (1) 4z 11  50  2z 1 4z 11  51 2z 4z  2z 11  51 2z  2z 2z 11  51 2z 1111  5111 2z  40 2z 40  2 2 z  20 61. The difference of 20 and 8 is 28 translates to 20  (8) = 28. 62. Nineteen subtracted from 2 amounts to 21 translates to 2  19 = 21. 63. The quotient of 75 and the sum of 5 and 20 is  75 equal to 3 translates to  3. 5  20 64. Five times the sum of 2 and 6 yields 20 translates to 5[2 + (6)] = 20. 65. “Twice a number minus 8 is 40” is 2x  8 = 40. 66. “The product of a number and 6 is equal to the sum of the number and 2a” is 6x = x + 2a. 67. “Twelve subtracted from the quotient of a x number and 2 is 10” is 12  10. 2 94

ISM: Prealgebra and Introductory Algebra

69. “Five times a number subtracted from 40 is the same as three times the number” is 40  5x  3x 40  5x  5x  3x  5x 40  8x 40 8x  8 8 5 x The number is 5. 70. “The product of a number and 3 is twice the difference of that number and 8” is 3x  2(x  8) 3x  2x 16 3x  2x  2x  2x 16 x  16 The number is 16. 71. Let x be the number of votes for the Independent candidate. Since the Democratic candidate received 272 more votes than the Independent candidate, the Democratic candidate received x + 272 votes. The total number of votes is 18,500. x  x  272 14, 000  18, 500 2x 14, 272  18, 500 2x 14, 272 14, 272  18, 500 14, 272 2x  4228 2x 4228  2 2 x  2114 The Democratic candidate received 2114 + 272 = 2386 votes. 72. Let x be the number of shows he watches on Hulu each month. Since he watches twice as many shows each month on Netflix, the number of shows he watches on Netflix each month is 2x. Since the total number of shows he watches each month is 126, the sum of x and 2x is 126. x  2x  126 3x  126 3x 126  3 3 x  42 He watches 2(42) = 84 shows each month on Netflix. 73. 9x  20x = (9  20)x = 11x

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 74. 5(7x) = (5  7)x = 35x

Chapter 3: Solving Equations and Problem Solving

y 84.

3 y

75. 12x  5(2x  3)  4  12x 10x 15  4  22x  19 3

76. 7(x  6)  2(x  5)  7x  42  2x 10  7x  2x  42 10  9x  32 77.

c  5  13  7 c  5  6 c  5  5  6  5 c  1

78. 7 x  5  6x  20 x  5  20 x  5  5  20  5 x  25

81. 9x 12  8x  6  (4) x 12  10 x 12 12  10 12 x  22 82. 17x 14  20x  2x  5  (3) 17x  20x  2x 14  5  3 x 14  8 x 14 14  8 14 x  6 83.

5(2x  3)  11x 10x 15  11x 10x 10x 15  11x 10x 15  x

 6

 3(6) 3 y  18

85.

12 y 10  70 12 y 10 10  70 10 12 y  60 12 y 60  12 12 y  5

86.

4n  8  2n 14 4n  2n  8  2n  2n 14 2n  8  14 2n  8  8  14  8 2n  22 2n 22  2 2 n  11

87.

6(x  3)  x  4 6x 18  x  4 6x  6x 18  x  6x  4 18  7x  4 18  4  7x  4  4 14  7x

79. 7x  3x  50  2 4x  52 4x 52  4 4 x  13 80. x  8x  38  4 7 x  42 7x 42  7 7 x  6

3 y

 1 5

14 7x  7 7 2 x 88. 9(3x  4)  63  0 27x  36  63  0 27x  27  0 27x  27  27  0  27 27x  27 27x 27  27 27 x  1

Copyright © 2025 Pearson Education, Inc.

95


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving 89. 5z  3z  7  8z 1  6 2z  7  8z  7 2z  8z  7  8z  8z  7 10z  7  7 10z  7  7  7  7 10z  0 10z  0  10 10 z0 90.

The amount of energy consumption for Vermont was 126 trillion BTU, and the amount of energy consumption for the District of Columbia was 126 + 18 = 144 trillion BTU.

4x  3  6x  5x  3  30 10x  3  5x  33 10x  5x  3  5x  5x  33 5x  3  33 5x  3  3  33  3 5x  30 5x 30  5 5 x  6

91. “Three times a number added to twelve is 27” is 12  3x  27 12 12  3x  27 12 3x  15 3x 15  3 3 x5 The number is 5. 92. “Twice the sum of a number and four is ten” is 2(x  4)  10 2x  8  10 2x  8  8  10  8 2x  2 2x 2  2 2 x 1 The number is 1. 93. Let x be the amount of energy consumption (in trillions of BTU) for Vermont. Since the District of Columbia used 18 trillion BTU more than Vermont, the amount of energy consumption for the District of Columbia was x + 18. Since the total number of BTU used by both entities was 270 trillion BTU, the sum of x and x + 18 is 270. x  x 18  270 2x 18  270 2x 18 18  270 18 2x  252 2x 252  2 2 x  126 96

94. Let x be the number of roadway miles in South Dakota. Since North Dakota has 4489 more roadway miles than South Dakota, North Dakota has x + 4489 roadway miles. Since the total number of roadway miles is 169,197, the sum of x and x + 4489 is 169,197. x  x  4489  169,197 2x  4489  169,197 2x  4489  4489  169,197  4489 2x  164, 708 2x 164, 708  2 2 x  82, 354 South Dakota has 82,354 roadway miles and North Dakota has 82,354 + 4489 = 86,843 roadway miles. Chapter 3 Getting Ready for the Test 1. x  7x = 1x  7x = (1  7)x = 6x Choice A 2.

2x  3  8x  3  2x  8x  3  3  (2  8)x  (3  3)  6x  0  6x Choice B

3. 3(2x) = (3  2)x = 6x Choice A 4. 2(2x + 1) = 2  2x + 2  1 = 4x + 2 Choice C 5. (x  2)  5x  4  1(x  2)  5x  4  1 x  (1)(2)  5x  4  x  2  5x  4  x  5x  2  4  1x  5x  2  4  (1  5)x  (2  4)  4x  2 Choice C 6. 3(1 2x)  3  31 3 2x  3  3  6x  3  6x  3  3  6x  0  6x Choice B

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

7.

5x 10  0 5x 10 10  0 10 5x  10 Choice B

8.

4(2x 1)  8  14x 10 8x  4  8  14x 10 8x  4  14x 10 Choice A

Chapter 3: Solving Equations and Problem Solving

6.

 5  (2) 2 x  5  2 2 x  3 2 x 2   2  (3) 2 x  6

8.

5x 12  4x 14  22 x  2  22 x  2  2  22  2 x  24

9.

4x  7  15 4x  7  7  15  7 4x  8

10. The product of 3 and a number is 3  x or 3x; choice A. 11. 5 subtracted from a number is x  5; choice D.

13. Twice a number gives 14 is 2x = 14; choice B. x 14. A number divided by 6 yields 14 is

 14;

6

choice C. 15. Two subtracted from a number equals 14 is x  2 = 14; choice E. 16. Six times a number, added to 2 is 14 is 2 + 6x = 14; choice F. Chapter 3 Test 1.

7x  5 12x 10  7x 12x  5 10  (7 12)x  5 10  5x  5

2. 2(3y + 7) = 2  3y + (2)  7 = 6y  14 3. (3z  2)  5z 18  1(3z  2)  5z 18  1 3z  (1)  2  5z 18  3z  2  5z 18  3z  5z  2 18  8z  20 4. perimeter = 3(5x + 5) = 3  5x + 3  5 = 15x + 15 The perimeter is (15x + 15) inches.

x

7.

9. The sum of 3 and a number is 3 + x; choice C.

12. 5 minus a number is 5  x; choice E.

12  y  3y 12  2 y 12 2 y  2 2 6  y

4x 8  4 4 x  2 10.

2(x  6)  0 2x 12  0 2x 12 12  0 12 2x  12 2x 12  2 2 x6

11. 4(x 11)  34  10 12 4x  44  34  10 12 4x 10  2 4x 10 10  2 10 4x  12 4x 12  4 4 x3

5. Area  (length)  (width)  4  (3x 1)  4  3x  4 1  12x  4 The area is (12x  4) square meters.

Copyright © 2025 Pearson Education, Inc.

97


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

12.

5x  2  x 10 5x  x  2  x  x 10 4x  2  10 4x  2  2  10  2 4x  8

20. Let x be the number of free throws Jo made. Since Thanh made twice as many free throws as Jo, Thanh made 2x free throws. Since the total number of free throws was 12, the sum of x and 2x is 12. x  2x  12 3x  12 3x 12  3 3 x4 Thanh made 2(4) = 8 free throws.

4x 8  4 4 x  2 13.

4(5x  3)  2(7x  6) 20x 12  14x 12 20x 12 14x  14x 12 14x 6x 12  12 6x 12 12  12 12 6x  0 6x 0  6 6 x0

21. Let x be the number children participating in the event. Since the number of adults participating in the event is 112 more than the number of children, the number of adults is x + 112. Since the total number of participants in the event is 600, the sum of x and x + 112 is 600. x  x 112  600 2x 112  600 2x 112 112  600 112 2x  488 2x 488  2 2 x  244 244 children participated in the event.

14. 6  2(3n 1)  28 6  6n  2  28 6n  4  28 6n  4  4  28  4 6n  24 6n 24  6 6 n4

Cumulative Review Chapters 13

15. The sum of 23 and a number translates to 23 + x.

1. 308,063,557 in words is three hundred eight million, sixty-three thousand, five hundred fiftyseven.

16. Three times a number, subtracted from 2 translates to 2  3x.

2. 276,004 in words is two hundred seventy-six thousand, four.

17. The sum of twice 5 and 15 is 5 translates to 2  5 + (15) = 5.

3. 2 + 3 + 1 + 3 + 4 = 13 The perimeter is 13 inches.

18. Six added to three times a number equals 30 translates to 3x + 6 = 30.

4. 6 + 3 + 6 + 3 = 18 The perimeter is 18 inches.

19. The difference of three times a number and five times the same number is 4 translates to 3x  5x  4 2x  4 2x 4  2 2 x  2 The number is 2.

5.

900  174 726

Check:

726  174 900

6.

17,801  8216 9585

Check:

9585  8216 17,801

7. To round 248,982 to the nearest hundred, observe that the digit in the tens place is 8. Since this digit is at least 5, we add 1 to the digit in the hundreds place. The number 248,982 rounded to the nearest hundred is 249,000. 98

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

8. To round 844,497 to the nearest thousand, observe that the digit in the hundreds place is 4. Since this digit is less than 5, we do not add 1 to the digit in the thousands place. The number 844,497 rounded to the nearest thousand is 844,000.

16. 2a2  5  c  2  22  5  3  24  53  8 53  13  3  10

9.

17. 2n  30 = 10 Let n = 26. 2  26  30 010 52  30 0 10 22  10 False 26 is not a solution. Let n = 40. 2  40  30 010 80  30 0 10 50  10 False 40 is not a solution. Let n = 20. 2  20  30 010 40  30 0 10 10  10 True 20 is a solution.

25  8 200

10.

395  74 1 580 27 650 29, 230

208 11. 9 1872 18 07 0 72 72 0 Check: 208  9 1872

18. a.

14 < 0 because 14 is to the left of 0 on the number line.

b. (7) = 7, so (7) > 8 because 7 is to the right of 8 on the number line. 19. 5 + (2) = 3

86 12. 46 3956 368 276 276 0 Check: 86  46 516 3440 3956

20. 3 + (4) = 7 21. 15 + (10) = 25 22. 3 + (7) = 4 23. 2 + 25 = 23 24. 21 + 15 + (19) = 36 + (19) = 17 25. 4  10 = 4 + (10) = 14

13. 2  4  3  3 = 8  3  3 = 8  1 = 7

26. 2  3 = 2 + (3) = 5

14. 8  4 + 9  3 = 32 + 9  3 = 32 + 3 = 35

27. 6  (5) = 6 + 5 = 11

15. x2  z  3  52  4  3  25  4  3  29  3  26

28. 19  (10) = 19 + 10 = 29 29. 11  (7) = 11 + 7 = 4 30. 16  (13) = 16 + 13 = 3

Copyright © 2025 Pearson Education, Inc.

99


ISM: Prealgebra and Introductory Algebra

Chapter 3: Solving Equations and Problem Solving

31.

12  2 6

32.

30 6 5

46. 3y  15 3y 15  3 3 y  5 47.

2x  6  18 2x  6  6  18  6 2x  24 2x 24  2 2 x  12

48.

3a  5  1 3a  5  5  1 5 3a  6 3a 6  3 3 a  2

33. 20  (4) = 5 34. 26  (2) = 13 35.

36.

48 3

 16

120  10 12

2 37. (3)  (3)(3)  9 5 38. 2  (2  2  2  2  2)  32 2 39. 3  (3  3)  9 2 40. (5)  (5)(5)  25

41. 2 y  6  4 y  8  2 y  4 y  6  8  (2  4) y  6  8  6y  2 42. 6x  2  3x  7  6x  3x  2  7  (6  3)x  2  7  3x  9 43.

3y 1  3 3(1) 1 0 3 3 1 0 3 2  3 False Since 2 = 3 is false, 1 is not a solution of the equation.

44.

5x  3  7 5(2)  3 0 7 10  3 0 7 7  7 True Since 7 = 7 is true, 2 is a solution of the equation.

45.

12x  36 12x 36  12 12 x3

100

49. Let x be the price of the software. Since the price of the computer system is four times the price of the software, the price of the computer system is 4x. Since the combined price is $2100, the sum of x and 4x is 2100. x  4x  2100 5x  2100 5x 2100  5 5 x  420 The price of the software is $420 and the price of the computer system is 4($420) = $1680. 50. Let x be the number. “Two times the number plus four is the same amount as three times the number minus seven” translates to 2x  4  3x  7 2x  2x  4  3x  2x  7 4  x7 47  x77 11  x The number is 11.

Copyright © 2025 Pearson Education, Inc.


Chapter 4 b.

Section 4.1 Practice Exercises 1. In the fraction

11

, the numerator is 11 and the

2 denominator is 2. 2. In the fraction

c. 13. a.

10 y

, the numerator is 10y and 17 the denominator is 17.

3. 3 out of 8 equal parts are shaded:

b. c.

3 14.

8

9

1

9 4. 1 out of 6 equal parts is shaded:

1 6

5. 7 out of 10 equal parts are shaded:

15. 7 10

6. 9 out of 16 equal parts are shaded:

16.

9 16

17.

9. number of planets farther 5 number of planets in our solar system  8

4

0

4

13 is undefined 0

19.

13  13 1 2

20. a.

5

of the planets in our solar system are farther 8 from the Sun than Earth is.

75  2

7

7

6

c.

10

9 10

d.

21. a.

4

35  2 7



37 7

2 3  6  2 18  2 20    3 3 3 3

b.

1

of a whole and there are 5 parts 4 shaded, or 1 whole and 1 more part. 5 1 ;1 4 4

5

1

of a whole and there are 8 parts 3 shaded, or 2 wholes and 2 more parts. 8 2 ;2 3 3

12. a.

1

18. 8. answers may vary; for example,

11. Each part is

0

1

7. answers may vary; for example,

10. Each part is

6 1 6

10 10  9 100  9 109   10 10 10

1 5  4 1 20 1 21    5 5 5 5

1 59 5 4 9 4 1 5 5

Copyright © 2025 Pearson Education, Inc.

101


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

b.

2 9 23 18 5

3. The fraction

3 3 the fraction

23 5 2 9 9

c.

d.

10

6. Each shape is divided into 3 equal parts. 7. how many equal parts to divide each whole number into 8. The fraction is equal to 1. 9. The operation of addition is understood in mixed 1 1 number notation; for example, 1 means 1  . _ 3 3 10.

7 7 51 49 2

division Exercise Set 4.1 2. In the fraction

1

, the numerator is 1 and the 4 denominator is 4. Since 1 < 4, the fraction is proper.

1 20 21 20 1

53 4. In the fraction 21 , the numerator is 53 and the denominator is 21. Since 53 > 21, the fraction is improper.

21 1 1 20 20

6. In the fraction

1. The number

17

is called a fraction. The number 31 31 is called its denominator and 17 is called its numerator.

2. If we simplify each fraction, 4 0

9

26

, the numerator is 26 and the 26 denominator is 26. Since 26  26, the fraction is improper.

Vocabulary, Readiness & Video Check 4.1

102

is called a mixed number.

5. When the numerator is greater than or equal to the denominator, you have an improper fraction.

4 13 62 52 10

and we say

is called a proper fraction, and

4. The value of an improper fraction is always 1 and the value of a proper fraction is always <1.

12 4 48 4 8 8 0 48  12 4

51 2 7 7 7

f.

8

is called an improper fraction,

3 8

62 10 4 13 13

e.

8

0

 1,  0, 9 4

8. 5 out of 6 equal parts are shaded:

5 6

10. Each part is

1

of a whole and there are 10 parts 4 shaded, or 2 wholes and 2 more parts.

is undefined. a.

10 4

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

b.

28. answers may vary; for example,

2 4

2

12. Each part is

Chapter 4: Fractions and Mixed Numbers

1

of a whole and there are 11 parts 3 shaded, or 3 wholes and 2 more parts. a.

30. answers may vary; for example,

11 3

b.

32. answers may vary; for example,

2 3

3

14. 5 out of 8 equal parts are shaded:

5 8

12 7

34. medical degrees  22 employees  63 22 of the employees have medical degrees. 63

8

36. a.

5

16. 5 out of 12 equal parts are shaded:

18. 7 out of 8 equal parts are shaded:

20. Each part is

1

of a whole and there are 6 parts 5 shaded, or 1 whole and 1 more part. a.

b.

6 5

b.

1

1 5

22. Each part is

no medical degree  41 employees  63 41 of the employees do not have medical 63 degrees.

38. planets with longer days

1

of a whole and there are 23 parts 5 shaded, or 4 wholes and 3 more parts. a.

number of employees who do not have medical degrees = 63  22 = 41

23 5

number of planets in solar system  8 4 of the planets in our solar system have longer 8 days than Earth has. 40. 5 of 12 inches is

b.

4

5

of a foot.

12

3 4 5

42. 37 of 60 minutes is 24. 3 out of 8 equal parts are shaded:

of an hour.

60

3 8

26. 13 out of 16 equal parts are shaded:

37

13 16

44. number with white lettering  9 number of teams in league  20 9 of the teams in the league have white 20 lettering on their shirts.

Copyright © 2025 Pearson Education, Inc.

103


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

46. There are 50 states total. Consumer fireworks are legal in 46 states. a.

Consumer fireworks are legal in

46

of the states.

50 b. 50  46 = 4 Consumer fireworks are illegal in 4 states. c.

Consumer fireworks are illegal in

4 50

48. a.

of the states.

number of watercolors 15 total number of pieces  37 15 of the inventory are watercolor paintings. 37

b.

number of oil paintings 17 total number of pieces  37 17 of the inventory are oil paintings. 37

c.

37  15  17 = 5 There are 5 sculptures.

d.

numbers of sculptures  5 total number of pieces  37 5 of the inventory are sculptures. 37

50.

52.

54.

56.

58.

3 1 3

60.

20  20 1

62.

104

0 8

0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

64.

14 1 14

66.

7 is undefined 0

68.

5

Chapter 4: Fractions and Mixed Numbers

14 88. 14 196 14 56 56 0

1

196  14 14

5 13 17 1 13 17  13 30   70. 1  17 17 17 17 72. 2

1 90. 143 149 143 6

5 9  2  5 18  5 23    9 9 9 9

149 6 1 143 143

3 8  7  3 56  3 59   74. 7  8 8 8 8 76. 12

2 5 12  2 60  2 62    5 5 5 5 14

78. 10

7 92. 123 901 861 40



27 10 14

27

27

270 14 27



27

2 7 114  2 798  2 800   80. 114  7 7 7 7 1 82. 7 13 7 6 13 6 1 7 7 7 84. 9 64 63 1 64 1 7 9 9 5 86. 12 65 60 5

901 40 7 123 123

284

94. 43  4  4  4  64 96. 34  3  3 3 3  81 98.  21  21  21 4 4 4 100.

45 57

45 45  57 57

102. answers may vary 104. 106. 11 is close to 12, so

11

is close to 1. 5

11

12 12 rounded to the nearest whole number is 6. 108. 5 + 4 + 9 + 8 = 26 9 of the 26 national parks in these states are in 9 California: 26

65 5 5 12 12

Copyright © 2025 Pearson Education, Inc.

105


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

Section 4.2 Practice Exercises

1

64 4 16 4 16 16 8.     20 45 4 5 5

30  2 15   23  5

1. a.

1

1

1

is in simplest form. 9 21 3  7 3  7 7    27 3 9 3  9 9 1

7 Since

21 and

9 equivalent.

2  2  2  3  3  23  3 2

27

7 both simplify to

, they are 9

11. Not equivalent, since the cross products are not equal: 13  5 = 65 and 4  18 = 72

2. 60  2  30   2  2 15   

12.

2  2  3  5  22  3 5 11 3. 3 33 3 99 3 297 The prime factorization of 297 is 33 11.

7 mountains over 8000 meters in Nepal 14 mountains over 8000 meters 7  14 7 1  72 1



30 15  2 15 2 2 2     1  45 15  3 15 3 3 3

5.

39x 313 x 3 13x 13x 13x     1  51 317 3 17 17 17 9 3 3  50 255 9 Since 9 and 50 have no common factors,  is 50 already in simplest form.

6. 

7 7  7  7  7  7  1  112 7 16 7 16 16 16

7 1 7 2

1

4.

106

1

1

72  2  36  

1 2

1 of the mountains over 8000 meters tall are 2 located in Nepal. Calculator Explorations 1.

128 4  224 7

2.

231 7  396 12

3.

340 20  459 27

49

1

7 10.

2  2 18    2 2 29   

7.

1

7aaa 7 a a  a a 9.    2 7 8  a  a 8 7 8  a  a 56a

2  2  2  7  23  7 c.

1

7a3

56  2  28   2  2 14   

b.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

4.

Exercise Set 4.2

999 37  1350 50

5.

432 8  810 15

6.

225 5  315 7

7.

54 2  243 9

2. 12  2  6   2  2  3  22  3 4. 75  3  25   3 5  5  3  52 6. 64 

Vocabulary, Readiness & Video Check 4.2 1. The number 40 equals 2  2  2  5. Since each factor is prime, we call 2  2  2  5 the prime factorization of 40. 2. A natural number, other than 1, that is not prime is called a composite number. 3. A natural number that has exactly two different factors, 1 and itself, is called a prime number. Since 11 and 48 have no common factors other 11 is in simplest form. than 1, the fraction 48

5. Fractions that represent the same portion of a whole are called equivalent fractions. 5 6. In the statement



15

12 36 called cross products.

, 5  36 and 12  15 are

7. Check that every factor is a prime number and check that the product of the factors is the original number.

24

8

is not in simplest form;

8. 128  2  64   2  2  32    2  2  2 16     2  2  2  2 8      2 22 224       2  2  2  2  2  2  2  27 10. 130  2  65   2  5 13  2  5 13 12. 93 = 3  31 14. 836  2  418   2  2  209    2  2 1119  22 1119

5 12

    

9. You can simplify the two fractions and then 3 6 1 compare them. and both simplify to , 9 18 3 so the original fractions are equivalent. 10

16. 504  2  252   2  2 126    2  2  2  63     2  2  2  3 21

8. an equivalent form of 1 or a factor of 1

10.

8

2  4  2  4  2  2  2  2  2  2  26

455 35 8.  689 53

4.

Chapter 4: Fractions and Mixed Numbers

2  2  2  3  3  7  23  32  7

Copyright © 2025 Pearson Education, Inc.

107


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

18.

5 30

20.

9y

5 1 1  5 6 6

3 3 y 3 16

48 22.

22

34

2 11 2 17

48. 3 y

16

144 y 18 8  y 8   162 y 18  9  y 9 270x4 y3 z3

3y 50.

16

15x3 y3 z3

11 17

18 15  x  x  x  x  y  y  y  z  z  z

115  x  x  x  y  y  y  z  z  z 18  x  1  18x

24.

70 7 10 7   80 8 10 8

52. Equivalent, since the cross products are equal: 3  10 = 30 and 6  5 = 30

26.

25z 5  5  z 5   55z 5 11 z 11

54. Not equivalent, since the cross products are not equal: 2  11 = 22 and 5  4 = 20

21 73 3   49 77 7

56. Equivalent, since the cross products are equal: 4  15 = 60 and 10  6 = 60

28. 

58. Equivalent, since the cross products are equal: 2  28 = 56 and 8  7 = 56

59b 9 9 30.    2 16b 5 16  b  b 16  b 80b 45b

32.

60. Not equivalent, since the cross products are not equal: 16  16 = 256 and 20  9 = 180

32 2  2  2  2  2  63 3 3  7 Since 32 and 63 have no common factors,

32

is

62. Not equivalent, since the cross products are not equal: 6  35 = 210 and 14  21 = 294

63 already in simplest form. 34.

64.

36 y 66 y 6 6    42 yz 6  7  y  z 7  z 7z

36.  28   4  7   7 60 4 15 15 38.

66.

5  a  5a  3   3b2 b b b b b

28abc

44.

60ac

74abc 15  4  a  c

1 20

1

5  20 5 1 20 centimeters is 5 of a meter.

68. a.

7b 15



7b 15

65

5 13 5   234 18 13 18

46. 

108

20 centimeters 100 centimeters

60a2b 5 12  a  a  b 36ab3 312  a   

60 30  2 2   40. 150 30  5 5 42.

200 caps 200 1 1   2000 caps 200 10 10 1 200 caps represents of the total caps. 10

15 3 5 5   423 3141 141 5 of the National Park Service areas can 141 be found in New Mexico.

b. 423  15 = 408 408 National Park Service areas are found outside New Mexico.

78 6 13 13 13    90x 6 15  x 15  x 15x

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

c.

70.

10 5  2 2   35 5  7 7 2 of the students made an A on the first test. 7

72. a.

b.

74.

76.

408 3136 136   423 3141 141 136 of the National Park Service areas are 141 found outside New Mexico.

34,200  15,200 = 19,000 $19,000 was not covered by the trade-in. $19, 000 3800  5 5   $34, 200 3800  9 9 5 of the purchase price was not covered by 9 the trade-in.

4300 employees 100  43 43   20, 000 employees 100  200 200 43 of the employees work at the Hallmark 200 headquarters in Kansas City, Missouri.

88. 131, 625  3 43,875   3 314, 625    3 3 3 4875    3 3 3 31625     3 3 3  3 5  325      3 3 3  3 5  5  65       3 3 3 3  5  5  5  13 131, 625  34  53 13 90. answers may vary 92. yes; answers may vary 94. The piece representing Nursing is labeled

8

. 100

8 42 2   100 4  25 25 2 of entering college freshmen plan to major 25 in Nursing. 96. answers may vary

y3  (5)3 125    25 5 5 5

98. The piece representing Memorials is labeled 76 . 1000 76 4 19 19   1000 4  250 250 19 of National Park Service areas are 250 Memorials.

78. 5a = 5(4) = 20 80. answers may vary 82.

Chapter 4: Fractions and Mixed Numbers

9506 7 1358 7   12, 222 9 1358 9

84. 37 + 7 = 44 blood donors have an O blood type. 44 donors 4 11 11   100 donors 4  25 25 11 of blood donors have an O blood type. 25 86. 9 + 1 = 10 blood donors have a B blood type. 10 donors 110 1   100 donors 10 10 10 1 of blood donors have a B blood type. 10

100. answers may vary 102. 1235, 2235, 85, 105, 900, and 1470 are divisible by 5 because each number ends with a 0 or 5. 8691, 786, 2235, 105, 222, 900, and 1470 are divisible by 3 because the sum of each number’s digits is divisible by 3. 2235, 105, 900, and 1470 are divisible by both 3 and 5. 104. 15; answers may vary

Copyright © 2025 Pearson Education, Inc.

109


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

Section 4.3 Practice Exercises

13. 

3 5 3 5 15 1.    7 11 7 11 77 2.

1 1 11 1    3 9 3  9 27

6 7 6  7  2  3 7 3 3      77 8 77 8 7 11 2  4 11 4 44 4 3 4.   4  3  1 4  3 1 1    27 8 27 8 3 9  4  2 9  2 18 3.

5.

1  11  111 11      2  28  2  28 56

10 2 10 9    4 9 4 2 10  9  42 259  42 5 9  4 45  4

5 y3 5y   4 4 1 3y 1   4 5 y3

3y 14.

3y 1 4  5 y3 3 y 1  45 y  y  y 31  45 y  y 3  20 y2 

 4  33  4  33 4  311 3 6.          11  16  1116 11 4  4 4 7.

1 3 25 1 3 25    6 10 16 6 10 16 1 3 5  5  2  3 2  5 16 1 5  2  2 16 5  64

8.

9.

2 3y 23 y y    y 3 2 3  2 1 1 a3

b

a3  b b2  a2

b2 a2

aaab bb a  a



a 

b

3

10. a.

3 3 3 3 3 3 3 27         4  4 4 4 4  4  4 64 2

b. 

 4  4   4  4  4 16          5  5  25  5  5 5      

11.

8 2 8 9 8  9 2  4  9 4  9 36        7 9 7 2 72 72 7 7

12.

4 1 4 2 42 8      9 2 9 1 9 1 9

110

3y

3

15.  2  9  7   2  9   7 3 14 15 314 15      2  3 3  7    3 7  2   15   3  7   7  15    3  15    7 7   315  77 45  49 3 9 3 9 27  16. a. xy      4 2 42 8

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

b.

Chapter 4: Fractions and Mixed Numbers 6. The word “of” indicates multiplication.

3 9 x y    4 2 3 2   4 9 3 2  49 1 3 2  2  2  3 3 1  23 1  6

7. We have a negative fraction times a positive fraction, and a negative number times a positive number is a negative number. 8. Yes; the negative sign is inside the parentheses and the exponent applies to everything in the parentheses. 9. When writing the reciprocal of a fraction, the denominator becomes the numerator, and the numerator becomes the denominator. 10. There are only prime numbers in the denominator, and neither 4 nor 9 has a factor that includes these prime numbers. 11. radius  1  diameter 2

9 2x   17. 49  9 2   0  4  8  2  90  9 1  8 4   29 9  18 0  4 29 9  0 1 2  49 94   True 4 4 9 Yes,  is a solution of the equation. 8 18.

Exercise Set 4.3 2. 4.

5 7 5  7 35    9 4 9  4 36 4



1

15

20

3



1 1 90 1 90 1 5 18  90      18 5 5 1 5 1 5 1 There are 18 roller coasters in Cedar Point 6. 

Vocabulary, Readiness & Video Check 4.3

1. To multiply two fractions, we write a  c  a  c . b d bd 2. Two numbers are reciprocals of each other if their product is 1. 3. The expression

23 7

222

11 8.



4 1

15  20 4 1  15  4  5 1  15  5 1  75

11 

12

 311  3111  1 1112 11 3 4 4

5 64 y 5  64 y 5  32  2  y y     32 100 32 100 32  2  5 10 10

2 2 6 y3 3 10.   6 y    3 3 1 2  6 y3  31 2  3 2  y3

while

7

3

2 2 2. 2  7       7 7 7



4. Every number has a reciprocal except 0. a 5. To divide two fractions, we write

b

c d

ad bc

.

Copyright © 2025 Pearson Education, Inc.

31 2  2  y3  1  4 y3

111


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

12.

 14.

a b  a b   b 3 a 3 b3  a 3 1 a  b  bbb  a  a  a 1  a  a bb 1  2 a b2 

28. 

11 0  0 12

27 10 16 27 10 16    32 13 30 32 13 30 3 3 310 16  16  2 1310  3 3 3  2 13 9  26

8 4 3     15 3 15 8 43  15 8 4  31  5  3 4  2 1  5 2 1  10

9z 32.

2

4

1 1 1  1  1  22.        2 2   2   2  2         1111  2222 1     16   

20

2

9

9z 9 9z  9 81z    20 2 20  2 40

5 5 10 34.  10    6 65 11   6 10 5 1  6 10 5 1   65 2 1  6 2 1  12

3

 3  1  3  3  3  1 24.               4  3  4  4  4  3 3 3 31  4 4 43 3 31  444 9  64

112

4

30. 10  4  10   5x 4 11 5x 11 10  5x  11 4 2 55 x  11 2  2 5 5 x  11 2 25x  22

8  8   8 8  64     8  20. 9 9 9 9  9 81      

3

16.  13x  5   13x  5 20  6x 20 6x 13 x  5  456 x 13  46 13  24 18.

5 4 5 4 26.      5  4  5  5 8 4 8 3 83 4  2  3 23 6 5

36.

y3  3 y3  3  y  y  y  y y2  9 y  y  3 3 3    y2 y3 y2 9

38.

8 5 8  5 40    11 9 11 9 99

40.

2 5y 2 11  2 11 22      5 y 11 5 y 5 y 5 y  5 y 25 y 2

3

9

Copyright © 2025 Pearson Education, Inc.

3


ISM: Prealgebra and Introductory Algebra

42.

Chapter 4: Fractions and Mixed Numbers 1  5 1  1  5 12  54. 2  6  12  2  6  1      1 5 12  2  6 1 1 5  6  2  2  6 1 1 5  1 5

12 21y  47y  12 21y  47y 12 y  7 21 4 y 4  3 y  7 1  7  3 4  y 1 1 

44.

24 5 24  5 8  3 5 1 1      45 8 45 8 5  3 38 3

2 31 56. 16a 2  31  16a   24a 1 24a 2 16a  31  1 24a

5

 1  1  1  1  1  1  46.                 2  2  2  2  2  2  11111  21 2  2  2  2 

 

32 b

48.

a

ba

3

baaa

3

a

1 3 62a  3

a

     a2 b 3 a2  b 3 a  a  b  b  b b  b b2

50. 100 

1

1  2 1 2 100 2   1 1 100  2    11 200 

100

58.  1   6  1 6  6 5 7 5  7 35 60.

62.

9 16 9 15 9 15 135      2 15 2 16 2 16 32 17 y2 24x

2 52. 7x 

2 8  a  a  31  3 a 2 18 a  31

13y

18x

2

17 y2 18x  24x 13y

17 y2 18x 24x 13y 17  y  y  6  3 x  6  4  x 13 y 17  y  3  4 13 51y  52

14x 14x 7x   3 3 1 7x2 3   1 14x 7x2  3  114x 7 x  x 3  1 2  7  x x 3  1 2 3x  2

Copyright © 2025 Pearson Education, Inc.

113


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers 64.  33  2   5   33  2   5 11 9 1 11 9      33 11  5  1 2 9   3311 5  1 2  9 

31111 5 2  3 3 1111 5  23 605  6 

66. 15c3 

3c2 15c3 3c2   5 1 5 15c3 5   1 3c2 

b.

3

15c  5

76. a. b.

xy 

xy 

78.

8 1 8 1 2  4 1 2 1 2      9 4 94 94 9 9

x y  7

8 1 8 4 8  4 32      9 4 9 1 9 1 9 

6

1



2

7 1 62



7 12

1   6 2 7 2   6 1 2   7 6 1 72  2  31 7  3

x y 

ac  b23  a  c  b  b  b  b  b  b2 ac b3 baac a a  2  b a c ba c

 3 8  2  38  2 70.          4 9  5  4 9  5  3 4  2  2     4  3 3 5 2 2   3 5 2 5   3 2 2 5  3 2 5 3

114

74. a.

1 3c2 5  3 c  c  c  5  1 3 c  c 55c  1  25c 68.

3311 5 29

5 4 5  5  4  5  72. 8   7   16   8    7 16    5       4  5  8 744    5  5   8    28    5  28       8 5   5  28  8 5 57 4  4  2 5 7  2

2

y

7

6

3 11 2 9 6  0 3 11 11 29 6 0 311 11 2  6 0  11 23 6 0 11 11 6 6  True 11 11 9 Yes, is a solution of the equation. 11

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

5x 

80.

1

Chapter 4: Fractions and Mixed Numbers

88.

3 1

3 5 0 5 3 5 3 1  0 1 5 3 53 0 1  15 3 3 1  False 1 3 3 No, is not a solution of the equation. 5

 82.

84.

86.

1

1 of 200    5 5       1    1   40  1  40

1

of 44 million 

1

 44, 000, 000 11 1 44, 000, 000   11 1 111 4, 000, 000  111  4, 000, 000 The increase in the number of people who 11

subscribed to Hulu was approximately 4 million. 90.

3 3 of 8   16 16       3    3     3  2  3  2 3 The screw sinks inches deep after eight turns. 2 

92. d  2  r 7  2 20 2 7   1 20 27  1 20 27  1 2 10 7  10 7 The diameter is foot. 10

5

5 of 24    8 8       5     5    5    15  1  15

1

1 of 3000    5 5       1   1    600 The diet can contain 600 calories from fat per day.

Copyright © 2025 Pearson Education, Inc.

115


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

94.

3

of 355,000 

3



102.

50

50       3   3   3     21, 300 The family pays $21,300 to the real estate companies. 96.

3

of 662 

        1    120 The family drove 120 miles for medical. 

100

104.

811 42  69 922

106.

882  773 109

3

 662 331 3 662   331 1 3 662  3311 3 2  331  3311 3 2  1 6 In the first 44 seasons of Survivor, 6 contestants have appeared four times.

1

331

1  1 3 98. area  length  width     2    16 3 The area is square mile. 16 3 100.

25

of 12,000 

3

 25      

3   3      3     1440 The family drove 1440 miles for shopping. 

116

108. answers may vary 2 2 1  8  39 8  1  8 39 8  110.          2  13 16 9  2  13 16  9  2 1  8 13 3 2  4      138  2  3  3  2 2 1 4    3 2  4  4  1       3 3 2  44  1   3 3 2   16 1   9 2 16 2   9 1 16  2  9 1 32  9 

13

112.

of 3720 

13

 3720 40 13 3720  40  1 13 3720  40 1 13 40  93  40 1 13 93  1  1209 There were approximately 1209 two-year colleges in the U.S. in 2020. 40

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

114.

3

of 36 on the first bus and

1

of 30 on the 4 3 second bus are wearing orange polo shirts. 3    1          4    3  3 1      3   1      3 10    1  27 10  37 There are 37 students on the two buses wearing orange polo shirts.

Section 4.4 Practice Exercises 1.

6 2 62 8    13 13 13 13 5

2.

8x 3.

1 8x

11

6

5 1 6  2  3 3    8x 8x 2  4x 4x

11 6

5  12 12

7 8

and

11

is

16

16.

7.

2 7y 2 7y   5 5 5

8.

4 6 3 4  6  3 5 5     or  11 11 11 11 11 11 10

5

12 12

13. 30  1 = 30 30  2 = 60 30  3 = 90 30  4 = 120 30  5 = 150

Not a multiple of 25. Not a multiple of 25. Not a multiple of 25. Not a multiple of 25. A multiple of 25. 23 1 and is 150. 25 30

14. 40 =

8 4 8  4 4 4    or  17 17 17 17 17

9. x  y  

13 11 13 11 2 1 2 1      4 4 4 4 2 2 2 1 The jogger ran mile farther on Monday. 2

The LCD of

7 2 7  2 5 1 5 1      15 15 15 15 3 5 3

6. 

11.

12 12 5.

10. perimeter  3  3  3  3 20 20 20 20 3 333  20 12  20 3 4  5 4 3  5 3 The perimeter is mile. 5

12. 16 is a multiple of 8, so the LCD of

20 6 7 20  6  7 33     or 3 11 11 11 11 11

4.

Chapter 4: Fractions and Mixed Numbers

10  5 5 5  or  12 12 12

2225 108 = 2  2  3  3  3 LCD = 2  2  2  3  3  3  5 = 1080 3 11 The LCD of  and is 1080. 40 108

15. 20 = 2  2 5 24 = 2  2  2  3 45 = 3  3  5 LCD = 2  2  2  3  3  5 = 360 7 1 13 The LCD of , , and is 360. 20 24 45 16. y = y 11 = 11 The LCD of

7 y

Copyright © 2025 Pearson Education, Inc.

and

6 11

is 11y.

117


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

17.

7 7 7 7  7 49     8 8 7 8  7 56 1

18.

19.

4

Exercise Set 4.4

1 5 1 5 5    4 5 4  5 20

2.

9

4.

9 9   9  9  81 4x 9 4x  9 36x

Vocabulary, Readiness & Video Check 4.4 9 13 1. The fractions and are called like 11 11 3 1 fractions while and are called unlike 3 4 fractions. 2. a b

c b

a  c and a b

b

3. As long as b is not 0,

2

3

2

c

9  2 11  17 17

3 2 5 1 5 1    10 10 2  5 2

3 1 3 1 2 1 2 1 6.    8 8 8  8   42   4

4x

10 10

4 6 4  6 24    1 6 1 6 6 

9

17 17

3x 3x 6 3x  6 18x     7 7 6 76 42

20. 4  21.

11. Multiplying by 1 does not change the value of a fraction.

ac

5  7  5  (7) 12 112 1  24   2 12   2 8.  24    24   24    10.

3 2 3 2 5 1 5 1      10 y 10 y 10 y 10 y 2  5  y 2 y

12. 

7z 15

3z

z



15 15 

.

7z  3z 1z

 

3z 15

b

b



a

a



a   . b b b

15

3 z z3 5 5

4. The distance around a figure is called its perimeter.

14.

9 5 95 4    13 13 13 13

5. The smallest positive number divisible by all the denominators of a list of fractions is called the least common denominator (LCD).

16.

5 1 5 1 4 2  2 2      6 6 6 6 3 2 3

18.

4 7 4  7 3 3     z z z z z

6. Fractions that represent the same portion of a whole are called equivalent fractions. 7. To add like fractions, we add the numerators and keep the same denominator. 8. The y-value is negative and follows the minus sign, so parentheses are used around the y-value to separate the two signs. 5 7 5 7 9. P     ; 2 meters 12 12 12 12

20.  37    18    37  18 45 45 45 45   37 18  45 19  45 19  45

10. 45 is the smallest number that both denominators, 15 and 9, divide into evenly.

118

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

22.

24.

27 5 28 27  5  28    28 28 28 28 6  28 3 2  14  2 3  14

42.

44.

18b 3 18b  3   5 5 5

26. 

15 85 15  85 70 7 10 7      200 200 200 200 20 10 20

28.  15  15  15 15 26 y 26 y 26 y 30  26 y 2 15  2 13 y 15  13y 30.

2x 15

7 15

2x  7 15

32.

3 15 3 15 12 3 4 3      16z 16z 16z 16z 44 z 4z

34.

1 15 2 115  2 12 43 3       8 8 8 8 8 42 2

36.

9y 2y 5y 4y 9y  2y  5y  4y     8 8 8 8 8 12 y  8 y 4  3  34  2 y  2

38. x  y 

Chapter 4: Fractions and Mixed Numbers

7 9 7  9 2 1 2 1      8 8 8 8 42 4

1 5 1  5 4 2  2 2    40. x  y     6 6 6 6 23 3

3 6 4 3 2 3  6  4  3  2 18       13 13 13 13 13 13 13 18 The perimeter is feet. 13 1 1 1 1 1111 4 2  2 2        6 6 6 6 6 6 23 3 2 centimeter. The perimeter is 3

46. To find the remaining distance, subtract the 10 16 miles already run from the total miles. 8 8 16 10 16 10 6 2  3 3      8 8 8 8 2 4 4 3 He must run mile more. 4 48. To find the fraction that had speed limits greater 21 than 70 mph, subtract the that have 70 mph 50 37 speed limits from the that have speed limits 50 70 mph or greater. 37 21 37  21 16 2 8 8      50 50 50 50 2  25 25 8 of the states had speed limits that were 25 greater than 70 mph. 50. Asia makes up

30 100

of the world’s land area,

while Africa makes up

20 100

of the world’s land

area. 30 20 30  20 50 1 50 1      100 100 100 100 2  50 2 1 of the world’s land area is within Asia and 2 Africa. 52. Asia makes up

30

of the world’s land area,

100 while Australia makes up

6 100

of the world’s

land area.

Copyright © 2025 Pearson Education, Inc.

119


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers 30 6 30  6 24 6 4 6      100 100 100 100 25  4 25 6 Asia’s land area is greater than that of 25 Australia’s.

78.

80.

54. Multiples of 20: 20  1 = 20, not a multiple of 12 20  2 = 40, not a multiple of 12 20  3 = 60, a multiple of 12 LCD: 60 56. Multiples of 90: 90  1 = 90, a multiple of 15 LCD: 90 58. 4 = 2  2 14 = 2  7 20 = 2  2  5 LCD = 2  2  5  7 = 140 60. y = y 70 = 2  5  7 LCD = 2  5  7  y = 70y 62. 24 = 2  2  2  3 45 = 3  3  5 LCD = 2  2  2  3  3  5 = 360 64. 11 = 11 33 = 3  11 121 = 11  11 LCD = 3  11  11 = 363 66.

68.

70.

2  20 40   5 5  20 100 Find those goods whose fraction is over

82. 43  4  4  4  64 84. 34  3  3 3 3  81 86. 54  5  5  5  5  625 88. 42  5  4  4  5  80 90.

3 1 3 1 2 1 2 1      4 4 4 4 22 2

92. answers may vary 94.

96.

3 3 4 3  3  4 2 1 2 1       8 8 8 8 8 4 2 4 1 He is mile from home. 4 108 108 19 108 19 2052     215 y 215 y 19 215 y 19 4085 y

3

100. False;

3 20 3 20 60     5 5 20 5  20 100 1 1 10 110 10     5 5 10 5 10 50

21

19z 6 19z  6 114z    21 6 21 6 126

74.

76.

7 7 6a 7  6a 42a     6 6 6a 6  6a 36a

40

. 100 Books and magazines, clothing, and shoes have 2 over of the goods bought online. 5

98. answers may vary

3x 3x 6 3x  6 18x     2 2 6 26 12

120

is the largest fraction, so clothing has the 100 largest fraction bought online.

5 5 4 5  4 20     6 6 4 6  4 24

19z 72.

60

7 12

7 4 7  4 28    12 4 12  4 48

Section 4.5 Practice Exercises 1. The LCD is 21. 2 8 23 8 6 8 14 2  7 2         7 21 7  3 21 21 21 21 3  7 3 2. The LCD is 18. 5 y 2 y 5 y  3 2 y  2 15 y 4 y 19 y       6 9 63 92 18 18 18

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

3. The LCD is 20. 1 4 9 1 9     5 20 5  4 20 4 9   20 20 5  20 1 5  45 1  4

Chapter 4: Fractions and Mixed Numbers

10. The LCD is 30. 3 3 1 3 6 3 3 1 2      5 10 15 5  6 10  3 15  2 18 9 2    30 30 30 29  30 29 The homeowners need cubic yard of cement. 30

4. The LCD is 70. 5 9 5 10 9  7 50 63 13        70 7 10 7 10 10  7 70 70 5. The LCD is 24. 5 1 1 5  3 18 1 2      8 3 12 8  3 38 12  2 15 8 2  24 24  24 5  24

11. The LCD is 12. 3 2 3 3 2  4 9 8 1       4 3 4  3 3 4 12 12 12 1 The difference in length is foot. 12 Calculator Explorations

5 6. Recall that 5  . The LCD is 4. 1 5 y 5  4 y 20 y 20  y       1 4 1 4 4 4 4 4 7. The LCD is 40. Write each fraction as an equivalent fraction with a denominator of 40. 5 5  5 25   8 8  5 40 11 11 2 22   20 20  2 40 25 22 5 11 Since 25 > 22,  , so  . 40 40 8 20 8. The LCD is 20. Write each fraction as an equivalent fraction with a denominator of 20. 17  20 4 44 16    5 5 4 20 17 16 17 4 Since 17 < 16,    , so   . 20 20 20 5

1.

1 2 37   16 5 80

2.

3 2 23   20 25 100

3.

4

9

7



8

95 72

4.

9 5 163   11 12 132

5.

10 12 394   17 19 323

6.

14 15 253   31 21 217

Vocabulary, Readiness & Video Check 4.5 1. To add or subtract unlike fractions, we first write the fractions as equivalent fractions with a common denominator. The common denominator we use is called the least common denominator. 2. The LCD for

3.

1

5

1 5 and is 24. 6 8

1 4 5 3     4  15  19. 6 4 8 3 24 24 24 

9. The LCD is 99. 5 4 5  9 4 11 45 44 1 x y        11 9 11 9 9 11 99 99 99

6

8

Copyright © 2025 Pearson Education, Inc.

121


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

4.

1

6

1 4 5 3  11      4 15   . 8 6 4 8 3 24 24 24 5

5. x  y is an expression while 3x 

1 is an 5

equation. 6. Since 10 < 1, we know that 

10

 

13

1

. 13

7. They are unlike terms and so cannot be combined. 8. Once the fractions have the same denominator, we then just compare numerators. 3

9.

1  ; 6 2 3 34

10.

15

4 cm and 2

15

cm

Exercise Set 4.5

12. The LCD is 20. y 5 y 5   20 1 20 5  20 y   1 20 20 100 y   20 20 100  y  20 14. The LCD is 36. 7 5 7 3 5 2 21 10 11       12 18 12  3 18  2 36 36 36 16. The LCD is 10. 7 10 7 10    10 1 10 10 10 7   110 10 100 7   10 10 93  10

2. The LCD is 12. 5 1 5  2 1 10 1 11       6 12 6  2 12 12 12 12

18. The LCD is 18. 7 x 2x 7x 2x  2 7x 4x 11x       18 9 18 9  2 18 18 18

4. The LCD is 12. 2 1 2  4 1 3  8 3 5       3 4 3 4 4  3 12 12 12

20. The LCD is 12. 5z 1 5z  2 1 10z 1 10z 1       12 6 12 6  2 12 12 12

6. The LCD is 9. 5 1 5 1 3 5 3 2        9 3 9 3 3 9 9 9

22. The LCD is 5x. 2 3 2  x 3  5 2x 15 2x 15   5x 5  x  5 x  x 5  5x 5x

8. The LCD is 15. 4 2 2  2 23  2 6        15 5 15 5  3 15 15 15

24. The LCD is 9. 5 1 5 1 3 5 3 8          9 3 9 3 3 9 9 9

10. The LCD is 25. 2 y 3 y 2 y  5 3 y 10 y 3 y 13 y       5 25 5  5 25 25 25 25

26. The LCD is 15. 4 2 4  3 2 12 2 10 2  5 2         5 15 5  3 15 15 15 15 3  5 3 28. The LCD is 25. 2b 3 2b  5 3 10b 3 10b  3       5 25 5  5 25 25 25 25 30. The LCD is 36. 5 7 5 2 7  3 10 21 11       18 12 18  2 12  3 36 36 36

122

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

32. The LCD is 40. 5 3 5  5 3 2 25 6 19       8 20 8  5 20  2 40 40 40 34. The LCD is 130. 10 7 10 10 7 13 100 91 9       13 10 13 10 10 13 130 130 130 36. The LCD is 18. 7 2 7 2  2 7 4 11       18 9 18 9  2 18 18 18 38.

3

4

13 13

3 4 1  13 13

40. The LCD is 60. 1 1 2 1 20 115 2 12       3 4 5 3 20 4 15 5 12 20 15 24    60 60 60 11  60 42. The LCD is 26. 5z 3 5z  2 3 10z 3 10z  3       13 26 13 2 26 26 26 26 44. The LCD is 58. 1 3 1 29 3 2 29 6 35        2 29 2  29 29  2 58 58 58 46. The LCD is 16. z z 2z z  4 z  2 2z      4 8 16 4  4 8  2 16 4z 2z 2z    16 16 16 8z  16 8 z  8 2 z  2

Chapter 4: Fractions and Mixed Numbers

52. The LCD is 60. 7 3 72 3 3    30 20 30  2 20  3 14 9   60 60 5  60 1 5  12  5 1  12 54. The LCD is 12x. 1 5  1 x 5 12    12 x 12  x x 12 x 60   12x 12x x  60  12x 56. The LCD is 20. 6 3 1 6  4 3 5 110      5 4 2 5  4 4  5 2 10 24 15 10    20 20 20 29  20 58. The LCD is 24. 11 7 11 2 7 22 7 15 3 5 5         12 24 12  2 24 24 24 24 3 8 8 60. The LCD is 24x. 3 5 3 3x 5 2    8 12x 8  3x 12x  2 9x 10   24x 24x 9x 10  24x

48. The LCD is 16. 9 3 9 3 2 9 6 3       16 8 16 8  2 16 16 16 50. The LCD is 28. 3y y 3y  7 y  4 21y 4 y 25 y       4 7 47 7  4 28 28 28

62. The LCD is 14. 5 3 1 5 3 2 1 7       14 7 2 14 5 76 2 72  7    14 14 14 6  14 3 2  72 3  7

Copyright © 2025 Pearson Education, Inc.

123


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

66. The LCD is 99. Write each fraction as an equivalent fraction with a denominator of 99. 5 5 11 55   9 9 11 99 6 6  9 54   11 11 9 99 55 54 5 6 Since 55 > 54,  , so  . 99 99 9 11 68. The LCD is 48. Write each fraction as an equivalent fraction with a denominator of 48. 7 76 42    8 8 6 48 5 5 8 40    6 68 48 42 40 7 5 Since 42 < 40,    , so    . 48 48 8 6 70. The LCD is 117. Write each fraction as an equivalent fraction with a denominator of 117. 2 2 13 26    9 9 13 117 3 3 9 27    13 13 9 117 26 27 2 3 Since 26 > 27,   , so    . 117 117 9 13

3

3

1 4 1 4 4     4 3 3 3 3 9

80. The LCD is 21. 10 1 10 1 10 1 3 10 1 3        21 7 21 7 21 7  3 21 7  3 10 3 10 3     21 21 21 21 26 5  or 1 21 21 26 5 yards or 1 yards. The perimeter is 21 21

 84. The difference of a number and x

7

.

20

124

2 5 translates as

 2  x    .  5 

1

78. The LCD is 8. 3 5 1 3 5 1 4      8 8 2 8 8 24 3 5 4    8 8 8 12  8 43  42 3 1  or 1 2 2 3 1 The perimeter is miles or 1 miles. 2 2

82. A number increased by 

72. The LCD is 12. 5 1 3 1 4 3 3  4 9   x y       3 4 3 4 4  3 12 12 12 74. x  y 

1 3  3 4   2 3   3 4 2  4 3 3   3 4 4  3 8 9   12 12 17  12

76. 2x  y  2

64. The LCD is 10. 9x 1 x 9x 1 5 x  2      10 2 5 10 2  5 5  2 9x 5 2x    10 10 10 11x  5  10

Copyright © 2025 Pearson Education, Inc.

7 20

translates as


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

86. The LCD is 264. 1 5 1 66 5 66 5 61       4 264 4  66 264 264 264 264 61 A killer bee will chase a person mile 264 farther than a domestic honeybee. 88.

96. The piece representing historical parks is labeled 8 and the piece representing memorials is 25 19 labeled . The LCD is 250. 250 8 19 8 10 19    25 250 25 10 250 80 19   25 250 99  250 99 of the areas maintained by the National 250 Park Service are designated as historical parks or memorials.

3 1 1 3 2 1 1      4 8 8 42 8 8 6 1 1    8 8 8 4  8 1 4  24 1  2 1 The inner diameter is inch. 2

90. The LCD is 100. 67 1 67 1 20 67 20 47       100 5 100 5  20 100 100 100 47 The eSIM (MFF2) card is mm thicker than 100 the eSIM (WLCSP) card.

100. 8  6  4  7 = 8  24  7 = 16  7 = 23 102. 50  (5  2) = 50  10 = 5 104. a.

92. The LCD is 16. 11 5 11 11 5 2 11       16 8 16 16 8 2 16 11 10 11    16 16 16 32  16 2 The total width is 2 inches. 94. The LCD is 25. 1 1 1 1 5 1 5 6        25 5 25 5 5 25 25 25 The Arctic and Indian Oceans account for

6 25

the world’s water surface.

98. 1 17  1000  17  983 1000 1000 1000 1000 983 of the areas maintained by the National 1000 Park Service are not national parkways or scenic trails.

of

b.

There seems to be an error.

c.

The LCD is 8. 2  5 3 5 3 2 5 6 1  not         8 4 8 4 2 8 8 8 4   

106. The LCD is 600. 1 9 7   9 60  7 3 1 200       10 200 3 10 60 200 3 3 200 540 21 200    600 600 600 519 200   600 600 319  600 

Copyright © 2025 Pearson Education, Inc.

125


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

11. 315  3105   3 3 35    3 3 5  7

108. The LCD is 1352. 19 968 19  52 968    26 1352 26  52 1352 988 968   1352 1352 20  1352 54  338  4 5  338

315  32  5  7

12.

441  3 147   3 3 49   3 3 7  7

110. 1; answers may vary

441  32  72

Mid-Chapter Review 13.

2 2 1 1 14  2  7  7

2. Each part is 1 of a whole and there are 5 parts 4 5 1 shaded, or 1 whole and 1 more part: or 1 4 4

14.

24 6  4 6   20 5  4 5

3. number that get fewer than 8 73 total number of people  85 73 of people get fewer than 8 hours of sleep 85 each night.

16. 

1. 3 out of 7 equal parts are shaded:

3 7

4. 5.

7.

8.

3

9. 65 = 5  13 10. 70  2  35   2 5  7 70 = 2  5  7

126

165z3

15 11 z  z  z 15 14  z

210z 20.

7 is undefined 0

9   8 10 10

90 30  3 3   240 y 30 8  y 8 y

 17 0

89

18.

1 0

80



54x 27  2  x 2x   135 27  5 5

11  1 11 17

72

17.

19. 6.

56 14  4 14   60 15  4 15

15. 

11 z  z 14

11z2  14

35  7  a  b 35 11 a  a  b  b  b 385a b 7  11 a  b  b 7  11ab2 245ab

2 3

21. Not equivalent, since the cross products are not equal: 7  10 = 70, 8  9 = 72 22. Equivalent, since the cross products are equal: 10  18 = 180, 12  15 = 180

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

number not adjacent  2 total number  50

31.

2 1 2 1 of the states are not   50 25  2 25 adjacent to any other states.

32.

50  2 = 48; 48 states are adjacent to other states.

33.

1 3 1 3 3    5 5 5  5 25

48 2  24 24   of the states are adjacent 50 2  25 25 to other states.

34.

1 3 1 5 1 5 1      5 5 5 3 5 3 3

24. a. digital 3-D screens in U.S./Canada 14, 000

35.

2 5 2 6 26 2 23 2 2 4        3 6 3 5 3 5 3 5 5 5

36.

2a 5 2a  5  2  a  5 5 5      3 6a 3  6a 3 2  3  a 3 3 9

23. a.

b.

c.

14, 000  7  2000 7 of the screens in   44, 000 22  2000 22 the U.S./Canada are digital 3-D screens. 

b. 44,000  14,000 = 30,000 30,000 of the screens in the U.S./Canada are not digital 3-D. 30, 000 c.

15 2000



15

of the screens in 44, 000 22  2000 22 the U.S./Canada are not digital 3-D screens.

25. 5 = 5 6=23 LCM = 2  3  5 = 30

1

 44, 000

screens in U.S./Canada

1 3 1 3 4    5 5 5 5 3

5

1 3

5

2

2   5 5

5

37. The LCD is 6y. 2 5 2 2 5     3y 6 y 3y 2 6 y 22 5   3y  2 6 y 4 5   6y 6y 1  6y

28.

7 7 4 7  4 28     9 9 4 9  4 36

38. The LCD is 6. 2x 5x 2x 2 5x     3 6 3 2 6 2x  2 5x   3 2 6 4x 5x   6 6 9x  6 3 3 x  3 2 3x  2

29.

11 11 5 11 5 55     15 15 5 15  5 75

1 7 1 7 1 39.      7 18 7 18 18

30.

5 5 8 5 8 40     6 6 8 6  8 48

40.  4   3  4  3  4  3  4  4 9 7 9  7 3 3 7 3 7 21

26. 2 = 2 14 = 2  7 LCM = 2  7 = 14 27. 6 = 2  3 18 = 2  3  3 30 = 2  3  5 LCM = 2  3  3  5 = 90

Copyright © 2025 Pearson Education, Inc.

127


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

7z  2 7z 6z 2  6z    8 8 1 7z 1   2 8 6z 7z 1  8  6z2 7  z 1  86 z  z 7  48z 9 9 5 9 1 9 1 9  42.   5         10 10 1 10 5 10  5 50

41. 

43. The LCD is 40. 7 1 7  5 1 2 35 2 37       8 20 8  5 20  2 40 40 40

 1 x  .  5   

128

3 1 5

2

2 1530  3 1 2 1530  31 2  3 510  31 2  510  1  1020

1530 

3

of 1530 is 1020.

52. 18 

46. The LCD is 50. 3y y 6 3y  5 y 10 6  2      10 5 25 10  5 5 10 25  2 15 y 10 y 12    50 50 50 25 y 12   50 50 25 y 12  50 2 2 2 47. of a number translates as  x or x.

48. The quotient of a number and 

51.

translates as

translates as

6 increased by a number translates as 6  x. 11 11

3

45. The LCD is 18. 2 1 1 2  2 1 1 6      9 18 3 9  2 18 3 6 4 1 6    18 18 18 11  18

3

50.

8 9

8   x. 9

2

44. The LCD is 36. 5 1 5  3 1 4 15 4 11       12 9 12  3 9  4 36 36 36

3

49. A number subtracted from 

3

18

3

4

1 4 18 4   1 3 18  4  1 3 3 6  4  1 3 64  1  24 They can sell 24 lots.

53. The LCD is 16. 7 1 1 72 1 1      8 16 16 8  2 16 16 14 1 1    16 16 16 12  16 43  44 3  4 3 The inner diameter is foot. 4

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

 

54. The LCD is 21. 17 5 17 5  3 17 15 2       21 7 21 7  3 21 21 21 2

of the 21 2022 FIA Formula One World Championship races.

Red Bull driver Sergio Perez won

Section 4.6 Practice Exercises 7y 7y 1 7y 5 7 y 5 7  y 5 7 y 1. 10        1 10 5 10 1 10 1 2  5 1 2 5 13  1 11 23 6 2. 23  26  33  24 4

3

4 1  6 12 4 12   6 1 426  6 1 8  or 8 1

1 2 7 2. To simplify    , which operation do we 2 3 8 perform first? multiplication 1 2 7 3. To simplify    , which operation do we 2 3 8 perform first? division

3

12  1 12  1

2 6 12  43 12  32

62 89  8  or 8 1 

4. The LCD is 20. 3 20 3



3

7  1 2    8  2 3 , which operation do we perform first? subtraction

4. To simplify

3

1 1  9 3 5. To simplify      , which operation 3 4  11 8  do we perform first? addition

20  3

15 

  20  5x  20 1 4x  20

4 x4  5 1 20 x5  1

1. A fraction whose numerator or denominator or both numerator and denominator contain fractions is called a complex fraction.

 

4

Vocabulary, Readiness & Video Check 4.6

3. The LCD is 12. 1  1 12 1  1 2 6 2 6  32 12 3  2 3



4

3 3 2  5 5 23 3 1   5 5 4  5

43 34 3 1  96 68  12 12 4  16 12

 

 1 1  5 1   1 5 1 2  5 1  6.         2  5  5  2  8  8  2 5 8 8        5 2  5 1     10 10  8 8      3  6        10  8  3 2  3  2  5 8 3 3  5 8 9  40 3 3 3 2 7.   xy     5 5 10 3

4

8 8 54 46 2 2    5.    2  27 27 27 27  3 

2

6. To simplify 9    3  , which operation do we  4  perform first? evaluate the exponential expression 7. distributive property

Copyright © 2025 Pearson Education, Inc.

129


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

8. They have the same denominator so they are like fractions.

12.

9. Since x is squared and the replacement value is negative, we use parentheses to make sure the whole value of x is squared. Without parentheses, the exponent would not apply to the negative sign. Exercise Set 4.6 2.

5 6  5  15  5  12  5 12  1 5  6  2  2 15 6 12 6 15 6 15 653 3 12 25

4. 11  25 6

25

25  11 6

14.

25 6   11 25 25  6  11 25 6  11 11  3y  1  3y  2  3y  2  6 y 1 11 2 11 1 11 1 11 2

8. The LCD is 18. 7  2 18  7  2 6 3 6 3 38  18  3  8

 

2

9

 

2 9 18  7 18  2 6 3  18  23 18  98

2112 27 16 33  11 3 

10. The LCD is 10y. 3 2 3  2 10 y  10 10  2 10 y  2



5y

7 1 1 7 4 1 7  4 1 1        8 4 7 8 1 7 4  2 1 7 2 2

3y

6.

1 1 1 1 11     2 6 3 2 63 1 1   2 18 1 9 1   2  9 18 9 1   18 18 10  18 25  29 5  9

1 2 1 16. 3     9  4  2  9 1   1 4 94 1  1 4  4 36 1  4 4 35  4 

18.  1  1  1  1    1  2  1  1  2  1         5 10  5 10   5 2 10  5 2 10   2 1  2 1        10 10     1  3  1    01010  1 3 1  10 10 0 3  100

5y

10 y  3 10 y  2 10

4 3y  20 y  4 23y  4

130

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

3

20.   2  7   4   9  4   3 9  3 3  9 3 4   1 9 3 9   1 4 3 9  1 4 27  4 22.

2  1 2  5  2 1    5   1      1 5  2 5  1 2 2  2  10 1   5   2  2 1 2 9    1 5  2  29  1 5 2 9 5  55  4 5 2

Chapter 4: Fractions and Mixed Numbers

2

 8   2   8   2  3 2    24.  9    2        3   9   1 3 3     2

 8   6 2       9   38 2 34      9  3 64 4   81 3 64 3   81 4 16  4  3  27  3 4 16  27 

 3 4   3 3 4  2 3  26.       2 3  2  3 3 3 2  9 8      6 6  3 1     6   1   1   1          6     6 6 1  216 3

2

3

2

1 1  2 3  1 1 2   2  3  28.  6  3    5  4    6  3 2    5  4  2 3 6  1 2           6 6   20  

3

2

3  6       6    3 2  1  20 3   2   10      1 9   8 100 1 25 9  2   8  25 100  2 25 18   200 200 43  200 5  1 5 1 6      2 30. 2z  x  2  3 3 3  6   3 

 1 

 3 32. y  x  5 2

z

5 6 2 30  5 

 13 30  56 

12  (10) 25 2  25

Copyright © 2025 Pearson Education, Inc.

131


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers 2 2 2 2     5 34. x  z   1    3   6   1  1   5  5            3 3 6 6       1 25   9 36 1 4 25    9 4 36 4 25   36 36 21   36 7 3  12  3 7  12 

 1   5  36. (1  x)(1  z)  1   1      3   6   1  1  56    1  3    3 1  6 5         3 3  6 6   4  1       3  6  2  2 1  3 2 23  

9 7

38.

7

14z

10   25 14z 10 25

5 1 1 1 5 2 1 1 40.  21  2    7  3    21  1    7 3          5  2 11  211  7  3 10 1  21 21 11  21 

2

 3  3 9 3 9 3 2 9 6 15    42.          4  8 16 8 16 8  2 16 16 16

 10  3 10  1 30  5 25 44. 2 2 2  4  51  10 4  15 10  4 10  15  40  2  42 

10 3  1

3 1

2

3  1 5   1   1 2 48.  1  3    10 20 5 1  10  2  20 5 5        3  1 5   2       20 20   55  5 4        20  5  

54  5 4 5 1  5

7 25  10 14z 755  5 27  2 z 5  2 2 z 5  4z 

132

2

46.   1    3     1   1    3  3   2 4  2  2   4  4            1 9   4 4 16 9 1   4  4 16 4 9   165 16  16

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 2

2  5 2  3 2     50.    9 3  9 3  32  5 6      9 9  2  1      9   1  1    9   9     1  81 5

7

52.

 

7

Chapter 4: Fractions and Mixed Numbers 60. 4 

1 5

64.

3 9 10 3  9 5 10 5 10 

2

1

 

66.

 1 2   1 2   1 2   1 7  54.                 2 7   2 7   2 7   2 2  1 2 1 7   27 22 2 7   14 4 22 77   14  2 4  7 4 49   28 28 45  28

 x  2  38 8  2  38

8  1 x 4 56. 1 4 



5  7 18 5  7 6 9 6 9 

2

18(2) 18  5 18  7 6

15 18  2 14  36 29  36

9

68. no; answers may vary 70. False; the average cannot be less than the smallest number. 72. False, if the absolute value of the negative fraction is greater than the absolute value of the positive fraction, the sum is negative. 74. True 76. No; answers may vary.

8 1 8  x 4  8  2  8  83

78. Addition, multiplication, subtraction, division 80. Subtraction, multiplication, division, addition

8  2x  16  3 8  2x  19

3

10(2) 10  53 10  109  10  2 69  20 15  20 5 3  5 4 3  4

14 10 16 15 24  31



2

4 5 1 20 1 19 4      or 3 1 5 5 5 5 5 5

62. yes; answers may vary

1 20 10  2 10  2   20 4  3 43 5 4 5 4 20  7  20  1 10 2  20  54  20  43

58. 2 

2 3 2 6 2 8 2      or 2 1 3 3 3 3 3 3

Copyright © 2025 Pearson Education, Inc.

133


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers 3  4 82. 4x  y  4     4  7    4 3  4   14 7   12 4   4 7 12  7 4  4   47 74 84 16   28 28 68  28 4 17  47 17  7 

84.

9 14

x y

7 3 97 3  97 97 2 15  1  15  1 5  3  5 or 19 5 7 Estimate: 6 rounds to 6 and 3  6 = 18, so the 15

5. 3 6

answer is reasonable. 6.

7 

9 7.

9 14

 47 28  9    14 28 34  47

3 4

1. 11 2 2 11 5 11 5 11  or 1 2. 1     3 15 3 15 3 5  3 9 9 5 5 18 5 18 5  6  3 15 18      or 15 6 6 1 6 1 6 1 1

1 3 16 11 16 11 4  4 11 44 4 4. 3  2      or 8 5 4 5 4 5 4 5 4 5 5 3 1 Estimate: 3 5 rounds to 3, 2 4 rounds to 3.

10.

23 31  14 7 14 23 14   7 31 23 7  2  7  31 46 15  or 1 31 31

1

5 30 6 2 12 4  4 5 30 17 6 30 1 2 Estimate: 2 rounds to 2, 4 rounds to 4, and 6 5 2 + 4 = 6, so the answer is reasonable. 2

3  2

5 14 6 7

3  3 = 9, so the answer is reasonable.

134

4 1 4 1 4    9 7 9  7 63

18

Section 4.7 Practice Exercises

1

4  3  8  19 15 5 15 5 8 5   15 19 85  15 19 85  5  319 8  57 

28  3  28  4 4 7

9.

7

8

7

18 2116 18  5

9

3.

4

2 3 8. 3  2

4

Copyright © 2025 Pearson Education, Inc.

2

3

5

14 12  2 14 3 3 17  5 1  6 5 14 14 14


ISM: Prealgebra and Introductory Algebra

11.

12.

12

12

6 3 7 1 2 5

30 3 35 7  2 35 2 2 37  17  1  18 17 35 35 35 7

32

32

9 5

 16

 16

18

14 18 5

18 9 1 16 18  16 2

Chapter 4: Fractions and Mixed Numbers

1 22 16. 44  3  44  7 7 44 7   1 22 2  22  7  1 22 14  or 14 1 Therefore, 14 dresses can be made from 44 yards. 17. 9

18. 5 13.

9  4

7

9

15 3 5

4

7 8

15 9

 4

15

22 15 9

19. 

25  10

24 2 9

 10 14

20. 

9 2 97

 15.

23  19

1 4 5 12

23  19

12

22  19

15 12 5

12 10  3 5 3 12 6 The girth of the largest known American beech 5 tree is 3 feet larger than the girth of the largest 6 known sugar maple tree.

66   7

10 11 5 10 65   11 11 11  4

5 8

46 1  9 5 5

4 8 37 32 5 9 5 46 45 1

21. 2 3   3 3   11    18   4  5  4  5  1118  45 11 2  9  225 99 9  or  9 10 10 

3 12 5

79  3 7

8

9



7

37

15 13 4 15

9 14.

3

22. 4

2

1 30 5 1    7 4 7 4 30 4   7 5 30  4  75 56 4  75 24 3  or  3 7 7

Copyright © 2025 Pearson Education, Inc.

135


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

23.

12 6

3

12

4 2

 6

3 2

3

9

the 5 is called the whole number part 5 , 4 3 and is called the fraction part. 4

12 8

12 1 6 12

1

3. To estimate operations on mixed numbers, we round mixed numbers to the nearest whole number.

6 12  6 3 4 12 2 9 24. 7 11  30 14

9

2

4 9 14 11  30 14 15  40 1 39 14 14

 30

7

11

 40

14

1

5

365

31 3776  35 35

 26

14 6.

290 13

1 Exercise Set 4.7 2.

4 13

3941 14  231 17 17

6. 5

Vocabulary, Readiness & Video Check 4.7 1. The number 5

3 4

136

1 3

4.

2769 3 7.  92 30 10 8.

5. The denominator of the mixed number we’re 4 graphing, 3 , is 5. 5

9. We’re adding two mixed numbers with unlike signs, so the answer has the sign of the mixed number with the larger absolute value, which in this case is negative.

14  22

.

8. To find how much more 11 1 in. is than 3 3 in., 4 5 we subtract the mixed numbers, which includes subtracting the fractional parts.

17 3923 4. 186  21 21 5.

8

written as an improper

8

21 fraction is

5

7. The fractional part of a mixed number should always be a proper fraction.

11

14 1019 2. 67  15 15 3. 107

The mixed number 2

6. To multiply mixed numbers, we first write them as equivalent improper fractions and then multiply as we multiply for fractions.

280

11

4.

14

Calculator Explorations 1. 25

3

2. For

is called a mixed number.

9 10

1

rounds to 5. 6 5 3 rounds to 4. 7 5  4 = 20 The best estimate is d.

Copyright © 2025 Pearson Education, Inc.

3 8


ISM: Prealgebra and Introductory Algebra

8. 20

3

Chapter 4: Fractions and Mixed Numbers

28. Exact:

rounds to 20.

14 8 4 rounds to 5. 11 20  5 = 4 The best estimate is c. 10.

5

4

9

1 5

3 10

30. Exact: 12 4

1 1 9 57 513 1 14. Exact: 2  7    or 16 4 8 4 8 32 32 1 1 Estimate: 2 rounds to 2, 7 rounds to 7. 4 8 2  7 = 14 16. Exact: 5 3 35 38 7  5  2 19 133 1 5 7     or 44 6 5 6 5 235 3 3 5 3 Estimate: 5 rounds to 6, 7 rounds to 8. 6 5 6  8 = 48 1 6 10 2  310 20 18. 6  3      20 3 1 3 1 3 1

5

21

26.

81 1

3 1

rounds to 2. 2 82=6 The best estimate is c.

5

5

12

12 1

4

12 2 12 7 12

Estimate: 12

5

rounds to 12, 4

1

rounds to 4. 12 6 12 + 4 = 16 so the answer is reasonable. 32.

2

6 8

34.

13 7

8

8

9 32 10 9 21

36.

3

23

5 8

 8

15

4

1

3 2 9 5 1 3 6

Copyright © 2025 Pearson Education, Inc.

26 7

26 11 14 26

2

8

4

6

26

38. rounds to 8.

11 6

16

5 5 25 22. 4      5  5  9 5 9 5 9 21 9  21 189 7 24. 3 rounds to 4. 8 1 2 rounds to 2. 5 42=2 The best estimate is d.

11 2

6

4 5 14 21 2  7  21 147 7  or 7 20. 2  2    5 8 5 8 5 2 4 20 20 1

4

11 4 2 Estimate: 7 rounds to 7, 3 rounds to 3. 11 11 7 + 3 = 10 so the answer is reasonable.

5 21 5  3  7 7 1    or 2 9 5 3 3 5 3 3

2 9 5 9 3 9  3 27 2  or 5 12. 9 1      3 1 3 1 5 1 5 5 5

5

7

14 63

32 30 63 44 49 63

 9

23  8

9 15 8

15 17 2 2 31  311  32 15 15 15 10 30 12 9 30 5 3 30 27 9 16  16 30 10 4

137


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

7

40. Exact:

3

4 9 2

52.

 8

9 2 4 9 4 2 Estimate: 7 rounds to 7, 3 rounds to 3. 9 9 7  3 = 4 so the answer is reasonable. 12

42. Exact:

 4

5

12

12 1

 4

5 12 2

6

12 3 1 8 8 12 4 5 1 Estimate: 12 rounds to 12, 4 rounds to 4. 12 6 12  4 = 8 so the answer is reasonable. 44.

2

5

13 7 4 26

46.

5

4

26 7 4 26

7 10

48.

86  27

2 15 3

86  27

10

30 9

85  27

30 58

30 25

138

 58

22

15 9

 8

 8

15

23 15 9

15 14 14 15

1 1 26 13  56. 5  3  5 4 5 4 26 4   5 13 2 13 4  5 13 2 4  5 8  5 3 1 5 3

5

25

2 5

 15

3

5

25

10

 20

25

13 25

3 3 6 3 3 60. 5  2  5  2  3 8 16 16 16 16 7 16 1 6 2 3 9 8

7 16 8 6 16 6 9 16 21 5 5 18  18 1  19 16 16 16

3

3

34 30 9

30 5 5 50. 83 2 8 8 7  7 1  8 8

15 3

1 9 3 27 1  13 54. 4  3    2 2 1 2 2

62.

4

8

23

5

58. 15

10 7 10 7 1 10 3 6 10

8 1

30 26 7 4 26 23 26 4

8

23

5 6

64.

47

5

12 19  23 24

47  23

10 24 19

46  23

24 23

34 24 19 24 15 24

 23

5 8

2 3 20 11 20 11 4  5 11 55 1 66. 6  2       18 3 4 3 4 3 4 3 4 3 3

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

68.

7

3

7

7

14

15  20

6

15 1

 20

2

70. The sum of 8

7

14 13 42 14 3 4

and a number translates as

3 8  x. 4

Chapter 4: Fractions and Mixed Numbers

1 1 9 19 3 319 57 1  or 28 82. 4  6    2 3 2 3 23 2 2 57 1 The area is or 28 square yards. 2 2 1 13 5 65 1  16 84. 3  5    4 4 1 4 4 1 The perimeter is 16 yards. 4 86.

3

1

72. Divide a number by 6 translates as 11 1  x   6 . 11  

3 8

3

8 8 3

8 5 28 The remaining piece is 2

5

feet.

8

74. 27 3  1  111  1  111  4  111  111 4 4 4 4 4 1 1 This will make 111 quarter-pound hamburgers. 76. Subtract the standard track gauge in Portugal from the standard gauge in Spain. 9 18 65 65 20 10 11 11  65  65 20 20 7 20 7 Spain’s standard track gauge is inch wider 20 than that of Portugal. 78.

5

6

42

43

88. 23 1  4  47  4  47  1  47 1  47  5 7 2 2 1 2 4 24 8 8 7 The length of each side is 5 feet. 8 90.

2

8 5  41 8 3 1 8 The short crutch should be lengthened 3 1 inches. 8

7 15 1

15 8 6 15 The total duration for the eclipses in even8 numbered years is 6 minutes. 15

8

5  41 8

4

92.

7 15 37 2 60

28 60 37 2 60

4

It will be 1

4

17 20

88 60 37 2 60 51 17 1 1 60 20 3

minutes longer.

5 7 5  7 35 1    or 17 2 1 2 1 2 2 2 35 1 The area is or 17 square inches. 2 2

80. 5  3

1

Copyright © 2025 Pearson Education, Inc.

139


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers 94. 3 5   3 2   23  11 6 3 6 3   23 3   6 11 23 3  2  311 23  22 1 1 22 5  2 5 2 96. 17   14   17 14 9 3 9 3   5 6  17 14 9 9 14 6  16 14 9 9 8 2 9 7  5 7 5 98. 31   26   31  26 8 12 8 12   21 10  31  26 24 24 11  5 24 100. 1 3   3 1   7    7  4  2  4  2      7  2   4    7    72  42  7  4 1  2 2  3 4  3 7 102. 20   30   20   30   50 5 10 10 10 10     

1 3 17 19 104. 4  2    4 8 4 8 17 8  4 19 17  4  2  4 19 34  19 15  1 19 1 1  106. (5 y)    1 y  y  5 5 y 5    9  10   9 10   m  1 m  m 108.    m  10 9   10 9       7 3 3 110. a. 6  6 1  7 4 4 4 11 3 3 b. 5  5  2  7 

4 c.

7

12 16

7

4

3 4

The answer is d, all of them. 112. Incorrect; to multiply mixed numbers, first write

each mixed number as improper fraction. 114. answers may vary 19 1 9  12  9  21 20 10 The best sum estimate is d.

116. 11

118. answers may vary Section 4.8 Practice Exercises 2 1.

y

5

 12 2 5 2 y    3 3 12 3 5 24 y  12 3 4 5 8 y  12 12 13 y 12 3 2

140

4

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Check:

y

2

5

3 12 13 2 5  0 12 3 12 13 2  4 5  0 12 3 4 12 13 8 5  0 12 12 12 5 5  True 12 12 13 The solution is . 12 2.

1

y2

5 1

5 y  5 2 5 y  10 1 Check: y2 5 1 10 0 2 5 2  2 True The solution is 10. 3.

4.

Chapter 4: Fractions and Mixed Numbers

5

b  25 7 7 5 7  b   25 5 7 5 7  25 1b  5 b  35 5 Check: b  25 7 5  35 0 25 7 25  25 True The solution is 35. 7 2  x  10 5 10 7 10 2   x    7 10 7 5 10  2 x 7 5 4 x  7

Check:

7

x

2

10 5 4 2   0 10 7 5 28 2 0 70 5 2 2  True 5 5 4 The solution is  . 7 7

5x  

5.

3

4 1 3  5x    5 5 4 1 3 x  5 4 3 x  20

1

Check: 5 

5x  

3

3

4 3

0

20 4 15 3  0 20 4 3 3    True 4 4 3 The solution is  . 20 6. The LCD is 15. 11 3 x 15 5 11 3 15  x  15   15 5 11x  9 11x 9  11 11 9 x 11 The solution is 

9

.

11

Copyright © 2025 Pearson Education, Inc.

141


Chapter 4: Fractions and Mixed Numbers

7. Solve by multiplying by the LCD: The LCD is 8. y 3  2 8 4  y 3 8   8(2)  8  y 3 8  4  8   8(2) 8 4 y  6  16 y  6  6  16  6 y  10 Solve with fractions: y 3  2 8 4 y 3 3 3    2 8 4 4 4 y 8 3   8 4 4 y 5  8y 4 5 8  8 8 4 1 245 8  y  8 1 4 y  10 y

8.

x

3

2 8 4 10 3  02 8 4 10 6  02 8 8 16 02 8 2  2 True The solution is 10. Check:

x

1

5 5 x   1  5  5  x   5  5       x 1 5  5(x)  5  5      5 x  5x  1 4x  1 4x 1  4 4 1 x  4

142

ISM: Prealgebra and Introductory Algebra

To check, replace x with 

1

in the original 4 equation to see that a true statement results. The 1 solution is  . 4 9. The LCD is 10. y y 3   2 5 2  y  y 3  10    10   2   5y  2 y   3  10    10   10  2       55 y  2 y 15 2 5 y  2 y  2 y  2 y 15 3y  15 3y 15  3 3 y5 y y 3   Check: 2 5 2 5 5 3 0  12 5 2 1 2 0 11 2 2 1 1 2 2 True 2 2 The solution is 5. 9 y 9 3 y 10 10.      10 3 10 3 3 10 9  3 y 10   10  3 310 27 10 y   30 30 27 10 y  30 Vocabulary, Readiness & Video Check 4.8 1. The LCD of 3 and 6 is 6. 2. The LCD of 21 and 7 is 21. 3. The LCD of 5 and 3 is 15. 4. The LCD of 11 and 2 is 22. 5. addition property of equality

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

6. We want z with an understood coefficient of 1. 4 The coefficient of z is  . Two numbers are 9 reciprocals if their product is 1, so we use the multiplication property of equality to multiply 9 both sides of the equation by  , the reciprocal 4 4 of  . 9 7. We multiply by 12 because it is the LCD of all fractions in the equation. The equation no longer contains fractions.

4.

5

4

14 z    4  5 14 14 14 14 45 z 14 9 z 14 5

14 5

4

1

1 2 5 5x  11  4x   11 11  5  4  1  4 2 5   4  0 11 11  11  11 11     20 1 16 2 5    0  11 11 11 11 11 3 3   True 11 11 4 The solution is  . 11

x

z

2 5  4x   11 11 11 1 3 x   11 11 1 1 3 1 x     11 11 11 11 4 x  11

6. 5x 

Exercise Set 4.8 1 7  9 9 1 1 7 1 x     9 9 9 9 8 x  9 1 7 Check: x    9 9 8 1 7   0 9 9 9 8 1 7 0 9 9 7 7   True 9 9 8 The solution is  . 9

5

14 14 9 5 4  0 14 14 14 95 4 0 14 14 4  4 True  14 14 9 The solution is . 14

8. Multiplying through by the LCD is a step in solving an equation, but we don’t have an equationwe have an expression.

2.

z

Check:

Check:

8.

y

8

1

9 3 8 8 1 8 y    9 9 3 9 1 3 8 y  3 3 9 3 8 y  9 9 11 y 9

Copyright © 2025 Pearson Education, Inc.

143


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

Check:

y

8

1

9 3 11 8 1  0 9 9 3 3 1 0 9 3 1 1  True 3 3 11 The solution is . 9 1

10.

a  

11  8x  7 2 14 11 x  7 14 2 2 11 2 x    7 7 14 7 11 2  2 x  14 7  2 11 4 x  14 14 15 x  14

12. 9x 

144

2

 8x 

11

7 14  15  2  15  11 9  8 0      14  7  14  14 135 4 120 11   0 14 14 14 14 11 11  True 14 14 15 The solution is . 14

3

2 8 1 1 1 3   a    2 2 2 8 1 4 3 a  24 8 4 3 a  8 8 7 a 8 1 3 Check: a 2 8 1  7  3   0  2 8 8   4 7 3  0 8 8 8 3 3   True 8 8 7 The solution is  . 8

9x 

Check:

14.

1

 y

7

4 10 1 7  y 7  7   4 10 10 10 1 5 7  2   y 4  5 10  2 5 14   y 20 20 9 y 20 1 7   y Check: 4 10 1 9 7  4 0 20  10 1 5 9 72  4  5 0 20 10  2 5  0 9  14 20 205 20 5   True 20 20 9 The solution is . 20

2

5x  4

16.

1 1   (5x)    4 5 5 4 x 5 18.

1

x6

3 1

3 x  3 6 3 x  18

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

20.

   

Chapter 4: Fractions and Mixed Numbers

4

x  8 7 7 4 7  x   8 4 7 4 x

32.

56

4 x  14 22.

11 2 x 10 7 10 11 10 2   x    11 10 11 7 20 x 77 

1 2

26.

28.

12

36.

25 1 1 12   4z     4 4 25 12 z 4  25 3 z 25 3

7 y  20  35   7  20 y  20   5   20      12 y  7 12 y 7  12 12 7 y  12 x

30.

1

4z  

7 1   x5  5 7 5 1  5  5  5   x 5   5 1  7 5 x5  7 x55  75 x  12

1

x

3 4 12 2 1  x  12 3  4   12  12      2 1 12 12 x 3      4 83  x 5 x

12 5  2 12 5 z 24

 2z 

2

34.

2z   5

24.

x  x  6 3 x  3  x  3(6) 3     x 3  3(x)  18  3    x  3x  18 2x  18 2x 18  2 2 x9

a a 5   2 7 2 a  a 5  14    14   2     a 5 7 7a  14 2 14  7 2 7a  2a  35 7a  2a  2a  2a  35 5a  35 5a 35  5 5 a7

5 y 5 8 y 9 40 9 y 40  9 y  38.           9 8 9 8 8 9 72 72 72 40. 2 

42.

7x

3

2 3 7x 6 7x 6  7x      1 3 3 3 3 3

9x 5x 9x 3 5x 4 27x 20x 7x         8 6 8 3 6 4 24 24 24

Copyright © 2025 Pearson Education, Inc.

145


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers 2

44.

y

3 54.

5 10 5 2 5 3  y  2 5 2 10 15 y 20 3 y 4

56.

x  2

4  x  4  (2) 4 x  8

x 21    45 x4 20 21 20   20    20 5 4 4 x 20   20   21 5 4 16  5x  21 16  5x 16  2116 5x  5 5x 5  5 5 x 1

58.

3 9  x 24 9 4 43   x    3 4 3 2 49 x 3 2 2  2  3 3 x 3 2 x  6 y

60.

5 5 a 16 6 16 5 16 5  a  5 16 5 6 2 8  5 a 5 8 23 a

48.

1 4 1

4

46.

8 1 8 2 1 11 16 11 5         11 2 11 2 2 11 22 22 22

 4  y 3  y 3  3(4  y)  3    y  3(4)  3 y y  12  3y y  3y  12  3y  3y 2 y  12 2 y 12  2 2 y6

3 30n  34n 

50.

4n 

3 20 3

20 1 1 3   4n    4 4 20 3 n 80 y

52. 

146

1

2  7 7 y   1  7   2  7   7 7     y 7  72 1 7 y 14  1 y 14 14  114 y  15 

62.

 

7 5 4 x  9 18 18 7 9  x 9 18 9 7 9 9   x    7 9 7 18 99 x 7 9 2 9 x 14 

64. 27x  30x 

3x 

4 9 4

9 1 4   3x    3 3 9 4 x  27 1

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

66.

68.

70.

5

1 7 y  1 7  5 4  2 10 20  y   20    4 2 10     1 7 25 y  20   20  2 10 25 y  10 14 25 y  4 25 y 4  25 25 4 y  25

Chapter 4: Fractions and Mixed Numbers 

x

76. a.

b.

a a 1   6 3 2 a  a 1  6  6  6  3  2    a 1 a  6  6 3 2 a  2a  3 a  2a  2a  3  2a a  3 a 3  1 1 a  3

78. 

y y 2 4 5 3 y  y  15  2   15  4  5  3  y y 15  15  2  15  15  4 5 3 3y  30  5 y  60 3y  5 y  30  5 y  5 y  60 2 y  30  60 2 y  30  30  60  30 2 y  30 2 y 30  2 2 y  15

80.

5  2  x6 53 6     6(2) 6 3     x 5 6 6  12 6      3 x 10  12 x 10 10  12 10 x  22 x 5 x 5 2 x 10 x 10        6 3 6 3 2 6 6 6

19 353x 23   53 1431 27 19  353x 23  1431  1431    1431 27  53 353x 23 27 19  1431 1431 1431 27 513  353x 1219 513 1219  353x 1219 1219 706  353x 706 353x  353 353 2  x 5 3 5 4 5 4 5 4 5       12 4 12 3 12  3 4  3  3 9 5 The length is inch. 9

Chapter 4 Vocabulary Check 1. Two numbers are reciprocals of each other if their product is 1. 2. A composite number is a natural number greater than 1 that is not prime. 3. Fractions that represent the same portion of a whole are called equivalent fractions.

72. To round 576 to the nearest hundred, observe that the digit in the tens place is 7. Since this digit is at least 5, we add 1 to the digit in the hundreds place. 576 rounded to the nearest hundred is 600. 74. To round 2333 to the nearest ten, observe that the digit in the ones place is 3. Since this digit is less than 5, we do not add 1 to the digit in the tens place. 2333 rounded to the nearest ten is 2330.

4. An improper fraction is a fraction whose numerator is greater than or equal to its denominator. 5. A prime number is a natural number greater than 1 whose only factors are 1 and itself. 6. A fraction is in simplest form when the numerator and the denominator have no factors in common other than 1.

Copyright © 2025 Pearson Education, Inc.

147


Chapter 4: Fractions and Mixed Numbers

ISM: Prealgebra and Introductory Algebra

7. A proper fraction is one whose numerator is less than its denominator. 8. A mixed number contains a whole number part and a fraction part. 9. In the fraction

7

, the 7 is called the numerator and the 9 is called the denominator.

9 10. The prime factorization of a number is the factorization in which all the factors are prime numbers. 11. The fraction

3

is undefined.

0 12. The fraction

0

 0.

5 13. Fractions that have the same denominator are called like fractions. 14. The LCM of the denominators in a list of fractions is called the least common denominator. 15. A fraction whose numerator or denominator or both numerator and denominator contain fractions is called a complex fraction. a 16. In

b

c

, a  d and b  c are called cross products.

d

Chapter 4 Review 1. 2 out of 6 equal parts are shaded:

2 6

2. 4 out of 7 equal parts are shaded:

4 7

3. Each part is

1

of a whole and there are 7 parts shaded, or 2 wholes and 1 more part:

3 4. Each part is

1

of a whole and there are 13 parts shaded, or 3 wholes and 1 more part:

148

131  23 = 108 108 cars are not blue. not blue 108 total 131 108 of the cars on the lot are not blue. 131 Copyright © 2025 Pearson Education, Inc.

1 3

13 4

5. successful free throws 11 total free throws 12 11 of the free throws were made. 12

b.

or 2

3

4

6. a.

7

or 3

1 4


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

3 7.   1 3 8.

9.

10.

20 20 0 1

1

0

4 is undefined 0

11.

12.

13.

14. 3 15. 4 15 12 3 15 3 3 4 4 3 16. 13 39 39 0 39 3 13 17. 2

1 5  2 1 10 1 11    5 5 5 5

8 9  3  8 27  8 35   18. 3  9 9 9 9 19.

12 4  3 3   28 7  4 7

20.

15 3 5 5   27 3 9 9 Copyright © 2025 Pearson Education, Inc.

149


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

33.  24x  15  24x 15    3  5 8x3 5 8x 8  3 x  5  3  5 8  x  x  x 3 3  x x 9  2 x 

29ab

29  a  b

32  a  b  c

32abc 18xyz 24.

3 2 22.  36 y   1 36  y  y  y   y 72 y 2  36  y 2

23.

 1 21.  25x   1 25  x    3 25  x  x 3x 75x2

29 32c

27 y3

18  x  y  z

18z  23 x  y 23

7

27 y3  7

3 9  y  y  y  7

y

34.

45x2 y  9  5  x  x  y  5x 3 2 25. 9  3 x  y  y  y 27xy 3y

    21 18 y2 2118 y2 3 7  9  2  y  y 2 3 111 1  1  1  1  1   35.  3             3  3 3 27    3  3  3 

42ab2c  6  7  a  b  b  c  7b 3 2 65 a b  c  c  c 26. 30abc 5c

 5     5    5   5  5  25 12 12 12   36.   12  12 144     

27.

28.

23xy

3 3 3 8 3 8 3 4  2 2     2 37.        4 8 4 3 43 1 4  3 1

8 42 2   12 inches 12 4  3 3 2 8 inches represents of a foot. 3 8 inches

2

38.

15  6 = 9 cars are not white. 9 non-white cars 9 3 3 3    15 total cars 15 3 5 5 3 of the cars are not white. 5

29.

Not equivalent, since the cross products are not equal: 34  4 = 136 and 10  14 = 140

30.

Equivalent, since the cross products are equal: 30  15 = 450 and 50  9 = 450

21a 7a 21a 5    4 5 4 7a 21a  5  4  7a 7  3 a  5  47a 3 5  4 15  4

9 1 9  3  9  3 27  39.           2 3 2  1  2 1 2  5 5 2y 5 1 5 1 5     40.   2 y    3 3 1 3 2y 3 2 y 6y

3 1 31 3 31.    5 2 5  2 10 65 5   6  5   5   32.  6  5   7 12 7 12 762 72 14 

150

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

41. x  y 

9

52. 4 = 2  2 8=222 12 = 2  2  3 LCD = 2  2  2  3 = 24

3

7 4 9 4   7 3 94  73 3 3 4  73 3 4  7 12  7

42. ab  7 

Chapter 4: Fractions and Mixed Numbers

7 9 79 63     10 1 10 110 10

53.

2 2 10 2 10 20     3 3 10 310 30

54.

5 5 7 5  7 35     8 8 7 8  7 56

55.

7a 7a 7 7a  7 49a     6 6 7 67 42

56.

9b 9b 5 9b  5 45b     4 4 5 45 20

9

43. area  length  width 

11 7 11 7 77    6 8 6  8 48

57.

4

The area is

2 2 22 4    3 3 3 3 9

square meter.

58.

59.

7 3 7  3 10    11 11 11 11

47.

4 2 4  2 6 23 2      9 9 9 9 3 3 3 1

5

12 12 48. 49.

11x x 11x  x 12x 3 4  x 4x      15 15 15 15 3 5 5 4y

21 50.

1  5 4 1 4 1    12 12 3 4 3

4

3

4y 3 21

2

21 

3

15 15 15

4  3  2 1 1   15 15 15

51. 3 = 3 x=x LCD = 3  x = 3x

5

5 2   5  2  10 9 y 2 9 y  2 18 y 

60. 46.

9y

9 45.

 4  10  4 10  40 5x 5x 10 5x 10 50x 

77 The area is square feet. 48 44. area  side  side 

4

3 2 1 3  2 1 6 2 3 3       8 8 8 8 8 2 4 4 3 He did of his homework that evening. 4 9

3

9

3

9 393 16 16 16 16 16 24  16 38  2 8 3  2 3 The perimeter is miles. 2 

61. The LCD is 18. 7 2 7 2  2 7 4 11       18 9 18 9  2 18 18 18 62. The LCD is 26. 4 1 4 2 1 8 1 7       13 26 13 2 26 26 26 26 63. The LCD is 12. 1 1 1 4 1 3 4 3  1       3 4 3 4 4  3 12 12 12

Copyright © 2025 Pearson Education, Inc.

151


Chapter 4: Fractions and Mixed Numbers

64. The LCD is 12. 2 1 2  4 1 3 8 3  5       3 4 3 4 4  3 12 12 12 65. The LCD is 55. 5x 2 5x  5 2 25x 2 25x  2       11 55 11 5 55 55 55 55 66. The LCD is 15. 4 b 4 b  3 4 3b 4  3b       15 5 15 5  3 15 15 15 67. The LCD is 36. 5 y 2 y 5 y  3 2 y  4 15 y 8 y 7 y       12 9 12  3 9  4 36 36 36 68. The LCD is 18. 7 x 2x 7x 2x  2 7x 4x 11x       18 9 18 9  2 18 18 18 69. The LCD is 9y. 4 5 4  y 5  9 4 y 45 4 y  45   9 y 9  y  9 y  y 9  9y 9 y 70. The LCD is 11y. 9 3 9  y 311 9 y 33 9 y  33       11 y 11 y y 11 11y 11y 11y 71. The LCD is 150. 4 23 7 4  6 23 2 7  3      25 75 50 25  6 75  2 50  3 24 46 21    150 150 150 91  150 72. The LCD is 18. 2 2 1 2  6 2  2 1 3      3 9 6 3 6 9  2 6  3 12 4 3    18 18 18 5  18

152

ISM: Prealgebra and Introductory Algebra

73. The LCD is 18. 2 5 2 5 2 2 53 2 2 53        9 6 9 6 92 63 9 2 63 4 15 4 15     18 18 18 18 38  18 2 19  29 19  9 19 The perimeter is 9 meters. 74. The LCD is 10. 1 3 7 1 2 3  2 7      5 5 10 5  2 5  2 10 2 6 7    10 10 10 15  10 3 5  25 3 2 The perimeter is

3 feet. 2

75. The LCD is 50. 9 3 92 3 18 3 21       25 50 25  2 50 50 50 50 21 of the donors have type A blood. 50 76. The LCD is 12. 2 5 24 5 8 5 3 1 3 1         3 12 3  4 12 12 12 12 4  3 4 1 The difference in length is yard. 4

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 2x

77.

2x

5 7  10

7  5 10

Chapter 4: Fractions and Mixed Numbers 1

x 81.

yz

2x 10  5 7 2x 10  57 2 x 5 2  5 7 4x  7 

78.

15 20  24 15  4



 4 10

20  2  20  1 5

2

20 43  20 107 8 10  15 14 2  1  2

5 1 12 y 56  14 80. 6  4   1 12 y  1

12 y

12 y





1 10 y  3y  1 7y  1  7 y

84.

12 y  5 12 y  1 6

   

x  y 12   23  4 z 5 1 30  2 2 3  4 30  5 1 30   30  2 2 3  6 4 15  20  24 5  24 5 1 4 83.    5 2 4 5  2  4 8     13 2 5 13 1 5 131 5 13

82.

20 3  7 

 4  3 5

3y 7  3y  11  3y  7  3y  7  3y 11 7 7 7 11 7 11 11  7 20 2  1 21 5 2 5 2 3 7 4 10

2

2

30  3  5 15  30  2  30  4

79.

2

 23  45 30  1

4

85.

2

 1  2 1     27  3  27 9 2 1 3   27 9  3 2 3   27 27 1  27 2

9 1 2 1 9 1 2 1      10 3 5 11 10  3 5 11 3 2   10 55 311 2  2   10 11 55  2 33 4   110 110 29  110 

Copyright © 2025 Pearson Education, Inc.

153


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

86.  2   1  3    2   1 2  3   7 5 10 7 5  2 10      2  2 3       72 510 10    7 10 25  7 25 1  7 

87.

7

3

8 5 9 6 1 3 12

3 hamburger patty.

9 24 20 9 24 2 3 24 31 7 7 19  19 1  20 24 24 24 7

89. 1

66 55 15 5 55 51 2 55 7

5

rounds to 2. 8 1 3 5 rounds to 3.

91. 34115 1  341  31  341  2  11 31 2  22 2 1 2 1 31 1 31 We would expect 22 miles on one gallon.

154

3 3 13 3 13 3 2 13 6 7         10 5 10 5 10 5  2 10 10 10 7 The unknown measurement is yard. 10

94. 1

1  3 2  3 5  12   15   12   15   27 7  14  14  14  14

7 7 7 7   96. 23  24    24  23  8 10 8   10 7 28 68 24 24 23 10 40 40 7 35 35  23  23  23 8 40 40 33 40 7 7 33 23  24  8 10 40 1  7 16  27  97. 3   2        5  10  5  10  16  10    5   27    16  5  2  5  27 32  27 5 1 27 

An estimate is 2  3 = 6. 5 1 13 16 13 16 138  2 26 1 1  3     5  8 5 8 5 8 5 5 5 85  3 2 27 9 27 7 9  3 7 21 1 90. 6 1       5 49 4 7 4 7 4 9 4 4

3

7 3 4 1 93. 18 10  8  8 8 8 8 2 1 17 2 17 1 17 1 8 2      4 2 2 1 2 2 4 4 1 Each measurement is 4 inches. 4

95.

1 88. 8 5 rounds to 8. 3 5 rounds to 5. 11 An estimate is 8  5 = 3. 1 11 8 8 5 55 3 15 5 5 55 11

92. 7 1  5  22  5  22  5  110  36 2 3 3 1 31 3 3 110 2 There are or 36 grams of fat in a 5-ounce

1 3 9 7 63 15 98. 2 1       3 4 4 4 4 16 16

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

2 1 a  2 32 61 2 a    3 3 6 3

99.

      

Chapter 4: Fractions and Mixed Numbers

104.

1 2 2  6 3 2 1 4 a  6 6 5 a 6 a

7  8x   5 1 10 7 x   5 10 1 1 7 1 x     5 5 10 5 7 2 x  10 10 9 x 10

100. 9x 

1

3  x6 5 5 5 3   x   6 3 5 3 x  10

101.

2

102.

y

105.

y 11 2 5 5 y   11  5   2   5  5 5     y 5   5  2  11 5 y 10  11 y 10 10  1110 y 1 1

x 17    1 6 x4 12 17 12   12    12 6 4 1 x 12   12   17 6 4 2  3x  17 2  3x  2  17  2 3x  15 3x 15  3 3 x5

106.

4

9 3 9 2 9 4  y   2 9 2 3 9 4 y 23 3 3 2  2 y 6 23 y 1 y  6 107.

x 5 x 1    5 4 2 20  x 5  x 1  20     20   5 4   x 5 x 1 20  2 20 20  20   20  5 4 2 20 4x  25  10x 1 4x  25 10x  10x 110x 25  6x  1 25  6x  25  1  25 6x  24 6x 24  6 6 x  4 6 5 65    3 2  5  1 15 8 15 8 5  3  2  4 4 

x 103. 

3  

6

7 7 x   6  7   3   7    7 7     x 7   7  3  6 7 x  21  6 x  21 21  6  21 x  15 

Copyright © 2025 Pearson Education, Inc.

155


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers 5x2 108.

10x3

5x2

y3

y

y   

y3

115. 12

10x3

5x2  y3

9

1

rounds to 12.

7 3

rounds to 10. 5 An estimate is 12  10 = 2. 1 5 12 12 7 35 3 21  9  9 5 35

y 10x3 5 x  x  y  y  y y 5 2 x  x  x y2 2x

3 1 3 1 2 1 2 1      10 10 10 10 5  2 5 7 2 72 72 7 110.      8x 3 8x  3 24 x3 12x 109.

2x 111.

x

5 5 2 2   

112.  5  11 55

11 5

55

8 2  8 3

4 1 8 1 8  8

16  6 8 1 22 1  or 3 7 7

117.  3   2  4    3  2  3  4   8 3 9 8 3 3 9      3  6 4      8  9 9  3  2    8  9    3 2  89 3 2  2  4  3 3 1  12 



25 55

2



55

rounds to 3.

8

1 9 rounds to 10. 2 An estimate is 3 + 10 = 13. 7 7 2 2 8 8 1 4 9 9 2 8 11 3 3 11  111  12 8 8 8

156

 4 81  1  8

8 2 3

3 1 8 1 1     113. 5 4 5 4 8 4   5 1 8 4  5 1 32 2  or  6 5 5 7

4  1 1 8

2x 4 x 3      3 4 3 4 43 8x 3x   12 12 8x  3x  12 11x  12

114. 2

2 3

116.

23 

55

118. 11x  2 10x   13 7 14 2 13 x   7 14 2 2 13 2 x     7 7 14 7 13 2  2 x  14 7  2 13 4 x  14 14 9 x 14

Copyright © 2025 Pearson Education, Inc.

11  9

40 35 21

35 19 2 35


ISM: Prealgebra and Introductory Algebra

119.

120.

Chapter 4: Fractions and Mixed Numbers

3 4  x 5 15 5 3 5 4   x    3 5 3 15 5 4 x 315 5 4 x 3 5  3 4 x 9

5. 4

2 23 16 7 23 7  2 ; B 8 8

8 2 8 2 16    , the operation is 11 11 1111 121 multiplication; C.

7. Since

2 8 11 8 11 8 2  4        4, the 11 11 11 2 11 2 2 2 operation is division; D.

8. Since

4 1 81 11 8111 81 1 122. 7 11  5 2  11  2  11 2  2 or 40 2 81 1 or 40 square feet. The area is 2 2 Chapter 4 Getting Ready for the Test

2.

2 2 2

3.

2

1 2

 1; B

2

8

2 82 6    , the operation is 11 11 11 11 subtraction; B.

9. Since

8

2 8  2 10    , the operation is 11 11 11 11 addition; A.

10. Since

11.

5

7 12.

13.

1

8

5 1

7

7

6

; F 7

5 1 5 1 5    ; H 7 7 7  7 49 5

7 5 14.

 1; A

3 5  4  3 20  3 23    ; C 5 5 5 5

6. 8

x 5 3   12 6 4 3   x 5 12   12    12 6   4      x 5 12  12   9 12 6 x 10  9 x 10 10  9 10 x  19

2

 0; C

2

1 50 11  121. 50  5  2 1 2 50  2 11   1 2 2 100 11   2 2 89  2 1  44 2 1 The length of the remaining piece is 44 yards. 2

1.

0

4.

7

1

7 

1

5 7 57 5     5; B 7 1 7 1 1 5 1

7

4  ; D 7 7

15. Since multiplication and division are performed before addition and subtraction, the first operation that should be performed to simplify 1 1 1 1 1   is the multiplication of and ; C. 2 5 4 5 4

is undefined; D

0

Copyright © 2025 Pearson Education, Inc.

157


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

16. Since operations in parentheses (grouping symbols) are performed first, the first operation 1 1 1 that should be performed to simplify     2 5 4 1 1 is the addition of and ; A. 2 5

18 3. 4 75 4 35 32 3 75 3  18 4 4

17. Since multiplication and division are performed in order from left to right, the first operation that 1 1 1 should be performed to simplify   is the 2 5 4 1 1 division of by ; D. 2 5

4.

18. Since operations in parentheses (grouping symbols) are performed first, the first 1operation 1 1 that should be performed to simplify      2  5 4  1 1 is the multiplication of and ; C. 5 4

6. Check the cross products. 5  11 = 55 7  8 = 56 Since 55  56, the fractions are not equivalent.

x

19.

3

2 10 5  x 3 10 10  5  10  2    x   3  10  10   10  2  10   5  x  6  20 The correct equivalent equation is choice D.

20. Since

2

1

1

does not contain an equal sign, it is 3 9 an expression; A.

21. Since

2

3 9 equation; B.

contains an equal sign, it is an

Chapter 4 Test 1. 7 of the 16 equal parts are shaded:

2. 7

5.  42x   3 14  x   3x 70 5 14 5

7. Check the cross products. 6  63 = 378 27  14 = 378 Since 378 = 378, the fractions are equivalent. 2

8. 84  2  42  2  2  21  2  2  3  7  2  3  7 9. 495  3 165  3  3  55  3  3  5 11  32  5 11 10.

2 3 7  2 21  2 23    3 3 3 3

7

. 16

12.

7x x 7x  x 8x    9 9 9 9

13. The LCD is 7x. 1 3 1 x 3 7 x 21 x  21         7 x 7 x x 7 7x 7 x 7x 3 3 14. xy  z  xy  z  x  y  y  y  z  y  y  y2 z xy z  xy x y z 1

2 8 2 8 16 15.      3 15 315 45 16.

158

4 3 4 4 44 4      4 4 4 3 43 3

11.  4  4   4  4   4 3 4 3 4 3

x 9

24 64 4   210 6  7  5 35

9a 2 9a 2  2 9a 4 9a  4       10 5 10 5  2 10 10 10

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers

2 17.  8  2  8  2  10   2  5   15 y 15 y 15 y 15 y 3 5  y 3y 18. 3a  16  3a 16  3 a 8  2  1  1 8 6a3 8  6a3 8  2  3 a  a  a a  a a2 

19.

11 3 5 11 2 3 3 5      12 8 24 12  2 8  3 24 22 9 5    24 24 24 22  9  5  24 18  24

3 6  46

 20.

7

3

35 40 16 7 40 30 2 40 81 1 1 12  12  2  14 40 40 40 3

8 2 7 5 3 2 4

21.

19 2

11 11 3 2 11 8 16 18

3 11

2  5  3 9 3 2  2 59  2 45 1  or 22 2 2 2  1 2  6 1  24.    6         7  6 7  1 6  2  6  6 1       7  1 6 6  2  36 1      6 6    7 2 35   7 6 2  35  76 275  7  23 5 2   or 1 3 3 

3 4

23. 3 1  6 3  10  27 3 4 3 4 10  27  3 4

25.

1 2 3 1 3 3 1 3  3 9        2 3 4 2 2 4 2  2  4 16 2

        4    6 6  2  3 9    4 6   9 9   16 6 9 6   16 9 9 23  2 8  9 3  8

11 16 22. 

3

3



2

 3   2 5   3   2 2 5          26.  4   3 6   4 2  3 2 6       3   4 5  

16

12   12 3 3 16 12  3 3 16  3 4  3 3 64 1  or 21 3 3 

Copyright © 2025 Pearson Education, Inc.

159


ISM: Prealgebra and Introductory Algebra

Chapter 4: Fractions and Mixed Numbers 5 4 7   52 44 7    3 27.      3    6 3 12   6   10 16 7        3 2 3 4 12  12 12 12  33 3   12 1 33 1   12 3 331  12  3 11 31  12  3 11  12 28.

5x 7

2

20x2 21

5x 7

20x 21

5x 21  7 20x2 5  x  3 7  7  45 x  x 3  4x 

  14  5 14  3 70  6 76 29. 2  71  14 2  17  14  2 14  17  28  7  21 2 2 2 5 3

160

x 24 x 5 5 x   24  5  x  5    5  5     x 5   5  x  24 5 x  5x  24 6x  24 6x 24  6 6 x  4 

3 3  x 8 4 8 3 8 3   x    3 8 3 4 83 x 3 4 423 x 3 4 x  2

2 32.

x

5



x

3 4 12 2 2 x  5 x  12 3  4   12  12  2      2 x 5 x 12  12   12  12  3 4 12 2 8  3x  5  6x 8  3x  6x  5  6x  6x 8  3x  5 8  8  3x  5  8 3x  3 3x 3 3  3 x 1

14 5  3

13 or 3 21 30.

31.

1  1  5 1 5 1 5  2 33. 5x  5      2  2  1 2 1 2 2 34. x  y 

1

3

7

2 8 1 31   2 8 1 8   2 31 18  2  31 1 2  4  2  31 4  31

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

35.

6 2

1

6

2 3

2

4

2

5

4 3

2

4

The remaining piece is 3

39. perimeter  1

4 3

3 feet.

17 50

Food:

3

25 17 3 17 3 2 17 6 23       50 25 50 25  2 50 50 50 23 of spending goes for housing and food 50 combined. 37. Education:

50

3 258 43 258 4 43 6  4       24 4 1 4 1 43 1 43 Expect to travel 24 miles on 1 gallon of gas.

40. 258 10

2. 115 in words is one hundred fifteen.

3

100 1 4 3 1 2 44 3      50 25 100 50  2 25  4 100 2 16 3  100 100 100 21  100 21 of spending goes for education, 100 transportation, and clothing. 38.

3. 27,034 in words is twenty-seven thousand, thirty-four. 4. 6573 in words is six thousand, five hundred seventy-three. 5.

46  713 759

6.

587  44 631

7.

543  29 514 Check:

2

 47, 000  2  47, 000 25 1 2  25 1880  25 1 2 1880  1  3760 Expect $3760 was spent on health care. 25

2

1. 546 in words is five hundred forty-six.

4 25

Clothing:

1

Cumulative Review Chapters 14

1

Transportation:

2

3 3 3 2 3 2     3 3 3 3 10  3 1 3 3 2 2 area  length  width  1  3 3 1 The perimeter is 3 feet and the area is 3 2 square foot. 3

4 3 3 4 4

36. Housing:

6

Chapter 4: Fractions and Mixed Numbers

8.

514  29 543

995  62 933

Copyright © 2025 Pearson Education, Inc.

161


Chapter 4: Fractions and Mixed Numbers

Check:

933  62 995

15. 7  7  7  73 16. 7  7  72

9. To round 278,362 to the nearest thousand, observe that the digit in the hundreds place is 3. Since this digit is less than 5, we do not add 1 to the digit in the thousands place. 278,362 rounded to the nearest thousand is 278,000. 10. To round 1436 to the nearest ten, observe that the digit in the ones place is 6. Since this digit is at least 5, we add 1 to the digit in the tens place. 1436 rounded to the nearest ten is 1440. 11.

12.

96  12 192 960 1152 Twelve boxes of single-serve coffee maker pods 22. hold 1152 pods. 435  3 1305 The family travels 1305 miles in 3 days.

7089 13. 8 56, 717 56 07 0 71 64 77 72 5

17. 3  3  3 3 9  9  9  34  93 18. 9  9  9  9  5  5  94  52 19. 2(x  y) = 2(6  3) = 2(3) = 6 20. 8a  3(b  5)  8  5  3(9  5)  8  5  3 4  40 12  52 21. Let 0 represent the surface of Earth. Then 7257 feet below the surface is represented as 7257. Let 0 represent a temperature of 0F. Then 21F below zero is represented as 21. 23. 7 + 3 = 4 24. 3 + 8 = 5 25. 7  8  (5) 1  7  8  5 1  7  (8)  5  (1)  1 5  (1)  4  (1) 3 26. 6  (8)  (9)  3  6  (8)  9  3  2  9  3  73  10 27. (5)2  (5)(5)  25

56,717  8 = 7089 R 5 Check: 7089  8 + 5 = 56,712 + 5 = 56,717

28. 24  2  2  2  2  16 29. 3(4  7)  (2)  5  3(3)  (2)  5  9  (2)  (5)  11 (5)  16

379 14. 12 4558 36 95 84 118 108 10

2 2 2 2 30. (20  5 )  (20  25)  (5)  25

31. 2 y  6  4 y  8  (2 y  4 y)  (6  8)  6 y  2

4558  12 = 379 R 10 Check: 379  12 + 10 = 4548 + 10 = 4558 162

ISM: Prealgebra and Introductory Algebra

32. 5x  1 + x + 10 = (5x + x) + (1 + 10) = 6x + 9

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 33. 5x  2  4x  7 19 x  2  12 x  2  2  12  2 x  14

40.

41. 42x  6  7  x  7x 66 6 11 11

17  7x  3  3x  21 3x 20  7x  21 6x 20  7x  7x  21 6x  7x 20  21 x 20  21  21 21 x 1  x or x  1

36.

7 5 39 35 4 39 4 7 5 5

34. 9 y 1  8 y  3  20 y 1  17 y 11  17 1 y  18 35.

Chapter 4: Fractions and Mixed Numbers

70

42.

105 y

35  2 2  35  3  y 3y

1 7 10 7 43. 3    3 8 3 8 10  7  38 25 7  3 2  4 57  3 4 35 11  or 2 12 12

9x  2  7x  24 9x  7x  2  7x  7x  24 2x  2  24 2x  2  2  24  2 2x  22 2x 22  2 2 x  11

37. Two of five equal parts are shaded:

2

44.

2 3

4 

2 4 24 8 2    or 2 3 1 3 1 3 3

5 38. 156  2  78   2  2  39    2  2  3  13

45.

5 3 5 4 54 5 4 5 5        16 4 16 3 16  3 4  4  3 4  3 12

46. 1

1 3 11 28 11 5 11 5 11 5       10 5 10 5 10 28 5  2  28 56

156  22  3 13

39. a.

4

b.

1

2 9  4  2 36  2 38    9 9 9 9

8 111 8 11 8 19    11 11 11 11

Copyright © 2025 Pearson Education, Inc.

163


Chapter 5 Section 5.1 Practice Exercises 1. a.

11. 209.986  209

1000 2  493  209 2  500 493  209 500

0.06 in words is six hundredths.

b.

200.073 in words is negative two hundred and seventy-three thousandths.

c.

0.0829 in words in eight hundred twentynine ten-thousandths.

2. 87.31 in words is eighty-seven and thirty-one hundredths. 3. 52.1085 in words is fifty-two and one thousand eighty-five ten-thousandths. 4. The check should be paid to “CLECO,” for the amount of “207.40,” which is written in words as 40 “Two hundred seven and .” 100

5. Five hundred and ninety-six hundredths is 500.96. 6. Thirty-nine and forty-two thousandths is 39.042. 7. 0.051 

1000 97 100

9. 0.12 

12 3 4 3   100 25  4 25

10. 64.8  64

8 10

 64

12. 29.208 26.28   0 < 8 so 26.208 < 26.28 13. 0.12 0.026   1 > 0 so 0.12 > 0.026 14. 0.039 0.0309   9 > 0 so 0.039 > 0.0309 Thus, 0.039 < 0.0309. 15. To round 482.7817 to the nearest thousandth, observe that the digit in the ten-thousandths place is 7. Since this digit is at least 5, we add 1 to the digit in the thousandths place. The number 482.7817 rounded to the nearest thousandth is 482.782. 16. To round 0.032 to the nearest hundredth, observe that the digit in the thousandths place is 2. Since this digit is less than 5, we do not add 1 to the digit in the hundredths place. The number 0.032 rounded to the nearest hundredth is 0.03.

51

8. 29.97  29

986

24 25

 64

4 5

17. To round 3.14159265 to the nearest tenthousandth, observe that the digit in the hundredthousandths place is 9. Since this digit is at least 5, we add 1 to the digit in the ten-thousandths place. The number 3.14159265 rounded to the nearest the ten-thousandth is 3.1416, or   3.1416. 18. $24.62 rounded to the nearest dollar is $25, since 6  5.

164

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

Vocabulary, Readiness & Video Check 5.1 1. The number “twenty and eight hundredths” is written in words and “20.08” is written in standard form. 2. Another name for the distance around a circle is its circumference. 3. Like fractions, decimals are used to denote part of a whole. 4. When writing a decimal number in words, the decimal point is written as and. 5. The place value tenths is to the right of the decimal point while tens is to the left of the decimal point. 6. The decimal point in a whole number is after the last digit. 7. as “and” 8. 9.8 is nine and eight tenthsthe 8 should be in the hundredths place; 9.08 9. Reading a decimal correctly gives you the correct place value, which tells you the denominator of your equivalent fraction. 10. left to right 11. When rounding, we look to the digit to the right of the place value we’re rounding to. In this case we look to the hundredths-place digit, which is 7. Exercise Set 5.1 2. 9.57 in words is nine and fifty-seven hundredths. 4. 47.65 in words is forty-seven and sixty-five hundredths. 6. 0.495 in words is negative four hundred ninety-five thousandths. 8. 233.056 in words is two hundred thirty-three and fifty-six thousandths. 10. 5000.02 in words is five thousand and two hundredths. 12. 410.3 in words is four hundred ten and three tenths. 14. 31.04 in words is thirty-one and four hundredths. 16. The check should be paid to “Amani Dupre,” for the amount “513.70,” which is written in words as “Five hundred 70 thirteen and .” 100

Copyright © 2025 Pearson Education, Inc.

165


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

18. The check should be paid to “Kroger,” for the amount of “387.49,” which is written in words as “Three hundred 49 eighty-seven and .” 100

20. Five and one tenth is 5.1. 22. Twelve and six hundredths is 12.06. 24. Negative eight hundred four and three hundred ninety-nine thousandths is 804.399. 26. Eighty-three ten-thousandths is 0.0083. 28. 0.9 

9 10

30. 0.39  32. 0.8 

39 100

8 10

34. 5.4  5

24 4  25 5

4 10

5

36. 0.024  

22 2 5 25 5

24 1000 5

38. 9.005  9

1000 40. 11.406  11



9

406 1000

38   3 125  8 125

1 5  9 1 200  5 200

 11

2  203 203  11 2  500 500

42. 0.2006  2006  2 1003  1003 10, 000 2  5000 5000 44. Five tenths is 0.5 and as a fraction is

5

1  . 10 2

46. In words, 0.019 is nineteen thousandths. As a fraction, 0.019 

166

 19 . 1000

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

68. To round 0.892 to the nearest hundredth, observe that the digit in the thousandths place is 2. Since this digit is less than 5, we do not add 1 to the digit in the hundredths place. The number 0.892 rounded to the nearest hundredth is 0.89.

48. 0.12 0.15   2 < 5 so 0.12 < 0.15 50. 0.59 0.52   9 > 2 so 0.59 > 0.52 Thus, 0.59 < 0.52.

70. To round 63.4523 to the nearest thousandth, observe that the digit in the ten-thousandths place is 3. Since this digit is less than 5, we do not add 1 to the digit in the thousandths place. The number 63.4523 rounded to the nearest thousandth is 63.452.

52. 0.0756 0.2   0 < 2 so 0.0756 < 0.2

72. To round   3.14159265 to the nearest one, observe that the digit in the tenths place is 1. Since this digit is less than 5, we do not add 1 to the digit in the ones place. The number   3.14159265 rounded to the nearest ones is 3.

54. 0.98400 0.984   4 = 4 so 0.98400 = 0.984

74. To round   3.14159265 to the nearest hundredthousandth, observe that the digit in the millionths place is 2. Since this digit is less than 5, we do not add 1 to the digit in the hundredthousandths place. The number   3.14159265 rounded to the nearest hundred-thousandth is 3.14159.

56. 519.3405 519.3054   4 > 0 so 519.3405 > 519.3054 58. 18.1 18.01   1 > 0 so 18.1 > 18.01 Thus, 18.1 < 18.01. 60.

Chapter 5: Decimals

76. To round 14,769.52 to the nearest one, observe that the digit in the tenths place is 5. Since this digit is at least 5, we add 1 to the digit in the ones place. The number 14,769.52 rounded to the nearest one is 14,770. The amount is $14,770.

0.01 0.1   + >  so 0.01 > 0.1

78. To round 0.7633 to the nearest hundredth, observe that the digit in the thousandths place is 3. Since this digit is less than 5, we do not add 1 to the digit in the hundredths place. The number 0.7633 rounded to the nearest hundredth is 0.76. The amount is $0.76.

62. 0.562 0.652   5 < 6 so 0.562 < 0.652 Thus, 0.562 > 0.652. 64. To round 0.64 to the nearest tenth, observe that the digit in the hundredths place is 4. Since this digit is less than 5, we do not add 1 to the digit in the tenths place. The number 0.64 rounded to the nearest tenth is 0.6.

80. To round 0.112 to the nearest hundredth, observe that the digit in the thousandths place is 2. Since this digit is less than 5, we do not add 1 to the digit in the hundredths place. The number 0.112 rounded to the nearest hundredth is 0.11. Norway won 0.11 of the medals awarded.

66. To round 68,934.543 to the nearest ten, observe that the digit in the ones place is 4. Since this digit is less than 5, we do not add 1 to the digit in the tens place. The number 68,934.543 rounded to the nearest ten is 68,930.

82. To round 3.36 to the nearest tenth, observe that the digit in the hundredths place is 6. Since this digit is at least 5, we add 1 to the digit in the tenths place. The number 3.36 rounded to the nearest tenth is 3.4. The speed is 3.4 mph.

Copyright © 2025 Pearson Education, Inc.

167


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

84. To round 89.61 to the nearest one, observe that the digit in the tenths place is 6. Since this digit is at least 5, we add 1 to the digit in the ones place. The number 89.61 rounded to the nearest one is 90. The amount is $90 billion.

110. a. b.

90.

8 945  4 536 13, 481

c.

Moving the decimal point in 100,800. two places to the left gives 1008. The approximate number of games is 1008 thousand.

Section 5.2 Practice Exercises

4002  3897 105

1. a.

19.520  5.371 24.891

b.

40.080  17.612 57.692

c.

0.125  422.800 422.925

2. a.

34.5670 129.4300  2.8903 166.8873

b.

11.210 46.013  362.526 419.749

92. To round 146.059 to the nearest ten, observe that the digit in the ones place is 6. Since this digit is at least 5, we add 1 to the digit in the tens place. The number 146.059 rounded to the nearest ten is 150, which is choice d. 94. To round 146.059 to the nearest tenth, observe that the digit in the hundredths place is 5. Since this digit is at least 5, we add 1 to the digit in the tenths place. The number 146.059 rounded to the nearest tenth is 146.1, which is choice b. 96. answers may vary 98. 17 268  17.268 1000 100. 0.00026849576 in words is twenty-six million, eight hundred forty-nine thousand, five hundred seventy-six hundred-billionths. 3. 102. answers may vary 104. answers may vary 106. 0.0612 and 0.0586 rounded to the nearest hundredth are 0.06. 0.066 rounds to 0.07. 0.0506 rounds to 0.05. 108. From smallest to largest, 0.01, 0.0839, 0.09, 0.1

168

4800 21 4 800 96 000 100,800 4800 thousand  21 = 100,800 thousand 

86. To round 24.6229 to the nearest thousandth, observe that the digit in the ten-thousandths place is 9. Since this digit is at least 5, we add 1 to the digit in the thousandths place. The number 24.6229 rounded to the nearest thousandth is 24.623. The day length is 24.623 hours. 88.

4820 thousand rounded to the nearest hundred thousand is 4800 thousand.

19.000  26.072 45.072

4. 7.12 + (9.92) Subtract the absolute values. 9.92  7.12 2.80 Attach the sign of the larger absolute value. 7.12 + (9.92) = 2.8

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

5. a.

6.70  3.92 2.78

Check:

2.78  3.92 6.70

13. 4.3y  7.8  20.1y 14.6  4.3y  20.1y  7.8 14.6  (4.3  20.1) y  (7.8 14.6)  24.4 y  22.4

b.

9.720  4.068 5.652

Check:

5.652  4.068 9.720

14.

6. a.

73.00  29.31 43.69

Check:

43.69  29.31 73.00

721.38 148.29  152.50 1022.17 The total monthly cost is $1022.17.

b.

210.00  68.22 141.78

Check:

141.78  68.22 210.00

15.

71.3  70.8 0.5 The average height in Germany is 0.5 inch greater than the average height in Luxembourg.

7.

25.91  19.00 6.91

Calculator Explorations 1. 315.782 + 12.96 = 328.742

8. 5.4  9.6 = 5.4 + (9.6) Add the absolute values. 5.4  9.6 15.0 Attach the common sign. 5.4  9.6 = 15

2. 29.68 + 85.902 = 115.582 3. 6.249  1.0076 = 5.2414 4. 5.238  0.682 = 4.556

9. 1.05  (7.23) = 1.05 + 7.23 Subtract the absolute values. 7.23  1.05 6.18 Attach the sign of the larger absolute value. 1.05  (7.23) = 6.18 10. a.

Exact 58.10  326.97 385.07

Estimate 1 60  300 360

Estimate 2 60  330 390

b. Exact 16.080  0.925 15.155

Estimate 1 16  1 15

Estimate 2 20  1 19

11. y  z = 11.6  10.8 = 0.8 12.

y  4.3  7.8 12.1 4.3 0 7.8 7.8  7.8 True Yes, 12.1 is a solution.

5.

12.555 224.987 5.2  622.65 865.392

6.

47.006 0.17 313.259  139.088 499.523

Vocabulary, Readiness & Video Check 5.2 1. The decimal point in a whole number is positioned after the last digit. 2. In 89.2  14.9 = 74.3, the number 74.3 is called the difference, 89.2 is the minuend, and 14.9 is the subtrahend. 3. To simplify an expression, we combine any like terms. 4. To add or subtract decimals, we line up the decimal points vertically.

Copyright © 2025 Pearson Education, Inc.

169


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

5. True or false: If we replace x with 11.2 and y with 8.6 in the expression x  y, we have 11.2  8.6. false

12. Exact:

734.89  640.56 1375.45 Estimate: 730  640 1370

6. True or false: If we replace x with 9.8 and y with 3.7 in the expression x + y we have 9.8 + 3.7. false 7. Lining up the decimal points also lines up place values, so we only add or subtract digits in the same place values.

14. Exact:

200.89 7.49  62.8 271.18 Estimate: 200 7  60 267

8. check subtraction by addition 9. so the subtraction can be written vertically with decimal points lined up 10. Two: There are 2 x-terms and there are 2 constants.

16.

65.0000 5.0903  6.9003 76.9906

18.

Check:

3.6  4.1 7.7

8.9  3.1 5.8

5.8  3.1 8.9

20.

Check:

5.17  3.70 8.87

28.0  3.3 24.7

24.7  3.3 28.0

22.

863.230  39.453 823.777

Check:

823.777  39.453 863.230

11. To calculate the amount of border material needed, we are actually calculating the perimeter of the triangle. Exercise Set 5.2 2.

4.

6.

32.4000 1.5800  0.0934 34.0734

24. Exact: 6.4  3.04 = 3.36 Estimate: 6  3 = 3 Check: 3.36 + 3.04 = 6.40

8. 18.2 + (10.8) Add the absolute values. 18.2  10.8 29.0 Attach the common sign. 18.2 + (10.8) = 29 10. 4.38 + (6.05) Subtract the absolute values. 6.05  4.38 1.67 Attach the sign of the larger absolute value. 4.38 + (6.05) = 1.67 170

26. Exact:

2000.00  327.47 1672.53 Estimate: 2000  300 1700

Check:

28.

800.0  8.9 791.1

Check: 791.1  8.9 800.0

Copyright © 2025 Pearson Education, Inc.

1672.53  327.47 2000.00


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

30. 8.63  5.6 = 8.63 + (5.6) Add the absolute values. 8.63 Check: 14.23  5.60  5.60 14.23 8.63 Attach the common sign. 8.63  5.6 = 14.23

46. 40.3  700 = 40.3 + (700) Subtract the absolute values. 700.0  40.3 659.7 Attach the sign of the larger absolute value. 40.3  700 = 659.7

32. 8.53  17.84 = 8.53 + (17.84) Subtract the absolute values. 17.84 Check: 9.31  8.53  8.53 9.31 17.84 Attach the sign of the larger absolute value. 8.53  17.84 = 9.31

48.

845.9  45.8 800.1

50.

100.007 2.080  5.014 107.101

34. 9.4  (10.4) = 9.4 + 10.4 Subtract the absolute values. 10.4 Check: 1.0  9.4  9.4 10.4 1.0 Attach the sign of the larger absolute value. 9.4  (10.4) = 1 36.

38.

40.

7.000  0.097 6.903

Check:

6.903  0.097 7.000

45.0  9.2 35.8

Check:

35.8  9.2 45.0

0.7  3.4 4.1

42. 5.05 + 0.88 Subtract the absolute values. 5.05  0.88 4.17 Attach the sign of the larger absolute value. 5.05 + 0.88 = 4.17 44.

600.47  254.68

52. 0.004 + 0.085 Subtract the absolute values. 0.085  0.004 0.081 Attach the sign of the larger absolute value. 0.004 + 0.085 = 0.081 54. 36.2  10.02 = 36.2 + (10.02) Add the absolute values. 36.20  10.02 46.22 Attach the common sign. 36.2  10.02 = 46.22 56. 6.5  (3.3) = 6.5 + 3.3 Subtract the absolute values. 6.5  3.3 3.2 Attach the sign of the larger absolute value. 6.5  (3.3) = 3.2 58. y + x = 5 + 3.6 = 8.6 60. y  z = 5  0.21 = 4.79 62. x + y + z = 3.6 + 5 + 0.21 = 8.6 + 0.21 = 8.81

Copyright © 2025 Pearson Education, Inc.

345.79

64.

x  5.9  8.6

171


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

66.

45.9  z  23 45.9  (22.9) 0 23 23  23 True Yes, 22.9 is a solution.

68.

1.9  x  x  0.1 1.9  0.9 0 0.9  0.1 1  1 True Yes, 0.9 is a solution.

86. To find the late fee, add. 23.15  6.85 30.00 The average late fee was $30.00. 88. To find the amount of rainfall in Yuma, add 3.006 to the amount in the Atacama Desert. 3.006  0.004 3.010 Yuma receives an average of 3.01 inches of rainfall each year.

70. 14.2z 11.9  9.6z 15.2  14.2z  9.6z 11.9 15.2  (14.2  9.6)z  (11.9 15.2)  4.6z  3.3 72. 8.96x  2.31  4.08x  9.68  8.96x  4.08x  2.31 9.68  (8.96  4.08)x  (2.31 9.68)  13.04x  7.37 74. Change = 20  18.26 20.00  18.26 1.74 If Bai paid with two $10 bills, his change was $1.74. 76. Subtract the cost of the frames from the cost of the glasses. 347.89  97.23 250.66 The lenses cost $250.66. 78. Perimeter = 4.2 + 5.78 + 7.8 = 17.78 The perimeter is 17.78 inches. 80. Perimeter  6.43  3.07  6.43  3.07  19.0 The perimeter is 19.0 inches. 82. The phrase “how much more” indicates that we should subtract the average rainfall in Omaha from that in New Orleans. 64.16  30.08 34.08 Therefore, on average New Orleans receives 34.08 inches more rain than Omaha. 84. To find the increase, subtract. 6.97  6.77 0.20 The increase was 0.20 hour per day. 172

90. Add the lengths of the sides to get the perimeter. 15.7 10.6 15.7  10.6 52.6 Therefore, 52.6 feet of railing was purchased. 92.

145.290  144.416 0.874 The difference is 0.874 mile per hour.

94. The shortest bar indicates the least consumption per person, so Sweden has the least chocolate consumption per person. 96.

17.8  17.4 0.4 The difference in consumption is 0.4 pound per year.

98. 23  2 = 46 100. 39  3 = 117 3

1 1 1 1 111 1  102.       5 5 5 5  5  5 125  5  104. It is incorrect. After borrowing, there should be 10 tenths. 8 9 910

900.0  96.4 803.6 106. 17.67  (5.26 + 7.82) = 17.67  13.08 = 4.59 The unknown length is 4.59 meters.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

108. 2 quarters, 3 dimes, 4 nickels, and 2 pennies: 0.25 + 0.25 + 0.10 + 0.10 + 0.10 + 0.05 + 0.05 + 0.05 + 0.05 + 0.01 + 0.01 = 1.02 The value of the coins shown is $1.02. 110. 5 nickels: 0.05 + 0.05 + 0.05 + 0.05 + 0.05 = 0.25 1 dime and 3 nickels: 0.10 + 0.05 + 0.05 + 0.05 = 0.25 2 dimes and 1 nickel: 0.10 + 0.10 + 0.05 = 0.25 1 quarter: 0.25 112.

256, 436.012  256, 435.235 0.777 The difference in measurements is 0.777 mile.

Chapter 5: Decimals 6. 203.004  100 = 20,300.4 7. (2.33)(1000) = 2330 8. 6.94  0.1 = 0.694 9. 3.9  0.01 = 0.039 10. (7682)(0.001) = 7.682 11. 61.45 million  61.451 million  61.451, 000, 000  61, 450, 000 12. 7y = 7(0.028) = 0.196 13.

114. no; answers may vary

Yes, 5.5 is a solution.

116. 14.271  8.968x + 1.333  201.815x + 101.239x = 8.968x  201.815x + 101.239x + 14.271 + 1.333 = (8.968  201.815 + 101.239)x + (14.271 + 1.333) = 109.544x + 15.604 Section 5.3 Practice Exercises 1.

34.8  0.62 696 20 880 21.576

1 decimal place 2 decimal places

2. 0.0641  27 4487 1 2820 1.7307

4 decimal places 0 decimal places

14. C = 2r = 2  11 = 22  22(3.14) = 69.08 The circumference is 22 meters  69.08 meters. 15.

60.5  5.6 36 30 302 50 338.80 338.8 ounces of fertilizer are needed.

Vocabulary, Readiness & Video Check 5.3 1  2  3 decimal places

1. When multiplying decimals, the number of decimal places in the product is equal to the sum of the number of decimal place in the factors. 2. In 8.6  5 = 43, the number 43 is called the product while 8.6 and 5 are each called a factor.

4  0  4 decimal places

3. (7.3)(0.9) = 6.57 (Be sure to include the negative sign.) 4. Exact:

6x  33 6(5.5) 0 33 33  33 True

30.26  2.89 2 7234 24 2080 60 5200 87.4514

5. 46.8  10 = 468

Estimate:

30  3 90

3. When multiplying a decimal number by powers of 10 such as 10, 100, 1000, and so on, we move the decimal point in the number to the right the same number of places as there are zeros in the power of 10. 4. When multiplying a decimal number by powers of 10 such as 0.1, 0.01, and so on, we move the decimal point in the number to the left the same number of places as there are decimal places in the power of 10. 5. The distance around a circle is called its circumference.

Copyright © 2025 Pearson Education, Inc.

173


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

6. When multiplying decimals, we need to learn where to place the decimal point in the product.

14. Exact:

7. knowing whether we placed the decimal point correctly in our product 8. We just need to know how to move the decimal point. 100 has two zeros, so we move the decimal point two places to the right.

16.

9. 3(5.7)  (0.2) 10. We used an approximation for . The exact answer is 10 cm. 11. This is an application problem and needs units attached. The complete answer is 24.8 grams.

4.

0.23  9 2.07

2 decimal places 0 decimal places 2  0  2 decimal places

6.8  0.3 2.04

1 decimal place 1 decimal place 11  2 decimal places

174

8.3  2.7 5 81 16 60 22.41

0.864  0.4 0.3456

1 decimal place 3 decimal places

1 3  4 decimal places

18. 7.2  100 = 720 20. 23.4  0.1 = 2.34

26. (4.72)(0.01) = 0.0472 28. 36.41  0.001 = 0.03641 30.

8. The product (7.84)(3.5) is positive. 7.84 2 decimal places 3.5 1 decimal place 3 920 23 520 27.440 2 1  3 decimal places

12.

2  6 12

24. 0.5  100 = 50

6. The product (4.7)(9.02) is negative. 9.02 2 decimal places  4.7 1 decimal place 6 314 36 080 42.394 2 1  3 decimal places and include the negative sign.

10. Exact:

300.9  0.032 6018 9 0270 9.6288

Estimate:

22. (1.123)(1000) = 1123

Exercise Set 5.3 2.

2.0005  5.5 1 00025 10 00250 11.00275

Estimate:

3 decimal places 1 decimal place 3 1  4 decimal places

8 3 24

0.216  0.3 0.0648

32. (345.2)(100) = 34,520 34.

0.42  5.7 294 2 100 2.394

36. (0.001)(562.01) = 0.56201 38. 993.5  0.001 = 0.9935 40.

9.21  3.8 7 368 27 630 34.998

42. 48.3 million  48.31 million  48.31, 000, 000  48, 300, 000 olds own at About 48,300,000 American househ least one dog.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 44. 343.8 billion  343.81 billion  343.81, 000, 000, 000  343,800, 000, 000 The restaurant industry had projected online delivery sales of $343,800,000,000 in 2022. 46. yz = (0.2)(5.7) = 1.14 48. 5y + z = 5(0.2) + 5.7 = 1.0 + 5.7 = 6.7 50.

52.

100z  14.14 100(1414) 0 14.14 141, 400  14.14 False No, 1414 is not a solution.

Chapter 5: Decimals 64. Circumference = 2    radius C = 2    3950 = 7900 7900  3.14 316 00 790 00 23700 00 24806.00 The circumference is 7900 miles, which is approximately 24,806 miles. 66. C =   d C =   80 = 80 3.14  80 251.20 The circumference is 80 meters or approximately 251.2 meters.

0.7x  2.52 0.7(3.6) 0  2.52 2.52  2.52 True Yes, 3.6 is a solution.

54. C = d is (22 inches) = 22 inches C  22(3.14) inches = 69.08 inches 56. C = 2r is 2  5.9 kilometers = 11.8 kilometers C  11.8  (11.8)(3.14) kilometers  37.052 kilometers

68. Volume  length  width  height  16  7.6  2  243.2 The volume of the box is 243.2 cubic inches. 70. a.

58. pay before taxes = 19.52  20 19.52  20 390.40 The worker’s pay for last week was $390.40. 60. Multiply the number of servings by the number of grams of saturated fat in 3.5 ounces. 3  0.1 = 0.3 There is 0.3 gram of saturated fat in 3 servings. 62. Area = length  width 6.43  3.1 643 19 290 19.933 The area is 19.933 square inches.

Circumference =   diameter Smaller circle: C =   16 = 16 C  16(3.14) = 50.24 The circumference of the smaller circle is approximately 50.24 inches. Larger circle: C =   32 = 32 C  32(3.14) = 100.48 The circumference of the larger circle is approximately 100.48 inches.

b. Yes, the circumference gets doubled when the diameter is doubled. 72. 6.7775  10,000 = 67,775 They would pay $67,775 for 10,000 bushels of corn. 74.

6.7918  300 2037.5400 You would receive 2037.54 Chinese yuan for 300 American dollars.

Copyright © 2025 Pearson Education, Inc.

175


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

76.

92. answers may vary

1.0722 130 32 1660 107 2200 139.3860 The tourist spent 139.39 euros. 

Section 5.4 Practice Exercises 1. 8

78. Multiply the doorway height in meters by the number of inches in 1 meter. 39.37  2.15 1 9685 3 9370 78 7400 84.6455 The doorway is approximately 84.6455 inches.

2. 48

8 80. 365 2920 2920 0 162 82.

84.

9

3. a.

162

75     25 75 25 9 9 18  25  3  25  9 18  3  1  54 7.20 0.14  98.60 105.94

86.

100.0  48.6 51.4

88.

3.6  0.04

Check: 46.3  8 370.4

0.71 34.08 33 6 48 48 0

Check:

1.135 14 15.890 14 18 14 49 42 70 70 0

0.71  48 5 68 28 40 34.08

Check: 1.135  14 4 540 11 350 15.890

Thus, 15.89  14 = 1.135.

b.

0.027 104 2.808 2 08 728 728

Check: 0.027  104 108 2 700

0

2.808

Thus, 2.808  (104) = 0.027

0.144 90. 8.3 minutes = 8.3  60 seconds = 498 seconds 498  1.86 29 88 398 40 498 00 926.28 926.28  100,000 = 92,628,000 The radio wave travels 92,628,000 miles. 176

46.3 370.4 32 50 48 24 2 4 0

29.8 4. 5.6 166.88 becomes 56 1668.8 112 548 504 44 8 44 8 0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

12.35 5. 0.16 1.976 becomes 16 197.60 16 37 32 56 48 80 80 0 41.052  41.05 6. 0.57 23.4 becomes 57 2340.000 228 60 57 3 00 2 85 150 114 36 7.9 7. 91.5 722.85 becomes 915 7228.5 6405 823 5 823 5 0 8 Estimate: 90 720 8.

362.1

0.49

 0.3621

x

 3.9

100 39

0 3.9 100 0.39  3.9 False No, 39 is not a solution. 11.84 12. 1250 14800.00 1250 2300 1250 10500 10000 5000 5000 0 He needs 11.84 bags or 12 whole bags. Calculator Explorations 1. 102.62  41.8  100  40 = 4000 Since 4000 is not close to 428.9516, it is not reasonable. 2. 174.835  47.9  200  50 = 4 Since 4 is close to 3.65, it is reasonable. 3. 1025.68  125.42  1000  100 = 900 Since 900 is close to 900.26, it is reasonable.

Vocabulary, Readiness & Video Check 5.4 1. In 6.5  5 = 1.3, the number 1.3 is called the quotient, 5 is the divisor, and 6.5 is the dividend.

 0.049

10 10. x  y = 0.035  0.02 0.02 0.035 becomes 2

11.

4. 562.781 + 2.96  563 + 3 = 566 Since 566 is not close to 858.781, it is not reasonable.

1000 9. 

Chapter 5: Decimals

1.75 3.50 2 15 14 10 10 0

2. To check a division exercise, we can perform the following multiplication: quotient  divisor = dividend. 3. To divide a decimal number by a power of 10 such as 10, 100, 1000, or so on, we move the decimal point in the number to the left the same number of places as there are zeros in the power of 10. 4. True or false: If we replace x with 12.6 and y with 0.3 in the expression y  x, we have 0.3  (12.6) true Copyright © 2025 Pearson Education, Inc.

177


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

5. a whole number 6. deciding if our decimal point is in the correct place in the quotient 7. We just need to know how to move the decimal point. 1000 has three zeros, so we move the decimal point in the decimal number three places to the left. 8. This actually means 4 divides into 1 zero times, so we place a zero in the quotient. 9. We want the answer rounded to the nearest tenth, so we go to one extra place value, to the hundredths place, in order to round. Exercise Set 5.4 5.9 2. 4 23.6 20 36 3 6 0

9.9 10. Exact: 2.2 21.78 becomes 22 217.8 198 19 8 19 8 0 11 Estimate: 2 22 0.519 12. 16 8.304 8 0 30 16 144 144 0 14. A positive number divided by a negative number is a negative number. 900 0.04 36 becomes 4 3600 36 000

0.085 4. 6 0.510 48 30 30 0

36  (0.04) = 900 16. A negative number divided by a negative number is a positive number. 4

0.9 3.6 becomes 9 36 36 0

500 6. 0.04 20 becomes 4 2000 20 000

(3.6)  (0.9) = 4 18. 0.34 2.176 becomes 34

8. 0.36 1.764 becomes 36

178

4.9 176.4 144 32 4 22 4 0

6.4 217.6 204 13 6 13 6 0

800 20. 0.03 24 becomes 3 2400 24 000

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

22. 0.92 3.312 becomes 92

3.6 331.2 276 55 2 55 2 0

24. A negative number divided by a negative number is a positive number. 2.2 9.9 21.78 becomes 99 217.8 198 19 8 19 8 0 21.78  (9.9) = 2.2 8.6 26. Exact: 6.3 54.18 becomes 63 541.8 504 37 8 37 8 0 9 Estimate: 6 54 4.4 28. 7.7 33.88 becomes 77 338.8 308 30 8 30 8 0 63 30. 0.051 3.213 becomes 51 3213 306 153 153 0 3.213  63 0.051

Chapter 5: Decimals

66.488 32. 0.75 49.866 becomes 75 4986.600 450 486 450 36 6 30 0 6 60 6 00 600 600 0 0.0045 34. 2.96 0.01332 becomes 296 1.3320 1 184 1480 1480 0 0.0462  0.046 36. 0.98 0.0453 becomes 98 4.5300 3 92 610 588 220 196 24 28.23  28.2 38. 3.5 98.83 becomes 35 988.30 70 288 280 83 70 1 30 1 05 25 40.

64.423

 0.64423

100 42.

13.49

 1.349

10 44. 13.49  (10,000) = 0.001349

Copyright © 2025 Pearson Education, Inc.

179


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

14.5 46. 9 130.5 9 40 36 45 4 5

50, 000 62. 0.0007 35 becomes 7 350, 000 35 00 000 35  (0.0007) = 50,000 2.2 64. 0.98 2.156 becomes 98 215.6 196 19 6 19 6 0

0 17.7 48.

50.

 1.77

10 986.11

2.156  0.98 = 2.2

 0.098611

10, 000

66. 86.79  (1000) 

0.045 52. 12 0.540 48 60 60 0

54. 0.7 4.9 becomes 7

7 49 49 0

 0.08679

23.8  680 0.035 70. z  x = 4.52  5.65

3.2 56. 0.42 1.344 becomes 42 134.4 126 84 8 4 0 1.344  0.42 = 3.2 900 58. 0.03 27 becomes 3 2700 27 000

0.8 5.65 4.52 becomes 565 452.0 452 0 0 z  x = 4.52  5.65 = 0.8 72. y  2 = 0.8  2 0.4 2 0.8 8 0 y  2 = 0.8  2 = 0.4 y

27  0.03 = 900

74. 50 200 20 00

7.128

 0.89 0 0.89

8 0.89  0.89 True Yes, 7.12 is a solution.

20  0.4 = 50

180

1000

680 68. 0.035 23.8 becomes 35 23800 210 280 280 00

4.9  (0.7) = 7

60. 0.4 20 becomes 4

86.79

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

x 76.

 0.23

10 23

0 0.23 10 2.3  0.23 False No, 23 is not a solution. 78. Number of boxes = 486  36 13.5 36 486.0 36 126 108 18 0 18 0 0 Since whole boxes must be used, 14 boxes are needed. 19.68  19.7 80. 2.54 50 becomes 254 5000.00 254 2460 2286 1740 1524 21 60 20 32 1 28 There are approximately 19.7 inches in 50 centimeters. 82. Divide the price per hundred pounds by 100. 121.20  1.2120  1.21 100 The average price per pound was $1.21. 84. Each dose is 0.5 teaspoon. 48 0.5 24 becomes 5 240 20 40 40 0 There are 48 doses in the bottle.

Chapter 5: Decimals

86. From Exercise 83, we know there are 24 teaspoons in 4 fluid ounces. Thus, there are 48 half teaspoons (0.5 tsp) or doses in 4 fluid ounces. To see how long the medicine will last, if a dose is taken every 6 hours, there are 24  6 = 4 doses taken per day. 48 (doses)  4 (per day) = 12 days. The medicine will last 12 days. 21.90  21.9 88. 19.35 423.8 becomes 1935 42380.00 3870 3680 1935 17450 17415 350 Drake’s car averages about 21.9 miles per gallon. 345.5 90. 24 8292.0 72 109 96 132 120 12 0 12 0 0 There were 345.5 thousand books sold each hour. 92.

3

7

5 10

3 10 310 3 5  2 6     5 7 5 7 5 7 7

94.  3  1   3  7  1  2 4 14 4 7 14 2 3 7 1 2   4  7 14  2 21 2   28 28 23  28 96.

1.278  0.3 0.3834

Copyright © 2025 Pearson Education, Inc.

3 decimal places 1 decimal place 3 1  4 decimal places

181


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

98.

1.278  0.300 0.978

100.

7.20 0.05  49.10 56.35

102.

87.2 10, 000

134.78  134.8 1.15 155 becomes 115 15500.00 115 400 345 550 460 90 0 805 950 9 20 30

 0.00872

104. 1.437 + 20.69 is approximately 1 + 21 = 22, which is choice b. 106. 302.729  28.697 is approximately 300  30 = 270, which is choice a. 108.

56  75  80 211   70.3 3 3 45.2 180.8 16 20 20 08 8 0 The length of a side is 45.2 centimeters.

The range of wind speeds is 113.9  134.8 knots. 13.6 116. 185.35 2523.86 becomes 18535 252386.0 18535 67036 55605 11431 0 11121 0

110. 4

310 0 No; it will take the student more than 13 months to pay it off at the minimum rate. Mid-Chapter Review 1.

1.60  0.97 2.57

2.

3.20  0.85 4.05

3.

9.8  0.9 8.9

4.

10.2  6.7 3.5

5.

0.8  0.2 0.16

112. answers may vary 113.91  113.9 114. 1.15 131 becomes 115 13100.00 115 160 115 450 345 1050 1035 150 115 35

182

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

6.

Chapter 5: Decimals

0.6  0.4 0.24

15. 3.4 29.24 becomes 34

0.27 7. 8 2.16 16 56 56

29.24  (3.4) = 8.6 5.4 16. 1.9 10.26 becomes 19 102.6 95 76 7 6 0 10.26  (1.9) = 5.4

0

8. 6

0.52 3.12 3 0 12 12

17. 2.8  100 = 280

0 9.

10.

11.

12.

8.6 292.4 272 20 4 20 4 0

18. 1.6  1000 = 1600

9.6  0.5 4.80 (9.6)(0.5) = 4.8 8.7  0.7 6.09 (8.7)(0.7) = 6.09 123.60  48.04 75.56

19.

96.210 7.028  121.700 224.938

20.

0.268 1.930  142.881 145.079 0.56 25.76 23 0 2 76 2 76 0 25.76  (46) = 0.56

21. 46

325.20  36.08 289.12

13. Subtract absolute values. 25.000  0.026 24.974 Attach the sign of the larger absolute value. 25 + 0.026 = 24.974 14. Subtract absolute values. 44.000  0.125 43.875 Attach the sign of the larger absolute value. 0.125 + (44) = 43.875

22. 43

0.63 27.09 25 8 1 29 1 29 0

27.09  43 = 0.63

Copyright © 2025 Pearson Education, Inc.

183


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

23.

24.

12.004  2.3 3 6012 24 0080 27.6092

3 decimal places 1 decimal place

28.006 5.2 5 6012 140 0300 145.6312

3 decimal places 1 decimal place

3 1  4 decimal places

25.

28 30. 0.061 1.708 becomes 61 1708 122 488 488 0 1.708  28 0.061

3 1  4 decimal places

10.0  4.6 5.4

26. Subtract absolute values. 18.00  0.26 17.74 Attach the sign of the greater absolute value. 0.26  18 = 17.74 27. 268.19  146.25 = 268.19 + (146.25) Add absolute values. 268.19  146.25 414.44 Attach the common sign. 268.19  146.25 = 414.44

31.

160.00  43.19 116.81

32.

120.00  101.21 18.79

33. 15.62  10 = 156.2 34. 15.62  10 = 1.562 35.

15.62  10.00 25.62

36.

15.62  10.00 5.62

37.

53.7 79.2  71.2 204.1 The exact distance is 204.1 miles. 50 80  70 200 The estimated distance is 200 miles.

38.

16.75  13.85 2.90 It costs $2.90 more to send the package as Priority Mail.

39.

18.8  21.8 40.6 The total number of vinyl albums shipped was 40.6 million.

28. 860.18  434.85 = 860.18 + (434.85) Add absolute values. 860.18  434.85 1295.03 Attach the common sign. 860.18  434.85 = 1295.03 34 29. 0.087 2.958 becomes 87 2958 261 348 348 0 2.958  34 0.087

184

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

2.1538  2.154 4. 13 28.0000 26

Section 5.5 Practice Exercises 1. a.

0.4 5 2.0 2.0 0

2

3. a.

b.

9

40 9.000 8 0 1 00 80 200 200 0

0.375 2. 8 3.000 2 4 60 56 40 40 0

 0.4

20 13 70 65 50 39 110 104 6

5

0.225 b.

Chapter 5: Decimals

 0.225

40

3  0.375 8

0.833... 6 5.000 4 8 20 18 20 18 2

5

0.22... 9 2.00 18 20 18 2

2

 0.83 6

6.

9

 0.2

5

53 16 16 3.3125 16 53.0000 48 50 4 8 20 16 40 32 80 80 0 5 Thus, 3  3.3125. 16

5. 3

7.

3

3 2 6     0.6 5 5 2 10 3

50

 3  2  6  0.06 50 2 100

0.2 8. 5 1.0 10 0 Since 0.2 < 0.25, then

1

 0.25.

5

Copyright © 2025 Pearson Education, Inc.

185


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

9. a.

1

 0.5 and 0.5 < 0.54, so

2 b.

9

1

 0.54.

2 0.55... 5.00 4 5 50 45 5

12. 8.69(3.2  1.8) = 8.69(1.4) = 12.166 13. (0.7)2  2.1  0.49  2.10  2.59 20.06  (1.2)2 10 14.

c.

15. Area  

 base  height

2 1

 7  2.1 2  0.5  7  2.1  7.35 The area of the triangle is 7.35 square meters. 16. 1.7y  2 = 1.7(2.3)  2 = 3.91  2 = 1.91

2 0.714 < 0.72, so

1

20.06 1.44 10

0.02 20.06  0.144  0.02 19.916  0.02  995.8

0.02

5 0.5  0.55..., so 0.5  . 9 0.714 7 5.000 4 9 10 7 30 28



5

 0.72.

Vocabulary, Readiness & Video Check 5.5

7 10. a.

1. The number 0.5 means 0.555. false

1

 0.333... 3 0.302 = 0.302 3  0.375 8 1 3 0.302, , 3 8

2. To write

19 19 9. true

4. To simplify 8.6(4.8  9.6), we first subtract. true 5. We place a bar over just the repeating digits and only 6 repeats in our decimal answer. 6. It is easier to compare decimal numbers. 7. The fraction bar serves as a grouping symbol. 8. A = l  w; 0.248 sq yd

0.4 = 0.40 0.41 = 0.41 3  0.43 7 3 0.4, 0.41, 7

9. 4(0.3)  (2.4) Exercise Set 5.5

11. 897.8  100  10 = 8.978  10 = 89.78

186

as a decimal, perform the division

3. (1.2)2 means (1.2)(1.2) or 1.44. false

b. 1.26 = 1.26 1 1  1.25 4 2 1  1.40 5 1 2 1 , 1.26, 1 4 5 c.

9

0.05 2. 20 1.00 1 00 0

Copyright © 2025 Pearson Education, Inc.

1 20

 0.05


ISM: Prealgebra and Introductory Algebra

4. 25

0.52 13.00 12 5 50 50 0

0.125 6. 8 1.000 8 20 16 40 40 0

8. 25

0.12 3.00 2 5 50 50 0

13 25

1

8

0.4166... 12. 12 5.0000 4 8 20 12 80 72 80 72 8

5

0.76 19.00 17 5 1 50 1 50 0

 0.125

8

1.6 10. 5 8.0 5 30 3 0 0

14. 25

 0.52

3 25

 0.12

 1.6

5

 0.416 12

19

Chapter 5: Decimals

16. 40

0.775 31.000  28 0 3 00 2 80 200 200 0

0.777... 18. 9 7.000 6 3 70 63 70 63 7 0.5625 20. 16 9.0000 8 0 1 00 96 40 32 80 80 0 0.8181... 22. 11 9.0000 88 20 11 90 88 20 11 9

31

 0.775

40

7  0.7 9

9

 0.5625

16

9

 0.81 11

 0.76

25

Copyright © 2025 Pearson Education, Inc.

187


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

0.875 24. 8 7.000 6 4 60 56 40 40 0 0.424 26. 375 159.000 150 0 9 00 7 50 1 500 1 500 0 28. 

30.

7  0.777  0.78 9

9

 0.5625  0.56

16 32.

9

 0.8181  0.8

11 0.45 34. 20 9.00 8 0 1 00 1 00 0 0.054 36. 125 8.000 7 50 500 500 0

188

4

7

 4.875

8

159  0.424 375

0.00000125 38. 800, 000 1.00000000 800000 2000000 1600000 4000000 4000000 0 40. 0.983 0.988   3 < 8 so 0.983 < 0.988 0.725 42. 40 29.000 28 0 1 00 80 200 200 0 29   0.725 40 44. 0.00563 0.00536   6 > 3 so, 0.00563 > 0.00536 Thus, 0.00563 < 0.00536. 0.117  0.12 46. 17 2.000 17 30 17 130 119 11 2 2 0.12 and 0. 1  0.12, so 0. 1  17  17 .

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

0.5454... 48. 11 6.0000 5 5 50 44

Chapter 5: Decimals 12.7142  12.714 89.0000 7 19 14 50 4 9 10 7

54. 7

60 55 50 44

30 28 20 14 6

6 6 6  0.54 and 0.583  0.54, so 0.583  . 11 11 0.555... 50. 9 5.000 4 5 50 45 50 45 5 5  0.555 and 0.555  0.557, so 5  0.557. 9 9

52. 59

22

89

 12.714 and 12.713 < 12.714, so

7 12.713 

89 . 7

56. 0.40, 0.42, 0.47 58. 0.72 = 0.720 0.72, 0.727, 0.728 60. 7.56 = 7.560 67  7.444... 9 7.562 = 7.562 67 , 7.56, 7.562 9

0.37288  0.3729 22.00000 17 7 4 30 4 13 170 118 520 472 480 472 8

62.

5

 0.833

6 5 0.821, , 0.849 6 64. (2.5)(3)  4.7 = 7.5  4.7 = 12.2

 0.3729 and 0.372 < 0.3729, so

66. (0.05)2  3.13  0.0025  3.13  3.1325

59 0.372 

22

.

68. (8.2)(100)  (8.2)(10) = 820  82 = 738

59 70.

0.222  2.13 1.908   0.159 12 12

72. 0.9(5.6  6.5) = 0.9(0.9) = 0.81 74. (1.5)2  0.5  2.25  0.5  2.75

Copyright © 2025 Pearson Education, Inc.

189


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

76.

78.

3

3  (9.6)(5)   48  0.75  48  47.25 4 4 3

(4.7  5.9) 

8

3

(1.2)  0.375(1.2)  0.45

8

80. Area  

1

bh

2 1

17  4.4 2  0.5 17  4.4  37.4 square feet

0.0817  0.082 100. 15, 371 1257.0000 1229 68 27 320 15 371 11 9490 10 7597 1 1893 Approximately 0.08 of radio stations had a Spanish format. 0.650  0.65 102. 15, 371 10000.000 9222 6 777 40  768 55 8 550 The top six formats accounted for about 0.65 of radio stations.

82. Area  l  w

7     8   (1.2)(0.875)  1.05 square miles  (1.2)

84. y2  (0.3)2  0.09

104. answers may vary 86. x  z = 6  (2.4) = 6 + 2.4 = 8.4 x 88.

90.

 2z  6  2(2.4)  20  4.8  15.2 0.3 y 4

19

Section 5.6 Practice Exercises 1.

z  0.9  1.3 z  0.9  0.9  1.3  0.9 z  0.4 Check: z  0.9  1.3 0.4  0.9 0 1.3 1.3  1.3 True The solution is 0.4.

2.

0.17x  0.34

4 2 19    8  19   11   1 11 2 22 22 22 22 2

11 22 2

3

2  3  2 2  3 3 3  92.  3   2              3 3  2 2 2  2  2  3 3 3  3 3 2  2  2 3  2

0.17x 0.34 0.17  0.17 x  2 Check: 0.17x  0.34 0.17(2) 0  0.34 0.34  0.34 True

94. 1.0000 = 1 96. 101 > 99, so

101 99

98.

99 99

190

1

The solution is 2.

1 3.

2.9  1.7  0.3x 2.9 1.7  1.7  0.3x 1.7 1.2  0.3x 1.2 0.3x  0.3 0.3 4x The solution is 4.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

4.

5.

6.

8x  4.2  10x 11.6 8x  4.2  4.2  10x 11.6  4.2 8x  10x  7.4 8x 10x  10x 10x  7.4 2x  7.4 2x 7.4  2 2 x  3.7 The solution is 3.7.

Chapter 5: Decimals

6.

8. 3y  25.8 3y 25.8  3 3 y  8.6

6.3  5x  3(x  2.9) 6.3  5x  3x  8.7 6.3  5x  6.3  3x  8.7  6.3 5x  3x  2.4 5x  3x  3x  2.4  3x 8x  2.4 8x 2.4  8 8 x  0.3 The solution is 0.3. 0.2 y  2.6  4 10(0.2 y  2.6)  10(4) 10(0.2 y) 10(2.6)  10(4) 2 y  26  40 2 y  26  26  40  26 2 y  14 2 y 14  2 2 y7 The solution is 7.

Vocabulary, Readiness & Video Check 5.6

10.

7.1 0.2x  6.1 7.1 0.2x  7.1  6.1 7.1 0.2x  1 0.2x  1  0.2 0.2 x5

12.

7x  9.64  5x  2.32 7x  9.64  9.64  5x  2.32  9.64 7x  5x 11.96 7x  5x  5x  5x 11.96 2x  11.96 2x 11.96  2 2 x  5.98

14.

5(x  2.3)  19.5 5x 11.5  19.5 5x 11.5 11.5  19.5 11.5 5x  8 5x 8  5 5 x  1.6

16.

0.7x  0.1  1.5 10(0.7x  0.1)  10(1.5) 7x 1  15 7x 11  15 1 7x  14 7x 14  7 7 x2

18.

3y  7 y  24.4 10  3y  10(7 y  24.4) 30 y  70 y  244 30 y  70 y  70 y  70 y  244 40 y  244 40 y 244  40 40 y  6.1

1. so that we are no longer working with decimals 2. We would have avoided working with a negative coefficientsubtracting 2x would have given us a positive coefficient for x. Exercise Set 5.6 2.

y  0.5  9 y  0.5  0.5  9  0.5 y  9.5

4. 0.4x  50 0.4x 50  0.4 0.4 x  125

9.7  x 11.6 9.7 11.6  x 11.6 11.6 1.9  x

Copyright © 2025 Pearson Education, Inc.

191


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

20.

1.5x  2 1.2x  12.2 10(1.5x  2 1.2x)  10 12.2 15x  20 12x  122 3x  20  122 3x  20  20  122  20 3x  102 3x 102  3 3 x  34

22.

x  5.7  8.4 x  5.7  5.7  8.4  5.7 x  2.7

24.

9 y  0.162 9 y 0.162  9 9 y  0.018

26.

34.

24 y 10  20 y 17 24 y 10 10  20 y 17 10 24 y  20 y  7 24 y  20 y  20 y  20 y  7 4 y  7 4 y 7 4  4 y  1.75

36.

1.5  0.4x  0.5 1.5  0.5  0.4x  0.5  0.5 1  0.4x 1 0.4x  0.4 0.4 2.5  x

38.

50x  0.81  40x  0.48 100(50x  0.81)  100(40x  0.48) 5000x  81  4000x  48 5000x  81 48  4000x  48  48 5000x 129  4000x 5000x  5000x 129  4000x  5000x 129  1000x 129 1000x  1000 1000 0.129  x

40.

4(2x 1.6)  5x  6.4 8x  6.4  5x  6.4 8x  6.4  6.4  5x  6.4  6.4 8x  5x 8x  5x  5x  5x 3x  0 3x 0  3 3 x0

42.

y  5  0.3y  4.1 10( y  5)  10(0.3y  4.1) 10 y  50  3y  41 10 y  50  50  3y  41 50 10 y  3y  91 10 y  3y  3y  3y  91 7 y  91 7 y 91  7 7 y  13

2x  4.2  8.6 2x  4.2  4.2  8.6  4.2 2x  12.8 2x 12.8 2  2 x  6.4

28.

30.

32.

192

9 y  6.9  6 y 11.1 9 y  6.9  6.9  6 y 11.1 6.9 9 y  6 y  4.2 9 y  6 y  6 y  6 y  4.2 3y  4.2 3y 4.2  3 3 y  1.4 2.3  500x  600x  0.2 2.3  2.3  500x  600x  0.2  2.3 500x  600x  2.5 500x  600x  600x  600x  2.5 100x  2.5 100x 2.5  100 100 x  0.025 7(x  8.6)  6x 7x  60.2  6x 7x  7x  60.2  6x  7x 60.2  x 60.2 x  1 1 60.2  x

44. x + 14  5x  17 = (x  5x) + (14  17) = 4x  3

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

1 1 16 55 16 6 16  2  3 32     46. 5  9   3 6 3 6 3 55 3  55 55 48. 50 14 50.

9 13

 49

13

9 4 14  35 13 13 13

y 15.9  3.8 y 15.9 15.9  3.8 15.9 y  12.1

Chapter 5: Decimals

68. 100, although answers may vary 70. answers may vary 72. 7.68 y  114.98496 7.68 y 114.98496  7.68 7.68 y  14.972 74.

52. x  4.1 x  4.02  x  x  4.1  4.02  2x  8.12 54. 9a  5.6  3a  6  9a  3a  5.6  6  6a  0.4 56.

58.

9.7  x  4.3 9.7  4.3  x  4.3  4.3 5.4  x

Section 5.7 Practice Exercises

2.8x  3.4  13.4 2.8x  3.4  3.4  13.4  3.4 2.8x  16.8 2.8x 16.8  2.8 2.8 x  6

1. Mean 

9.21 x  4x  11.33  x  4x  9.21 11.33  3x  20.54

62.

6(x 1.43)  5x 6x  8.58  5x 6x  6x  8.58  5x  6x 8.58  x 8.58 x  1 1 8.58  x 8.4z  2.6  5.4z 10.3 10(8.4z  2.6)  10(5.4z 10.3) 84z  26  54z 103 84z  26  26  54z 103  26 84z  54z 129 84z  54z  54z  54z 129 30z  129 30z 129  30 30 z  4.3

66. 3.2x  12.6  8.9x 15.2  3.2x  8.9x 12.6 15.2  12.1x  2.6

87  75  96  91 78 427   85.4 5 5

2.

60.

64.

6.11x  4.683  7.51x 18.235 6.11x  4.683  4.683  7.51x 18.235  4.683 6.11x  7.51x 13.552 6.11x  7.51x  7.51x  7.51x 13.552 1.4x  13.552 1.4x 13.552  1.4 1.4 x  9.68

32  34  46  38  42  95  50  42  41 420  9 9  46.67 The mean salary of all staff members except G is about $46.67 thousand or $46,670. 3. gpa 

4  2  3 4  2  5 1 2  4  2 2 4522

40

 2.67

15

4. Because the numbers are in numerical order, and there are an odd number of items, the median is the middle number, 24. 5. Write the numbers in numerical order: 36, 65, 71, 78, 88, 91, 95, 95 Since there are an even number of scores, the median is the mean of the two middle numbers. 78  88 median   83 2 6. Mode: 15 because it occurs most often, 3 times. 7. Median: Write the numbers in order. 15, 15, 15, 16, 18, 26, 26, 30, 31, 35 Median is mean of middle two numbers, 18  26  22. 2 Mode: 15 because it occurs most often, 3 times. Copyright © 2025 Pearson Education, Inc.

193


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

Vocabulary, Readiness & Video Check 5.7 1. Another word for “mean” is average. 2. The number that occurs most often in a set of numbers is called the mode. 3. The mean (or average) of a set of number items sum of items is . number of items 4. The median of a set of numbers is the middle number. If the number of numbers is even, it is the mean (or average) of the two middle numbers. 5. An example of weighted mean is a calculation of grade point average. 6. The answer is not exact; it’s an approximation since we rounded to the nearest tenth. 7. Place the data numbers in numerical order (or verify that they already are). 8. All occurrences of a number will be grouped together, making it easier to locate and count numbers that occur more than once.

Median: Write the numbers in order: 0.1, 0.3, 0.4, 0.5, 0.6, 0.6, 0.7, 0.8, 0.8 The middle number is 0.6. Mode: Since 0.6 and 0.8 occur twice, there are two modes, 0.6 and 0.8. 8. Mean: 451 356  478  776  892  500  467  780 8 4700  8  587.5 Median: Write the numbers in order: 356, 451, 467, 478, 500, 776, 780, 892 478  500 The mean of the middle two:  489 2 Mode: There is no mode, since each number occurs once. 10. Because the numbers are in numerical order, the median height is the middle number (of the top 5), 1972 feet. 12. Mean:

Exercise Set 5.7 45  36  28  46  52 207   41.4 5 5 Median: Write the numbers in order: 28, 36, 45, 46, 52 The middle number is 45. Mode: There is no mode, since each number occurs once.

14. answer may vary

2. Mean:

4. Mean: 4.9  7.1 6.8  6.8  5.3  4.9 35.8   6.0 6 6 Median: Write the numbers in order: 4.9, 4.9, 5.3, 6.8, 6.8, 7.1 5.3  6.8 Median is mean of middle two:  6.05 2 Mode: Since 6.8 and 4.9 occur twice, there are two modes, 6.8 and 4.9. 6. Mean: 0.6  0.6  0.8  0.4  0.5  0.3  0.7  0.8  0.1 9 4.8  9  0.5 194

2717  2073 1972 1965 1819 1776 6 12, 322  6  2053.7 feet

16. gpa 

18. gpa 

11 0 1 2  4  3 5 11  4  5

24

 2.18

11

3 2  3 2  2  3  4  3  3 3 39   3.0 2 2333 13

20. Median: Write the numbers in order. 4.7, 6.9, 6.9, 7.0, 7.5, 7.8 6.9  7.0 The mean of the middle two:  6.95 2 22. Mean:

93  85  89  79  88  91 525   87.5 6 6

24. Mode: There is no mode, since each number occurs only once. 26. Median: Write the numbers in order. 64, 65, 66, 68, 70, 70, 71, 71, 72, 75, 77, 78, 80, 82, 86 The middle number is 71.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

28. The mean is 73 (from Exercise 25). There were 6 pulse rates higher than the mean. They are 75, 77, 78, 80, 82, and 86. 30. answers may vary 32. Mean: 4160  4000  3915 12, 075   4025 miles 3 3 Median: 4000 miles 34.

Chapter 5: Decimals

9. The mean of a list of items with number values is sum of items . number of items 10. When 2 million is written as 2,000,000, we say it is written in standard form. Chapter 5 Review 1. In 23.45, the 4 is in the tenths place.

4x 4  x x   36 4  9 9

2. In 0.000345, the 4 is in the hundred-thousandths place.

35a3

3. 23.45 in words is negative twenty-three and forty-five hundredths.

5  7  a  a  a 7a   36. 2 5  20  a  a 20 100a

38. Since the mode is 21, 21 must occur at least twice in the set. Since there are an odd number of numbers in the set, the median, 20 is in the set. Therefore the missing numbers are 20, 21, 21.

4. 0.00345 in words is three hundred forty-five hundred-thousandths. 5. 109.23 in words is one hundred nine and twentythree hundredths. 6. 200.000032 in words is two hundred and thirtytwo millionths.

40. answers may vary Chapter 5 Vocabulary Check

7. Eight and six hundredths is 8.06.

1. Like fractional notation, decimal notation is used to denote a part of a whole. 2. To write fractions as decimals, divide the numerator by the denominator. 3. To add or subtract decimals, write the decimals so that the decimal points line up vertically.

8. Negative five hundred three and one hundred two thousandths is 503.102. 9. Sixteen thousand twenty-five and fourteen tenthousandths is 16,025.0014. 10. Fourteen and eleven thousandths is 14.011. 16

 4  4  4 100 25  4 25

4. When writing decimals in words, write “and” for the decimal point.

11. 0.16 

5. When multiplying decimals, the decimal point in the product is placed so that the number of decimal places in the product is equal to the sum of the number of decimal places in the factors.

12. 12.023  12

6. The mode of a set of numbers is the number that occurs most often.

13.

7. The distance around a circle is called the circumference.

14. 25

8. The median of a set of numbers in numerical order is the middle number. If there are an even number of numbers, the mode is the mean of the two middle numbers.

15. 0.49 0.43   9 > 3 so 0.49 > 0.43

23 1000

231  0.00231 100, 000 1

 25

4

25 100

 25.25

16. 0.973 = 0.9730

Copyright © 2025 Pearson Education, Inc.

195


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

27. Add the absolute values. 6.40  0.88 7.28 Attach the common sign. 6.4 + (0.88) = 7.28

17. 38.0027 38.00056   2 > 0 so 38.0027 > 38.00056 Thus, 38.0027 < 38.00056. 18. 0.230505 0.23505   0 < 5 so 0.230505 < 0.23505 Thus, 0.230505 > 0.23505. 19. To round 0.623 to the nearest tenth, observe that the digit in the hundredths place is 2. Since this digit is less than 5, we do not add 1 to the digit in the tenths place. The number 0.623 rounded to the nearest tenth is 0.6.

28. Subtract the absolute values. 19.02  6.98 12.04 Attach the sign of the larger absolute value. 19.02 + 6.98 = 12.04 29.

20. To round 0.9384 to the nearest hundredth, observe that the digit in the thousandths place is 8. Since this digit is at least 5, we add 1 to the digit in the hundredths place. The number 0.9384 rounded to the nearest hundredth is 0.94.

200.490 16.820  103.002 320.312

30.

21. To round 42.895 to the nearest hundredth, observe that the digit in the thousandths place is 5. Since this digit is at least 5, we add 1 to the digit in the hundredths place. The number 42.895 rounded to the nearest hundredth is 42.90.

0.00236 100.45000  48.29000 148.74236

31.

4.9  3.2 1.7

32.

5.23  2.74 2.49

22. To round 16.34925 to the nearest thousandth, observe that the digit in the ten-thousandths place is 2. Since this digit is less than 5, we do not add 1 to the digit in the thousandths place. The number 16.34925 rounded to the nearest thousandth is 16.349. 23. 890.5 million  890.51 million  890.51, 000, 000  890, 500, 000 24. 600 thousand  600 1 thousand  600 1000  600, 000 25.

8.6  9.5 18.1

26.

3.9  1.2 5.1

196

33. 892.1  432.4 = 892.1 + (432.4) Add the absolute values. 892.1  432.4 1324.5 Attach the common sign. 892.1  432.4 = 1324.5 34. 0.064  10.2 = 0.064 + (10.2) Subtract the absolute values. 10.200  0.064 10.136 Attach the sign of the larger absolute value. 0.064  10.2 = 10.136 35.

100.00  34.98 65.02

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

36.

200.00000  0.00198 199.99802

37.

19.9 15.1 10.9  6.7 52.6 The total distance is 52.6 miles.

Chapter 5: Decimals

0.0877 47. 3 0.2631 24 23 21 21 21 0

38. x  y = 1.2  6.9 = 5.7 39. Perimeter = 6.2 + 4.9 + 6.2 + 4.9 = 22.2 The perimeter is 22.2 inches. 40. Perimeter = 11.8 + 12.9 + 14.2 = 38.9 The perimeter is 38.9 feet. 41. 7.2  10 = 72 42. 9.345  1000 = 9345 43. A negative number multiplied by a positive number is a negative number. 34.02 2 decimal places 1 decimal place  2.3 10 206 68 040 2 1  3 decimal places 78.246 34.02  2.3 = 78.246

15.825 48. 20 316.500 20 116 100 16 5 16 0 50 40 100 100 0 49. A negative number divided by a negative number is a positive number. 70 0.3 21 becomes 3 210 21 00 21  (0.3) = 70

44. A negative number multiplied by a negative number is a positive number. 839.02 2 decimal places  87.3 1 decimal place 251 706 5873 140 67121 600 73246.446 2 1  3 decimal places 839.02  (87.3) = 73,246.446

50. A negative number divided by a positive number is a negative number. 0.21 0.03 0.0063 becomes 3 0.63 6 03 3 0 0.0063  0.03 = 0.21

45. C = 2r = 2  7 = 14 meters C  14  3.14 = 43.96 meters 46. C = d =   20 = 20 inches C  20  3.14 = 62.8 inches

Copyright © 2025 Pearson Education, Inc.

197


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals 8.0588  8.059 51. 0.34 2.74 becomes 34 274.0000 272 20 0 2 00 1 70 300 272 280 272 8 52. 19.8 601.92 becomes 198

30.4 6019.2 594 79 0 79 2 79 2 0

53.

23.65

 0.02365

1000 54.

93 10

 9.3 7.31  7.3

55. 3.28 24 becomes 328 2400.00 2296 104 0 98 4 5 60 3 28 2 32 There are approximately 7.3 meters in 24 feet. 45 56. 69.71 3136.95 becomes 6971 313695 27884 34855 34855 0 The loan will be paid off in 45 months.

0.8 57. 5 4.0 4 0 0 0.9230  0.923 58. 13 12.0000 11 7 30 26 40 39 10 0 10 12   0.923 13 0.3333... 59. 3 1.0000 9 10 9 10 9 10 9 1 2

1 3

60. 60

13 16

 2.3 or 2.333 0.2166... 13.0000 12 0 1 00 60 400 360 400 360 40  0.216 or 0.217

61. 0.392 = 0.39200

198

Copyright © 2025 Pearson Education, Inc.

4 5

 0.8


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

69. 7.6  1.9 + 2.5 = 14.44 + 2.5 = 11.94

62. 0.0231 0.0221   3 > 2 so 0.0231 > 0.0221, thus 0.0231 < 0.0221.

70. (2.3)2 1.4  5.29 1.4  3.89 71. 0.0726  10  1000 = 0.00726  1000 = 7.26

0.571  0.57 63. 7 4.000 3 5 50

72. 0.9(6.5  5.6) = 0.9(0.9) = 0.81 (1.5)2  0.5 73.

49 10 7 3 4

 0.57 and 0.57 < 0.625, so

7

74. 4

 0.625.

64. 17

5

5

76. Area  

8 5

5 17

3

.

1

b  h

2 1

1

b h

2 1

77.

x  3.9  4.2 x  3.9  3.9  4.2  3.9 x  0.3

78.

70  y  22.81 70  22.81  y  22.81 22.81 92.81  y

79.

2x  17.2 2x 17.2  2 2 x  8.6

 0.428

7 3 0.42, , 0.43 7

68.

 55

0.05

, 0.626, 0.685

8 67.

0.05

2.75

(5.2)(2.1) 2  0.5(5.2)(2.1)  5.46 square inches

 0.294 and 0.293 < 0.294, so 0.293 

 0.625

(4.6)(3) 2  0.5(4.6)(3)  6.9 square feet

65. 0.832, 0.837, 0.839 66.

2.25  0.5

7  0.74  7.74   129 0.06 0.06

0.2941  0.294 5.0000 3 4 1 60 1 53 70 68 20 17 3

17

0.05

75. Area 

7



18

 1.6363

11 1.63 = 1.63 19  1.583 12 19 18 , 1.63, 12 11

80. 1.1y  88 1.1y  88  1.1 1.1 y  80 81.

3x  0.78  1.2  2x 3x  0.78  0.78  1.2  2x  0.78 3x  1.98  2x 3x  2x  1.98  2x  2x x  1.98

Copyright © 2025 Pearson Education, Inc.

199


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

82.

x  0.6  2x  4x  0.9 3x  0.6  4x  0.9 3x  0.6  0.6  4x  0.9  0.6 3x  4x 1.5 3x  4x  4x  4x 1.5 x  1.5

83.

1.3x  9.4  0.4x  8.6 10(1.3x  9.4)  10(0.4x  8.6) 13x  94  4x  86 13x  94  94  4x  86  94 13x  4x 180 13x  4x  4x  4x 180 9x  180 9x 180  9 9 x  20

84.

3(x 1.1)  5x  5.3 3x  3.3  5x  5.3 3x  3.3  3.3  5x  5.3  3.3 3x  5x  2 3x  5x  5x  5x  2 2x  2 2x 2  2 2 x 1 13  23  33 14  6 89   17.8 5 5 Median: Write the numbers in order. 6, 13, 14, 23, 33 The middle number is 14. Mode: There is no mode, since each number occurs once.

85. Mean:

45  86  21 60  86  64  45 7 407  7  58.1 Median: Write the numbers in order. 21, 45, 45, 60, 64, 86, 86 The middle number is 60. Mode: There are 2 numbers that occur twice, so there are two modes, 45 and 86.

86. Mean 

14, 000  20, 000 12, 000  20, 000  36, 000  45, 000 147, 000   24, 500 6 6 Median: Write the numbers in order. 12,000, 14,000, 20,000, 20,000, 36,000, 45,000 20, 000  20, 000 The mean of the middle two:  20, 000 2 Mode: 20,000 is the mode because it occurs twice.

87. Mean 

200

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

560  620 123  400  410  300  400  780  430  450 4473   447.3 10 10 Median: Write the numbers in order. 123, 300, 400, 400, 410, 430, 450, 560, 620, 780 410  430 The mean of the two middle numbers:  420 2 Mode: 400 is the mode because it occurs twice.

88. Mean 

89. gpa 

4  3  4  3  2  2  3 3  2 1 39   3.25 3  3  2  3 1 12

90. gpa 

3 3  3 4  2  2 1 2  3 3 36   2.57 3 4 2 23 14

91. 200.0032 in words is two hundred and thirty-two ten-thousandths. 92. Negative sixteen and nine hundredths is 16.09 in standard form. 93. 0.0847 

94.

6

847 10, 000

 0.857

7 8

 0.889 9 0.75 = 0.750 6 8 0.75, , 7 9 95. 

7  0.07 100

0.1125 96. 80 9.0000 8 0 1 00 80 200 160 400 400 0

9

 0.1125

80

Copyright © 2025 Pearson Education, Inc.

201


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

51.0571  51.057 97. 175 8935.0000 875 185 175 10 0  0 10 00 875 1 250 1 225 250 175 75 8935  51.057 175

104. Subtract absolute values. 4.9  3.2 1.7 Attach the sign of the larger absolute value. 3.2  4.9 = 1.7 105.

106. Subtract absolute values. 102.06  89.30 12.76 Attach the sign of the larger absolute value. 102.06 + 89.3 = 12.76

98. 402.000032 402.00032   0 < 3 so 402.000032 < 402.00032 Thus, 402.000032 > 402.00032. 99.

6

 0.54

11 0.54  0.55, so

9.12  3.86 5.26

6

 0.55 11

100. To round 86.905 to the nearest hundredth, observe that the digit in the thousandths place is 5. Since this digit is at least 5, we add 1 to the digit in the hundredths place. The number 86.905 rounded to the nearest hundredth is 86.91. 101. To round 3.11526 to the nearest thousandth, observe that the digit in the ten-thousandths place is 2. Since this digit is less than 5, we do not add 1 to the digit in the thousandths place. The number 3.11526 rounded to the nearest thousandth is 3.115. 102. To round 123.46 to the nearest one, observe that the digit in the tenths place is 4. Since this digit is less than 5, we do not add 1 to the digit in the ones place. The number $123.46 rounded to the nearest dollar (or one) is $123.00.

107.

4.021 10.830 ()  0.056 14.907

108.

2.54 2 decimal places  .2 1 decimal place 508 7 620 8.128 2 1  3 decimal places

109. The product of a negative number and a positive number is a negative number. 3.45 2 decimal places  2.1 1 decimal place 345 6 900 7.245 2 1  3 decimal places The product is 7.245. 4900 110. 0.005 24.5 becomes 5 24500 20 45 45 000

103. To round 3645.52 to the nearest one, observe that the digit in the tenths place is 5. Since this digit is at least 5, we add 1 to the digit in the ones place. The number $3645.52 rounded to the nearest dollar (or one) is $3646.00.

202

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

23.9043  23.904 111. 2.3 54.98 becomes 23 549.8000 46 89 69 20 8 20 7 10 0 100 92 80 69 11

Chapter 5 Getting Ready for the Test

112. length = 115.9  120 width = 77.3  80 Area  length  width  120 80

B. x  y = 3  0.2 = 3.0  0.2 = 2.8

rounds to rounds to rounds to

2. In the number 1026.89704, the digit 2 is in the tens place; A. 3. In the number 1026.89704, the digit 0 to the left of the decimal point is in the hundreds place; B. 4. In the number 1026.89704, the digit 0 to the right of the decimal point is in the tenthousandths place; E. Replace x with 3 and y with 0.2 in each expression. A. x + y = 3 + 0.2 = 3.0 + 0.2 = 3.2

C. xy = (3)(0.2) = 0.6 D.

 9600 square feet 113. $3.79 $2.49 $1.99

1. In the number 1026.89704, the digit 8 is in the tenths place: C.

x  y  3  0.2 

3 0.2

$4 $2 $2 $8

310 0.2 10

30

 15

2

5. Since xy = 0.6, choice C is the correct expression.

Yes, the items can be purchased with a $10 bill.

6. Since x + y = 3.2, choice A is the correct expression. 7. Since x  y = 2.8, choice B is the correct expression.

2 10.24  0.1024 114. (3.2)  100 100

115. (2.6 + 1.4)(4.5  3.6) = (4)(0.9) = 3.6 116. Mean: 73  82  95  68  54  372  74.4 5 5 Median: Write the numbers in order. 54, 68, 73, 82, 95 The median is the middle value: 73. Mode: There is no mode, since each number occurs once. 117. Mean: 952  327  566  814  327  729 3715  6 6  619.17 Median: Write the numbers in order. 327, 327, 566, 729, 814, 952 The mean of the two middle values: 566  729  647.5 2 Mode: 327, since this number appears twice.

8. since x  y = 15, choice D is the correct expression. 9. 2(0.5)2  0.3  2(0.25)  0.3  0.50  0.3  0.8; B 10.

5(x  3.2)  9.5 5  x  5  3.2  9.5 5x 16  9.5 Choice B is the correct equation.

11.

0.3x 1.8  2.16 100(0.3x 1.8)  100(2.16) 100  0.3x 100 1.8  100  2.16 30x 180  216 Choice C is the correct equation.

Copyright © 2025 Pearson Education, Inc.

203


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals 7  9 10 13 13 52   10.4 5 5 Median: Since the numbers are in order, the median is the middle number, 10. Mode: 13 occurs more often than any other value. Mean:

12. The median is 10; B. 13. The mode is 13; C.

0.00843  (0.23)  0.037

14. The mean is 10.4; A. Chapter 5 Test 1. 45.092 in words is forty-five and ninety-two thousandths. 2. Three thousand and fifty-nine thousandths in standard form is 3000.059. 3.

2.893 4.210  10.492 17.595

5. Subtract the absolute values. 30.25  9.83 20.42 Attach the sign of the larger absolute value. 9.83  30.25 = 20.42 10.2  4.01 102 40 800 40.902

8. To round 34.8923 to the nearest tenth, observe that the digit in the hundredths place is 9. Since this digit is at least 5, we add 1 to the digit in the tenths place. 34.8923 rounded to the nearest tenth is 34.9. 9. To round 0.8623 to the nearest thousandth, observe that the digit in the ten-thousandths place is 3. Since this digit is less than 5, we do not add 1 to the digit in the thousandths place. 0.8623 rounded to the nearest thousandth is 0.862. 10. 25.0909 25.9090   0 < 9 so 25.0909 < 25.9090

4. Add the absolute values. 47.92  3.28 51.20 Attach the common sign. 47.92  3.28 = 51.20

6.

0.0366  0.037 7. 0.23 0.00843 becomes 23 0.8430 69 153 138 150 138 12

0.444... 11. 9 4.000 3 6 40 36 40 36 4 0.444  0.445, so

1 decimal place 2 decimal places

 0.445.

9

1 2  3 decimal places

12. 0.345  345  5  69  69 1000 5  200 200 13. 24.73  24

14. 

204

4

73 100

13 113 1 1 5 5      0.5 26 2 13 2 25 10

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 0.9411  0.941 17 16.0000 15. 15 3 70 68 20 17 30 17 13

22. Mean: 8 10 16 16 14 12 12 13 101   12.625 8 8 Median: List the numbers in order. 8, 10, 12, 12, 13, 14, 16, 16 12 13 The mean of the middle two:  12.5 2 Mode: 12 and 16 each occur twice, so the modes are 12 and 16. 23. gpa 

16  0.941 17 16. (0.6) 1.57  0.36 1.57  1.93 2

17.

0.23 1.63 1.86   6.2 0.3 0.3

20.

4  3  3 3  2  3  3 4  4 1 43   3.07 3  3  3  4 1 14

24. 4, 583 million  45831 million  45831, 000, 000  4, 583, 000, 000 1 (4.2 miles)(1.1 miles) 2  0.5(4.2)(1.1) square miles  2.31 square miles

25. Area 

18. 2.4x  3.6 1.9x  9.8  (2.4x 1.9x)  (3.6  9.8)  0.5x  13.4 19.

Chapter 5: Decimals

26. C = 2r = 2  9 = 18 miles C  18  3.14 = 56.52 miles

0.2x 1.3  0.7 0.2x 1.3 1.3  0.7 1.3 0.2x  0.6 0.2x 0.6  0.2 0.2 x  3

27. a.

2(x  5.7)  6x  3.4 2x 11.4  6x  3.4 2x 11.4 11.4  6x  3.4 11.4 2x  6x 14.8 2x  6x  6x  6x 14.8 4x  14.8 4x 14.8 4  4 x  3.7 26  32  42  43  49 192   38.4 5 5 Median: The numbers are listed in order. The middle number is 42. Mode: There is no mode since each number occurs once.

Area  length  width  (123.8) (80)  9904 The area is 9904 square feet.

b. 9904  0.02 = 198.08 Teru needs to purchase 198.08 ounces. 28.

14.2 16.1  23.7 54.0 The total distance is 54 miles.

Cumulative Review Chapters 15 1. 72 in words is seventy-two.

21. Mean:

2. 107 in words is one hundred seven. 3. 546 in words is five hundred forty-six. 4. 5026 in words is five thousand twenty-six. 5.

46  713 759

Copyright © 2025 Pearson Education, Inc.

205


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

6. 3 + 7 + 9 = 19 The perimeter is 19 inches. 7.

543  29 514

14.

Check:

514  29 543

25 17 19  39 100  5 4 4 The average is 25.

15. 2  4  3  3 = 8  3  3 = 8  1 = 7 16. 77  11  7 = 7  7 = 49

121 R 1 8. 27 3268 27 56 54 28 27 1

17. 92  9  9  81 18. 53  5  5  5  125 19. 34  3  3  3  3  81 20. 103  10 10 10  1000

9. To round 278,362 to the nearest thousand, observe that the digit in the hundreds place is 3. Since this digit is less than 5, we do not add 1 to the digit in the thousands place. The number 278,362 rounded to the nearest thousand is 278,000. 10. 30 = 2  15 = 2  3  5 11. 

c.

e.

b.

The opposite of 2 is (2) = 2.

c.

The opposite of 0 is 0. The opposite of 7 is (7) = 7.

b.

The opposite of 4 is 4.

c.

The opposite of 1 is (1) = 1.

Check: 7  1 = 7

25. 2 + (21) = 23

25  1 = 25

Check: 25  1 = 25

26. 7 + (15) = 22

6

1

12  12 = 1 20

Check: 1  6 = 6

27. 5  62  5  36  180 28. 4  23  4  8  32

 20

1

f.

The opposite of 13 is 13.

7 17

6 d.

22. 2a  4  2  7  4  14  4  18  6 c 3 3 3

24. a.

12. 236  86  0 = 0

b.

x  5 y 35  5  5 35  25 10    2 y 5 5 5

23. a.

236 86 1 416 18 880 20, 296

13. a.

21.

1 18 18

Check: 1  12 = 12 Check: 20  1 = 20

Check: 1  18 = 18

29. 72  (7  7)  49 5 30. (2)  (2)(2)(2)(2)(2)  32

31. (5)2  (5)(5)  25 32. 32  (3 3)  9

206

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

33. Each part represents

1

of a whole. Four parts

Chapter 5: Decimals

42.

7 5

3 are shaded, or 1 whole and 1 part. 4 1 or 1 3 3

36. Each part represents

37. 252  2 126   2  2  63   2  2  3 21     2  2  3 3  7 252  22  32  7

38.

87  25 62

72 36  2 36   39.  26 13  2 13 40. 9 7  8  9  7  72  7  79 8 8 8 8 41.

16 2 8 2   40 5  8 5 10 2  5 2   25 5  5 5 The fractions are equivalent.

4

5  . 7 9

or 4 9 36 and 5  7  35   7 9 63 9 7 63 36 35 4 5 Since 36 > 35, then  and  . 63 63 7 9 43.

2 5 2  5 10    3 11 311 33

5 4 21 4 21 4 7  3 4 3 1   or 1 44. 2     8 7 8 7 8 7 427 2 2

1

of a whole. Fourteen 3 parts are shaded, or 4 wholes and 2 parts. 14 2 or 4 3 3

 0.556

Since 0.571 > 0.556, then

1 of a whole. Seven parts 4 are shaded or 1 whole and 3 parts. 7 3 or 1 4 4 1 of a whole. Eleven parts 4 are shaded or 2 wholes and 3 parts. 11 3 or 2 4 4

 0.571

9

34. Each part represents

35. Each part represents

4

45.

1 1 11 1    4 2 42 8

46. 7  5

2 7 z

47.

7 37 7  37 37     37 1 7 1 7 1

  11  5

4 z 6 4 z 4   4  6 4 z  24

48. 6x 12  5x  20 x 12  20 x 12 12  20 12 x  8 49.

763.7651 22.0010  43.8900 829.6561

50.

89.2700 14.3610  127.2318 230.8628

Copyright © 2025 Pearson Education, Inc.

207


ISM: Prealgebra and Introductory Algebra

Chapter 5: Decimals

51. 

52. 

208

23.6 0.78 1 888 16 520 18.408 43.8 0.645 2190 1 7520 26 2800 28.2510

1 decimal place 2 decimal places

1  2  3 decimal places 1 decimal place 3 decimal places

1  3  4 decimal places

Copyright © 2025 Pearson Education, Inc.


Chapter 6 Section 6.1 Practice Exercises 1. a.

The ratio of 3 parts oil to 7 parts gasoline is 3. 7

b. Convert 3 hours to minutes. 3 hours = 3  60 minutes = 180 minutes The ratio of 40 minutes to 3 hours is 40 2  . 180 9 2.

1.68 1.68 100 168 7    4.8 4.8 100 480 20

3. a.

3

63

8 x 3 x  8  63 3x  504 3x 504  3 3 x  168 5.

2x 1 x  3  7 5 5(2x 1)  7(x  3) 10x  5  7x  21 10x  7x  26 3x  26 3x 26  3 3 26 x  3

The wall is 17 feet long. 7. ounces  5  8  ounces gallons 16 x  gallons 5  x  16 8 5x  128 5x 128  5 5 3 x  25.6 or 25 5 3 Therefore, 25.6 or 25 gallons of gas can be 5 treated with 8 ounces of alcohol.

The ratio of the length of the shortest side to the length of the longest side is 3 6 meters 6  .  10 meters 10 5

b. Perimeter = 6 + 8 + 10 = 24 meters The ratio of the length of the longest side to 10 meters 10 5 the perimeter is   . 24 meters 24 12 4.

6. Let x be the length of the wall. feet  4  x  feet inches  1 4 14  inches 1 4  4  1 x 4 4 17  x 1 4 17  x

Vocabulary, Readiness & Video Check 6.1 1.

4.2

8.4

1 is called a proportion, while the 2

fraction

7 8

2. In

a

c

may also be called a ratio.

, a  d and b  c are called cross

b d products.

3. In order to simplify the ratio, quantities must have the same units of measurement to divide out. 4. No; proportions are actually equations containing rational expressions, so they can also be solved by using the steps to solve those equations. 5. There are also many ways to set up an incorrect proportion, so just checking your solution in your proportion isn’t enough. You need to determine if your solution is reasonable from the relationships given in the stated application.

Copyright © 2025 Pearson Education, Inc.

209


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

22. 32,056  31,623 = 433

Exercise Set 6.1 2. The ratio of 18 disks to 41 disks is

4. The ratio of 15 miles to 40 miles is

36.38  36.4 11.9 433 becomes 119 4330.00 357 760 714 46 0 35 7 10 30 9 52 78 433 miles were driven and the ratio is 36.4 miles to 1 gallon.

18

. 41

15

3  . 40 8

6. 2 dollars = 2  4 quarters = 8 quarters The ratio of 12 quarters to 2 dollars is

12

3  . 8 2

8. 2 days = 2  24 hours = 48 hours The ratio of 60 hours to 2 days is 60  5 . 48 4 24. 10. The ratio of 8.1 to 10 is

8.1 8.110 81   . 10 10 10 100

12. The ratio of 1.5 to 9.75 is 1.5 1.5 100 150 2  75 2    . 9.75  9.75 100  975 13 75 13 14. The ratio of the land area of Tuvalu to the land 10 sq mi 2 5 5 area of San Marino is   . 24 sq mi 2 12 12

26.

28.

20. 16,895  16,543 = 352

22.27  22.3 15.8 352 becomes 158 3520.00 316 360 316 440

316 1240 1106 134 352 miles were driven and the ratio is 22.3 miles to 1 gallon.

210

9 6 4x  2 9  2  4x  6 18  24x 18 24x  24 24 3 x 4

16. Perimeter = 94 + 50 + 94 + 50 = 288 feet The ratio of width to perimeter is 50 feet 2  25 25   . 288 feet 2 144 144 18. The ratio of white blood cells to red blood cells 1 is . 600

x 16  2 6 x  6  2 16 6x  32 6x 32  6 6 16 x 3

30.

a 3  5 2 a  2  53 2a  15 2a 15  2 2 15 a 2 y 5  y 16 3 3y  5( y 16) 3y  5 y  80 2 y  80 2 y 80  2 2 y  40

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

32.

34.

36.

38.

x 1 5  x2 3 3(x 1)  5(x  2) 3x  3  5x 10 3  2x 10 7  2x 7 2x  2 2 7  x 2

42. Let x be the number of reams. reams 5 x  reams  weeks  3 15  weeks 5 15  3 x 75  3x 75 3x  3 3 25  x They will need 25 reams or 25  3.125  4 cases. 8

6 27  11 3x  2 6(3x  2)  11 27 18x 12  297 18x  309 18x 309  18 18 103 x 6

44. Let x be the the time to reach the restaurant (in seconds). distance 800 500  distance  x  time time  60 800  x  60  500 800x  30, 000 800x 30, 000  800 800 x  37.5 It takes 37.5 seconds to reach the restaurant.

7

8  x  3 2x 7  2x  8(x  3) 14x  8x  24 6x  24 6x 24  6 6 x  4 x

Chapter 6: Ratio, Proportion, and Percent

46. a.

Let x be the number of ounces. x  ounces ounces  3 feet  150 5280  3 5280  150  x 15,840  150x 15,840 150x  150 150 105.6  x 105.6 ounces of pesticide are needed. feet

2x  5

3 7 7  x  3(2x  5) 7x  6x 15 x  15 40. Let x be the number of ounces. applications  4 35  applications ounces  3  x  ounces 4  x  3 35 4x  105 4x 105  4 4 x  27 They should purchase 27 ounces.

b. Let x be the number of cups. ounces 8 105.6  ounces  x  cups cups 1 8  x  1105.6 8x 105.6 8  8 x  13.2 x  13 This is about 13 cups of pesticide.

Copyright © 2025 Pearson Education, Inc.

211


Chapter 6: Ratio, Proportion, and Percent

48. Let x be the amount spent on pet food at PetSmart. x pet food  50  pet food  total sales 125 6, 676, 700, 000  total sales 50  6, 676, 700, 000  125  x 333,835, 000, 000  125x 333,835, 000, 000 125x  125 125 2, 670, 680, 000  x We expect that $2,670,680,000 was spent on pet food. 50. a.

Let x be the length of your index finger. x  index finger index finger  8 height height  111 5  8  5  111 x 40  111x 40 111x  111 111 40 x  0.36 111 40 The proposed length is foot or about 111 0.36 foot.

b. answers may vary 52. Let x be the number of milligrams. milligrams  76 x  milligrams  ounces  3 8  ounces 76 8  3 x 608  3x 608 3x  3 3 2 202  x 3 2 There are 202 milligrams of cholesterol in 3 8 ounces of chicken. 54. Let x be the number of men that blame. blame  2 x  blame  total  5 40  total 2  40  5  x 80  5x 80 5x  5 5 16  x You would expect 16 men to blame their not eating well on fast food.

212

ISM: Prealgebra and Introductory Algebra

56. Let x be the number of people who are retired. x  retired retired 13  not retired  5 280  not retired 13 280  5  x 3640  5x 3640 5x  5 5 728  x You would expect 728 people age 65 and older who are retired. 58. Let x be the number of pounds. pounds  11 x  pounds cups  2 4  6  cups 1 1 6  2  x 4 9 6  x 4 4 6 4 9    x 9 1 9 4 8 x 3 2 x2 3 2 The recipe requires 2 pounds of firmly packed 3 brown sugar. 60. Let x be the cups of salt. ice  5 18 34  ice  salt 1 x  salt 3 5  x  118 4 75 5x  4 1 1 75  5x   5 5 4 15 x 4 3 x3 4 3 Mix 3 cups of salt with the ice. 4

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

62. a.

b.

64. a.

Let x be the number of gallons of oil needed. 1  oil oil  x  gas 10 20  gas x  20  10 1 20x 10  20 20 x  0.5 0.5 gallon of oil is needed. Let x be the number of quarts. gallons  1 0.5  gallons  x  quarts quarts  4 1 x  4  0.5 x2 0.5 gallon is 2 quarts. Let x be the milligrams of medicine. 80  milligrams milligrams  x pounds

66.

608 

24

 608  4  152 6 She should be given 152 milligrams every 6 hours. 300  2 150    2  2  75     2  2  3  25      22  3  5  5  22  3 52

68.

81  3 27    3 3  9     3 3  3  3  34

72. Let x be the number of ml. mg 15 33  mg  x  ml ml  1 15  x  1 33 15x  33 15x 33  15 15 x  2.2 2.2 ml of the medicine should be administered. 74. Let x be the number of ml. mg 8 6  mg  ml 1 x  ml 8  x  1 6 8x  6 8x 6 8 8 x  0.75 0.75 ml of the medicine should be administered.

pounds

190 25  25  x  190 80 25x  15, 200 25x 15, 200  25 25 x  608 The daily dose is 608 milligrams. b.

Chapter 6: Ratio, Proportion, and Percent

Section 6.2 Practice Exercises 1. Since 27 students out of 100 students in the club 27 . Then are freshmen, the fraction is 100 27  27%. 100 2.

31

 31%

100 3. 49% = 49(0.01) = 0.49 4. 3.1% = 3.1(0.01) = 0.031 5. 175% 175(0.01) = 1.75 6. 0.46% = 0.46(0.01) = 0.0046 7. 600% = 600(0.01) = 6.00 or 6 8. 50%  50 

1 100

9. 2.3%  2.3

50 1 50 1   100 2  50 2

2.3

1 100

10. 150%  150 

1 100

70. answers may vary

Copyright © 2025 Pearson Education, Inc.

2.3 10

100

100 10

150

100

3  50 2  50

23 1000

3 2

or 1

1 2

213


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent 1 11. 66 2 %  66 2  3 3 100 200 1   3 100 2 100 1  3 2  3 12. 12%  12 

1

100

20.

3 4 3   100 25  4 25

12

13. 0.14 = 0.14(100%) = 14.% or 14% 14. 1.75 = 1.75(100%) = 175.% or 175% 15. 0.057 = 0.057(100%) = 05.7% or 5.7%

3

3 100% 300   %  17.65% 17 17 17 1 17 17.647  17.65 17 300.000 17 130 119 11 0 10 2 80 68 120 119 1 3 Thus, is approximately 17.65%. 17 

3

100% 

16. 0.5 = 0.5(100%) = 050.% or 50% 3

3 100 300 17.  100%   % %  12% 25 25 25 1 25 18.

9 40

19. 5

3

9

100% 40 9 100   % 40 1 900  % 40 20  22 % 40 1  22 % 2

1 11  2 2 11  100% 2 11 100   % 2 1 1100  % 2  550%

21. As a decimal 27.5% = 27.5(0.01) = 0.275. 1 As a fraction 27.5%  27.5  100 27.5  100 27.5 10   100 10 275  1000 11 25  40  25 11  . 40 Thus, 27.5% written as a decimal is 0.275, and 11 written as a fraction is . 40 3 7 7 7 100% 700  %  175% 22. 1   100%   4 4 4 4 1 4 3 Thus, a “1 times” increase is the same as a 4 “175% increase.” Vocabulary, Readiness & Video Check 6.2 1. Percent means “per hundred.” 2. 100% = 1. 3. The % symbol is read as percent. 4. To write a decimal or a fraction as a percent, multiply by 1 in the form of 100%.

214

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

5. To write a percent as a decimal, drop the % symbol and multiply by 0.01. 6. To write a percent as a fraction, drop the % 1 symbol and multiply by . 100 7. Percent means “per 100.” 8. 100% 9. Multiplying by 100% is the same as multiplying by 1. 10. The difference is how the percent symbol is replacedfor a decimal, replace % with 0.01 and for a fraction, replace % with

1 . 100

Chapter 6: Ratio, Proportion, and Percent 1

26. 2%  2 

81% of this player’s attempts were made. 4. Only 3 out of 100 adults preferred volleyball. 3  3% 100 6. 20 of the adults preferred basketball, while 15 preferred baseball. Thus, 20 + 15 = 35 preferred basketball or baseball. 35  35% 100

10. 3% = 3(0.01) = 0.03

14. 45.7% = 45.7(0.01) = 0.457 16. 1.4% = 1.4(0.01) = 0.014 18. 0.9% = 0.9(0.01) = 0.009 20. 500% = 500(0.01) = 5.00 or 5 22. 72.18% = 72.18(0.01) = 0.7218

100

22 100

1 50

1 28. 7.5%  7.5  100 7.5  100 7.5 10  100 10 75  1000 3 25  40  25 3  40 30. 275%  275 

1

100

275

100

11 25 4  25

11 4

or 2

3 4

1

100 8.75  100 8.75 100  100 100 875  10, 000 7 125  80 125  7 80

7 7 1 36. 21 %  21  8 8 100 175 1   8 100 175  800 7  25  32  25 7  32

12. 136% = 136(0.01) = 1.36

1

2  50

3 3 1 31 1 31 34. 7 %  7     4 4 100 4 100 400

8. 62% = 62(0.01) = 0.62

24. 22%  22 

100

32. 8.75%  8.75 

81  81% 100

 2 1 

100

Exercise Set 6.2 2.

2

2 11 2  50

11

38. 0.44 = 0.44(100%) = 44%

50

40. 0.008 = 0.008(100%) = 0.8% 42. 2.7 = 2.7(100%) = 270%

Copyright © 2025 Pearson Education, Inc.

215


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

44. 0.019 = 0.019(100%) = 1.9%

68.

50. 0.8 = 0.8(100%) = 80%

54.

56.

58.

60.

9

100% 

900

10

10

10

2

2

200

5

5

41

100% 

%  90%

100% 

%  40%

4100

50

50

50

5

5

500

16

16

5

5

6

100% 

%

16

100% 

6

4

70. 1

%  31 % 4

500

1 %  88 % 6 3

7

2

10 66.

216

11

7 10

27

100% 

10

1100 100%  % 12 12 12 91.666  91.67 12 1100.000 108 20 12 80 7 2 80 72 80 72 8 11 is approximately 91.67%. 12 

11

100% 

%

Percent

Decimal

Fraction

52.5%

0.525

21 40

75%

0.75

3 4

66 1 %

0.665

133 200

3

0.8333

5 6

100%

1

1

14%

0.14

7 50

Percent

Decimal

Fraction

800%

8

8

320%

3.2

3 15

608%

6.08

2 6 25

926%

9.26

9 13

2

83 1 %

1 1 31 3100 62. 6  6 100%  100%  %  620% 5 5 5 5 64. 2

1000

10 is approximately 90.91%. 11

%  82% 125

100% 

99 1

5 41

10

11 11 90.909  90.91 11 1000.000 99 10 0 9 9 100

48. 9.00 = 9.00(100%) = 900%

9

11

46. 0.1115 = 0.1115(100%) = 11.15%

52.

10

2700

 270%

10 72.

74. 38% = 38(0.01) = 0.38 1 38 19 38%  38    100 100 50 76. 70% = 70(0.01) = 0.70 1 70 7 70%  70    100 100 10

Copyright © 2025 Pearson Education, Inc.

50


ISM: Prealgebra and Introductory Algebra

78. 20.2% = 20.2(0.01) = 0.202 1 20.2%  20.2  100 20.2  100 20.2 10  100 10 202  1000 101  500

Chapter 6: Ratio, Proportion, and Percent

92. 6 2  4 5  20  29 3 6 3 6 20 6   3 29 20  2  3  3 29 40  29 11 1 29 94. a.

80. 9.6% = 9.6(0.01) = 0.096 1 9.6 10 96 12 9.6%  9.6     100 100 10 1000 125 82. 59.5% = 59.5(0.01) = 0.595 1 59.5%  59.5  100 59.5  100 59.5 10  100 10 595  1000 119  200

0.5269% rounded to the nearest tenth percent is 0.5%.

b. 0.5269% rounded to the nearest hundredth percent is 0.53%. 96. a.

0.231 = 0.231(100%) = 23.1% CORRECT

b. 5.12 = 5.12(100%) = 512% INCORRECT c.

3.2 = 3.2(100%) = 320% CORRECT

d. 0.0175 = 0.0175(100%) = 1.75% INCORRECT a and c are correct.

84. 0.1144 = 0.1144(100%) = 11.44% 

98. 45% + 30% + 20% = 95% 100%  95% = 5% Other is 5% of the top four components of bone.

1  100%  100 %  25% 86. 4 4 4

100. 5 of 8 equal parts are shaded so 5 5 500  100%  %  62.5% 8 8 8

88. 18.6%  18.6  1 100 18.6  100 18.6 10  100 10 186  1000 93  500

102. A decimal written as a percent is less than 100% when the decimal is less than 1.

 2 5  2 5   7  3  90.            11 11  11 11   11  11   73  1111 21  121

108. The percent change for statistician is 33%, so 33% = 33(0.01) = 0.33.

1

104.

56  0.5490  0.549 102 0.549(100%) = 54.9%

106. The second longest bar corresponds to data scientist, so that is predicted to be the second fastest growing occupation.

110. answers may vary

Copyright © 2025 Pearson Education, Inc.

217


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

Section 6.3 Practice Exercises

9. 15% of wh– a– t nu– mb– er is 2.4?

1. 8 is wha–t perce – nt – of 48?  8 

 x

     15%  x  2.4 0.15  x  2.4 0.15x  2.4  0.15x 0.15 x  16 Then 15% of 16 is 2.4. Is this result reasonable? To see, round 15% to 20%. Then 20% of 16 or 0.20(16) = 3.2, which is close to 2.4.

   48

2. 2.6 is 40% of wh– a– t nu– mb– er ?     2.6  40% 

 x

3. Wh– atnu– m– ber is 90% of 0.045?  x

     90%  0.045

4. 56% of 180 is wh– a– t nu– mb– er ?     56%  180 

 x

5. 12% of wh– a– t nu– mb– er is 21?   12% 

 x

   21

11. Wh atpe – rc – e–nt of 90 is 27?

6. Wh– atperc ent of 95 is 76? ––  x

1 10. 18 is 4 % of wha–– t nu– mb– er ? 2     1 x 18  4 %  2 18  0.045x 18 0.045x  0.045 0.045 400  x 1 Then 18 is 4 2 % of 400.

     95  76

7. Wh– atnu– m– ber is 25% of 90?      x  25%  90 x = 25%  90 x = 0.25  90 x = 22.5 Then 22.5 is 25% of 90. Is this reasonable? To see, round 25% to 30%. Then 30% or 0.30(90) is 27. Our result is reasonable since 22.5 is close to 27.

     x  90  27 90x  27 90x 27  90 390 x 10 or x  0.30 Since we are looking for percent, we can write 3 or 0.30 as a percent. x = 30% 10 Then 30% of 90 is 27. To check, see that 30%  90 = 27.

8. 95% of 400 is wh– a– t nu– mb– er ?      95%  400  x 0.95  400  x 380  x Then 95% of 400 is 380. Is this result reasonable? To see, round 95% to 100%. Then 100% of 400 or 1.0(400) = 400, which is close to 380. 218

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

12. 63 is wh– at perce nt of 45? ––

Chapter 6: Ratio, Proportion, and Percent

     63  x  45 63  45x 63 45x  45 45 7 x 5 1.4  x 140%  x Then 63 is 140% of 45.

  9.2 =

 x

2. The word of usually translates to “multiplication.” 3. In the statement “10% of 90 is 9,” the number 9 is called the amount, 90 is called the base, and 10 is called the percent. 4. 100% of a number = the number 5. Any “percent greater than 100%” of “a number” = “a number greater than the original number.” 6. Any “percent less than 100%” of “a number” = “a number less than the original number.” 7. “of” translates to multiplication; “is” (or something equivalent) translates to an equal sign; “what” or “unknown” translates to our variable. 8. It is already solved for x; we just need to simplify the left side.

2. 36% of 72 is wh– a– t nu– mb– er ?  x

 x

  40% 

 x

  =6

    = 25%  55

     375 = 300

14. 25%  68  x 0.25  68  x 17  x 25% of 68 is 17. 16. x = 18%  425 x = 0.18  425 x = 76.5 76.5 is 18% of 425. 18. 0.22  44%  x 0.22  0.44x 0.22 0.44x  0.44 0.44 0.5  x 0.22 is 44% of 0.5 1 20. 4 %  x  45 2 0.045x  45 0.045x 45  0.045 0.045 x  1000 1 4 % of 1000 is 45. 2 22.

4. 40% of wh– a– t nu– mb– er is 6?

   92

12. Watpe h – rc – e–nt of 375 is 300?

1. The word is translates to “=.”

Exercise Set 6.3

 x

10. Wh–at nu– m– ber is 25% of 55?

Vocabulary, Readiness & Video Check 6.3

    36%  72 =

of 92?

8. 9.2 is wha–t perce – nt –

x  40  60 40  x 60  40 40 x  1.5 x  150% 60 is 150% of 40.

6. 0.7 is 20% of wh– at–nu– mb– er ?     0.7 = 20% 

 x Copyright © 2025 Pearson Education, Inc.

219


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

24.

26.

48  x  50 48 x  50  50 50 0.96  x 96%  x 48 is 96% of 50.

40.

4.8%  32  x 0.048  32  x 1.536  x 4.8% of 32 is 1.536.

42.

x  500  2 x  500 2  500 500 x  0.004 x  0.4% 0.4% of 500 is 2.

44.

9.75  7.5%  x 9.75  0.075x 9.75 0.075x  0.075 0.075 130  x 9.75 is 7.5% of 130.

0.5  5%  x 0.5  0.05x 0.5 0.05x  0.05 0.05 10  x 0.5 is 5% of 10.

28. 300%  56  x 3.00  56  x 168  x 300% of 56 is 168.

30.

32.

1 7.2  6 %  x 4 7.2  0.0625x 7.2 0.0625x  0.0625 0.0625 115.2  x 1 7.2 is 6 % of 115.2. 4 2.64  x  25 2.64 x  25  25 25 0.1056  x 10.56%  x 2.64 is 10.56% of 25.

46. 2520  x  3500 2520 x  3500  3500 3500 0.72  x 72%  x 2520 is 72% of 3500. 48.

50.

x 120  76.8 x 120 76.8  120 120 x  0.64 x  64% 64% of 120 is 76.8.

52.

38. 160%  x  40 1.6x  40 1.6 x 40  1.6 1.6 x  25 160% of 25 is 40. 220

35

7

x 5 35  5  x  7 175  7x 175 7x  7 7 25  x

34. x = 36%  80 x = 0.36  80 x = 28.8 28.8 is 36% of 80. 36.

2  x  40 2 x  40  40 40 0.05  x 5%  x 2 is 5% of 40.

54.

x 6  3 13 x 13  3  6 13x  18 13x 18  13 13 5 x 1 13 20 x  25 10

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

56.

Chapter 6: Ratio, Proportion, and Percent

2.

5 15  6 x

 amount 30 p  90 100

58. 68  8  n 68 8  n  8 8 68 n 8 Choice b is correct.

4.

64. Since 100% of 98 is 98, the percent is 100%; a.

68. Since 230% is greater than 100%, which is 1, 230% of 45 is greater than 45; b.

5. Whatpe ent of 40 – rc ––

6.

x  75, 528  27, 945.36 x  75, 528 27, 945.36  75, 528 75, 528 x  0.37 x  37% 37% of 75,528 is 27,945.36.

wh– at–nu– mb– er





percent

base It appears after the word of .

54 27 b 100

is 75?

46% of 80 is wh– a– t nu– mb– er ?    percent base  amount  a 46  80 100

7. Wh– at nu– m– ber is 8% of 120?

Section 6.4 Practice Exercises of



   percent  base amount  75 p  40 100

72. Since 180% is greater than 100%, which is 1, 180% of y is greater than y, so y is less than 45; c. 74. answers may vary

65% of wh– at–nu– mb– er ?

680  65  100 b

70. Since 30% is less than 100%, which is 1, 30% of y is less than y, so y is greater than 45; b.

680 is

  amount percent  base 

66. Since 100% of 35 is 35, and 50 is greater than 35, x must be greater than 100%; b.

27%

 base

   amount  percent  base  a 25  116 100

62. answers may vary

1.

 percent

3. Wh– at nu– m– ber is 25% of 116?

60. n = 0.7  12 n = 8.4 Choice a is correct.

76.

30 is wha–t perce nt of 90? ––

is

54?  amount It is the part compared to the whole

   amount percent base a 8  120 100 a 100  120 8 100a  960 100a 960  100 100 a  9.6 9.6 is 8% of 120.

Copyright © 2025 Pearson Education, Inc.

221


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

8.

  percent  base  amount  52 65  b 100 52 100  b  65 5200  65b 5200 65b  65 65 80  b Thus, 65% of 80 is 52. 9.

Vocabulary, Readiness & Video Check 6.4

65% of wh– at–nu– mb– er is 52?

15.4 is



5% of wh– a– t nu– mb– er ?

   amount percent  base  15.4 1 15.4  5 or   b b 20 100 15.4  20  1 b 308  b So, 154 is 5% of 308. 10. Whatpe – rc – e–nt of 40

414 is wha–t perce nt of 180? ––    base amount percent 414 p  180 100 414 100  180  p 41, 400  180 p 41, 400 180 p  180 180 230  p Then 414 is 230% of 180.

222

2. In the question “50% of what number is 28?,” which part of the percent proportion is unknown? base 3. In the question “What number is 25% of 200?,” which part of the percent proportion is unknown? amount 4. In the question “38 is what percent of 380?,” which part of the percent proportion is unknown? percent 5. 45 follows the word “of,” so it is the base. 6. 100 Exercise Set 6.4 2.

is 8?

   percent base amount 8 p 1 p  or  40 100 5 100 1100  5  p 100  5 p 100 5 p  5 5 20  p So, 20% of 40 is 8. 11.

1. When translating the statement “20% of 15 is 3” to a proportion, the number 3 is called the amount, 15 is the base, and 20 is the percent.

92% of 30 is wh– at–nu– mb– er ?   percent base a 92  30 100

 amount = a

4. Wh– at nu– m– ber is 7% of 175?    amount = a percent base a 7  175 100 6.

1.2 is 47% of wh– a– t nu– mb– er ?   amount percent 1.2  47  b 100

8.

 base = b

85% of wh– a– t nu– mb– er is 520?   percent base = b 520  85  b 100

Copyright © 2025 Pearson Education, Inc.

 amount


ISM: Prealgebra and Introductory Algebra

10. Whatpe – rc – e–nt of 900 is 216?  percent = p 216 p  900 100 12.

22.

  base amount

9.6 is wha–t perce nt of 96? ––   amount percent = p 9.6 p  96 100

14.

Chapter 6: Ratio, Proportion, and Percent

a

25

84 100 a  4  84 1 4a  84 4a 84 4  4

or

a 84

 base

24.

1 4

26.

18.

20.

a 60 a 3  or  29 100 29 5 a  5  29.3 5a  87 5a 87  5 5 a  17.4 17.4 is 60% of 29. 55 11 55 55 or   b 100 b 20 55  20  b 11 1100  11b 1100 11b  11 11 100  b 55% of 100 is 55. 1.1 11 1.1 44 or   b 100 b 25 1.1 25  b 11 27.5  11b 27.5 11b  11 11 2.5  b 1.1 is 44% of 2.5.

24 p 12 p  or  50 100 25 100 12 100  25  p 1200  25 p 1200 25 p  25 25 48  p 24 is 48% of 50. 7.4 5 7.4 1 b  100 or b  20

7.4  20  b 1 148  b 7.4 is 5% of 148.

a  21 25% of 84 is 21. 16.

147 p or 3  p  98 100 2 100 3 100  2  p 300  2 p 300 2 p  2 2 150  p 147 is 150% of 98.

a

28.

30.

2.5  90 100 a 100  90  2.5 100a  225 100a 225  100 100 a  2.25 2.25 is 2.5% of 90. 30

6

or

30



b 100 b 30  50  b  3 1500  3b 1500 3b  3 3 500  b 30 is 6% of 500. 32.

550.4



3 50

p

172 100 550.4 100  172  p 55, 040  172  p 55, 040 172  p  172 172 320  p 550.4 is 320% of 172.

Copyright © 2025 Pearson Education, Inc.

223


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

34.

36.

a 53  130 100 a 100  130  53 100a  6890 100a 6890  100 100 a  68.9 68.9 is 53% of 130. 1.6 p  5 100 1.6 100  5  p 160  5 p 160 5 p  5 5 32  p 32% of 5 is 1.6.

44.

46.

38.

221 170 221 17  or  b 100 b 10 22110  b 17 2210  17b 2210 17b  17 17 130  b 170% of 130 is 221.

48.

40.

a 7.8  24 100 a 100  24  7.8 100a  187.2 100a 187.2  100 100 a  1.872 7.8% of 24 is 1.872.

50.

42.

224

3 p  500 100 3100  500  p 300  500 p 300 500 p  500 500 0.6  p 0.6% of 500 is 3.

9.18 6.8  b 100 9.18 100  b  6.8 918  6.8b 918 6.8b  6.8 6.8 135  b 9.18 is 6.8% of 135. a 75  14 100 a 100  14  75 100a  1050 100a 1050  100 100 a  10.50 75% of 14 is 10.5. 9310 p  3800 100 9310 100  3800  p 931, 000  3800 p 931, 000 3800 p  3800 3800 245  p 9310 is 245% of 3800. 7 5 7  2 5  3 14 15 14 15 1        12 8 12  2 8  3 24 24 24 24

2 1 8 9 52. 2  4   3 2 3 2 82 93   32 2 3 16 27   6 6 43  6 1 7 6 1

54.

10.78 4.30  0.21 15.29

56.

16.37  2.61 13.76

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

58. answers may vary

4. The ratio of 1.6 to 4.6 is 1.6 1.6 10 16 8    . 4.6 4.6 10 46 23

520

60.

62.

65  b 100 520 65 0 800 100 520 100 0 800  65 52, 000  52, 000 True Yes the base is 800. 36

5. The ratio of the width to the length is 12 inches 12 2   . 18 inches 18 3 6. a.

7.

8.

64. answers may vary

8,854, 200 110, 736 p  110, 736 110, 736 79.958  p 80.0% of 110,736 is 88,542. Mid-Chapter Review 18

20 2. The ratio of 36 to 100 is

36

9

.

10

9  . 100 25

3. The ratio of 8.6 to 10 is 8.6 8.6 10 86 43    . 10 10 10 100 50

3.5 7  12.5 z 3.5  z  12.5  7 3.5z  87.5 3.5z 87.5  3.5 3.5 z  25 x  7 2x  3 5 5(x  7)  3  2x 5x  35  6x 35  x

9. Let x be the number of weeks that a gross of boxes is likely to last. boxes  5 144  boxes  x  weeks weeks  3 5  x  3144 5x  432 5x 432  5 5 x  86.4 A gross of boxes of envelopes is likely to last about 86 weeks.

88, 542 p  110, 736 100 88, 542 100  110, 736  p 8,854, 200  110, 736 p

1. The ratio of 18 to 20 is

67 films were rated R.

b. 40 + 61 + 67 + 32 = 200 The ratio of PG-13 films to total films was 61 films 61  . 200 films 200

p

12 100 36 50 0 12 100 1 3 False 2 The percent is not 50. 36 p  12 100 36 100  12  p 3600  12 p 3600 12 p  12 12 300  p The percent is 300 (300%).

66.

Chapter 6: Ratio, Proportion, and Percent

10. Use 4.3 for the number of weeks in a month. Let x be the number of boxes that will be needed in a month. x  boxes boxes  5  weeks  3 4.3  weeks 5  4.3  3 x 21.5  3x 21.5 3x  3 3 7.2  x Seven boxes should be purchased to last a month.

Copyright © 2025 Pearson Education, Inc.

225


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

11. 0.94 = 0.94(100%) = 94%

33. 6.8% = 6.8(0.01) = 0.068 1 6.8 6.8 10  68 17 6.8%  6.8      100 100 100 10 1000 250

12. 0.17 = 0.17(100%) = 17% 3 13.

8

300

100% 

8

7 14.

3

2

7 2

%  37.5%

34. 11.25% = 11.25(0.01) = 0.1125 1 11.25%  11.25  11.25 100  100 11.25 100  100 100 1125  10, 000 9  80

8 100% 

700%  350%

2

15. 4.7 = 4.7(100%) = 470% 16. 8 = 8(100%) = 800% 17.

9

20 18.

53

20. 3

3 4 1 4

100% 

20 

50 19. 6

9

53

900 20

100% 

5300

50 

27

13

4

4

%  45% %  106%

50 

27

13

4

100% 

100% 

2700 4

1300

4

21. 0.02 = 0.02(100%) = 2% 22. 0.06 = 0.06(100%) = 6%

4

%  675%

%  325%

35. 74% = 74(0.01) = 0.74 1 74 37 74%  74    100 100 50 36. 45% = 45(0.01) = 0.45 1 45 9 45%  45    100 100 20 37. 16 1 %  16.33(0.01)  0.163 3 1 49 49 1 49 16 %  %    3 3 3 100 300

23. 71% = 71(0.01) = 0.71 24. 31% = 31(0.01) = 0.31 25. 3% = 3(0.01) = 0.03 26. 4% = 4(0.01) = 0.04 27. 224% = 224(0.01) = 2.24 28. 700% = 700(0.01) = 7.0 29. 2.9% = 2.9(0.01) = 0.029 30. 6.6% = 6.6(0.01) = 0.066 31. 7% = 7(0.01) = 0.07 1 7 7%  7   100 100

2 38. 12 %  12.66(0.01)  0.127 3 2 38 38 1 38 19 12 %  %     3 3 3 100 300 150 39.

a 15  90 100 a 100  15  90 100a  1350 100a 1350  100 100 a  13.5 15% of 90 is 13.5.

32. 5% = 5(0.01) = 0.05 1 5 1 5%  5    100 100 20

226

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

40.

78 78  b 100 78 100  78  b 7800  78b 7800 78b  78 78 100  b 78% of 100 is 78.

45.

a 40  85 100 a 100  40 85 100a  3400 100a 3400  100 100 a  34 34 is 40% of 85.

41.

297.5 85  b 100 297.5 100  85  b 29, 750  85b 29, 750 85b  85 85 350  b 297.5 is 85% of 350.

46.

128.7 p  99 100 128.7 100  p  99 12,870  99 p 12,870 99 p  99 99 130  p 130% of 99 is 128.7.

42.

78 p  65 100 78 100  65  p 7800  65 p 7800 65 p  65 65 120  p 78 is 120% of 65.

47.

115 p  250 100 115 100  p  250 11, 500  250 p 11, 500 250 p  250 250 46  p 46% of 250 is 115.

43.

44.

23.8 p  85 100 23.8 100  85  p 2380  85 p 2380 85 p  85 85 28  p 23.8 is 28% of 85. a 38  200 100 a 100  38  200 100a  7600 100a 7600  100 100 a  76 38% of 200 is 76.

48.

49.

a 45  84 100 a 100  45 84 100a  3780 100a 3780  100 100 a  37.8 37.8 is 45% of 84. 63 42  b 100 63 100  42  b 6300  42b 6300 42b  42 42 150  b 42% of 150 is 63.

Copyright © 2025 Pearson Education, Inc.

227


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

50.

195 p  3326 100 195 100  3326  p 19, 500  3326 p 19, 500 3326 p  3326 19, 500 6 p It is estimated that the number of nurses employed will increase by 6%.

58.9 95  b 100 58.9 100  95  b 5890  95b 5890 95b  95 95 62  b 95% of 62 is 58.9.

Section 6.5 Practice Exercises

3. Method 1: 864 is 32% of wh– a– t nu– mb– er ?

1. Method 1: Wh– at nu– m– ber is 25% of 2174?      x = 25%  2174 x = 0.25  2174 x = 543.5 We predict 543.5 miles of the trail resides in the state of Virginia. Method 2: Wh– at nu– m– ber is 25% of 2174?    amount percent base a 25  2174 100 a 100  2174  25 100a  54, 350 100a 54, 350  100 100 a  543.5 We predict 543.5 miles of the trail resides in the state of Virginia. 2. Method 1: 195 is wha–t perce nt of 3326? ––

228

 percent

 base

   amount percent base 864  32  b 100 864 100  b  32 86, 400  32b 86, 400 32b  32 32 2700  b There are 2700 students at Euclid University. 4. Method 1: Wh tanu– m– ber is 1.4% of 287 million? –

     195 = x  3326 195  3326x 195 3326x  3326 3326 0.06  x 6%  x It is estimated that the number of nurses employed will increase by 6%. Method 2: 195 is wha–t perce – nt – of 3326?  amount

     864 = 32%  x 864  0.32  x 864 0.32x  0.32 0.32 2700  x There are 2700 students at Euclid University. Method 2: 864 is 32% of wh– a– t nu– mb– er ?

     x = 1.4%  287 x = 0.014  287 x = 4.018 a.

The increase in the number of registered vehicles on the road in 2022 was 4.018 million.

b.

The total number of registered vehicles on the road in 2022 was 287 million + 4.018 million = 291.018 million

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Method 2: h at nu– m– ber is 1.4% of 287 million? –   amount  percent  a 1.4  287 100 a 100  287 1.4 100a  401.8 100a 401.8  100 100 a  4.018

 base

Chapter 6: Ratio, Proportion, and Percent

Vocabulary, Readiness & Video Check 6.5 1. The price of the home is $375,000. 2. An improper fraction is greater than 1, so our percent increase is greater than 100%. Exercise Set 6.5

a.

The increase in the number of registered vehicles on the road in 2022 was 4.018 million.

b.

The total number of registered vehicles on the road in 2022 was 287 million + 4.018 million = 291.018 million

5. Find the amount of increase by subtracting the original number of attendants from the new number of attendants. amount of increase = 333  285 = 48 The amount of increase is 48 attendants. amount of increase percent of increase  original amount 48  285  0.168  16.8% The number of attendants to the local play, Peter Pan, increased by about 16.8%. 6. Find the amount of decrease by subtracting 18,483 from 20,200. Amount of decrease = 20,200  18,483 = 1717 The amount of decrease is 1717. amount of decrease percent of decrease  original amount 1717  20, 200  0.085  8.5% The population decreased by 8.5%.

2. 28 is 35% of what number? Method 1: 28  35%  x 28  0.35x 28 0.35x  0.35 0.35 80  x 80 children attend this day care center. Method 2: 28  35 b  100 28 100  b  35 2800  35b 2800 35b  35 35 80  b 80 children attend this day care center. 4. 60% of 220 is what number? Method 1: 60%  220  x 0.60  220  x 132  x The maximum weight resistance is 132 pounds. Method 2: a 60  220 100 100  a  220  60 100a  13, 200 100a 13, 200  100 100 a  132 The maximum weight resistance is 132 pounds. 6. 154 is what percent of 3850? Method 1: 154  x  3850 154 3850 x  3850 3850 0.04  x 4%  x Pierre received 4% of his total spending at the food cooperative as a dividend.

Copyright © 2025 Pearson Education, Inc.

229


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

Method 2: 154 p  3850 100 154 100  p  3850 15, 400  3850 p 15, 400 3850 p  3850 3850 4 p Pierre received 4% of his total spending at the food cooperative as a dividend. 8. 62% of 43,600 is what number? Method 1: 62%  43, 600  x 0.62  43, 600  x 27, 032  x 27,032 screens were digital non-3-D. Method 2: a 62  43, 600 100 a 100  43, 600 2 100a  2, 703, 200 100a 2, 703, 200  100 100 a  27, 032 27,032 screens were digital non-3-D. 10. What percent of 121,461 is 73,900? Method 1: x 121, 461  73, 900 121, 461x 73, 900  121, 461 121, 461 x  0.61 x  61% Of the 121,461 veterinarians in the United States in 2021, 61% practiced medicine in a clinic. Method 2: 73, 900 p  121, 461 100 73, 900 100  121, 461 p 7, 390, 000  121, 461p 7, 390, 000 121, 461p  121, 461 121, 461 61  p Of the 121,461 veterinarians in the United States in 2021, 61% practiced medicine in a clinic. 12. 5% of 7640 is what number? Method 1: 5%  7640  x 0.05  7640  x 382  x 230

There are 382 fewer students this year. The current enrollment is 7640  382 = 7258 students. Method 2: a 5  7640 100 a 100  7640  5 100a  38, 200 100a 38, 200  100 100 a  382 There are 382 fewer students this year. The current enrollment is 7640  382 = 7258 students. 14. 22% of 467 million is what number? Method 1: 22%  467  x 0.22  467  x 102.74  x a.

The increase in the revenue from vinyl albums was $102.74 million.

b.

The 2022 revenue from vinyl albums was $467 million + $102.74 million = $569.74 million.

Method 2: a 22  467 100 a 100  467  22 100a  10, 274 100a 10, 274  100 100 a  102.74 a.

The increase in the revenue from vinyl albums was $102.74 million.

b.

The 2022 revenue from vinyl albums was $467 million + $102.74 million = $569.74 million.

16. 1.1% of 2,960,000 is what number? Method 1: 1.1%  2, 960, 000  x 0.011 2, 960, 000  x 32, 560  x The population of Mississippi in 2023 was 2,960,000  32,560 = 2,927,440.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Method 2: a 1.1  2, 960, 000 100 a 100  2, 960, 000 1.1 100a  3, 256, 000 100a 3, 256, 000  100 100 a  32, 560 The population of Mississippi in 2023 was 2,960,000  32,560 = 2,927,440. 18. 28 is what percent of 115? Method 1: 28  x 115 28 115x  115 115 0.24  x 24%  x 24% of the runs are easy. Method 2: 28 p  115 100 28 100  115  p 2800  115 p 2800 115 p  115 115 24  p 24% of the runs are easy.

Chapter 6: Ratio, Proportion, and Percent

22. 130 is what percent of 190? Method 1: 130  x 190 130 190 x  190 190 0.684  x 68.4%  x 68.4% of the total calories come from fat. Method 2: 130 p  190 100 130 100  190  p 13, 000  190 p 13, 000 190 p  190 190 68.4  p 68.4% of the total calories come from fat. 24. 35 is what percent of 130? Method 1: 35  x 130 35  130 x

20. 5 is what percent of 20? Method 1: 5  x  20 5 20x  20 20 0.25  x 25%  x 25% of the total calories come from fat. Method 2: 5 p  20 100 5 100  20  p 500  20 p 500 20 p  20 20 25  p 25% of the total calories come from fat.

35 130 x  130 130 0.269  x 26.9%  x 26.9% of the total calories come from fat. Method 2: 35 p  130 100 35 100  130  p 3500  130 p 3500 130 p  130 130 26.9  p 26.9% of the total calories come from fat. 26. 842.40 is 18% of what number? Method 1: 842.40  18%  x 842.40  0.18x 842.40 0.18x  0.18 0.18 4680  x The banker’s total pay is $4680.

Copyright © 2025 Pearson Education, Inc.

231


Chapter 6: Ratio, Proportion, and Percent

Method 2: 842.40  18 b  100 842.40 100  b 18 84, 240  18b 84, 240 18b  18 18 4680  b The banker’s total pay is $4680. 28. What number Method 1: is 1.04% of 28,350? x = 1.04%  28,350 x = 0.0104  28,350 x = 294.84 There are expected to be 295 defective components in the batch. Method 2: a 1.04  28, 350 100 a 100  28, 350 1.04 100a  29, 484 100a 29, 484  100 100 a  294.84 There are expected to be 295 defective components in the batch. 30. What number is 6.5% of 58,500? Method 1: x = 6.5%  58,500 x = 0.065  58,500 x = 3802.5 The union worker can expect an increase of $3802.50 in salary. The new salary will be $58,500 + $3802.50 = $62,302.50. Method 2: a 6.5  58, 500 100 a 100  58, 500  6.5 100a  380, 250 100a 380, 250  100 100 a  3802.50 The union worker can expect an increase of $3802.50 in salary. The new salary will be $58,500 + $3802.50 = $62,302.50.

232

ISM: Prealgebra and Introductory Algebra

32. 126 is 70% of what number? Method 1: 126  70%  x 126  0.70x 126 0.70x  0.70 0.70 180  x $126 is 70% of the total price of $180. Method 2: 126  70  100 126  b 100  b  70 12, 600  70b 12, 600 70b  70 70 180  b $126 is 70% of the total price of $180. 34. 43.8% of 56 million is what number? Method 1: 43.8%  56 million  x 0.438  56 million  x 24.528 million  x 56 million + 24.528 million = 80.528 million The increase is 24.528 million and the projected population in 2040 is 80.528 million. Method 2: a 43.8  56 million 100 a 100  56 million  43.8 100a  2452.8 million 100a 2452.8 million  100 100 a  24.528 million 56 million + 24.528 million = 80.528 million The increase is 24.528 million and the projected population in 2040 is 80.528 million. 36. What number is 3% of 1960 thousand? Method 1: x = 3%  1960 x = 0.03  1960 x = 58.8 The increase is projected to be 58.8 thousand. The number of bachelor degrees awarded in 20282029 is projected to be 1960 thousand + 58.8 thousand = 2018.8 thousand.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

Method 2: a 3  1960 100 a 100  1960  3 100a  5880 100a 5880  100 100 a  58.8 The increase is projected to be 58.8 thousand. The number of bachelor degrees awarded in 20282029 is projected to be 1960 thousand + 58.8 thousand = 2018.8 thousand. Original Amount

New Amount

Amount of Increase

38.

8

12

12  8 = 4

40.

68

170  68 = 102

170

Original Amount

New Amount

Amount of Decrease

42.

25

20

25  20 = 5

44.

200

162

200  162 = 38

46. percent of decrease 

amount of decrease

48. percent of decrease 

amount of decrease

Percent of Increase 4

 0.5  50%

8 102

 1.5  150%

68

Percent of Decrease 5

 0.20  20%

25 38

 0.19  19%

200

original amount 530  477  530 53  530  0.10 The decrease in the number of employees was 10%.

original amount 10,845 10, 700  10,845 145  10,845  0.013 The decrease in the number of cable TV systems was 1.3%.

Copyright © 2025 Pearson Education, Inc.

233


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

50. percent of decrease 

amount of decrease

original amount 125, 536 105,804  125, 536 19, 732  125, 536  0.157 The decrease in population is expected to be 15.7%.

amount of decrease 52. percent of decrease  original amount  419, 000  377, 000  419, 000  42, 000  419, 000  0.100 The decrease in correctional officers is expected to be 10.0%. 

54. percent of increase 

amount of increase

original amount 3.3  3.1  3.1 0.2  3.1  0.065 The increase in registered nurses is expected to be 6.5% 56. percent of decrease 

amount of decrease

original amount 2045 1906  2045 139  2045  0.068 The decrease in Ford vehicle sales in the United States from 2020 to 2021 was 6.8%.

58. percent of decrease 

amount of decrease

original amount 767  658  767 109  767  0.142 The decrease in boating accidents was 14.2%.

234

60. percent of increase 

amount of increase

original amount 6.5  4.7  4.7 1.8  4.7  0.383 The increase in revenue from streaming music was 38.3%.

62. 0.7 29.4 becomes 7

64.

42 294 28 14 14 0

78.00  19.46 58.54

35 5  3  5  3  5   66.        8  12  8 12 8  3  4 32 4 9 4  9 68. 2  3  2   3  5 10 5 10    Subtract the absolute values. 9 9 3 3 10 10 4 8 2 2 5 10 1 1 10 

Attach the sign of the larger absolute value. 4 9 1 2  3  1 5 10 10 70. answers may vary 72. What number is 62.1% of 273,800,000? Method 1: x = 62.1%  273,800,000 x = 0.621  273,800,000 x = 170,029,800 The number of Internet users in Indonesia was 170,029,800 in 2021.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Method 2: a 62.1  273,800, 000 100 a 100  273,800, 000  62.1 100a  17, 002, 980, 000 100a 17, 002, 980, 000  100 100 a  170, 029,800 The number of Internet users in Indonesia was 170,029,800 in 2021. 74. 9,200,860 is what percent of 10,420,000? Method 1: 9, 200,860  x 10, 420, 000 9, 200,860 10, 420, 000x  10, 420, 000 10, 420, 000 0.883  x 88.3% of the population of Sweden were Internet users in 2021. Method 2: 9, 200,860 p  10, 420, 000 100 9, 200,860 100  10, 420, 000  p 920, 086, 000  10, 420, 000 p 920, 086, 000 p 10, 420, 000 88.3  p 88.3% of the population of Sweden were Internet users in 2021. 76. 20,090,100 is 16.7% of what number? Method 1: 20, 090,100  16.7%  x 20.090,100  0.167  x 20, 090,100 x 0.167 120, 300, 000  x The population of Ethiopia was about 120,300,000 in 2021. Method 2: 20, 090,100 16.7  b 100 20, 090,100 100  b 16.7 2, 009, 010, 000  16.7b 2, 009, 010, 000 16.7b  16.7 16.7 120, 300, 000  b The population of Ethiopia was about 120,300,000 in 2021.

Chapter 6: Ratio, Proportion, and Percent

80. To find the percent of decrease, Payton should have divided by the original amount, which is 180. 180 150 30 percent of decrease    16 2% 180 180 3 Section 6.6 Practice Exercises 1. sales tax  tax rate  purchase price    8.5%  $59.90  0.085 $59.90  $5.09 The sales tax is $5.09. Total Price  purchase price  sales tax    $59.90  $5.09  $64.99 The sales tax on $59.90 is $5.09, and the total price is $64.99. 2. sales tax  tax rate  purchase price    $1665  r  $18, 500 1665 r 18, 500  18, 500 18, 500 0.09  r The sales tax rate is 9%. 3. commission  commission rate  sales    6.6%  $47, 632  0.066 $47, 632  $3143.71 The commission for the month is $3143.71. 4. commission  commission rate sales    $645  r  $4300 645 r 4300 0.15  r 15%  r The commission rate is 15%.

78. answers may vary

Copyright © 2025 Pearson Education, Inc.

235


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

5. amount of discount  discount rate  original price    35%  $700  0.35  $700  $245 The discount is $245. sale price  original price  discount    $700  $245  $455 The sale price is $455. Vocabulary, Readiness & Video Check 6.6 1. sales tax = tax rate  purchase price 2. total price = purchase price + sales tax 3. commission = commission rate  sales 4. amount of discount = discount rate  original price 5. sale price = original price  amount of discount 6. We rewrite the percent as an equivalent decimal. 7. We write the commission rate as a percent. 8. Replace “amount of discount” in the second equation with “discount rate  original price”: sale price = original price  (discount rate  original price). Exercise Set 6.6 2.

sales tax  6% $188  0.06  $188  $11.28 The sales tax is $11.28.

4. sales tax = 8%  $699 = 0.08  $699 = $55.92 Total price = $699 + 55.92 = $754.92 The total price of the stereo system is $754.92. 6.

236

$374  r $6800 374 6800  r 0.055  r The sales tax rate is 5.5%.

8. a.

$76  9.5%  p $76  0.095 p $76 p 0.095 $800  p The purchase price of the earrings is $800.

b. total price = $800 + $76 = $876 The total price of the earrings is $876. 10. sales tax = 8%  $1890 = 0.08  $1890 = $151.20 total price = $1890 + $151.20 = $2041.20 The sales tax is $151.20 and the total price is $2041.20. 12. $32.85  9%  p $32.85  0.09 p $32.85 p 0.09 $365  p The purchase price of the LED TV with DVD player is $365. 14. $103.50  r $1150 103.50 r 1150 0.09  r The sales tax rate is 9%. 16. Purchase price = $35 + $55 + $95 = $185 Sales tax = 6.5%  $185 = 0.065  $185  $12.03 Total price = $185 + $12.03 = $197.03 The sales tax is $12.03 and the total price of the clothing is $197.03. 18. commission  12.8%  $1638  0.128  $1638  $209.66 Her commission was $209.66. 20.

$3575  r  $32, 500 $3575 r $32, 500 0.11  r The commission rate is 11%.

22. commission  5.6%  $9638  0.056 $9638  $539.73 Her commission will be $539.73.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

24.

Chapter 6: Ratio, Proportion, and Percent

$1750  7%  sales $1750  0.07  s $1750 s 0.07 $25, 000  s The selling price of the fertilizer was $25,000. Original Price

Discount Rate

Amount of Discount

Sale Price

26.

$74

20%

20%  $74 = $14.80

$78  $14.80 = $59.20

28.

$110.60

40%

40%  $110.60 = $44.24

$110.60  $44.24 = $66.36

30.

$370

25%

25%  $370 = $92.50

$370  $92.50 = $277.50

32.

$17,800

12%

12%  $17,800 = $2136

$17,800  $2136 = $15,664

34. discount = 30%  $4295 = 0.30  $4295 = $1288.50 sale price = $4295  $1288.50 = $3006.50 The discount is $1288.50 and the sale price is $3006.50. Purchase Price

Tax Rate

Sales Tax

Total Price

36.

$243

8%

8%  $243 = $19.44

$243 + $19.44 = $262.44

38.

$65

8.4%

8.4%  $65 = $5.46

$65 + $5.46 = $70.46

Sale

Commission Rate

Commission

40.

$195,450

5%

$195,450  5% = $9772.50

42.

$25,600

$2304

 0.09  9%

$2304

$25, 600 44. 500 

2

 3  40  3  120

25

46. 1000 

1

 5  50  5  250 20

48. 6000  0.06 

3 4

 360 

3

 270

4

50. 10%  $200 = 0.10  $200 = $20 $200 + $20 = $220 The best estimate is c; $220.

Copyright © 2025 Pearson Education, Inc.

237


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

Bill Amount

10%

15%

20%

52.

$15.89  $16

$1.60

1 $1.60  ($1.60)  $1.60  $0.80  $2.40 2

2($1.60) = $3.20

54.

$9.33  $9

$0.90

1 $0.90  ($0.90)  $0.90  $0.45  $1.35 2

2($0.90) = $1.80

56. A discount of 20% plus an additional 40% is better. Answers may vary. 58.

commission  5.5% $562, 560  0.055  $562, 560  $30, 940.80 agent's amount  60%  $30, 940.80  0.60  $30, 940.80  $18, 564.48 The real estate agent will receive $18,564.48.

Section 6.7 Practice Exercises 1. I  P  R T I  $875  7%  5  $875  (0.07)  5  $306.25 The simple interest is $306.25. 2. I  P  R  T I  $1500  20% 

9

12 9  $1500  (0.20)  12  $225 She paid $225 in interest. 3. I  P  R  T  $2100 13% 

6

12 6  $2100  (0.13)  12  $136.50 The interest is $136.50. total amount  principal  interest  $2100  $136.50  $2236.50 After 6 months, the total amount paid will be $2236.50.

238

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

4. P = $3000, r = 4% = 0.04, n = 1, t = 6 years nt

 r A  P 1    n  16  0.04   $3000 1   1    $3000(1.04)6  $3795.96 The total amount after 6 years is $3795.96.

1 5. P = $5500, r  6 %  0.0625, n = 365, t = 5 4  r nt A  P 1    n  3655  0.0625   $5500 1  365     $7517.41 The total amount after 5 years is $7517.41.

Calculator Explorations 45

 0.09  1. A  $600 1   4  

 $936.31

 36515

 0.04  2. A  $10, 000 1   365  

120

 0.11  3. A  $1200 1   1   

 $18, 220.59

4.

A

 $9674.77

 21  0.07  $5800 1    $6213.11 2   44

 0.06  5. A  $500 1   4  

 $634.49

Chapter 6: Ratio, Proportion, and Percent

3. Compound interest is computed on not only the original principal, but on interest already earned in previous compounding periods. 4. When interest is computed on the original principal only, it is called simple interest. 5. Total amount (paid or received) = principal + interest 6. The principal amount is the money borrowed, loaned, or invested. 7. Simple interest is calculated on the principal only. 8. semiannually; 2 Exercise Set 6.7 2. simple interest  principal  rate  time  $800  9%  3  $800  0.09  3  $216 4. simple interest  principal  rate  time  $950 12.5%  5  $950  0.125  5  $593.75 6. simple interest  principal  rate  time 1  $1500 14%  2 4  $1500  0.14  2.25  $472.50 8. simple interest  principal  rate  time 8  $775 15%  12  $775  0.15 2 3  $77.50 10. simple interest  principal  rate  time  $1000 10% 

36519

0.05  6. A  $2500 1   365  

1. To calculate simple interest, use I = P  R  T. 2. To calculate compound interest, use  r nt A  P 1   .  n 

12  $1000  0.10 1.5  $150

 $6463.85

Vocabulary, Readiness & Video Check 6.7

18

12. simple interest  principal  rate  time  $265, 000 8.25%  30  $265, 000  0.0825  30  $655,875 $265,000 + $655,875 = $920,875 The amount of interest is $655,875. The total amount paid is $920,875.

Copyright © 2025 Pearson Education, Inc.

239


 

ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent 14. simple interest  principal  rate  time 9  $4500 14%  12  $4500  0.14  0.75  $472.50 Total amount  $4500  $472.50  $4972.50 16. Simple interest  principal  rate  time  $2000 8%  5  $2000  0.08  5  $800 Total amount  $2000  $800  $2800  r 18. A  P 1  nt  n    110  0.15   2060 1   1    2060(1.15)10  8333.85 The total amount is $8333.85. 

nt

r  20. A  P 1    n  415  0.10   1450 1   4    1450(1.025)60  6379.70 The total amount is $6379.70.

nt

 r 22. A  P 1    n   0.08 36510  3500 1  3650 365    0.08

 3500 1   365  $7788.71 The total amount is $7788.71. nt

 r 24. A  P 1    n  21  0.10   63751    2  2  6375(1.05)  7028.44 The total amount is $7028.44.

nt

r  26. A  P 1    n  25  0.08   2000 1    2  10  2000(1.04)  2960.49 The total amount is $2960.49.

nt

 r 28. A  P 1    n   0.08 3655  2000 1   365 1825   0.08   2000 1  365     2983.52

The total amount is $2983.52. 30. Perimeter = 18 + 16 + 12 = 46 The perimeter is 46 centimeters. 32. Perimeter = 21 + 21 + 21 + 21 = 84 The perimeter is 84 miles. 34.  x    x    x    5   x  5  5 4 x 4 4  5  4  x   36.

3 9 1  3 22 1 3  2 111 2        11 22 3 11 9 3 11 9  3 9 

38. answers may vary Chapter 6 Vocabulary Check 1. In a mathematical statement, of usually means “multiplication.” 2. In a mathematical statement, is means “equals.” 3. Percent means “per hundred.” 4. Compound interest is computed not only on the principal, but also on interest already earned in previous compounding periods. amount 5. In the percent proportion percent base = 100 . 6. To write a decimal or fraction as a percent, multiply by 100%. 7. The decimal equivalent of the % symbol is 0.01.

240

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

8. The fraction equivalent of the % symbol is

Chapter 6: Ratio, Proportion, and Percent

1

. 100

5.

9. The percent equation is base  percent = amount. 10. percent of decrease =

amount of decrease original amount

11. percent of increase = amount of increase original amount

6.

12. sales tax = tax rate  purchase price 13. total price = purchase price + sales tax 14. commission = commission rate  sales 15. amount of discount = discount rate  original price

7.

16. sale price = original price  amount of discount 17. A proportion is a mathematical statement that two ratios are equal. 8. 18. A ratio is the quotient of two numbers or two quantities. Chapter 6 Review 1. 1 dollar = 1  100 cents = 100 cents The ratio of 20 cents to 1 dollar is 1 20 cents 20  .  100 cents 100 5

9.

4.

x 12  2 4 x  4  2 12 4x  24 4x 24  4 4 x6

20 c 2 5 20  5  2  c 100  2c 100 2c  2 2 50  c 2

 3 x 1 x  3 2(x  3)  3(x 1) 2x  6  3x  3 6  x3 9 x 4

3

y3 y2 4( y  2)  3( y  3) 4 y  8  3y  9 y  8  9 y  17 y2 5 y  3 3( y  2)  5 y 3y  6  5 y 6  2y 6 2y  2 2 3 y

2. The ratio of four parts red to six parts white is 4 2  . 6 3 3.

32 100  x 100 32  x  100 100 32x  10, 000 32x 10, 000  32 32 x  312.5

10.

x3 2  3x  2 5 5(x  3)  2(3x  2) 5x 15  6x  4 15  x  4 19  x

20 x  1 25 20  25  1 x 500  x

Copyright © 2025 Pearson Education, Inc.

241


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

11. Let x be the number of parts that can be processed in 45 minutes. parts 300 x  parts  minutes  20 45 minutes 300  45  20  x 13, 500  20x 13, 500 20x 20  20 675  x The machine can process 675 parts in 45 minutes. 12. Let x be the amount charged for 3 hours of consulting. dollars  90 x dollars  hours  8 3 hours 90  3  8  x 270  8x 270 8x  8 8 33.75  x The charge is $33.75 for 3 hours of consulting. 13.

14.

37  37% 100 37% of adults preferred pepperoni. 77

 77% 100 77% of free throws were made.

15. 26% = 26(0.01) = 0.26 16. 75% = 75(0.01) = 0.75 17. 3.5% = 3.5(0.01) = 0.035 18. 1.5% = 1.5(0.01) = 0.015 19. 275% = 275(0.01) = 2.75 20. 400% = 400(0.01) = 4.00 or 4 21. 47.85% = 47.85(0.01) = 0.4785 22. 85.34% = 85.34(0.01) = 0.8534 23. 1.6 = 1.6(100%) = 160% 24. 5.2 = 5.2(100%) = 520%

27. 0.71 = 0.71(100%) = 71% 28. 0.65 = 0.65(100%) = 65% 29. 6 = 6(100)% = 600% 30. 9 = 9(100%) = 900% 7  1  31. 7%  7     100  100  1 3  15 32. 15%  15      100  100 20 33. 25%  25

 1 

25

   100  100  1   34. 8.5%  8.5    100  8.5  100 8.510  100 10 85  1000 17  200  1   35. 10.2%  10.2    100  10.2  100 10.2 10  100 10 102  1000 51  500 

1 4

36. 16 2 %  50 % 50  1  50  1 3 3    300 6 3 100  10 0 1 37. 33 1 % 100 %  100  1   3 3 3  100  300 3 1  1 10  1  110 38. 110%  110  1   100 10  100  100 

25. 0.076 = 0.076(100%) = 7.6%

2 26. 0.085 = 0.085(100%) = 8.5%

242

39.

5

2 100 200  % %  40% 5 1 5

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

40.

7 7 100 %  700 % 70%   10 10 1 10

41.

7 7 100 %  700 % 175 %  58 1   % 12 12 1 12 3 3

Chapter 6: Ratio, Proportion, and Percent 51. x = 17%  640 x = 0.17  640 x = 108.8 108.8 is 17% of 640. 52.

2 5 100 500 2 42. 1   % %  166 % 3 3 1 3 3 1 5 100 500 % %  125% 43. 1   4 4 1 4 44.

3

5 45.

1

16 5 46. 47.

8

3 100 300  % %  60% 5 1 5

53.

1 100 100  % %  6.25% 16 1 16

5 100 500  % %  62.5% 8 1 8

1250  1.25%  x

54.

1250  0.0125x 1250 0.0125x  0.0125 0.0125 100, 000  x 1250 is 1.25% of 100,000. 1 48. x  33 %  24, 000 3 100 1 x   24, 000 3 100 1 x   24, 000 3 x  8000 1 8000 is 33 % of 24,000. 3 49. 124.2  x  540 124.2 540 x  540 540 0.23  x 23%  x 124.2 is 23% of 540. 50.

22.9  20%  x 22.9  0.20  x 22.9 0.20 x  0.20 0.20 114.50  x 22.9 is 20% of 114.50.

55.

693  x  462 693 462x  462 462 1.5  x 150%  x 693 is 150% of 462. 104.5  25  b 100 104.5 100  25  b 10, 450  25b 10, 450 25b  25 25 418  b 104.5 is 25% of 418. 16.5 5.5  b 100 16.5 100  5.5  b 1650  5.5b 1650 5.5b  5.5 5.5 300  b 16.5 is 5.5% of 300. a

30

532 100 a 100  30  532 100a  15, 960 100a 15, 960  100 100 a  159.6 159.6 is 30% of 532. 56.

63 p  35 100 63 100  p  35 6300  35 p 6300 35 p  35 35 180  p 63 is 180% of 35.

Copyright © 2025 Pearson Education, Inc.

243


Chapter 6: Ratio, Proportion, and Percent

57.

93.5 p  85 100 93.5 100  p 85 9350  85 p 9350 85 p  85 85 110  p 93.5 is 110% of 85.

58.

a 33  500 100 a 100  33  500 100a  16, 500 100a 16, 500  100 100 a  165 165 is 33% of 500.

Method 2: 200 p  12, 360 100 2000 100  12, 360  p 200, 000  12, 360 p 200, 000 12, 360 p  12, 360 12, 360 16  p 16% of freshmen are enrolled in prealgebra.

244

amount of decrease

61. percent of decrease 

59. 1320 is what percent of 2000? Method 1: 1320  x  2000 1320 2000 x  2000 2000 0.66  x 66%  x 66% of people own microwaves. Method 2: 1320 p  2000 100 1320 100  2000  p 132, 000  2000 p 132, 000 2000 p  2000 2000 66  p 66% of people own microwaves. 60.

ISM: Prealgebra and Introductory Algebra

2000 is what percent of 12,360? Method 1: 2000  x 12, 360 2000 12, 360 x  12, 360 12, 360 0.16  x 16%  x 16% of freshmen are enrolled in prealgebra.

original amount 675  534  675 141  675  0.209  20.9% Violent crime decreased 20.9%.

62. percent of increase 

amount of increase 

original amount  33 16  16 17  16  1.0625  106.25% The charge will increase 106.25%.

63. Amount of increase = percent increase  original amount = 15%  $11.50 = 0.15  $11.50  $1.73 Total amount = $11.50 + $1.73 = $13.23 The new hourly rate is $13.23. 64. Amount of decrease  percent decrease  original amount  4%  $215, 000  0.04  $215, 000  $8600 Total amount = $215,000  $8600 = $206,400 $206,400 is expected to be collected next year.

Copyright © 2025 Pearson Education, Inc.


  

ISM: Prealgebra and Introductory Algebra 65. sales tax  tax rate  purchase price  9.5%  $250  0.095 $250  $23.75 Total amount = $250 + $23.75 = $273.75 The total price for the coat is $273.75. 66. sales tax  tax rate  purchase price  8.5%  $25.50  0.085 $25.50  $2.17 The sales tax is $2.17. 67. commission  commission rate  sales  5%  $100, 000  0.05  $100, 000  $5000 The sales representative’s commission is $5000. 68. commission  commission rate  sales  7.5%  $4005  0.075 $4005  $300.38 The sales clerk’s commission is $300.38. 69. Amount of discount  discount  original price  30%  $3000  0.30  $3000  $900 Sale price = $3000  $900 = $2100 The amount of discount is $900; the sale price is $2100. 70. Amount of discount  discount  original price  10%  $90  0.10  $90  $9.00 Sale price = $90  $9 = $81 The amount of discount is $9; the sale price is $81. 71. I  P  R  T  $4000 12%   $4000  0.12 

4 12 1 3

 $160 The simple interest is $160.

Chapter 6: Ratio, Proportion, and Percent 72. I  P  R T  $650  20% 

3

12  $6500  0.20  0.25  $325 The simple interest is $325. nt

 r 73. A  P 1    n  115  0.12   5500 1   1    5500(1.12)15  30,104.61 The total amount is $30,104.61.

 r nt 74. A  P 1    n  210  0.11   6000 1   2    6000(1.055)20  17, 506.54 The total amount is $17,506.54. nt

 r 75. A  P 1    n  45  0.12   100 1   4    100(1.03)20  180.61 The total amount is $180.61. nt

r  76. A  P 1    n  420  0.18   1000 1   4    1000(1.045)80  33,830.10 The total amount is $33,830.10.

77. 3.8% = 3.8(0.01) = 0.038 78. 124.5% = 124.5(0.01) = 1.245 79. 0.54 = 0.54(100%) = 54% 80. 95.2 = 95.2(100%) = 9520%

Copyright © 2025 Pearson Education, Inc.

245


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent 81. 47%  47

 1

 47    100 100   

 1   82. 5.6%  5.6    100  5.6  100 5.6 10  100 10 56  1000 7  125 83.

84.

5

6 100 600  % %  120% 5 1 5

85.

43  16%  x 43  0.16x 43 0.16x  0.16 0.16 268.75  x 43 is 16% of 268.75.

86.

27.5  x  25 27.5 25x  25 25 1.1  x 110%  x 27.5 is 110% of 25.

87. x = 36%  1968 x = 0.36  1968 x = 708.48 708.48 is 36% of 1968. 88.

246

67  x  50 67 50 x  50 50 1.34  x 134%  x 67 is 134% of 50.

p

25 100 75 100  p  25 7500  25 p 7500 25 p  25 25 300  p 75 is 300% of 25. a

90.

3 3 100 300  1   % %  37 % 8 8 1 8 2 6

75

89.

16  240 100 a 100  16  240 100a  3840 100a 3840  100 100 a  38.4 38.4 is 16% of 240.

91.

28 5  b 100 28 100  5  b 2800  5b 2800 5b  5 5 560  b 28 is 5% of 560.

92.

52 p  16 100 52 100  p 16 5200  16 p 5200 16 p  16 16 325  p 52 is 325% of 16.

93.

78  0.26  26% 300 26% of the soft drinks have been sold.

94. $96,950  7% = $96,950  0.07 = $6786.50 The house has lost $6786.50 in value. 95. Sales tax  8.75%  $568  0.0875  $568  $49.70 Total price = $568 + $49.70 = $617.70 The total price is $617.70.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 96. Amount of discount  15% $23.00  0.15  $23.00  $3.45 97. commission  commission rate sales $1.60  r  $12.80 $1.60 r $12.80 0.125  r 12.5%  r His rate of commission is 12.5%. 98. Simple interest  principal  rate  time 6  $1400 13%  12  $1400  0.13  0.5  $91 Total amount = $1400 + $91 = $1491 The total amount is $1491. 99. Simple interest  principal  rate  time  $5500 12.5%  9  $5500  0.125  9  $6187.50 Total amount = $5500 + $6187.50 = $11,687.50 The total amount is $11,687.50. Chapter 6 Getting Ready for The Test 1. The phrase “6 is to 7 as 18 is to 21” translates to 6 18  ; A. 7 21 2.

3

5. Since 50% = 50(0.01) = 0.5, 50or 1 1 1  , choice B, 5, 50%  50  50      100  100 50  2 2 does not equal 50%. 6. Since 80% = 80(0.01) = 0.80 20 =4 0.8,4 or  , choice C, 8, 80%  80  1  80      100  100 20  5 5 does not equal 80%. 7. Since 35 is half of 70, 50% of 70 is 35, B. 8. Since 8.8 is

1 10

of 88, 10% of 88 is 8.8, D.

9. Since 47 = 47, 100% of 47 is 47, A. 10. Since 7 is

1

of 28, 25% of 28 is 7, C.

4 11. Round $24.86 to $25. 10% of $25 is $2.50. 20% of $25 is 2($2.50) = $5. Of the amounts given, $5 is closest to 20% of $24.86, C. 12. amount of discount  discount rate  original price  10% $150  0.10 $150  $15 The amount of discount is $15, A. 13. discounted price = $150  $15 = $135 The discounted price is $135, D.

5

x 11 311  5x In the given proportion, the cross products are 3  11 and 5x. In choice A, the cross products are 3  5 and 11  x, while in choices B, C, and D, the cross products are 3  11 and 5x, so choice A is not equivalent to the given proportion. 3. “Percent” means “per hundred” so 12% means 12 12 3 or 0.12. Also,  3 4  . Thus, 100 100 4  25 25 choice D, 1.2, does not equal 12%. 

Chapter 6: Ratio, Proportion, and Percent

14. 25% of a number is

1

of that number.

4 25%  $40 

1

$40  $10 4 The discount amount is $10, so the sale price of the shoes before tax is $40  $10 = $30, C. Chapter 6 Test 1. 85% = 85(0.01) = 0.85

4. Since 100% = 100(0.01) 1  100= 1.00 = 1, or 100%  100  , choice A, 10, does not  100  100   equal 100%.

2. 500% = 500(0.01) = 5 3. 0.6% = 0.6(0.01) = 0.006 4. 0.056 = 0.056(100%) = 5.6% 5. 6.1 = 6.1(100%) = 610% 6. 0.35 = 0.35(100%) = 35%

Copyright © 2025 Pearson Education, Inc.

247


Chapter 6: Ratio, Proportion, and Percent 7. 120%  120

 1

1  120 1   5  100  100  1 8. 38.5%  38.5  38.5  385 77      100 1000 200  100  

9. 0.2%  0.2

3

8

2 1  1  0.2       100  100 1000 500

3 100 300  % %  37.5% 8 1 8

3 7 100 700 12. 1 4   %  175% %  4 1 4 13.

3 4

3 100 300  % %  75% 4 1 4

 14. 40%  40  1   40 2     100  100 5 

15. Method 1: x = 42%  80 x = 0.42  80 x = 33.6 33.6 is 42% of 80. Method 2: a 42  80 100 a 100  42 80 100a  3360 100a 3360  100 100 a  33.6 33.6 is 42% of 80. 16. Method 1: 0.6%  x  7.5 0.006 x  7.5 0.006x 7.5  0.006 0.006 x  1250 0.6% of 1250 is 7.5. Method 2:

248

7.5 0.6  b 100 7.5 100  b  0.6 750  0.6b

11 11 100 1100   % %  55% 10. 20 20 1 20 11.

ISM: Prealgebra and Introductory Algebra

750 0.6b  0.6 0.6 1250  b 0.6% of 1250 is 7.5. 17. Method 1: 567  x  756 567 x  756  756 756 0.75  x 75%  x 567 is 75% of 756. Method 2: 567 p  756 100 567 100  756  p 56, 700  756 p 56, 700 756 p  756 756 75  p 567 is 75% of 756. 18. 12% of 320 is what number? 12%  320  x 0.12  320  x 38.4  x There are 38.4 pounds of copper. 19. 20% of what number is $11,350? 20%  x  $11, 350 0.20 x  $11, 350 0.2x $11, 350  0.2 0.2 x  $56, 750 The value of the potential crop is $56,750. 20. tax = 8.25%  $354 = 0.0825  $354  $29.21 total amount = $354 + $29.21 = $383.21 The total amount of the stereo is $383.21. 21. percent of increase 

amount of increase

original amount 26, 460  25, 200  25, 200 1260  25, 200  0.05 The increase in population was 5%.

Copyright © 2025 Pearson Education, Inc.


  

ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

22. Amount of discount  15%  $120  0.15  $120  $18 Sale price = $120  $18 = $102 The amount of the discount is $18; the sale price is $102. 23. commission  4%  $9875  0.04  $9875  $395 The commission was $395. 24.

29. The ratio of $75 to $10 is

$10 30.

25. simple interest  principal  rate  time 1  $2000  9.25%  3 2  $2000  0.0925 3.5  $647.5

75 10

15

.

2

5  4 y 1 y  2 5( y  2)  4( y 1) 5 y 10  4 y  4 y 10  4 y  6

Cumulative Review Chapters 16 1.

236  86 1 416 18 880 20, 296

2.

409  76 2 454 28 630 31, 084

nt

r  26. A  P 1    n  15  0.08   13651   1    1365(1.08)5  2005.63 The total amount of $2005.63.

27. Simple interest  principal  rate  time 6  $400 13.5%  12  $400  0.135 0.5  $27 Total amount = $400 + $27 = $427

3. 3  7 = 3 + (7) = 10 4. 8  (2) = 8 + 2 = 10 5.

x  2  1 x  2  2  1  2 x 1

6.

x43 x 44  34 x  1

amount of decrease 

original amount 43,150  40,870  43,150 2280  43,150  0.053 The number of crimes decreased 5.3%.

31. Let x be the number of defective bulbs out of 510 bulbs. x defective defective 3  bulbs 85 510  bulbs 3 510  85  x 1530  85x 1530 85x  85 85 18  x There should be 18 defective bulbs in 510.

$13.77  rate  $152.99 $13.77   r $152.99 0.09  r 9%  r The sales tax rate is 9%.

28. percent of decrease  

$75

Copyright © 2025 Pearson Education, Inc.

249


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

7.

8.

3(2x  6)  6  0 3  2x  3  6  6  0 6x 18  6  0 6x 12  0 6x 12  12  0  12 6x  12 6x 12  6 6 x2

3 1 6 3 7 1 2 6 4 17.           4 14 7 4 7 14 2 7 4 21 2 24    28 28 28 1  28 18.

5(x  2)  3x 5  x  5  2  3x 5x 10  3x 5x  5x 10  3x  5x 10  2x 10 2x 2  2

13 14 3 8  2 4 8 31 33  12 4 6 4 3 6 2 4 3  8 8 9  2 12 12 7  87 12

19. 2

5 x 9. 3 

3 7 3  7 21    1 7 1 7 7

8 5 8  5 40  10. 8    1 5 1 5 5

Since 10 and 27 have no common factors, 10 27 is already in simplest form. 10 y 5  2  y 5y   32 16  2 16

13. 

7

 

12

5

 

6

7



6

12

5

7  7  6  2  6  5 10

14.  2  7   2  10   2  2  5   4 5 10 5 7 5 7 7 8  3  8 3 5 1   15. y  x          10 10 10 10 10 2    2  1 4  3 1 3      16. 2x  3y  2    5   5  5 5 5      

250

7 7  8 12 7 12   8 7 7 43  427 3  2 

11.  10   2  5 27 3 33

12.

2 7 1 2 5 7 3 1 15         9 15 3 9 5 15 3 3 15 10 21 15    45 45 45 16  45

21 2  2  1 20. 33 63 33 25 3 6 4 45 4  5  5  4 41 6 15 12 20 20 5 6  3 20

 6

5 3  6  20 5 20  6 3 5  2 10  233 50  9

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

 21.

x x 1   2 3 2 x  x 1  6  2   6  3  2    x  1 3x  6   6  3 2 3x  2x  3 3x  2x  2x  3  2x x 3 x

22.

1

 3

29.

85.00  17.31 67.69

30.

38.00  10.06 27.94

31. 7.68  10 = 76.8 32. 12.483  100 = 1248.3

x

2 5 5  x 1  10  3 x  10  2  5  5     x 1 x 10   10   10  3 10  2 5 5 5x  2  30  2x 5x  2  2x  30  2x  2x 7x  2  30 7x  2  2  30  2 7x  28 7x 28  7 7 x4

33. (76.3)(1000) = 76,300 34. 853.75  10 = 8537.5 35. x  y = 2.5  0.05 50 0.05 2.5 becomes 5 250 25 00 36.

2 9  4  2 36  2 38    9 9 9 9

x  4.75 100 470 0 4.75 100 4.7  4.75 False No, 470 is not a solution.

23. a.

4

b.

1

111  8 11  8 19    11 11 11 11

24. a.

3

2 5  3  2 15  2 17    5 5 5 5

38. mean 

b.

6

2 7  6  2 42  2 44    7 7 7 7

39.

8

25. 0.125  125  1 1000 8 26. 0.85 

85 100

2.5

5.8

58

45 41. 83 1000

15 3  17 1000 200

2500 3150

7.6

20

36  40  86  30 192   48 4 4

3.15 40.

17

27. 105.083  105

28. 17.015  17

37. 55, 67, 75, 86, 91, 91 75  86 161 median    80.5 2 2



76 



50 63

29 38

5

x 7 45  7  5  x 315  5x 315 5x  5 5 63  x

Copyright © 2025 Pearson Education, Inc.

251


ISM: Prealgebra and Introductory Algebra

Chapter 6: Ratio, Proportion, and Percent

42.

x 1

46. 2.3%  2.3

3

3x 1 8 8(x 1)  3(3x 1) 8x  8  9x  3

8  x  3 11  x 43.

1 47. 33 %  3

7 problems x problems  6 minutes 30 minutes 7  30  6  x 210  6x 210 6x  6 6 35  x The student can complete 35 problems in 30 minutes.  1 19  1.9 45. 1.9%  1.9      100  100 1000

23  2.3     100 1000  100  100  1  100 1

  3 1100 300 3 2  108 48. 108%  108  1   25  100  100 

5 miles x miles  2 inches 7 inches 5 7  2  x 35  2 x 35 2 x  2 2 17.5  x 17.5 miles corresponds to 7 inches.

 1



49. Wh–tanu– m– ber is 35% of 60?      x = 35%  60 x = 0.35  60 x = 21 21 is 35% of 60.

44.

252

50. Wh–at nu– m– ber is 42% of 85?      x = 42%  85 x = 0.42  85 x = 35.7 35.7 is 42% of 85.

Copyright © 2025 Pearson Education, Inc.


Chapter 7 Section 7.1 Practice Exercises 1. a.

b.

2. a.

6.

Class Interval (credit card balances)

Tally

Class Frequency (number of months)

$0$49

|||

3

$50$99

||||

4

$100$149

||

2

$150$199

|

1

$200$249

|

1

$250$299

|

1

Hindi has 7 symbols and each symbol represents 50 million speakers, so Hindi is spoken by 7(50) = 350 million people. Spanish has 9.5 symbols, or 9.5(50) = 475 million speakers. So, 475 million  350 million = 125 million more people speak Spanish than Hindi. The height of the bar for crustaceans is 30, so approximately 30 endangered species are crustaceans.

b. The shortest bar corresponds to arachnids, so arachnids have the fewest endangered species. 3.

7.

4. The height of the bar for 8089 is 12, so 12 students scored 8089 on the test. 5. The height of the bar for 4049 is 1, for 5059 is 3, for 6069 is 2, for 7079 is 10. So, 1 + 3 + 2 + 10 = 16 students scored less than 80 on the test.

8. a.

The lowest point on the graph corresponds to January, so the average daily temperature is the lowest during January.

b.

The point on the graph that corresponds to 25 is December, so the average daily temperature is 25F in December.

c.

The points on the graph that are greater than 70 are June, July, and August. So, the average daily temperature is greater than 70F in June, July, and August.

9. range  largest data value  smallest data value  $102  $32  $70 The range of the salaries is $70 thousand. 10. a.

range  largest data value  smallest data value  67  50  17 The range of this data set is 17.

Copyright © 2025 Pearson Education, Inc.

253


Chapter 7: Graphs, Triangle Applications, ...

b.

mean sum of items  number of items 50 1 59  3  60  3  62  5  63 2  67 1  1 3  3  5  2 1 910  15  60.7 The mean of the data set is approximately 60.7.

c.

Since there are 15 data items and the items are arranged in numerical order, the middle 15 1 16 item can be located using   8. 2 2 The median is the eighth item, which is 62.

d.

The mode has the greatest frequency, so the mode is 62.

Vocabulary, Readiness & Video Check 7.1

ISM: Prealgebra and Introductory Algebra

Exercise Set 7.1 2. South Dakota has the least number of wheat symbols, so the least amount of wheat acreage was planted in South Dakota. 4. Kansas is represented by 7.5 wheat symbols, and each symbol represents 1 million acres, so there were approximately 7.5(1 million) = 7.5 million or 7,500,000 acres of wheat planted in Kansas. 6. Each wheat symbol represents 1 million acres, so look for any states that have more than 6 million  6 wheat symbols. Texas and Kansas 1 million have more than 6 wheat symbols, so these states plant more than 6,000,000 acres of wheat. 8. North Dakota and Oklahoma each have 6 wheat symbols. The same acreage of wheat is planted in North Dakota and Oklahoma.

1. A bar graph presents data using vertical or horizontal bars.

10. 2022 has 5.5 flames and each flame represents 12,000 wildfires, so there were approximately 5.5(12,000) = 66,000 wildfires in 2022.

2. A pictograph is a graph in which pictures or symbols are used to visually present data.

12. The year with the fewest flames is 2019, so the fewest wildfires occurred in 2019.

3. A line graph displays information with a line that connects data points.

14. 2021 has 5 flames and 2022 has 5

4. A histogram is a special bar graph in which the width of each bar represents a class interval and the height of each bar represents the class frequency. 5. range = greatest data value  smallest data value n 1 6. The formula

can be used to find the 2 position of the median.

7. Count the number of symbols and multiply this number by how much each symbol stands for (from the key). 8. A bar graph lets you see and visually compare the data. 9. A histogram is a special kind of bar graph.

1

flames,

2 which is

1

flame more. The increase in 2 wildfires from 2021 to 2022 was 1 (12, 000)  6000 wildfires. 2 16. Since each flame represents 12,000 wildfires, look for the years that have fewer than 60, 000  5 flames. There were fewer than 12, 000 60,000 wildfires in 2018 and 2019. 18. The shortest bar corresponds to November, so the month in which the fewest hurricanes made landfall is November. 20. The length of the bar for October is 61, so approximately 61 hurricanes made landfall in October.

10. 2021; 9.4 goals per match 11. answers may vary; for example: 6, 6, 6, 6

254

22. One of 111 hurricanes made landfall in 1 September 2007. The percent is  0.009 or 111 about 0.9%.

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

24. The shortest bar corresponds to Sao Paulo, Brazil and the length of the bar is about 21.7. The metropolitan area with the smallest population is Sao Paulo, Brazil and its population is about 21.7 million or 21,700,000.

40. 29 of the adults drive 049 miles per week and 17 of the adults drive 5099 miles per week, so 29  17 = 12 more adults drive 049 miles per week than 5099 miles per week.

26. The bar between 24 and 25 corresponds to Seoul, South Korea.

42. 17 of the 100 adults surveyed drive 5099 miles 17 per week, so the ratio is . 100

28. The bar corresponding to Jakarta, Indonesia has length about 30 and the bar corresponding to Seoul, South Korea has length about 24. Thus, Jakarta, Indonesia is about 30  24 = 6 million larger than Seoul, South Korea.

44. The shortest bar corresponds to under 25, so the least number of U.S. householders were in the under 25 age range. 46. According to the graph, approximately 23 million U.S. householders were 3544 years old.

30.

48. The sum of the last three bars is 24 + 21 + 15 = 60, so approximately 60 million U.S. householders were 55 years old or older. 50. The height of the bar for 4554 is 22 and the height of the bar for 75 and over is 15. So, approximately 22  15 = 7 million more U.S. householders were 4554 years old than 75 and over.

32.

Class Interval (scores)

Tally

Class Frequency (number of games)

52.

8089

||||

4

54.

100109

||

2

Class Interval (account balances) 34. The height of the bar for 200249 miles per week is 9, so 9 of the adults drive 200249 miles per week. 36. 9 of the adults drive 200249 miles per week and 21 of the adults drive 250299 miles per week, so 9 + 21 = 30 of the adults drive 200 miles or more per week.

Tally

Class Frequency (number of people)

56.

$100$199

|||| |

6

58.

$300$399

||||

4

60.

$500$599

|

1

38. 9 of the adults drive 150199 miles per week and 9 of the adults drive 200249 miles per week, so 9 + 9 = 18 of the adults drive 150249 miles per week.

Copyright © 2025 Pearson Education, Inc.

255


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

84. There are 2 + 1 + 4 + 7 + 2 + 1 = 17 data items.

62.

a.

b.

64. The point on the graph corresponding to 2017 is 8.3, so the average number of goals per match in 2017 was 8.3. 66. The lowest point on the graph corresponds to 2013, so the average number of goals per match was the lowest in 2013.

c.

3 2  4 1 5  4  6  7  7  2  8 1 17 94  17  5.5

mean 

n 1 17 1  9 2 2 The data item in the ninth position is 6, so the median is 6. The data item with the greatest frequency is the mode, so the mode is 6.

86. There are 3 + 8 + 5 + 8 + 2 = 26 data items. a.

4  3  5 8  6  5  7 8  8  2 26 154  26  5.9

mean 

68. The graph decreases between 2011 and 2013, so the average number of goals per match decreased from 2011 to 2013. 70. The dots for 2009, 2011, 2017, 2019, and 2021 are above the 8-level, so the average number of goals per match was greater than 8 in 2009, 2011, 2017, 2019, and 2021.

76. range  largest data value  smallest data value  40 11  29

c.

The data items with the greatest frequency are the mode, so the mode is 5 and 7.

88. There are 1 + 4 + 5 + 3 + 2 = 15 data items. a.

78. range  largest data value  smallest data value  276 129  147

b.

80. range  largest data value  smallest data value  10  7 3

c.

82. range  largest data value  smallest data value  90  40  50

256

26 1

 13.5 2 2 The mean of the data items in the 13th and 66 14th positions is  6, so the median is 2 6.

72. The point on the graph corresponding to 2029 is at about 450, so the amount spent on organic food in 2029 is predicted to be $450 billion. 74. The dots for 2029 and 2030 are above the 400-level, so the amount spent on organic food is predicted to be more than $400 billion in 2029 and 2030.

n 1

b.

10 1 20  4  30  5  40  3  50  2 15 460  15  30.7

mean 

n 1 15 1  8 2 2 The data item in the eighth position is 30, so the median is 30. The data item with the greatest frequency is the mode, so the mode is 30.

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

90. There are 6 + 6 + 4 + 3 + 3 = 22 data items. 5  6 10  6 15  4  20  3  25  3 22 285  22  13.0

mean 

a.

n 1

c.

22 1

 11.5 2 2 The mean of the data items in the eleventh 10 10 and twelfth positions is  10, so the 2 median is 10.

b.

The data items with the greatest frequency are the mode, so the mode is 5 and 10.

92. 45% of 120 is 0.45  120 = 54.

Section 7.2 Practice Exercises 1. Eight of the 100 adults prefer golf. The ratio is adults preferring golf 8 2   total adults 100 25 2. Add the percents corresponding to South America & Caribbean and India. 13% + 2% = 15% 15% of visitors to the U.S. come from South America & Caribbean and India. 3. amount  percent  base  0.47  91, 000, 000  42, 770, 000 Thus, 42,770,000 tourists might come from Mexico in 2027. 4.

Percent

Freshmen

30%

30% of 360 = 0.30(360) = 108

Sophomores

27%

27% of 360 = 0.27(360) = 97.2

Juniors

25%

25% of 360 = 0.25(360) = 90

Seniors

18%

18% of 360 = 0.18(360) = 64.8

94. 95% of 50 is 0.95  50 = 47.5. 2 96. 98.

5 9 10

2

100% 

2  5  20

5 

9 10

5 100% 

%  40%

9 10 10

%  90%

10

100. The point on the low temperature graph corresponding to Thursday is 74, so the low temperature reading on Thursday was 74F. 102. The highest point on the graph of high temperature corresponds to Tuesday. The high temperature on Tuesday was 86F.

Degrees in Sector

Year

104. The difference between the graphs is the least for Friday. The high temperature was 76F and the low temperature was 70F, so the difference is 76  70 = 6F. 106. Kansas is represented by 7.5 wheat symbols, and each symbol represents 1 million acres, so there were approximately 7.5(1 million) = 7.5 million or 7,500,000 acres of wheat planted. This represents 20% of the wheat acreage in the U.S., 7.5 million so  37.5  38 million acres of 0.20 wheat were planted in the U.S.

Vocabulary, Readiness & Video Check 7.2 1. In a circle graph, each section (shaped like a piece of pie) shows a category and the relative size of the category. 2. A circle graph contains pie-shaped sections, each called a sector. 3. The number of degrees in a whole circle is 360.

Copyright © 2025 Pearson Education, Inc.

257


Chapter 7: Graphs, Triangle Applications, ...

ISM: Prealgebra and Introductory Algebra

4. If a circle graph has percent labels, the percents should add up to 100. 5. 100% 6. 360 Exercise Set 7.2 2. The smallest sector corresponds to the category “own off-campus housing,” thus the least of these college students own off-campus housing. 4. 124 of the 700 total students live in off-campus rentals. 124 31  700 175 31 The ratio is . 175 6. 124 of the students live in off-campus rentals while 320 live in a parent or guardian’s home. 124 31  320 80 31 The ratio is . 80 8. The smallest sector corresponds to Australia. Thus, the smallest continent is Australia. 10. 16% + 12% = 28% 28% of the continental land area on Earth is accounted for by North and South America. 12. South America accounts for 12% of the continental land area on Earth. 12% of 57,000,000  0.12  57, 000, 000  6,840, 000 South America is 6,840,000 square miles. 14. Europe accounts for 7% of the continental land area on Earth. 7% of 57,000,000  0.07  57, 000, 000  3, 990, 000 Europe is 3,990,000 square miles. 16. The second-largest sector corresponds to dairy and eggs, so the second-greatest amount of money spent on organic food is spent on dairy and eggs. 18. Breads and grains account for 9.4% of the money spent on organic food. 0.094  400 = 37.6 It is predicted that $37.6 billion will be spent on organic breads and grains in 2028. 20. Add the percent for nonfiction (25%) to the percent for reference (17%). 25% + 17% = 42% Thus, 42% of books are nonfiction or reference. 22. The third-largest sector corresponds to children’s fiction, so the third-largest category of books is children’s fiction. 24. Reference accounts for 17% of the books. 17% of 125,600  0.17 125, 600  21, 352 The library has 21,352 reference books. 258

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, …

26. Adult’s fiction accounts for 33% of the books. 33% of 125,600  0.33125, 600  41, 448 The library has 41,448 adult fiction books. 28. Nonfiction or other accounts for 25% + 3% = 28% of the books. 28% of 125,600 = 0.28  125,600 = 35,168 The library has 35,168 nonfiction or other books. 30.

Color Distribution of M&M’s Milk Chocolate Color

Percent

Degrees in Sector

Blue

24%

24% of 360 = 0.24(360)  86

Orange

20%

20% of 360 = 0.20(360) = 72

Green

16%

16% of 360 = 0.16(360)  58

Yellow

14%

14% of 360 = 0.14(360)  50

Red

13%

13% of 360 = 0.13(360)  47

Brown

13%

13% of 360 = 0.13(360)  47

Copyright © 2025 Pearson Education, Inc.

259


Chapter 7: Graphs, Triangle Applications, ...

32.

ISM: Prealgebra and Introductory Algebra

Distribution of Department of the Interior Public Lands by Management Bureau of Management

Percent

Degrees in Sector

Bureau of Indian Affairs

9%

9% of 360 = 0.09(360)  32

National Park Service

11%

11% of 360 = 0.11(360)  40

Fish and Wildlife

20%

20% of 360 = 0.20(360) = 72

U.S. Forest Service

31%

31% of 360 = 0.31(360)  112

Bureau of Land Management

29%

29% of 360 = 0.29(360)  104

34. 25  5  5  52 36. 16  4  4  2  2  2  2  24 38. 105 = 3  35 = 3  5  7 40. answers may vary 42. Atlantic Ocean: 26%  264, 489, 800  0.26  264, 489, 800  68, 767, 348 square kilometers 44. Arctic Ocean: 4%  264, 489, 800  0.04  264, 489, 800  10, 579, 592 square kilometers 46. 9% of 2800 = 0.09  2800 = 252 252 members of the community would be expected to buy online daily. 48. 56% of 2800 = 0.56  2800 = 1568 1568 members of the community would be expected to buy online monthly or less than monthly.

260

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

 50.

percent who never buy online percent who buy monthly or less than monthly 2%  56% 2  56  1 28

52. true; answers may vary Mid-Chapter Review 1. Software developers has 5 figures and each figure represents 75,000 workers. Thus, the increase in the number of software developers is approximately 5  75,000 = 375,000. 2. Registered nurses has 2.5 figures and each figure represents 75,000 workers. Thus, the increase in the number of registered nurses is approximately 2.5  75,000 = 187,500. 3. Home health and personal care aide has the greatest number of figures, so the greatest increase is expected for home health and personal care aides.

10. The lowest point on the graph corresponds to Monday. Thus, the lowest temperature occurs on Monday, and is 82F. 11. The points on the graph that are lower than the 90 level correspond to Sunday, Monday, and Tuesday. Thus, the temperature was less than 90F on Sunday, Monday, and Tuesday. 12. The points on the graph that are higher than the 90 level correspond to Wednesday, Thursday, Friday, and Saturday. Thus, the temperature was greater than 90F on Wednesday, Thursday, Friday, and Saturday. 13. The highest points on the graph correspond to 2026 and 2027, so those years have the highest predicted percent of food purchased being organic. 14. The lowest point on the graph corresponds to 2020, so 2020 has the lowest percent of food purchased being organic. 15. The point for 2022 is below the point for 2021, so there was a decrease in the percent of organic food purchased from 2021 to 2022.

4. Food service has the second greatest number of figures, so the second greatest increase is expected for food service.

16. The steepest upward segment on the graph is between 2020 and 2021, so the greatest increase in the percent of organic food purchased is from 2020 to 2021.

5. The tallest bar corresponds to Oroville, CA. Thus, the U.S. dam with the greatest height is the Oroville Dam, which is approximately 770 feet.

17. The sector corresponding to whole milk is 35%. 35% of 200 = 0.35  200 = 70 Thus, 70 quart containers of whole milk are sold.

6. The bar whose height is between 625 and 650 feet corresponds to New Bullards Bar, CA. Thus, the U.S. dam with a height between 625 and 650 feet is the New Bullards Bar Dam, which is approximately 645 feet.

18. The sector corresponding to skim milk is 26%. 26% of 200 = 0.26  200 = 52 Thus, 52 quart containers of skim milk are sold.

7. From the graph, the Hoover Dam is approximately 725 feet and the Glen Canyon Dam is approximately 710 feet. The Hoover Dam is 725  710 = 15 feet taller than the Glen Canyon Dam. 8. There are 4 bars that are taller than the 700-feet level, so there are 4 dams with heights over 700 feet.

19. The sector corresponding to buttermilk is 1%. 1% of 200 = 0.01  200 = 2 Thus, 2 quart containers of buttermilk are sold. 20. The sector corresponding to Flavored reduced fat and skim milk is 3%. 3% of 200 = 0.03  200 = 6 Thus, 6 quart containers of flavored reduced fat and skim milk are sold.

9. The highest points on the graph correspond to Thursday and Saturday. Thus, the highest temperature occurs on Thursday and Saturday and is 100F. Copyright © 2025 Pearson Education, Inc.

261


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

Class Interval (scores)

Class Frequency (number of quizzes)

Tally

21.

5059

||

2

22.

6069

|

1

23.

7079

|||

3

24.

8089

|||| |

6

25.

9099

||||

5

9. Let a = 12 and b = 16. a2  b2  c2 122 162  c2 144  256  c2 400  c2 400  c 20  c The hypotenuse is 20 feet. 10. Let a = 9 and b = 7. a2  b2  c2 92  72  c2 81 49  c2

26.

130  c2 130  c 11  c The hypotenuse is approximately 11 kilometers. 11. Let a = 7 and c = 13. a2  b2  c2 72  b2  132 49  b2  169

Section 7.3 Practice Exercises 1.

100  10 because 10  100.

2.

64  8 because 82  64.

3.

169  13 because 132  169.

4.

0  0 because 02  0.

5.

1 1 1  because    . 4 2  2  4

b2  120 b  120 b  10.95 The length of the hypotenuse is exactly 120 feet or approximately 10.95 feet.

2

100 yd

12. 53 yd

2

1

Let a = 53 and b = 100. a2  b2  c2

2

3 9 3 9  because    . 16 4  4  16  7. a. 10  3.162

532 1002  c2

6.

b.

2809 10, 000  c2 12,809  c2 12,809  c 113  c The diagonal is approximately 113 yards.

62  7.874

8. Recall that

49  7 and

64  8. Since 62 is

between 49 and 64, then 62 is between 49 and 64. Thus, 62 is between 7 and 8. Since 62 is closer to 64, then 62 is closer to 64, or 8. 262

Calculator Explorations 1.

1024  32

2.

676  26

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

3.

15  3.873

4.

19  4.359

5.

97  9.849

6.

4.

144  12 because 122  144.

6.

1 1 1 1 1 1 because      . 64 8  8  8 8 64

8.

6 2 6 6 6 36 36   because      . 81 9 3  9  9 9 81

10.

5  2.236

12.

17  4.123

14.

85  9.220

16.

35  5.916

2

2

56  7.483

Vocabulary, Readiness & Video Check 7.3 1. The square roots of 100 are 10 and 10 because 10  10 = 100 and (10)(10) = 100. 2.

100  10 only because 10  10 = 100 and 10 is positive.

3. The radical sign is used to denote the positive square root of a nonnegative number.

18. Since 27 is between 25 = 5  5 and 36 = 6  6, 27 is between 5 and 6; 27  5.20.

4. The reverse process of squaring a number is finding a square root of a number.

20. Since 85 is between 81 = 9  9 and 100 = 10  10, 85 is between 9 and 10; 85  9.22.

5. The numbers 9, 1, and

1 25

are called perfect

squares.

22.

625  25 because 252  625.

24.

18  4.243

26.

11  11  11 11 121 121 .  because      169 13 13  13 13 169

28.

62  7.874

2

6. Label the parts of the right triangle. hypotenuse leg

30. Let a = 36 and b = 15.

leg

a 2  b 2  c2

7. In the given triangle, a2  c2  b2 .

362 152  c2

8. The Pythagorean Theorem can be used for right triangles. 9. The square roots of 49 are 7 and 7 since 72  49 and (7)2  49. The radical sign

means the positive square root only, so

49  7.

10. Since 38 is between 36  6 and 49  7 and 38 is much closer to 36 than to 49, we know that 38 is closer to 6 than 7. 11. The hypotenuse is the side across from the right angle. Exercise Set 7.3 2.

1296  225  c2 1521  c2 1521  c 39  c The missing length is 39 feet. 32. Let a = 3 and c = 9. a2  b2  c2 32  b2  92 9  b2  81 b2  72 b  72 b  8.485 The missing length is approximately 8.485 yards.

9  3 because 32  9. Copyright © 2025 Pearson Education, Inc.

263


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

34. Let a = 34 and b = 70. 2

2

42.

2

a b  c

342  702  c2 16

1156  4900  c2 6056  c2 6056  c 77.820  c The missing length is approximately 77.820 miles.

2

hypotenuse  (leg)2  (other leg)2  22 162  4  256  260

36. Let a = 36 and b = 27. a2  b2  c2 362  272  c2 1296  729  c

 16.125 The hypotenuse has length of about 16.125 units.

2

2025  c2 2025  c 45  c The missing length is 45 kilometers.

30

44. 15

hypotenuse  (leg)2  (other leg)2

38.

2 2  30 15  900  225  1125  33.541 The hypotenuse has length of about 33.541 units.

12

 

9

hypotenuse  (leg)2  (other leg)2

46.

21

 92 122  81 144  225  15 The hypotenuse has length 15 units.

 hypotenuse  (leg)2  (other leg)2

40. 6

10

leg  (hypotenuse)2  (other leg)2  102  62  100  36  64 8 The leg has length 8 units.

264

21

 212  212  441 441  882  29.698 The hypotenuse has length of about 29.698 units.

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

8

48.

58. leg  (hypotenuse)2  (other leg)2  (60)  (29.4) 2

9 2

leg  (hypotenuse)  (other leg)

 3600  864.36  2735.64  52.3 The width of the television is about 52.3 inches.

2

 92  82  81  64  17  4.123 The leg has length of about 4.123 units.

60. leg  (hypotenuse)2  (other leg)2 

12

hypotenuse  (leg)2  (other leg)2

62. hypotenuse  (leg)2  (other leg)2  (43.6)  (24.5) 2

 122  (22.5)2

 25.5 The hypotenuse has length 25.5 units. 52. hypotenuse  (leg)2  (other leg)2  12 12  11  2  1.414 The length of the diagonal is about 1.414 miles. (hypotenuse)2  (leg)2

 1682  602  28, 224  3600  24, 624  156.9 The height of the antenna is about 156.9 feet. 2 2 56. hypotenuse  (leg)  (other leg)

2

1.774  1.77 64. 27 47.900 27 20 9 18 9 2 00 1 89 110 108 2 Yes, the aspect ratio of the television is approximately 1.78 : 1. 66.

68.

10 2  5 2   15 3 5 3 35 75 y

2

 70 110  4900 12,100  17, 000  130.4 The length of the diagonal is about 130.4 yards.

2

 1900.96  600.25  2501.21  50 The diagonal of the television is about 50 inches.

 144  506.25  650.25

54. leg 

(55)2  (47.9)2

 3025  2294.41  730.59  27.0 The height of the television is about 27.0 inches.

22.5

50.

2

57 7  5 15  y 15 y

70.

3x 5 3x  5   9 9 9

72.

7 x 8x 7 x 11 7  x 11 7      11 11 11 8x 118  x 8

Copyright © 2025 Pearson Education, Inc.

265


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

74. Recall that

25  5 and

36  6. Since 27 is

5. Check: 76. Recall that

27 is closer to

25, or

27  5.20 81  9 and 100  10. Since 85 is

between 81 and 100, then 85 is between 81 and 100. Thus, 85 is between 9 and 10. Since 85 is closer to 81, then 81, or 9. Check:

1. Two triangles that have the same shape, but not necessarily the same size are congruent. false

85  9.22

2. Two triangles are congruent if they have the same shape and size. true

a2  b2  c2

3. Congruent triangles are also similar. true

202  452 0 502 400  2025 0 2500 2425  2500 No; the set does not form the lengths of the sides of a right triangle.

4. Similar triangles are also congruent. false 5. For the two similar triangles, the ratio of 5 corresponding sides is . false 6

Section 7.4 Practice Exercises 1. a.

The triangles are not congruent.

9 meters

2.

9  13 meters 13

x

6

 5 9 x9  56 9x  30 9x 30  9 9 10 or 3 1 units x 3 3

7.

The ratios of corresponding sides are the same. 8.

The ratio of corresponding sides is

3.

6. Since the sides of both triangles are given, and no angle measures are given, we used SSS.

The triangles are congruent by Side-AngleSide.

b.

8

Vocabulary, Readiness & Video Check 7.4

85 is closer to

78. answers may vary 80.

n 60 5  60  n 8 300  8n 300 8n  8 8 37.5  n The height of the building is approximately 37.5 feet.

between 25 and 36, then 27 is between 25 and 36. Thus, 27 is between 5 and 6. Since 27 is closer to 25, then

5

4.

9

. 13

12 4  18 n

Exercise Set 7.4 2. The triangles are congruent by Side-Side-Side. 4. The triangles are not congruent. 6. The triangles are congruent by Angle-SideAngle. 8. The triangles are congruent by Side-Angle-Side. 8 10. 4 7 1    32 16 28 4 1 The ratio of corresponding sides is . 4 12.

6 8 4 1 6 3 4 2

4 The ratio of corresponding sides is . 3 266

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

14.

16.

18.

20.

22.

24.

x 60  3 5 x  5  3 60 5x  180 5x 180  5 5 x  36 y 14  4 7 y  7  4 14 7 y  56 7 y 56  7 7 y 8 z 22.5 9  15 z 15  9  22.5 15z  202.5 15z 202.5  15 15 z  13.5 x 14  9 8 x 8  9 14 8x  126 8x 126  8 8 x  15.75 y 33.2  9.6 8.3 y 8.3  9.6  33.2 8.3y  318.72 8.3y 318.72  8.3 8.3 y  38.4 z

26.

28.

30.

32.

34.

13 1

 2 6 9 1 z  9  6 13 2 27 9z  6  2 9z  81 9z 81  9 9 z9

36.

x 13  13 26 x  26  13 13 26x  169 26x 169  26 26 x  6.5 n 8  37.5 20 n  20  37.5 8 20n  300 20n 300  20 20 n  15 28

 5 x 100 x  5  28 100 5x  2800 5x 2800  5 5 x  560 The fountain is approximately 560 feet high. x 76  10 2 x  2  10  76 2x  760 2x 760  2 2 x  380 The tree is 380 feet tall. x 44  32 24 x  24  32  44 24x  1408 24x 1408  24 24 x  58.7 The shadow is approximately 58.7 feet. 3

x

5 8 38  5  x 24  5x 24 5x  5 5 4.8  x 45  4.8 = 40.2 The speed of the truck is 40.2 miles per hour. Copyright © 2025 Pearson Education, Inc.

267


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

2 2 38. hypotenuse  (leg)  (other leg)

y 1  1 1 42 4 1 1 y   4 1 4 2 y  18

 1002  502  10, 000  2500  12, 500  112 The length of the diagonal is approximately 112 yards. 40. Subtract the absolute values. 3.60  0.41 3.19 Attach the sign of the larger absolute value. 0.41  3.6 = 3.19

1

6 14 1 z   6 1 4 z  24 The lengths of the sides of the deck are 12 feet, 18 feet, and 24 feet.

H T H T

H H T

1.

H H

0.48  3 = 0.16 44. Let x be the width of the banner. 1 11 3  2 x 9 1 1  9  x 1 3 2 3 3 x 2 2 2  3  (3)   x  3 32  2 x The width of the banner is 2 feet. n 11.6  58.7 20.8 n  20.8  58.7 11.6 20.8n  680.92 20.8n 680.92  20.8 20.8 n  32.7

Section 7.5 Practice Exercises

0.16 42. 3 0.48 3 18 18 0

46.

z

T H T

T T 8 outcomes 21 H

2. T

3 4 5 6

12 outcomes

1 2 3 4 5 6

3. The possibilities are: H, H, H, H, H, T, H, T, H, H, T, T, T, H, H, T, H, T, T, T, H, T, T, T T, H, T is one of the 8 possible outcomes, so the 1 probability is . 8

48. answers may vary

4. A 2 or a 5 are two of the six possible outcomes. 2 1 The probability is  . 6 3

x 1  3 1 4 1 x   31 4 x  12

5. A blue is 2 out of the 4 possible marbles. The 2 1 probability is  . 4 2

50.

268

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

Vocabulary, Readiness & Video Check 7.5 1. A possible result of an experiment is called an outcome. 2. A tree diagram shows each outcome of an experiment as a separate branch.

2

8. 3

3. The probability of an event is a measure of the likelihood of it occurring. 4. Probability is calculated by number of ways that an event can occur divided by number of possible outcomes. 5. A probability of 0 means that an event won’t occur.

4

Red

7. The number of outcomes equals the ending number of branches drawn. 8. 0; Having the die land on a 7 is impossible, and the probability of something impossible is 0. Exercise Set 7.5

1

a e i uo

2

a e i o u

2.

4.

6 outcomes

Blue T H T

12. A 9 is zero of the six possible outcomes. The 0 probability is  0. 6 14. A 2 or a 3 are two of the six possible outcomes. 2 1 The probability is  . 6 3 16. Three of the six possible outcomes are odd. The 3 1 probability is  . 6 2

10 outcomes

1 2 3 4

18. Five of the six possible outcomes are less than 6. 5 The probability is . 6 20. A 3 is one of three possible outcomes. The 1 probability is . 3

4 outcomes

Red

6.

H T H

10.

Yellow

6. A probability of 1 means that an event is certain to occur.

Red Blue Yellow Red Blue Yellow 12 outcomes Red Blue Yellow Red Blue Yellow

1

Blue

Yellow

Red Blue Yellow Red Blue Yellow Red Blue Yellow

9 outcomes

22. Not 3 is a 1 or a 2, which are two of three 2 possible outcomes. The probability is . 3 24. An even number is a 2, which is one of three 1 possible outcomes. The probability is . 3 26. One of the seven marbles is blue. The probability 1 is . 7

Copyright © 2025 Pearson Education, Inc.

269


Chapter 7: Graphs, Triangle Applications, ...

28. Three of the seven marbles are green. The 3 probability is . 7

ISM: Prealgebra and Introductory Algebra

Tree diagram for 50.52. Die 1 1

30. Three of the seven marbles are either blue or 3 yellow. The probability is . 7 32. The blood pressure was lower for 152 of the 152 19 200 people. The probability is  . 200 25

2

38 152 10 200     1; answers may vary 34. 200 200 200 200 36.

7

10 38.

7

2

 7  2  2  7  4  7  4  3 5 10 5 2 10 10 10 10

2

 7  5  7  5  7  5  7 or 1 3 5 10 2 10  2 5  2  2 4 4 

10

3

Die 2 Sum 1 2 2

3

3

4

4

5

5

6

6

7

1

3

2

4

3

5

4

6

5

7

6

8

1

4

2

5

3

6

4

7

5

8

6

9

1

5

2

6

3

7

4

8

5

9

6

10

1

6

2

7

3

8

4

9

5

10

6

11

1

7

2

8

3

9

4

10

5

11

6

12

3 3 10 310 3  5  2 6 10      6 40. 5 5 1 5 1 5 1 1 42. One of the 52 cards is the 10 of spades. The 1 probability is . 52

4

44. Four of the 52 cards are 10s. The probability is 4 1  . 52 13 46. Thirteen of the 52 cards are clubs. The 13 1 probability is  . 52 4

5

48. Eight of the cards are queens or aces. The 8 2 probability is  . 52 13

6

36 outcomes

50. Three of the 36 sums are 10. The probability is 3 1  . 36 12 52. One of the 36 sums is 2. The probability is

270

Copyright © 2025 Pearson Education, Inc.

1

. 36


ISM: Prealgebra and Introductory Algebra

54. answers may vary

Chapter 7 Review

Chapter 7 Vocabulary Check 1. Congruent triangles have the same shape and the same size. 2. Similar triangles have exactly the same shape but not necessarily the same size. 35.

Chapter 7: Graphs, Triangle Applications, …

5. hypotenuse 3. leg

1. Midwest has 2.5 houses, and each house represents 60,000 homes, so there were 2.5(60,000) = 150,000 new homes constructed in the Midwest. 2. South has 10 houses, and each house represents 60,000 homes, so there were 10(60,000) = 600,000 new homes constructed in the South. 3. South has the greatest number of houses, so the most new homes constructed were in the South.

4. leg

6. A triangle with one right angle is called a right triangle. 7. In the right triangle,

5. Each house represents 60,000 homes, so look for 300, 000 the regions with  5 or more houses. 60, 000 The South had 300,000 or more new homes constructed.

c

a

b 2

4. Northeast has the least number of houses, so the fewest new homes constructed were in the Northeast.

2

a  b  c2 is called the Pythagorean theorem.

8. A bar graph presents data using vertical or horizontal bars. 9. The possible results of an experiment are the outcomes. 10. A pictograph is a graph in which pictures or symbols are used to visually present data. 11. A tree diagram is one way to picture and count outcomes. 12. An experiment is an activity being considered, such as tossing a coin or rolling a die. 13. In a circle graph, each section (shaped like a piece of pie) shows a category and the relative size of the category. 14. The probability of an event is number of ways that event can occur . number of possible outcomes 15. A histogram is a special bar graph in which the width of each bar represents a class interval and the height of each bar represents the class frequency.

6. Each house represents 60,000 homes, so look for 300, 000 the regions with fewer than  5 houses. 60, 000 The Northeast, Midwest, and West had fewer than 300,000 new homes constructed. 7. The height of the bar representing 2010 is 30. Thus, approximately 30% of persons completed four or more years of college in 2010. 8. The tallest bar corresponds to 2020. Thus, the greatest percent of persons completing four or more years of college was in 2020. 9. The bars whose height is at a level of 20 or more are 1990, 2000, 2010, and 2020. Thus, 20% or more persons completed four or more years of college in 1990, 2000, 2010, and 2020. 10. answers may vary 11. The point on the graph corresponding to 2012 is about 960. There were approximately 960 medals awarded at the Summer Olympics in 2012. 12. The point on the graph corresponding to 2000 is about 930. There were approximately 930 medals awarded at the Summer Olympics in 2000.

Copyright © 2025 Pearson Education, Inc.

271


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

13. The point on the graph corresponding to 2016 is about 970. There were approximately 970 medals awarded at the Summer Olympics in 2016.

24.

14. The point on the graph corresponding to 2020 is about 1080. There were approximately 1080 medals awarded at the Summer Olympics in 2020. 15. The points on the graph corresponding to 2008 and 2004 are 960 and 930, respectively. There were 960  930 = 30 more medals awarded in 2008 than in 2004.

25. range  largest data value  smallest data value  63 3

16. The points on the graph corresponding to 2020 and 2016 are 1080 and 970, respectively. There were 1080  970 = 110 more medals awarded in 2020 than in 2016.

26. range  largest data value  smallest data value  8 1 7

17. The height of the bar corresponding to 4145 is 1. Thus, 1 employee works 4145 hours per week.

27. range  largest data value  smallest data value  95  60  35

18. The height of the bar corresponding to 2125 is 4. Thus, 4 employees work 2125 hours per week.

28. range  largest data value  smallest data value  99  80  19

19. Add the heights of the bars corresponding to 1620, 2125, and 2630. Thus, 6 + 4 + 8 = 18 employees work 30 hours or less per week.

29. range  largest data value  smallest data value  94 5

20. Add the heights of the bars corresponding to 3640 and 4145. Thus, 8 + 1 = 9 employees work 36 or more hours per week.

30. range  largest data value  smallest data value  2.86  0.02  2.84

Class Interval (Temperatures)

Tally

Class Frequency (Number of Months)

21.

8089

||||

5

22.

9099

|||

3

23.

100109

||||

4

31. There are 2 + 10 + 5 + 11 + 3 = 31 data items. a.

b.

c.

272

60  2  6110  62  5  6311 64  3 31 1925  31  62.1

mean 

n 1 311   16 2 2 The data item in the 16th position is 62, so the median is 62. The data item with the greatest frequency is the mode, so the mode is 63.

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

32. There are 5 + 7 + 8 + 10 + 15 = 45 data items. a.

b.

c.

60  5  61        45 2813  45  62.5

mean 

b.

c.

b.

c.

b.

The data item with the greatest frequency is the mode, so the mode is 64.

c.

a.

n 1 18 1   9.5 2 2 The mean of the data items in the ninth and 12 12 tenth positions is  12, so the 2 median is 12. The data items with the greatest frequency are the mode, so the mode is 11 and 12.

mean 15  3 16  2 17 118      22 398  22  18.1 n 1

22 1

 11.5 2 2 The mean of the data items in the eleventh 18 18 and twelfth positions is  18, so the 2 median is 18. The data items with the greatest frequency are the mode, so the mode is 18 and 20.

50  5  55  3  60 8  65  6  70  3 25 1495  25  59.8

mean 

n 1 25 1   13 2 2 The data item in the 13th position is 60, so the median is 60. The data item with the greatest frequency is the mode, so the mode is 60.

36. There are 7 + 3 + 5 + 2 + 7 = 24 data items.

mean 11 5 12  5 13 3 14 116  3 17 1  18 233  18  12.9

34. There are 3 + 2 + 1 + 6 + 4 + 6 = 22 data items. a.

a.

n 1 45 1   23 2 2 The data item in the 23rd place is 63, so the median is 63.

33. There are 5 + 5 + 3 + 1 + 3 + 1 = 18 data items. a.

35. There are 5 + 3 + 8 + 6 + 3 = 25 data items.

10  7 12  3 14  5 16  2 18  7 24 334  24 13.9

mean 

n 1

24 1

b.

 12.5 2 2 The mean of the data items in the 12th and 14 14 13th positions is  14, so the 2 median is 14.

c.

The data items with the greatest frequency are the mode, so the mode is 10 and 18.

37. The largest sector corresponds to the category “Mortgage payment,” thus the largest budget item is mortgage payment. 38. The smallest sector corresponds to the category “Utilities,” thus the smallest budget item is utilities. 39. Add the amounts for mortgage payment and utilities. Thus, $975 + $250 = $1225 is budgeted for the mortgage payment and utilities. 40. Add the amounts for savings and contributions. Thus, $400 + $300 = $700 is budgeted for savings and contributions. 41.

mortgage payment  $975 39  25 39    total $4000 160  25 160 39 The ratio is . 160

Copyright © 2025 Pearson Education, Inc.

273


Chapter 7: Graphs, Triangle Applications, ...

42.

food $700 7 100 7    total $4000 40 100 40 7 The ratio is . 40

ISM: Prealgebra and Introductory Algebra

2 2 57. hypotenuse  (leg)  (other leg)

43. The sector corresponding to China is 55%. 55% of 102 = 0.55  102  56 56 of the completed tall buildings are in China. 44. The sector corresponding to United Arab Emirates is 12%. 12% of 102 = 0.12  102  12 12 of the completed tall buildings are in United Arab Emirates. 45. The sector corresponding to South Korea is 4%. 4% of 102 = 0.04  102  4 4 of the completed tall buildings are in South Korea. 46. The sector corresponding to the United States is 10%. 10% of 102 = 0.10  102  10 10 of the completed tall buildings are in the United States. 47.

64  8 because 82  64.

48.

144  12 because 122  144.

49.

12  3.464

50.

15  3.873

51.

0  0 because 02  0.

52.

1  1 because 1  1.

53.

50  7.071

54.

65  8.062

55.

2 2 2 2 4 4  because      . 25 5  5  5 5 25

56.

1 1 1 1  1  1 .  because      100 10  10  10 10 100

 122  52  144  25  169  13 The leg has length 13 units. 58. hypotenuse  (leg)2  (other leg)2  202  212  400  441  841  29 The leg has length 29 units. 59. leg  (hypotenuse)2  (other leg)2 2 2  14  9  196  81  115  10.7 The leg has length of about 10.7 units.

60. leg  (hypotenuse)2  (other leg)2  862  662  7396  4356  3040  55.1 The leg has length of about 55.1 units. 61. hypotenuse  (leg)2  (other leg)2  202  202

2

 400  400  800  28.28 The diagonal is about 28.28 centimeters. 2

2

62. leg  (hypotenuse)2  (other leg)2 2

2

 126  90  15,876  8100  7776  88.2 The height is about 88.2 feet. 63. The triangles are congruent by Angle-SideAngle.

274

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

64. The triangles are not congruent. x 65.



Red

70.

20

Blue

20 30 x  30  20  20 30x  400 30x 400  30 30 40 1 x or 13 3 3

H T

T 1 2 3 4 5

1

1 2 3 4 5 1 2 3 25 outcomes 4 5 1 2 3 4 5

2

66.

x 24  5.8 8 x 8  5.8  24 8x  139.2 8x 139.2  8 8 x  17.4

71.

3

4

x 42  5.5 7 x  7  5.5  42 7x  231 7x 231  7 7 x  33 The height of the building is approximately 33 feet. x 2 y 2   68. 10 24 26 24 x  24  10  2 y  24  26  2 24x  20 24 y  52 24x 20 24 y 52   24 24 24 24 5 13 1 x y or 2 6 6 6 5 The unknown lengths are x  inch and 6 1 y  2 inches. 6 67.

H

1 2 3 45

T

1 2 3 4 5

69.

4 outcomes

H

10 outcomes

1 2 3 4 5

5

72.

1

Red Blue

2

Red Blue

3 4

5

Red Blue

10 outcomes

Red Blue Red Blue

73. One of the six possible outcomes is 4. The 1 probability is . 6 74. One of the six possible outcomes is 3. The 1 probability is . 6 75. One of the five possible outcomes is 4. The 1 probability is . 5 76. One of the five possible outcomes is 3. The 1 probability is . 5

Copyright © 2025 Pearson Education, Inc.

275


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

77. Three of the five possible outcomes are a 1, 3, or 3 5. The probability is . 5

89.

78. Two of the five possible outcomes are a 2 or a 4. 2 The probability is . 5 79. Two of the eight marbles are blue. The probability is 2  1 . 8 4 80. Three of the eight marbles are yellow. The 3 probability is . 8 81. Two of the eight marbles are red. The probability 2 1 is  . 8 4 82. One of the eight marbles is green. The 1 probability is . 8 83.

36  6 because 62  36.

84.

4 16 4 4 4 16  because      . 81 9 9 9 81 9  

n 10  6 5 n  5  6 10 5n  60 5n 60  5 5 n  12 3

9 n  18 2 8 12

90.

3

1

91. There are 2 + 5 + 4 + 1 + 6 = 18 data items. a.

10  2 12  5 14  4 16 118  6 18 260  18  14.44

mean 

2

85.

105  10.247 

86.

32  5.657

b.

87. hypotenuse  (leg)2  (other leg)2  662  562  4356  3136  7492  86.6

n 1 18 1   9.5 2 2 The mean of the data items in the ninth and 14 14 tenth places is  14, so the median 2 is 14.

c.

The data item with the greatest frequency is the mode, so the mode is 18.

d.

range  greatest data value  smallest data value  18 10 8

88. leg  (hypotenuse)2  (other leg)2  242 122  576 144  432  20.8

2

2 3  8 9 2 3 8 25 26 75 n   2 3 8 25 325 n 2 4 2 25 2 325  n  25 2 25 4 13 1 n or 6 2 2 n 12

92. There are 5 + 2 + 3 + 4 + 1 = 15 data items. a.

mean 

5  5 10  2 15  3  20  4  25 1 15

195  15  13 276

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

n 1 15 1  8 2 2 The data item in the eighth position is 15, so the median is 15.

11. A whole circle contains 360. 90 + 10 + 20 + 100 + 100 = 320 The unknown sector must contain 360  320 = 40; C.

c.

The data item with the greatest frequency is the mode, so the mode is 5.

d.

range  greatest data value  smallest data value  25  5  20

12. Three of the five possible outcomes is a red 3 marble. The probability is ; C. 5

b.

Chapter 7 Getting Ready for the Test

13. None (0) of the five possible outcomes is a green 0 marble. The probability is  0; A. 5 Data sets for Exercises 14 through 16:

1. Orchard 1 has 7 symbols, and each symbol represents 4 thousand bushels, so Orchard 1 produced 7  4 = 28 thousand bushels. 28 thousand = 28,000; C.

A. range = 10  10 = 0 10 10 10 10 10 50 mean    10 5 5 median = 10

2. Orchard 5 has the most symbols, so Orchard 5 produced the most bushels; C.

B. range = 14  6 = 8 6  8 10 12 14 50 mean    10 5 5 median = 10

3. Orchard 4 has 2.5 symbols and each symbol corresponds to 28 thousand bushels, so Orchard 4 produced 2.5(4) = 10 thousand bushels; D. 4. Orchard 2 has 8.5 symbols and Orchard 4 has 2.5 symbols, which is 6 fewer symbols. Each symbol represents 4 thousand bushels, so Orchard 2 produced 6(4) = 24 thousand bushels more than Orchard 4. 24 thousand = 24,000; C. 82

 64, 102  100, and 64 < 81 < 100, 5. Since then 81 is between 8 and 10; D. Also, 36  6,

25  5,

49  7, and

C. range = 12  8 = 4 8  9 10 1112 50 mean    10 5 5 median = 10 14. Data set B has the greatest range. 15. The median of all three data sets is 10; D. 16. The mean of all three data sets is 10; D.

81  9.

Data sets for Exercises 17 through 20: 6. Since 62  36, 72  49, and 36 < 40 < 49, is between 6 and 7; D.

40

7. True; the Pythagorean theorem applies only to right triangles; A. 8. False; since a triangle has three angles which sum to 180 and 90 + 90 = 180, a right triangle can have only one 90 angle; B. 9. False; a right triangle does have 3 sides, but two of the sides are called legs and one of the sides is called the hypotenuse; B.

A. range = 50  10 = 40 10  20  30  30  40  50 180 mean    30 6 6 30  30 median   30 2 mode = 30 B. range = 48  9 = 39 9 1111 30  48 109 mean    21.8 5 5 median = 11 mode = 11

10. True; the hypotenuse of a right triangle is the longest side; A.

Copyright © 2025 Pearson Education, Inc.

277


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ... C. range = 40  20 = 20 20  25  30  35  40 150 mean    30 5 5 median = 30 mode: none

7.

D. range = 70  50 = 20 50  55  60  65  70 300 mean    60 5 5 median = 60 mode: none 17. Data sets A and C both have mean 30. 18. Data sets A and B each have one mode. 19. Data sets C and D both have range 20. 20. Data sets A and C both have median 30.

9. The line graph is above the 3 level for 2021, 2022, and 2023. Thus the inflation rate was greater than 3% in 2021, 2022, and 2023.

Chapter 7 Test 1. There are 4

8. The point on the graph corresponding to 2020 is at about 1.4. Thus, the annual inflation rate in 2020 was about 1.4%.

1

dollar symbols for the second 2 week. Each dollar symbol corresponds to $50. 1 9 $450 4 $50  $50   $225 2 2 2 $225 was collected during the second week.

10. Look for the years where the line graph is decreasing. During 20142015, 20172018, 20192020, 20212022, and 20222023 the inflation rate was decreasing. number who prefer rock music 11.

2. Week 3 has the greatest number of dollar symbols. So the most money was collected during the 3rd week. The 3rd week has 7 dollar symbols and each dollar symbol corresponds to $50, so 7  $50 = $350 was collected during week 3. 3. There are a total of 22 dollar symbols and each dollar symbol corresponds to $50, so a total amount of 22  $50 = $1100 was collected. 4. Look for the bars whose height is greater than 9. June, August, and September normally have more than 9 centimeters of precipitation. 5. The shortest bar corresponds to February. The normal monthly precipitation in February in Chicago is 3 centimeters. 6. The bars corresponding to March and November have a height of 7. Thus, during March and November, 7 centimeters of precipitation normally occurs.

278

total number 17 The ratio is . 40 number who prefer country

12.

number who prefer jazz 31 The ratio is . 22

85



200

62 44



17 40

31 22

13. The sector corresponding to under 18 is 20%. 20% of 374 million = 0.20  374 million = 74.8 million About 75 million people are expected to be in the under 18 age group in 2040. 14. The sector corresponding 85 and older is 4%. 4% of 374 million = 0.04  374 million = 14.96 million. About 15 million people are expected to be in the 85 and older age group in 2040. 15. The height of the bar for 5'8" 5'11" is 9. Thus, there are 9 students who are 5'8" 5'11" tall.

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

16. Add the heights of the bars for 5'0" 5'3" and 5' 4" 5'7". There are 5 + 6 = 11 students who are 5'7" tall or shorter. 17.

Class Interval (scores)

Tally

Class Frequency (number of students)

4049



1

5059

  

3

6069

   

4

7079

||||

5

8089

|||| |||

8

   

4

9099

c.

The data items with the greatest frequency are the mode, so the mode is 93 and 94.

d.

range  greatest data value  smallest data value  94  90 4

22. There are 3 + 6 + 7 + 3 + 8 = 27 data items. a.

b.

15  3  20  6  25  7  30  3  35 8 27 710  27  26.3

mean 

n 1 27 1   14 2 2 The data item in the 14th position is 25, so the median is 25.

18.

19. range  greatest data value  smallest data value  18 10 8 20. range  greatest data value  smallest data value  99  43  56

b.

157  12.530

25.

8 64 8 8 64 8 4 .   because      100 10 5  10  10 10 100

2

2 2 26. hypotenuse  (leg)  (other leg)

 42  42  16 16  32  5.66 The hypotenuse is 5.66 centimeters. 27.

  11.5 2 2 The mean of the data items in the eleventh 93  93 and twelfth positions is  93, so the 2 median is 93.

range  greatest data value  smallest data value  35 15  20

24.

90  3  911 92  2  938  94 8 22 2041  22  92.8 22 1

d.

49  7 because 72  49.

mean 

n 1

The data item with the greatest frequency is the mode, so the mode is 35.

23.

21. There are 3 + 1 + 2 + 8 + 8 = 22 data items. a.

c.

n 5  12 8 n 8  12  5 8n  60 8n 60  8 8 n  7.5

Copyright © 2025 Pearson Education, Inc.

279


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

28. Let x be the height of the tower. x 48 53  4 4 3 x  4  5  48 4 23 4x   48 4 4x 276 4x 276  4 4 x  69 The tower is approximately 69 feet tall. Red Blue Green Yellow Red Blue Green Yellow Red Blue Green Yellow Red Blue Green Yellow

Red

Blue

29. Green

Yellow

1. 43 [3 2  (10  2)]  7  3  43 [32  5]  7  3  43  (9  5)  7  3  43  4  7  3  64  4  7  3  64  4  21  68  21  47 2. 72 [53  (6  3)]  4  2  72 [53  2]  4  2  72  (125  2)  4  2  72 123  4  2  49 123  4  2  49 123  8  172  8  180 3. x  y = 3  9 = 3 + (9) = 12 4. x  y = 7  (2) = 7 + 2 = 9

16 outcomes H

Cumulative Review Chapters 17

5.

3y  7 y  12 (3  7) y  12 4 y  12 4 y 12  4 4 y  3

6.

2x  6x  24 (2  6)x  24 4x  24 4x 24  4 4 x  6

H T H

30. T

T

4 outcomes 31. One of the ten possible outcomes is a 6. The 1 probability is . 10 32. Two of the ten possible outcomes are a 3 or a 4. 2 1 The probability is  . 10 5 7. 

280

x

1 

4

6 3 x   4  6  1   6   6 3     x 4 6   6 1  6  6 3 x6 8 x66  86 x2 

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

7

8.

a

16.

1

2 4 7 a 4   4(1)  2 4  7  a 4   4   4 1 2 4 14  a  4 14 14  a  4 14 a  10 9.

2 5

1 3 3

5

17. 115

8

2

24 17 7 24 1 3 17 2 5  7 3 8 24 3

2

3

8

5 3

20 15 4 4 4 20 3 3 23  7 1  8 7 20 20 20 2 3 3 3 4 8 5 4 20

11. 5.9  5

9

12. 2.8  2

10

2

4

27.88  205 = 0.136 19. (1.3)2  2.4  1.69  2.4  4.09 20. (2.7)2  (2.7)(2.7)  7.29

21.

1 1 25  25  0.25   4 4  25 100

22.

3 3 125 375  0.375   8 8 125 1000

5 23.

13.

3.500  0.068 3.432

14.

7.400  0.073 7.327

15. 0.0531  16 3186 5310 0.8496

4 decimal places

0.052 5.980 5 75 230 230 0

0.136 18. 205 27.880 20 5 7 38 6 15 1 230 1 230 0

10 8

3 decimal places 1 decimal place 3 1  4 decimal places

5.98  115 = 0.052

24 9

8

10.

0.147 0.2 0.0294

5(x  0.36)  x  2.4 5  x  5  0.36  x  2.4 5x 1.8  x  2.4 5x  x 1.8  x  x  2.4 6x 1.8  2.4 6x 1.8 1.8  2.4 1.8 6x  4.2 6x 4.2 6  6 x  0.7

4 decimal places

Copyright © 2025 Pearson Education, Inc.

281


ISM: Prealgebra and Introductory Algebra

Chapter 7: Graphs, Triangle Applications, ...

24.

4(0.35  x)  x  7 4  0.35  4  x  x  7 1.4  4x  x  7 1.4  4x  x  x  x  7 1.4  5x  7 1.4 1.4  5x  7 1.4 5x  8.4 5x 8.4  5 5 x  1.68

c2  a2  b2 c2  22 162 c2  4  256 c2  260 c  260  16.12 The length of the hypotenuse is approximately 16.12 units. 31.

25.

80  8.944

26.

60  7.746

27.

1 1 1 1 1 1  because      . 36 6  6  6 6 36

28.

4 16 4 4 4 16  because      . 49 7 7 7 49 7  

2

2

29. 7 in.

5 in.

Let a = 5 and c = 7. a2  b2  c2 52  b2  72 25  b2  49 b2  24 b  24  4.90

32.

8

x

5 10 8 10  5  x 80  5x 80 5x  5 5 16  x

The length of the leg is approximately 4.90 inches. 30.

Check:

16

8

x

5 10 8 16 0 5 10 8 10 0 5 16 80  80 True The solution is 16.

2

Let a = 2 and b = 16.

33.

282

x5 x 2  3 5 5(x  5)  3(x  2) 5x  25  3x  6 2x  25  6 2x  31 2x 31  2 2 31 x 2 x5 x 2  Check: 3 5 31  5 31  2 2 0 2 3 5 1  31 10  1  31 4    0 3 2 2 5 2 2      1  21 1  35  3 2 0 5 2      7 7  True 2 2 31 The solution is . 2

12 feet 12  19 feet 19

Copyright © 2025 Pearson Education, Inc.


Chapter 7: Graphs, Triangle Applications, …

ISM: Prealgebra and Introductory Algebra

34.

4 9

35. 4.6% = 4.6(0.01) = 0.046 36. 32% = 32(0.01) = 0.32 37. 0.74% = 0.74(0.01) = 0.0074 38. 2.7% = 2.7(0.01) = 0.027 39. 35% of 60 = 0.35  60 = 21 21 is 35% of 60. 40. 40% of 36 = 0.40  36 = 14.4 14.4 is 40% of 36. 41. 20.8  40%  x 20.8  0.4x 20.8 0.4x  0.4 0.4 52  x 20.8 is 40% of 52. 42.

9.5  25%  x 9.5  0.25x 9.5 0.25x  0.25 0.25 38  x 9.5 is 25% of 38.

43. $310  r  $26.35 310r  26.35 310r 26.35  310 310 r  0.085 or 8.5% The sales tax rate is 8.5%.

nt

45. A  P 1  r     n 0.053 410   $4000  1    4   $4000(1.01325)40  $6772.12 46.

total $1600  $128.60  12 months 12 $1728.60  12  $144.05 The monthly payment is $144.05.

47. The list is in numerical order and there is an odd number of values, so the median is the middle value, 57. 48. The numbers are listed in order. Since there is an even number of values, the median is 47  50 97   48.5. 2 2 49. Two of the six possible outcomes are a 3 or a 4. 2 1 The probability is  . 6 3 50. Three of the six possible outcomes are even. The 3 1 probability is  . 6 2

44. $2  r  $0.13 2r  0.13 2r 0.13  2 2 r  0.065 or 6.5% The sales tax rate is 6.5%.

Copyright © 2025 Pearson Education, Inc.

283


Chapter 8 Section 8.1 Practice Exercises 1. Figure (a) is part of a line with one endpoint, so  it is a ray. It is ray AB or AB . Figure (b) has two endpoints, so it is a line segment. It is line segment RS or RS . Figure (c) extends indefinitely in two directions,  so it is a line. It is line EF or EF . Figure (d) has two rays with a common endpoint, so it is an angle. It is HVT or TVH or V . 2. Two other ways to name z are RTS and STR. 3. a.

R is an obtuse angle. It measures between 90 and 180.

angles, so mz  mc  135. Vocabulary, Readiness & Video Check 8.1 1. A plane is a flat surface that extends indefinitely. 2. A point has no length, no width, and no height. 3. Space extends in all directions indefinitely.

b.

N is a straight angle. It measures 180.

4. A line is a set of points extending indefinitely in two directions.

c.

M is an acute angle. It measures between 0 and 90.

5. A ray is part of a line with one endpoint.

d.

Q is a right angle. It measures 90.

4. The complement of a 29 angle is an angle that measures 90  29 = 61. 5. The supplement of a 67 angle is an angle that measures 180  67 = 113. 6. a.

my  mADC  mBDC  141  97  44

6. An angle is made up of two rays that share a common endpoint. The common endpoint is called the vertex. 7. A straight angle measures 180. 8. A right angle measures 90. 9. An acute angle measures between 0 and 90.

 10. An obtuse angle measures between 90 and 180. 11. Parallel lines never meet and intersecting lines meet at a point.

b.

mx  79  51  28

c.

Since the measures of both x and y are between 0 and 90, they are acute angles.

7. Since a and the angle marked 109 are vertical angles, they have the same measure; so ma  109. Since a and b are adjacent angles, their measures have a sum of 180. So mb  180 109  71. Since b and c are vertical angles, they have the same measure; so mc  71.

284

8. w and x are vertical angles. w and y are corresponding angles, as are x and d. So all of these angles have the same measure: mx  my  md  mw  45. w and a are adjacent angles, as are w and b, so ma  mb  180  45  135. a and c are corresponding angles so mc  ma  135. c and z are vertical

12. Two intersecting lines are perpendicular if they form right angles when they intersect. 13. An angle can be measured in degrees. 14. A line that intersects two or more lines at different points is called a transversal. 15. When two lines intersect, four angles are formed. Two of these angles that are opposite each other are called vertical angles. 16. Two angles that share a common side are called adjacent angles.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 17. WUV, VUW, U, x

Chapter 8: Geometry and Measurement 30. 20 + 70 = 90, so CAD and DAE are complementary. 63 + 27 = 90, so BAC and EAF are complementary.

18. straight angle; 180 19. 180  17 = 163

32. 38 + 142 = 180, so there are 4 pairs of supplementary angles: NMX and NMY , NMX and XMZ , YMZ and NMY , YMZ and XMZ.

20. intersect Exercise Set 8.1 2. The figure has two rays with a common endpoint. It is an angle, which can be named GHI, IHG, or H.

34. mx  150  48  102

4. The figure has one endpoint and extends indefinitely in one direction, so it is a ray. It is  ray ST or ST.

38. x and the angle marked 165 are supplementary, so mx  180 165  15. y and the angle marked 165 are vertical angles, so my  165. x and z are vertical angles, so

6. The figure extends indefinitely in two directions,  so it is a line. It is line AB, line t, or AB . 8. The figure has two endpoints, so it is a line segment. It is line segment PQ or PQ 10. Two other ways to name w are APC and CPA. 12. Two other ways to name y are MPQ and QPM . 14. H is an acute angle. It measures between 0 and 90. 16. T is an obtuse angle. It measures between 90 and 180. 18. M is a straight angle. It measures 180. 20. N is a right angle. It measures 90.

36. mx  36 12  48

mz  mx  15. 40. x and the angle marked 44 are supplementary, so mx  180  44  136. y and the angle marked 44 are vertical angles, so my  44. x and z are vertical angles, so mz  mx  136. 42. x and the angle marked 110 are vertical angles, so mx  110. x and y are corresponding angles, so my  mx  110. y and z are vertical angles, so mz  my  110. 44. x and the angle marked 39 are supplementary, so mx  180  39  141. y and the angle marked 39 are corresponding angles, so my  39.

22. The complement of an angle that measures 77 is an angle that measures 90  77 = 13.

y and z are supplementary, so mz  180 my  180 39  141.

24. The supplement of an angle that measures 77 is an angle that measures 180  77 = 103.

46. y can also be named CBD or DBC.

26. The complement of an angle that measures 22 is an angle that measures 90  22 = 68.

48. ABE can also be named EBA.

28. The supplement of an angle that measures 130 is an angle that measures 180  130 = 50.

52. mCBA  15

50. mEBD  45

Copyright © 2025 Pearson Education, Inc.

285


 

ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement 

54. mEBC  mEBD  mDBC  45  50  95

Section 8.2 Practice Exercises

56. mABE  mABC  mCBD  mDBE  15  50  45  110 58.

Perimeter  10 m 10 m 18 m 18 m  56 meters The perimeter is 56 meters.

b.

Perimeter  125 ft  125 ft  50 ft  50 ft  350 ft

The perimeter is 350 feet.

7 1 7 1 2 7 2 5       8 4 8 4 2 8 8 8

2. P  2  l  2  w  2  32 cm  2 15 cm  64 cm  30 cm

7 4 74 7 1 60.      or 3 8 4 8 1 24 2 2 7

1. a.

1

 94 centimeters The perimeter is 94 centimeters.

1 1 10 5 62. 3  2   3 2 3 2 10  2 5  3   3 2 2  3 20 15   6 6 35 5  or 5 6 6

3. P = 4  s = 4  4 ft = 16 feet The perimeter is 16 feet. 4. P  a  b  c  6 cm 10 cm  8 cm  24 centimeters The perimeter is 24 centimeters.

1 1 10 5 2  5  5  25 or 8 1 64. 3  2    3 2 3 2 3 2 3 3

5. Perimeter  6 km  4 km  9 km  4 km  23 kilometers The perimeter is 23 kilometers.

66. The three red dots divide the circle into three parts. If the three dots are about the same number of degrees apart, they divide the 360 of the circle into three parts. 360  120 3 The red dots are 120 degrees apart.

6. The unmarked horizontal side has length 20 m  15 m = 5 m. The unmarked vertical side has length 31 m  6 m = 25 m. P  15 m  31 m  20 m  6 m  5 m  25 m  102 meters The perimeter is 102 meters.

68. The complement of an angle that measures 35 is an angle that measures 90  35 = 55. 70. The complement of an angle that measures 53.13 is an angle that measures 90  53.13 = 36.87.

7. P  2  l  2  w  2 120 feet  2  60 feet  240 feet 120 feet  360 feet cost = $1.90 per foot  360 feet = $684 The cost of the fencing is $684. 8. C =   d =   20 yd = 20 yd  62.8 yd The exact circumference of the watered region is 20 yards, which is approximately 62.8 yards.

72. False; answers may vary 74. True, since 5 + 175 = 180. 76. The sides of a rectangle are parallel. Thus, AB and CD, as well as AC and BD are parallel.

Vocabulary, Readiness & Video Check 8.2 1. The perimeter of a polygon is the sum of the lengths of its sides.

78. answers may vary 80. no; answers may vary

286

2. The distance around a circle is called the circumference.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 3. The exact ratio of circumference to diameter is . 4. The diameter of a circle is double its radius.  22  (or 3.14) and 3.14  or  are 7  7 

22 5. Both

approximations for . 6. The radius of a circle is half its diameter. 7. Opposite sides of a rectangle have the same measure, so we can just find the sum of the measures of all four sides. 8. the perimeter of a circle

16. P  2  l  2  w  2  6 ft  2  4 ft  12 ft  8 ft  20 ft The perimeter of each batter’s box is 20 feet. 18. P = 8  12 in. = 96 in. The perimeter is 96 inches. 20. P  2  l  2  w  2  70 ft  2  21 ft  140 ft  42 ft  182 ft 182 feet of fencing is needed. 22. The amount of fencing needed is 182 feet. 182 feet  $2 per foot = $364 The total cost of the fencing is $364.

Exercise Set 8.2 2. P  2  l  2  w  2 14 m  2  5 m  28 m 10 m  38 m The perimeter is 38 meters.

24. a.

A pentagon has five sides.

b. P = 5  14 m = 70 m The perimeter is 70 meters.

4. P = 2 yd + 3 yd + 2 yd + 3 yd = 10 yd The perimeter is 10 yards. 6. P  a  b  c  5 units 10 units 11 units  26 units The perimeter is 26 units. 8. Sum the lengths of the sides. P  10 m  4 m  10 m  9 m  20 m 13 m  66 m The perimeter is 66 meters. 10. All sides of a regular polygon have the same length, so the perimeter is the number of sides multiplied by the length of a side. P = 4  50 m = 200 m The perimeter is 200 meters. 12. All sides of a regular polygon have the same length, so the perimeter is the number of sides multiplied by the length of a side. P = 6  15 yd = 90 yd The perimeter is 90 yards. 14. P  a  b  c  8 in. 12 in. 10 in.  30 in. The perimeter is 30 inches.

Chapter 8: Geometry and Measurement

26. P = 4  s = 4  3 in. = 12 in. The perimeter is 12 inches. 28. P  2  l  2  w  2 85 ft  2  70 ft  170 ft 140 ft  310 ft 310 ft  $2.36 per foot = $731.60 The cost is $731.60. 30. The unmarked vertical side has length 13 in.  6 in. = 7 in. The unmarked horizontal side has length 30 in.  13 in. = 17 in. P  13 in.  13 in.  30 in.  7 in.  17 in.  6 in.  86 in. The perimeter is 86 inches. 32. The unmarked vertical side has length (2 + 4 + 3) cm = 9 cm. The width of the figure in the vertical section of height 4 cm is 16  11 = 5 cm. So the unmarked horizontal side has length (9  5) cm = 4 cm. P  (16  2 11 4  4  3  9  9) cm  58 cm The perimeter is 58 centimeters. 34. The unmarked vertical side has length (22 + 5) km = 27 km. The unmarked horizontal side has length (12 + 6) km = 18 km P = (18 + 27 + 6 + 5 + 12 + 22) km = 90 km The perimeter is 90 kilometers.

Copyright © 2025 Pearson Education, Inc.

287


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement 36. C = 2    r = 2    2.5 in. = 5 in.  15.7 in. The circumference is exactly 5 inches or approximately 15.7 inches. 38. C =   d =   50 ft = 50 ft  157 ft The circumference is exactly 50 feet or approximately 157 feet. 40. C = 2    r = 2    10 yd = 20 yd  62.8 yd The circumference is exactly 20 yards or approximately 62.8 yards.

62. (72  2)  6 = 36  6 = 216 64. 41  (23  8)  41  (8  8)  41  0  4  0  0 66. a.

The first age category that 12-year-old children fit into is “Under 13,” so the maximum width is 60 yards and the maximum length is 110 yards.

b.

P  2l  2 w  2 110 yd  2  60 yd  220 yd 120 yd  340 yd The perimeter of the field is 340 yards.

42. C = 2    r = 2    18 ft = 36 ft  113.04 ft The circumference is exactly 36 feet or approximately 113.04 feet. 44. C =   d =   1640 ft = 1640 ft  5149.6 ft The circumference is exactly 1640 feet or approximately 5149.6 feet.

68. The circle’s circumference is   7 in.  21.98 in. The square’s perimeter is 4  7 in. = 28 in. So the square has the greater distance around; b.

46. C =   d =   150 ft = 150 ft  471 feet The circumference of the barn is 150 feet, or about 471 feet.

70. a.

48. C   d 1     5 in.  2    11   in. 2 11 22 2   in.  17 in. 2 7 7 The distance around is about 17

Smaller circle: C =   d =   16 m = 16 m  50.24 m Larger circle: C =   d =   32 m = 32 m  100.48 m

b. Yes, when the diameter of a circle is doubled, the circumference is also doubled. 72. answers may vary

2

inches or

7 17.29 inches. 50. P = (4.5 + 7 + 9) yd = 20.5 yd The perimeter is 20.5 yards. 52. C =   d =   11 m = 11 m  34.54 m The circumference is 11 meters  34.54 meters. 54. P = 4  19 km = 76 km The perimeter is 76 kilometers. 56. The unmarked vertical side has length (40  9) mi = 31 mi. The unmarked horizontal side has length (44  9) mi = 35 mi. P = (44 + 31 + 9 + 9 + 35 + 40) mi = 168 mi The perimeter is 168 miles.

74. The length of the curved section at the top is half of the circumference of a circle of diameter 6 meters. 1 1 1  C    d    6 m  3 m  9.4 meters 2 2 2 The total length of the straight sides is 3  6 m = 18 m. The perimeter is the sum of these. 9.4 m + 18 m = 27.4 m The perimeter of the figure is 27.4 meters. 76. The three linear sides have lengths of 7 feet, 5 feet, and 7 feet. The length of the curved side is half of the circumference of a circle with diameter 5 feet, or 1 1  d   5  2.5  7.9 feet 2 2 7 ft + 5 ft + 7 ft + 7.9 ft = 26.9 ft The perimeter of the window is 26.9 feet.

58. 25  3  7 = 25  21 = 4 60. 6  (8 + 2) = 6  10 = 60 288

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

1 1. A  bh 2 1 1  12 in.8 in. 2 4 1 33  12 in.  in. 2 4 4  3 33 = sq in. 21  4  49 sq in. 2 1 The area is 49 square inches. 2 A

1

(b  B)h 2 1  (5 yd  11 yd)(6.1 yd) 2

 48.8 sq yd The area is 48.8 square yards. 3. Split the rectangle into two pieces, a top rectangle with dimensions 12 m by 24 m, and a bottom rectangle with dimensions 6 m by 18 m. The area of the figure is the sum of the areas of these. A  12 m  24 m  6 m 18 m  288 sq m 108 sq m  396 sq m The area is 396 square meters. 4. A  r 2  (7 cm)2  49 sq cm  153.86 sq cm The area is 49 square centimeters, which is approximately 153.86 square centimeters. 5. V = lwh = 7 ft  3 ft  4 ft = 84 cu ft The volume of the box is 84 cubic feet. SA  2lh  2wh  2lw  2(7 ft)(4 ft)  2(3 ft)(4 ft)  2(7 ft)(3 ft)  56 sq ft  24 sq ft  42 sq ft  122 sq ft The surface area of the box is 122 square feet.

3

1  6. V  r   cm   3 3 2  4 1   cu cm 3 8 1   cu cm 6 1 22   cu cm 6 7 11  cu cm 21 1 The volume is  cubic centimeter, which is 6 11 approximately cubic centimeter. 21 2 1  2 SA  4r  4  cm 2  1  4 sq cm 4   sq cm 22 1  sq cm or 3 sq cm 7 7 The surface area is  square centimeters, which 1 is approximately 3 square centimeters. 7 4

Section 8.3 Practice Exercises

2.

Chapter 8: Geometry and Measurement

3

4

7. V  r 2h  (5 in.)2  9 in.   25 sq in. 9 in.  225 cu in.  706.5 cu in. The volume is 225 cubic inches, which is approximately 706.5 cubic inches. 1 2 1 s h   (3 m)2  5.1 m 3 3 1   9 sq m  5.1 m 3  15.3 cu m The volume is 15.3 cubic meters.

8. V 

Vocabulary, Readiness & Vocabulary Check 8.3 1. The surface area of a polyhedron is the sum of the areas of its faces. 2. The measure of the amount of space inside a solid is its volume. 3. Area measures the amount of surface enclosed by a region.

Copyright © 2025 Pearson Education, Inc.

289


Chapter 8: Geometry and Measurement

4. Volume is measured in cubic units. 5. Area is measured in square units. 6. Surface area is measured in square units. 7. We don’t have a formula for an L-shaped figure, so we divide it into two rectangles, use the formula to find the area of each, and then add these two areas. 8. For each example, the exact volume is found and an approximate volume is found. Exact answers are in terms of , and approximate answers use an approximation for . Exercise Set 8.3 2. A = l  w = 3.5 ft  1.2 ft = 4.2 sq ft The area is 4.2 square feet. 1 4. A   b  h 2 1 1   4 ft  5 ft 2 2 1 9   ft  5 ft 2 2 45  sq ft 4 1 11 sq ft 4 1 The area is 11 square feet. 4 6. A  

1 2 1

b h

 7 ft  5 ft 2 35  sq ft 2 1  17 sq ft 2 1 The area is 17 square feet. 2

ISM: Prealgebra and Introductory Algebra

8. A  r2  (5 cm)2  25 sq cm 25 22 =  sq cm 1 7 550 4  sq cm  78 sq cm 7 7 The area is 25 square centimeters 4  78 square centimeters. 7 10. A = b  h = 3 cm  4.25 cm = 12.75 sq cm The area is 12.75 square centimeters. 12. A 

1

14. A 

1

(b  B)  h 12  1    5 in.  8 in.   6 in. 2 2    1 27   in. 6 in. 2 2 81  sq in. 2 1  40 sq in. 2 1 The area is 40 square inches. 2

(b  B)  h

2 1

(10 ft  5 ft)  3 ft 2 1  15 ft  3 ft 2  22.5 sq ft The area is 22.5 square feet. 16. A  b  h  5 cm  7  5 cm 

3

4 31

cm cm

4 155 sq cm 4 3  38 sq cm 4 3 The area is 38 square centimeters. 4 

290

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 18. A = b  h = 6 m  4 m = 24 sq m The area is 24 square meters.

Chapter 8: Geometry and Measurement

30. V  s3  (11 mi)3  1331 cu mi The volume is 1331 cubic meters.

20. The area of the trapezoid that forms the top of the figure is 1 1 (b  B)  h  (6 km 10 km)  4 km 2 2  32 sq km. The area of the rectangle that forms the bottom of the figure is l  w = 10 km  5 km = 50 sq km. The area of the figure is the sum of these. A = 32 sq km + 50 sq km = 82 sq km The total area is 82 square kilometers. 22. The figure can be divided into two rectangles, one measuring 25 cm by 12 cm and one measuring 20 cm by 3 cm. The area of the figure is the sum of the areas of the two rectangles. A  25 cm 12 cm  20 cm  3 cm  300 sq cm  60 sq cm  360 sq cm The total area is 360 square centimeters. 24. The top of the figure is a square with sides of length 5 in., so its area is s2  (5 in.)2  25 sq in. The bottom of the figure is a parallelogram with area b  h = 5 in.  4 in. = 20 sq in. The area of the figure is the sum of these. A = 25 sq in. + 20 sq in. = 45 sq in. The total area is 45 square inches. 26. r = d  2 = 5 m  2 = 2.5 m A  r2

SA  6s2  6(11 mi)2  6 121 sq mi  726 sq mi The surface area is 726 square miles. 1 2 32. V   r  h 3 2 1  3     1 in.  9 in. 3  4  147   cu in. 16 147 22 7   cu in.  28 cu in. 16 7 8 The volume is 147 7  cubic inches  28 cubic inches. 16 8 SA   r r 2  h2  r2 2 2 7  7 7    in.  in.  (9 in.) 2   in. 4 4  4  49 7  sq in.   1345 sq in.  49 16 167     sq in. 16 1345 16     60.00 sq in. The surface area is 49  7   1345   square inches 16   16  60.00 square inches. 

34. V 

 (2.5 m)2  6.25 sq m  19.625 sq m

The area is 6.25 square meters  19.625 square meters. 28. V = l  w  h = 8 cm  4 cm  4 cm = 128 cu cm The volume is 128 cubic centimeters. SA  2lh  2wh  2lw  2 8 cm  4 cm  2  4 cm  4 cm  2 8 cm  4 cm  64 sq cm  32 sq cm  64 sq cm  160 sq cm The surface area is 160 square centimeters.

4 3 4

 r3  (3 mi)3

3  36 cu mi 22 1  36  cu mi  113 cu mi 7 7 The volume is 1 36 cubic miles  113 cubic miles. 7 SA  4r 2  4(3 mi)2  36 sq mi 22 1  36  sq mi  113 sq mi 7 7 The surface area is 1 36 square miles  113 square miles. 7

Copyright © 2025 Pearson Education, Inc.

291


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

36. r 

1 1  d  10 ft  5 ft 2 2

V   r 2  h   (5 ft)2  6 ft  150 cu ft 22 3  150  cu ft  471 cu ft 7 7 The volume is 3 150 cubic feet  471 cubic feet. 7 1 2 1  s  h   (7 m)2 15 m  245 cu m 3 3 The volume is 245 cubic meters.

38. V 

1 2 40. V   r  h 3 1  (14 ft)2 15 ft 3  980 cu ft 22  980  cu ft  3080 cu ft 7 The volume is 980 cubic feet  3080 cubic feet.

50. Including the house, the land is in the shape of a trapezoid, whose area is 1 1 (b  B)  h  (96 ft 132 ft)  48 ft 2 2 1   228 ft  48 ft 2  5472 sq ft. The house is a rectangle, with area l  w = 48 ft  24 ft = 1152 sq ft. The area of the yard is the difference between these. A = 5472 sq ft  1152 sq ft = 4320 sq ft The area of the yard is 4320 square feet. 52. V   r 2  h  (3 ft)2 8 ft  72 cu ft The volume is 72 cubic feet. SA  2r  h  2 r 2  2(3 ft)(8 ft)  2(3 ft)2  66 sq ft The surface area is 66 square feet. 54. a.

The top part of the wall is a triangle, with 1 1 area  b  h   24 ft  4 ft  48 sq ft. 2 2 The bottom part is a rectangle, with area l  w = 24 ft  8 ft = 192 sq ft. The area of the wall is the sum of these. A = 48 sq ft + 192 sq ft = 240 sq ft The total area is 240 square feet.

42. V  s3  (5 ft)3  125 cu ft The volume is 125 cubic feet. SA  6s2  6(5 ft)2  6  25 sq ft  150 sq ft The surface area is 150 square feet. 44. A = l  w = 52.7 m  3.6 m = 189.72 sq m The area of the sign is 189.72 square meters. 46. A = l  w = 27.6 cm  21.5 cm = 593.4 sq cm The area of a page is 593.4 square centimeters. 1 4    r3 2 3 2   (10 in.)3 3 2000   cu in. 3 2000 22 5   cu in.  2095 cu in. 3 7 21 The volume is 2000 5 cubic inches.  cubic inches  2095 3 12

48. V 

292

b. Divide the area of the wall by the side area of each brick. 1 6 240   240   1440 6 1 The number of bricks needed to brick the end of the building is 1440. 56. r  V  

1

d 

2 4

1

 6 in.  3 in.

2   r3

3 4

(3 in.)3 3  36 cu in.  113.04 cu in. The volume is 36 cubic inches  113.04 cubic inches.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 58. r = d  2 = 2 cm  2 = 1 cm 2

2

A  r  (1 cm)   sq cm  3.14 sq cm

Chapter 8: Geometry and Measurement

78. Gutters go on the edges of a house, so the situation involves perimeter.

The area of the watch face is  square centimeters, or about 3.14 square centimeters.

80. Baseboards go around the edges of a room, so the situation involves perimeter.

1 2 60. V    r  h 3 1  (3 km)2 (3.5 km) 3  10.5 cu km  22   10.5 cu km  33 cu km  7    The volume is 10.5 cubic kilometers  33 cubic kilometers.

82. Fertilizer is spread throughout the surface of a yard, so the situation involves area.

62. A = l  w = 35 ft  24 ft = 840 sq ft 840 square feet of insulation are needed. 64. V  

4 3 4

84. This could be answered by dividing Utah into two rectangles, in two different ways. But it’s easier to regard the state as a 350 mile by 270 mile rectangle from which a 70 mile by 105 mile rectangle has been removed. A  350 mi  270 mi  70 mi 105 mi  94, 500 sq mi  7350 sq mi  87,150 sq mi The area of Utah is approximately 87,150 square miles. d 55 ft   27.5 ft 2 2 1 SA   4 r 2 2 1   4(3.14)(27.5 ft)2 2  4749.25 sq ft The surface area of the hemisphere is about 4749.25 sq ft.

  r3

86. r 

(2 cm)3

3 32   cu cm 3 32   3.14 cu cm 3  33.49 cu cm The volume is 32  cubic centimeters 3  33.49 cubic centimeters.

88. answers may vary 90. r 

66. SA  2lh  2wh  2lw  2(2 in.)(2.2 in.)  2(2 in.)(2.2 in.)  2(2 in.)(2 in.) =8.8 sq in.  8.8 sq in.  8 sq in.  25.6 sq in. The surface area is 25.6 square inches. 68. 72  7  7  49 70. 202  20  20  400 72. 52  32  5  5  3  3  25  9  34 74. 12  62  11  6  6  1  36  37

d 80 ft   40 ft 2 2

A  r 2  (40 ft)2  1600 sq ft  5024 sq ft The face of the tire has an area of 1600 square feet, or about 5024 square feet. 92. The semicircle at the top has radius 2.5 feet, so 1 1 its area is  r2   (2.5 ft)2  3.125 sq ft. 2 2 The rectangle at the bottom has area l  w = 7 ft  5 ft = 35 sq ft. The total area is 3.125 sq ft + 35 sq ft  44.8 sq ft.

76. Grass seed is planted throughout the surface of a yard, so the situation involves area.

Copyright © 2025 Pearson Education, Inc.

293


Chapter 8: Geometry and Measurement

94. First solid: V = lwh = (6 ft)(2 ft)(4 ft) = 48 cu ft SA  2lh  2wh  2lw  2(6 ft)(4 ft)  2(2 ft)(4 ft)  2(6 ft)(2 ft)  88 sq ft Second solid: V = lwh = (4 ft)(3 ft)(4 ft) = 48 cu ft SA  2lh  2wh  2lw  2(4 ft)(4 ft)  2(3 ft)(4 ft)  2(4 ft)(3 ft)  80 sq ft no; answers may vary Mid-Chapter Review 1. The supplement of a 27 angle measures 180  27 = 153. The complement of a 27 angle measures 90  27 = 63. 2. x and the angle marked 105 are supplementary angles, so mx  180 105  75. y and the angle marked 105 are vertical angles, so my  105. z and the angle marked 105 are supplementary angles, so mz  180 105  75. 3. x and the angle marked 52 are supplementary angles, so mx  180  52  128. y and the angle marked 52 are corresponding angles, so my  52. z and y are supplementary angles, so mz  180 my  180 52  128. 4. The sum of the measures of the angles of a triangle is 180. mx  180  90  38  52 5. d = 2  r = 2  2.3 in. = 4.6 in. 6. r 

1

d 2 1 1  8 in. 2 2 1 17   in. 2 2 17  in. 4 1  4 in. 4

294

ISM: Prealgebra and Introductory Algebra 7. P = 4  s = 4  5 m = 20 m The perimeter is 20 meters. A  s2  (5 m)2  25 sq m The area is 25 square meters. 8. P = a + b + c = 4 ft + 5 ft + 3 ft = 12 ft The perimeter is 12 feet. 1 1 A   b  h   3 ft  4 ft  6 sq ft 2 2 The area is 6 square feet. 9. C  2   r  2   5 cm  10 cm  31.4 cm The circumference is 10 centimeters  31.4 centimeters. A   r2  (5 cm)2  25 sq cm  78.5 sq cm The area is 25 square centimeters  78.5 square centimeters. 10. P = 11 mi + 5 mi + 11 mi + 5 mi = 32 mi The perimeter is 32 miles. A = l  w = 11 mi  4 mi = 44 sq mi The area is 44 square meters. 11. The unmarked horizontal side has length 17 cm  8 cm = 9 cm. The unmarked vertical side has length 7 cm + 3 cm = 10 cm. P = (8 + 3 + 9 + 7 + 17 + 10) cm = 54 cm The perimeter is 54 centimeters. The figure is made up of two rectangles, one with dimensions 10 cm by 8 cm, the other with dimensions 7 cm by 9 cm. A = 10 cm  8 cm + 7 cm  9 cm = 143 sq cm The area is 143 square centimeters. 12. P  2  l  2  w  2(17 ft)  2(14 ft)  34 ft  28 ft  62 ft The perimeter is 62 feet. A = l  w = 17 ft  14 ft = 238 sq ft The area is 238 square feet. 13. P  2  l  2  w  2(3500 ft)  2(1400 ft)  7000 ft  2800 ft  9800 ft The perimeter is 9800 feet. A = l  w = 3500 ft  1400 ft = 4,900,000 sq ft The area is 4,900,000 square feet.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

14. V  s3  (4 in.)3  64 cu in. The volume is 64 cubic inches.

Chapter 8: Geometry and Measurement

4. 68 in. 

5 yd 3 ft   15 ft 1 1 yd 5 yd 2 ft = 15 ft + 2 ft = 17 ft

5. 5 yd 

6.

4 ft 8 in. + 8 ft 11 in. 12 ft 19 in. Since 19 inches is the same as 1 ft 7 in., we have 12 ft 19 in. = 12 ft + 1 ft 7 in. = 13 ft 7 in.

7.

4 ft 7 in.  4 16 ft 28 in. Since 28 in. is the same as 2 ft 4 in., we simplify as 16 ft 28 in. = 16 ft + 2 ft 4 in. = 18 ft 4 in.

8.

5 ft 8 in.  4 ft 20 in.  1 ft 9 in.  1 ft 9 in. 3 ft 11 in. The remaining board length is 3 ft 11 in.

1 2 1 2 16. V  s h  (10 cm) (12 cm)  400 cu cm 3 3 The volume is 400 cubic centimeters. 17. r  V 

1

d 

1

2 4

2

 3 mi 

3

mi

2

r3

3 4 3 3   mi  3 2  9   cu mi 2 1  4  cu mi 2 9 22 1   cu mi  14 cu mi 2 7 7 The volume is 1 1 4  cubic miles  14 cubic miles. 2 7 

18. The complement of an angle that measures 55 is an angle that measures 90  55 = 35. Section 8.4 Practice Exercises 6 ft

6 ft 12 in. 1   1. 6 ft   6 12 in.  72 in. 1 1 1 ft 2. 8 yd 

8 yd 1

3. 18 in. 

1 

8 yd 3 ft   8  3 ft  24 ft 1 1 yd

18 in. 1 ft 18   ft  1.5 ft 1 12 in. 12

68  1 ft  ft 1 12 in. 12

5 12 68  60 8 Thus, 68 in. = 5 ft 8 in.

SA  6  s2  6(4 in.)2  6 16 sq in.  96 sq in. The surface area is 96 square inches. 15. V = l  w  h = 3 ft  2 ft  5.1 ft = 30.6 cu ft The volume is 30.6 cubic feet. SA  2lh  2wh  2lw  2(3 ft)(5.1 ft)  2(2 ft)(5.1 ft)  2(3 ft)(2 ft)  30.6 sq ft  20.4 sq ft 12 sq ft  63 sq ft The surface area is 63 square feet.

68 in.

9. 2.5 m 

2.5 m 1000 mm   2500 mm 1 1m

10. 3500 m = 3.500 km or 3.5 km 11. 640 m = 0.64 km 2.10 km  0.64 km 1.46 km 2.1 km = 2100 m 2100 m  640 m 1460 m 12. 18.3 hm 5 91.5 hm 13. 0.8 m = 80 cm 80 cm + 45 cm = 125 cm The scarf will be 125 cm or 1.25 m.

Copyright © 2025 Pearson Education, Inc.

295


Chapter 8: Geometry and Measurement

Vocabulary, Readiness & Video Check 8.4 1. The basic unit of length in the metric system is the meter. 2. The expression

1 foot

ISM: Prealgebra and Introductory Algebra

3.8 mi 5280 ft  1 1 mi  3.8  5280 ft  20, 064 ft

12. 3.8 mi 

is an example of a

7216 yd 1 mi  1 1760 yd 7216  mi 1760  4.1 mi

14. 7216 yd 

12 inches unit fraction. 3. A meter is slightly longer than a yard. 4. One foot equals 12 inches.

16. 129 in. 

5. One yard equals 3 feet.

129 in. 1

6. One yard equals 36 inches.

8. feet; Feet are the original units and we want them to divide out. 2

 5

5

2 and 5

5 ft 2 in. = 5 ft + 2 in. 10. The sum of 21 yd 4 ft is correct, but is not in a good format since there is a yard in 4 feet. Convert 4 ft = 1 yd 1 ft and add again: 21 yd + 1 yd + 1 ft = 22 yd 1 ft. 11. Since the metric system is based on base 10, we just need to move the decimal point to convert from one unit to another. 12. 1.29 cm and 12.9 mm; these two different-unit lengths are equal. Exercise Set 8.4 2. 84 in. 

84 in. 1 ft 84   ft  7 ft 1 12 in. 12

4. 18 yd 

18 yd 3 ft   18  3 ft  54 ft 1 1 yd

6. 36, 960 ft 

8. 12

1

ft 

2 10.

296

25 ft 

36, 960 ft

1 ft 12 in.

129

ft  10.75 ft

12

100 ft 1 yd 100   yd 1 3 ft 3 33 yd 1 ft 3 100 9 10 9 1

18. 100 ft 

7. One mile equals 5280 feet.

9. Both mean addition; 5

59 in. 1 ft 59   ft 1 12 in. 12 4 ft 11 in. 12 59 48 11

20. 59 in. 

25, 000 ft 1 mi 25, 000   mi 1 5280 ft 5280 4 mi 3880 ft 5280 25, 000  21,120 3 880

22. 25, 000 ft 

6 ft 12 in.  10 in. 1 1 ft  72 in. 10 in.  82 in.

24. 6 ft 10 in. 

1 mi  5280 ft

1 36, 960  mi 5280  7 mi

26. 4 yd 1 ft 

12.5 ft 12 in.   12.5 12 in.  150 in. 1 1 ft

28. 1 yd 2 ft 

25 ft 1 yd 25 1   yd  8 yd 3 1 3 ft 3

4 yd 3 ft  1 ft  12 ft 1 ft  13 ft 1 1 yd

1 yd 3 ft   2 ft  3 ft  2 ft  5 ft 1 1 yd 5 ft 12 in. 5 ft    5 12 in.  60 in. 1 1 ft

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

30. 12 ft 7 in.  9 ft 11 in.  21 ft 18 in.  21 ft 1 ft 6 in.  22 ft 6 in. 32. 16 yd 2 ft  8 yd 2 ft  24 yd 4 ft  24 yd 1 yd 1 ft  25 yd 1 ft 34.

15 ft 5 in.  8 ft 2 in. 7 ft 3 in.

36.

14 ft 8 in.  13 ft 20 in.  3 ft 11 in.  3 ft 11 in. 10 ft 9 in.

38. 34 ft 6 in.  2 = 17 ft 3 in. 40.

15 yd 1 ft  8 120 yd 8 ft = 120 yd + 2 yd 2 ft = 122 yd 2 ft

42. 46 m 

46 m 100 cm   4600 cm 1 1m

44. 14 mm  14 mm  1 cm  1.4 cm 1 10 mm 400 m

46. 400 m 

1

1 km

 0.4 km

1000 m

 6.4 m 48. 6400 mm  6400 mm  1 m 1 1000 mm 50. 6400 cm  6400 cm  1 m  64 m 1 100 cm 52. 0.95 km  54. 5 km 

0.95 km 100, 000 cm   95, 000 cm 1 1 km

5 km 1000 m   5000 m 1 1 km

56. 4.6 cm 

4.6 cm 10 mm   46 mm 1 1 cm

58. 140.2 mm 

140.2 mm 1

60. 0.2 m 

1 dm

 1.402 dm

100 mm

0.2 m 1000 mm   200 mm 1 1 Copyright © 2025 Pearson Education, Inc.

297


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

62.

14.10 cm  3.96 cm 18.06 cm

64.

30 cm  8.9 m

66.

45.3 m  2.16 dam

68.

14 cm  15 mm

30 cm 0.3 m  890 cm or  8.9 m 9.2 m 920 cm 4.53 dam 45.3 m  2.16 dam or  21.6 m 2.37 dam 23.7 m 14.0 cm 140 mm  1.5 cm or  15 mm 125 mm 12.5 cm

70. 14.1 m  4 = 56.4 m 72. 9.6 m  5 = 1.92 m Yards

Feet

Inches

74.

Four-story building

22

66

792

76.

Ostrich height

3

9

108 Meters

Millimeters

Kilometers

Centimeters

78.

Height of grizzly bear

3

3000

0.003

300

80.

Golf ball diameter

0.046

46

0.000046

4.6

82.

Distance from Houston to Dallas

396,000

396,000,000

396

39,600,000

84.

86.

1 mi 1400 ft  1 mi 4000 ft 2 mi 5400 ft  2 mi  1 mi 120 ft  3 mi 120 ft The probe is 3 mi 120 ft below the surface. 1

mi  2640 ft 2  1150 ft  1150 ft 1490 ft At their narrowest points, the Grand Canyon of the Yellowstone is 1490 feet wider than the Black Canyon of the Gunnison.

88. 3.4 m + 5.8 m = 9.2 m 9.2 m 9.20 m  8 cm  0.08 m 9.12 m The length of the tied ropes is 9.12 m.

298

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

90.

14 cm  22 mm

14.0 cm  2.2 cm 11.8 cm The sediment is 11.8 cm thick now.

92. 1 yd 2 ft  25  25 yd 50 ft  25 yd  16 yd 2 ft  41 yd 2 ft The total length is 41 yd 2 ft.

114. answers may vary Section 8.5 Practice Exercises

 1 ton 2000 lb tons

72 9 1 lb  lb or 4 lb 2. 72 oz  72 oz  1 lb  1 16 oz 16 2 2

4837 ft 1 yd 4837 1   yd  1612 yd 1 3 ft 3 3 1 4837 feet is 1612 yards. 3 

100

3. 47 oz  47 oz 

1 lb

47

lb

16 oz 16 2 lb 15 oz 16 47 32 15 Thus, 47 oz = 2 lb 15 oz

43 50 4.

47  0.47 100. 100 3

 3  5  15  0.15 20 20 5 100

104. Yes, a window measuring 1 meter by 0.5 meter is reasonable. 106. No, a paper clip being 4 kilometers long is not reasonable. 108. Yes, a model’s hair being 30 centimeters long is reasonable. 110.

1 6500

2000 13 1  tons or 3 tons 4 4

96. 4837 ft 

102.

6500 lb

12 whole sections are removed.

86

112. answers may vary; for example, 7 m 100 cm 7m   700 cm 1 1m 7 m 1000 mm 7m   7000 mm 1 1m

1. 6500 lb 

12.5 94. 9 112.5 9 22 18 45 4 5 0

98. 0.86 

Chapter 8: Geometry and Measurement

45 ft 1 in.  10 ft 11 in.

8 tons 100 lb 7 tons 2100 lb  5 tons 1200 lb   5 tons 1200 lb 2 tons 900 lb

1 lb 6 oz 5. 4 5 lb 8 oz  4 lb 1 lb  16 oz 24 oz 6.

batch weight 5 lb 14 oz  container weight   6 oz 5 lb 20 oz total weight 5 lb 20 oz = 5 lb + 1 lb 4 oz = 6 lb 4 oz The total weight is 6 lb 4 oz.

7. 3.41 g 

Estimate: 45 ft  11 ft = 34 ft

3.41 g 1000 mg   3410 mg 1 1g

8. 56.2 cg  56.2 cg  0.562 g

Copyright © 2025 Pearson Education, Inc.

299


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

9. 3.1 dg = 0.31 g 2.50 g  0.31 g 2.19 g

or

2.5 g = 25 dg 25.0 dg  3.1 dg 21.9 dg

8. 90 oz 

11, 000 lb 1 ton  1 2000 lb 11, 000  tons 2000 11  tons 2 1  5 tons 2

10. 11, 000 lb 

22.9  23 10. 24 550.0 kg 48 70 48 22 0 21 6 4 12. 9.5 lb 

Each bag weighs about 23 kg.

90 oz 1 lb 90 45 5   lb  lb  5 lb 1 16 oz 16 8 8

9.5 lb 16 oz   9.5 16 oz  152 oz 1 1 lb

Vocabulary, Readiness & Video Check 8.5 1. Mass is a measure of the amount of substance in an object. This measure does not change.

8.3 tons 2000 lb  1 1 ton  8.3 2000 lb  16, 600 lb

14. 8.3 tons 

2. Weight is a measure of the pull of gravity. 3. The basic unit of mass in the metric system is the gram.

16.

4. One pound equals 16 ounces. 5. One ton equals 2000 pounds. 6. pounds; Pounds are the units we’re converting to. 7. We can’t subtract 9 oz from 4 oz, so we borrow 1 lb (= 16 oz) from 12 lb to add to the 4 oz: 12 lb 4 oz becomes 11 lb 20 oz.

1 73 9 lb  lb 8 8 73 lb 16 oz  8  1 1 lb 73  16 oz 8  146 oz 51 oz 1 lb  1 16 oz 51  lb 16  3.1875 lb  3.2 lb

18. 51 oz 

8. 3 places to the right; 4 g = 4000 mg 9. 18.50 dg Exercise Set 8.5

20.

1

1 oz

oz  4

4 5 lb 16 oz 2. 5 lb    5 16 oz  80 oz 1 1 lb

7 tons 2000 lb 4. 7 tons    1 1 ton   7  2000 lb   14, 000 lb 6. 28, 000 lb 

28, 000 lb

22. 2

1 1

lb 

4

9 4

1 lb 16 oz

1 1 1  lb  lb 4 16 64

9 lb 16 oz 9 lb  4   16 oz  36 oz

1

1 lb

24. 7 lb 6 oz  7 16 oz  6 oz  112 oz  6 oz  118 oz

 1 ton 2000 lb

1 28, 000  tons 2000  14 tons 300

Copyright © 2025 Pearson Education, Inc.

4


ISM: Prealgebra and Introductory Algebra

26. 100 oz  100 oz  1 lb  100 lb 1 16 oz 16 6 lb 4 oz 16 100  96 4 100 oz = 6 lb 4 oz 28. 6 lb 10 oz 10 lb 8 oz  16 lb 18 oz  16 lb 1 lb 2 oz  17 lb 2 oz

Chapter 8: Geometry and Measurement

50. 16.23 g  16.23 g  1000 mg 1 1g  16.231000 mg  16, 230 mg 3.16 kg 1000 g  1 1 kg  3.16 1000 g  3160 g

52. 3.16 kg 

4.26 cg 1 dag  1 1000 cg 4.26  dag 1000  0.00426 dag

54. 4.26 cg 

30. 1 ton 1140 lb + 5 tons 1200 lb = 6 tons 2340 lb = 6 tons + 1 ton 340 lb = 7 tons 340 lb 32.

4 tons 850 lb  1 ton 260 lb 3 tons 590 lb

34.

45 lb 6 oz  26 lb 10 oz

56.

44 lb 22 oz  26 lb 10 oz 18 lb 12 oz

36. 2 lb 5 oz 5  10 lb 25 oz  10 lb 1 lb 9 oz  11 lb 9 oz 38. 5 tons 400 lb  4 tons 1 ton 400 lb  4 tons  2000 lb  400 lb  4 tons 2400 lb 4 2400 4 tons 2400 lb  4  ton lb 4 4  1 ton 600 lb 40. 820 g 

820 g 1

42. 9 g 

9 g 1000 mg   9 1000 mg  9000 mg 1 1g

18 kg 1000 g   18 1000 g  18, 000 g 44. 18 kg  1 1 kg 46. 112 mg  48. 4.9 g 

112 mg 1

4.9 g 1

58. 2.1 g + 153 mg = 2.1 g + 0.153 g = 2.253 g or 2.1 g + 153 mg = 2100 mg + 153 mg = 2253 mg 60. 6.13 g  418 mg  6130 mg  418 mg  5712 mg or 6.13 g  418 mg = 6.13 g  0.418 g = 5.712 g 62. 4 kg  2410 g 4000 g 4.00 kg  2.41 kg or  2140 g 1590 g 1.59 kg 64.

 1 kg  820 kg  0.82 kg 1000 g 1000

1g

112  g  0.112 g 1000 mg 1000

 1 kg  4.9 kg  0.0049 kg 1000 g 1000

41.6 g  9.8 g 51.4 g

4.8 kg  9.3 44.64 kg

66. 8.25 g  6 

8.25

g

6

1.375 6 8.250 6 22 18 45 42 30 30 0 8.25 g  6 = 1.375 g

Copyright © 2025 Pearson Education, Inc.

301


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

Object

Tons

Pounds

Ounces

68.

Statue of Libertyweight of steel

125

250,000

4,000,000

70.

A 12-inch cube of lithium (lightest metal)

or 0.016

32

512

2 125

Object

Grams

Kilograms

Milligrams

Centigrams

72.

Tablet of Topamax (epilepsy and migraine uses)

0.025

0.000025

25

2.5

74.

A golf ball

45

0.045

45,000

4500

76.

73 kg  73.0 kg  2.8 kg  2800 g 70.2 kg His new weight is 70.2 kg.

78. 177 g  6 

177

g

6

29.5 6 177.0 12 57 54 30 3 0 0 Each serving weighs 29.5 g. 80.

3 tons 1500 lb  2 tons 1200 lb 5 tons 2700 lb  5 tons 1 ton 700 lb  6 tons 700 lb The total amount delivered was 6 tons 700 lb.

82.

22 lb 8 oz  7 lb 12 oz

21 lb 24 oz  7 lb 12 oz 14 lb 12 oz This is 14 lb 12 oz heavier.

84. 1900 g  6  5 = 57,000 g 57, 000 g  1 kg  57 kg  1 1000 g The weight of 5 cartons is 57 kg. 86. 0.385 kg  39 g  0.385 kg  0.039 kg  0.346 kg 0.346 kg  8 = 2.768 kg 8 boxes contain 2.768 kg of cocoa.

302

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

88. 85 g  2 

85

g  42.5 g

Chapter 8: Geometry and Measurement

3.

5 qt 1 gal 1 qt  2 qt   2 qt 3 qt

4.

15 gal 3 qt + 4 gal 3 qt 19 gal 6 qt = 19 gal + 1 gal 2 qt = 20 gal 2 qt The total amount of oil will be 20 gal 2 qt.

2 Each package will weigh 42.5 g.

90.

1 lb 2 oz  12 12 lb 24 oz = 12 lb + 1 lb 8 oz = 13 lb 8 oz Each carton weighs 3 lb 8 oz. 13 lb 8 oz  3 39 lb 24 oz = 39 lb + 1 lb 8 oz = 40 lb 8 oz 3 cartons weigh 40 lb 8 oz.

92.

43 lb 2 oz  3 lb 4 oz

42 lb 18 oz  3 lb 4 oz 39 lb 14 oz

39 lb 14 oz  3 117 lb 42 oz  117 lb  2 lb 10 oz  119 lb 10 oz 3 cartons contain 119 lb 10 oz of ham. 3

3 20 60     0.60 or 0.6 94. 5 5 20 100 3 96.

16

3 625 1875    0.1875 16 625 10, 000

5. 2100 ml  6. 2.13 dal 

2100 ml 1

1L 1000 ml



2100 1000

L  2.1 L

2.13 dal 10 L   2.1310 L  21.3 L 1 1 dal

7. 1250 ml = 1.250 L 2.9 L = 2900 ml 1.25 L 1250 ml  2.9 L  2900 ml 4150 ml 4.15 L The total is 4.15 L or 4150 ml. 8.

28.6 L  85 143 0 2288 0 2431.0 L Thus, 2431 L can be pumped in 85 minutes.

Vocabulary, Readiness & Video Check 8.6 98. No, a full grown cat weighing 15 g is not reasonable.

1. Units of capacity are generally used to measure liquids.

100. Yes, a staple weighing 15 mg is reasonable. 102. No, a car weighing 2000 mg is not reasonable. 104. answers may vary; for example, 2 tons or 64,000 oz

2. The basic unit of capacity in the metric system is the liter. 3. One cup equals 8 fluid ounces. 4. One quart equals 2 pints.

106. true 5. One pint equals 2 cups. 108. answers may vary 6. One quart equals 4 cups. Section 8.6 Practice Exercises 7. One gallon equals 4 quarts. 43 pt 1 qt 43 1 1. 43 pt    qt  21 qt 1 2 pt 2 2 2. 26 qt 

26 qt 4 c   26  4 c  104 c 1 1 qt

8. When using a unit fraction, we are not changing the amount, we are changing the unit. 9. We can’t subtract 3 qt from 0 qt, so we borrow 1 gal (= 4 qt) from 3 gal to get 2 gal 4 qt. 10. 3 places to the left; 5600 ml = 5.6 L 11. 0.45 dal

Copyright © 2025 Pearson Education, Inc.

303


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

Exercise Set 8.6 2. 16 qt 

4. 9 pt 

16 qt 1 gal 16   gal  4 gal 1 4 qt 4

9 pt 1 qt 9 1   qt  4 qt 1 2 pt 2 2

11 c 1 pt 11 1 6. 11 c    pt  5 pt 1 2c 2 2 18 pt 1 qt 18   qt  9 qt 1 2 pt 2 9 qt 1 gal 9 1 9 qt    gal  2 gal 1 4 qt 4 4

8. 18 pt 

10. 3 pt 

3 pt 2 c 8 fl oz    3  2 8 fl oz  48 fl oz 1 1 pt 1 c

20 c 1 pt 1 qt 1 gal    1 2 c 2 pt 4 qt 20  gal 22 4 5  gal 4  1 1 gal 4

22. 70 qt  68 qt  2 qt 68 qt 1 gal    2 qt 1 4 qt 68  gal  2 qt 4  17 gal 2 qt 24. 29 pt  28 pt 1 pt 28 pt 1 qt   1 pt 1 2 pt  14 qt 1 pt  12 qt  2 qt 1 pt 12 qt 1 gal    2 qt 1 pt 1 4 qt  3 gal  2 qt 1 pt  3 gal 2 qt 1 pt 26. 3

12. 20 c 

14. 7 qt 

16. 6

1 2

13

28.

2 pt  1 pt 1 c

1 gal

1 pt 2 c  1 pt 1 c 1c

34. 3 qt 1 c  1 c 4 fl oz

4 gal 4 qt   1 qt 1 1 gal  4  4 qt 1 qt  16 qt 1 qt  17 qt

304

2 gal 2 qt  9 gal 3 qt 11 gal 5 qt = 11 gal + 1 gal 1 qt = 12 gal 1 qt

13

18. 4 gal 1 qt 

2

qt

30. 2 c 3 fl oz  2 c 6 fl oz  4 c 9 fl oz  4 c 1 c 1 fl oz  5 c 1 fl oz 32.

13 gal 4 qt  2 

 4 qt 2  26 qt

1

4

13 qt 2 pt 2 c  4  

gal

1

20.

13

1 1 qt 1 pt 13 22 c 4  13 c

2

4

qt 

7 qt 2 pt 2 c    7  2  2 c  28 c 1 1 qt 1 pt

gal 

1

1 pt

pt  2

1

1 qt 2 pt

2 qt 1 pt 3 c  1 c 4 fl oz

1 1 1  qt  qt 2 2 4

2 qt 2 pt 1 c  1 c 4 fl oz 2 qt 1 pt 2 c 8 fl oz  1 c 4 fl oz 2 qt 1 pt 1 c 4 fl oz

36. 6 gal 1 pt  2  12 gal 2 pt  12 gal 1 qt  12 gal 1 qt

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

38. 5 gal 6 fl oz  2 

5

6

fl oz 2 2 1  2 gal 3 fl oz 2 1  2 gal  gal  3 fl oz 2  2 gal 2 qt 3 fl oz

40. 8 L 

gal

Chapter 8: Geometry and Measurement

8 L 1000 ml   8000 ml 1 1L

42. 0.127 L  0.127 L  1 kl 1 1000 L 0.127  kl 1000  0.000127 kl 1500 L  1.5 L 44. 1500 ml  1500 ml  1 L  1 1000 ml 1000 46. 1.7 L 

1.7 L 100 cl   1.7 100 cl  170 cl 1 1L

48. 250 L 

250 L 1

 1 kl  250 kl  0.25 kl 1000 L 1000

50. 39 ml  39 ml  1 L  39 L  0.039 L 1 1000 ml 1000 0.48 kl 1000 L  1 1 kl  0.48 1000 L  480 L

52. 0.48 kl 

54. 1.9 L 

1.9 L 1000 ml   1.9 1000 ml  1900 ml 1 1L

56. 18.5 L + 4.6 L = 23.1 L 58. 4.6 L = 4600 ml 4600 ml  1600 ml 6200 ml

1600 ml = 1.6 L 4.6 L  1.6 L 6.2 L

60.

4.8 L  283 ml

4.800 L 4800 ml  0.283 L or  283 ml 4.517 L 4517 ml

62.

6850 ml  0.3 L

6.85 L 6850 ml  300 ml or  0.30 L 6550 ml 6.55 L Copyright © 2025 Pearson Education, Inc.

305


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement 64. 290 ml  6 = 1740 ml 66. 5.4 L  3.6 

5.4

L  1.5 L

3.6 Capacity

Cups

Gallons

Quarts

Pints

68.

A dairy cow’s daily milk yield

76

4 34

19

38

70.

The amount of water needed in a punch recipe

2

1 8

1 2

1

72.

54.5 L  3.8 L 50.7 L 50.7 L are needed to fill the tank.

74. 2 L  8 

2

1

L  0.25 L 8 4 Each person (Avery plus 7 friends) will get 0.25 L.

76.

L

1 qt 1 pt  3 3 qt 3 pt  3 qt + 1 qt 1 pt  4 qt 1 pt  1 gal 1 pt The total amount of soup is 1 gal 1 pt. 3 c 8 fl oz   38 fl oz  24 fl oz 1 1c 24 24 fl oz  6  fl oz  4 fl oz 6 Each dish has 4 fl oz.

78. 3 c 

40 cl 10 ml   40 ml 1 1 cl  400 ml  40 ml  360 ml The excess amount of water is 360 ml.

80. 40 cl  40 ml 

82.

75 100

84. 86.

3  25 3  4  25 4

56 14  4 14   60 15  4 15 18

 9  2  9 20 10  2 10 

88. Yes, drinking 250 ml of milk with lunch is reasonable. 90. Yes, a gas tank of a car holding 60 L of gasoline is reasonable. 306

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

92. greater than; answers may vary 94. answers may vary 1.5 gal 4 qt 2 pt 2 c 8 fl oz     1 1 gal 1 qt 1 pt 1 c  1.5  4  2  2 8 fl oz  192 fl oz There are 192 fl oz in 1.5 gallons.

96. 1.5 gal 

98. A indicates 0.6 cc. 100. C indicates 1.9 cc. 102. A indicates 38 u or 0.38 cc. 104. C indicates 72 u or 0.72 cc. Section 8.7 Practice Exercises 1. 1.5 cm 

1.5 cm 1

2. 8 oz 

 1 in.  1.5 in.  0.59 in. 2.54 cm 2.54

8 oz 28.35 g   8  28.35 g  226.8 g 1 1 oz

3. 237 ml 

237 ml

 1 fl oz 1 29.57 ml 237  fl oz 29.57  8 fl oz

4. F 

9

C  32 

9

 60  32  108  32  140 5 5 Thus, 60C is equivalent to 140F.

5. F  1.8 C  32  1.8  32  32  57.6  32  89.6 Therefore, 32C is the same as 89.6F. 5  (68  32)   (36)  20 9 9 9 Therefore, 68F is the same temperature as 20C.

6. C 

5

 (F  32) 

5

5 5  (F  32)   (113  32)   (81)  45 9 9 9 Therefore, 113F is 45C.

7. C 

5

Copyright © 2025 Pearson Education, Inc.

307


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

5 8. C   (F  32) 9 5   (102.8  32) 9 5   (70.8) 9  39.3 Albert’s temperature is 39.3C. Vocabulary, Readiness & Video Check 8.7 1. 1 L  0.26 gal or 3.79 L  1 gal 2. The original stated example asked for the answer in grams, so a conversion from kg to g is still needed. 3. F = 1.8C + 32; 27 4. 77; 77F = 25C Exercise Set 8.7 2. 18 L 

18 L 1.06 qt   18 1.06 qt  19.08 qt 1 1L 86 mi 1.61 km  1 1 mi  86 1.61 km  138.46 km

4. 86 mi 

6. 100 kg 

8. 9.8 m 

100 kg 2.20 lb   100  2.2 lb  220 lb 1 1 kg

9.8 m 3.28 ft   9.8  3.28 ft  32.14 ft 1 1m

10. 150 ml 

150 ml

 1 fl oz 1 29.57 ml 150  fl oz 29.57  5.07 fl oz

12. 15 oz 

15 oz 28.35 g   15  28.35 g  425.25 g 1 1 oz Meters

Yards

Centimeters

Feet

Inches

14.

Statue of Liberty Length of Nose

1.37

1.5

137

4.5

54

16.

Blue Whale

33

36

3300

108

1296

308

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

18. 250 cm 

250 cm

 1 in.  98.43 in. 1 2.54 cm 98.43 in. 1 ft 98.43 in.    8.20 ft 1 12 in. The rings are approximately 98.43 inches or 8.20 feet from the floor. 70 mph 1.61 km   112.7 kph 1 1 mi The speed limit is approximately 112.7 kilometers per hour.

20. 70 mph 

0.5 g 0.04 oz   0.02 oz 1 1g The tablets are approximately 0.02 ounce.

22. 500 mg  0.5 g 

24. 26 m 

26 m 3.28 ft   85.28 ft 1 1m

26. 2.7 million kg 2, 700, 000 kg 2.20 lb 1 ton    1 1 kg 2000 lb  2970 tons 5 ft 12 in.  11 in. 1 1 ft  5 12 in. 11 in.  60 in. 11 in.  71 in. 71 in. 2.54 cm   1 1 in.  71 2.54 cm  180.34 cm Yes; the stamp is approximately correct.

28. 5 ft 11 in. 

18 ft 0.30 m   5.4 m 1 1 ft The nests are up to about 5.4 meters.

30. 18 ft 

32. 84 cm  

84 cm   1 in.

 33 in.

1 2.54 cm 33 in.  24 in.  9 in. 24 in. 1 ft    9 in. 1 12 in.  2 ft 9 in. The average two-year-old is approximately 2 ft 9 in.

Chapter 8: Geometry and Measurement 9 lb 0.45 kg   9  0.45 kg  4.05 kg 1 1 lb 4.05 kg 1000 g 4.05 kg    4050 g 1 1 kg The organ weighs approximately 4050 g.

34. 9 lb 

906 kph 0.62 mi   562 mph 1 1 km The speed is approximately 562 miles per hour.

36. 906 kph 

303 km 0.62 mi   187.86 mi 1 1 km The diameter is approximately 187.86 mi.

38. 303 km 

2079 km 0.62 mi   1289 mi 1 1 km The distance is approximately 1289 mi.

40. 2079 km 

24

 4 doses 6 per day and 4  10 = 40 doses for 10 days. 12 ml  40 = 480 ml 480 ml 1 fl oz 480 ml    16.23 fl oz 1 29.57 ml 17 fluid ounces of medicine should be purchased.

42. One dose every 6 hours results in

44. A mile is longer than a kilometer; b. 46. A foot is shorter than a meter; a 48. A football field is 100 yards, which is about 90 m, since a yard is a little less than a meter; b 50. A 5-gallon gasoline can has a capacity of about 19 L (1 gal  3.79 L); a 52. The weight of a pill is about 200 mg; d 54. C  

5 9 5 9 5

(F  32) (86  32)

 (54) 9  30 86F is 30C. 5 5 5 56. C  (F  32)  (140  32)  (108)  60 9 9 9 140F is 60C.

Copyright © 2025 Pearson Education, Inc.

309


Chapter 8: Geometry and Measurement

58. F  

9

76. F  1.8C  32  1.8(127)  32  228.6  32  260.6 127C is 260.6F.

C  32

5 9

(80)  32 5  144  32  176 80C is 176F. 60. F 

9

78. C 

9

C  32  (225)  32  405  32  437 5 5 225C is 437F.

62. C 

5

(F  32) 

5

9 9 26F is 3.3C.

64. C 

5

ISM: Prealgebra and Introductory Algebra

(F  32) 

5

9 9 43.4F is 6.3C.

(26  32) 

5

(6)  3.3

9

5

(F  32)

9 5

 (58.3  32) 9 5  (26.3) 9  14.6 58.3F is 14.6C. 80. 10  2 + 9(8) = 5 + 9(8) = 5 + 72 = 77

(43.4  32) 

5

(11.4)  6.3

82. 5[(18  8)  9] = 5[10  9] = 5(1) = 5

9 84. False; the boiling point of water is 212F.

66. F  1.8C  32  1.8(75)  32  135  32  167 75C is 167F.

86. Yes, an air temperature of 20F on a Vermont ski slope in winter is reasonable.

68. F  1.8C  32  1.8(48.6)  32  87.48  32  119.5 48.6C is 119.5F.

90. No, water cooled to 32C will not freeze.

70. C  

5 9 5

88. No, a room temperature of 60C does not feel chilly.

63157  1.66 3600 The BSA is approximately 1.66 sq m.

92. BSA 

26 in. 2.54 cm   66.04 cm 1 1 in. 13 66.04 BSA   0.49 3600 The BSA is approximately 0.49 sq m.

(F  32)

94. 26 in. 

(95  32)

9 5

 (63) 9  35 95F is 35C. 72. F = 1.8C + 32 = 1.8(18) + 32 = 32.4 + 32 = 64.4 18C is 64.4F. 74. C  

5 9 5

(F  32) (66  32)

69 in. 2.54 cm   175.26 cm 1 1 in. 172 lb 0.45 kg 172 lb    77.4 kg 1 1 lb

96. 69 in. 

77.4 175.26  1.94 3600 The BSA is approximately 1.94 sq m. BSA 

9 5

 (34) 9  18.9 66F is 18.9C.

310

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

98. C   

5 9 5

Chapter 8: Geometry and Measurement

16. The measure of the space of a solid is called its volume.

(F  32) (9010  32)

17. When two lines intersect, four angles are formed. Two of these angles that are opposite each other are called vertical angles.

9 5

(8978) 9  4988 9010F is 4988C.

18. Two of the angles from Exercise 17 that share a common side are called adjacent angles. 19. An angle whose measure is between 90 and 180 is called an obtuse angle.

100. answers may vary Chapter 8 Vocabulary Check 1. Weight is a measure of the pull of gravity.

20. An angle that measures 90 is called a right angle.

2. Mass is a measure of the amount of substance in an object. This measure does not change.

21. An angle whose measure is between 0 and 90 is called an acute angle.

3. The basic unit of length in the metric system is the meter. 4. To convert from one unit of length to another, unit fractions may be used. 5. The gram is the basic unit of mass in the metric system. 6. The liter is the basic unit of capacity in the metric system.

22. Two angles that have a sum of 180 are called supplementary angles. 23. The surface area of a polyhedron is the sum of the areas of the faces of the polyhedron. Chapter 8 Review 1. A is a right angle. It measures 90. 2. B is a straight angle. It measures 180.

7. A line segment is a piece of a line with two endpoints.

3. C is an acute angle. It measures between 0 and 90.

8. Two angles that have a sum of 90 are called complementary angles.

4. D is an obtuse angle. It measures between 90 and 180.

9. A line is a set of points extending indefinitely in two directions.

5. The complement of a 25 angle has measure 90  25 = 65.

10. The perimeter of a polygon is the distance around the polygon.

6. The supplement of a 105 angle has measure 180  105 = 75.

11. An angle is made up of two rays that share the same endpoint. The common endpoint is called the vertex.

7. mx  90  32  58

12. Area measures the amount of surface of a region.

9. mx  105 15  90

13. A ray is a part of a line with one endpoint. A ray extends indefinitely in one direction. 14. A line that intersects two or more lines at different points is called a transversal.

8. mx  180  82  98

10. mx  45  20  25 11. 47 + 133 = 180, so a and b are supplementary. So are b and c, c and d , and d and a.

15. An angle that measures 180 is called a straight angle. Copyright © 2025 Pearson Education, Inc.

311


Chapter 8: Geometry and Measurement 12. 47 + 43 = 90, so x and w are complementary. Also, 58 + 32 = 90, so y and z are complementary. 13. x and the angle marked 100 are vertical angles, so mx  100. x and y are adjacent angles, so my  180 100  80. y and z are vertical angles, so mz  my  80. 14. x and the angle marked 25 are adjacent angles, so mx  180  25  155. x and y are vertical angles, so my  mx  155. z and the angle marked 25 are vertical angles, so mz  25. 15. x and the angle marked 53 are vertical angles, so mx  53. x and y are alternate interior angles, so my  mx  53. y and z are adjacent angles, so mz  180 my  180 53  127. 16. x and the angle marked 42 are vertical angles, so mx  42. x and y are alternate interior angles, so my  mx  42. y and z are adjacent angles, so mz  180 my  180 42  138. 17. P  23 m  11

1

m  23 m  11

2 The perimeter is 69 meters.

1

m  69 m

2

21. P = 2  l + 2  w = 2  10 ft + 2  6 ft = 32 ft The perimeter is 32 feet. 22. P = 4  s = 4  110 ft = 440 ft The perimeter is 440 feet. 23. C =   d =   1.7 in.  3.14  1.7 in. = 5.338 in. The circumference is 5.338 inches. 24. C  2   r  2   5 yd  10 yd  3.14 10 yd  31.4 yd The circumference is 31.4 yards. 25. A 

1

 (b  B)  h 2 1   (12 ft  36 ft) 10 ft 2 1   48 ft 10 ft 2  240 sq ft The area is 240 square feet.

26. A = b  h = 21 yd  9 yd = 189 sq yd The area is 189 square yards. 27. A = l  w = 40 cm  15 cm = 600 sq cm The area is 600 square centimeters. 28. A  s2  (9.1 m)2  82.81 sq m The area is 82.81 square meters. 29. A   r 2  (7 ft)2  49 sq ft  153.86 sq ft The area is 49 square feet  153.86 square feet. 2 2 30. A   r  (3 in.)  9 sq in.  28.26 sq in.

18. P = 11 cm + 7.6 cm + 12 cm = 30.6 cm The perimeter is 30.6 centimeters. 19. The unmarked vertical side has length 8 m  5 m = 3 m. The unmarked horizontal side has length 10 m  7 m = 3 m. P = (7 + 3 + 3 + 5 + 10 + 8) m = 36 m The perimeter is 36 meters. 20. The unmarked vertical side has length 5 ft + 4 ft + 11 ft = 20 ft. P  (22  20  22 11 3  4  3  5) ft  90 ft The perimeter is 90 feet.

312

ISM: Prealgebra and Introductory Algebra

The area is 9 square inches  28.26 square inches. 31. A 

1

bh 

1

 34 in. 7 in.  119 sq in. 2 2 The area is 119 square inches. 1 1  b  h   20 m 14 m  140 sq m 2 2 The area is 140 square meters.

32. A 

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

33. The unmarked horizontal side has length 13 m  3 m = 10 m. The unmarked vertical side has length 12 m  4 m = 8 m. The area is the sum of the areas of the two rectangles. A  12 m 10 m  8 m  3 m  120 sq m  24 sq m  144 sq m The area is 144 square meters. 34. The unmarked vertical side has length 30 cm  5 cm = 25 cm. The unmarked horizontal side has length 60 cm  35 cm = 25 cm. The area is the sum of the areas of the two rectangles. A  30 cm  25 cm  35 cm  25 cm  1625 sq cm The area is 1625 square centimeters. 35. A = l  w = 36 ft  12 ft = 432 sq ft The area of the driveway is 432 square feet. 36. A = 10 ft  13 ft = 130 sq ft 130 square feet of carpet are needed. 3

37. V  s  1 3  2 in.   2 3 5    in. 2  125  cu in. 8 5 15 cu in. 8 The volume is 15

5

cubic inches.

8 SA  6s2 2  1   6  2 in.  2 2 5   6  in. 2   25   6 4 sq in.    75  sq in. 2 1  37 sq in. 2 The surface area is 37

Chapter 8: Geometry and Measurement 38. V = l  w  h = 2 ft  7 ft  6 ft = 84 cu ft The volume is 84 cubic feet. SA  2lh  2wh  2lw  2  7 ft  6 ft  2  2 ft  6 ft  2  7 ft  2 ft  84 sq ft  24 sq ft  28 sq ft  136 sq ft The surface area is 136 square feet. 39. V   r 2  h  (20 cm)2  50 cm  20, 000 cu cm  62,800 cu cm The volume is 20,000 cubic centimeters  62,800 cubic centimeters. 40. V 

4

  r3

3 4

3

1    km  3 2  1   cu km 6 11  cu km 21 The volume is 1 11  cubic kilometers  cubic kilometers. 6 21 

1 2 41. V   s  h 3 1   (2 ft)2  2 ft 3 8  cu ft 3 2  2 cu ft 3 2 The volume of the pyramid is 2 cubic feet. 3 42. V   r 2  h  (3.5 in.)2 8 in.  98 cu in.  307.72 cu in. The volume of the can is about 307.72 cubic inches.

1

square inches.

2

Copyright © 2025 Pearson Education, Inc.

313


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

43. Find the volume of each drawer. V  l  w1 h   1  2 ft    2   ft  1 ft  2   2  3        5 3 2    cu ft 2 2 3 5  cu ft 2 The three drawers have volume 5 15 1 3   7 cubic feet. 2 2 2

53. 12.18 mm  12.18 mm  1 m 1 1000 mm 12.18  m 1000  0.01218 m

44. r = d  2 = 1 ft  2 = 0.5 ft

55.

54. 2.31 m  2.31 m  1 km 1 1000 m 2.31  km 1000  0.00231 km

V   r2  h  (0.5 ft)2  2 ft  0.5 cu ft The volume of the canister is 0.5 cubic feet or 1   cubic feet.  2 108 in.  108  1 ft  ft  9 ft 45. 108 in.  

1 46. 72 ft 

48.

2

12

72 ft 1 yd 72   yd  24 yd 1 3 ft 3

47. 1.5 mi 

1

12 in.

1.5 mi 5280 ft   1.5  5280 ft  7920 ft 1 1 mi

1 yd 3 ft 12 in. 1 yd  2     312 in.  18 in.

1

1 yd

1 ft

2

49. 52 ft  51 ft 1 ft 51 ft 1 yd   1 ft 1 3 ft 51  yd 1 ft 3  17 yd 1 ft 50. 46 in.  36 in. 10 in. 36 in.  1 ft 10 in.   1 12 in. 36  ft 10 in. 12  3 ft 10 in. 51. 42 m 

42 m 100 cm   42 100 cm  4200 cm 1 1m

52. 82 cm 

314

82 cm 10 mm   82 10 mm  820 mm 1 1 cm

4 yd 2 ft  16 yd 2 ft 20 yd 4 ft = 20 yd + 1 yd 1 ft = 21 yd 1 ft

56. 7 ft 4 in.  2  (6 ft 1 ft 4 in.)  2  (6 ft 16 in.)  2 6 16  ft  in. 2  2 3 ft 8 in. 57. 8 cm = 80 mm 80 mm  15 mm or 95 mm

15 mm = 1.5 cm 8.0 cm  1.5 cm 9.5 cm

58. 4 m = 400 cm 400 cm  126 cm or 274 cm

126 cm = 1.26 m 4.00 m  1.26 m 2.74 m

59.

333 yd 1 ft  163 yd 2 ft

332 yd 4 ft  163 yd 2 ft 169 yd 2 ft The amount of material that remains is 169 yd 2 ft.

60.

5 ft 2 in.  50 250 ft 100 in. = 250 ft + 96 in. + 4 in. = 250 ft + 8 ft 4 in. = 258 ft 4 in. The sashes require 258 ft 4 in. of material.

61. 1235 km  2 2470 km 2470 km  4 

2470

km  617.5 km 4 Each must drive 617.5 km.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

62.

0.8 m  0.3 m 0.24 sq m

0.8 m  30 cm

Chapter 8: Geometry and Measurement

73.

4.3 mg  5 21.5 mg

The area is 0.24 sq m. 66 oz 1 lb 66 33 1   lb  lb  4 lb 63. 66 oz  1 16 oz 16 8 8 2.3 tons 2000 lb  1 1 ton  2.3 2000 lb  4600 lb

64. 2.3 tons 

74. 4.8 kg = 4800 g 4800 g  4200 g or 600 g 75.

65. 52 oz  48 oz  4 oz 48 oz 1 lb    4 oz 1 16 oz 48  lb  4 oz 16  3 lb 4 oz

1 lb 12 oz  2 lb 8 oz 3 lb 20 oz = 3 lb + 1 lb 4 oz = 4 lb 4 oz The total weight was 4 lb 4 oz.

76. 38 tons 300 lb  4 

66. 10,300 lb  10, 000 lb  300 lb 10, 000 lb  1 ton  300 lb   1 2000 lb 10, 000  tons  300 lb 2000  5 tons 300 lb 27 g  0.027 g 67. 27 mg  27 mg  1 g  1 1000 mg 1000 68. 40 kg 

40 kg 1000 g   40 1000 g  40, 000 g 1 1 kg

69. 2.1 hg 

2.1 hg 10 dag   2.110 dag  21 dag 1 1 hg

71.

6 lb 5 oz  2 lb 12 oz

72.

8 lb 6 oz  4 32 lb 24 oz = 32 lb + 1 lb 8 oz = 33 lb 8 oz

5 lb 21 oz  2 lb 12 oz 3 lb 9 oz

38

77. 28 pt 

tons

300

lb 4 4 1  9 tons 75 lb 2 1  9 tons  ton  75 lb 2  9 tons 1000 lb  75 lb  9 tons 1075 lb They each receive 9 tons 1075 lb. 28 pt 1 qt 28   qt  14 qt 1 2 pt 2

40 c5c 78. 40 fl oz  40 fl oz  1 c  1 8 fl oz 8 3 qt 2 pt  1 pt 1 1 qt  3  2 pt 1 pt  6 pt  1 pt  7 pt

79. 3 qt 1 pt 

80. 18 qt 

0.03 mg 1 dg  1 100 mg 0.03  dg 100  0.0003 dg

70. 0.03 mg 

4200 g = 4.2 kg 4.8 kg  4.2 kg 0.6 kg

18 qt 2 pt 2 c    18  2  2 c  72 c 1 1 qt 1 pt

81. 9 pt  8 pt 1 pt 8 pt 1 qt   1 pt 1 2 pt 8  qt 1 pt 2  4 qt 1 pt

Copyright © 2025 Pearson Education, Inc.

315


Chapter 8: Geometry and Measurement 82. 15 qt  12 qt  3 qt 12 qt 1 gal    3 qt 1 4 qt 12  gal  3 qt 4  3 gal 3 qt

93. 85 ml  8  16 = 10,880 ml 10,880 ml 1 L  10,880 L  10.88 L  1 1000 ml 1000 There are 10.88 L of polish in 8 boxes. 94. 6 L 1300 ml  2.6 L  6 L 1.3 L  2.6 L  9.9 L Since 9.9 L is less than 10 L, yes it will fit.

3.8 L 1000 ml  1 1L  3.8 1000 ml  3800 ml

83. 3.8 L 

95. 7 m 

14 kl  1.4 kl 84. 14 hl  14 hl  1 kl  1 10 hl 10 85. 30.6 L 

ISM: Prealgebra and Introductory Algebra

30.6 L 100 cl   30.6 100 cl  3060 cl 1 1L

7 m 3.28 ft   22.96 ft 1 1m

96. 11.5 yd  11.5 yd  1 m  10.55 m 1 1.09 yd 97. 17.5 L 

17.5 L 0.26 gal   4.55 gal 1 1L

86. 2.45 ml  2.45 ml  1 L  0.00245 L 1 1000 ml

98. 7.8 L 

7.8 L 1.06 qt   8.268 qt 1 1L

1 qt 1 pt  3 qt 1 pt 4 qt 2 pt = 4 qt + 1 qt = 1 gal 1 qt

99. 15 oz 

15 oz 28.35 g   425.25 g 1 1 oz

100. 23 lb 

23 lb 0.45 kg   10.35 kg 1 1 lb

87.

88. 3 gal 2 qt  2 6 gal 4 qt = 6 gal + 1 gal = 7 gal 89. 0.946 L = 946 ml 946 ml  210 ml or 736 ml

210 ml = 0.21 L 0.946 L  0.210 L 0.736 L

90. 6.1 L = 6100 ml 6100 ml  9400 ml or 15, 500 ml

9400 ml = 9.4 L 6.1 L  9.4 L 15.5 L

101. 1.2 mm  50 = 60 mm 60 mm 1 cm 60 mm    6 cm 1 10 mm 6 cm 1 in. 6 cm    2.36 in. 1 2.54 cm The height of the stack is approximately 2.36 in. 102. 25  5.5 mm = 137.5 mm 137.5 mm 1 cm  13.75 cm 137.5 mm   1 10 mm 13.75 cm 13.75 cm   1 in.  5.4 in. 1 2.54 cm The total thickness is approximately 5.4 in. 

91.

3 gal 6 qt  1 gal 3 qt 2 gal 3 qt There are 2 gal 3 qt of tea remaining. 4 gal 2 qt  1 gal 3 qt

92. 1 c 4 fl oz  2  (8 fl oz  4 fl oz)  2  12 fl oz  2  6 fl oz Use 6 fl oz of stock for half of a recipe.

103. F  1.8C  32  1.8(42)  32  75.6  32  107.6 42C is 107.6F. 104. F = 1.8C + 32 = 1.8(160) + 32 = 288 + 32 = 320 160C is 320F.

316

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

105. C 

5

(F  32) 

5

(41.3  32) 

9 9 41.3F is 5.2C.

5

Chapter 8: Geometry and Measurement

1 2 117. V    r  h 13  1     2 5 in.   12 in. 3  4 2 1  21      in. 12 cu in.  3441  4   cu in. 4 441 22 1   cu in.  346 cu in. 4 7 2 1 The volume is 346 cubic inches. 2

(9.3)  5.2

9

5 5 5 106. C  9 (F  32)  9 (80  32)  9 (48)  26.7 80F is 26.7C. 107. C 

5

(F  32) 

9 35F is 1.7C.

5

(35  32) 

9

5

(3)  1.7

9

108. F  1.8C  32  1.8(165)  32  297  32  329 165C is 329F.

118. V = l  w  h = 5 in.  4 in.  7 in. = 140 cu in. The volume is 140 cubic inches. SA  2lh  2wh  2lw  2  7 in. 5 in.  2  4 in. 5 in.  2  7 in. 4 in.  70 sq in.  40 sq in.  56 sq in.  166 sq in. The surface area is 166 square inches.

109. The supplement of a 72 angle is an angle that measures 180  72 = 108. 110. The complement of a 1 angle is an angle that measures 90  1 = 89. 111. x and the angle marked 85 are adjacent angles, so mx  180  85  95. 112. Let y be the angle corresponding to x at the bottom intersection. Then y and the angle marked 123 are adjacent angles, so mx  my  180 123  57. 113. P = 7 in. + 11.2 in. + 9.1 in. = 27.3 in. The perimeter is 27.3 inches. 114. The unmarked horizontal side has length 40 ft  22 ft  11 ft = 7 ft. P  (22 15  7 15 11  42  40  42) ft  194 ft The perimeter is 194 feet. 115. The unmarked horizontal side has length 43 m  13 m = 30 m. The unmarked vertical side has length 42 m  14 m = 28 m. The area is the sum of the areas of the two rectangles. A  28 m 13 m  42 m  30 m  364 sq m 1260 sq m  1624 sq m The area is 1624 square meters. 2

119. 6.25 ft 

120. 8200 lb  8000 lb  200 lb 8000 lb  1 ton  200 lb   1 2000 lb  4 tons 200 lb 

121. 5 m 

The area is 9 square meters  28.26 square meters.

5 m 100 cm   500 cm 1 1m 286 mm 1 km  1 1,000,000 mm  0.000286 km

122. 286 mm 

 1.4 g 123. 1400 mg  1400 mg  1 g 1 1000 mg 124. 6.75 gal 

6.75 gal 4 qt   27 qt 1 1 gal

125. F  1.8C  32  1.8(86)  32  154.8  32  186.8 86C is 186.8F.

2

116. A   r  (3 m)  9 sq m  28.26 sq m

6.25 ft 12 in.   75 in. 1 1 ft

126. C 

5

(F  32) 

5

9 9 51.8F is 11C.

Copyright © 2025 Pearson Education, Inc.

(51.8  32) 

5

(19.8)  11

9

317


Chapter 8: Geometry and Measurement

127. 9.3 km = 9300 m 9300 m  183 m or 9117 m

183 m = 0.183 km 9.300 km  0.183 km 9.117 km

128. 35 L = 35,000 ml 35, 000 ml  700 ml 35, 700 ml

700 ml = 0.7 L 35.0 L  0.7 L 35.7 L

129.

130.

10. When parallel lines are cut by a transversal, the measures of corresponding angles are equal and the measures of alternate interior angles are equal. Thus, a has the same measure as d (vertical angles), b (corresponding angles), and c (vertical angle with b). Thus, a and c have the same measure; B. 11. Area is measured in square units; B.

3 gal 3 qt  4 gal 2 qt 7 gal 5 qt = 7 gal + 1 gal 1 qt = 8 gal 1 qt

12. Volume is measured in cubic units; C.

3.2 kg  4 12.8 kg

14. The amount of material needed for a tablecloth is a calculation of area; B.

Chapter 8 Getting Ready for the Test 1. A line is a set of points extending indefinitely in two directions; D. 2. A line segment is a piece of a line with two endpoints; B. 3. A ray is a part of a line with one endpoint; E. 4. A right angle is an angle that measures 90; A. 5. An acute angle is an angle that measures between 0 and 90; F. 6. An obtuse angle is an angle that measures between 90 and 180; C. 7. When two lines intersect, adjacent angles are supplementary (have a sum of 180). a and d are adjacent angles, so choice B is correct. 8. When two lines intersect, vertical angles (angles that are opposite each other) have the same measure. b and d re vertical angles, so choice C is correct. 9. When parallel lines are cut by a transversal, the measures of corresponding angles are equal and the measures of alternate interior angles are equal. Thus, a has the same measure as d (vertical angles), b (corresponding angles), and c (vertical angle with b). a and f are adjacent angles, so they are supplementary. e and f are corresponding angles, so they have the same measure. Thus a and e are supplementary (have a sum of 180); A. 318

ISM: Prealgebra and Introductory Algebra

13. Perimeter and circumference are measured in units; A and D.

15. The amount of trim needed to go around the edge of a tablecloth is a calculation of perimeter or circumference; A or D. 16. The amount of soil needed to fill a hole in the ground is a calculation of volume; C. Chapter 8 Test 1. The complement of an angle that measures 78 is an angle that measures 90  78 = 12. 2. The supplement of a 124 angle is an angle that measures 180  124 = 56. 3. mx  90  40  50 4. x and the angle marked 62 are adjacent angles, so mx  180  62  118. y and the angle marked 62 are vertical angles, so my  62. x and z are vertical angles, so mz  mx  118. 5. x and the angle marked 73 are vertical angles, so mx  73. x and y are alternate interior angles, so my  mx  73. x and z are corresponding angles, so mz  mx  73. 6. d = 2  r = 2  3.1 m = 6.2 m 7. r  d  2  20 in.  2  10 in.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

8. Circumference: C  2   r  2   9 in.  18 in.  56.52 in. The circumference is 18 inches  56.52 inches. Area:

Chapter 8: Geometry and Measurement 15. P  2  l  2  w  2 18 ft  2 13 ft  36 ft  26 ft  62 ft cost  P  $1.87 per ft  62 ft  $1.87 per ft  $115.94 62 feet of baseboard are needed, at a total cost of $115.94.

A  r2  (9 in.)2  81 sq in.  254.34 sq in. The area is 81 square inches  254.34 square inches. 9. P  2  l  2  w  2(7 yd)  2(5.3 yd)  14 yd 10.6 yd  24.6 yd The perimeter is 24.6 yards. A = l  w = 7 yd  5.3 yd = 37.1 sq yd The area is 37.1 square yards. 10. The unmarked vertical side has length 11 in.  7 in. = 4 in. The unmarked horizontal side has length 23 in.  6 in. = 17 in. P = (6 + 4 + 17 + 7 + 23 + 11) in. = 68 in. The perimeter is 68 inches. Extending the unmarked vertical side downward divides the region into two rectangles. The region’s area is the sum of the areas of these: A  11 in. 6 in.  7 in.17 in.  66 sq in. 119 sq in.  185 sq in. The area is 185 square inches. 2

11. V   r  h  (2 in.)2  5 in.  20 cu in. 22 6  20  cu in.  62 cu in. 7 7 6 The volume is 62 cubic inches. 7 12. V  l  w  h  5 ft  3 ft  2 ft  30 cu ft The volume is 30 cubic feet.

23 280 24 40 36 4 280 inches = 23 ft 4 in.

16. 12

1 17. 2

2 1 gal 4 qt 1 2   2  4 qt  10 qt 1 1 gal 2

gal 

2

30 15 7 lb  lb  18. 30 oz  30 oz  1 lb  1 lb 1 16 oz 16 8 8 2.8 tons 2000 lb  1 1 ton  2.8  2000 lb  5600 lb

19. 2.8 tons 

38 pt 1 qt 1 gal 20. 38 pt  1  2 pt 4 qt 38  gal 8 19  gal 4 3  4 gal 4 21. 40 mg 

40 mg 1g 40   g  0.04 g 1 1000 mg 1000

22. 2.4 kg 

2.4 kg 1000 g   2.4 1000 g  2400 g 1 1 kg

23. 13. P = 4  s = 4  4 in. = 16 in. The perimeter of the frame is 16 inches.

3.6 cm 

3.6 cm 10 mm   3.6 10 mm  36 mm 1 1 cm

Copyright © 2025 Pearson Education, Inc.

319

14. V = l  w  h = 3 ft  3 ft  2 ft = 18 cu ft 18 cubic feet of soil are needed.


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement 4.3 g  0.43 g 24. 4.3 dg  4.3 dg  1 g  1 10 dg 10 25. 0.83 L  26.

27.

8.4 2  m  5.6 m 3 1 3 The trees will be 5.6 m tall.

34. 8.4 m 

0.83 L 1000 ml   0.831000  830 ml 1 1L

3 qt 1 pt  2 qt 1 pt 5 qt 2 pt  4 qt 1 qt  2 pt  1 gal 1 qt 1 qt  1 gal 2 qt

35.

37.

28. 2 ft 9 in. 3  6 ft 27 in.  6 ft  2 ft 3 in.  8 ft 3 in.

5 95

1.

3a  6  a  4 3a  a  6  a  a  4 2a  6  4 2a  6  6  4  6 2a  10 2a 10 2  2

or

a5

8.0 cm  1.4 cm 6.6 cm

2.

456 m = 0.456 km 1.800 km  0.456 km 2.256 km

2x 1  3x  5 2x  2x 1  3x  2x  5 1 x5 1 5  x  5  5 6x 4

3. a.

(F  32)

 (52)  9 28.9 84F is 28.9C. 33. F  1.8C  32  1.8(12.6)  32  22.68  32  54.7 12.6C is 54.7F

2 2 2 2 24 16 2         4 625  5  5 5 5 5 5 2

(84  32) b.

9 5

320

2 ft 9 in.  6 12 ft 54 in.  12 ft  4 ft 6 in.  16 ft 6 in. Thus, 16 ft 6 in. of material is needed.

14 mm = 1.4 cm

31. 1.8 km = 1800 m 1800 m  456 m or 2256 m 32. C 

19 gal 4 qt  15 gal 1 qt 4 gal 3 qt Thus, 4 gal 3 qt remains in the container. 20 gal  15 gal 1 qt

Cumulative Review Chapters 18

29. 5 gal 2 qt  2  4 gal 6 qt  2 4 6  gal qt 2  2 2 gal 3 qt

80 mm  14 mm 66 mm

36. 88 m + 340 cm = 88 m + 3.40 m = 91.4 m The span is 91.4 meters

8 lb 6 oz 7 lb 22 oz  4 lb 9 oz   4 lb 9 oz 3 lb 13 oz

30. 8 cm = 80 mm

2

 1  1  1  1   4     4   4   16     

3

4. a.

1  1  1  1   1    3    3  3  3   27       2

b.

3 3 3 9      7 7 49 7  

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

5.

4

2

2

5 1

1

2 8

2

1

3 2 4 5 3

10 13

 8 1

3 10

9

14.

0.4x  9.3  2.7 0.4x  9.3  9.3  2.7  9.3 0.4x  12 0.4x 12  0.4 0.4 x  30

3 10

5 15 6 4 15 3 11 9 15 2

15. Use a2  b2  c2 where a = b = 300. 3002  3002  c2

7. 11.1x  6.3  8.9x  4.6  11.1x  8.9x  6.3  4.6  20x 10.9 8. 2.5 y  3.7 1.3y 1.9  2.5 y 1.3y  3.7 1.9  1.2 y  1.8 2 9. 5.68  (0.9) 100  5.68  0.81100 0.2 0.2 5.68  0.0081  0.2 5.6881  0.2  28.4405

10.

0.5 y  2.3  1.65 0.5 y  2.3  2.3  1.65  2.3 0.5 y  0.65 0.5 y 0.65  0.5 0.5 y  1.3

5

10 6.

13.

5

5 1

8 10

Chapter 8: Geometry and Measurement

0.12  0.96 1.08   2.16 0.5 0.5

0.77... 11. 9 7.00 63 70 63 7

90, 000  90, 000  c2 180, 000  c2 180, 000  c 424  c The length of the sidewalk is approximately 424 feet. 16. Use a2  b2  c2 where a = 200 and b = 125. 2002 1252  c2 40, 000 15, 625  c2 55, 625  c2 55, 625  c 236  c The length of the diagonal is approximately 236 feet. width 17. a. b.

7 Thus 0.7  . 9

12. 5

0.4 2.0 2 0 0

18. a.

length

5 feet 7 feet



5 7

P  2l  2 w  2(7 feet)  2(5 feet)  14 feet 10 feet  24 feet 7 feet 7 length   perimeter 24 feet 24 P = 4s = 4(9 in.) = 36 in. side 9 inches 9 1    perimeter 36 inches 36 4

2 Thus 0.43  . 5

Copyright © 2025 Pearson Education, Inc.

321


ISM: Prealgebra and Introductory Algebra

Chapter 8: Geometry and Measurement

b.

A  s2  (9 in.)2  81 sq in. perimeter area

19.

36 inches

 81 sq inches

36

25.  81

4

26.

3y 1  3 3(1) 1 0 3 3 1 0 3 2  3 False No, 1 is not a solution.

20.

21.

27.

4(x  7)  8 4(5  7) 0 8 4(2) 0 8 8  8 True Yes, 5 is a solution. x  2 3 x 3  3 2 3

28.

9x  8x 1.02 9x  8x  8x  8x 1.02 x  1.02

23. Let x be the dose for a 140-lb person. 4 cc x cc  25 lb 140 lb 4 x  25 140 4 140  25  x 560  25x 560 25x  25 25 22.4  x The dose is 22.4 cc. 24. Let x be the amount for 5 pie crusts. 3c xc  2 crusts 5 crusts 3 x  2 5 3 5  2  x 15  2x 15 2x  2 2 7.5  x 5 pie crusts require 7.5 cups of flour.

322

 17% 100 17% of the people surveyed drive blue cars. 38

 38% 100 38% of the shoppers used only cash. 1 13  6 %  x 2 13  0.065x 13 0.065x  0.065 0.065 200  x 1 13 is 6 % of 200. 2 1 54  4 2 %  x 54  0.045x 54 0.045x  0.045 0.045 1200  x 1 54 is 4 % of 1200. 2

x  6 22.

9

17

29. x = 30%  9 x = 0.3  9 x = 2.7 2.7 is 30% of 9. 30. x = 42%  30 x = 0.42  30 x = 12.6 12.6 is 42% of 30. 31. percent of increase 

amount of increase

original amount 45  34  34 11  34  0.32 The scholarship applications increased by 32%.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

32. percent of increase 

amount of increase

original amount 19 15  15 4  15  0.27 The price of the paint increased by 27%.

33. sales tax = 85.50  0.075 = 6.4125 The sales tax is $6.41. 85.50 + 6.41 = 91.91 The total price is $91.91. 34. sales tax = 375  0.08 = 30 The sales tax is $30. 375 + 30 = 405 The total price is $405. 35. The seven numbers are listed in order. The median is the middle number, 57.

Chapter 8: Geometry and Measurement

39. The complement of a 48 angle is an angle that has measure 90  48 = 42. 40. The supplement of a 137 angle is an angle that has measure 180  137 = 43. 41. 8 ft 

8 ft 12 in.   8 12 in.  96 in. 1 1 ft

42. 7 yd 

7 yd 3 ft   7  3 ft  21 ft 1 1 yd

43.

8 tons 1000 lb  3 tons 1350 lb

44.

8 lb 15 oz  9 lb 3 oz

7 tons 3000 lb  3 tons 1350 lb 4 tons 1650 lb

17 lb 18 oz  17 lb 1 lb 2 oz  18 lb 2 oz

36. The five numbers in order are: 60, 72, 83, 89, 95. The median is the middle number, 83.

45. C 

5

9 59F is 15C.

9

37. There is 1 red marble and 1 + 1 + 2 = 4 total 1 marbles. The probability is . 4

46. C 

5

5

(F  32) 

(F  32) 

9 86F is 30C.

5

9

(59  32) 

5

(27)  15

9

(86  32) 

5

(54)  30

9

38. There are 2 nickels and 2 + 2 + 3 = 7 total coins. 2 The probability is . 7

Copyright © 2025 Pearson Education, Inc.

323


Chapter 9 Section 9.1 Practice Exercises

d.

1. Since 8 is to the right of 6 on the number line, the statement 8 < 6 is false. 2. Since 100 is to the right of 10 on the number line, the statement 100 > 10 is true. 3.

Since 21 = 21, the statement 21  21 is true.

4.

Since 21 = 21, the statement 21  21 is true. 5. Since neither 0 > 5 nor 0 = 5 is true, the statement 0  5 is false. 6. Since 25 > 22, the statement 25  22 is true. 7. a.

Fourteen is greater than or equal to fourteen is written as 14  14.

b.

Zero is less than five is written as 0 < 5.

c.

Nine is not equal to 10 is written as 9  10.

8. The integer 10 represents 10 meters below sea level. 9.

5 4

1

4

2

2 1 5 3 5 4 0

1

2.25 2

3

4

5

11 < 9 since 11 is to the left of 9 on the number line.

b.

By comparing digits in the same places, we find that 4.511 > 4.151, since 0.5 > 0.1.

c.

By dividing, we find that

7

 0.875 and

8

2

 0.66.... Since 0.875 > 0.66..., then 3 7 2  . 8 3

324

The irrational number is .

f.

All numbers in the given set are real numbers.

Vocabulary, Readiness & Video Check 9.1 1. The whole numbers are {0, 1, 2, 3, 4, ...}. 2. The natural numbers are {1, 2, 3, 4, 5, ...}. 3. The symbols , , and > are called inequality symbols. 4. The integers are {..., 3, 2, 1, 0, 1, 2, 3, ...}. 5. The real numbers are {all numbers that correspond to points on the number line}. 6. The rational numbers are a   a and b are integers, b  0. b  7. The integer 0 is neither positive nor negative.

1

–5 –4 –3 –2 –1

11. a.

e.

1 2

10. a.

2 The rational numbers are 100,  , 0, 6, 5 and 913.

8. The point on a number line halfway between 0 1 1 and can be represented by . 2 4 9. to form a true statement: 0 < 7 10. Five is greater than or equal to 4: 5  4 11. 0 belongs to the whole numbers, the integers, the rational numbers, and the real numbers; because 0 is a rational number, it cannot also be an irrational number. Exercise Set 9.1 2. Since 8 is to the right of 5 on the number line, 8 > 5.

The natural numbers are 6 and 913.

b.

The whole numbers are 0, 6, and 913.

4. Since 9 is to the left of 15 on the number line, 9 < 15.

c.

The integers are 100, 0, 6, and 913.

6. 1.13 = 1.13

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

8. Since 20 is to the right of 0 on the number line, 20 > 0.

42. –5 –4 –3 –2 –1

10. Since 0 is to the left of 100 on the number line, 0 < 100.

1 3

7 8 0

1

7 9  2 4

2

3

4

1.75

5

4.5

12. Since 360 is to the right of 180 on the number line, 360  180.

44.

14. Since 8 is to the left of 9 on the number line, 8  9 is false.

46.

16. Since 16 is to the right of 17 on the number line, 16 > 17 is true.

48. 

18. 1.02 can be written as 1.020. Then comparing digits with the same place value, we have 0.000 < 0.001. Thus the statement 1.02 > 1.021 is false.

50. 7941 is a natural number, a whole number, an integer, a rational number, and a real number.

20. Rewrite the fractions with a common denominator and compare numerators. 4 44 9 45  ;  5 55 11 55 4 9 Since 44 < 45, then  is true. 5 11

–5 –4 –3 –2 –1

1

0

1

2

3

4

5

is a rational number and a real number.

4

52.

1

is a rational number and a real number.

7

3 is an irrational number and a real number.

54. True; every natural number is positive. 56. False;

1

is not an integer.

2 58. True; every rational number is also a real number.

22. 13  13 has the same meaning as 13  13. 24. 5 > 3 has the same meaning as 3 < 5.

60. True; every whole number is an integer.

28. Twenty is greater than two is written as 20 > 2.

62. |12| = 12 |0| = 0 Since 12 is to the right of 0 on the number line, |12| > |0|.

30. Negative ten is less than or equal to thirty-seven is written as 10  37.

64.

26. 4 < 2 has the same meaning as 2 > 4.

32. Negative seven is not equal to seven is written as 7  7. 34. The integer 535 represents 535 feet above sea level. The integer 8 represents 8 feet below sea level. 36. The integer 136,971 represents 136,971 fewer students. 38. The integer 17 represents an ascent of 17 feet. The integer 15 represents a descent of 15 feet. 40. –5

–4

–3

–2

–1

0

1

2

3

4

5

2 2  5 5 2 2  5 5 2 2 2 Since  , then 2   . 5 5 5 5 

66. |5.01| = 5.01 |5| = 5 Since 5.01 is to the right of 5 on the number line, |5.01| > |5|. 68. |12| = 12 24  12 2 Since 12 is to the right of 12 on the number 24 . line, 12  2

Copyright © 2025 Pearson Education, Inc.

325


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

70. The corn production in Minnesota was 1450 million bushels, while the corn production in South Dakota was 650 million bushels. 1450 million > 650 million or 1,450,000,000 > 650,000,000 72. The corn production in Indiana was 950 million bushels, while the corn production in Minnesota was 1450 million bushels. 1450  950 = 500 The corn production in Indiana was 500 million bushels less, or 500,000,000. 74. Since 0.96 is to the left of 0.98 on the number line, 0.96 < 0.98. 76. Antares: 0.96 Spica: 0.98 Since 0.96 < 0.98, Spica is dimmer than Antares. 78. Since the dimmest star corresponds to the largest apparent magnitude, which is 1.35, the dimmest star is Regulus. 80. answers may vary

(2 + 7) + 3 = 2 + (7 + 3)

c.

(q + r) + 17 = q + (r + 17)

d.

(ab)  21 = a  (b  21)

1 2

1

13. 9  3 + 9  y = 9(3 + y) 14. 6a + 6b = 6(a + b) 15. 7(a + b) = 7  a + 7  b illustrates the distributive property.

21. (7  y)  10 = y  (7  10) illustrates the commutative and associative properties of multiplication. Vocabulary, Readiness & Video Check 9.2 1. x + 5 = 5 + x is a true statement by the commutative property of addition. 2. x  5 = 5  x is a true statement by the commutative property of multiplication. 3. 3(y + 6) = 3  y + 3  6 is true by the distributive property.

7. 5(x + y) = 5(x) + 5(y) = 5x + 5y 326

1 (2x)  (4)  9 2 2  1x  2  9  x  11

(2x  4)  9 

20. (x + 0) + 23 = x + 23 illustrates the identity element for addition.

4. Since the grouping of the numbers was changed and their order was not, the statement is true by the associative property of addition.

6. 4(5x) = (4  5)  x = 20x

12.

1 19. 3   1 illustrates the multiplicative inverse  3 property.

3. Since the order of two numbers was changed but their grouping was not, the statement is true by the commutative property of multiplication.

5. (3  x) 17  3  (x 17)  3  (17  x)  (3 17)  x  14  x

11. (8  a  b)  1(8  a  b)  (1)(8)  (1)(a)  (1)(b)  8  a  b

18. 6 + (z + 2) = 6 + (2 + z) illustrates the commutative property of addition.

5  (3  6) = (5  3)  6

b.

10. 1(3  a) = (1)(3)  (1)(a) = 3 + a

17. 4  (6  x) = (4  6)  x illustrates the associative property of multiplication.

7y=y7

b. 4 + x = x + 4 2. a.

9. 4(x  6 y  2z)  4(x)  4(6 y)  4(2z)  4x  24 y  8z

16. 12 + y = y + 12 illustrates the commutative property of addition.

Section 9.2 Practice Exercises 1. a.

8. 3(2 + 7x) = 3(2) + (3)(7x) = 6  21x

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 4. 2  (x  y) = (2  x)  y is a true statement by the associative property of multiplication. 5. x + (7 + y) = (x + 7) + y is a true statement by the associative property of addition. 6. The numbers 

2 3 and  are called reciprocals 3 2

or multiplicative inverses. 2 2 7. The numbers  and are called opposites or 3 3 additive inverses. 8. order; grouping 9. 2 is outside the parentheses, so the point is made that you should distribute the 9 only to the terms within the parentheses and not also to the 2.

Chapter 9: Equations, Inequalities, and Problem Solving 20. 2(42x) = (2  42)x = 84x 1 1  22. 8 (8z)   8  8 z  1z  z     24. 7  (x  4)  7  (4  x)  (7  4)  x  11 x 26. 3(12y) = (3  12)y = 36 27  2 7 r   r  1r  r  7  2    7 2   1 7  1  30.  (7x)        x  3 3 7 x   3

28.

32. 7(a + b) = 7(a) + 7(b) = 7a + 7b 34. 11(y  4) = 11(y)  11(4) = 11y  44 36. 5(7 + 8y) = 5(7) + 5(8y) = 35 + 40y

10. The identity element for addition is 0 because if we add 0 to any real number, the result is that real number. The identity element for multiplication is 1 because any real number times 1 gives a result of that original real number. Exercise Set 9.2 2. 8 + y = y + 8 by the commutative property of addition. 4. 2  x = x  (2) by the commutative property of multiplication. 6. ab = ba by the commutative property of multiplication. 8. 19 + 3y = 3y + 19 by the commutative property of addition. 10. 3  (x  y) = (3x)  y by the associative property of multiplication. 12. (y + 4) + z = y + (4 + z) by the associative property of addition. 14. (3y)  z = 3  (yz) by the associative property of multiplication.

38. 3(8x  1) = 3(8x)  3(1) = 24x  3 40. 2(x + 5) = 2(x) + 2(5) = 2x + 10 42. 3(z  y) = 3(z)  3(y) = 3z + 3y 1 1 1 11 44.  (2r 11)   (2r)  (11)  r  2 2 2 2 46. 8(3y  z  6)  8(3y)  8(z)  8(6)  24 y  8z  48 48. 4(4  2 p  5n) 16  4(4)  4(2 p)  4(5n) 16  16  8 p  20n 16  (16 16)  8 p  20n  0  8 p  20n  8 p  20n 50. (9r  5)  1(9r  5)  1(9r)  (1)(5)  9r  5 52. (q  2  6r)  1(q  2  6r)  1(q) 1(2) 1(6r)  q  2  6r

16. 6 + (r + s) = (6 + r) + s by the associative property of addition. 18. (r + 3) + 11 = r + (3 + 11) = r + 14

Copyright © 2025 Pearson Education, Inc.

327


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

54.

1 7 1 1 7 (4x  2)   (4x)  (2)  4 2 4 4 2 1 7 1    4x   4 2 2   8  1x  2  x4

1 1 1 56.  (10a  25b)   (10a)  (25b) 5 5 5  2a  5b

3 4   1 illustrates the multiplicative 4  3    inverse property.

86. 

88. a  b2  2  (5)2  2  25  23 90. x3  x2  4  (3)3  (3)2  4  27  9  4  36  4  32

58. 10(4s  6)  40  10(4s) 10(6)  40  40s  60  40  40s  20

92. gh  h2  0(4)  (4)2  0(4) 16  0 16  16

60. 11(5x  3) 10  11(5x) 11(3) 10  55x  33 10  55x  23

94. The opposite of 

62. 0.6(2x 1)  0.1  0.6(2x)  0.6(1)  0.1  1.2x  0.6  0.1  1.2x  0.7 64. 14  z + 14  5 = 14 (z + 5) 66. 9a + 9b = 9  a + 9  b = 9(a + b) 68. (3)a + (3)y = (3)  a + (3)  y = 3(a + y) 70. 25x + 25y = 25  x + 25  y = 25(x + y) 72. 4(3 + 8) = 4  3 + 4  8 illustrates the distributive property. 74. 9  (x  7) = (9  x)  7 illustrates the associative property of multiplication. 76. 1  9 = 9 illustrates the identity element of multiplication. 78. 4  (8  3) = (8  3)  (4) illustrates the commutative property of multiplication. 80. (a + 9) + 6 = a + (9 + 6) illustrates the associative property of addition. 82. (11 + r) + 8 = (r + 11) + 8 illustrates the commutative property of addition. 84. r + 0 = r illustrates the identity property of addition.

328

2

is

3 The reciprocal of 

2

.

3 2

3 is  . 3 2

96. The opposite of 4y is 4y. 1 The reciprocal of 4y is . 4y 98. The expression is the opposite of 7x or 7x. 1 The reciprocal of 7x is  . 7x 100. False; the reciprocal of  The opposite of 

a

2 is  . 2 a

a

a is . 2 2

102. “Putting on your shoes” and “putting on your socks” are not commutative, since the order in which they are performed affects the outcome. 104. “Reading the sports section” and “reading the comics section” are commutative, since the order in which they are performed does not affect the outcome. 106. “Baking a cake” and “eating the cake” are not commutative, since the order in which they are performed affects the outcome. 108. “Dialing a number” and “turning on the cell phone” are not commutative, since the order in which they are performed affects the outcome.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving 9(5  x)  3x 15    15  9  5   0  3   2   2  45  10 15  9  0   2  2 2  45  5 9   0  2 2   45 45   True 2 2 15 The solution is . 2

110. a. The property illustrated is the associative property of addition since the grouping of addition changed. b.

The property illustrated is the commutative property of addition since the order in which they are added changed.

c.

The property illustrated is the commutative property of addition since the order in which they are added changed.

Check:

112. answers may vary 114. answers may vary 3. Section 9.3 Practice Exercises 1.

2.

5(3x 1)  2  12x  6 15x  5  2  12x  6 15x  3  12x  6 15x  3 12x  12x  6 12x 3x  3  6 3x  3  3  6  3 3x  9 3x 9  3 3 x3 Check: 5(3x 1)  2  12x  6 5[3(3) 1]  2 012(3)  6 5(9 1)  2 0 36  6 5(8)  2 0 42 40  2 0 42 42  42 True The solution is 3. 9(5  x)  3x 45  9x  3x 45  9x  9x  3x  9x 45  6x 45 6x  6 6 15 x 2

3

x 1 

2

x2 4 3 3  2  12 x 1  12 x  2  4  3      9x 12  8x  24 9x 12  8x  8x  24  8x x 12  24 x 12 12  24 12 x  12 3 2 x 1  x  2 Check: 4 3 3 2 (12) 1 0 (12)  2 4 3 9 1 0  8  2 10  10 True The solution is 12. 3(x  2)

4. 5

 3x  6

5 3(x  2)

 5(3x  6) 5 3(x  2)  5(3x  6) 3x  6  15x  30 3x  6  3x  15x  30  3x 6  12x  30 6  30  12x  30  30 36  12x 36 12x  12 12 3  x

Copyright © 2025 Pearson Education, Inc.

329


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

Check:

2. 3x  7 = 3x  1 3 1  7 = Display: 4 3  1  1 = Display: 4 Since the left side equals the right side, x = 1 is a solution.

3(x  2)  3x  6 5 3(3  2) 0 3(3)  6 5 3(5) 0 96 5 15 0 3 5 3  3

3. 5x  2.6 = 2(x + 0.8) 5  4.4 2.6 = Display: 19.4 2 ( 4.4 + 0.8 ) = Display: 10.4 Since the left side does not equal the right side, x = 4.4 is not a solution.

The solution is 3. 5.

0.06x  0.10(x  2)  0.02(8) 100[0.06x  0.10(x  2)]  100[0.02(8)] 6x 10(x  2)  2(8) 6x 10x  20  16 4x  20  16 4x  20  20  16  20 4x  36 4x 36  4 4 x9 To check, replace x with 9 in the original equation. The solution is 9.

6. 5(2  x)  8x  3(x  6) 10  5x  8x  3x 18 10  3x  3x 18 10  3x  3x  3x 18  3x 10  18 Since the statement 10 = 18 is false, the equation has no solution. 7. 6(2x 1) 14  10(x  2)  2x 12x  6 14  10x  20  2x 12x  20  12x  20 12x 12x  20  12x 12x  20 20  20 Since 20 = 20 is a true statement, all real numbers are solutions.

4. 1.6x  3.9 = 6.9x  25.6 1.6 5 3.9 = Display: 11.9 6.9 5 25.6 = Display: 60.1 Since the left side does not equal the right side, x = 5 is not a solution. 564x

5.

6. 20(x  39) = 5x  432 20 ( 23.2  39 ) = Display: 316 5  23.2  432 = Display: 316 Since the left side equals the right side, x = 23.2 is a solution. Vocabulary, Readiness & Video Check 9.3 1. x = 7 is an equation. 2. x  7 is an expression. 3. 4y  6 + 9y + 1 is an expression. 4. 4y  6 = 9y + 1 is an equation. 5.

Calculator Explorations

 200x  11(649) 4 Display: 17061 ( 564 121 )  4 = 200 121  11 649 = Display: 17061 Since the left side equals the right side, x = 121 is a solution.

1

x 1. 2x = 48 + 6x 2  12 = Display: 24 48 + 6  12 = Display: 24 Since the left side equals the right side, x = 12 is a solution.

6.

1 x

x 1

is an expression.

8 

x 1

 6 is an equation.

8

7. 0.1x + 9 = 0.2x is an equation. 8. 0.1x2  9 y  0.2x2 is an expression. 9. 3; distributive property, addition property of equality, multiplication property of equality

330

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

10. Because both sides have more than one term, we need to apply the distributive property to make sure we multiply every single term in the equation by the LCD. 11. The number of decimal places in each number helps us determine the smallest power of 10 we can multiply through by so we are no longer dealing with decimals. 12. a. b.

If we have a true statement, then the equation has all real numbers as solutions. If we have a false statement, then the equation has no solution.

Exercise Set 9.3 2.

3x 1  2(4x  2) 3x 1  8x  4 3x 1 8x  8x  4  8x 5x 1  4 5x 11  4 1 5x  5 5x 5  5 5 x  1

4.

6.

15x  5  7 12x 15x  5 12x  7 12x 12x 3x  5  7 3x  5  5  7  5 3x  12 3x 12  3 3 x4 (5x 10)  5x 5x 10  5x 5x  5x 10  5x  5x 10  10x 10 10x  10 10 1 x

Chapter 9: Equations, Inequalities, and Problem Solving 8. 3(2  5x)  4(6x)  12 6 15x  24x  12 6  9x  12 6  9x  6  12  6 9x  6 9x 6  9 9 2 x 3 10. 4(n  4)  23  7 4n 16  23  7 4n  7  7 4n  7  7  7  7 4n  0 4n 0  4 4 n0 12.

5  6(2  b)  b 14 5 12  6b  b 14 7  6b  b 14 7  6b  6b  b 14  6b 7  7b 14 7 14  7b 14 14 7  7b 7 7b  7 7 1 b

14.

6 y  8  6  3y 13 6 y  8  7  3y 6 y  8  3y  7  3y  3y 3y  8  7 3y  8  8  7  8 3y  15 3y 15  3 3 y 5

16.

7n  5  8n 10 7n  5  7n  8n 10  7n 5  15n 10 5 10  15n 10 10 15  15n 15 15n  15 15 1 n

Copyright © 2025 Pearson Education, Inc.

331


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

4

18.

x

8



16

5 5 5 8 4  16  5  x    5   5 5  5  4x  8  16 4x  8  8  16  8 4x  8 4x 8  4 4 x  2 20.

2

x

22. 0.40x  0.06(30)  9.8 40x  6(30)  980 40x 180  980 40x 180 180  980 180 40x  800 40x 800  40 40 x  20 3( y  3)  3( y 53) 

 2y  6

 5(2 y  6)  5  3( y  3)  5(2 y  6) 3y  9  10 y  30 3y  9  30  10 y  30  30 3y  21  10 y 3y  21 3y  10 y  3y 21  7 y 21 7 y  7 7 3  y 5

1 x 1  x   52   4 1 4 x 1    2  4  x 4      10x  4  4x 1 10x  4  4x  4x 1 4x 6x  4  1 6x  4  4  1 4 6x  5 6x 5  6 6 5 x 6 

28. 0.60(z  300)  0.05z  0.70z  205 60(z  300)  5z  70z  20, 500 60z 18, 000  5z  70z  20, 500 65z 18, 000  70z  20, 500 65z 18, 000  65z  70z  20, 500  65z 18, 000  5z  20, 500 18, 000  20, 500  5z  20, 500  20, 500 2500  5z 2500 5z  5 5 500  z 30. 14x  7  7(2x 1) 14x  7  14x  7 Since both sides of the equation are identical, the equation is an identity and every real number is a solution. x

32.



332

5

1

1 9 3 1 2 9  x   9(1) 9  3 2x  3  9 2x  3  3  9  3 2x  12 2x 12  2 2 x6

24.

26.

x 2  x 3 x 3x x 2   3 3 3 3 2  0 Since the statement 2 = 0 is false, the equation has no solution.

34.

2(x  5)  2x 10 2x 10  2x 10 2x 10  2x  2x 10  2x 10  10 Since the statement 10 = 10 is false, the equation has no solution.

36.

5(4 y  3)  2  20 y 17 20 y 15  2  20 y  17 20 y 17  20 y  17 Since both sides of the equation are identical, the equation is an identity and every real number is a solution.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

38.

4(5  w)  w 3 4(5  w) 3  3(w) 3 4(5  w)  3w 20  4w  3w 20  4w  4w  3w  4w 20  w

40. (4a  7)  5a  10  a 4a  7  5a  10  a 9a  7  10  a 9a  7  9a  10  a  9a 7  10 10a 7 10  10 10a 10 3  10a 3 10a  10 10 3  a 10 42.

9x  3(x  4)  10(x  5)  7 9x  3x 12  10x  50  7 12x 12  10x  43 12x 12 10x  10x  43 10x 2x 12  43 2x 12 12  43 12 2x  31 2x 31  2 231 x 2 5(x 1)

44.

46.

0.9x  4.1  0.4 9x  41  4 9x  41 41  4  41 9x  45 9x 45  9 9 x5

48. 3(2x 1)  5  6x  2 6x  3  5  6x  2 6x  2  6x  2 Since both sides of the equation are identical, the equation is an identity and every real number is a solution. 50.

4(4 y  2)  2(1 6 y)  8 16 y  8  2 12 y  8 16 y  8  10 12 y 16 y  8 16 y  10 12 y 16 y 8  10  4 y 8 10  10  4 y 10 2  4 y 2 4 y  4 4 1 y 2 7

52.

3(x 1) 

2  3(x 1)  4  4   2  5(x 1)  6(x 1) 5x  5  6x  6 5x  5  5x  6x  6  5x 5  x  6 5  6  x  6  6 11  x

4

4  5(x 1) 

Chapter 9: Equations, Inequalities, and Problem Solving

54.

x

1

3

x 8 4 4 1 7  3  8  8 x  4   8  4 x      7x  2  6x 7x  2  7x  6x  7x 2  x 2 x  1 1 2  x x x 7  5 5 3 x  x  15  7   15  5 5  3  3x 105  5x  75 3x 105  3x  5x  75  3x 105  75  2x 75 105  75  75  2x 30  2x 30 2x  2 2 15  x

Copyright © 2025 Pearson Education, Inc.

333


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving 56. 4(2  x) 1  7x  3(x  2) 8  4x 1  7x  3x  6 9  4x  4x  6 9  4x  4x  4x  6  4x 96 Since the statement 9 = 6 is false, the equation has no solution. 58. 0.01(5x  4)  0.04  0.01(x  4) 1(5x  4)  4 1(x  4) 5x  4  4  x  4 5x  4  x 5x  4  5x  x  5x 4  4x 4 4x  4 4 1  x 60.

3

c. 72.

76.

78. answers may vary 80. a.

b.

64. Three times a number is 3x. 66. The difference of 8 and twice a number is 8  2x. 68. The quotient of 12 and the difference of a 12 number and 3 is . x3 x3  x5 x  3 x  x  5 x 35 Since the statement 3 = 5 is false, the equation has no solution.

b. answers may vary

334

x 15  x 15 x 15 15  x 15 15 x  x x  x  x  x 2x  0 2x 0  2 2 x0 The choice is c.

62. The total length is the sum of the two lengths. x  (7x  9)  x  7x  9  8x  9 The total length is (8x  9) feet.

70. a.

3x 1  3x  2 3x 1 3x  3x  2  3x 1 2 Since the statement 1 = 2 is false, the equation has no solution. The choice is b.

74. x 11x  3  10x 1 2 10x  3  10x  3 Since both sides of the equation are identical, the equation is an identity and every real number is a solution. The choice is a.

1

x  5x  8 2 1   2  3  x   2(5x  8) 2   6  x  10x 16 6  x  x  10x 16  x 6  11x 16 6 16  11x 16 16 22  11x 22 11x  11 11 2 x

answers may vary

The perimeter is the sum of the lengths of the sides. x + (2x + 1) + (3x 2) = 35 x  2x 1 3x  2  35 6x 1  35 6x 11  35 1 6x  36 6x 36  6 6 x6 The lengths of the sides are: x = 6 meters 2x + 1 = 2(6) + 1 = 12 + 1 = 13 meters 3x  2 = 3(6)  2 = 18  2 = 16 meters

82. answers may vary 84.

1000(x  40)  100(16  7x) 1000x  40, 000  1600  700x 1000x  40, 000  700x  1600  700x  700x 40, 000  300x  1600 40, 000  300x  40, 000  1600  40, 000 300x  38, 400 300x 38, 400  300 300 x  128

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

86.

1. 0 is a whole number, an integer, a rational number, and a real number. 2. 143 is a natural number, a whole number, an integer, a rational number, and a real number. 3.

is a rational number and a real number.

4. 1 is a natural number, a whole number, an integer, a rational number, and a real number. 5. 13 is an integer, a rational number, and a real number. 6.

9

is a rational number and a real number.

10

3 8

0.127x  2.685  0.027x  2.38 127x  2685  27x  2380 127x  2685  27x  27x  2380  27x 100x  2685  2380 100x  2685  2685  2380  2685 100x  305 100x 305  100 100 x  3.05

13.

2x  7  6x  27 2x  7  7  6x  27  7 2x  6x  20 2x  6x  6x  20  6x 4x  20 4x 20  4 4 x5

14.

3  8 y  3y  2 3  8 y  3y  3y  2  3y 3  5 y  2 3  3  5 y  3  2 5 y  5 5 y 5  5 5 y  1

Mid-Chapter Review

Chapter 9: Equations, Inequalities, and Problem Solving

1

7.  is a rational number and a real number. 9 8.

5 is an irrational number and a real number.

    

     

15. 3a  6  5a  7a  8a 6  2a  a 6  2a  2a  a  2a 6  3a 6 3a  3 3 2  a 4b  8  b  10b  3b 3b  8  7b 3b  3b  8  3b  7b 8  4b 8 4b  4 4 2  b

16.

      

9. 7(d  3) 10  7  d  7  3 10  7d  2110  7d 11

17.

10. 9(z  7) 15  9  z  9  7 15  9z  63 15  9z  48 11. 4(3y  4) 12 y  4  3y  4(4) 12 y  12 y 16 12 y  12 y 12 y 16  16 12. 3(2x  5)  6x  3 2x  3 5  6x  6x 15  6x  6x  6x 15  12x 15

      

18.

2 5  x 3 9 3  2  3 5    x     2 3 2 9   15 x 18 5 x 6 3 1  y 8 16 8  3  8  1      y        3 8 3 16     1 y 6 

Copyright © 2025 Pearson Education, Inc.

335


 

ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

19.

20.

10  6n 16 10 16  6n 16 16 6  6n 6 6n  6 6 1 n

22. 4(3t  4)  20  3  5t 12t 16  20  3  5t 12t  4  3  5t 12t  4  5t  3  5t  5t 7t  4  3 7t  4  4  3  4 7t  7 7t 7  7 7 t 1 23.

336

4

2(z  3)

 5 z 3  2(z  3)  3  3(5  z) 3  2(z  3)  3(5  z) 2z  6  15  3z 2z  6  3z  15  3z  3z 6  5z  15 6  5z  6  15  6 5z  9 5z 9  5 5 9 z 5

 2w  3

 3(w 4 2)  

 4(2w  3) 

4 3(w  2)  4(2w  3) 3w  6  8w 12 3w  6  6  8w 12  6 3w  8w  6 3w  8w  8w  6  8w 5w  6 5w 6  5 5 6 w  5

5  2m  7 5  7  2m  7  7 12  2m 12  2m 2 2 6m

21. 3(5c 1)  2  13c  3 15c  3  2  13c  3 15c  5  13c  3 15c  5  5  13c  3  5 15c  13c  8 15c 13c  13c  8 13c 2c  8 2c 8  2 2 c4

3(w  2)

24.

25. 2(2x  5)  3x  7  x  3 4x 10  4x 10 Since both sides of the equation are identical, the equation is an identity and every real number is a solution. 26. 4(5x  2)  12x  4  8x  4 20x  8  20x  8 Since both sides of the equation are identical, the equation is an identity and every real number is a solution. 27. 0.02(6t  3)  0.04(t  2)  0.02 2(6t  3)  4(t  2)  2 12t  6  4t  8  2 12t  6  4t  6 12t  6  4t  4t  6  4t 8t  6  6 8t  6  6  6  6 8t  0 8t 0  8 8 t0 28.

0.03(m  7)  0.02(5  m)  0.11 3(m  7)  2(5  m) 11 3m  21  10  2m 11 3m  21  21 2m 3m  21 2m  21 2m  2m 5m  21  21 5m  21 21  21 21 5m  0 5m 0 5 5 m0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

29.

30.

4( y 1) 5  4( y 1)  5(3y)  5  5  15 y  4( y 1) 15 y  4 y  4 15 y  4 y  4 y  4  4 y 19 y  4 19 y 4  19 19 4 y  19

31.

32.

Section 9.4 Practice Exercises

3y 

1.

2.

5(1 x) 6 5(1 x) 6(4x)  6  6 24x  5(1 x) 24x  5  5x 24x  5x  5  5x  5x 19x  5 4x 

19x 5  19 19 5 x 19 1

3

(3x  7)  x  5 10 1   10 3  1010 (3x  7)  10  x  5  10    3x  7  3x  50 3x  3x  7  3x  3x  50 7  50 Since the statement 7 = 50 is false, the equation has no solution. 1

(2x  5) 

2

Chapter 9: Equations, Inequalities, and Problem Solving

x 1 7 7  1  2  7  (2x  5)   7 x 1 7 7     2x  5  2x  7 2x  2x  5  2x  2x  7 5  7 Since the statement 5 = 7 is false, the equation has no solution.

Let x represent the number. 3x  6  2x  3 3x  6  2x  2x  3  2x x6 3 x 66  36 x9 The number is 9. Let x represent the number. 3(x  5)  2x  3 3x 15  2x  3 3x 15  2x  2x  3  2x x 15  3 x 15 15  3 15 x  12 The number is 12. 3. Let x represent the length of the shorter piece. Then 5x represents the length of the longer piece. Their sum is 18 feet. x  5x  18 6x  18 6x 18  6 6 x3 The shorter piece is 3 feet and the longer piece is 5(3) = 15 feet. 4. Then Let x represent the number of votesof forvotes Texas. x + 14 represents the number for California. Their sum is 94. x  x 14  94 2x 14  94 2x 14 14  94 14 2x  80 2x 80  2 2 x  40 Texas will have 40 electoral votes and California will have 40 + 14 = 54 electoral votes. 5. Let x represent the number of miles driven. The cost for x miles is 0.15x. The daily cost is $28. 0.15x  28  52 0.15x  28  28  52  28 0.15x  24 0.15x 24  0.15 0.15 x  160 You drove 160 miles.

Copyright © 2025 Pearson Education, Inc.

337


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

6. Let x represent the measure of the smallest angle. Then 2x represents the measure of the second angle and 3x represents the measure of the third angle. The sum of the measures of the angles of a triangle equals 180. x  2x  3x  180 6x  180 6x 180  6 6 x  30 If x = 30, then 2x = 2(30) = 60 and 3x = 3(30) = 90. The smallest is 30, second is 60, and third is 90. 7. If x is the first even integer, then x + 2 and x + 4 are the next two even integers. x  x  2  x  4  144 3x  6  144 3x  6  6  144  6 3x  138 3x 138  3 3 x  46 If x = 46, then x + 2 = 48 and x + 4 = 50. The integers are 46, 48, 50. Vocabulary, Readiness & Video Check 9.4 1. If x is the number, then “double the number” is 2x, and “double the number, decreased by 31” is 2x  31. 2. If x is the number, then “three times the number” is 3x, and “three times the number, increased by 17” is 3x + 17. 3. If x is the number, then “the sum of the number and 5” is x + 5, and “twice the sum of the number and 5” is 2(x + 5).

6. If y is the number, then “the sum of 10 and the number” is 10 + y, and “the sum of 10 and the (10  y) number, divided by 9” is or 9 (10 + y)  9. 7. in the statement of the application 8. The original application asks for the measures of two supplementary angles. The solution of x = 43 gives us the measure of only one of the angles. 9. that the three angle measures are consecutive even integers and that they sum to 180 Exercise Set 9.4 2.

3x 1  2x 3x 1 3x  2x  3x 1  x 1 x  1 1 1 x The number is 1.

4.

4x  2  5x  2 4x  2  4x  5x  2  4x 2  x  2 2  2  x  2  2 0x The number is 0.

6. 5[x  (1)]  6x 5(x 1)  6x 5x  5  6x 5x  5  5x  6x  5x 5  x The number is 5.

4. If x is the number, then “the difference of the number and 11” is x  11, and “seven times the difference of the number and 11” is 7(x  11). 5. If y is the number, then “the difference of 20 and the number” is 20  y, and “the difference of 20 20  y and the number, divided by 3” is or 3 (20  y)  3.

338

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

8.

2(x  4)  x  2x  8  x  2x  8  x  x  x 8   x 88  

1 4 1

1

14. Let x represent the number of medals won by the Swedish team. Then x + 19 represents the number of medals won by the Norwegian team. x  x 19  55 2x 19  55 2x 19 19  55 19 2x  36 2x 36  2 2 x  18 x + 19 = 18 + 19 = 37 The Swedish team won 18 medals and the Norwegian team won 37 medals.

4 1 4 1

Chapter 9: Equations, Inequalities, and Problem Solving

x

4

8

4 1

32 x  4 4 31 x 4 31 The number is . 4 10. The sum of the three lengths is 46 feet. x  3x  2  7x  46 11x  2  46 11x  2  2  46  2 11x  44 11x 44  11 11 x4 3x = 3(4) = 12 2 + 7x = 2 + 7(4) = 2 + 28 = 30 The lengths are 4 feet, 12 feet, and 30 feet. 12. Let x be the length of the shorter piece. Then 3x + 1 is the length of the longer piece. The sum of the lengths is 21 feet. x  3x 1  21 4x 1  21 4x 11  211 4x  20 4x 20  4 4 x5 3x + 1 = 3(5) + 1 = 15 + 1 = 16 The shorter piece is 5 feet and the longer piece is 16 feet.

16. Let x be the number of miles. Then the cost for x miles is 0.29x. Each day costs $24.95. 0.29x  2(24.95)  100 0.29x  49.9  100 0.29x  49.9  49.9  100  49.9 0.29x  50.1 0.29x 50.1  0.29 0.29 x  172.8 You can drive 172 whole miles on a $100 budget. 18. Let x be the number of hours. Then the total cost is 25.50x + 30. 25.5x  30  119.25 25.5x  30  30  119.25  30 25.5x  89.25 25.5x 89.25  25.5 25.5 x  3.5 You were charged for 3.5 hours. 20. Let x be the measure of the smaller angle. Then 2x  15 is the measure of the larger angle. The sum of the four angles is 360. 2x  2(2x 15)  360 2x  4x  30  360 6x  30  360 6x  30  30  360  30 6x  390 6x 390  6 6 x  65 2x  15 = 2(65)  15 = 130  15 = 115 Two angles measure 65 and two angles measure 115.

Copyright © 2025 Pearson Education, Inc.

339


Chapter 9: Equations, Inequalities, and Problem Solving

ISM: Prealgebra and Introductory Algebra

22. Let angles B and C have measure x. Then angle A has measure x  42. The sum of the measures is 180. x  x  x  42  180 3x  42  180 3x  42  42  180  42 3x  222 3x 222  3 3 x  74 x  42 = 74  42 = 32 Angles B and C measure 74 and angle A measures 32. First Integer

Next Integers

Indicated Sum

24.

x

x+1

x+2

(x + 1) + (x + 2) = 2x + 3

26.

x

x+2

x+4

x + (x + 2) + (x + 4) = 3x + 6

28.

x

x+1

x+2

30.

x

x+2

x+4

x+3

x + (x + 3) = 2x + 3 x + (x + 2) + (x + 4) = 3x + 6

32. If x is the first even integer, the next consecutive even integer is x + 2. x  x  2  654 2x  2  654 2x  2  2  654  2 2x  652 2x 652  2 2 x  326 The room numbers are 326 and 326 + 2 = 328. 34. Let x represent the first odd integer. Then x + 2 and x + 4 represent the next two consecutive odd integers. x  x  2  x  4  675 3x  6  675 3x  6  6  675  6 3x  669 3x 669  3 3 x  223 x + 2 = 223 + 2 = 225 x + 4 = 223 + 4 = 227 Mali Republic’s code is 223, Côte d’Ivoire’s code is 225, and Niger’s code is 227. 36. Let x be the measure of the shorter piece. Then 5x + 1 is the measure of the longer piece. The measures sum to 25 feet. x  5x 1  25 6x 1  25 6x 11  25 1 6x  24 6x 24  6 6 x4 5x + 1 = 5(4) + 1 = 20 + 1 = 21 The pieces measure 4 feet and 21 feet. 340

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

38. Let x = the number. 7 1 x  8 2 8 7 8 1  x  7 8 7 2 4 x 7 4 The number is . 7 40. Let x represent the length, in miles, of I-90. Then I-80 is (x  120) miles long. The sum of the lengths is 5920 miles. x  x 120  5920 2x 120  5920 2x 120 120  5920 120 2x  6040 2x 6040  2 2 x  3020 x  120 = 3020  120 = 2900 I-90 is 3020 miles long and I-80 is 2900 miles long. 42. Let x represent the floor space of the Empire State Building in thousands of square feet. Then the floor space of the Pentagon is 3x. x  3x  8700 4x  8700 4x 8700 4  4 

x  2175 3x = 3(2175) = 6525 The Empire State Building has 2175 thousand square feet of floor space and the Pentagon has 6525 thousand square feet of floor space. 44. Let x = length of first piece, then 5x = length of second piece, and 6x = length of third piece. x  5x  6x  48 12x  48 12x 48  12 12 x4 5x = 5(4) = 20 6x = 6(4) =24 The first piece is 4 feet, the second piece is 20 feet, and the third piece is 24 feet.

46. The sum of the measures is 90. x  (2x  3)  90 x  2x  3  90 3x  3  90 3x  3  3  90  3 3x  93 3x 93  3 3 x  31 2x  3 = 2(31)  3 = 62  3 = 59 The angles measure 31 and 59. 48. Let x be the first odd integer. Then the next three consecutive odd integers are x + 2, x + 4, and x + 6. The sum of the measures is 360. x  x  2  x  4  x  6  360 4x 12  360 4x 12 12  360 12 4x  348 4x 348  4 4 x  87 x + 2 = 87 + 2 = 89 x + 4 = 87 + 4 = 91 x + 6 = 87 + 6 = 93 The angles measure 87, 89, 91, and 93. 2

50.

5  4x  5x  5 2   6   3 4x  6  5x6      3 6     4  24x  30x  5 4  24x  24x  30x  5  24x 4  6x  5 4  5  6x  5  5 9  6x 9 6x  6 6 3 x 2 3 The number is . 2 

Copyright © 2025 Pearson Education, Inc.

341


Chapter 9: Equations, Inequalities, and Problem Solving

52. Let x represent the number of Democrat governors. Then the number of Republican governors is x + 6. The total number of governors is 50. x  x  6  50 2x  6  50 2x  6  6  50  6 2x  44 2x 44  2 2 x  22 x + 6 = 22 + 6 = 28 There were 22 Democrat governors and 28 Republican governors. 54. Let x be the first even integer. The next two consecutive even integers are x + 2 and x + 4. The three integers total 48. x  x  2  x  4  48 3x  6  48 3x  6  6  48  6 3x  42 3x 42  3 3 x  14 x + 2 = 14 + 2 = 16 x + 4 = 14 + 4 = 18 The boards have lengths 14 inches, 16 inches, and 18 inches. 56. Let x represent the width in inches. Then 2x + 0.23 represents the height. The sum is 9.38. x  2x  0.23  9.38 3x  0.23  9.38 3x  0.23  0.23  9.38  0.23 3x  9.15 3x 9.15  3 3 x  3.05 2x + 0.23 = 2(3.05) + 0.23 = 6.1 + 0.23 = 6.33 The width is 3.05 inches and the height is 6.33 inches. 58.

342

2(x  6)  3(x  4) 2x 12  3x 12 2x 12  2x  3x 12  2x 12  x 12 12 12  x 12 12 0 x The number is 0.

ISM: Prealgebra and Introductory Algebra

60. Let x represent the weight of the Cape York (Agpalilik) meteorite. Then 3x represents the weight of the Hoba meteorite. x  3x  88 4x  88 4x 88  4 4 x  22 3x = 3(22) = 66 The Cape York (Agpalilik) meteorite weighs 22 tons and the Hoba West meteorite weighs 66 tons. 62. If x is the first even integer, the next two even integers are x + 2 and x + 4. x  x  2  x  4  48 3x  6  48 3x  6  6  48  6 3x  42 3x 42  3 3 x  14 The code is 14, 14 + 2 = 16, 14 + 4 = 18. 64. Let x represent the number of light vehicles sold in the second quarter of 2022, in thousands. Then x  100 represents the number sold in the third quarter of 2022. The total is 26,700. x  x 100  26, 700 2x 100  26, 700 2x 100 100  26, 700 100 2x  26,800 2x 26,800  2 2 x  13, 400 x  100 = 13,400  100 = 13,300 In the United States, 13,400 light vehicles were sold in the second quarter of 2022 and 13,300 were sold in the third quarter. 66. Let x be the measure of the smallest angle. Then the two larger angles both measure 4x. x  4x  4x  180 9x  180 9x 180  9 9 x  20 4x = 4(20) = 80 The angles measure 20, 80, and 80.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

68. Let x represent the number of yearly Internet complaints for 2019, in thousands. Then x + 325 represents the number for 2020. The total is 1259. x  x  325  1259 2x  325  1259 2x  325  325  1259  325 2x  934 2x 934  2 2 x  467 x + 325 = 467 + 325 = 792 The number of yearly Internet complaints was 467 thousand for 2019 and 792 thousand for 2020.

2x = 2(22.5) = 45 5x = 5(22.5) = 112.5 Yes, the triangle exists and has angles that measure 22.5, 45, and 112.5. 84. One blink every 5 seconds is

1 blink

. 5 sec There are 60  60 = 3600 seconds in one hour. 1 blink  3600 sec  720 blinks 5 sec The average eye blinks 720 times each hour. 16  720 = 11,520 The average eye blinks 11,520 times while awake for a 16-hour day. 11,520  365 = 4,204,800 The average eye blinks 4,204,800 times in one year.

70. The bars ending between 30 and 45 represent the games Super Smash Bros. Ultimate and Animal Crossing: New Horizons.

86. answers may vary 72. Let x represent the sales of Pokémon Sword/ Pokémon Shield, in millions. Then x + 4.7 represents the sales of Super Smash Bros. Ultimate. The total is 56.1. x  (x  4.7)  56.1 2x  4.7  56.1 2x  4.7  4.7  56.1 4.7 2x  51.4 2x 51.4  2 2 x  25.7 x + 4.7 = 25.7 + 4.7 = 30.4 Pokémon Sword/Pokémon Shield sold 25.7 million copies and Super Smash Bros. Ultimate sold 30.4 million copies. 74. answers may vary

88. answers may vary 90. Measurements may vary. Rectangle (b) best approximates the shape of the golden rectangle. Section 9.5 Practice Exercises 1. Use d = rt when d = 580 and r = 5. d  rt 580  5t 580 5t  5 5 116  t It takes 116 seconds or 1 minute 56 seconds. 2.

76. answers may vary 78. Replace B by 14 and h by 22. 1 1 Bh  (14)(22)  7(22)  154 2 2 80. Replace r by 15 and t by 2. r  t = 15  2 = 30 82. Let x be the measure of the first angle. Then 2x is the measure of the second angle and 5x is the measure of the third angle. The measures sum to 180. x  2x  5x  180 8x  180 8x 180  8 8 x  22.5

Use A = lw when w = 18. A  lw 450  l 18 450 18l  18 18 25  l The length of the deck is 25 feet. 9 3. Use F  C  32 with C = 5. 5 9 F  C  32 5 9 F   5  32 5 F  9  32 F  41 Thus, 5C is equivalent to 41F.

Copyright © 2025 Pearson Education, Inc.

343


Chapter 9: Equations, Inequalities, and Problem Solving 4. Let x be the width. Then 2x  12 is the length. The perimeter is 120 inches. P  2l  2w 120  2(2x 12)  2x 120  4x  24  2x 120  6x  24 120  24  6x  24  24 144  6x 24  x 2x  12 = 2(24)  12 = 48  12 = 36 2. The width is 24 inches and the length is 36 inches. 5.

C  2r C 2r  2 2 C C  r or r  2 2

6.

7.

3. That the process of solving this equation for xdividing both sides by 5, the coefficient of xis the same process used to solve a formula for a specific variable. Treat whatever is multiplied by that specific variable as the coefficientthe coefficient is all the factors except that specific variable. Exercise Set 9.5 Use d = rt when d = 195 and t = 3. d  rt 195  r  3 195 3r  3 3 65  r 4. Use V = lwh when l = 14, w = 8, and h = 3. V = lwh V = 14  8  3 V = 336

P  2l  2w P  2w  2l  2w  2w P  2w  2l P  2w 2l  2 2 P  2w P  2w  l or l  2 2

6. Use A 

h(B  b) when A = 60, B = 7, and

b = 3. A 60 

P  2a  b  c P  c  2a  b  c  c P  c  2a  b P  c  b  2a  b  b P  c  b  2a P  c b P b c  a or a  2 2

1 2 1

h(B  b) h(7  3)

2 1

60  h(10) 2 60  5h 60 5h  5 5 12  h 8. Use V 

A

2 a b 2A  2 2 2A  a  b 2A  a  a  b  a 2 A  a  b or b  2 A  a

Vocabulary, Readiness & Video Check 9.5 1. A formula is an equation that describes known relationships among quantities.

1

Ah when V = 45 and h = 5.

3 1 V  Ah 3 1 45  A  5 3 5 45  A 3 3 3 5  45   A 5 53 27  A

2. This is a distance, rate, and time problem. The speed (rate) is given in miles per hour and the time is given in hours, so the distance that we are finding must be in miles. 344

1 2

a b 8.

ISM: Prealgebra and Introductory Algebra

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

10. Use A  r 2 when r = 4 and 3.14 is used as an approximation for . A  r2 A  3.14  42 A  3.14 16 A  50.24 12.

C  2r C 2r  2 2 C r 2

14.

T  mnr T mnr  mr mr T n mr

16.

18.

20.

22.

S  4lw  2wh S  4lw  4lw  2wh  4lw S  4lw  2wh S  4lw 2wh 2w  2w S  4lw h 2w

28. a.

Area = bh = 9.3(7) = 65.1 Perimeter  2(11.7)  2(9.3)  23.4 18.6  42 The area is 65.1 square feet and the perimeter is 42 feet.

b. The border goes around the edges, so it involves perimeter. The paint covers the wall, so it involves area.

A  P  PRT A  P  P  PRT  P A  P  PRT A  P PRT  PR PR A P T PR 1

24.

26. Use A = lw when A = 52,400 and l = 400. A  lw 52, 400  400  w 52, 400 400w  400 400 131  w The width of the sign is 131 feet.

x  y  13 x  x  y  x 13 y  x  13

D

Chapter 9: Equations, Inequalities, and Problem Solving

30. a.

Area 

1

bh 

1

(36)(27)  486 2 2 Perimeter = 27 + 36 + 45 = 108 The area is 486 square feet and the perimeter is 108 feet.

b. The fence goes around the edges of the yard, so it involves perimeter. The grass covers the yard, so it involves area.

fk

4 1 4D  4  fk 4 4D  fk 4D fk  f f 4D k f PR  x  y  z  w PR  x  y  w  x  y  z  x  y  w PR  x  y  w  z

9 32. Use F  C  32 when C = 5. 5 9 F  C  32 5 9 F  (5)  32 5 9 F  (5)  32 5 F  9  32 F  23 Thus, 5C is equivalent to 23F.

Copyright © 2025 Pearson Education, Inc.

345


Chapter 9: Equations, Inequalities, and Problem Solving

1 34. Use d = rt when d = 303 and t  8 . 2 d  rt 1 303  r 8 2 17 303  r 2 2  303  2  17 r 17 17 2 606 r 17 11 35  r 17 The average rate during the flight was 11 35 mph. 17

40. Use d = rt when d = 700 and r = 56. d  rt 700  56t 700 56t  56 56 1 12  t 2 1 The trip will take 12 or (12.5) hours. 2

36. Let x be the width. Then 2x  10 is the length. Use P = 2  length + 2  width when P = 400. P  2  length  2  width 400  2(2x 10)  2x 400  4x  20  2x 400  6x  20 400  20  6x  20  20 420  6x 420 6x  6 6 70  x The width is 70 meters and the length is 2(70)  10 = 140  10 = 130 meters. 38. Let x represent the length of each of the equal sides. Then the shortest side is x  2. The perimeter is the sum of the lengths of the sides. x  x  x  2  22 3x  2  22 3x  2  2  22  2 3x  24 3x 24  3 3 x8 The sides of the triangle are 8 feet, 8 feet, and 8  2 = 6 feet.

346

ISM: Prealgebra and Introductory Algebra

42. Use N = 94. N  40 T  50  4 94  40 T  50  4 54 T  50  4 T  50 13.5 T  63.5 The temperature is 63.5 Fahrenheit. 44. Use T = 65. T  50 

N  40

4 N  40 65  50  4 N  40 65  50  50   50 4 N  40 15  4 N  40 4 15  4  4 60  N  40 60  40  N  40  40 100  N There are 100 chirps per minute. 46. As the air temperature of their environment decreases, the number of cricket chirps per minute decreases. 48. To find the amount of water in the tank, use 8 V  r 2 h with r   4, h = 3, and   3.14. 2 V  r2h  3.14(4)2  3  3.14(16)  3  150.72 The tank holds 150.72 cubic meters of water. Let x represent the number of goldfish the tank could hold. Then 2x = 150.72.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 2x  150.72 2x 150.72  2 2 x  75.36 The tank could hold 75 goldfish. 1 50. Use A  bh when A = 20 and b = 5. 12 A  bh 2 1 20   5  h 2 2 2 5  20    h 5 5 2 8h The height of the sail is 8 feet. 52. Use C = 2r when r = 4000 and   3.14. C = 2r C = 2  3.14  4000 C = 25,120 Thus, 25,120 miles of rope is needed to wrap around the Earth. 54. The perimeter is the sum of the lengths of the sides. x  (2x  8)  (3x 12)  82 x  2x  8  3x 12  82 6x  20  82 6x  20  20  82  20 6x  102 6x 102  6 6 x  17 x feet = 17 feet (2x  8) feet  (2 17  8) feet  (34  8) feet  26 feet (3x 12) feet  (317 12) feet  (5112) feet  39 feet

Chapter 9: Equations, Inequalities, and Problem Solving

58. Let x be the length of the sides of the square pen. Then 2x  15 is the length of the sides of the triangular pen. The perimeters are equal. 4x  3(2x 15) 4x  6x  45 4x  6x  6x  45  6x 2x  45 2x 45  2 2 x  22.5 2x  15 = 2(22.5)  15 = 45  15 = 30 The square’s side length is 22.5 units and the triangle’s side length is 30 units. 60. Use d = rt when d = 150 and r = 45. d  rt 150  45t 150 45t  45 45 1 3  t or t  3 hr 20 min 3 If he left at 4 A.M., then he will arrive at 4 A.M. + 3 hr 20 min = 7:20 A.M. 9 62. Use F  C  32 when F = 78. 5 9 F  C  32 5 9 78  C  32 5 9 78  32  C  32  32 5 9 46  C 5 55 9  46   C 95 230 C 9 5 25  C 9

9

56. Use A = lw when A = 6875 and w = 6875. A  lw 6875  l   6875 25l  25 25 275  l The length of the ribbon was 275 meters.

5 Normal room temperature is about 25 C. 9

Copyright © 2025 Pearson Education, Inc.

347


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

9 64. Use F  C  32 when F = 12. 5 9 F  C  32 5 9 12  C  32 5 9 12  32  C  32  32 95 20  C 5 5 5 9 (20)   C 9 95 100  C 9 11.1  C The low temperature is approximately 11.1C. 66. Use V 

4

r3 when r 

4

r3 

 15 and  = 3.14.

2

3 V

30

4

(3.14)(15)3  14,130

3 3 The volume of the sphere is 14,130 cubic inches. 9 68. Use F  C  32 when F = 227. 5 9 F  C  32 5 9 227  C  32 5 9 227  32  C  32  32 59 259  C 5 5 5 9 259    C  9 9 5 144  C The average temperature on Jupiter is 144C. 70. 8% = 0.08 72. 0.5% = 0.005 74. 0.03 = 0.03(100%) = 3%

78.

F P V  F B(P V )  (P V ) P V B(P V )  F BP  BV  F BP  BV  BP  F  BP BV  F  BP BV F  BP  B B BP  F V  B

80. Use A = bh. If the base is doubled, the new base is 2b. If the height is doubled, the new height is 2h. A = (2b)(2h) = 2  2  b  h = 4bh The area is multiplied by 4. 9 82. Let x be the temperature. Use F  C  32 5 when F = C = x. 9 F  C  32 5 9 x  x  32 5 9 9 9 x  x  x  32  x 5 5 5 5 9 x  x  32 5 5 4  x  32 5  45  5     x     32 4 5 4   x  40 They are the same when the temperature is 40. 84. ☐  O  ☐  Δ O  ☐  Δ  ☐ O☐ Δ  ☐    ☐Δ ☐ O

76. 5 = 5(100%) = 500%

348

B 

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

miles hour miles  5280 feet  1 hour   20    hour 1 mile 3600 seconds     88  feet/second 3 88 Use d = rt when d = 1300 and r  . 3

86. 20

d  rt 88 1300  t 3 3 (1300)  3  88  88

Section 9.6 Practice Exercises 1. x  2 

–5 –4 –3 –2 –1 0 1 2 3 4 5

2. 5 > x or x < 5 –5 –4 –3 –2 –1 0 1 2 3 4 5

3. 3  x < 1 –5 –4 –3 –2 –1 0 1 2 3 4 5

4.

t    88 3 

x  6  11 x  6  6  11  6 x  5 –5 –4 –3 –2 –1 0 1 2 3 4 5

5. 3x  12

44.3  t It will take about 44.3 seconds. 88. Use d = rt when d = 238,860 and r = 186,000. d  rt 238,860  186, 000t 238,860 186, 000t  186, 000 186, 000 1.3  t It will take 1.3 seconds. 90. Let d = 2 then r = 1. 15 feet 12 inches 15 feet    180 inches, so 1 1 foot h = 180. Use V  r 2h when r = 1 and h = 180. V  ()(1)2 (180)  180  565.5

3x 12  3 3 x  4 –5 –4 –3 –2 –1 0 1 2 3 4 5

6. 5x  20 5x 20  5 5 x  4 –5 –4 –3 –2 –1 0 1 2 3 4 5

7.

The volume of the column is 565.5 cubic inches. 1 92. Use V  r 2h when V = 565.2 and r = 6. 3 1 V  r2h 3 1 565.2   62 h 3 3 3  1  62 h 2  565.2   6  62 3 15  h 94. Use I = PRT when I = 3750, P = 25,000 and R = 0.05. I  PRT 3750  25, 000(0.05)T 3750  1250T 3750 1250T  1250 1250 3T

3x 11  13 3x 1111  13 11 3x  24 3x 24  3 3 x8 {x|x  8} –10–8 –6 –4 –2 0 2 4 6 8 10

8.

2x  3  4(x 1) 2x  3  4x  4 2x  3  4x  4x  4  4x 2x  3  4 2x  3  3  4  3 2x  1 2x 1  2 6 1 x 2

Copyright © 2025 Pearson Education, Inc.

349


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

1  x x 

8. x < 6

    2 

|6| = 6 is not a solution. 1 2

9. x < 4.01 4.1 is not a solution.

–5 –4 –3 –2 –1 0 1 2 3 4 5

9.

10. x  3 4 is not a solution.

3(x  5) 1  5(x 1)  7 3x 15 1  5x  5  7 3x 14  5x  2 3x 14  5x  5x  2  5x 2x 14  2 2x 14 14  2 14 2x  12 2x 12  2 2 x6 {x|x  6}

11. An open circle indicates > or <; a closed circle indicates  or . 12. addition property of equality 13. {x|x  2}

10. Let x be the unknown number. 35  2x  15 35  2x  35  15  35 2x  20 2x 20  2 2 x  10 All numbers less than 10 make the statement true. 11. Let x represent the minimum sales. 600  0.04x  3000 0.04x  2400 x  60, 000 Alex must have minimum sales of $60,000. Vocabulary, Readiness & Video Check 9.6

14. The multiplication property of inequality is applied at this step when we divide by the coefficient of x. The coefficient is positive and so the inequality symbol remains the same, but if the coefficient had been negative, the direction of the inequality symbol would have been reversed. 15. is greater than; > Exercise Set 9.6 2.

–5 –4 –3 –2 –1

3. 6x < 7(x + 9) is an inequality.

4. 6. 8. 10. 12.

4. 5y  2  38 is an inequality. 9 x2 5.  is an equation. 7 14 6.

9 7

x2

7. x  3 5 is not a solution. 350

2

3

4

5

–5 –4 –3 –2 –1

0

1

2

3

4

5

–5 –4 –3 –2 –1

0

1

2

3

4

5

–5 –4 –3 –2 –1

0

1

2

3

4

5

–5 –4 –3 –2 –1

0

1

2

3

4

5

–5 –4 –3 –2 –1

0

1

2

3

4

5

0

1

2

3

4

5

0

2

4

6

8

10

2 3

x4 1 x  4  4  1 4 x  3

14.

– 5 –4 –3 –2 –1

is an expression.

14

1

1. 6x  7(x + 9) is an expression. 2. 6x = 7(x + 9) is an equation.

0

16.

3 m  5 3 3 m  3 5 m 8 –10 –8 –6 –4 –2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

18.

Chapter 9: Equations, Inequalities, and Problem Solving 30. 0.3x  2.4 0.3x 2.4  0.3 0.3 x8 {x|x < 8}

3  7x  10  8x 3  7x  8x  10  8x  8x 3  x  10 3  x  3  10  3 x7 7 –10 –8 –6 –4 –2

20.

0

2

4

6

–10 –8

8

32.

7x  3  9x  3x 7x  3  6x 7x  3  7x  6x  7x 3  x 3 x  1 1 3  x or x  3 –5 –4 –3 –2 –1

0

1

2

3

4

5

0

1

2

3

4

5x 20  5 5 x  4 {x|x > 4} 0

1

2

3

4

5

y0 (1)( y)  (1)(0) y0 {y|y  0}

40.

–5 –4 –3 –2 –1

0

1

2

3

4

5

0

2

4

6

8

10

5

x  8 6 65 6  x   (8) x 

2

4

6

8

10

11  x  4 11 4  x  4  4 15  x {x|x < 15}

38.

–5 –4 –3 –2 –1

5

0

6x 5  6 6 5 x 6  5  x x   6  

5

24. 5x  20

5 6

–2

36. 6x  5

–5 –4 –3 –2 –1

28.

–4

34. 10(x  2)  9x  1 10x  20  9x  1 x  20  1 x  20  20  1  20 x  21 {x|x  21}

22. 3x  9 3x 9  3 3 x  3 {x|x > 3}

26.

–6

10

48

3  y9 4  34  4   y   9 3 4 3   y  12 {y|y  12} 6(2  z)  12 12  6z  12 12  6z 12  12 12 6z  0 6z 0  6 6 z0 {z|z  0}

5  48  x x   5    – 48 5 –10 –8 –6 –4 –2

Copyright © 2025 Pearson Education, Inc.

351


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

42.

2x 1  4x  5 2x 1  4x  4x  5  4x 2x 1  5 2x 11  5 1 2x  4 2x 4  2 2 x2 {x|x  2}

44.

44  8x  2x  xx   10x

50.

4  x  x  10x  x 4  11x 52.

4 11x  11 11 4 x 11 x x  4  11   

46.

7x  4  3(4  x) 7x  4  12  3x

7x  4  3x  12  3x  3x 4x  4  12 4x  4  4  12  4 4x  8 4x 8  4 4 x  2 {x|x < 2} 48.

352

5(x  2)  3(2x 1) 5x 10  6x  3 5x 10  5x  6x  3  5x 10  x  3 10  3  x  3  3 7  x {x|x  7}

3(5x  4)  4(3x  2) 15x 12  12x  8 15x 12 12x  12x  8 12x 3x 12  8 3x 12 12  8 12 3x  4 3x 4  3 3 4 x 3  4  x x   3   7(x  2)  x  4(5  x) 12 7x 14  x  20  4x 12 8x 14  4x  32 8x 14  4x  4x  32  4x 4x 14  32 4x 14 14  32 14 4x  18 4x 18  4 4 9 x 2  9 x x    2   

54. 2(x  4)  3x  (4x 1)  2x 2x  8  3x  4x 1 2x 5x  8  2x 1 5x  8  2x  2x 1 2x 3x  8  1 3x  8  8  1 8 3x  9 3x 9  3 3 x3 {x|x > 3}

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

56.

58.

1

1 (x  5)  (2x 1) 2 3 1 1 6  (x  5)  6  (2x 1) 2 3 3(x  5)  2(2x 1) 3x 15  4x  2 3x 15  3x  4x  2  3x 15  x  2 15  2  x  2  2 13  x {x|x > 13}

Chapter 9: Equations, Inequalities, and Problem Solving

64. Convert heights to inches. 6'8"  6 12  8  80 6'6"  6 12  6  78 6'0"  6 12  0  72 5'9"  5 12  9  69 6'5"  6 12  5  77 Let x be the height of the center. x  80  78  72  69  77 5 x  299  77 x 5299 5  5  77 5 x  299  385 x  299  299  385  299 x  86 86"  7 ' 2" The center should be at least 7' 2".

6x  2  3(x  4) 6x  2  3x 12 6x  2  3x  3x 12  3x 3x  2  12 3x  2  2  12  2 3x  14 3x 14  3 3 14 x 3  14  x x  3  

66. Let x represent the number of people. Then the cost is 40 + 15x. 40 15x  860 40 15x  40  860  40 15x  820

60. Let x be the number. 5x 1  9 5x 1 1  9 1 5x  10 5x 10  5 5 x  2 All numbers less than 2 make this statement true. 62. Use P = a + b + c when a = x, b = 4x, c = 12, and P  87. x  4x 12  87 5x 12  87 5x 12 12  87 12 5x  75 5x 75  5 5 x  15 4x  4(15) = 60 The maximum lengths of the other two sides are 15 inches and 60 inches.

15x 820 15  15 820 x  54 15 They can invite at most 54 people. 68. Let x represent the number of minutes. 5.3x  200 5.3x 200  5.3 5.3 200 x  38 5.3 The person must bicycle at least 38 minutes. 70. Let x be the number. 1 x4 2 2 1 x44  24 2 1 x6 2 1 2 x  26 2 x  12 All numbers greater than or equal to 12 make the statement true. 72. 43  4  4  4  64

Copyright © 2025 Pearson Education, Inc.

353


Chapter 9: Equations, Inequalities, and Problem Solving

ISM: Prealgebra and Introductory Algebra

4. A linear inequality in one variable can be written in the form ax + b < c, (or >, , ). 5. The solutions to the equation x + 5 = x + 5 are all real numbers.

74. 07  0  0  0  0  0  0  0  0 3

 2   2  2  2  8 76.          3  3 3 3 27 78. The brand name Google is worth about $280 billion or $280,000,000,000.

6. The solution to the equation x + 5 = x + 4 is no solution.

80. The bars that end between 200 and 300 correspond to Google and Apple. The brands worth greater than $200 billion and less than $300 billion were Google and Apple.

7. If both sides of an inequality are multiplied or divided by the same positive number, the direction of the inequality symbol is the same.

82. The longest bar corresponds to Amazon, so the brand worth the most in 2023 was Amazon.

8. If both sides of an inequality are multiplied by the same negative number, the direction of the inequality symbol is reversed. 9. Two numbers whose sum is 0 are called opposites.

84. Since m  n, then 2m  2n. 86. If x < y, then x > y.

10. Two numbers whose product is 1 are called reciprocals.

88. No; answers may vary 90. Let x be the score on the final exam. Since the final counts as three tests, the final course 85  95  92  3x average is . 6 85  95  92  3x  90 6 272  3x  90  272 63x  6   6(90)  6  272 3x  540 272  2x  272  540  272 3x  268 3x 268  3 3 x  89.3 The final exam score must be at least 89.3 to get an A. 92. answers may vary

Chapter 9 Review 1. Since 8 is to the left of 10 on the number line, 8 < 10. 2. Since 7 is to the right of 2 on the number line, 7 > 2. 3. Since 4 is to the right of 5 on the number line, 4 > 5. 4. Since

12  6 is to the right of 8 on the number 2

12 line,

 8.

2

5. Since |7| = 7 is to the left of |8| = 8 on the number line, |7| < |8|. 6. Since |9| = 9 is to the right of 9 on the number line, |9| > 9. 7. |1| = 1

Chapter 9 Vocabulary Check 1. A linear equation in one variable can be written in the form ax + b = c.

8. Since |14| = 14 and (14) = 14, |14| = (14).

2. Inequalities that have the same solution are called equivalent inequalities.

9. Since 1.2 is to the right of 1.02 on the number line, 1.2 > 1.02.

3. An equation that describes a known relationship among quantities is called a formula.

354

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

10. Since 

3 2



6

and 

4

the number line, 

6

is to the left of 

4 3 2

Chapter 9: Equations, Inequalities, and Problem Solving

3

on

4 3

 . 4

20. 6  1 = 6 illustrates the identity element for multiplication. 21. 3(8  5) = 3  8 + 3  (5) illustrates the distributive property.

11. Four is greater than or equal to negative three is written as 4  3.

22. 4 + (4) = 0 illustrates the additive inverse property.

12. Six is not equal to five is written as 6  5.

23. 2 + (3 + 9) = (2 + 3) + 9 illustrates the associative property of addition.

13. 0.03 is less than 0.3 is written as 0.03 < 0.3. 14. Since 83 is to the left of 1500 on a number line, 83 < 1500.

24. 2  8 = 8  2 illustrates the commutative property of multiplication. 25. 6(8 + 5) = 6  8 + 6  5 illustrates the distributive property.

15. a.

The natural numbers are 1, 3.

b.

The whole numbers are 0, 1, 3.

c.

The integers are 6, 0, 1, 3.

26. (3  8)  4 = 3  (8  4) illustrates the associative property of multiplication. 1

1 The rational numbers are 6, 0, 1, 1 , 3, 2 9.62.

27. 4 

e.

The irrational number is .

28. 8 + 0 = 8 illustrates the element identity for addition.

f.

The real numbers are all numbers in the set.

d.

 1 illustrates the multiplicative inverse 4 property.

5

29.

16. a.

The natural numbers are 2, 5.

b.

The whole numbers are 2, 5.

c.

The integers are 3, 2, 5.

d.

11 The rational numbers are 3, 1.6, 2, 5, 2 , 15.1.

e. f.

The irrational numbers are

5, 2.

The real numbers are all numbers in the set.

17. Since 4 < 2, the most negative number is 4 which corresponds to Friday. Thus, Friday showed the greatest loss. 18. The greatest positive number is +5 which corresponds to Wednesday. Thus, Wednesday showed the greatest gain. 19. 6 + 5 = 5 + (6) illustrates the commutative property of addition.

2 x4  x  53  3 2  3  x  4   3  x  3   3  5x 12  2x 5x 12  5x  2x  5x 12  3x 12 3x  3 3 4  x 7

30.

5 x 1  x  7 8  8 5  8  x 1   8  x  8   8  7x  8  5x 7x  8  7x  5x  7x 8  2x 8 2x  2 2 4  x

Copyright © 2025 Pearson Education, Inc.

355


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

31.

(5x 1)  7x  3 5x 1  7x  3 5x 1 7x  7x  3  7x 2x 1  3 2x 11  3 1 2x  4 2x 4  2 2 x2

32.

4(2x 1)  5x  5

36.

8x  4  5x  5 8x  4  8x  5x  5  8x 4  3x  5 4  5  3x  5  5 9  3x 9 3x  3 3 3  x 33.

34.

6(2x  5)  3(9  4x) 12x  30  27 12x 12x 12x  30  12x  27 12x 30  27 Since the statement 30 = 27 is false, the equation has no solution. 3(8 y 1)  6(5  4 y) 24 y  3  30  24 y 24 y  3  24 y  30  24 y  24 y 3  30 Since the statement 3 = 30 is false, the equation has no solution.

3(2  z) 35. z 5  3(2  z)  5  5 z 5  3(2  z)  5z 6  3z  5z 6  3z  3z  5z  3z 6  8z 6 8z  8 8 3 z 4

356

4(n  2)  n 5  4(n  2)  5  5(n)  5  4(n  2)  5n 4n  8  5n 4n  8  4n  5n  4n 8  9n 8 9n  9 9 8  n 9

37. 0.5(2n  3)  0.1  0.4(6  2n) 5(2n  3) 1  4(6  2n) 10n 15 1  24  8n 10n 16  24  8n 10n 16  8n  24  8n  8n 2n 16  24 2n 16 16  24 16 2n  40 2n 40  2 2 n  20 38. 1.72 y  0.04 y  0.42 172 y  4 y  42 168 y  42 168 y 42  168 168 y  0.25 5(c 1)

39.

6   5(c 1)

 2c  3

 6(2c  3)    6  5(c 1)  6(2c  3) 5c  5  12c 18 5c  5  5c  12c 18  5c 5  7c 18 5 18  7c 18 18 23  7c 23 7c  7 7 23 c 7

6

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

40.

9  5a  3(6a 1) 9  5a  18a  3 9  5a  5a  18a  3  5a 9  23a  3 9  3  23a  3  3 6  23a 6 23a  23 23 6  a 23

41. If the sum of two numbers is 10 and one number is x, the other number is 10  x, which is choice b. 42. If Mandy is 5 inches taller than Melissa and x represents Mandy’s height, then Melissa’s height can be represented by x  5, which is choice a. 43. The measures of complementary angles sum to 90. If an angle measures x, then the measure of its complement is (90  x), which is choice b. 44. The measures of supplementary angles sum to 180. If an angle measures (x + 5), then the measure of its supplement is [180  (x + 5)] = (180  x  5) = (175  x), which is choice c. 45. Let x represent the length of the side of the square base. Then 10x + 50.5 represents the height. The sum is 7327. x 10x  50.5  7327 11x  50.5  7327 11x  50.5  50.5  7327  50.5 11x  7276.5 11x 7276.5  11 11 x  661.5 10x  50.5  10(661.5)  50.5  6615  50.5  6665.5 The height is 6665.5 inches. 46. Let x represent the length of the short piece. Then 2x represents the length of the long piece. The lengths sum to 12. x  2x  12 3x  12 3x 12  3 3 x4 2x = 2(4) = 8 The short piece is 4 feet and the long piece is 8 feet.

Chapter 9: Equations, Inequalities, and Problem Solving

47. Let x represent the number of national battlefields. Then 3x  2 represents the number of national memorials. The total is 42. x  3x  2  42 4x  2  42 4x  2  2  42  2 4x  44 4x 44  4 4 x  11 3x  2 = 3(11)  2 = 33  2 = 31 In 2022, there were 11 national battlefields and 31 national memorials. 48. Let x be the first integer. Then x + 1 and x + 2 are the next two consecutive integers. Their sum is 114. x  x 1 x  2  114 3x  3  114 3x  3  3  114  3 3x  117 3x 117  3 3 x  39 x + 1 = 39 + 1 = 38 x + 2 = 39 + 2 = 37 The integers are 39, 38, and 37. 49.

50.

x  x2 3 x 3  3(x  2) 3 x  3x  6 x  3x  3x  6  3x 2x  6 2x 6  2 2 x3 The number is 3. 2(x  6)  x 2x 12  x 2x  2x 12  2x  x 12  3x 12 3x  3 3 4  x The number is 4.

Copyright © 2025 Pearson Education, Inc.

357


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

57. C  d C d    C d 

51. Use P = 2l + 2w when P = 46 and l = 14. P  2l  2w 46  2(14)  2w 46  28  2w 46  28  28  2w  28 18  2w 18 2w  2 2 9w

58.

52. Use V = lwh when V = 192, l = 8, and w = 6. V  lwh 192  8  6  h 192  48h 192 48h  48 48 4h 53.

r  vst  5 r  5  vst  5  5 r  5  vst r  5 vst  vt vt r5 s vt

55.

2 y  5x  7 2 y  2 y  5x  2 y  7 5x  2 y  7 5x 2 y  7  5 5 2y  7 x 5

56.

358

59. Use V = lwh when V = 900, l = 20 and h = 3. V  lwh 900  20  w  3 900  60w 900 60w  60 60 15  w The width is 15 meters.

y  mx  b y  b  mx  b  b y  b  mx y  b mx  x x yb m x

54.

3x  6 y  2 3x  3x  6 y  3x  2 6 y  3x  2 6 y 3x  2  6 6 3x  2 y 6

C  2r C 2r  2 2 C r 2

60. Let x be the width. Then the length is x + 6. Use P = 2  length + 2  width when P = 60. P  2  length  2  width 60  2(x  6)  2x 60  2x 12  2x 60  4x 12 60 12  4x 12 12 48  4x 48 4x  4 4 12  x x + 6 = 12 + 6 = 18 The dimensions of the billboard are 12 feet by 18 feet. 61.

Use d = rt when d = 10K or 10,000 m and r = 125. d  rt 10, 000  125t 10, 000 125t  125 125 80  t 80 1 The time is 80 minutes or  1 hours or 60 3 1 hour and 20 minutes.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

9 62. Use F  C  32 when F = 134. 5 9 F  C  32 5 9 134  C  32 95 134  32  C  32  32 5 9

Chapter 9: Equations, Inequalities, and Problem Solving

70.

 

102  C 5  5 5 9 102   C 9 C  9 5 56.7 Thus, 134F is equivalent to 56.7C.

2

71.

63. 64. 65.

–5 –4 –3 –2 –1

0

1

2

3

4

5

–5 –4

0

1

2

3

4

5

–3 –2 –1

x  5  4 x  5  5  4  5 x 1 {x|x  1}

{y|y  15} 73.

2(x  5)  2(3x  2) 2x 10  6x  4 2x 10  6x  6x  4  6x 8x 10  4 8x 10 10  4 10 8x  14 8x 14  8 8 7 x 4  7  x x    4  

74.

4(2x  5)  5x 1 8x  20  5x 1 8x  20  5x  5x 1 5x 3x  20  1 3x  20  20  1 20 3x  19 3x 19  3 3 19 x 3  19  x x   3  

x7  2 x77  27 x  5 {x|x > 5} 67. 2x  20 2x 20  2 2 x  10 {x|x  10}

69.

5x  7  8x  5 5x  7  8x  8x  5  8x 3x  7  5 3x  7  7  5  7 3x  12 3x 12 3  3 x  4 {x|x < 4}

y6 3 3 2 3  y  6 2 3 2 y9 {y|y > 9}

72. 0.5 y  7.5 0.5 y  7.5  0.5 0.5 y  15

66.

68. 3x  12 3x 12  3 3 x  4 {x|x < 4}

x  4  6x 16 x  4  6x  6x 16  6x 5x  4  16 5x  4  4  16  4 5x  20 5x 20  5 5 x4 {x|x  4}

Copyright © 2025 Pearson Education, Inc.

359


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

75. Let x be the sales. Her weekly earnings are 175 + 0.05x. 175  0.05x  300 175  0.05x 175  300 175 0.05x  125 0.05x 125  0.05 0.05 x  2500 She must have weekly sales of at least $2500. 76. Let x be his score on the fourth round. 76  82  79  x  80 4 237  x  80 4 237  x 4  4 80 4 237  x  320 237  x  237  320  237 x  83 His score must be less than 83. 77. 6x  2x 1  5x 11 8x 1  5x 11 8x 1 5x  5x 11 5x 3x 1  11 3x 1 1  111 3x  12 3x 12  3 3 x4 78.

2(3y  4)  6  7 y 6y  8  6  7 y 6y 8  6y  6  7 y  6y 8  6  y 8  6  6  y  6 14  y

79. 4(3  a)  (6a  9)  12a 12  4a  6a  9  12a 3 10a  12a 3 10a 10a  12a 10a 3  2a 3 2a  2 2 3  a 2

360

x

80.

2 5 3 x 2 2  52 3 x 7 3 x 3  3 7 3 x  21

81. 2( y  5)  2 y 10 2 y 10  2 y 10 Since both sides of the equation are identical, the equation is an identity and every real number is a solution. 82. 7x  3x  2  2(2x 1) 4x  2  4x  2 4x  2  4x  4x  2  4x 2  2 Since the statement 2 = 2 is false, there is no solution. 83. Let x be the number. 6  2x  x  7 6  2x  x  x  7  x 6  x  7 6  x  6  7  6 x  13 The number is 13. 84. Let x be the length of the shorter piece. Then 4x + 3 is the length of the longer piece. The lengths sum to 23. x  4x  3  23 5x  3  23 5x  3  3  23  3 5x  20 5x 20  5 5 x4 4x + 3 = 4(4) + 3 = 16 + 3 = 19 The shorter piece is 4 inches and the longer piece is 19 inches.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

85.

86.

V 

1

Chapter 9: Equations, Inequalities, and Problem Solving

4. 9 + x = x + 9 by the commutative property of addition; C.

Ah

3 1 3V  3 Ah 3 3V  Ah 3V Ah  A A 3V h A

5. 5(4x) = (5  4)x by the associative property of multiplication; B. 6.

5

8. 23  2  2  2  8; C. 9. 7 is the opposite of 7; A. 10. 6x + 2 + 4x  10 does not contain an equal sign, so it is an expression; B.

9 0

2

4

6

8 10

87. 5x  20 5x 20  5 5 x  4 {x|x > 4} –5 –4 –3 –2 –1

is the reciprocal of 5; B.

7. 3 + 2(8) = 3 + (16) = 13; C.

4x  7  3x  2 4x  7  3x  3x  2  3x x7  2 x77  27 x9 {x|x > 9} –10 –8 –6 –4 –2

1

11. 6x + 2 = 4x  10 contains an equal sign, so it is an equation; A. 12. 2(x  1) = 12 contains an equal sign, so it is an equation; A.

0

1

2

3

4

5

88. 3(1 2x)  x  (3  x) 3  6x  x  3  x 3  5x  3  x 3  5x  x  3  x  x 3  6x  3 3  6x  3  3  3 6x  0 6x 0  6 6 x0 {x|x  0}

1   13. 7 x   22 does not contain an equal sign,   2   so it is an expression; B. 14. Subtracting 100z from 8m translates to 8m  100z; B. 15. Subtracting 7x  1 from 9y translates to 9y  (7x  1); C. 16.

7x  6  7x  9 7x  7x  6  7x  7x  9 69 Since the statement 6 = 9 is false, the equation has no solution; B.

5

17.

1. The number halfway between 2 and 3 on a 1 number line is 2  2.5; C and D. 2

2y 5  2y 5 2y  2y  5  2y  2y  5 5  5 Since the statement 5 = 5 is true, all real numbers are solutions of the equation; A.

18.

11x 13  10x 13 11x 10x 13  10x 10x 13 x 13  13 x 13 13  13 13 x0 The solution of the equation is 0; C.

–5 –4 –3 –2 –1

0

1

2

3

4

Chapter 9 Getting Ready for the Test

2. The number halfway between 2 and 3 on a 1 number line is 2  2.5; C and D. 2 3. 5(2x  1) = 10x  5 by the distributive property; A.

Copyright © 2025 Pearson Education, Inc.

361


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

19.

20.

x 15  x 15 x  x 15  x  x 15 2x 15  15 2x 15 15  15 15 2x  0 2x 0  2 2 x0 The solution of the equation is 0; C.

5. 6  8 = 8  6 illustrates the commutative property of multiplication.

5(3x  2)  (x  20) 5(3x  2)  1(x  20) 5  3x  5  2  1 x  (1)(20) 15x 10  x  20 The correct choice is B.

8. The opposite of 9 is 9.

6. 6(2 + 4) = 6  2 + (6)  4 illustrates the distributive property. 7.

1

of 3.

3 10. 7  2(5 y  3)  7  10 y  6  7  6  10 y  1 10 y  10 y  1 11. 4(x  2)  3(2x  6)  4x  8  6x 18  4x  6x  8 18  2x 10 12.

4(n  5)  (4  2n) 4n  20  4  2n 4n  20  2n  4  2n  2n 2n  20  4 2n  20  20  4  20 2n  16 2n 16  2 2 n 8

13.

2(x  3)  x  5  3x 2x  6  2x  5 2x  2x  6  2x  2x  5 65 Since the statement 6 = 5 is false, there is no solution.

Chapter 9 Test 1. The absolute value of negative seven is greater than five is written as |7| > 5. 2. The sum of nine and five is greater than or equal to four is written as (9 + 5)  4. 3. a.

The natural numbers are 1, 7.

b.

The whole numbers are 0, 1, 7.

c.

The integers are 5, 1, 0, 1, 7.

d.

The rational numbers are 5, 1,

1 , 0, 1, 7, 4

11.6. e.

The irrational numbers are

7, 3.

f.

The real numbers are 5, 1,

1

, 0, 1, 7,

4 7, 3.

4. 8 + (9 + 3) = (8 + 9) + 3 illustrates the associative property of addition.

362

(6)  1 illustrates the multiplicative inverse 6 property.

9. The reciprocal of 

8x x2 21. 1  3 10  8x   x  2  30  1  30    3   10  8x 30   30 1  3(x  2) 3 10 8x  30  3 x  3 2 80x  30  3x  6 The correct choice is D.

11.6,

1

14. 4z 1 z  1  z 3z 1  1  z 3z 1 z  1  z  z 2z 1  1 2z 1 1  1 1 2z  0 2z 0  2 2 z0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 2(x  6)

15.

19. Let x be the number. 2 x  x  35 3 3 2 x  x  35 3 3 5 x  35 3 3 5 3  x   35 5 3 5 x  21 The number is 21.

 x5

 2(x 36)   3(x  5)   3   2(x  6)  3(x  5) 2x 12  3x 15 2x 12  2x  3x 15  2x 12  x 15 12 15  x 15 15 27  x

3

16.

1

x

3

 x4 2 4 x   x  4 2 x  2  x  4 x  2  x  x  4  x 2  2x  4 2  4  2x  4  4 6  2x 6 2x  2 2 3 x

20. A = lw = (35)(20) = 700 The area of the deck is 700 square feet. To paint two coats of water seal means covering 2  700 = 1400 square feet. 1 gal 1400 sq ft   7 gal 200 sq ft 7 gallons of water seal are needed.

2

17.

Chapter 9: Equations, Inequalities, and Problem Solving

21. Use y = mx + b when y = 14, m = 2, and b = 2. y  mx  b 14  2x  (2) 14  2  2x  (2)  2 12  2x 12 2x  2 2 6x

0.3(x  4)  x  0.5(3  x) 0.3(x  4) 1.0x  0.5(3  x) 3(x  4) 10x  5(3  x) 3x 12 10x  15  5x 7x 12  15  5x 7x 12  5x  15  5x  5x 12x 12  15 12x 12 12  15 12 12x  3 12x 3  12 12 1 x   0.25 4

22.

V  r 2h V  r 2h  r2 r2 V h r2

23.

18. 4(a 1)  3a  7(2a  3) 4a  4  3a  14a  21 4  7a  14a  21 4  7a 14a  14a  2114a 4  7a  21 4  7a  4  21 4 7a  25 7a 25  7 7 25 a 7

3x  4 y  10 3x  4 y  3x  10  3x 4 y  10  3x 4 y 10  3x  4 4 3x 10 y 4

Copyright © 2025 Pearson Education, Inc.

363


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

24.

3x  5  7x  3 3x  5  3x  7x  3  3x 5  4x  3 5  3  4x  3  3 8  4x 8 4x  4 4 2  x {x|x < 2} –5 –4 –3 –2 –1

0

28. Let x = one area code, then 2x = other area code. x  2x  1203 3x  1203 3x 1203  3 3 x  401 2x = 2(401) = 802 The area codes are 401 and 802. 1

25. 0.3x  2.4 0.3x 2.4  0.3 0.3 x  8 {x|x  8} 26.

27.

5(x 1)  6  3(x  4) 1 5x  5  6  3x 12 1 5x 11  3x 11 5x 11 3x  3x 11 3x 2x 11  11 2x 1111  1111 2x  22 2x 22  2 2 x  11 {x|x  11} 2(5x 1) 2  3 2(5x 1) 3  3(2) 3 2(5x 1)  6 10x  2  6 10x  2  2  6  2 10x  4 10x 4  10 10 2 x 5  2   x x 5  

2

3

4

5

Cumulative Review Chapters 19 1. a.

(4) = 4

b. |5| = 5 c. 2. a.

|6| = 6 |0| < 2 since |0| = 0 and 0 < 2.

b. |5| = 5 c.

|3| > |2| since 3 > 2.

d. |5| < |6| since 5 < 6. e.

|7| > |6| since 7 > 6.

3. 2[3  2(1 6)]  5  2[3  2(5)]  5  2(3 10)  5  2(7)  5  14  5  19 4.

3  4  3  22 64

3  1  22 64

3 1 22 2 3 1 4  2 8  2 4 

5. 18 + 10 = 8 6. 8 + (11) = 19 7. 12 + (8) = 4 8. 2 + 10 = 8 9. (3) + 4 + (11) = 1 + (11) = 10

364

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

10. 0.2 + (0.5) = 0.3 

2

 1   1  16. 2 y  x  2        3   2  1 1  2    3 4 2 1   3 4 8 3   12 12 11  12 2

11. 2  10  2  11  10  3 3 11 3 11 11 3 22 30   33 33 22  30  33 8  33 8  33

2 3 22 14 2 1114 28 3   5 17. 4 1      5 11 5 11 5 11 5 5 1  1 5  5  25 1      6 18. 2  2 2 2 4 4 2  2     1  1 7  5 7  2  14         19. 2  2     3 5 15 3 2 3 2      

2 39 2 8 39     5 40 5 8 40 16 39   40 40 16  39  40 23  40 23   40

12.

13. 2 

x

x

2 3 x 6 x 6 x     

 

3 14. 5 

2

x 2

1 

5 1

3 

1 3

20. 3 3   3 1   18    10  5  3  5  3     18  3   5    10    293  5 25 27  25 2  1 25

3

3

3

3

5 2 x 10 x 10  x       2 1 2 2 2 2 2 x

2

 1 1 2 15. 2x  y  2        21  13   2    2 9   1  1 9 9 1   9 9 8  9

21. (1.3)2  2.4  1.69  2.4  4.09 22. 1.2(7.3  9.3) = 1.2(2) = 2.4 23.

49  7 since 72  7  7  49.

24.

64  8 since 82  8  8  64.

25.

2 2 4 2 2    4 .  since   25 5 5 5 25  5 

26.

3  3 3 3 9 9 .  since      100 10  10  10 10 100

2

2

Copyright © 2025 Pearson Education, Inc.

365


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

27.

28.

1.2x  5.8  8.2 10(1.2x  5.8)  10(8.2) 12x  58  82 12x  58  58  82  58 12x  24 12x 24  12 12 x2

3

1.3x  2.6  9.1 10(1.3x  2.6)  10(9.1) 13x  26  91 13x  26  26  91  26 13x  65 13x 65  13 13 x  5

42.

30. Since 4 = 4, the statement 4  4 is true. 31. Since 8 = 8, the statement 8  8 is true. 32. Since 4 = 4, the statement 4  4 is true. 33. Since neither 23 < 0 nor 23 = 0 is true, the statement 23  0 is false. 34. Since 8 < 0 is true, the statement 8  0 is true. 35. Since 0 < 23 is true, the statement 0  23 is true. 36. Since neither 0 < 8 nor 0 = 8 is true, the statement 0  8 is false. 37. 5(3  2z)  5(3)  (5)(2z)  15 10z 38. 4(2x  1) = 4(2x)  (4)(1) = 8x + 4 1 2

1 (6x)  (14)  10 2 2  3x  7  10  3x  17

(6x  14)  10 

1

40. 9  2(5x  6)  9  2(5x)  2(6)  9 10x 12  10x  9 12  10x  21

366

 6a  2

3 2(a  3)

 3(6a  2) 3 2(a  3)  3(6a  2) 2a  6  18a  6 2a  6 18a  18a  6 18a 16a  6  6 16a  6  6  6  6 16a  0 16a 0 16 16 a0

29. Since 8 = 8, the statement 8  8 is true.

39.

2(a  3)

41.

x x  3 2 5 x x 10   10(3)  2 5    5x  2x  30 7x  30 7x 30  7 7 30 x 7

43. Let x represent the number of beetle species. Then x  4100 represents the number of fly species. The total number of these two species is 43,300. x  x  4100  43, 300 2x  4100  43, 300 2x  4100  4100  43, 300  4100 2x  47, 400 2x 47, 400  2 2 x  23, 700 x  4100 = 23,700  4100 = 19,600 There are 23,700 beetle species and 19,600 fly species. 44. Let x be the number. 3(x  2)  9x 3x  6  9x 3x  3x  6  9x  3x 6  6x 6 6x  6 6 1 x The number is 1.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 9: Equations, Inequalities, and Problem Solving

45. Use d = rt when d = 31,680 and r = 400. d  rt 31, 680  400t 31, 680 400t  400 400 79.2  t It will take the ice 79.2 years to reach the lake. 46. V  lwh V lwh  lh lh V w lh

50.

47. 1 > x or x < 1 –5 –4 –3 –2 –1

48. 3x  30 3x 30  3 3 x  10 {x|x > 10}

49. 2(x  3)  5  3(x  2) 18 2x  6  5  3x  6 18 2x 11  3x 12 x 11  12 x  1 x 1  1 1 x 1 {x|x  1}

0

1

2

3

4

5

10  x  6x 10 10  x  x  6x  x 10 10  5x 10 10 10  5x 10 10 20  5x 20 5x  5 5 4 x {x|x > 4}

Copyright © 2025 Pearson Education, Inc.

367


Chapter 10 Section 10.1 Practice Exercises

15. (m5n10 )(mn8 )  (m5  m)  (n10  n8 )  m6  n18

1. 34  3  3 3 3  81

 m6n18

2. 71  7 3. (2)3  (2)(2)(2)  8

9 2 11 9 2 11 16. (x y)(4x y )  (1 4)  (x  x )  ( y  y )  4x11 y12

4. 23  (2  2  2)  8

4 10 410  940 17. (9 )  9

2

2 2 2 4 5.       3  3 3 9

18. (z6 )3  z63  z18 7 7 7 7 7 19. (xy)  x  y  x y

6. (0.3)4  (0.3)(0.3)(0.3)(0.3)  0.0081 20. (3y)4  34  y4  81y4 7. 5  6  5  36  180 2

8. a.

4 2 3 3 4 3 2 3 1 3 21. (2 p q r)  (2)  ( p )  (q )  (r )

When x is 4, 3x2  3 42  3(4  4)  316  48.

b. When x is 2,

 8 p12q6r3 22. (a4b)7  (1a4b)7  (1)7  (a4 )7  (b1)7

x4  (2)4  8 8 (2)(2)(2)(2)  8 16  8  2.

 1a28b7  a28b7 6

2

2 6 2 12 24.  5x6   5  (x )  25x , y  

9. 73  72  732  75 10. x4  x9  x49  x13

11. r5  r  r51  r6

9 91  (3)10 13. (3)  (3)  (3)

14. (6x3 )(2x9 )  (6  x3 )  (2  x9 )  (6  2)  (x3  x9 )

y3

92  ( y3 )2

96

5 56 14 (2)

27. 10

3

 5  125 1410

 (2)

(2)

 12x12

368

81y6

 y73  y4

59 26.

 9 y3    y7

25. 12. s6  s2  s3  s623  s11

r r6 23.    , s  0  s  s6

Copyright © 2025 Pearson Education, Inc.

4

 (2)

 16

0


ISM: Prealgebra and Introductory Algebra

28.

7a4b11 a4 b11  7 1  1 ab a b  7  (a41)  (b111)

Chapter 10: Exponents and Polynomials

10. In 5 32, the base for the exponent 2 is 3. 11. In 5x2, the base for the exponent 2 is x.

 7a3b10 12. In (5x)2, the base for the exponent 2 is 5x. 0

29. 8  1

13. Video Notebook Number 4 can be written as

30. (2r s)  1

42  1 42 , which is similar to Video

31. (7)  1

Notebook Number 7, 4  32, and shows why the negative sign should not be considered part of the base when there are no parentheses.

2 0

0

32. 70  1 70  11  1

14. The properties allow us to reorder and regroup factors and put factors with common bases together, making it easier to apply the product rule.

33. 7 y0  7  y0  7 1  7 34.

x7 x4

 x74  x3

15. Be careful not to confuse the power rule with the product rule. The power rule involves a power raised to a power (exponents are multiplied), and the product rule involves a product (exponents are added).

4 4 4 4 4 16 35. (3y )  3  ( y )  81y 3

x3 x3 x   36.    4  43 64

16. Remember to raise the 2 (or any number) to the power along with the variables.

Vocabulary, Readiness & Video Check 10.1 1. Repeated multiplication of the same factor can be written using an exponent. 2. In 52, the 2 is called the exponent and the 5 is called the base. 3. To simplify x2  x7 , keep the base and add the exponents. 4. To simplify (x 3 ) 6 , keep the base and multiply the exponents. 5. The understood exponent on the term y is 1. 6.

17. the quotient rule 18. No, Video Notebook Number 30 is a fraction and the quotient rule is not needed to simplify. Exercise Set 10.1 2. 32  3  3  9 4. (3)2  (3)(3)  9 6. 43  (4  4  4)  64 8. (4)3  (4)(4)(4)  64 2

 1, the exponent is 0.

 1  1  1  1        9  9  81 10.  9    

7. In 32 , the base for the exponent 2 is 3.

12. 9  22  9(2  2)  9  4  36

8. In (3)2, the base for the exponent 2 is 3.

14. When x is 2, x3  (2)3  (2)(2)(2)  8.

9. In 42, the base for the exponent 2 is 4.

16. When x is 5,

If x

4x2  4(5)2  4(5)(5)  4(25)  100. Copyright © 2025 Pearson Education, Inc.

369


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials 18. When x = 2 and y = 1,

11

4x2 y3  4(2)2 (1)3  4(2)(2)(1)(1)(1)  4(4)(1)  16.

20. When y is 3, 10  10  10  10   10 . 3 3 3(3)(3)(3) 3(27) 81 3y 3(3) 22. y2  y  y21  y3

2

 xy  x2 y2 x2 y2 48.    2  7 49  7  3

 xy4  3 43 3 12  x y x y 50.  3   3 3 3 9  27z  3z  (3) (z ) 52. Area  (radius)2  (5 y centimeters)2  (5 y centimeters)(5y centimeters) =(5)2 ( y)2  square centimeters

24. (5)7  (5)6  (5)76  (5)13 3

q q11 46.    11 t  t 

2

3

2

26. (2z )(2z )  (2)(2)(z  z )  4z

32

 4z

5

 25 y12 square centimeters  25 y2 square centimeters

28. (a2b)(a13b17 )  (a2  a13 )(b  b17 )  (a213 )(b117 )

54. Area  (radius)2 (height)

 a15b18

 (4x meters)2 (5x3 meters)  (4x meters)(4 x meters)(5x3 meters)

3 3 19 3 19 3 30. (7a b )(7a b)  (7  7)(a  a )(b  b)  49a319b31

 (4  4  5)(x  x  x3) cubic meters  80 x113 cubic meters

 49a22b4

 80 x5 cubic meters 5

6

4

5

6

4

32. (12x )(x )(x )  (12  11)(x  x  x ) 564  12x15  12x

or 80x5 cubic meters y10 56.

34. Area  (base)(height)  (9 y7 meters)(2 y10 meters) 7

10

 (9  2)( y  y ) square meters  18 y710 square meters  18 y17 square meters 36. ( y7 )5  y75  y35 6

6

6

6 6

38. (ab)  a  b  a b

40. (4x6 )2  (4)2 (x6 )2  42 x12  16x12 42. (a4b)7  (a4 )7 (b)7  a28b7 44. (3x7 yz2 )3  (3)3 (x7 )3 ( y)3 (z 2 )3  27x21 y3 z6

370

y

y9

109

(6)13 58. 11

1

y y 1311

2

 (6)

 (6)

x8 y6

81

(6)

x8 y6 60. xy5 

 5  x y y 9a4b7 9 a4 b7    2 62. 2 27 a b 27ab 1   a41  b72 3 1  a3b5 3 a3b5  3 64. 230  1

Copyright © 2025 Pearson Education, Inc.

x

 36

65

7 1

7

x y x y


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials 4

68. 2x0  2  x0  2 1  2

5x12 y13

70. 30  40  1  1  0

104.

72. (0.4)2  (0.4)(0.4)  0.16

x5 y 7

x12

y13

125 137

 5  5  7  5x x y

y

7 6

 5x y

106. 9  12 = 9 + (12) = 3

3

2 2 2 8 2     74.    3  3 3 3 27

108. 5  (10) = 5 + 10 = 15 110. 15  (21) = 15 + 21 = 6

76. y4 y  y41  y5

112. The expression x14  x23 can be simplified by adding the exponents; a.

78. x2 x15 x9  x2159  x26 4

4

 2ab    ab   4a4b44 4  a4b44 4 3yz  3 y z 81y z 102. 6 yz    

66. (4 y)0  1

4

80. (3y )(5 y)  (3 5)( y  y)  15 y

41

 15 y

82. ( y2 z2 )( y15 z13 )  ( y2  y15 )(z2  z13 )  y215 z213  y17 z15

5

114. The expression

can be simplified by x17 subtracting the exponents; b.

116. answers may vary 118. answers may vary

84. (3s5t)(7st10 )  (3)(7)(s5  s)(t  t10 )  21s51t110

120. s  6x2  6(5 meters)2  6(5)2 square meters  6(25) square meters  150 square meters

 21s6t11 5 11 511  t55 86. (t )  t

88. (2ab)4  (2)4 a4b4  16a4b4 90. (3xy2a3 )3  (3)3 x3 ( y2 )3 (a3 )3  27x3 y23a33

x35

122. The surface area of a cube measures the amount of material needed to cover a cube, so to find the amount of material needed to cover an ottoman, the surface area of the cube should be used. 124. answers may vary

3 6 9

 27x y a

92.

b6  63  b3 b b3 x9

5x9 94.

126. answers may vary.

x

 5 

x

128. b9ab4a  b9a4a  b13a 91

 5x

8

4b 4 4 4b 4 4b4  16a16b 130. (2a )  (2 )(a )  16a

 5x

0

96. (5ab)  1

132.

y15b y6b

 y15b6b  y9b

Section 10.2 Practice Exercises 5 5 5 5 5 5 98. (2ab)  2 a b  32a b

100. 7  7  49 1  48 2

0

1. 53 

1 53

Copyright © 2025 Pearson Education, Inc.

1 125

371


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials 4

71

1

1

4 7 5

7

2. 7x

12. (a b )

 7  4  4 or 4 x1 1 x x 3. 51  31    3 5 8   5 3 15 15 15 1

4. (3)4 

1

 4

(3)

(2x)

(3)(3)(3)(3)

81

1

5.

1 1 x5 5   1   1  x 5 1 x x5 1 x5

14.

7.

x x4 y9

8.

5

x1

1(4)

x

x4

 y 9 

z 9.

y4  y6

z5

1

16.

5

 z5 y9

z5 y9

 

17.

1020

y

(3x2 y)2 (2x7 y)3



 

1 y10

x4

151

x

32 (x2 )2 y2 23 (x7 )3 y3 32 x4 y2 23 x21 y3 32 23

 x421 y23

32 17 5 x y 23 1

 3 2 17 5 2 3 x y 1  72x17 y5

x4 x16

 x12

18. a.

420, 000  4.2 105

b.

0.00017  1.7 104

c.

9, 060, 000, 000  9.06 109

2

d.

0.000007  7.0 106

y  2 6 9 x y2  81x6

19. a.

2

2 3 2  3 11.  9x   9 (x2 ) y  y  2 9 x6  y2

b35

16

32   3(5) 6(2)  x y 8 8x5 y2  4x2 y4 4x2  y4

32x3 y6

x4  x164

372

y10

 4 x 1 30

x8

15

4 4

a20

2 x

 20  y ( y5 )4  y

x x

(x ) x x4

 y46  y10 

5 3

10.

1

x

4 48

2 x

20 35

a b

 30 y 1 1 2 3 3 2 3 3 6 (4a )  4 (a )  4 a   15. 43 a6 64a6

2

6 1 72 72 49 62 62 1  6.     2  2   62 36  7   2  1 6 1 7 7

y10

7 5

) (b )

2 x 

x8

1

4 5

4 4

4

13.

 (a

3.062 104  0.0003062

b.

5.21104  52,100

c.

9.6 105  0.000096

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

d. 20. a.

1

6.002 106  6, 002, 000

7.

(9 107 )(4 109 )  9  4 107 109  36 102  0.36

b.

Chapter 10: Exponents and Polynomials

8 8104    4(3) 10 2 103 2

y6 1

8.

3

 y6

 x3

x 9.

4

1

 4

y3

 4 y3

y3 

 4 107  40, 000, 000

10.

16 y7

 16 

1 y7

 16 y7

Calculator Explorations 1. 5.31103

5.31 EE 3

2. 4.81014

4.8 EE 14

3. 6.6 109

6.6 EE 9

4.

2

9.9811 EE 2

9.981110

5. 3, 000, 000  5, 000, 000  1.51013

11. A negative exponent has nothing to do with the sign of the simplified result. 12. power of a product rule, power rule for exponents, negative exponent definition, quotient rule for exponents 13. When you move the decimal point to the left, the sign of the exponent will be positive; when you move the decimal point to the right, the sign of the exponent will be negative. 14. the exponent on 10

6. 230, 000 1000  2.310

8

15. the quotient rule

7. (3.26 106 )(2.51013 )  8.151019 8. (8.76 104 )(1.237 109 )  1.083612 106

Exercise Set 10.2 2. 62 

1

62

1 36

Vocabulary, Readiness & Video Check 10.2 1. The expression x3 equals

, choice b. x3 1

2. The expression 54 equals 625 , choice d. 3. The number 3.021103 is written in scientific notation, choice a. 4. The number 0.0261 is written in standard form, choice a. 1 5 5. 5x2  5  2  2 x x 6. 3x3  3

1 x3

2

4.

1

1  1  1 1  1 8  82  64 1 82 1 2 82 8

2

2

(1)  1 6.   8     82 1  (1)2  82 1  82 (1)2 1   64 1  64 8. 41  42 

3

1 1 1 1 4 1 5       4 42 4 16 16 16 16

x3 Copyright © 2025 Pearson Education, Inc.

373


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

10.

1

 q5

q5

32.

 

p p3q5

r5 12.

14.

1 s2 s2    5 s2 r5 1 r y x4

16.

 p1(8)  p18

 y1(3)  y13  y4

y3

 p9

 x 4 (1)  x41  x3  3 x 1 1 1 1 4

z15 x15 1

4

2

4 6

20. (2)

3

36. 

42

1 

43

16

64

64

64



 812  4  1  y y12  12 y y y4 y8

10 (x2 )5 x

(2) 6 

38. (x4 )3

64

y4 y5 y45  26. y6 y6 

y2

y31 

(x2 )8 x x9

y2 

 2  y y

x28 x1

x9 x16 x1  9 x 161 x  9 x 17 x  x9  x179  x8

y

x

 2 x

y

4(2)

42

y

6

y

15

a4

45

  1a 15 a5 8 x a2    44. 5xa5 5 x a5 8  x11a25 5 8  x0a3 5 8  3 5a 15a5 8xa2

3

 a

1



1 a

5x4 y5

5 x4 y5    46. 15x4 y2 15 x4 y2 1   x44  y52 3 1   x0 y3 3 y3  3 3 2 2

48. (5x y

374

x

42. 96

y4

x12

15a4

y9 y6

1

2

1012

6 6 40. 27r  27  r   64  2  9 r 9r 3 r4 3r 4

24. 50  (5)0  11  2

y3 y

64

1

22. 1  1 1  1 y6   y6 y6 y6

30.

( y4 )2

3

18.

28.

1

34. (z5 x5 )3  (z5 )3 (x5 )3  z15 x15 

1

 

x1

p

p(3)(5) p  8 p

2 32 22

) 5 x

Copyright © 2025 Pearson Education, Inc.

y

25x6

6 4

 25x y

y4


ISM: Prealgebra and Introductory Algebra

1 5 2

50. (4 x )

52.

 a5b 

4

12 52

x

3

 a7b2   

42

2 10

4 x

Chapter 10: Exponents and Polynomials

x10

15r6 s

16 

60. x10

15 r6 

5r4 s3

a53b13

 3r2 s4 3s4 

a73b23

a21b6  a15(21)b36  a6b9

a6 b9



7 54. 5521 zz79 551 2 zz9  

 51(2) z79

r2 3

 r2 s3  (r2 )3 (s3 )3 62.  4 3   4 3 3 3 (r ) (s )  r s  r6 s9  12 9 r s 99  r612 6 0s r s 1  6 r

 512 z2  51 z2 5  z2 56.

64. (34 )(70 )(2)  (81)(1)(2)  162 (rs)3

66.

232x4 23 x4 2 x  22  x

5

1

r 4 s6

 r7 s9 1  r7 s9 2

 652 x14 y2  63 x3 y2  x3

r s

 r34 s36

58. 6 x y 6 x y 62 x4 y4  62  x4  y4  65(2) x1(4) y24

r3s3  (r 2 s3 )2 (r 2 )2 (s3 )2 3 3

 232 x41  25 x5 1  5 5 2 x 1  5 32x 5 1 2

s 

5 r4 s3  3r6(4) s1(3)  3r64 s13

a15b3

68.

(3x2 y2 )2  (3)2 (x2 )2 ( y2 )2 (xyz)2  x24 y24 z2 2 (3) x y  x2 y2 z2  (3)2 x4(2) y4(2) z2 2 42 42 2

3 2

 (3) x y  (3)2 x2 y2 z2

6 y x3



216 y2 

Copyright © 2025 Pearson Education, Inc.

z

z2

2 2 2

(3) x y z2 9x2 y2

375


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials (a6 )4 (b2 )4

(a6b2 )4 70.

(4a3b3 )3

90. 6.02214199 1023

 602, 214,199, 000, 000, 000, 000, 000

43 (a3 )3 (b3 )3 a24b8  3 9 9 4 a b

92. 3,170, 000, 000, 000  3.17 1012

a24(9)b8(9)

94. 3.329 1012  3, 329, 000, 000, 000

43

a249b89 64 33 a b  64

96. 29, 500, 000, 000, 000  2.951013

98. (2.5106 )(2 106 )  (2.5  2)(106 106 )  5 1066

1 72. A  2 bh 3  4   1  5x 2  7 meters  meters   x    3  5x   4  1 =   square meters 2  7  x   20x3  square meters 14xx 3 20   square meters 14 x 10  x31 square meters 7 10 4  x square meters 7 10  4 square meters 7x

 5 100  5 1 5 

102.

74. 9, 300, 000, 000  9.310

25104 25 104 5109   9 4(9)  551010  5 105  500, 000 0.4 105 0.2 10

 11

0.4 105  0.2 1011

 2 10511  2 106  0.000002

76. 0.00000017  1.7 107 3 78. 0.00194  1.94 10

12

106. 9.460 10

84. 9.056 10

4

 0.0009056

12

10, 000  9.460 10

1.0 10

4

 (9.460 1)(1012 104 )

80. 700, 000  7.0 105 82. 13, 000, 000, 000  1.31010

8

6

 5 1049

104. 9

8

6

100. (510 )(4 10 )  (5  4)(10 10 ) 68  20 10 2  20 10  0.2

 9.460 1016 108. 7w + w  2w = 6w 110. 6z + 20  3z = 6z  3z + 20 = 9z + 20

86. 4.8 106  0.0000048

112. 10y  14  y  14 = 10y  y  14  14 = 9y  28

88. 9.07 1010  90, 700, 000, 000

114. 8.5 billion  8, 500, 000, 000  8.5109 116. 155.557 million  155, 557, 000  1.55557 108

376

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

118. 7 micrometers  7 106 meter

Chapter 10: Exponents and Polynomials

Section 10.3 Practice Exercises

120. 28 micrometers  28106 meter

1.

6x6  4x5  7 x3  9x2 1

 2.8105 meter  0.000028 meter 122.

Term

Coefficient

7 x3

7

 8a9a3  a11a5

9x2

9

 8a6  a6

6x6

6

4x5

4

1

1

(2a3 )3 a3  a11a5  23 (a3 )3 a3  a11a5

6

 9a 124. If 7 

1

1

 , the exponent is 2. 49 72

2. 15x3  2x2  5

126. answers may vary 128. a.

The term 15x3 has degree 3.

1 5 1 52  25 1 1 Since  , the statement “ 51  52 ” is 5 25 false. 51 

The term 2x2 has degree 2. The term 5 has degree 0 since 5 is 5x0. 3. a. b.

The degree of the polynomial 9x  3x6  5x4  2 is 6. The polynomial is

neither a monomial, binomial, or trinomial.

1

1 1 b.    1  5 5  5  2 1 1 2  25     5  5  52 Since 5 < 25, the statement 1 2 1 1 “      ” is true. 5  5  c.

The degree of the binomial 6x + 14 is 1.

c.

4. a. b.

From part a, the statement “ a1  a2 for all nonzero numbers” is false.

The degree of the trinomial 10x2  6x  6 is 2. When x = 1, 2x + 10 = 2(1) + 10 = 2 + 10 = 12. When x = 1, 6x2 11x  20  6(1)2 11(1)  20  6 11 20  25.

5. When t = 2 seconds, 130. answers may vary 132. a4m  a5m  a4m5m  am 2z 3 3 2z 3 6z 134. (3y )  3 ( y )  27 y

16t2  592.1  16(2)2  592.1  16(4)  592.1  64  592.1  528.1 feet. When t = 4 seconds, 16t2  592.1  16(4)2  592.1  16(16)  592.1  256  592.1  336.1 feet. 6. 6y + 8y = (6 + 8)y = 2y Copyright © 2025 Pearson Education, Inc.

377


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

7. 14 y2  3 10 y2  9  14 y2 10 y2  3  9

c.

3a3  a4  a4  3a3  0a2  0a1  0a0  a4  3a3  0a2  0a  0a0

 4 y2  6

Vocabulary, Readiness & Video Check 10.3

8. 7 x3  x3  7 x3  1x3  8x3 9. 23x2  6x  x 15  23x2  7 x 15 10.

2 3 1 1 3 x  x  2  x3  x 7 4 2 8 2 1 1 3  x3  x3  x  x  2 7 2 4 8 4 7 2 3  x3  x3  x  x  2 14 14 8 8 3 3 1  x  x2 14 8

2. A monomial is a polynomial with exactly one term. 3. A trinomial is a polynomial with exactly three terms. 4. The numerical factor of a term is called the coefficient. 5. A number term is also called a constant.

11. Area  5  x  x  x  4  5  x  x  8  x  5x  x2  20  x2  8x  x2  x2  5x  8x  20

6. The degree of a polynomial is the greatest degree of any term of the polynomial. 7. 3; x2, 3x, 5

 2x2 13x  20 12.

1. A binomial is a polynomial with exactly two terms.

Terms of Polynomial

Degree of Term

8. The degree of the polynomial is the greatest degree of any of its terms, so we need to find the degree of each term first.

2x3 y2

3 + 2 or 5

9. the replacement value for the variable

4

0

8xy

1 + 1 or 2

3

3x y

3 + 1 or 4

5xy 2

1 + 2 or 3

10. simplifying it 11. 2; 9ab 12. 2; 0 y2

The degree of the polynomial is 5. 13. 11ab  6a2  ba  8b2  (11 1)ab  6a2  8b2  10ab  6a2  8b2 14. 7x2 y2  2 y2  4 y2 x2  x2  y2  5x2  7x2 y2  4x2 y2  2 y2  y2  x2  5x2

Exercise Set 10.3 2.

Term

Coefficient

2x3

2

x

1

4

4

 3x2 y2  y2  6x2 15. a.

x2  9  x2  0x1  9 or x2  0x  9

b.

9m3  m2  5  9m3  m2  0m1  5  9m3  m2  0m  5

378

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

4.

Term

Coefficient

9.7 x7

9.7

3x5

3

x3

1

 1 x2

 14

4

8. a  5a2  3a3  4a4 This is a polynomial of degree 4. None of these. 10. 7r 2  2r  3r5  3r5  7r 2  2r This is a trinomial of degree 5. 12. 5 y6  2 This is a binomial of degree 6.

b.

18. a.

b.

2x  10 = 2(0)  10 = 0  10 = 10

x2  3x  4  (0)2  3(0)  4  0  0  4  4 x2  3x  4  (1)2  3(1)  4  1 3  4  6 2x3  3x2  6  2(0)3  3(0)2  6  006  6 2x3  3x2  6  2(1)3  3(1)2  6  2(1)  3(1)  6  2 36  1 2

2

2

26. 16t  2650  16(12)  2650  16(144)  2650  2304  2650  346 After 12 seconds, the height of the object is 346 feet. 28. 2025 corresponds to x = 25.

b. 2x  10 = 2(1)  10 = 2  10 = 12 16. a.

2 2 22. 16t  200t  16(10.3)  200(10.3)  16(106.09)  2060  1697.44  2060  362.56 After 10.3 seconds, the height of the rocket is 362.56 feet.

24. 16t 2  2650  16(7)2  2650  16(49)  2650  704  2650  1866 After 7 seconds, the height of the object is 1866 feet.

6. 6 y  4  6 y1  4 This is a binomial of degree 1.

14. a.

Chapter 10: Exponents and Polynomials

4.3x2 138x  291  4.3(25)2 138(25)  291  4.3(625) 138(25)  291  2687.5  3450  291  6428.5 The polynomial predicts 6428.5 million Internet users in the world in 2025. 30. 2025 corresponds to x = 10. 5x2 191x  2839  5(10)2 191(10)  2839  5(100) 191(10)  2839  500 1910  2839  4249 The polynomial predicts 4249 thousand visitors to the park in 2025. 32. 14y  30y = (14  30)y = 16y 34. 18x3  4x3  (18  4)x3  22x3 36. 8x2  4 11x2  20  8x2 11x2  4  20

2

20. 16t  200t  16(5)  200(5)  16(25) 1000  400 1000  600 After 5 seconds, the height of the rocket is 600 feet.

 (8 11)x2  4  20  19x2 16 38. 12k3  9k3 11  (12  9)k3 11  3k3 11 40. 5y + 7y  6y = (5 + 7  6)y = 6y

Copyright © 2025 Pearson Education, Inc.

379


Chapter 10: Exponents and Polynomials

54. 2a2b  2a2b1 has degree 2 + 1 = 3.

42. 7.6 y  3.2 y2  8 y  2.5 y2  3.2 y2  2.5 y2  7.6 y  8 y

10a4b  10a4b1 has degree 4 + 1 = 5.

 0.7 y2  0.4 y

9ab  9a1b1 has degree 1 + 1 = 2.

2 4 1 x  23x2  x4  5x2  5 44. 5 15 2 4 1 4  x  x  23x2  5x2  5 5 15 2 1  4   x  (23  5)x2  5   5 15     6 1  4   x  (23  5)x2  5    15 15  7  x4 18x2  5 15 46.

ISM: Prealgebra and Introductory Algebra

5 3 1 3 1 9 x   x   x 14x2 16 5 8 8 4 16 1 1 9 3 2 3  x 14x  x  x   16 5 3 9  81 42 8 6 16  x 14x2   x    16 16 16 8 8 5 3 3 1  x 14x2  x  16 16 8

6  6a0b0 has degree 0. 2a2b  10a4b  9ab  6 is a polynomial of

degree 5. 56. 9xy  7 y  xy  6 y  9xy  xy  7 y  6 y  (9 1)xy  (7  6) y  10xy  y 58. 3a2  9ab  4b2  7ab  3a2  9ab  7ab  4b2  3a2  (9  7)ab  4b2  3a2 16ab  4b2 2 2 3 3 2 60. 17a b 16ab  3a  4ba  b a 2 2 2 3  17a b 16ab  ab  3a  4ba3

 17a22b  (1621)ab32  3a33 4ba3  17a b 17ab  3a  4ba 62. 18x4  2x3 y3 1  2 y3 x3 17x4  18x4 17x4  2x3 y3  2x3 y3 1  (18 17)x4  (2  2)x3 y3 1

48. 7x  4x2  4x2 18 16

 x4  0x3 y3 1

 4x2  4x2  7x 18 16

 x4  1

 (4  4)x2  7x 18 16  8x2  7x  34

64. 5x2  2  5x2  0x  2

50. 9x + 10 + 3x + 12 + 4x + 15 + 2x + 7 = 9x + 3x + 4x + 2x + 10 + 12 + 15 + 7 = (9 + 3 + 4 + 2)x + 10 + 12 + 15 + 7 = 18x + 44 52. y 4 has degree 4.

66. x3  8  x3  0x2  0x  8 68. 6m3  3m  4  6m3  0m2  3m  4 70. 11z  4z 4  4z4  0z3  0z 2  11z  0

6 y3 x  6 y3 x1 has degree 3 + 1 = 4. 2x2 y2 has degree 2 + 2 = 4.

72. 9 y5  y2  2 y 11  9 y5  0 y4  0 y3  y2  2 y 11

5 y2 has degree 2. 3  3x0 y0 has degree 0.

74. 9  6(5x + 1) = 9  30x  6 = 30x + 3

y4  6 y3 x  2x2 y2  5 y2  3 is a polynomial of degree 4.

76. 3(w  7)  5(w 1)  3w  21 5w  5  3w  5w  21 5  (3  5)w  21 5  2w 16 78. answers may vary 80. answers may vary

380

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

82. x4  x9  x4  x9 84. a  b3  a2  b7  a  b3  a2  b7 86. x5 y2  y2 x5  x5 y2  x5 y2  2x5 y2 or 2 y2 x5 88. a. b.

The height of the bar for 2030 is about 395. The graph predicts that the size of the market for wearable technology in 2030 will be $395 billion or $395,000,000,000. 2030 corresponds to x = 6. 2.2x2  21.8x 180  2.2(6)2  21.8(6) 180  2.2(36) 130.8 180  79.2 130.8 180  390 The polynomial model predicts that the size of the market for wearable technology in 2030 will be $390 billion or $390,000,000,000.

c.

Yes, the answers are about the same, as they should be; answers may vary.

90. 2025 corresponds to x = 8. 7.2x2  78.6x  522  7.2(8)2  78.6(8)  522  7.2(64)  628.8  522  460.8  628.8  522  1611.6 The number of connected wearable devices worldwide in 2025 is predicted to be 1611.6 million or 1,611,600,000. 92. answers may vary 94. 16t 2  200t  0 when t  12.5 seconds. 96. 7.75x  9.16x2 1.27 14.58x2 18.34  9.16x2 14.58x2  7.75x 1.27 18.34  (9.16 14.58)x2  7.75x 1.27 18.34  5.42x2  7.75x 19.61 Section 10.4 Practice Exercises 1. (3x5  7x3  2x 1)  (3x3  2x)  3x5  7x3  2x 1 3x3  2x  3x5  (7x3  3x3 )  (2x  2x) 1  3x5  4x3 1 2. (5x2  2x 1)  (6x2  x 1)  5x2  2x 1 6x2  x 1  (5x2  6x2 )  (2x  x)  (11)  x2  x 3.

9 y2  6 y  5 4y  3 9 y2  2 y  8

Copyright © 2025 Pearson Education, Inc.

381


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials 4. (9x  5)  (4x  3)  (9x  5) [(4x  3)]  (9x  5)  (4x  3)  9x  5  4x  3  5x  8 5. (4x3 10x2 1)  (4x3  x2 11)  (4x3 10x2 1)  (4x3  x2 11)  4x3 10x2 1 4x3  x2 11  4x3  4x3 10x2  x2 111  8x3 11x2 12 6.

2 y2  2 y  7  (6 y2  3 y  2)

2 y2  2 y  7 6 y2  3y  2 4 y2  y  5

7. [(4x  3)  (12x  5)]  (3x 1)  4x  3 12x  5  3x 1  4x 12x  3x  3  5 1  13x  9 8. (2a2  ab  6b2 )  (3a2  ab  7b2 )  2a2  ab  6b2  3a2  ab  7b2  a2  b2 9. (5x2 y2  3  9x2 y  y2 )  (x2 y2  7  8xy2  2 y2 )  5x2 y2  3  9x2 y  y2  x2 y2  7  8xy2  2 y2  6x2 y2  4  9x2 y  8xy2  y2 Vocabulary, Readiness & Video Check 10.4 1. 9y  5y = 14y 2. 6m5  7m5  13m5 3. x + 6x = 7x 4. 7z  z = 6z 5. 5m2  2m  5m2  2m 6. 8 p3  3 p2  8 p3  3 p2 7. 3y2 and 2 y2 ; 4y and y 8. Video Notebook Number 2 is a subtraction example, so the signs of the polynomial being subtracted must change when parentheses are removed. 9. We’re translating to a subtraction problem. Order matters when subtracting, so we need to be careful that the order of the expressions is correct. 10. because the operation is addition

382

Copyright © 2025 Pearson Education, Inc.


 

ISM: Prealgebra and Introductory Algebra

Exercise Set 10.4

Chapter 10: Exponents and Polynomials

20. (7 y2  5)  (8 y2 12)

2. ( y  2)  (3y  5)   y  2  3y  5   y  3y  2  5  2y  3 4. (3x  8)  (4x2  3x  3)  3x  8  4x2  3x  3  4x2  3x  3x  8  3 2

 4x  5 6. (3x2  7)  (3x2  9)  3x2  7  3x2  9  3x2  3x2  7  9  6x2  16

 (7 y2  5)  (8 y2 12)  7 y2  5  8 y2 12  7 y2  8 y2  5 12  y2  7 22. 4  ( y  4)  4  ( y  4)  4 y4  y44  y 8 24. (7x2  4x  7)  (8x  2)  (7x2  4x  7)  (8x  2)

8. (7x2  2x  9)  (3x2  5)

 7x2  4x  7  8x  2

 7x2  2x  9  3x2  5

 7x2  4x  8x  7  2

 7x2  3x2  2x  9  5

 7x2 12x  5

 4x2  2x  4

2 2 26. (6 y  3y  4)  (9 y  3y)

10. (9.6 y3  2.7 y2  8.6)  (1.1y3  8.8 y  11.6)

 (6 y2  3y  4)  (9 y2  3y)

 9.6 y3  2.7 y2  8.6 1.1y3  8.8 y 11.6

 6 y2  3y  4  9 y2  3y

 9.6 y3 1.1y3  2.7 y2  8.8 y  8.6 11.6

 6 y2  9 y2  3y  3y  4

 10.7 y3  2.7 y2  8.8 y  3

 15 y2  6 y  4

5 1  3 5 3  4 12.   7 n2  6 m  20    7 n2  12 m  10      4 2 5 1 3 2 5 3  n  m  n  m 7 6 20 7 12 10 4 2 3 2 5 5 1 3  n  n  m m  7 7 6 12 20 10 4 2 3 2 10 5 1 6  n  n  m m  7 7 12 12 20 20 1 2 5 7   n  m  7 12 20 14. 7x3  3 2x 3 7

28. (0.3y2  0.6 y  0.3)  (0.5 y2  0.3) 2

 (0.3y2  0.6 y  0.3)  (0.5 y  0.3)  0.3y2  0.6 y  0.3  0.5 y2  0.3  0.3y2  0.5 y2  0.6 y  0.3  0.3  0.8 y2  0.6 y  0.6 1 2 2   4 2 1 x  x    x  x 2   30.  3 3  7 21 21    2 2   4 1 1   x2  x     x2  x   3 7 21 21 3     1 2 2 4 2 1 2  x  x x  x 3 7 21 21 3 1 4 2 1 2  x2  x2  x  x  3 21 7 21 32 7 2 4 2 6 1  x  x  x  x 3 21 21 21 21 3 2 7 2  x  x 21 21 3 1 2 1 2  x  x 7 3 3 

9x3  4 16. 2x3  3x2  x  4 5x3  2x2  3x  2 7x3  x2  2x  2 18. (4  5a)  (a  5)  (4  5a)  (a  5)  4  5a  a  5  5a  a  4  5  6a  9

Copyright © 2025 Pearson Education, Inc.

383


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

7a2  9a  6  (11a2  4a  2)

32. 

34.

7a2  9a  6  11a2  4a  2 4a2  5a  4

5x3  4x2  6x  2 5x3  4x2  6x  2  (3x3  2x2  x  4)  3x3  2x2  x  4 2x3  2x2  7x  2

36. (2 y  20)  (5 y  30)  2 y  20  5 y  30  2 y  5 y  20  30  7 y  10 38. (7 y  7)  ( y  6)  (7 y  7)  ( y  6)  7y  7  y  6  6 y  13 40. (26 y 17)  (20 y 10)  26 y 17  20 y 10  6y  7 42. (5 y2  3 y 1)  (2 y2  y 1)  (5 y2  3y 1)  (2 y2  y 1)  5 y2  3 y 1 2 y2  y 1  3y2  4 y  2 44. (2x2  7x  9)  (x2  x 10)  (3x2  30)  (2x2  7x  9)  (x2  x 10)  (3x2  30)  2x2  7x  9  x2  x 10  3x2  30  6x  31 46. (m2  3)  (m2 13)  (6m2  m 1)  (m2  3)  (m2 13)  (6m2  m 1)  m2  3  m2 13  6m2  m 1  4m2  m 17 48. ( y2  4 y 1)  y  y2  4 y 1 y  y2  5 y 1 50. (3x2  5x  2)  (x2  6x  9)  3x2  5x  2  x2  6x  9  2x2 11x 11 52. (7 y2  9 y  8)  (5 y2  8 y  2)  (7 y2  9 y  8)  (5 y2  8 y  2)  7 y2  9 y  8  5 y2  8 y  2  2 y2  y 10 54. (x2  7x 1)  (7x  5)  (4x2  2x  2)  (x2  7x 1)  (7x  5)  (4x2  2x  2)  x2  7x 1 7x  5  4x2  2x  2  3x2 16x  4

384

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

56. (3y2  y  4)  (2 y2  6 y 10)  ( y2  9)  (3y2  y  4)  (2 y2  6 y 10)  ( y2  9)  3 y2  y  4  2 y2  6 y 10  y2  9  4 y2  5 y  3 58. (3x  2  6 y)  (7x  2  y)  3x  2  6 y  7x  2  y  10x  4  5 y 60.

(7a2  3b2 10)  (2a2  b2 12)  7a2  3b2  10  2a2  b2 12  9a2  4b2  22

62. (a2  ab  4b2 )  (6a2  8ab  b2 )  a2  ab  4b2  6a2  8ab  b2  7a2  7ab  3b2 64. (3x2 y  6xy  x2 y2  5)  (11x2 y2 1 5 yx2 )  3x2 y  6xy  x2 y2  5 11x2 y2 1 5x2 y  2x2 y  6xy 10x2 y2  4 66. (x  4)  (5x)  (x2  6x  2)  (x2 )  x  4  5x  x2  6x  2  x2  2x2  2x  2 The perimeter is (2x2  2x  2) centimeters. 3 7 3 3  7  3  68. (3y  4)  (3y 1)   y   y   y  (2 y  3)  3y  4  3y 1 2y  4y  2y  2 y  3 2 4 2       51  y6 4  51 The perimeter is 4 y 6   units.    70. (13x  7)  (2x  2)  (13x  7)  (2x  2)  13x  7  2x  2  11x  9 The remaining piece is (11x  9) inches long. 72.

[(7.9 y4  6.8 y3  3.3y)  (6.1y3  5)]  (4.2 y4 1.1y 1)  (7.9 y4  6.8 y3  3.3y)  (6.1y3  5)  (4.2 y4 1.1y  1)  7.9 y4  6.8 y3  3.3y  6.1y3  5  4.2 y4 1.1y 1  3.7 y4  0.7 y3  2.2 y  4

74. 7x(x)  (7 1)(x  x)  7x2 76. 6r3 (7r10 )  (6  7)(r3  r10 )  42r13 78. z2 y(11zy)  (111)( y  y)(z2  z)  11y2 z3 80. Since 9 + 3 = 12, 9 y7  3y7  12 y7 is a true statement.

Copyright © 2025 Pearson Education, Inc.

385


Chapter 10: Exponents and Polynomials

ISM: Prealgebra and Introductory Algebra

82. Since 3 + 7 = 10 and 2  1 = 3, 3y5  7 y5  2 y2  y2  10 y5  3y2 is a true statement. 84. 5x + 5x = 10x; c 86. (15x  3)  (5x  3) = 15x  3  5x + 3 = 10x; c 88. a.

2y + y = 2y + 1y = 3y

b.

2 y  y  2  y1  y1  2  y11  2 y2

c.

2y  y = 2y  1y = 3y

d.

(2 y)( y)  (2  y1)(1 y1)  2  y11  2 y2 ; answers may vary

90. a.

x + x = 1x + 1x = 2x

b.

x  x  x1  x1  x11  x2

c.

x  x = 1x  1x = 2x

d.

(x)(x)  (x1)(x1)  x11  x2 ; answers may vary

92. (4x2 17x 149)  (6x2 13x  342)  4x2 17x 149  6x2 13x  342  2x2  4x  491 Section 10.5 Practice Exercises 1. 10x  9x  (10  9)(x  x)  90x2 2. 8x3 (11x7 )  (8  11)(x3  x7 )  88x10 3. (5x4 )(x)  (5  1)(x4  x)  5x5 4.

4x(x2  4x  3)  4x(x2 )  4x(4x)  4x(3)  4x3 16x2 12x

5. 8x(7x4 1)  8x(7x4 )  8x(1)  56x5  8x 6.

2x3 (3x2  x  2)  2x3 (3x2 )  2x3 (x)  2x3 (2)  6x5  2x4  4x3

7. a.

(x  5)(x 10)  x(x 10)  5(x 10)  x  x  x 10  5  x  5 10  x2 10x  5x  50  x2 15x  50

386

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

b.

Chapter 10: Exponents and Polynomials

(4x  5)(3x  4)  4x(3x  4)  5(3x  4)  4x(3x)  4x(4)  5(3x)  5(4)  12x2 16x 15x  20  12x2  x  20

8. (3x  2 y)2  (3x  2 y)(3x  2 y)  3x(3x)  3x(2 y)  (2 y)(3x)  (2 y)(2 y)  9x2  6xy  6xy  4 y2  9x2 12xy  4 y2 9. (x  3)(2x2  5x  4)  x(2x2 )  x(5x)  x(4)  3(2x2 )  3(5x)  3(4)  2x3  5x2  4x  6x2 15x 12  2x3  x2 11x 12 10.

y2  4 y  5 3y2 1 y2  4 y  5 4 3 3y 12 y 15 y2 3y4 12 y3 16 y2  4 y  5

11.

4x2  x 1 3x2  6x  2

8x2  2x  2 24x3  6x2  6x 4 12x  3x3  3x2 12x4  21x3 17x2  4x  2 Vocabulary, Readiness & Video Check 10.5 1. The expression 5x(3x + 2) equals 5x  3x + 5x  2 by the distributive property, choice c. 2. The expression (x + 4)(7x  1) equals x(7x  1) + 4(7x  1) by the distributive property, choice c. 3. The expression (5 y 1)2 equals (5y  1)(5y  1), choice c. 4. The expression 9x  3x equals 27x2 , choice b. 5. x3  x5  x35  x8 6. x2  x6  x26  x8 7. x3  x5 cannot be simplified. 8. x2  x6 cannot be simplified. 9. x7  x7  x77  x14 Copyright © 2025 Pearson Education, Inc.

387


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

10. x11  x11  x1111  x22

22. 9x3 (5x2 12)  9x3 (5x2 )  9x3 (12)  45x5  108x3

7 7 7 7 7 7 11. x  x  1x 1x  (11)x  2x 11

12. x

11

x

11

 1x

11

1x

 (11)x

11

24. 4b2 (3b3 12b2  6)  4b2 (3b3 )  4b2 (12b2 )  4b2 (6)  12b5  48b4  24b2

11

 2x

13. No; the monomials are unlike terms. 2 3 2 2 3 26. 4xy (7x  3x y  9 y )  4xy2 (7x3 )  4xy2 (3x2 y2 )  4xy2 (9 y3 )  28x4 y2 12x3 y4  36xy5

14. distributive property, product rule 15. Three times: first (a  2) is distributed to a and 7, and then a is distributed to (a  2) and 7 is distributed to (a  2).

3 2 2 3 28. x(6 y  5xy  x y  5x )  x(6 y3 )  x(5xy2 )  x(x2 y)  x(5x3 )  6xy3  5x2 y2  x3 y  5x4

16. Yes; the parentheses have been removed for the vertical format, but every term in the first polynomial is still distributed to every term in the second polynomial.

30.

Exercise Set 10.5 2. 6x  3x2  (6  3)(x  x2 )  18x3 4. (x6 )(x)  (1 1)(x6  x)  x7

32. (x  2)(x  9)  x(x  9)  2(x  9)  x(x)  x(9)  2(x)  2(9)  x2  9x  2x 18  x2 11x  18

6. 9t6 (3t5 )  (9  3)(t6  t5 )  27t11 8. (5.2x4 )(3x4 )  (5.2  3)(x4  x4 )  15.6x8

 3 7  1 4   3  1  7 4 10.   y  y       ( y  y )  4  7   4  7  3   y11 28

34. ( y 10)( y 11)  y( y 11)  (10)( y 11)  y( y)  y(11)  (10)( y)  (10)(11)

12. (x)(5x4 )(6x7 )  (1 5  6)(x  x4  x7 )  30x12

3  2   36.  x   x   5  5   2 3 2    x  x     x   5  25 3 5  3  2    x(x)  x   (x)     5 5 5  5      3 6 2 2  x  x x 5 5 25 6 2 1  x  x 5 25

 y2 11y 10 y 110  y2  y 110

14. 2x(6x  3)  2x(6x)  2x(3)  12x2  6x

1 2 y (9 y2  6 y 1) 3 1 1 1  y2 (9 y2 )  y2 (6 y)  y2 (1) 3 3 3 4 3 1 2  3y  2 y  y 3

2 2 16. 5 y( y  y 10)  5 y(3 y ) 25 y( y)  5 y(10)  5 y  5 y  50 y

18. 3a(2a  7)  3a(2a)  (3a)(7)  6a2  21a 20. 4x(5x2  6x 10)  4x(5x2 )  4x(6x)  4x(10)  20x3  24x2  40x

388

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

38. (5x2  2)(6x2  2)  5x2 (6x2  2)  2(6x2  2)  5x2 (6x2 )  5x2 (2)  2(6x2 )  2(2)  30x4 10x2 12x2  4  30x4  22x2  4 40. (8x  3)(2x  4)  8x(2x  4)  (3)(2x  4)  8x(2x)  8x(4)  (3)(2x)  (3)(4)  16x2  32x  6x 12  16x2  38x 12 42. (3  2a)(2  a)  3(2  a)  (2a)(2  a)  3(2)  3(a)  (2a)(2)  (2a)(a)  6  3a  4a  2a2  6  7a  2a2 44. (6x  7)2  (6x  7)(6x  7)  6x(6x  7)  (7)(6x  7)  6x(6x)  6x(7)  (7)(6x)  (7)(7)  36x2  42x  42x  49  36x2  84x  49 46. (x  3)(x2  5x  8)  x(x2  5x  8)  3(x2  5x  8)  x(x2 )  x(5x)  x(8)  3(x2 )  3(5x)  3(8)  x3  5x2  8x  3x2 15x  24  x3  8x2  7x  24 48. (a  2)(a3  3a2  7)  a(a3  3a2  7)  2(a3  3a2  7)  a(a3 )  a(3a2 )  a(7)  2(a3 )  2(3a2 )  2(7)  a4  3a3  7a  2a3  6a2 14  a4  a3  6a2  7a 14 50. (3  b)(2  5b  3b2 )  3(2  5b  3b2 )  b(2  5b  3b2 )  3(2)  3(5b)  3(3b2 )  b(2)  b(5b)  b(3b2 )  6 15b  9b2  2b  5b2  3b3  3b3 14b2 13b  6 52. (x2  4)2  (x2  4)(x2  4)  x2 (x2  4)  (4)(x2  4)  x2 (x2 )  x2 (4)  (4)(x2 )  (4)(4)  x4  4x2  4x2 16  x4  8x2 16

Copyright © 2025 Pearson Education, Inc.

389


    

ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

54.

56.

4x  7 5x 1 4x  7 20x2  35x 20x2  31x  7

70. (t  3)(t 2  5t  5)  t(t2  5t  5)  3(t2  5t  5)  t(t2 )  t(5t)  t(5)  3(t2 )  3(5t)  3(5)  t3  5t 2  5t  3t2 15t 15  t3  2t 2 10t 15

8x2  2x  4 4x  5 2 40x 10x  20 3 32x  8x2 16x

72. (x  4)(x  4)  x(x  4)  4(x  4)  x(x)  x(4)  4(x)  4(4)  x2  4x  4x 16  x2  8x 16

32x3  32x2  26x  20

2

The area is (x2  8x 16) square feet.

3x  x  2 x2  2x 1

58.

3 74. ( y 1)  ( y 1)[( y 1)( y 1)]  ( y 1)[ y( y 1)  (1)( y 1)]

3x2  x  2 6x  2x2  4x 3x4  x3  2x2

 ( y 1)[ y2  y  y 1]  y( y2  2 y 1)  (1)( y2  2 y 1)

3

3x4  5x3  3x2  3x  2

 y3  2 y2  y  y2  2 y 1

5 5 6 60. 4.2x(2x )  (4.2  2)(x  x )  8.4x

62. 5x(x2  3x 10)

 y3  3y2  3y 1 3

2

 5x(x )  (5x)(3x)  (5x)(10)  5x3 15x2  50x 2

64. (3y  4)( y 11)  3y( y 11)  4( y 11)  3y( y)  3y(11)  4( y)  4(11)  3y2  33y  4 y  44  3y2  37 y  44 66.  m  2  m  1   9  9     1 2 1    m  m     m   9  19  2 9  2  1    m(m)  m     (m)     9 9 9 9     2 2 2 1  m  m m 9 9 81 1 2  m2  m  9 81 68. (7 y  2)2  (7 y  2)(7 y  2)  7 y(7 y  2)  2(7 y  2)  7 y(7 y)  7 y(2)  2(7 y)  2(2)  49 y2 14 y 14 y  4

2 2

76. (4 p)  4 p  16 p 2 2

2

2

2 2

78. (7m )  (7) (m )  49m 80. a. b.

4

(8x  3)  (5x  2)  8x  3  5x  2  3x 1 (8x  3)(5x  2)  8x(5x  2)  (3)(5x  2)  8x(5x)  8x(2)  (3)(5x)  (3)(2)  40x2 16x 15x  6  40x2  31x  6

answers may vary 82. (2x  1) + (10x  7) = 2x  1 + 10x  7 = 12x  8 84. (2x 1)(10x  7)  2x(10x  7)  (1)(10x  7)  2x(10x)  2x(7)  (1)(10x)  (1)(7)  20x2 14x 10x  7  20x2  24x  7 86. (2x 1)  (10x  7)  (2x 1)  (10x  7)  2x 110x  7  8x  6

 49 y2  28 y  4

390

2

The volume is ( y  3y  3y 1) cubic meters.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

88. The areas of the smaller rectangles are: 2

xxx x  3 = 3x 2  x = 2x 23=6 The area of the figure is x2  3x  2x  6  x2  5x  6.

Chapter 10: Exponents and Polynomials

4. (2x  9)2  (2x  9)(2x  9)  (2x)(2x)  (2x)(9)  9(2x)  9(9)  4x2 18x 18x  81  4x2  36x  81 5. ( y  3)2  y2  2( y)(3)  32  y2  6 y  9

90. The area of the figure is (3x + 1)(3x + 1). The areas of the smaller rectangles are: 3x  3x  9x2 1 3x  3x 1 3x  3x 11  1 The area of the figure is 9x2  3x  3x  1  9x2  6x  1.

6. (r  s)2  r2  2(r)(s)  s2  r 2  2rs  s2 7. (6x  5)2  (6x)2  2(6x)(5)  52  36x2  60x  25 8. (x2  3y)2  (x2 )2  2(x2 )(3y)  (3y)2  x4  6x2 y  9 y2

92. 5a  6a  (5  6)(a  a)  30a2

9. (x  9)(x  9)  x2  92  x2  81

94. (5x  2 y)2  (5x  2 y)(5x  2 y)  5x(5x  2 y)  2 y(5x  2 y)  5x(5x)  5x(2 y)  2 y(5x)  2 y(2 y)  25x2 10xy 10xy  4 y2

10. (5  4 y)(5  4 y)  52  (4 y)2  25 16 y2

 25x2  20xy  4 y2 96. a.

(2  3)2  (5)2  25

13. (2x2  6 y)(2x2  6 y)  (2x2 )2  (6 y)2

22  32  4  9  13 b.

 4x4  36 y2

(8 10)2  (18)2  324 14. (7x 1)2  (7x)2  2(7x)(1) 12

82  102  64  100  164

c.

2

1  1  2 1 2 1 11.  x   x    x   x 9  3  3  3     12. (3a  b)(3a  b)  (3a)2  b2  9a2  b2

 49x2 14x 1

no; answers may vary

15. (5 y  3)(2 y  5)  (5 y)(2 y)  (5 y)(5)  (3)(2 y)  (3)(5)

Section 10.6 Practice Exercises 1. (x  7)(x  5)  (x)(x)  (x)(5)  (7)(x)  (7)(5)  x2  5x  7x  35

 10 y2  25 y  6 y 15  10 y2 19 y 15 16. (2a 1)(2a 1)  (2a)2  (1)2  4a2 1

 x2  2x  35 2. (6x 1)(x  4)  6x(x)  6x(4)  (1)(x)  (1)(4)  6x2  24x  x  4  6x2  25x  4

2

2

1  1 1 2 17.  5 y    (5 y)  2(5 y)      9 9 10 19  25 y2  y  9 81

3. (2 y2  3)( y  4)  2 y3  8 y2  3y 12

Copyright © 2025 Pearson Education, Inc.

391


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

Vocabulary, Readiness & Video Check 10.6

14.

1. (x  4)2  x2  2(x)(4)  42

  

x

2   5 

 x2  8x 16  x2  16 The statement is false.

x

1

1 2 2  x2  x  x 

 5 

5 5 1 2  x2  x  5 25

25

16. (0.3  2a)(0.6  5a)  0.18 1.5a 1.2a 10a2  0.18  2.7a 10a2

2. The statement is true. 3. (x  4)(x  4)  x2  42  x2 16  x2 16 The statement is false. 4. (x 1)(x3  3x 1)  x(x3  3x 1) 1(x3  3x 1)  x4  3x2  x  x3  3x 1  x4  x3  3x2  4x 1 The product is a polynomial of degree 4, not 5. The statement is false.

18. (x  4 y)(3x  y)  3x2  xy 12xy  4 y2  3x2 11xy  4 y2 20. (x  7)2  x2  2(7)(x)  72  x2 14x  49 22. (7x  3)2  (7x)2  2(7x)(3)  32  49x2  42x  9 2 2 2 24. (5a  2)  (5a)  2(5a)(2)  2

5. a binomial times a binomial

 25a2  20a  4

6. FOIL order for multiplication, distributive property

26. (x2  0.3)2  (x2 )2  2(x2 )(0.3)  (0.3)2  x4  0.6x2  0.09

7. Multiplying gives you four terms, and the two like terms will always subtract out. 8. multiplying the sum and difference of the same two terms, squaring a binomial, and the FOIL order for multiplication when multiplying a binomial and a binomial Exercise Set 10.6 2. (x  5)(x 1)  x2  x  5x  5  x2  6x  5

28.

2 2  3 y   y 2  2( y)  3  3   4    4   4  9 2 6  y  y 4 16 3 9  y2  y  2 16

30. (5b  4)2  (5b)2  2(5b)(4)  42  25b2  40b 16

4. ( y 12)( y  4)  y  4 y 12 y  48 2

32. (6s  2)2  (6s)2  2(6s)(2)  22

 y2  8 y  48

 36s2  24s  4 6. (3y  5)(2 y  7)  6 y2  21y 10 y  35  6 y2 11y  35 8. (2x  9)(x 11)  2x2  22x  9x  99  2x2  31x  99 10. (6x  2)(x  2)  6x2 12x  2x  4  6x2 10x  4

 16s2 16sy  4 y2 36. (3n  5m)2  (3n)2  2(3n)(5m)  (5m)2  9n2  30mn  25m2 38. (7x3  6)2  (7x3 )2  2(7x3 )(6)  62  49x6  84x3  36

12. ( y2  3)(5 y  6)  5 y3  6 y2 15 y 18

392

34. (4s  2 y)2  (4s)2  2(4s)(2 y)  (2 y)2

40. (b  3)(b  3)  b2  32  b2  9

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

42. (x  8)(x  8)  x2  82  x2  64 44. (7x  5)(7x  5)  (7x)2  52  49x2  25 46. (a2  6)(a2  6)  (a2 )2  62  a4  36 48. (3x2 1)(3x2 1)  (3x2 )2 12  9x4 1 50. (8  7x)(8  7x)  82  (7x)2  64  49x2 2

2  2  2 2  52. 10x  10x    (10x)    7  7   7 4  100x2  49 

54. (2x  y)(2x  y)  (2x)2  y2  4x2  y2 56. (5m  4n)(5m  4n)  (5m)2  (4n)2  25m2 16n2 58. (a  5)(a  7)  a2  7a  5a  35  a2 12a  35 60. (b  2)2  b2  2(b)(2)  22  b2  4b  4 62. (6a  7)(6a  5)  36a2  30a  42a  35  36a2  72a  35 64. (x 10)(x 10)  x2 102  x2 100 66. (4a  2)2  (4a)2  2(4a)(2)  22  16a2  16a  4 68. (3x  2)(4x  2)  12x2  6x  8x  4  12x2  2x  4 a

 a

2

a a2 2 2 16 y 70.   4 y   4 y      (4 y)  4 2  2   2  72. (3y 13)( y  3)  3y2  9 y 13y  39  3y 2  22 y  39 74. (x2  8)(x2  8)  (x2 )2  82  x4  64 76. (3x  5)(3x  5)  (3x)2  52  9x2  25

Copyright © 2025 Pearson Education, Inc.

393


Chapter 10: Exponents and Polynomials

ISM: Prealgebra and Introductory Algebra

78. (4x  9 y)2  (4x)2  2(4x)(9 y)  (9 y)2  16x2  72xy  81y2 80. (x  2)(x2  4x  2)  x(x2  4x  2)  (2)(x2  4x  2)  x3  4x2  2x  2x2  8x  4  x3  6x2 10x  4 82. (3x  2)(x  4)  3x2 12x  2x  8  3x2 14x  8 The area of the canvas is (3x2 14x  8) square inches. 60 y6

60 y6

3 62

84.

   y 80 y2 80 y2 4 6a8 y 6 a8 y    86. 3 a4 y 3a4 y

3 4 3y4  y  4 4

 2a84 y11  2a4 y0  2a4 6 6 88. 48ab  48  a  b 32ab3 32 a b3 3   a11b63 2 3   a0b3 2 3b3  2 2 2 90. (a  b)(a  b)  a  b which is choice a. 2 2 2 2 2 2 92. (a  b) (a  b)  (a  2ab  b )(a  2ab  b )  a2 (a2  2ab  b2 )  2ab(a2  2ab  b2 )  b2 (a2  2ab  b2 )

 a4  2a3b  a2b2  2a3b  4a2b2  2ab3  a2b2  2ab3  b4  a4  2a2b2  b4 which is choice e. 94. Since (5x3)2  25x6 , 2(5x3 )(2)  20x3, and 22  4, (5x3  2)2  25x6  20x3  4 is a true statement. 96. (3x  5)(3x  5)  (2x)2  ((3x)2  52 )  (2x)2  (9x2  25)  4x2  9x2  25  4x2  5x2  25 The area is (5x2  25) square miles.

394

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

98. (3x  4)(3x  4)  (4x2 )  (3x)2  42  4x2  9x22 16  4x2  5x 16

14. (7x 1)(7x 1)  (7x)2 12  49x2 1 15. (x

The area is (5x2 16) square centimeters. 100. (2 y  11)(2 y 11)  (2 y 11)2 2

 (2 y)  2(2 y)(11) 11  4 y2  44 y 121

2

The area is (4 y2  44 y  121) square units. 102. answers may vary

y ) x

79 59

1 9 3

17. (3 x )  3 (r7 s5 )6 (2r4 s4 )4

106. answers may vary Mid-Chapter Review 1. (5x2 )(7x3 )  (5  7)(x2  x3 )  35x5

13 93

x

y

y45 

x63

3 27

3 x

x27 

33

x27 

27

r58s14 16 r58 16s14

19. (7x2  2x  3)  (5x2  9)

4. (4)  (4)(4)  16 2

2

2

5. (x  5)(2x 1)  2x 1x 10x  5  2x  9x  5 6. (3x  2)(x  5)  3x2 15x  2x 10

 (7x2  2x  3)  (5x2  9)  7x2  2x  3  5x2  9  2x2  2x  6 20. (10x2  7x  9)  (4x2  6x  2)

 3x 13x 10 2

 (10x2  7x  9)  (4x2  6x  2)

7. (x  5) + (2x + 1) = x  5 + 2x + 1 = 3x  4 8. (3x  2) + (x + 5) = 3x  2 + x + 5 = 4x + 3

 10x2  7x  9  4x2  6x  2  6x2 13x 11 2 2 2 21. 0.7 y 1.2 1.8 y  6 y 1  2.5 y  6 y  0.2

9 12

x3 y10

63 45

24 r44 s44 r 42 s 30   16r16 s16 r42(16) s30(16)  16

3. 42  (42 )  16

7x y

x

r76 s56

2. (4 y2 )(8 y7 )  (4  8)( y2  y7 )  32 y9

9.

y

1 1 2 16. 8  2  64 8

18.

104. answers may vary

7 5 9

 7  x93  y1210  7x6 y2

2 8

0 6

6

10. 20a b  20 a22b82  10a b  10b 7 7 14a2b2 14 7 6 2

2

11. (12m n )  12  m

72 62

n

14 12

 144m n

12. (4 y9 z10 )3  43  y93 z103  64 y27 z30

2 2 22. 7.8x  6.8x  3.3  0.6x  0.9 2  8.4x  6.8x  4.2

23. (3y2  6 y 1)  ( y2  2)  (3y2  6 y 1)  ( y2  2)  3y2  6 y 1 y2  2  2 y2  6 y 1

2 2 2 13. (4 y  3)(4 y  3)  (4 y)  3  16 y  9

Copyright © 2025 Pearson Education, Inc.

395


Chapter 10: Exponents and Polynomials

ISM: Prealgebra and Introductory Algebra

1 1   24. (z 2  5)  (3z2 1)   8z2  2z    (z2  5)  (3z2 1)   8z2  2z   2 2     1 2 2 2  z  5  3z 1 8z  2z  2 11 2  6z  2z  2 25. (x  4)2  x2  2(x)(4)  42  x2  8x 16 26. ( y  9)2  y2  2( y)(9)  92  y2 18x  81 27. (x + 4) + (x + 4) = x + 4 + x + 4 = 2x + 8 28. (y  9) + (y  9) = y  9 + y  9 = 2y  18 29. 7x2  6xy  4( y2  xy)  7x2  6xy  4 y2  4xy  7x2 10xy  4 y2 30. 5a2  3ab  6(b2  a2 )  5a2  3ab  6b2  6a2  a2  3ab  6b2 31. (x  3)(x2  5x 1)  x(x2  5x 1)  (3)(x2  5x 1)  x(x2 )  x(5x)  x(1)  (3)(x2 )  (3)(5x)  (3)(1)  x3  5x2  x  3x2 15x  3  x3  2x2 16x  3 32. (x 1)(x2  3x  2)  x(x2  3x  2) 1(x2  3x  2)  x(x2 )  x(3x)  x(2) 1(x2 ) 1(3x) 1(2)  x3  3x2  2x  x2  3x  2  x3  2x2  5x  2 33. (2x  7)(3x  10)  6x2  20x  21x  70  6x2  x  70 34. (5x 1)(4x  5)  20x2  25x  4x  5  20x2  21x  5 35. (2x  7)(x2  6x 1)  2x(x2  6x 1)  (7)(x2  6x 1)  2x(x2 )  2x(6x)  2x(1)  (7)(x2 )  (7)(6x)  (7)(1)  2x3 12x2  2x  7x2  42x  7  2x3 19x2  44x  7

396

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

36. (5x 1)(x2  2x  3)  5x(x2  2x  3)  (1)(x2  2x  3)  5x(x2 )  5x(2x)  5x(3)  (1)(x2 )  (1)(2x)  (1)(3)  5x3 10x2 15x  x2  2x  3  5x3  9x2 17x  3 2

5  5  2 5  2 25 37.  2x   2x    (2x)     4x  81 9  9   9 

2

3  3  2 3  38. 12 y  12 y    (12 y)    7  7   7 9  144 y2  49 

Section 10.7 Practice Exercises 1.

25x3 5x2 5x2

25x3 5x2

5x2 5x2

 5x 1

7 2 7 2 2. 24x 12x  4x  24x  12x  4x 4x2 4x2 4x2 4x2 1  6x5  3  x

3.

12x3 y3 18xy  6 y 12x3 y3 18xy 6 y    3xy 3xy 3xy 3xy 2  4x2 y2  6  x

x7 4. x  5 x2 12x  35 x2  5x 7x  35 7x  35 0 Thus,

x2 12x  35  x  7. x5

4x  3 5. 2x 1 8x  2x  7  8x2  4x  6x  7  6x  3 4 4 8x2  2x  7 . Thus,  4x  3   4 or 4x  3  2x 1 2x 1 2x  1 2

Copyright © 2025 Pearson Education, Inc.

397


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

6. 15  2x2  2x2  0x  15  2x  6 2 x  3 2x  0x 15 2x2  6x 6x 15 6x 18 3 15  2x2  3  2x  6  or Thus, x3 x 3 3 2x  6  x  3 . 7.

5  x  9x3 3x  2

9x3  0x2  x  5

a4

a 64  a2

p8 4.

5.

6.

p3 y2

83

 p

p

y2

 21  1  y y y 1 

y a3

y

a3

a1

a

 a31  a 2

Exercise Set 10.7

x2  x 1

2.

15x2  9x5

4.

6.

15x2

8.

5

 9x  15x  9x 4 x x

8x3  4x2  6x  2 8x3 4x2 6x 2     2 23 22 2 2  4x  2x  3x 1 6x5  3x4 3x

x2  0x x2  x x 1 x 1 0

x

8. x 1 x3  0x2  0x 1 x3  x2

4



6x5

3x4

3x

3x

4 

4

 2x 1

14m2  27m3 14m2 27m3 27m2    2m  7m 7m 7m 7

6a2  4a 12 6a2 4a 12    2 2 2 10. 2a 2a 2a 2a2 2 6  3  2 a a

x3 1  x2  x 1. x 1

12a3  36a 15

Vocabulary, Readiness & Video Check 10.7

12.

3a

3 1. In 6 18, the 18 is the dividend, the 3 is the quotient, and the 6 is the divisor. x2 2. In x 1 x2  3x  2, the x + 1 is the divisor, the x2  3x  2 is the dividend, and the x + 2 is the

quotient. 398

5

8. Filling in missing powers helps us keep like terms lined up and our work clear and neat.

2

3 Thus, 5  x  9x  3x2  2x 1 3 . 3x  2 3x  2

Thus,

a6

7. the common denominator

3x  2 2 3x  2x 1

3x  2 9x  0x  x  5 9x3  6x2 6x22  x 6x  4x 3x  5 3x  2 3 3

3.

Copyright © 2025 Pearson Education, Inc.

12a3

36a

15

3a 3a 3a 5 2  4a 12  a


ISM: Prealgebra and Introductory Algebra

x2 14. x  5 x  7x 10 x2  5x 2x 10 2x  10 0

4x2  x  5 2 24. x  3 4x 11x  8x 10 4x3 12x2 x2  8x x2  3x 5x 10 5x  15 5

2

x2  7x 10 x5

Chapter 10: Exponents and Polynomials

3

 x  2

5 4x3 11x2  8x 10  2  4x  x  5  x3 x3

3x  2 2 16. x  2 3x  8x  4 3x2  6x 2x  4 2x  4 0 2 3x  8x  4  3x 2 x2

a7 26. a  7 a  0a  49 a2  7a 7a  49 7a  49 0 a2  49     a 7 a7 2

3x  2

18. x 1 3x  x  4 3x2  3x 2x  4 2x  2 2 2 3x  x  4 2  3x  2  x 1 x 1 2

x2  4x 16 28. x  4 x3  0x2  0x  64 x3  4x2 4x2  0x 4x2 16x 16x  64 16x  64 0

2x2  3x  4 20. 2x  3 4x 12x2  x 14 4x3  6x2 3

x3  64  2  x  4x 16 x4

6x2  x 6x2  9x 8x 14 8x 12 2 4x3 12x2  x 14 2  2x 2  3x  4  2x  3 2x  3 x5 22. 3x  2 3x2 17x  7 3x2  2x 15x  7 15x 10 3

30. 7  5x2  5x2  0x  7  5x 15 2 x  3 5x  0x  7 5x2 15x 15x  7 15x  45 38 2 7  5x  5x 15  38 x3 x3

3x2 17x  7 3  x 5  3x  2 3x  2 Copyright © 2025 Pearson Education, Inc.

399


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials y4

3x2 12x  59 42. x  4 3x3  0x2 11x  12 3x3 12x2 12x2 11x 12x2  48x 59x  12 59x  236 224 3x3 11x 12  2 224  3x 12x  59  x4 x4

32. 2 y  5 2 y  3y 15 2 y2  5 y 8 y 15 8 y  20 5 2

3y  2 y2 15  y  4  5  2y  5 2y  5 m3n2  mn4 34.

mn

m3 n 2 mn

mn4 

mn

2

 m nn

3

 7x  21 2 44. x  3 7x  0x  3 7x2  21x 21x  3 21x  63 60 3  7x2 60  7x  21  x3 x 3

6w  2 36. 3w  4 18w2 18w  8 18w2  24w 6w  8 6w  8 0 18w2 18w  8  6w  2 3w  4

x3  x2  x

3 3 2 2 3 3 2 2 38. 11x y  33xy  x y  11x y  33xy  x y 11xy 11xy 11xy 11xy xy 2 2  x y 3 11

3 2 46. x  x

x5  x4

 

2x2  x 1 40. x  2 2x3  3x2  3x  4 2x3  4x22 x  3x

x4  x3 x4  x3 0

x6  x3  3 2  x  x x x3  x2

x2  2x x  4 x  2 6

48.

12

 6, so 12 = 2  6.

2

2x3  3x2  3x  4  2  x 1  6  2x x2 x2

400

x6  0x5  0x4  x3  0x2  0x  0 x6  x5 x5  0x4

50.

20 4

 5, so 20 = 4  5.

52.

9x2  x, so 9x2  9x  x. 9x

54.

36x2  18x, so 36x2  2x 18x. 2x

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

56.

36x5 12x3  6x2 36x5 12x3  6x2  2 (2x)(3x) 5 6x 3 2 36x 12x  6x   2 6x2 6x2 6x 3  6x  2x 1 The length of the swimming pool is (6x3  2x  1) feet.

7x 10 58. 7x  20 49x2  70x  200 49x2 140x 70x  200 70x  200 0 The width of the ping-pong table is (7x  10) inches.

62.

5

5x 5

15

Chapter 10 Review 1. In 32, the base is 3 and the exponent is 2. 2. In (5)4 , the base is 5 and the exponent is 4. 3. In 54, the base is 5 and the exponent is 4. 4. In x6, the base is x and the exponent is 6. 5. 83  8 8  8  512 6. (6)2  (6)(6)  36 7. 62  (6  6)  36 8. 43  40  64 1  65

60. answers may vary 5x 15

Chapter 10: Exponents and Polynomials

 x  3 which is choice b.

5

9. (3b)0  1 10. 8b  1 8b

Chapter 10 Vocabulary Check 1. A term is a number or the product of numbers and variables raised to powers.

11. y2  y7  y27  y9

2. The FOIL method may be used when multiplying two binomials.

12. x9  x5  x95  x14

3. A polynomial with exactly 3 terms is called a trinomial. 4. The degree of polynomial is the greatest degree of any term of the polynomial. 5. A polynomial with exactly 2 terms is called a binomial. 6. The coefficient of a term is its numerical factor. 7. The degree of a term is the sum of the exponents on the variables in the term. 8. A polynomial with exactly 1 term is called a monomial.

5 6 56 11 13. (2x )(3x )  6x  6x 3 4 34 7 14. (5 y )(4 y )  20 y  20 y 4 2 42 8 15. (x )  x  x 3 5 35 15 16. ( y )  y  y 6 4 4 64 24 17. (3y )  3  y  81y 3 3 3 33 9 18. (2x )  2  x  8x

x9 19.

9. Monomials, binomials, and trinomials are all examples of polynomials. 10. The distributive property is used to multiply 2x(x  4).

x4 z12 20.

z5

94

x

5

x

 z125  z7

Copyright © 2025 Pearson Education, Inc.

401


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials a5b4 21.

22.

23.

a

ab

51 41

b

3

1 3 35.    (5)  125  5 

4 3

a b

 3 5 x4 y6  41 61  x y  x y xy

 2 

3 41 106 1 3 4 x3 y4  x y  x y  12 4 4 12xy6

0

37. 2  2

1 71 82 x6 y6  x y  4 4 8xy2 4 3

7

3

25. 5a (2a )  5a (2  a

4

x5 39.

)

x3 z4

 5a7 (8a12 )  40a712  40a19

40. z4

2 2 2 26. (2x) (9x)  (2 x )(9x)

41.

 4x (9x)  36x21 2

 36x3

42.

0 0 0 27. (5a)  7  8  111  3

r3 r4 y2 y5

5(3)

x

x 4(4)

z r

2 62

12

5a 25a 5 a ; c 30.  b3   32  b6 b    1 1 2 31. 7   72 49 1 1 2 32. 7   2   49 7

 y

2(5)  y3

34. (2x)

402

4

3

 3(2) 4(5) 3  x3 y4  y ) 44.  2 5   (x  x y   (x1 y1)3  x13 y13 

 x3 y3 

45.

46.

x4 

1

1 1  4 4  2 x (2x) 16x4 4

8

4

2

4 33. 2x 

z

3(4)  r1  r

3

6 2

8

 2  43. bc   (b11c2(3) )4  (b0c1)4  c4  bc 3   

28. 8x0  90  8 1  1  8  1  9

9

    2  4

43

 3x4   33 x43  27x12 3 13  29.  4 y  ; b 3 4 y 64 y  

2

1 1 17  1 4  1  16 16 2 1 1 1 1 38. 6  7    7  6  1 6 7 42 42 42

3x4 y10

7

 3 

36.    3 

2x7 y8 24.

2

x4 y6 x2 y7 a5b5

x3 y3

 x42 y 67  x6 y 13  5(5) (5)5

a

b

a5b5 4 47. 0.00027  2.7 10

Copyright © 2025 Pearson Education, Inc.

10 10

a b

1 x6 y13 a10

b10


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

48. 0.8868  8.868101 49. 80,800, 000  8.08107 50. 868, 000  8.68105 51. 159, 000, 000  1.59 108 52. 150, 000  1.5105 53. 8.67 105  867, 000 54. 3.86 103  0.00386 55. 8.6 104  0.00086 56. 8.936105  893, 600 57. 1.431281015  1, 431, 280, 000, 000, 000 58. 11010  0.0000000001 59. (8104 )(2 107 )  16 103  0.016 60.

8104 2 10

7

 4 10

11

 400, 000, 000, 000

61. The degree of ( y5  7x  8x4 ) is 5. 62. The degree of (9 y2  30 y  25) is 2. 63. The degree of (14x2 y  28x2 y3  42x2 y2 ) is 2 + 3 or 5. 64. The degree of (6x2 y2 z2  5x2 y3 12xyz) is 2 + 2 + 2 or 6. 65. 16t 2  4000  16(0)2  4000  0  4000  4000 16t 2  4000  16(1)2  4000  16  4000  3984

Copyright © 2025 Pearson Education, Inc.

403


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

16t 2  4000  16(3)2  4000  144  4000  3856 16t2  4000  16(5)2  4000  400  4000  3600 t

0 seconds

1 second

3 seconds

5 seconds

16t 2  4000

4000 feet

3984 feet

3856 feet

3600 feet

66. 2x2  20x  2(1)2  20(1)  2  20  22 2x2  20x  2(3)2  20(3)  18  60  78 2x2  20x  2(5.1)2  20(5.1)  52.02 102  154.02 2x2  20x  2(10)2  20(10)  200  200  400 x

1

3

5.1

10

2x2  20x

22

78

154.02

400

67. 7a2  4a2  a2  (7  4 1)a2  2a2 68. 9 y  y 14 y  (9 114) y  4 y 69. 6a2  4a  9a2  6a2  9a2  4a  15a2  4a 70. 21x2  3x  x2  6  21x2  x2  3x  6  22x2  3x  6 71. 4a2b  3b2  8q2 10a2b  7q2  4a2b 10a2b  3b2  8q2  7q2  6a2b  3b2  q2 72. 2s14  3s13  12s12  s10 cannot be combined. 73. (3x2  2x  6)  (5x2  x)  3x2  2x  6  5x2  x  3x2  5x2  2x  x  6  8x2  3x  6 74.

(2x5  3x4  4x3  5x2 )  (4x2  7x  6)  2x5  3x4  4x3  5x2  4x2  7x  6  2x5  3x4  4x3  9x2  7x  6

404

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

75. (5 y2  3)  (2 y2  4)  (5 y2  3)  (2 y2  4)

Chapter 10: Exponents and Polynomials

87. 2(x3  9x2  x)

 5 y2  3  2 y2  4

 (2)(x3 )  (2)(9x2 )  (2)(x)

 7 y2 1

 2x3 18x2  2x

76. (2m7  3x4  7m6 )  (8m7  4m2  6x4 )  (2m7  3x4  7m6 )  (8m7  4m2  6x4 )  2m7  3x4  7m6  8m7  4m2  6x4  6m7  3x4  7m6  4m2

88. 3a(a2b  ab  b2 )  (3a)(a2b)  (3a)(ab)  (3a)(b2 )  3a3b  3a2b  3ab2 89. (3a3  4a 1)(2a)

77. (3x2  7xy  7 y2 )  (4x2  xy  9 y2 )  (3x2  7xy  7 y2 )  (4x2  xy  9 y2 )  3x2  7xy  7 y2  4x2  xy  9 y2  x2  6xy  2 y2

 (3a3)(2a)  (4a)(2a)  (1)(2a)  6a4  8a2  2a 90. (6b3  4b  2)(7b)  (6b3)(7b)  (4b)(7b)  (2)(7b)

78. (8x6  5xy 10 y2 )  (7x6  9xy 12 y2 )  (8x6  5xy 10 y2 )  (7x6  9xy 12 y2 ) 2 6 2  6 8x  5xy 10 y  7x  9xy 12 y

 42b4  28b2 14b 91. (2x  2)(x  7)  2x2 14x  2x 14  2x2 12x 14

 x6  4xy  2 y2 2

92. (2x  5)(3x  2)  6x2  4x 15x 10

2

79. (9x  6x  2)  (4x  x 1)

 6x2 11x 10

 9x  6x  2  4x  x 1 2

2

 5x2  5x 1 2

93. (4a 1)(a  7)  4a2  28a  a  7 2

 4a2  27a  7

2

80. [(x  7x  9)  (x  4)]  (4x  8x  7)  (x2  7x  9)  (x2  4)  (4x2  8x  7)

94. (6a 1)(7a  3)  42a2 18a  7a  3  42a2 11a  3

 x2  7x  9  x2  4  4x2  8x  7  2x2  x  20

95. (x  7)(x3  4x  5)

81. 6(x + 5) = 6(x) + 6(5) = 6x + 30

 x(x3  4x  5)  7(x3  4x  5)

82. 9(x  7) = 9(x) + 9(7) = 9x  63

 x(x3 )  x(4x)  x(5)  7(x3 )  7(4x)  7(5)

83. 4(2a + 7) = 4(2a) + 4(7) = 8a + 28

 x4  7x3  4x2  23x  35

84. 9(6a  3) = 9(6a) + 9(3) = 54a  27 85. 7x(x2  5)  (7x)(x2 )  (7x)(5)  7x  35x 3

2 2 86. 8 y(4 y  6)  (8 y)(4 y )  (8 y)(6)

 32 y3  48 y

 x4  4x2  5x  7x3  28x  35

96. (x  2)(x5  x 1)  x(x5  x 1)  2(x5  x 1)  x(x5 )  x(x)  x(1)  2(x5 )  2(x)  2(1)  x6  x2  x  2x5  2x  2 5 2  6 x  2x  x  3x  2

Copyright © 2025 Pearson Education, Inc.

405


Chapter 10: Exponents and Polynomials

ISM: Prealgebra and Introductory Algebra

97. (x2  2x  4)(x2  2x  4)  x2 (x2  2x  4)  2x(x2  2x  4)  4(x2  2x  4)  x4  2x3  4x2  2x3  4x2  8x  4x2  8x 16  x4  4x3  4x2 16 98. (x3  4x  4)(x3  4x  4)  x3 (x3  4x  4)  4x(x3  4x  4)  4(x3  4x  4)  x6  4x4  4x3  4x4 16x2 16x  4x3 16x 16  x6  8x4 16x2 16 99. (x  7)3  (x  7)(x  7)2  (x  7)(x2  2(x)(7)  72 )  (x  7)(x2 14x  49)  x(x2 14x  49)  7(x2 14x  49)  x3 14x2  49x  7x2  98x  343  x3  21x2 147x  343 100. (2x  5)3  (2x  5)(2x  5)2  (2x  5)((2x)2  (2)(2x)(5)  52 )  (2x  5)(4x2  20x  25)  2x(4x2  20x  25)  (5)(4x2  20x  25)  8x3  40x2  50x  20x2 100x 125  8x3  60x2 150x 125 101. (x  7)2  x2  2(x)(7)  72  x2 14x  49 102. (x  5)2  x2  2(x)(5)  52  x2 10x  25 103. (3x  7)2  (3x)2  2(3x)(7)  72  9x2  42x  49 104. (4x  2)2  (4x)2  2(4x)(2)  22  16x2 16x  4 105. (5x  9)2  (5x)2  2(5x)(9)  92  25x2  90x  81 106. (5x 1)(5x 1)  (5x)2 12  25x2 1 107. (7x  4)(7x  4)  (7x)2  42  49x2 16 108. (a  2b)(a  2b)  a2  (2b)2  a2  4b2 109. (2x  6)(2x  6)  (2x)2  62  4x2  36

406

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

110. (4a2  2b)(4a2  2b)  (4a2 )2  (2b)2  16a4  4b2

Chapter 10: Exponents and Polynomials

a2  3a  8 117. a  2 a  a  2a  6 a3  2a2 3

2

111. (3x 1)2  (3x)2  2(3x)(1) 12

3a2  2a 3a2  6a 8a  6 8a 16 22

 9x  6x 1 The area is (9x2  6x 1) square meters. 2

112. (5x  2)(x 1)  5x2  5x  2x  2  5x2  3x  2 The area is (5x2  3x  2) square miles. x2  21x  49  x2  21x  49  2 2  2 113. 7x2 7x 7x 7x 1 3 7    2 7 x x 3 2 3 2 114. 5a b 15ab  20ab  5a b  15ab  20ab 5ab 5ab 5ab 5ab  a2  3b  4

a 1 115. a  2 a  a  4 a2  2a a4 a2 6 a2

 a 1

3b2  4b 118. 3b  2 9b 3 18b 2  8b 1 9b  6b 3

2

2

12b  8b 12b2  8b 9b3 18b2  8b 1 3b  2

1 1  3b2  4b  3b  2

2x3  x2  0x  2 119. 2x 1 4x  4x3  x2  4x  3

2

a2  a  4

22 a3  a2  2a  6  a2  3a  8  a2 a2

4

4x4  2x3 2x3  x2 2x3  x2 4x  3 4x  2

6 a2

4x 116. x  5 4x  20x  7 4x2  20x 7 4x2  20x  7 7  4x  x5 x5

4x4  4x3  x2  4x  3 2x 1

2

1 

3

2

2x  x  2 

1 2x  1

x2 16x 117 120. x  6 x3 10x2  21x  18 x3  6x2 16x2  21x 16x2  96x 117x  18 117x  702 684 x3 10x2  21x 18 684  2 x 16x 117  x6 x6

Copyright © 2025 Pearson Education, Inc.

407


Chapter 10: Exponents and Polynomials 15x3  3x2  60 121.

122.

60

 (8 y2  3y 1)  (3y2  2)  8 y2  3y 1  3y2  2  5 y2  3y 1 134. (2x  5)(3x  2)  6x2  4x 15x 10

21a3b6  3a  3 21a3b6 3a 3    3 3 3 3  7a3b6  a 1

135. 4x(7x2  3)  4x(7x2 )  4x(3)  28x3 12x

The length of a side is (7a3b6  a 1) units.

136. (7x  2)(4x  9)  28x2  63x  8x 18  28x2  71x 18

123. 33  (3)(3)(3)  27 1  1  1  1  1  124.   2               2  2  2  8

 x3  x2 18x 18

2 3 5 13 25 4 7 125. (4xy )(x y )  4x y  4x y

18x9 27x3

2 93 2x6 x  3 3

 3a 3 43 27a12 3 a  127.  2   23 6  b b b   128. (2x

y )

a3b6 129.

91 a5b2

4

4 44 34

2

x

2

y

x16 

16 y12

 9a3(5)b6(2)  9a2b8

130. ( y2  4)  (3y2  6)   y2  4  3y2  6  2x2  10 131. (6x  2)  (5x  7)  6x  2  5x  7  11x  5

2

3

4

3

2a 4a 5 140. 8a  2a  4a  5  8a    3 3 2a 2a 2a3 2a3 2a3 2 5  4a 1  2a3 2 a x3 141. x  5 x2  2x 10 x2  5x 3x 10 3x 15 25 10 x 2  2x   x  3  25 x5 x5

132. (5x2  2x  6)  (x  4)  (5x2  2x  6)  (x  4)  5x2  2x  6  x  4  5x2  3x  2

408

2

138. (5x  4)  (5x)  2(5x)(4)  4  25x2  40x  16

139. (6x  3)(6x  3)  (6x)2  32  36x2  9

4 3

4 3 4

 6x2 11x 10

137. (x  3)(x2  4x  6)  x(x2  4x  6)  (3)(x2  4x  6)  x3  4x2  6x  3x2 12x 18

3

126.

133. (8 y2  3y 1)  (3y2  2)

  3x2 3x2 3x2 20  5x 1 x2 20   The width is  5x 1  feet. 2  x   3x2

3x2

15x3

ISM: Prealgebra and Introductory Algebra

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

13. ( y)( y)( y)  (1) y (1) y (1) y

2x2  7x  5 142. 2x  3 4x3  8x2 11x  4 4x3  6x2 14x2 11x 14x2  21x 10x  4 10x 15 19

 (1)3 y3  1 y3   y3 ; F 14.  y  y  y  (1) y  (1) y  (1) y  [(1)  (1)  (1)]y  3 y; D

4x3  8x2 11x  4  2x2  7x  5  19  2x  3 2x  3 

Chapter 10 Getting Ready for the Test 1. To simplify x2  x5 , the exponents are added: x2  x5  x25  x7 ; C.

25

(x )  x

10

 x ; A.

3. The expression x2  x5 cannot be simplified; E. 4. To simplify x

5

x2

x5 x2

Chapter 10 Test 1. 25  2  2  2  2  2  32 2. (3)4  (3)(3)(3)(3)  81 3. 34  (3 3 3 3)  81

2. To simplify (x2)5, the exponents are multiplied; 2 5

Chapter 10: Exponents and Polynomials

4. 43 

1 43

1 64

5. (3x2 )(5x9 )  3(5)(x2  x9 )  15x29  15x11

, the exponents are subtracted: y7

 x52  x3; D.

6.

5. Add 20y and 4y: 20y + 4y = (20 + 4)y = 24y; F.

7.

6. Subtract 20y and 4y: 20y  4y = (20  4)y = 16y; C. 7. Multiply 20y and 4y: 20 y  4 y  20  4  y  y  80 y2; E.

y2 r8 r3

72

y r

5

1

8(3)  r5 

 4x2 y3  8.

y

r5 2

 3 4   x y 

 

20 y 20 y 8. Divide 20y and 4y: 4 y    5 1  5; I. 4 y 1 9. 51  ; C 5

42 x22 y32 x32 y42 16x4 y6

x6 y8  16x46 y6(8)

 16x2 y14 

16 y14 x2

1 1 3 10. 2  3  ; D 2 8 11. y + y + y = 1y + 1y + 1y = (1 + 1 + 1)y = 3y; C 12. y  y  y  y1  y1  y1  y111  y3; B

Copyright © 2025 Pearson Education, Inc.

409


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

2 3 19. [(8x  7x  5)  (x  8)]  (4x  2)

62 x4 y1 9.

62 x4 y1    63 x3 y7 63 x3 y7  623 x4(3) y17  61 x1 y8 1 1 1    6 x y8 1  6xy8

 (8x2  7x  5)  (x3  8)  (4x  2)  8x2  7x  5  x3  8  4x  2  x3  8x2  3x  5 20. (3x  7)(x2  5x  2)  3x(x2  5x  2)  7(x2  5x  2)  3x(x2 )  3x(5x)  3x(2)  7(x2 )  7(5x)  7(2)  3x3 15x2  6x  7x2  35x 14  3x3  22x2  41x 14

5

10. 563, 000  5.6310 11. 0.0000863  8.6310 12. 1.5 10

3

2 2 21. 3x (2x  3x  7) 2  3x (2x2 )  3x2 (3x)  3x2 (7)  6x4  9x3  21x2

5

 0.0015

22. (x  7)(3x  5)  3x2  5x  21x  35  3x2 16x  35

13. 6.2310  62, 300 4

14. (1.2 105 )(3107 )  3.6 102  0.036 4xy2  7xyz  x3 y  2

15. a.

2

1 1  2 1 2 23. 3x  1  3x    (3x)     9x    5  5 25  5 24. (4x  2)2  (4x)2  2(4x)(2)  22  16x2 16x  4

Term

Numerical Coefficient

Degree of Terms

4xy 2

4

3

7xyz

7

3

x3 y

1

4

26. (x2  9b)(x2  9b)  (x2 )2  (9b)2  x4  81b2

2

2

0

27. 16t 2 1001  16(0)2 1001  1001 ft

2

25. (8x  3)2  (8x)2  2(8x)(3)  (3)2  64x2  48x  9

 16(1)2 1001  16 1001  985 ft

3

b. The degree of 4xy  7xyz  x y is 3 + 1 or 4.

 16(3)2 1001  144 1001  857 ft

16. 5x2  4x  7x2 11 8x

 16(5)2 1001  400 1001  601 ft

 (5  7)x2  (4  8)x 11  2x2 12x 11

28. (2x  3)(2x  3)  (2x)2  (3)2 3

2

3

17. (8x  7x  4x  7)  (8x  7x  6)  8x3  7x2  4x  7  8x3  7x  6  8x3  8x3  7x2  4x  7x  7  6  16x3  7x2  3x 13 3

18.

2

5x  x  5x  2  (8x3  4x2  x  7)

3

 4x2  9 The area is (2x  3)(2x + 3) or (4x2  9) square inches. 2

5x  x  5x  2 8x3  4x2  x  7 3x3  5x2  4x  5

410

4x2  2xy  7x 4x2 2xy 7x    29. 8xy 8xy 8xy 8xy x 1 7    2y 4 8y

Copyright © 2025 Pearson Education, Inc.


      

ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials 7. 2(3  7x) 15  2(3)  2(7x) 15  6 14x 15  14x  9

x2 30. x  5 x  7x 10 x2  5x 2x 10 2x  10 0 2

8. 5(x + 2) = 5  x + 5  2 = 5x + 10 9. 2(x  5)  4(2x  2)  2x 10  8x  8  2x  8x 10  8  6x  18

x2  7x 10   x2 x5

10. 2( y  3z 1)  (2)( y)  (2)(3z)  (2)(1)  2 y  6z  2

9x2  6x  4 31. 3x  2 27x  0x2  0x  8 27x3 18x2 3

18x2  0x 18x2 12x 12x  8 12x  8 16 3 27x  8  2  6x  4  16  9x 3x  2 3x  2

11.

y 12. 7

Cumulative Review Chapters 110 1. 92  81

13.

2. 5  125 3

3. 34  81 4. 33  27 5. a.

7+x

b.

15  x

c.

2x

y  5  2  6 y  5  8 y  5  5  8  5 y  3  20

7 y

 20  7 7 y  140

7(x  2)  9x  6 7x 14  9x  6 7x  7x 14  9x  7x  6 14  2x  6 14  6  2x  6  6 8  2x 8 2x  2 2 4  x

5

14. 6(2a 1)  (11a  6)  7 12a  6 11a  6  7 a 12  7 a 12 12  7 12 a  19

e.

x2

15.

6. a.

x+3

d.

x

or x  5

b.

3x

c.

2x

d.

10  x

e.

5x + 7

3

a9 5 5 3 5  a  9 3 5 3 a  15

Copyright © 2025 Pearson Education, Inc.

411


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

2

16.

y  16

d. 3, 2, 0,

3 3 2 3  y  16 2 3 2 y  24 3y   1 1 11  2   3y    3 3  11    2 y 33

5

30. 2 2

2

is a rational number and a real number.

5 1  5 5 1 y  25

32.

0.6x 10  1.4x 14 10(0.6x 10)  10(1.4x 14) 6x 100  14x 140 100  8x 140 40  8x 40 8x  8 8 5 x

 5y 

20. 0.250 

1

125

250

1 8

1

1000 5

21. 43.5  43 

4  43 

1

10

2

75

 10 

22. 10.75  10 

 43

1 2

3

100

 10

3

4 4 83  83  23. 105.083   105    105 1000  1000    7  7   31 24. 31.07   31   100  100  25. x  y = 2.8  0.92 = 1.88 26. x  y = 1.2  7.6 = 8.8 27. xy = 2.3  0.44 = 1.012 28. xy = 6.1  0.5 = 3.05 11, 112

b. 0, 11, 112

412

1

0.25x  0.10(x  3)  1.1 0.25x  0.10x  0.30  1.1 0.35x  0.30  1.1 0.35x  1.4 x4

1000

c.

1 5   2 2

31.

19. 0.125 

29. a.

All numbers in the given set are real numbers.

1

5y   1

2

e. f.

18.

, 11, 112

4

2

17.

1

33. 2(x  4)  4x 12 2x  8  4x 12 8  2x 12 20  2x 10  x The number is 10. 34. 3(x  2)  5x 10 3x  6  5x 10 6  2x 10 4  2x 4 2x  2 2 2 x The number is 2. 35. 30  2  2x  140 60  2x  140 2x  80 x  40 The length is 40 feet.

3, 2, 0, 11, 112 Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 10: Exponents and Polynomials

36. Use A = l  w with A = 2016 and l = 63. 2016  63w 2016 63w  63 63 32  w The width is 32 feet.

 2x3  42.  y   

38.

–4

–3

b.

c. 40. a.

b.

c.

y

–1

0

1

2

3

4

y

4x 1 25 y6 1 27x21

4

5

46. 9x3  x3  (9 1)x3  8x3 47. 5x2  6x  9x  3  5x2  3x  3 48. 2x  x2  5x  4x2   x2  4x2  2x  5x  5x2  7 x 49. 7 x(x2  2x  5)  7x(x2 )  7 x(2x)  7x(5)  7x3 14x2  35x

4

50. 2x(x2  x 1)  2x(x2 )  (2x)(x)  (2x)(1)  2x3  2x2  2x

(9 y5 )2  92 y52  81y10

5 2 5 2 51. 9x 12x  3x  9x  12x  3x

1 5 15 6 y 5 y  y y  y y

3x2

3

2 8 2    3  27  3  3 3 2

6

3 3 3 45. 9x  x  (9 1)x  10x

–2

t t t    4  16  2  2

3

2

 3

x7  x4  x74  x11 4

2

44. (3x7 )3  33 (x7 )3  33 x21 

3x  4  2x  6 3x  2x  4  2x  2x  6 x  4  6 x  4  4  6  4 x  10 {x|x  10}

39. a.

2 3 2 2 6 2  2 (x )  2 x  y

43. (5 y3 )2  52 y32  52 y6 

37. 4x  7  9 4x  16 x4 {x|x  4} –5

2

2

3 2

32

(8x )  8 (x )  64x

 64x

6

3x2 3x2 1  3x3  4  x

3x2

7 2 7 2 52. 4x 12x  2x  4x  12x  2x

2x

3

2x 2x 2x  2x6  6x 1

 3a2   33 a23  33 a6  b3  41.  b  27a6 b3 b3  

Copyright © 2025 Pearson Education, Inc.

413


Chapter 11 Section 11.1 Practice Exercises 1. a.

6.

45 = 3  3  5 75 = 3  5  5 GCF = 3  5 = 15

2 7. 5

b. 32 = 2  2  2  2  2 33 = 3  11 There are no common prime factors; thus, the GCF is 1. c.

2. a.

b.

3.

a.

b.

The GCF is y4 , since 4 is the smallest exponent to which y is raised.

6x2  2  3 x2 9x4  3 3 x4

a2 

5

1

a2 (2a3  4a  1)

5

8. 6a3b  3a3b2  9a2b4  3a2b(2a  ab  3b3 ) 9. 7(p + 2) + q(p + 2) = (p + 2)(7 + q)

11. ab  7a  2b  14  (ab  7a)  (2b  14)  a(b  7)  2(b  7)  (b  7)(a  2) 12. 28x3  7x2  12x  3  (28x3  7x2 )  (12x  3)  7x2 (4x 1)  3(4x 1)  (4x 1)(7x2  3)

12x5  1 2  2  3 x5

 (2xy  5 y2 )  (4x 10 y)  y(2x  5 y)  2(2x  5 y)

GCF  3 x2  3x2

 (2x  5 y)( y  2)

16y = 1  2  2  2  2  y

14. 3x2  4xy  3x  4 y  (3x2  4xy)  (3x  4 y)  x(3x  4 y)  1(3x  4 y)  (3x  4 y)(x 1)

The GCF of a5 , a, and a3 is a.

2

ab .

The GCF of terms 10y and 25 is 5. 10y + 25 = 5  2y + 5  5 = 5(2y + 5) 4

9

4

b. The GCF of x and x is x . x4  x9  x4 (1)  x4 (x5 )  x4 (1 x5 ) 10x3  8x2  2x  2x(5x2 )  2x(4x)  2x(1)  2x(5x2  4x 1)

414

1

13. 2xy  5 y2  4x 10 y

Thus, the GCF of a5b4, ab3 , and a3b2 is

5.

5

a3 

The GCF is x1 or x, since 1 is the smallest exponent on x.

The GCF of b4 , b3 , and b2 is b2.

a.

4

 ( p  q)(7xy3 1)

40 y4  2  2  2  5  y4 GCF = 2  2  y = 4y

4.

a5 

10. 7xy3 ( p  q)  ( p  q)  7xy3 ( p  q) 1( p  q)

14 = 2  7 24 = 2  2  2  3 60 = 2  2  3  5 GCF = 2

20 y6  1 2  2  5  y6

c.

4x3 12x  4x(x2  3)

15. 3xy  4  x 12 y  (3xy  x)  (12 y  4)  x(3y 1)  4(3 y 1)  (3 y  1)(x  4) 16. 2x  2  x3  3x2  2(x 1)  x2 (x  3) There is no common binomial factor that can now be factored out. This polynomial is not factorable by grouping. 17. 15xz 15 yz  5xy  5 y2  5(3xz  3yz  xy  y2 )  5[3z(x  y)  y(x  y)]  5(x  y)(3z  y) Vocabulary, Readiness & Video Check 11.1 1. Since 5  4 = 20, the numbers 5 and 4 are called factors of 20.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

2. The greatest common factor of a list of integers is the largest integer that is a factor of all the integers in the list. 3. The greatest common factor of a list of common variables raised to powers is the variable raised to the least exponent in the list. 4. The process of writing a polynomial as a product is called factoring. 5. A factored form of 7x + 21 + xy + 3y is 7(x + 3) + y(x + 3). false 6.

A factored form of 3x3  6x  x2  2 is 3x(x2  2). false

Chapter 11: Factoring Polynomials

8. The GCF of x3 , x2 , and x5 is x2 . 10. The GCF of y8 , y10 , and y12 is y8. 12. The GCF of p7 , p8 , and p9 is p7 . The GCF of q, q2 , and q3 is q. Thus, the GCF of p7 q, p8q2 , and p9q3 is p7q. 14. 20y = 2  2  5  y 15 = 3  5 GCF = 5 16. 32x5  2  2  2  2  2  x5

7. 14 = 2  7

18x2  2  3  3  x2

8. 15 = 3  5

GCF  2  x2  2x2

9. The GCF of 18 and 3 is 3. 18. 21x3  1 3 7  x3 14x  2  7  x GCF  7  x  7x

10. The GCF of 7 and 35 is 7. 11. The GCF of 20 and 15 is 5. 12. The GCF of 6 and 15 is 3.

20. 15 y2  3  5  y2

13. The GCF of a list of numbers is the largest number that is a factor of all numbers in the list.

5 y7  5  y7

14. There is no need to factor the variable parts. The GCF of common variable factors is the variable raised to the smallest exponent.

GCF  5  y2  5 y2

15. When factoring out a GCF, the number of terms in the other factor should be the same as the number of terms in your original polynomial. 16. Look for a GCF other than 1 or 1; four terms Exercise Set 11.1

20 y3  1 2  2  5  y3

22. 7x3 y3  7  x3  y3 21x2 y2  1 3  7  x2  y2 14xy4  2  7  x  y4 GCF  7  x  y2  7xy2 24. 40x7 y2 z  2  2  2  5  x7  y2  z

2. 36 = 2  2  3  3 90 = 2  3  3  5 GCF = 2  3  3 = 18

64x9 y  2  2  2  2  2  2  x9  y GCF  2  2  2  x7  y  8x7 y 26. 18a + 12 = 6(3a + 2)

4. 30 = 2  3  5 75 = 3  5  5 135 = 3  3  3  5 GCF = 3  5 = 15

28. 42x 7 = 7(6x  1) 30. y5  6 y4  y4 ( y  6)

6. 15 = 3  5 25 = 5  5 27 = 3  3  3 GCF = 1 since there are no common prime factors.

32. 5x2 10x6  5x2 (1 2x4 ) 34. 10xy 15x2  5x(2 y  3x)

Copyright © 2025 Pearson Education, Inc.

415


Chapter 11: Factoring Polynomials

ISM: Prealgebra and Introductory Algebra

3 2 2 38. 12x 16x  8x  4x(3x  4x  2)

68. 6x  7 y  42  xy  6x  42  xy  7 y  6(x  7)  y(x  7)  (x  7)(6  y)

40. x9 y6  x3 y5  x4 y3  x3 y3

70. 2x3  x2 10x  5  x2 (2x 1)  5(2x 1)

36. 7x + 21y  7 = 7(x + 3y  1)

 (2x 1)(x2  5)

 x3 y3 (x6 y3  y2  x 1) 42. 14x3 y  7x2 y  7xy  7xy(2x2  x 1) 44. 9 y6  27 y4 18 y2  6  3(3y6  9 y4  6 y2  2) 5 3 2 2 46. 2 y7  4 y  y  y 5 7 5 5 1 6 4  y(2 y  4 y  3y  2) 5

72. 7x  21 x3  2x2  7(x  3)  x2 (x  2) The polynomial is not factorable by grouping. 74. 5xy 15x  6 y 18  5x( y  3)  6( y  3)  ( y  3)(5x  6) 76. 6m2  5mn  6m  5n  m(6m  5n) 1(6m  5n)  (6m  5n)(m 1)

48. x( y2 1)  3( y2 1)  ( y2 1)(x  3)

78. 90 15 y2 18x  3xy2  3(30  5 y2  6x  xy2 )  3[5(6  y2 )  x(6  y2 )]

50. 8(x + 2)  y(x + 2) = (x + 2)(8  y) 52. q(b3  5)  (b3  5)  q(b3  5) 1(b3  5)  (b3  5)(q 1) 54. 7y  21 = 7(y) + (7)(3) = 7(y + 3)

 3(6  y2 )(5  x) 80. 16x2  4xy2  8xy  2 y3  2(8x2  2xy2  4xy  y3)  2[2x(4x  y2 )  y(4x  y2 )]  2(4x  y2)(2x  y)

56. 5 y3  y6   y3 (5)  ( y3 )( y3 ) 82. ( y  3)( y  6)  y2  6 y  3y 18  y2  9 y 18

  y3[5  ( y3)]   y3(5  y3)

84. (x  5)(x 10)  x2 10x  5x  50  x2  5x  50

58. 5m6 10m5  5m3  5m3 (m3 )  (5m3 )(2m2 )  (5m3 )(1)  5m3[m3  (2m2 ) 1]  5m3(m3  2m2 1) 60. x3  4x2  3x 12  x2 (x  4)  3(x  4)  (x  4)(x2  3) 62. xy  y  2x  2  y(x 1)  2(x 1)  (x 1)( y  2) 64. 16x3  28x2 12x  21  4x2 (4x  7)  3(4x  7)  (4x  7)(4x2  3) 66. 8w2  7wv  8w  7v  w(8w  7v) 1(8w  7v)  (8w  7v)(w 1)

416

86. 4  5 = 20 4+5=9 4 and 5 have a product of 20 and a sum of 9. 88. 2  (8) = 16 2 + (8) = 10 2 and 8 have a product of 16 and a sum of 10. 90. 3  3 = 9 3 + 3 = 0 3 and 3 have a product of 9 and a sum of 0. 92. 9  4 = 36 9 + 4 = 5 9 and 4 have a product of 36 and a sum of 5. 94. 8a  24 = 8(a  3), which is choice b.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

96. (x + 5)(x + y) is factored.

45x2  900x 11, 520

c.

 15(3x2 ) 15(60x)  15(768)

98. Since 3x(a + 2b) + 2(a + 2b) = (a + 2b)(3x + 2), the given expression is not factored. 100. a.

11x2  99x  3828  11(1)2  99(1)  3828  11 99  3828  3740 It is expected that 3740 thousand students will graduate from U.S. high schools in 2026.

b. 2030 corresponds to x = 5. 11x2  99x  3828  11(5)2  99(5)  3828  11(25)  99(5)  3828  275  495  3828  3608 It is expected that 3608 thousand students will graduate from U.S. high schools in 2030.

 15(3x2  60x  768) 45x2  900x 11, 520

d.

 15(3x2 ) 15(60x) 15(768)  15(3x2  60x  768) 104. The area of a rectangle is lw. The area of the shaded region is the area of the small rectangle subtracted from the area of the large rectangle. 12x(x2 )  2x  12x3  2x  2x(6x2 1) Area  width  length

106.

4n  24n  4n(n3  6) 4

The length is (n3  6) units. 108. answers may vary

c.

d.

102. a.

11x2  99x  3828  11 x2 11(9x) 11 348

110. answers may vary

 11(x2  9x  348)

Section 11.2 Practice Exercises

69% of 3608 thousand = 0.69(3608 thousand) = 2489.52 thousand In 2030, it is expected that 2489.52 thousand U.S. high school graduates will immediately pursue higher education.

Factors of 20

Sum of Factors

1, 20

21

2, 10

12

4, 5

9

Thus, x2  12x  20  (x 10)(x  2).

45x2  900x 11, 520  45(6)2  900(6) 11, 520  45(36)  900(6) 11, 520  1620  5400 11, 520  15, 300 The annual U.S. bottled water consumption in 2021 was approximately 15,300 million gallons.

b.

1.

2025 corresponds to x = 10. 45x2  900x 11, 520  45(10)2  900(10) 11, 520  45(100)  900(10) 11, 520  4500  9000 11, 520  16, 020 Annual U.S. bottled water consumption is predicted to be 16,020 million gallons in 2025.

2. a.

Factors of 22

Sum of Factors

1, 22

23

2, 11

13

x2  23x  22  (x 1)(x  22) b.

Factors of 50

Sum of Factors

1, 50

51

2, 25

27

5, 10

15

x2  27x  50  (x  2)(x  25)

Copyright © 2025 Pearson Education, Inc.

417


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

3.

Sum of Factors

1, 36

35

1, 36

35

2, 18

16

2, 18

16

3, 12

9

Two factors of 4 whose sum is 3 are 4 and 1.

3, 12

9

x(x2  3x  4)  x(x  4)(x 1)

4, 9

5

4, 9

5

6, 6

0

4. a.

4(x2  6x  9)  4(x  3)(x  3) or 4(x  3)2 b.

 5x 3 (x 1)(x  6) Vocabulary, Readiness & Video Check 11.2

Two factors of 40 whose sum is 3 are 8 and 5. q  3q  40  (q  8)(q  5)

b. Two factors of 48 whose sum is 2 are 8 and 6. y2  2 y  48  ( y  8)( y  6) 5. Since there are no two numbers whose product is 15 and whose sum is 6, the polynomial is prime.

b.

x3  3x2  4x  x(x2  3x  4)

10. 5x5  25x4  30x3  5x3 (x2  5x  6)

2

6. a.

9. a.

Two factors of 9 whose sum is 6 are 3 and 3.

x2  5x  36  (x  9)(x  4)

1. To factor x2  7x  6, we look for two numbers whose product is 6 and whose sum is 7. true 2. We can write the factorization (y + 2)(y + 4) also as (y + 4)(y + 2). true 3. The factorization (4x  12)(x  5) is completely factored. false 4. The factorization (x + 2y)(x + y) may also be written as (x  2 y)2. false 2 5. x  9x  20  (x  4)(x  5)

Two factors of 14 y2 whose sum is 9y are 2y and 7y.

2 6. x 12x  35  (x  5)(x  7)

x2  9xy 14 y2  (x  2 y)(x  7 y)

2 7. x  7x 12  (x  4)(x  3)

Two factors of 30b2 whose sum is 13b are 3b and 10b.

2 8. x 13x  22  (x  2)(x 11)

a2 13ab  30b2  (a  3b)(a 10b) 7. Two factors of 12 whose sum is 8 are 6 and 2. x4  8x2 12  (x2  6)(x2  2) 8. 48 14x  x2  x2 14x  48 Two factors of 48 whose sum is 14 are 6 and 8. x2 14x  48  (x  6)(x  8)

418

4x2  24x  36  4(x2  6x  9)

Factors of 36

2 9. x  4x  4  (x  2)(x  2) 2 10. x 10x  24  (x  6)(x  4)

11. 15 is positive, so its factors would have to be either both positive or both negative. Since the factors need to sum to 8, both factors must be negative. 12. Since the sum of the factors is 3, the factors are 2 and 5 (2 + 5 = 3). (In other words, the factor with the smaller absolute value is negative so that the sum is positive.) If we accidentally choose factors whose sum is 3, simply “switch” the signs of the factors.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Exercise Set 11.2 2. Two factors of 8 whose sum is 6 are 4 and 2. x2  6x  8  (x  4)(x  2)

Chapter 11: Factoring Polynomials

26. 3x3 12x2  36x  3x(x2  4x 12)  3x(x  6)(x  2) 28. x2  4xy  77 y2  (x 11y)(x  7 y)

4. Two factors of 11 whose sum is 12 are 11 and 1. y2 12 y 11  ( y 11)( y 1)

30. x2 19x  60  (x  4)(x 15) 4 2 2 2 32. x  5x 14  (x  7)(x  2)

6. Two factors of 25 whose sum is 10 are 5 and 5. x2 10x  25  (x  5)(x  5) or (x  5)2 8. Two factors of 30 whose sum is 1 are 6 and 5. x2  x  30  (x  6)(x  5) 10. Two factors of 32 whose sum is 4 are 8 and 4.

34. r 2 10r  21  (r  7)(r  3) 2 2 36. x  xy  6 y  (x  3y)(x  2 y)

38. 4x2  4x  48  4(x2  x 12)  4(x  4)(x  3) 40. 2x4  24x2  70  2(x4 12x2  35)  2(x2  7)(x2  5)

x2  4x  32  (x  8)(x  4) 12. Since there are no two numbers whose product is 5 and whose sum is 7, the polynomial is prime.

42. x2  x  42  (x  7)(x  6) 44. x2  4x  10 is prime.

2

14. Two factors of 8 y whose sum is 6y are 4y and 2y.

46. x2  9x 14  (x  7)(x  2)

x2  6xy  8 y2  (x  4 y)(x  2 y) 16. Two factors of 70 whose sum is 3 are 10 and 7. y4  3y2  70  ( y2 10)( y2  7) 18. 17  18n  n2  n2  18n  17 Two factors of 17 whose sum is 18 are 17 and 1.

48. 3x3  3x2 126x  3x(x2  x  42)  3x(x  7)(x  6) 50. 3x2 y  9xy  45 y  3y(x 2  3x 15) 52. x2  4x  32  (x  8)(x  4)

17 18n  n2  n2  18n 17  (n 17)(n  1)

54. x2  3xy  4 y2  (x  4 y)(x  y)

20. 6q  27  q2  q2  6q  27 Two factors of 27 whose sum is 6 are 3 and 9.

56. 50  20t  2t 2  2t 2  20t  50

2

 2(t2 10t  25)

2

6q  27  q  q  6q  27  (q  3)(q  9) 22. Two factors of 18b2 whose sum is 9b are 3b and 6b. a2  9ab  18b2  (a  3b)(a  6b)

 2(t  5)(t  5) or 2(t  5)2 58. x3  3x2  28x  x(x2  3x  28)  x(x  7)(x  4) 6 5 4 4 2 60. 3x  30x  72x  3x (x 10x  24)

24. 3x2  30x  63  3(x2 10x  21)  3(x  7)(x  3)

 3x4 (x  6)(x  4) 62. 7a3b  35a2b2  42ab3  7ab(a2  5a  6b2 )  7ab(a  3b)(a  2b)

Copyright © 2025 Pearson Education, Inc.

419


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

64. 48  20n  2n2  2n2  20n  48  2(n2 10n  24)  2(n  6)(n  4) 66. x2  8x  7  1(x2  8x  7)  1(x  7)(x 1) 68.

70.

1 2 5 1 y  y  8  ( y2  5 y  24) 3 3 3 1  ( y  8)( y  3) 3

90. The factors of c must sum to 4. Since c is positive, both factors must have the same sign. 1 + (3) = 4; (1)(3) = 3 2 + (2) = 4; (2)(2) = 4 The possible values of c are 3 and 4. 92. The factors of 15 must sum to b. Since 15 is positive and b is positive, both factors of 15 must be positive. 1 + 15 = 16; (1)(15) = 15 3 + 5 = 8; (3)(5) = 15 The possible values of b are 8 and 16. 94. x2n  5xn  6  (xn  2)(xn  3)

a2b3  ab2  30b  b(a2b2  ab  30)  b(ab  5)(ab  6)

Section 11.3 Practice Exercises

72. (3x  2)(x  4)  3x2 12x  2x  8  2 3x 14x  86

1. a.

Factors of 10: 10 = 1  10, 10 = 2  5 5x2  27x 10  (5x  2)(x  5)

74. (4z  7)(7z 1)  28z  4z  49z  7 2

 28z2  53z  7 b. 76. ( y  5x)(6 y  5x)  6 y2  5xy  30xy  25x2

78. To factor x2 13x  42, think of two numbers whose product is 42 and whose sum is 13.

2. a.

80. answers may vary

b. Factors of 6x2: 6x2  6x  x, 6x2  3x  2x Factors of 1: 1 = 1  1 6x2  5x 1  (3x 1)(2x 1)

 4x3  24x2  32x  4x(x2  6x  8)  4x(x  4)(x  2) 2

3. a.

3x2  14x  5  (3x 1)(x  5)

84. 16t  96t 112  16(t  6t  7)  16(t  7)(t 1) 1 

Factors of 3x2: 3x2  3x  x Factors of 5: 5 = 5  1, 5 = 1  5

2

Factors of 2x2: 2x2  2x  x Factors of 12: 12 = 1  12, 12 = 2  6, 12 = 3  4 2x2 11x 12  (2x  3)(x  4)

82. P  2l  2w  2(12x2 )  2(2x3 16x)  24x2  4x3  32x

1

88. y2 (x 1)  2 y(x 1) 15(x 1)

2

1 86. x  x    x   x   or  x   4  2  2 2   1

Factors of 4x2: 4x2  4x  x, 4x2  2x  2x Factors of 5: 5 = 1  5 4x2 12x  5  (2x  5)(2x 1)

 6 y2  25xy  25x2

2

Factors of 5x2: 5x2  5x  x

b.

Factors of 35x2 : 35x2  35x  x, 35x2  5x  7 x Factors of 4: 4 = 1  4, 4 = 1  4, 4 = 2  2 35x2  4x  4  (5x  2)(7x  2)

 (x  1)( y  2 y 15)  (x  1)( y  5)( y  3) 2

420

Copyright © 2025 Pearson Education, Inc.


6.

ISM: Prealgebra and Introductory Algebra

4. a.

Factors of 14x2: 14x2  14x  x, 14x2  7 x  2x

Factors of 2 y2: 2 y2  2 y  y, 2 y2  2 y   y 14x2  3xy  2 y2  (7x  2 y)(2x  y) b. Factors of 12a2: 12a2  12a  a, 12a2  6a  2a, 12a2  3a  4a Factors of 3b2: 3b2  3b  b,  3b2  3b  b

12a2 16ab  3b2  (6a  b)(2a  3b) 5. Factors of 2x4: 2x4  2x2  x2 Factors of 7: 7 = 7  1, 7 = 7  1 2x4  5x2  7  (2x2  7)(x2  1) a.

3x3 17x2 10x  x(3x2 17x 10) Factors of 3x2: 3x2  3x  x Factors of 10: 10 = 1  10, 10 = 2  5 x(3x2 17x  10)  x(3x  2)(x  5)

b.

6xy2  33xy 18x  3x(2 y2 11y  6)

Chapter 11: Factoring Polynomials

4. 5x2  61x  12 factors as (5x + 1)(x + 12), which is choice a. 5. Consider the factors of the first and last terms and the signs of the trinomial. Continue to check possible factors by multiplying until we get the middle term of the trinomial. 6. If the GCF has been factored out, then neither binomial can contain a common factor other than 1 or 1. This helps limit our choice of factors for one or both binomials since we cannot choose factors that would give the terms in either binomial a common factor. Exercise Set 11.3 2. 2 y2  2 y  y 25 = 5  5 2 y2 15 y  25  (2 y  5)( y  5) 4. 6 y2  2 y  3y 10 = 5  2 6 y2  11y 10  (2 y  5)(3y  2) 6. 8 y2  2 y  4 y 55 = 5  11 8 y2  2 y  55  (2 y  5)(4 y 11)

Factors of 2 y2: 2 y2  2 y  y Factors of 6: 6 = 1  6, 6 = 1  6, 6 = 2  3, 6 = 2  3

8. Factors of 3x2: 3x2  3x  x Factors of 4: 4 = 1  4, 4 = 2  2

3x(2 y2 11y  6)  3x(2 y 1)( y  6)

3x2  8x  4  (3x  2)(x  2)

7. 5x2 19x  4  1(5x2 19x  4) Factors of 5x2: 5x2  5x  x Factors of 4: 4 = 4  1, 4 = 4  1, 4 = 2  2 1(5x2 19x  4)  1(x  4)(5x 1)

10. Factors of 21x2: 21x2  21x  x, 21x2  3x  7 x Factors of 10: 10 = 1  10, 10 = 2  5 21x2  41x 10  (7x  2)(3x  5) 12. Factors of 36r 2: 36r2  36r  r, 36r2  18r  2r, 36r2  12r  3r, 36r2  9r  4r, 36r 2  6r  6r

Vocabulary, Readiness & Video Check 11.3 1. 2x2  5x  3 factors as (2x + 3)(x + 1), which is choice d.

Factors of 24: 24 = 1  24, 24 = 1  24, 24 = 2  12, 24 = 2  12, 24 = 3  8, 24 = 3  8, 24 = 4  6, 24 = 4  6 36r 2  5r  24  (9r  8)(4r  3)

2. 7 x2  9x  2 factors as (7x + 2)(x + 1), which is choice b. 3. 3x2  31x  10 factors as (3x + 1)(x + 10), which is choice c. Copyright © 2025 Pearson Education, Inc.

421


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

14. Factors of 3x2: 3x2  3x  x Factors of 63: 63 = 1  63, 63 = 1  63, 63 = 3  21, 63 = 3  21, 63 = 7  9, 63 = 7  9 3x2  20x  63  (3x  7)(x  9) 16. Factors of 12x2: 12x2  12x  x, 12x2  6x  2x, 12x2  4x  3x

12x2 17x  5  (12x  5)(x 1) 2

2

2a2  11ab  5b2  (2a  b)(a  5b) 32. Factors of 3r 2: 3r 2  3r  r Factors of 8: 8 = 8  1, 8 = 8  1, 8 = 2  4, 8 = 2  4

34. Factors of 42a 2: 42a2  42a  a, 42a2  21a  2a, 42a2  14a  3a,

18. y  8 y  9  8 y  y  9 2

Factors of 5b2 : 5b2  5b  b

3r 2 10r  8  (3r  2)(r  4)

Factors of 5: 5 = 1  5 2

30. Factors of 2a2: 2a2  2a  a

42a2  7a  6a 2

Factors of 8 y : 8 y  8 y  y, 8 y  4 y  2 y Factors of 9: 9 = 1  9, 9 = 1  9, 9 = 3  3 8 y2  y  9  ( y 1)(8 y  9) 20. Factors of 8x2: 8x2  8x  x, 8x2  4x  2x

Factors of 6: 6 = 6  1, 6 = 3  2 42a2  43a  6  (7a  6)(6a 1) 36. Factors of 3n2: 3n2  3n  n Factors of 5: 5 = 1  5 3n2  20n  5 is prime.

Factors of 3y 2 : 3y2  3y   y 8x2 14xy  3y2  (4x  y)(2x  3y) 22. Factors of 25n2: 25n2  25n  n, 25n2  5n  5n Factors of 6: 6 = 6  1, 6 = 6  1, 6 = 2  3, 6 = 2  3

38. Factors of 24x2 : 24x2  24x  x, 24x2  12x  2x, 24x2  8x  3x, 24x2  6x  4x Factors of 15: 15 = 1  15, 15 = 3  5 24x2  49x 15  (8x  3)(3x  5) 40. 8a3 14a2  3a  a(8a2 14a  3)

25n2  5n  6  (5n  2)(5n  3)

Factors of 8a2: 8a2  8a  a, 8a2  4a  2a 24. 7 x  12  x  x  7 x  12 2

2

Factors of x2: x2  x  x Factors of 12: 12 = 1  12, 12 = 2  6, 12 = 3  4 x  7x 12  (x  3)(x  4)

Factors of 3: 3 = 1  3 8a3 14a2  3a  a(4a 1)(2a  3) 42. 12x2 14x 10  2(6x2  7x  5)

2

Factors of 6x2: 6x2  6x  x, 6x2  3x  2x Factors of 5: 5 = 1  5, 5 = 1  5

26. Factors of 2x2: 2x2  2x  x Factors of 72: 72 = 1  72, 72 = 1  72, 72 = 2  36, 72 = 2  36, 72 = 3  24, 72 = 3  24, 72 = 4  18, 72 = 4  18, 72 = 6  12, 72 = 6  12, 72 = 8  9, 72 = 8  9 2x2  7x  72  (2x  9)(x  8)

Factors of 4t 2: 4t2  4t  t, 4t 2  2t  2t Factors of 7: 7 = 1  7, 7 = 1  7

422

44. 16t  15t 2 15  15t 2  16t 15 Factors of 15t 2 : 15t2  15t  t, 15t2  5t  3t Factors of 15: 15 = 15  1, 15 = 15  1, 15 = 5  3, 15 = 5  3 15t2 16t 15  (5t  3)(3t  5)

28. 3t  4t 2  7  4t 2  3t  7

4t2  3t  7  (4t  7)(t 1)

12x2 14x 10  2(3x  5)(2x 1)

2 2 46. 8x y  34xy  84 y  2 y(4x 17x  42)

Factors of 4x2: 4x2  4x  x, 4x2  2x  2x

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra Factors of 42: 42 = 42  1, 42 = 42  1, 42 = 21  2, 42 = 21  2, 42 = 14  3, 42 = 14  3, 42 = 7  6, 42 = 7  6 8x2 y  34xy  84 y  2 y(4x  7)(x  6) 2

Chapter 11: Factoring Polynomials

62. 6x3  28x2 16x  2x(3x2 14x  8) Factors of 3x2: 3x2  3x  x Factors of 8: 8 = 1  8, 8 = 2  4 6x3  28x2 16x  2x(3x  2)(x  4)

2

48. Factors of 6x : 6x  6x  x, 6x  3x  2x 2

Factors of 10: 10 = 1  10, 10 = 1  10, 10 = 5  2, 10 = 5  2 6x2 11x 10  (3x  2)(2x  5) 50. 5x2  75x  60  5(x2 15x 12) x2 15x  12 is prime, so 5(x2 15x  12) is a factored form of 5x2  75x  60.

Factors of 6x2: 6x2  6x  x, 6x2  3x  2x Factors of 12: 12 = 1  12, 12 = 2  6, 12 = 3  4 12x3  34x2  24x  2x(3x  4)(2x  3) 4

3

2 2

66. 42x  99x y 15x y

 3x2 (14x2  33xy  5 y2 ) Factors of 14x2: 14x2  14x  x, 14x2  7x  2x

52. Factors of 54a 2: 5a2  54a  a, 54a2  27a  2a, 54a2  18a  3a,

Factors of 5 y2: 5 y2   y  5 y,

54a2  9a  6a

5 y2  y  5 y

Factors of 8b2 : 8b2  8b  b, 8b = 8b  b, 8b = 4b  2b, 8b = 4b  2b

42x4  99x3 y 15x2 y2  3x2 (2x  5 y)(7x  y)

54a2  39ab  8b2  (9a  8b)(6a  b) 54.

3 2 2 64. 12x  34x  24x  2x(6x 17x 12)

2

2

x  4x  21  1(x  4x  21)  1(x  3)(x  7)

56. 6x3  31x2  5x  x(6x2  31x  5)

68. 15x2  26x  8  1(15x2  26x  8) Factors of 15x2: 15x2  15x  x, 15x2  5x  3x Factors of 8: 8 = 1  8, 8 = 2  4 15x2  26x  8  1(3x  4)(5x  2) 70. 9q4  42q3  49q2  q2 (9q2  42q  49)

Factors of 6x2: 6x2  6x  x, 6x2  3x  2x

Factors of 9q2: 9q2  9q  q, 9q2  3q  3q

Factors of 5: 5 = 1  5

Factors of 49: 49 = 1  49, 49 = 7  7

6x3  31x2  5x  x(x  5)(6x 1)

9q4  42q3  49q2  q2 (3q  7)(3q  7) or

58. Factors of 36x2: 36x2  36x  x, 36x2  9x  4x, 36x2  6x  6x Factors of 14: 14 = 1  14, 14 = 1  14, 14 = 7  2, 14 = 7  2 36x2  55x 14  (4x  7)(9x  2) 60. 24 y2 x  7 yx  5x  x(24 y2  7 y  5) Factors of 24 y2: 24 y2  24 y  y,

q2 (3q  7)2 2 2 72. 3x  8x 16  1(3x  8x 16)

Factors of 3x2: 3x2  3x  x Factors of 16: 16 = 1  16, 16 = 1  16, 16 = 8  2, 16 = 8  2, 16 = 4  4 3x2  8x 16  1(3x  4)(x  4) 74. 5  55x  50x2  50x2  55x  5  5(10x2 11x  1)

24 y2  12 y  2 y, 24 y2  8 y  3y, 24 y2  6 y  4 y Factors of 5: 5 = 1  5, 5 = 1  5

Factors of 10x2: 10x2  10x  x, 10x2  5x  2x Factors of 1: 1 = 1  1

24 y2 x  7 yx  5x  x(8 y  5)(3y 1)

5  55x  50x2  5(10x 1)(x 1)

Copyright © 2025 Pearson Education, Inc.

423


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

76. Factors of 4r 4: 4r4  4r2  r2 , 4r2  2r 2  2r2 Factors of 15: 15 = 1  15, 15 = 1  15, 15 = 3  5, 15 = 3  5 4

2

2

100. Factors of 2z 2: 2z2  2z  z Factors of 7: 7 = 1  7, 7 = 1  7 (2z 1)(z  7)  2z2 13z  7

2

4r 17r 15  (4r  3)(r  5) 2 2

(2z 1)(z  7)  2z2 13z  7 (2z  7)(z 1)  2z2  5z  7

2 2

78. Factors of 3a b : 3a b  3ab  ab Factors of 1: 1 = 1  1 There is no combination that gives the correct middle term, so 3a2b2  12ab  1 is prime. 5

3 2

(2z  7)(z 1)  2z2  5z  7 Since b is positive, the possible values are 5 and 13. 2 102. (3x  2)(x  2)  3x  8x  4

4

80. 5m  26m h  5mh 4 2 2 4  m(5m  26m h  5h )

(3x  5)(x 1)  3x2  8x  5 Therefore, c can be 4 or 5.

Factors of 5m4 : 5m4  5m2  m2 Factors of 5h4: 5h4  5h2  h2

104. answers may vary

5m5  26m3h2  5mh4  m(5m2  h2 )(m2  5h2 )

Section 11.4 Practice Exercises 1.

82. (2x  9)(2x  9)  (2x)2  92  4x2  81 84. (x  3)2  x2  2x(3)  32  x2  6x  9 2 2 2 86. (3x  5)  (3x)  2(3x)(5)  5

 9x2  30x  25 88. The two shortest bars correspond to Snapchat and Pinterest, so these two apps have the lowest percent of U.S. users.

5x2  61x  12

5  12 = 60 1  60 = 60 1 + 60 = 61 5x2  61x  12  5x2  x  60x 12  x(5x 1) 12(5x 1)  (5x 1)(x 12) 2. a.

3x2 14x  8  3x2 12x  2x  8  3x(x  4)  2(x  4)  (x  4)(3x  2)

90. answers may vary 92. a, b, and d are not factored forms of 4x2  19x  12. The middle term on a is 14x, on b is 16x, and on d is 16x.

b.

94. 2(22 y  7)  2(3y2 )  44 y 14  6 y2  6 y2  44 y 14  2(3y2  22 y  7)  2(3y 1)( y  7) 2 96. 27x  2x  

1  1  1   3x   9x   9 3 3    

 (a  3)3(3x2  28x  25)

12x2 19x  5 12  5 = 60 15  4 = 60 15 + 4 = 19 12x2 19x  5  12x2 15x  4x  5  3x(4x  5) 1(4x  5)  (4x  5)(3x 1) 2

98. 3x2 (a  3)3  28x(a  3)3  25(a  3)3

3x2 14x  8 3  8 = 24 12  2 = 24 12 + 2 = 14

3. a.

15  2 = 30 3  10 = 30 3 + (10) = 13

 (a  3)3(3x  25)(x 1)

424

2

30x  26x  4  2(15x 13x  2)

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

30x2  26x  4  2(15x2 13x  2)  2(15x2  3x 10x  2)  2[3x(5x 1)  2(5x 1)]  2(5x 1)(3x  2) b.

6x2 y  7xy  5 y  y(6x2  7x  5) 6  5 = 30 3  10 = 30 3 + (10) = 7

Chapter 11: Factoring Polynomials

4. a = 4, b = 8, c = 3 a  c = 4  3 = 12 2  6 = 12 and 2 + 6 = 8; choice d. 5. This gives us a four-term polynomial, which may be factored by grouping. Exercise Set 11.4 2. x2  5x  3x  15  x(x  5)  3(x  5)  (x  5)(x  3)

6x2 y  7xy  5 y  y(6x2  7x  5)  y(6x2  3x 10x  5)  y[3x(2x 1)  5(2x 1)]  y(2x  1)(3x  5) 4. 12 y5  10 y4  42 y3  2 y3 (6 y2  5 y  21) 6  21 = 126 14  9 = 126 14 + (9) = 5

2

4.

z 10z  7z  70  z(z 10)  7(z 10)  (z 10)(z  7)

6. 4x2  9x  32x  72  x(4x  9)  8(4x  9)  (4x  9)(x  8) 8. 2 y4 10 y2  7 y2  35  2 y2 ( y2  5)  7( y2  5)  ( y2  5)(2 y2  7)

12 y5 10 y4  42 y3

10. a.

 2 y3(6 y2  5 y  21)  2 y3(6 y2 14 y  9 y  21)  2 y3[2 y(3y  7)  3(3y  7)]

2  12 = 24 2 + 12 = 14 2 and 12 are numbers whose product is 24 and whose sum is 14.

b. 14x = 2x + 12x

 2 y3(3y  7)(2 y  3)

c.

5. 16x2  24x  9 16  9 = 144 12  12 = 144 12 + 12 = 144

8x2 14x  3  8x2  2x  12x  3  2x(4x 1)  3(4x  1)  (4x 1)(2x  3)

16x2  24x  9  16x2 12x 12x  9  4x(4x  3)  3(4x  3)  (4x  3)(4x  3)  (4x  3)2

12. a.

10  3 = 30 10 + (3) = 13 10 and 3 are numbers whose product is 30 and whose sum is 13.

b. 13x = 10x  3x

Vocabulary, Readiness & Video Check 11.4 c. 1. a = 1, b = 6, c = 8 ac=18=8 4  2 = 8 and 4 + 2 = 6; choice a. 2. a = 1, b = 11, c = 24 a  c = 1  24 = 24 8  3 = 24 and 8 + 3 = 11; choice c. 3. a = 2, b = 13, c = 6 a  c = 2  6 = 12 12  1 = 12 and 12 + 1 = 13; choice b.

6x2 13x  5  6x2 10x  3x  5  2x(3x  5) 1(3x  5)  (3x  5)(2x 1)

14. 15x2 11x  2 15  2 = 30 5  6 = 30 5 + 6 = 11 15x2 11x  2  15x2  5x  6x  2  5x(3x 1)  2(3x  1)  (3x 1)(5x  2)

Copyright © 2025 Pearson Education, Inc.

425


Chapter 11: Factoring Polynomials

ISM: Prealgebra and Introductory Algebra

28. 3x3  8x2  4x  x(3x2  8x  4) 3  4 = 12 2  6 = 12 2+6=8

16. 8x2  x  9 8  9 = 72 9  8 = 72 9 + 8 = 1 8x2  x  9  8x2  9x  8x  9  x(8x  9) 1(8x  9)  (8x  9)(x 1) 18. 30x2  23x  3 30  3 = 90 18  5 = 90 18 + (5) = 23 30x2  23x  3  30x2 18x  5x  3  6x(5x  3) 1(5x  3)  (5x  3)(6x 1)

3x3  8x2  4x  x(3x2  8x  4)  x(3x2  2x  6x  4)  x[x(3x  2)  2(3x  2)]  x(3x  2)(x  2) 30. 4 y2  2 y 12  2(2 y2  y  6) 2  6 = 12 3  4 = 12 3 + (4) = 1 4 y2  2 y 12  2(2 y2  y  6)  2(2 y2  3y  4 y  6)  2[ y(2 y  3)  2(2 y  3)]  2(2 y  3)( y  2)

20. 2x2  7x  3 23=6 1  6 = 6 1 + (6) = 7 2x  7x  3  2x  x  6x  3  x(2x 1)  3(2x 1)  (2x 1)(x  3) 2

2

2

2

22. 20x  25x  4  25x  20x  4 25  4 = 100 10  10 = 100 10 + 10 = 20 25x2  20x  4  25x2  10x 10x  4  5x(5x  2)  2(5x  2)  (5x  2)(5x  2) or (5x  2)2

32. 25x  12  12x2  12x2  25x  12 12  12 = 144 16  9 = 144 16 + (9) = 25 12x2  25x  12  12x2 16x  9x 12  4x(3x  4)  3(3x  4)  (3x  4)(4x  3) 34. 30a2  38a  20  2(15a2 19a 10) 15  10 = 150 25  6 = 150 25 + (6) = 19 30a2  38a  20  2(15a2 19a 10)

24. 6x 11x  10 6  10 = 60 4  15 = 60 4 + (15) = 11 2

 2(15a2  25a  6a 10)  2[5a(3a  5)  2(3a  5)]  2(3a  5)(5a  2)

6x2 11x 10  6x2  4x 15x 10  2x(3x  2)  5(3x  2)  (3x  2)(2x  5) 26. 21x2 13x  2 21  2 = 42 6  7 = 42 6 + (7) = 13

36. 10a3 17a2  3a  a(10a2 17a  3) 10  3 = 30 15  2 = 30 15 + 2 = 17 10a3 17a2  3a  a(10a2 17a  3)

21x2 13x  2  21x2  6x  7x  2  3x(7 x  2) 1(7 x  2)  (7x  2)(3x 1) 426

Copyright © 2025 Pearson Education, Inc.

 a(10a2 15a  2a  3)  a[5a(2a  3) 1(2a  3)]  a(2a  3)(5a 1)


ISM: Prealgebra and Introductory Algebra

38. 30x3 155x2  25x  5x(6x2  31x  5) 6  5 = 30 1  30 = 30 1 + (30) = 31 30x3 155x2  25x  5x(6x2  31x  5)  5x(6x2  x  30x  5)  5x[x(6x 1)  5(6x 1)]  5x(6x 1)(x  5) 40. 6r2t  7rt2  t3  t(6r2  7rt  t 2 ) 6  t 2  6t 2 t  6t  6t2 t + 6t = 7t 6r2t  7rt2  t3  t(6r2  7rt  t2 )  t(6r2  rt  6rt  t2 )  t[r(6r  t)  t(6r  t)]  t(6r  t)(r  t) 42. 36  1 = 36 There are no factors of 36 which sum to 6, so 36z2  6z  1 is prime. 2

2

2

6  5b2  30b2 6b  5b  30b2

x2 14x  33  x2  3x 11x  33  x(x  3) 11(x  3)  (x  3)(x 11) or (3  x)(11  x) 50. 5 12x  7 x2  7 x2 12x  5 7  5 = 35 5  7 = 35 5 + (7) = 12 7x2 12x  5  7x2  5x  7 x  5  x(7x  5) 1(7x  5)  (7x  5)(x 1) or (5  7x)(1 x) 2

30a2  5ab  25b2  5(6a2  ab  5b2 )  5(6a2  6ab  5ab  5b2 )  5[6a(a  b)  5b(a  b)]  5(a  b)(6a  5b) 46. 20s4  61s3t  3s2t2  s2 (20s2  61st  3t2 ) 20  3t 2  60t 2 t  60t  60t2 t + 60t = 61t

2

54. (x  7)(x  7)  (x  7)2  x2  2(x)(7)  72  x2 14x  49 56. (8 y  9)(8 y  9)  (8 y)2  92  64 y2  81 58. (2z 1)2  (2z)2  2(2z)(1) 12  4z2  4z 1

7  4 y2  28 y2 4 y  7 y  28 y2 4y + 7y = 11y 3(7x2 11xy  4 y2 )  3(7x2  4xy  7 xy  4 y2 )  3[x(7x  4 y)  y(7x  4 y)]  3(7x  4 y)(x  y) The perimeter is 21x2  33xy  12 y2 or 3(7x + 4y)(x + y). 62. x2n  6xn  10xn  60  xn (xn  6)  10(xn  6)

2 2

20s  61s t  3s t

 (x n  6)(xn 10)

 s2 (20s2  61st  3t2 )  s2 (20s2  st  60st  3t 2 )  s2[s(20s  t)  3t(20s  t)]  s (20s  t)(s  3t) 2

2

52. ( y  5)( y  5)  y  5  y  25

60. 3(7x2 11xy  4 y2 )  21x2  33xy 12 y2

6b + (5b) = b

3

48. 33  14x  x2  x2  14x  33 1  33 = 33 3  11 = 33 3 + 11 = 14

2

44. 30a  5ab  25b  5(6a  ab  5b )

4

Chapter 11: Factoring Polynomials

64. 12  25 = 300 30  10 = 300 30 + (10) = 40 12x2n  40xn  25  12x2n  30xn 10xn  25  6xn (2xn  5)  5(2xn  5)  (2xn  5)(6xn  5) Copyright © 2025 Pearson Education, Inc.

427


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

Section 11.5 Practice Exercises

8. a.

8n2  40n  50  2(4n2  20n  25)  2[(2n)2  2  2n  5  52 ]

Since 36  62 and 12x = 2  6  x,

1. a.

 2(2n  5)2

x2  12x  36 is a perfect square trinomial.

b. Since 100  102 and 20x = 2  10  x,

2. a.

 3x(4x2  28x  49)

Since 9x2  (3x)2 and 25  52 , but

 3x(2x  7)2

b. Since 4x2  (2x)2 , but 11 is not a perfect square, the polynomial is not a perfect square trinomial.

 3x[(2x)2  2  2x  7  72 ]

2 2 2 9. x  9  x  3  (x  3)(x  3)

10. a2 16  a2  42  (a  4)(a  4) 2

Since 25x2  (5x)2 and 1  12 , and

3  3  3   c      c   c   11. c  25 5  5  5 

2  5x  1 = 10x which is the opposite of 10x, the trinomial is a perfect square trinomial.

12. s2  9 is prime since it is the sum of two squares.

b. Since 9x2  (3x)2 and 49  72 , and 2  3x  7 = 42x which is the opposite of 42x, the trinomial is a perfect square trinomial. 4. x2 16x  64  (x)2  2  x 8  82  (x  8)

2 2

9

2

13. 9s2 1  (3s)2 12  (3s 1)(3s 1) 14. 16x2  49 y2  (4x)2  (7 y)2  (4x  7 y)(4x  7 y)

 ( p2  9)( p2  9)

 (3r  4s)2 2

2

15. p4  81  ( p2 )2  92

2

5. 9r 2  24rs 16s2  (3r)2  2  3r  4s  (4s)2

4

12x3  84x2 147x

x2  20x  100 is a perfect square trinomial.

20x  2  3x  5, the polynomial is not a perfect square trinomial.

3. a.

b.

2

 ( p2  9)( p  3)( p  3) 16. 9x3  25x  x(9x2  25)

6. 9n  6n  1  (3n )  2  3n 11

 x[(3x)2  52 ]  x(3x  5)(3x  5)

2

 (3n2  1)2 17. 48x4  3  3(16x4 1) 7. Notice that this trinomial is not a perfect square trinomial. 9x2  (3x)2 and 4  22 , but 2  3x  2 = 12x and 12x is not the middle term 15x. Factor by grouping. 9  4 = 36 3  12 = 36 3 + 12 = 15 9x2 15x  4  9x2  3x 12x  4  3x(3x 1)  4(3x 1)  (3x 1)(3x  4)

428

 3[(4x2 )2 12 ]  3(4x2  1)(4x2 1)  3(4x2  1)(2x  1)(2x 1) 18. 9x2 100  1(9x2 100)

Copyright © 2025 Pearson Education, Inc.

 1[(3x)2 102 ]  1(3x 10)(3x  10)


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

19. 121 m2  112  m2  (11 m)(11 m) or

12. 81b2  (9b)2 13. 36 p4  (6 p2 )2

121 m2  m2 121  1(m2 121)

14. 4q4  (2q2 )2

 1(m2 112 )  1(m 11)(m 11)

15. No, it just means it won’t factor into a binomial squared. It may or may not be factorable.

Calculator Explorations x2  2x  1

x2  2x  1

(x  1)2

x=5

16

14

16

x = 3

16

14

16

x = 2.7

2.89

0.89

2.89

x = 12.1

171.61

169.61

171.61

1

1

1

x=0

The first and last terms are squares, a2 and b2, and the middle term is 2  a  b or 2  a  b. 17. in order to recognize the binomial as a difference of squares and also to identify the terms to use in the special factoring formula 18. A prime polynomial is one that can’t be factored further (using rational real numbers). Exercise Set 11.5

Vocabulary, Readiness & Video Check 11.5

2. Since 121  112 and 22x  2 11 x,

1. A perfect square trinomial is a trinomial that is the square of a binomial. 2

16.

2

2. The term 25 y written as a square is (5y) .

x2  22x  121 is a perfect square trinomial.

4. Since 16  42 but 4y  2  4  y, y2  4 y  16 is not a perfect square trinomial.

3. The expression x2 10x  25 y2 is called a perfect square trinomial.

6. Since 4  22 and 4p = 2  2  p, p2  4 p  4 is a perfect square trinomial.

4. The expression x2  49 is called a difference of two squares.

8. Since 144  122 but 20n  2  12  n,

5. The factorization (x + 5y)(x + 5y) may also be written as (x  5 y)2. 6. The factorization (x  5y)(x + 5y) may also be written as (x  5 y)2. false

n2  20n  144 is not a perfect square trinomial.

10. 25x2  (5x)2 but 2 y2 is not a perfect square, so 25x2  20xy  2 y2 is not a perfect square trinomial. 12. 36a2  (6a)2 , b2  (b)2 , and 12ab = 2  6a  b,

7. The trinomial x2  6x  9 is a perfect square trinomial. false

so 36a2 12ab  b2 is a perfect square trinomial.

8. The binomial y2  9 factors as ( y  3)2. false

14. x2 18x  81  x2  2  x  9  92  (x  9)2

9. 64  82

16. x2 12x  36  x2  2  x  6  62  (x  6)2

10. 9  32

18. 25x2  20x  4  (5x)2  2  5x  2  22  (5x  2)2

11. 121a2  (11a)2 Copyright © 2025 Pearson Education, Inc.

429


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

20. m4 10m2  25  (m2 )2  2  m2  5  52

44. 1 y2  1(1  y2 )  1(12  y2 )  1(1  y)(1 y)

 (m2  5)2 22. 3 y2  6 y  3  3( y2  2 y 1)

or

 3( y  2  y 11 ) 2

2

1 y2  y2 1  y2 12  ( y 1)( y 1)

 3( y  1)2 24. 9 y2  48 y  64  (3y)2  2  3y 8  82  (3y  8)2

46. n4 16  (n2 )2  42  (n2  4)(n2  4)

26. 4x2 y2  28xy  49  (2xy)2  2  2xy  7  72

 (n2  4)(n2  22 )  (n2  4)(n  2)(n  2)

 (2xy  7)2 28. y3 12 y2  36 y  y( y2 12 y  36)  y( y2  2  y  6  62 )  y( y  6)2

48. x2  225 y2  x2  (15 y)2  (x 15 y)(x 15 y) 50. 32t 2  50  2(16t 2  25)  2[(4t)2  52 ]  2(4t  5)(4t  5)

30. Since 1  12 and x4  (x2 )2 , but 16x2  2 1 x2 , the polynomial is not a perfect square trinomial. Since there are no factors of 1  1 = 1 that sum to 16, the trinomial is prime. 32. 25x2  60xy  36 y2  (5x)2  2  5x  6 y  (6 y)2  (5x  6 y)2

52. 36x2 y  25 y  y(36x2  25)  y[(6x)2  52 ]  y(6x  5)(6x  5) 54. 25 y4 100 y2  25 y2 ( y2  4)  25 y2 ( y2  22 )  25 y2 ( y  2)( y  2)

34. x2  36  x2  62  (x  6)(x  6) 36. 100  t 2  102  t 2  (10  t)(10  t) or

56. x3 y  4xy3  xy(x2  4 y2 )  xy[x2  (2 y)2 ]  xy(x  2 y)(x  2 y)

100  t 2  t2 100  1(t2 100)

58. 225a2  81b2  9(25a2  9b2 )

 1(t2 102 )  1(t 10)(t 10)

 9[(5a)2  (3b)2 ]  9(5a  3b)(5a  3b)

38. 9t 2 1  1(9t 2 1)

60. 12x2  27  3(4x2  9)

 1[(3t)2 12 ]  1(3t 1)(3t 1)

 3[(2x)2  32 ]  3(2x  3)(2x  3)

40. 36 y2  25  (6 y)2  52  (6 y  5)(6 y  5) 42. 49 y2 1 is the sum of two squares, which is prime.

430

62. 49a2 16  (7a)2  42  (7a  4)(7a  4) 64. 169a2  49b2  (13a)2  (7b)2  (13a  7b)(13a  7b)

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

66. a2b2 16  (ab)2  42  (ab  4)(ab  4) 2

68. y 

2

1   1  2 1  y      y   y   4  16 4  4  1

Chapter 11: Factoring Polynomials

86.

4a  2  0 4a  2  2  0  2 4a  2 4a 2  4 4 1 a2

4  2 2 70. 100  81 n2  102   9 n 2  2    10  n 10  n  9  9  

2 88. x 

72. 49 y2 100z2  (7 y)2  (10z)2  (7 y 10z)(7 y 10z)

90. ( y  6)2  z2  [( y  6)  z][( y  6)  z]  ( y  6  z)( y  6  z)

74. x2  10xy  25 y2  x2  2  x  5 y  (5 y)2

1 

 x2 

25

 2[(9a2 )2  2  9a2  2  22 ]

 n5 (n2 1)(n2 1)

94. (x2  2x 1)  36 y2  (x2  2  x 112 )  36 y2  (x 1)2  (6 y)2  [(x 1)  6 y][(x 1)  6 y]  (x 1  6 y)(x 1 6 y)

98. 9x2  (3x)2 and 25  52.

 n5 (n2 1)(n2 12 )

(3x  5)2  (3x)2  2  3x  5  52

 n5 (n2 1)(n 1)(n 1) 80. 100x3 y  49xy3  xy(100x2  49 y2 )  xy[(10x)2  (7 y)2 ]  xy(10x  7 y)(10x  7 y)

84.

y5 0 y 55  05 y  5 3x  9  0 3x  9  9  0  9 3x  9 3x 9  3 3 x3

96. x2n 121  (xn )2 112  (xn 11)(xn 11)

 n5[(n2 )2 12 ]

82.

 (n  8)(m2  32 )  (n  8)(m  3)(m  3)

 2(9a2  2)2 9 5 5 4 78. n  n  n (n 1)

92. m2 (n  8)  9(n  8)  (n  8)(m2  9)

 (x  5 y)2 76. 162a4  72a2  8  2(81a4  36a2  4)

 1 2 1  1     x x 5    5  5    

 9x2  30x  25, so the number 30 makes the given expression a perfect square trinomial. 100. (x  3y)2  x2  2  x  3y  (3y)2  x2  6xy  9 y2 102. The difference of two squares is the result of multiplying binomials of the form (x + a) and (x  a), so multiplying (5 + y) by (5  y) results in the difference of two squares. 104. A perfect square trinomial factoring formula is represented by the square. 106. a.

Let t = 2. 841 16t2  841 16(2)2  841 16(4)  841  64  777 After 2 seconds, the height of the object is 777 feet.

Copyright © 2025 Pearson Education, Inc.

431


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

b.

Let t = 5.

Mid-Chapter Review

841 16t  841 16(5)  841 16(25)  841  400  441 After 5 seconds the height of the object is 441 feet. 2

c.

2

When the object hits the ground, its height is zero feet. Thus, to find the time, t, when the object’s height is zero feet above the ground, we set the expression 841  16t equal to 0 and solve for t.

176. Factoring methods may vary. 1. x2  x 12  (x  3)(x  4) 2.

x2 10x 16  (x  8)(x  2)

3. x2  2x 1  x2  2  x 112  (x  1)2

2

4. x2  6x  9  x2  2  x  3  32

841 16t  0

 (x  3)2

2

292  (4t)2  0 (29  4t)(29  4t)  0 29  4t  0 or 29  4t  0 4t  29 29  4t t  7.25 7.25  t Discard t = 7.25 since time cannot be negative. The object hits the ground after approximately 7 seconds. d.

5. x2  x  6  (x  2)(x  3) 6. x2  x  2  (x  2)(x 1) 7. x2  x  6  (x  3)(x  2) 8. x2  7x 12  (x  3)(x  4)

841 16t2  292  (4t)2  (29  4t)(29  4t) 9. x2  7x 10  (x  5)(x  2)

108. a.

Let t = 2. 784 16t2  784 16(2)2  720 After 2 seconds the performer’s height is 720 feet.

b.

12. 3x2  75  3(x2  25)  3(x2  52 )  3(x  5)(x  5)

16(49  t 2 )  0 16(7  t)(7  t)  0 7  t  0 or 7  t  0 7t t  7 Discard t = 7 since time cannot be negative. The performer reaches ground level after 7 seconds.

13. x2  3x  5x 15  x(x  3)  5(x  3)  (x  3)(x  5)

784 16t2  16(49  t2 )

16. x2  3x  28  (x  7)(x  4)

 16(72  t2 )  16(7  t)(7  t)

432

 2(x2  72 )  2(x  7)(x  7)

When the performer reaches ground level, the height is 0. 784 16t2  0

d.

11. 2x2  98  2(x2  49)

Let t = 5. 784 16t2  784 16(5)2  384 After 5 seconds the performer’s height is 384 feet.

c.

10. x2  x  30  (x  6)(x  5)

14. 3y  21 xy  7x  3( y  7)  x( y  7)  ( y  7)(3  x) 15. x2  6x 16  (x  8)(x  2)

3 2 2 17. 4x  20x  56x  4x(x  5x 14)  4x(x  7)(x  2)

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

18. 6x3  6x2 120x  6x(x2  x  20)  6x(x  5)(x  4) 2

37. 12x3 y  243xy  3xy(4x2  81) 38. 6x3 y2  8xy2  2xy2 (3x2  4)

2

19. 12x  34x  24  2(6x 17x 12)  2(3x  4)(2x  3) 2

2

2

39. 2xy  72x3 y  2xy(1 36x2 )  2xy[1 (6x)2 ]  2xy(1 6x)(1 6x)

2

20. 24a 18ab 15b  3(8a  6ab  5b )  3(2a  b)(4a  5b) 2

2

2

40. 2x3 18x  2x(x2  9)

2

21. 4a  b  (2a)  b  (2a  b)(2a  b)

 2x(x2  32 )  2x(x  3)(x  3)

22. x2  25 y2  x2  (5 y)2  (x  5 y)(x  5 y)

41. x3  6x2  4x  24  x2 (x  6)  4(x  6)

2

23. 28 13x  6x  (4  3x)(7  2x)

 (x  6)(x2  4)  (x  6)(x  2)(x  2)

24. 20  3x  2x2  (5  2x)(4  x) 25. 4  2x  x

3 2 2 42. x  2x  36x  72  x (x  2)  36(x  2)

2

is prime.

 (x  2)(x2  36)  (x  2)(x  6)(x  6)

26. a  a2  3 is prime. 27. 6 y2  y 15  (3y  5)(2 y  3)

43. 6a3 10a2  2a2 (3a  5)

28. 4x2  x  5  (4x  5)(x 1)

44. 4n2  6n  2n(2n  3)

29. 18x3  63x2  9x  9x(2x2  7x 1)

45. 3x3  x2 12x  4  x2 (3x 1)  4(3x 1)  (3x 1)(x2  4)

30. 12a3  24a2  4a  4a(3a2  6a 1)

46. x3  2x2  3x  6  x2 (x  2)  3(x  2)  (x  2)(x2  3)

31. 16a2  56a  49  (4a)2  2  4a  7  72  (4a  7)2

47. 6x2 18xy 12 y2  6(x2  3xy  2 y2 )  6(x  2 y)(x  y)

32. 25 p2  70 p  49  (5 p)2  2  5 p  7  72  (5 p  7)2

2

2

2

2

48. 12x  46xy  8 y  2(6x  23xy  4 y )  2(x  4 y)(6x  y)

33. 14  5x  x2  (7  x)(2  x)

49. 5(x + y) + x(x + y) = (x + y)(5 + x) 34. 3  2x  x  (3  x)(1  x) 2

50. 7(x  y) + y(x  y) = (x  y)(7 + y)

4 3 2 2 2 35. 3x y  6x y  72x y  3x y(x  2x  24)

2

51. 14t  9t 1  (7t 1)(2t 1)

 3x y(x  6)(x  4) 2

3

2 2

3

2

2

36. 2x y  8x y 10xy  2xy(x  4xy  5 y )  2xy(x  5 y)(x  y)

52. 3t 2  5t  1 is prime. 53. 3x2  2x  5  1(3x2  2x  5)  1(3x  5)(x 1)

Copyright © 2025 Pearson Education, Inc.

433


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

54. 7x2 19x  6  1(7x2 19x  6)  1(7x  2)(x  3)

2 2 72. 3x 10xy  8 y  (3x  2 y)(x  4 y)

73. x4 14x2  32  (x2  2)(x2 16) 55. 1 8a  20a2  (110a)(1 2a)

 (x2  2)(x  4)(x  4) 74. x4  22x2  75  (x2  3)(x2  25)

56. 1 7a  60a2  (1  5a)(1 12a)

 (x2  3)(x  5)(x  5)

4 2 2 2 57. x 10x  9  (x  9)(x 1)  (x  3)(x  3)(x 1)(x 1)

75. answers may vary 76. Yes; 9x2  81y2  9(x2  9 y2 )

58. x4 13x2  36  (x2  9)(x2  4)  (x  3)(x  3)(x  2)(x  2)

Section 11.6 Practice Exercises 1. (x  7)(x + 2) = 0 x  7  0 or x  2  0 x7 x  2 The solutions are 7 and 2.

59. x2  23x 120  (x 15)(x  8) 60. y2  22 y  96  ( y 16)( y  6) 2 2 2 2 61. 25 p  70 pq  49q  (5 p)  2  5 p  7q  (7q)

 (5 p  7q)2 2

2

2

62. 16a  56ab  49b  (4a)  2  4a  7b  (7b)  (4a  7b)2

2

63. x2 14x  48 is prime.

2. (x  10)(3x + 1) = 0 x 10  0 or 3x 1  0 x  10 3x  1 1 x 3 1 The solutions are 10 and  . 3 3. a.

64. 7x2  24xy  9 y2  (7x  3y)(x  3y) 65. x2  x  30  1(x2  x  30)  1(x  5)(x  6) 2

b. x(4x  3) = 0 x = 0 or 4x  3  0 4x  3 3 x 4

2

66. x  6x  8  1(x  6x  8)  1(x  2)(x  4) 67. 3rs  s 12r  4  s(3r 1)  4(3r 1)  (3r 1)(s  4) 68. x3  2x2  x  2  x2 (x  2) 1(x  2)  (x  2)(x2 1) 69. 4x2  8xy  3x  6 y  4x(x  2 y)  3(x  2 y)  (x  2 y)(4x  3)

y(y + 3) = 0 y = 0 or y  3  0 y  3 The solutions are 0 and 3.

3 The solutions are 0 and . 4 4.

x2  3x 18  0 (x  6)(x  3)  0 x  6  0 or x  3  0 x6 x  3 The solutions are 6 and 3.

70. 4x2  2xy  7 yz  14xz  2x(2x  y)  7z( y  2x)  2x(2x  y)  7z(2x  y)  (2x  y)(2x  7 z) 71. x2  9xy  36 y2  (x 12 y)(x  3y) 434

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

9x2  24x  16

5.

9. (x  3)(3x2  20x  7)  0

9x2  24x 16  0 (3x  4)(3x  4)  0 3x  4  0 or 3x  4  0 3x  4 3x  4 4 4 x x 3 3 4 The solution is . 3

x3 0 or 3x2  20x  7  0 x  3 (3x 1)(x  7)  0 3x 1  0 or x  7  0 3x  1 x7 1 x 3 1 The solutions are 3,  , and 7. 3

x(x  4)  5

6. a.

10. 5x3  5x2  30x  0

x  4x  5 2

5x(x2  x  6)  0 5x(x  3)(x  2)  0 5x  0 or x  3  0 or x  2  0 x0 x  3 x2 The solutions are 0, 3, and 2.

x  4x  5  0 (x  5)(x 1)  0 x  5  0 or x  1  0 x5 x  1 The solutions are 5 and 1. 2

Vocabulary, Readiness & Video Check 11.6

x(3x  7)  6

b.

3x2  7x  6 3x2  7x  6  0 (3x  2)(x  3)  0 3x  2  0 or x  3  0 3x  2 x  3 2 x 3 2 The solutions are and 3. 3 7.

1. An equation that can be written in the form ax2  bx  c  0, (with a  0), is called a quadratic equation. 2. If the product of two numbers is 0, then at least one of the numbers must be 0. 3. The solutions to (x  3)(x + 5) = 0 are 3, 5. 4. If a  b = 0, then a = 0 or b = 0. 5. One side of the equation must be a factored polynomial and the other side must be zero.

3x2  6x  72  0 3(x2  2x  24)  0 3(x  6)(x  4)  0 x6  0 or x  4  0 x  6 x4 The solutions are 6 and 4.

8.

Chapter 11: Factoring Polynomials

6. Because no matter how many factors you have in a multiplication problem, it’s still true that for a zero product, at least one of the factors must be zero. Exercise Set 11.6

2x 18x  0 3

2x(x2  9)  0 2x(x  3)(x  3)  0 2x  0 or x  3  0 or x  3  0 x0 x3 x  3 The solutions are 0, 3, and 3.

2. (x + 3)(x + 2) = 0 x3  0 or x  2  0 x  3 x  2 The solutions are 3 and 2. 4. (x + 4)(x  10) = 0 x40 or x 10  0 x  4 x  10 The solutions are 4 and 10.

Copyright © 2025 Pearson Education, Inc.

435


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials 6. (x  11)(x  1) = 0 x 11  0 or x 1  0 x  11 x 1 The solutions are 11 and 1.

22.

x3 x2 The solutions are 3 and 2.

8. x(x  7) = 0 x = 0 or x  7  0 x7 The solutions are 0 and 7. 10. 2x(x + 12) = 0 2x  0 or x 12  0 x0 x  12 The solutions are 0 and 12.

24.

x2  3x  0 x(x  3)  0 x = 0 or x  3  0 x3 The solutions are 0 and 3.

26.

x2  15x  0 x(x 15)  0 x = 0 or x 15  0 x  15 The solutions are 0 and 15.

12. (3x  2)(5x + 1) = 0 3x  2  0 or 5x 1  0 3x  2 5x  1 2 1 x x 3 5 2 1 The solutions are and  . 3 5

28.

The solutions are 

1

and

9 16.

4 3

(x  3)(x  3)  0 x  3  0 or x  3  0 x3 x  3 The solutions are 3 and 3. 2

436

30.

x  5x  24 2 x  5x  24  0 (x  8)(x  3)  0 x  8  0 or x  3  0 x8 x  3 The solutions are 8 and 3.

32.

(x  3)(x  8)  x

.

4

2  1  x x 0  9  4     2 1 x  0 or x   0 9 4 1 2 x x 4 9 2 1 The solutions are  and . 4 9

x2 11x  24  x x2 10x  24  0 (x  4)(x  6)  0

18. (x + 1.7)(x + 2.3) = 0 x 1.7  0 or x  2.3  0 x  1.7 x  2.3 The solutions are 1.7 and 2.3. 20.

x2  9 x 9  0 2

14. (9x + 1)(4x  3) = 0 9x  1  0 or 4x  3  0 9x  1 4x  3 1 3 x x 9

x2  5x  6  0 (x  3)(x  2)  0 x  3  0 or x  2  0

x40 or x  6  0 x  4 x  6 The solutions are 4 and 6.

x2  2x  63  0 (x  9)(x  7)  0 x9  0 or x  7  0 x  9 x7 The solutions are 9 and 7. Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

34.

x(4x 11)  3

Chapter 11: Factoring Polynomials

44.

4x 11x  3 2

4x 11x  3  0 (4x 1)(x  3)  0 4x 1  0 or x  3  0 4x  1 x3 1 x 4 1 The solutions are  and 3. 4 2

36.

46. (2x  9)(x2  5x  36)  0 (2x  9)(x  9)(x  4)  0 2x  9  0 2x  9 9 x 2

36x2  x  21  0 (4x  3)(9x  7)  0 4x  3  0 or 9x  7  0 4x  3 9x  7 3 7 x x

4 y( y2  9)  0 4 y( y  3)( y  3)  0 4 y  0 or y  3  0 or y  3  0 y  3 y0 y 3 The solutions are 0, 3, and 3.

The solution is

.

(2x  5)(4x2  20x  25)  0 2

2

x4 0 x4

, 9, and 4.

(2x  5)[(2x)  2  2x  5  5 ]  0 (2x  5)(2x  5)(2x  5)  0 2x  5  0 2x  5 5 x  2 5 The solution is  . 2

x  26  11x x2 11x  26  0 (x 13)(x  2)  0 x 13  0 or x  2  0 x  13 x2 The solutions are 13 and 2.

50.

9x2  7x  2 9x2  7x  2  0 (x 1)(9x  2)  0 x  1  0 or 9x  2  0 x  1 9x  2 2 x 9 2 The solutions are 1 and . 9

52.

10 42.

9

or

2

48.

4 y3  36 y  0

3

x9  0 x  9

2

9 3 7 The solutions are and  . 4 9

40. 5(3  4x)  9 15  20x  9 20x  6 6 x 20 3 x 10

or

The solutions are

4

38.

4 y2  81  0 (2 y  9)(2 y  9)  0 2 y  9  0 or 2 y  9  0 2y  9 2 y  9 9 9 y y  2 2

12x2  7x 12  0 (4x  3)(3x  4)  0 4x  3  0 or 3x  4  0 4x  3 3x  4 4 3 x x4 3 3 4 The solutions are and  . 4 3

Copyright © 2025 Pearson Education, Inc.

437


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

54.

3x2  6x  9  0

66.

3(x2  2x  3)  0 3(x  3)(x 1)  0 x  3  0 or x  1  0 x3 x  1 The solutions are 3 and 1.

2x2  9x  5  0 (2x 1)(x  5)  0 2x 1  0 or x  5  0 2x  1 x  5 1 x 2 1 and 5. The solutions are 2

56. ( y  5)( y  2)  28 y2  7 y  10  28 y2  7 y 18  0 ( y  9)( y  2)  0 y  9  0 or y  2  0 y 9 y  2 The solutions are 9 and 2. 58.

9x2 14x  5  0 (9x  5)(x 1)  0 9x  5  0 or x 1  0 9x  5 x 1 5 x 9 5 The solutions are and 1.

x3 14x2  49x  0

9 70.

x2  22x 121  0 (x 11)(x 11)  0 x 11  0 x  11 The solution is 11.

72.

74.

5

5

5  4 5  3 20 15 5     9  4 12  3 36 36 36

3 12 312 36    7 17 7 17 119

76. After factoring, such as (x  4)(x + 2) = 0, set each factor equal to zero and solve. x  4  0 or x  2  0 x4 x  2 The solutions should be 4 and 2.

0  6 y2  9 y 0  3y(2 y  3) 3y  0 or 2 y  3  0 y0 2y  3 3 y 2

78. answers may vary, for example, x(x + 2) = 0

3 The solutions are 0 and . 2

80. answers may vary, for example x(x 1)(x  2)  0 x(x2  3x  2)  0

3

3x  27x  0 3x(x2  9)  0 3x(x  3)(x  3)  0 3x  0 or x  3  0 or x  3  0 x0 x3 x  3 The solutions are 0, 3, and 3.

438

2 3 2  7 3 3 14 9 23       3 7 3 7 7  3 21 21 21

9 12

62. 9 y  6 y2

64.

4x2  20x  5x2  6x  5

68.

x(x2 14x  49)  0 x(x  7)(x  7)  0 x = 0 or x  7  0 x7 The solutions are 0 and 7. 60.

2x2  12x 1  4  3x

x3  3x2  2x  0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

82. a.

b.

c. 84.

h  16t 2  64

Time, x (in seconds)

Height, y (feet)

0

16(0)2 100(0)  0

1

16(1)2 100(1)  84

2

16(2)2 100(2)  136

3

16(3)2 100(3)  156

4

16(4)2 100(4)  144

5

16(5)2  100(5)  100

6

16(6)2 100(6)  24

7

16(7)2 100(7)  84

When the rocket strikes the ground, its height is 0 feet, so it strikes the ground between 6 and 7 seconds. The maximum height of the rocket listed in the table is 156 feet, after 3 seconds. (2x  3)(x  6)  (x  9)(x  2)

2x2 12x  3x 18  x2  2x  9x 18 2x2  9x 18  x2  7x 18

0  16t 2  64 0  16(t2  4) 0  16(t  2)(t  2) t  2  0 or t  2  0 t2 t  2 It takes the diver 2 seconds to reach the pool. 2. Let x be the number. x2  2x  63 x2  2x  63  0 (x  9)(x  7)  0 x  9  0 or x  7  0 x9 x  7 The numbers are 9 and 7. 3. Let x be the width. Then x + 5 is the length. Area  length  width 176  (x  5)  x 176  x2  5x 0  x2  5x 176 0  (x 16)(x 11) x 16  0 or x 11  0 x  16 x  11 The width is 11 feet and the length is x + 5 = 11 + 5 = 16 feet. 4. Let x be the first odd integer. Then x + 2 is the next consecutive odd integer. x(x  2)  x  (x  2)  23

x2 16x  0 x(x 16)  0 x = 0 or x 16  0 x  16 The solutions are 0 and 16. 86.

Chapter 11: Factoring Polynomials

x2  2x2  2x  25 x  25

(x  6)(x  6)  (2x  9)(x  4) x2  6x  6x  36  2x2  8x  9x  36 x2  36  2x2  x  36 0  x2  x 0  x(x  1) x = 0 or x 1  0 x 1 The solutions are 0 and 1.

x2  25  0 (x  5)(x  5)  0 x5  0 or x  5  0 x  5 x5 x  2  3 x27 The two consecutive odd integers are 5 and 3 or 5 and 7. 5. Let x be the length of one leg. Then x 7 is the length of the other leg. x2  (x  7)2  132

Section 11.7 Practice Exercises 1. The diver will be at a height of 0 when he or she reaches the pool.

x2  x2 14x  49  169 2x2 14x 120  0 2(x2  7x  60)  0 2(x  5)(x 12)  0

Copyright © 2025 Pearson Education, Inc.

439


Chapter 11: Factoring Polynomials x5  0 or x 12  0 x  5 x  12 Discard x = 5 since length cannot be negative. If x = 12, then x  7 = 5. The lengths of the legs are 5 meters and 12 meters. Vocabulary, Readiness & Video Check 11.7 1. In applications, the context of the stated application needs to be considered. Each translated equation resulted in both a positive and a negative solution, and a negative solution is not appropriate for any of the stated applications. Exercise Set 11.7 2. Let x be the width of the rectangle, then the length is 2x. 4. Let x be the first even integer, then the next consecutive even integer is x + 2. 6. Let x be the height of the trapezoid, then the base is 5x  3. 8. Area  length  width 84  (x  3)(x  2) 0  x2  x  90 0  (x 10)(x  9) x 10  0 or x  9  0 x  10 x9 For x = 10, x + 3 and x  2 are negative. Since lengths cannot be negative, x = 9 is the only solution that works in this context. x + 3 = 9 + 3 = 12 x2=92=7 The length is 12 inches and the width is 7 inches. 10. The perimeter is the sum of the lengths of the sides.

x2  4x  21  0 (x  3)(x  7)  0 x  3  0 or x  7  0 x3 x  7

440

For x = 7, 2x and 2x + 5 are negative. Since lengths cannot be negative, x = 3 is the only solution that works in this context. 2x = 2(3) = 6 2x + 5 = 2(3) + 5 = 6 + 5 = 11 x2  3  32  3  9  3  12 The sides have lengths 6 feet, 11 feet, and 12 feet. 2 12. Area  (radius)

25 x2 25 x2    2 25  x 0  x2  25 0  (x  5)(x  5) x  5  0 or x  5  0 x5 x  5 Discard x = 5 since length cannot be negative. The radius is 5 kilometers. 14. The compass will hit the ground when its height is 0. 0  16t2  400

84  x2  x  6

(2x  5)  (x2  3)  2x  29 x2  4x  8  29

ISM: Prealgebra and Introductory Algebra

0  16(t 2  25) 0  16(t  5)(t  5) t  5  0 or t  5  0 t 5 t  5 Since the time t cannot be negative, we discard t = 5. The compass hits the ground after 5 seconds. 16. Let x be the width. Then x + 9 is the length. Area  length  width 112  (x  9)  (x) 112  x2  9x 0  x2  9x 112 0  (x  7)(x 16) x  7  0 or x 16  0 x7 x  16 Discard x = 16 since length cannot be negative. The width is 7 inches and the length is x + 9 = 7 + 9 = 16 inches.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

18. D 

1

n(n  3)

Chapter 11: Factoring Polynomials

28.

2 1

x2 10x  25  100 x2 10x  75  0 (x  5)(x 15)  0 x  5  0 or x 15  0 x5 x  15 Discard x = 15. The original square had sides of 5 meters.

 (15)(15  3) 2 1  (15)(12) 2  90 A polygon with 15 sides has 90 diagonals. D

20.

14 

1

n(n  3)

30. Let x be the length of the shorter leg. Then the length of the other leg is x + 9.

2 1

n(n  3) 2 1 2 14  2  n(n  3) 2 28  n(n  3)

452  x2  (x  9)2 2025  x2  x2 18x  81 0  2x2 18x 1944 0  2(x2  9x  972) 0  2(x  27)(x  36) x  27  0 or x  36  0 x  27 x  36 Discard x = 36 since length cannot be negative. x + 9 = 27 + 9 = 36 The lengths of the legs are 27 centimeters and 36 centimeters.

0  n2  3n  28 0  (n  7)(n  4) n  7  0 or n  4  0 n7 n  4 Discard n = 4. The polygon has 7 sides. 22. Let x be the number. x  x2  182 x2  x 182  0 (x 13)(x 14)  0 x 13  0 or x 14  0 x  13 x  14 The number is 13 or 14.

32.

x2  x  420 x  x  420  0 (x  20)(x  21)  0 x  20  0 or x  21  0 x  20 x  21 Discard x = 21. The page numbers are 20 and x + 1 = 20 + 1 = 21. 2

26. Use the Pythagorean theorem where x + 10 = hypotenuse, x = one leg, and 30 = other leg. (x 10)2  x2  302 x  20x 100  x2  900 20x  800 x  40 x + 10 = 50 The guy wire is 50 feet.

area  60 

24. Let x be the first number. Then x + 1 is the next consecutive number. x(x 1)  420

2

(x  5)2  100

1

 base  height

2 1

 x  (x  2) 2 1 2  60  2  x(x  2) 2 120  x(x  2) 0  x2  2x 120 0  (x 12)(x 10) x 12  0 or x 10  10 x  12 x  10 Discard x = 10. The base is 12 millimeters. 34. Let x be the length of the shorter leg. Then x + 10 is the length of the longer leg and 2x  10 is the length of the hypotenuse. (2x 10)2  x2  (x 10)2 4x2  40x 100  x2  x2  20x 100 2x2  60x  0 2x(x  30)  0 2x  0 or x  30  0 x0 x  30 Discard x = 0 since the length must be positive. The shorter leg of the triangle has length 30 miles.

Copyright © 2025 Pearson Education, Inc.

441


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

Discard x = 16 since length is positive. The length is 20 inches and the width is 1 1 x  2  (20)  2  10  2  8 inches. 2 2

36. When the object reaches the ground, the height is 0. h  16t 2  961 0  16t 2  961 0  1(16t2  961) 0  1(4t  31)(4t  31) 4t  31  0 or 4t  31  0 4t  31 4t  31 31 31 t  t 4 4 31 Discard t   since time must be positive. 4 31 The object reaches the ground after or 4 7.75 seconds.

42. Since the product of the two numbers is 34 more than their sum, x(x + 2) = x + (x + 2) + 34. x(x  2)  x  (x  2)  34 x2  2x  2x  36 x2  36  0 (x  6)(x  6)  0 x6 0 or x  6  0 x  6 x6 Since the number of visitors cannot be negative, x = 6. Then x + 2 = 6 + 2 = 8. In 2020, there were 6 million visitors to Natchez Trace Parkway and 8 million visitors to Lake Mead National Recreation Area.

38. Use A  P(1 r)2 when P = 2000 and A = 2420. 2420  2000(1 r)2

44. Let C = 120 in C 

2420  2000(1 2r  r2 )

n(n 1) 2 1) n(n 2 120  2  2 240  n(n 1) 120 

0  2000r2  4000r  420 2

0  20(100r  200r  21) 0  20(10r 1)(10r  21) 10r 1  0 or 10r  21  0 10r  1 10r  21 1 21 r r  10 10 21 Discard r   since the interest rate must be 10 1 positive. The interest rate is  0.10  10%. 10 1 area  length  width 1  160  x  x  2  2   1 160  x2  2x 2 1  2 160  2  x2  2x  2  2 320  x  4x

x  2 is the width.

2

0  x2  4x  320 0  (x 16)(x  20) x 16  0 or x  20  0 x  16 x  20 442

.

2

2420  2000  4000r  2000r2

40. Let x be the length. Then

n(n 1)

240  n2  n 0  n2  n  240 0  (n 16)(n 15) n 16  0 or n 15  0 n  16 n  15 Discard n = 15 since the number of telephones cannot be negative. 16 telephones are handled by the switchboard. 46. From the graph, there were approximately 700 thousand visitors to White Sands National Park in 2022. 48. From the graph, there were approximately 420 thousand visitors to White Sands National Park in 2020. 50. Look for the years where the graphed line for White Sands is lower than that for Mammoth Cave. The number of visitors to White Sands National Park was less than the number of visitors to Mammoth Cave National Park in 2012, 2014, 2015, and 2016. 52.

24 32

38 48

Copyright © 2025 Pearson Education, Inc.

3 4


ISM: Prealgebra and Introductory Algebra

54.

Chapter 11 Vocabulary Check

15 3 5 5   27 3 9 9 45

56.

50



1. An equation that can be written in the form ax2  bx  c  0 (with a not 0) is called a quadratic equation.

5 9

9  5 10 10

58. Let x be the rate of the slower boat. Then x + 7 is the rate of the faster boat. x2  (x  7)2  172

2. Factoring is the process of writing an expression as a product. 3. The greatest common factor of a list of terms is the product of all common factors.

x  x 14x  49  289 2

Chapter 11: Factoring Polynomials

2

2x2 14x  240  0 2(x  7x 120)  0 2(x  8)(x 15)  0 x  8  0 or x 15  0 x8 x  15 Discard 15 since the rate cannot be negative. The slow boat’s rate is 8 mph and the fast boat’s rate is x + 7 = 8 + 7 = 15 mph. 2

4. A trinomial that is the square of some binomial is called a perfect square trinomial. 5. In a right triangle, the side opposite the right angle is called the hypotenuse. 6. In a right triangle, each side adjacent to the right angle is called a leg. 7. The Pythagorean theorem states that (leg)2  (leg)2  (hypotenuse)2 .

60. Let x be one of the numbers. Since the numbers sum to 20, the other number is 20  x. x2  (20  x)2  218

Chapter 11 Review

x  400  40x  x  218 2

2

1. 5m + 30 = 5  m + 5  6 = 5(m + 6)

2x2  40x 182  0 2(x2  20x  91)  0 2(x 13)(x  7)  0 x 13  0 or x  7  0 x  13 x7 If x = 13, then 20  13 = 7. If x = 7, then 20  7 = 13. The numbers are 13 and 7. 62. Dimensions of garden: length = 24  2x width = 16  2x area of garden  length  width 180  (24  2x)(16  2x) 180  384  80x  4x

2

0  4x2  80x  204 0  4(x2  20x  51) 0  4(x 17)(x  3) x 17  0 or x  3  0 x  17 x3 Discard x = 17 since the walkway must be less than the width of the total space. The walkway is 3 yards wide. 64. answers may vary

2. 6x2 15x  3x  2x  3x  5  3x(2x  5) 3.

4x5  2x 10x4  2x  2x4  2x 1  2x  5x3  2x(2x4 1 5x3)

4.

20x3 12x2  24x  4x  5x2  4x  3x  4x  6  4x(5x2  3x  6)

5. 3x(2x + 3)  5(2x + 3) = (2x + 3)(3x  5) 6.

5x(x 1)  (x 1)  5x(x 1) 1(x 1)  (x 1)(5x 1)

7. 3x2  3x  2x  2  3x(x 1)  2(x 1)  (x 1)(3x  2) 8. 3a2  9ab  3b2  ab  3a(a  3b)  b(3b  a)  (a  3b)(3a  b) 9. 10a2  5ab  7b2 14ab  5a(2a  b)  7b(b  2a)  (2a  b)(5a  7b)

Copyright © 2025 Pearson Education, Inc.

443


Chapter 11: Factoring Polynomials

10. 6x2 10x  3x  5  2x(3x  5) 1(3x  5)  (3x  5)(2x 1)

ISM: Prealgebra and Introductory Algebra

25. Factors of 6x2: 6x2  6x  x, 6x2  3x  2x Factors of 4 y2: 4 y2  4 y  y, 4 y2  4 y   y,  4 y2  2 y  2 y

11. x2  6x  8  (x  4)(x  2)

6x2  5xy  4 y2  (3x  4 y)(2x  y) 12. x 11x  24  (x  8)(x  3) 2

26. x2  x  2 is prime.

13. x  x  2 is prime. 2

27. 2  39 = 78 3  26 = 78 3 + (26) = 23

14. x  5x  6  (x  6)(x 1) 2

15. x2  2x  8  (x  4)(x  2) 16. x2  4xy 12 y2  (x  6 y)(x  2 y) 17. x  8xy 15 y  (x  5 y)(x  3y) 2

2

2 2 18. 72 18x  2x  2x 18x  72

 2(x2  9x  36)  2(x  3)(x 12) 2

2

19. 32 12x  4x  4x 12x  32  4(x2  3x  8) 20. 5 y3  50 y2 120 y  5 y( y2 10 y  24)  5 y( y  6)( y  4)

2x2  23x  39  2x2  3x  26x  39  x(2x  3) 13(2x  3)  (2x  3)(x 13) 28. 18  20 y2  360 y2 15 y  24 y  360 y2 15 y  (24 y)  9 y 18x2  9xy  20 y2  18x2  15xy  24xy  20 y2  3x(6x  5 y)  4 y(6x  5 y)  (6x  5 y)(3x  4 y) 3

2

2

29. 10 y  25 y  60 y  5 y(2 y  5 y 12) 2  12 = 24 3  8 = 24 3 + 8 = 5 10 y3  25 y2  60 y  5 y(2 y2  5 y 12)

21. To factor x  2x  48, think of two numbers whose product is 48 and whose sum is 2. 2

22. The first step to factor 3x2  15x  30 is to factor out the GCF, 3. 23. Factors of 2x2: 2x  x Factors of 6: 6 = 1  6, 6 = 2  3 2x2 13x  6  (2x 1)(x  6)

 5 y(2 y2  3 y  8 y 12)  5 y[ y(2 y  3)  4(2 y  3)]  5 y(2 y  3)( y  4) 30. 60 y3  39 y2  6 y  3y(20 y2 13y  2) 20  2 = 40 5  8 = 40 5 + (8) = 13 60 y3  39 y2  6 y  3y(20 y2 13y  2)  3y(20 y2  5 y  8 y  2)  3y[5 y(4 y 1)  2(4 y 1)]

24. Factors of 4x2: 4x2  4x  x, 4x2  2x  2x Factors of 3: 3 = 1  3, 3 = 1  3

 3y(4 y 1)(5 y  2)

4x2  4x  3  (2x  3)(2x 1)

31. (x2  2)  (x2  4x)  (3x2  5x)  x2  2  x2  4x  3x2  5x  5x2  9x  2 5  2 = 10 1  10 = 10 444

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 1 + (10) = 9 2

2

5x  9x  2  5x  x 10x  2  x(5x 1)  2(5x 1)  (5x 1)(x  2) The perimeter is 5x2  9x  2 or (5x + 1)(x  2).

Chapter 11: Factoring Polynomials

41. x2  81  x2  92  (x  9)(x  9) 42. x2 12x  36  x2  2  x  6  62  (x  6)2 43. 4x2  9  (2x)2  32  (2x  3)(2x  3)

32. 2(2x2  3)  2(6x2 14x)  4x2  6 12x2  28x  16x2  28x  6

2 2 2 2 44. 9t  25s  (3t)  (5s)  (3t  5s)(3t  5s) 2 2 2 45. 16x  (4x) and y are both perfect squares,

 2(8x2 14x  3) 8  3 = 24 2  12 = 24 2 + (12) = 14

but they are added instead of subtracted, so the polynomial is prime. 46. n2 18n  81  n2  2  n  9  92  (n  9)2

2(8x2 14x  3)  2(8x2  2x 12x  3)  2[2x(4x 1)  3(4x 1)]  2(4x 1)(2x  3)

47. 3r 2  36r  108  3(r 2 12  36)  3(r 2  2  r  6  62 )  3(r  6)2

The perimeter is 16x2  28x  6 or 2(4x  1)(2x  3). 33. Since 9  3 and 6x = 2  3  x, x  6x  9 is a perfect square trinomial. 2

2

34. Since 64  82 , but 8x  2  8  x, x2  8x  64 is not a perfect square trinomial.

48. 9 y2  42 y  49  (3y)2  2  3y  7  72  (3y  7)2 49. 5m8  5m6  5m6 (m2 1)  5m6 (m2 12 )  5m6 (m 1)(m 1)

2 2 2 35. 9m  (3m) and 16  4 , but 2  3m  4  12m,

so 9m2 12m  16 is not a perfect square trinomial. 36. Since 4 y2  (2 y)2 and 49  72 and

50.

4x2  28xy  49 y2  (2x)2  2  2x  7 y  (7 y)2  (2x  7 y)2

2 2 3 2 2 51. 3x y  6xy  3y  3y(x  2xy  y )

2  2y  7 = 28y, 4 y2  28 y  49 is a perfect square trinomial. 2

2

2

37. Yes; x  9 or x  3 is the difference of two squares. 38. No; x2  16 or x2  42 is the sum of two squares. 39. Yes; 4x2  25 y2 or (2x)2  (5 y)2 is the difference of two squares. 40. No; 9a3 1 is not the difference of two squares [note: 9a2  1 or (3a)2 12 is the difference of two squares.]

 3y(x  y)2 52. 16x4 1  (4x2 )2 12  (4x2 1)(4x2 1)  [(2x)2 12 ](4x2 1)  (2x 1)(2x  1)(4x2  1) 53. (x + 6)(x  2) = 0 x6  0 or x  2  0 x  6 x2 The solutions are 6 and 2. 54. (x  7)(x + 11) = 0 x  7  0 or x 11  0 x7 x  11 The solutions are 7 and 11.

Copyright © 2025 Pearson Education, Inc.

445


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials 55. 3x(x + 1)(7x  2) = 0 3x  0 or x 1  0 or 7x  2  0 2 x0 x  1 x 7 2 The solutions are 0, 1, and . 7 56. 4(5x + 1)(x + 3) = 0 5x 1  0 or x  3  0 1 x  3 x  5 1 The solutions are  and 3. 5 57.

58.

x2  8x  7  0 (x  7)(x 1)  0 x7 0 or x 1  0 x  7 x  1 The solutions are 7 and 1. x2  2x  24  0 (x  4)(x  6)  0 x40 or x  6  0 x  4 x6 The solutions are 4 and 6. x2 10x  25

59.

x2 10x  25  0 (x  5)2  0 x5 0 x  5 The solution is 5. x(x 10)  16

60.

x2 10x  16 x 10x 16  0 (x  2)(x  8)  0 x  2  0 or x  8  0 x2 x8 The solutions are 2 and 8. 2

61.

446

(3x 1)(9x2  6x 1)  0 (3x 1)(3x 1)(3x 1)  0 3x 1  0 1 The solution is . 3

62.

63.

56x2  5x  6  0 (7x  2)(8x  3)  0 7x  2  0 or 8x  3  0 2 3 x  x  7 8 2 3 The solutions are  and . 7 8 m2  6m m2  6m  0 m(m  6)  0 m = 0 or m  6  0 m6 The solutions are 0 and 6. r 2  25

64.

r 2  25  0 (r  5)(r  5)  0 r  5  0 or r  5  0 r 5 r  5 The solutions are 5 and 5. 65. answers may vary, for example (x  4)(x  5)  0 x2  9x  20  0 66. answers may vary, for example [ x  (1)][ x  (1)]  0 (x  1)(x  1)  0 x2  2x 1  0 67. Let x be the width. Then 2x is the length. perimeter  2  length  2  width 24  2(2x)  2x 24  4x  2x 24  6x 4 x 8 = 2x The dimensions are 4 inches by 8 inches. The choice is c. 68. Let x be the width. Then 3x + 1 is the length. area  length  width 80  (3x 1)  x 80  3x2  x 0  3x2  x  80 0  (3x 16)(x  5)

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 3x 16  0 x

16

Chapter 11: Factoring Polynomials

or x  5  0 x5

72. Let x be the height. Then 4x is the base. 1 area   base  height 2 1 162   4x  x 2 162  2x2

3 16 since length cannot be 3 negative. The dimensions are 5 meters by 3x + 1 = 3(5) + 1 = 15 + 1 = 16 meters. The choice is d. Discard x  

0  2x2 162 0  2(x2  81) 0  2(x  9)(x  9) x  9  0 or x  9  0 x9 x  9 Discard x = 9 since length cannot be negative. The height is 9 yards and the base is 4x = 4(9) = 36 yards.

69. area  side2 81  x2 0  x2  81 0  (x  9)(x  9) x  9  0 or x  9  0 x9 x  9 Discard x = 9 since length cannot be negative. The length of each side is 9 units.

73. Let x be the first positive integer. Then x + 1 is the next consecutive integer. x(x 1)  380 x2  x  380

70. The perimeter is the sum of the sides. (2x  3)  (3x 1)  (x2  3x)  (x  3)  47

x2  x  380  0 (x  20)(x 19)  0 x  20  0 or x 19  0 x  20 x  19 Discard x = 20 since it is not positive. The integers are 19 and 19 + 1 = 20.

x  3x  7  47 2

x  3x  40  0 (x  5)(x  8)  0 2

x  5  0 or x  8  0 x5 x  8 Discard x = 8 since, for example, x + 3 would be negative. 2x + 3 = 2(5) + 3 = 10 + 3 = 13 3x + 1 = 3(5) + 1 = 15 + 1 = 16 x2  3x  52  3(5)  25 15  10 x+3=5+3=8 The lengths of the sides are 13 units, 16 units, 10 units, and 8 units. 71. Let x be the width. Then 2x  15 is the length. area  length  width 500  (2x 15)  x 500  2x2 15x

74.

Let x be the first positive even integer. Then x + 2 is the next consecutive even integer. x(x  2)  440 2

x2  2x  440

x  2x  440  0 (x  22)(x  20)  0 x  22  0 or x  20  0 x  22 x  20 Discard x = 22 since it is not positive. The integers are 20 and 20 + 2 = 22. h  16t 2  440t

75. a.

0  2x2 15x  500 0  (2x  25)(x  20) 2x  25  0 or x  20  0 25 x  20 x 2 25 Discard x   since length cannot be 2 negative. The width is 20 inches and the length is 2  20  15 = 40  15 = 25 inches.

2800  16t2  440t 16t 2  440t  2800  0 8(2t 2  55t  350)  0 8(2t  35)(t 10)  0 2t  35  0 or t 10  0 35 t  10 t or 17.5 2 The rocket reaches a height of 2800 feet at 10 seconds on the way up and at 17.5 seconds on the way down.

Copyright © 2025 Pearson Education, Inc.

447


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

b. The height is 0 when the rocket reaches the ground. h  16t 2  440t 0  16t  440t 0  8t(2t  55) 8t  0 or 2t  55  0 t0 2t  55 t  27.5 The rocket reaches the ground again after 27.5 seconds. 2

87. 16x2  24x  9  (4x)2  2  4x  3  32  (4x  3)2 88. 5x2  20x  20  5(x2  4x  4)  5(x2  2  x  2  22 )  5(x  2)2 89.

76. Let x be the length of the longer leg. Then x + 8 is the length of the hypotenuse and x 8 is the length of the shorter leg. (x  8)2  (x  8)2  x2 x2 16x  64  x2 16x  64  x2

x2  2x  15

90.

0  x  32x 0  x(x  32) x = 0 or x  32  0 x  32 The longer leg is 32 centimeters. 2

77. 6x + 24 = 6  x + 6  4 = 6(x + 4)

2x2  x  28  0 (2x  7)(x  4)  0 2x  7  0 or x  4  0 7 x4 x  2 7 The solutions are  and 4. 2

x  2x 15  0 (x  3)(x  5)  0 2

x  3  0 or x  5  0 x  3 x5 The solutions are 3 and 5.

78. 7x  63 = 7  x  7  9 = 7(x  9)

91. 2x(x + 7)(x + 4) = 0 2x  0 or x  7  0 or x0 x  7

79. 11x(4x  3)  6(4x  3) = (4x  3)(11x  6)

92.

x2  5x  6  0 (x  3)(x  2)  0 x  3  0 or x  2  0 x3 x2 The solutions are 3 and 2.

81. 3x3  4x2  6x  8  x2 (3x  4)2 2(3x  4)  (3x  4)(x  2)

2

2

83. 2x  2x  24  2(x  x 12)  2(x  4)(x  3) 3 2 2 84. 3x  30x  27x  3x(x 10x  9)  3x(x  9)(x 1)

85. 4x2  81  (2x)2  92  (2x  9)(2x  9) 86. 2x2 18  2(x2  9)  2(x2  32 )  2(x  3)(x  3)

448

x(x  5)  6 x2  5x  6

80. 2x(x  5)  (x  5)  2x(x  5) 1(x  5)  (x  5)(2x 1)

82. xy  2x  y  2  x( y  2) 1( y  2)  ( y  2)(x 1)

x40 x  4

93.

x2  16x x2 16x  0 x(x 16)  0 x = 0 or x 16  0 x  16 The solutions are 0 and 16.

94. The perimeter is the sum of the sides. (x2  3)  2x  (4x  5)  48 x2  6x  8  48 x  6x  40  0 (x  4)(x 10)  0 x  4  0 or x 10  0 x4 x  10 Discard x = 10 since length, such as 2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 2x = 2(10) = 20 cannot be negative. x2  3  42  3  16  3  19 2x = 2  4 = 8 4x + 5 = 4  4 + 5 = 16 + 5 = 21 The lengths are 19 inches, 8 inches, and 21 inches. 95. Let x be the length. Then x  4 is the width. area  length  width 12  x(x  4)

Chapter 11: Factoring Polynomials

Chapter 11 Test 1. 9x2  3x  3x(3x 1) 2. x2 11x  28  (x  7)(x  4) 3. 49  m2  72  m2  (7  m)(7  m) 4.

y2  22 y 121  y2  2  y 11112

12  x2  4x

 ( y  11)2

0  x2  4x 12 0  (x  6)(x  2) x  6  0 or x  2  0 x6 x  2 Discard x = 2 since length cannot be negative. The length is 6 inches and the width is x  4 = 6  4 = 2 inches.

5. x4 16  (x2 )2  (4)2  (x2  4)(x2  4)  (x2  4)[(x)2  (2)2 ]  (x2  4)(x  2)(x  2) 6. 4(a + 3)  y(a + 3) = (a + 3)(4  y)

Chapter 11 Getting Ready for the Test 7. x2  4 is prime. 1. 10x  70x  2x 14x 4

3

2

 2x  5x3  2x  35x2  2x  x  2x  7  2x(5x3  35x2  x  7) The greatest common factor is 2x; B. 2. All of the choices are equivalent to 9 y3  18 y 2 . Since choice D is a difference, not a product, it is not a factored form of 9 y3  18 y2 .

8. y2  8 y  48  ( y 12)( y  4) 9. 3a2  3ab  7a  7b  3a(a  b)  7(a  b)  (a  b)(3a  7) 10. 3x2  5x  2  (3x  2)(x 1) 11. 180  5x2  5(36  x2 )

3. (x  1)(x + 5) is a factored expression; A.

 5(62  x2 )  5(6  x)(6  x)

4. z(z + 12)(z  12) is a factored expression; A. 5. y(x  6) + 1(x  6) is a sum, not a product, so it is not a factored expression; B.

12. 3x3  21x2  30x  3x(x2  7x 10)  3x(x  5)(x  2)

6. m  m  5  5 is a difference, not a product, so it is not a factored expression; B.

13. 6t 2  t  5  6t2  5t  6t  5  t(6t  5) 1(6t  5)  (6t  5)(t 1)

7. 4x2 16  4  x2  4  4  4(x2  4) Choice B is the correct factored form.

14. xy2  7 y2  4x  28  y2 (x  7)  4(x  7)

8. x2  64 is the sum of two squares with no common factors, so it cannot be factored using real numbers; A.

 (x  7)( y2  4)  (x  7)( y  2)( y  2)

9. Choice C is an incorrect next step.

Copyright © 2025 Pearson Education, Inc.

449


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

15. x  x5  x(1  x4 )  x[12  (x2 )2 ]

22.

 x(1  x22 )(1  x2 )  x(1  x )(1  x)(1  x) 16. x2 14xy  24 y2  x2 12xy  2xy  24 y2  x(x 12 y)  2 y(x 12 y)  (x  12 y)(x  2 y)

t 2  2t 15  0 (t  3)(t  5)  0 t 3  0 or t  5  0 t  3 t 5 The solutions are 3 and 5. 6x2  15x

23.

6x2 15x  0 3x(2x  5)  0 3x  0 or 2x  5  0 5 x0 x 2

17. (x  3)(x + 9) = 0 x  3  0 or x  9  0 x3 x  9 The solutions are 3 and 9.

The solutions are 0 and

5

.

2 18.

x2  5x  14

24. Let x be the height. Then the base is x + 9. 1 area   base  height 2 1 68   (x  9)  x 2 1 2  68  2   (x  9)  x 2 136  x(x  9)

x2  5x 14  0 (x  7)(x  2)  0 x7 0 or x  2  0 x  7 x2 The solutions are 7 and 2. 19.

x(x  6)  7 x2  6x  7

136  x2  9x

x2  6x  7  0 (x  7)(x 1)  0 x7 0 or x 1  0 x  7 x 1 The solutions are 7 and 1.

0  x2  9x 136 0  (x 17)(x  8) x 17  0 or x  8  0 x  17 x8 Discard x = 17 since length cannot be negative. The height is 8 feet and the base is x + 9 = 8 + 9 = 17 feet.

20. 3x(2x  3)(3x + 4) = 0 3x  0 or 2x  3  0 or 3x  4  0 3 4 x0 x x  2 3 3 4 The solutions are 0, , and  . 2 3 21.

5t3  45t  0 5t(t 2  9)  0 5t[(t)2  (3)2 ]  0 5t(t  3)(t  3)  0 5t  0 or t  3  0 or t  3  0 t0 t  3 t3 The solutions are 0, 3, and 3.

450

25.

(x 1)(x  2)  54 x  2x  x  2  54 x2  x  56  0 (x  8)(x  7)  0 x  8  0 or x  7  0 x  8 x7 Discard x = 8 since length cannot be negative. x1=71=6 x+2=7+2=9 The width of the rectangle is 6 units and the length is 9 units. 2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

26. The object is at a height of 0 when it reaches the ground. h  16t 2  784

Chapter 11: Factoring Polynomials

4. x3  y3  (2)3  43  8  64  72 5.

8  n 1 8 1  n 11 9  n

6.

8x  72 8x 72  8 8

0  16t 2  784 0  16(t2  49) 0  16(t  7)(t  7) t  7  0 or t  7  0 t7 t  7 Discard t = 7 since time cannot be negative. The object reaches the ground after 7 seconds. 27. Let x be the length of the shorter leg. Then x + 10 is the length of the hypotenuse and x + 10  5 = x + 5 is the length of the longer leg. x2  (x  5)2  (x 10)2 2

2

x  9 7. 2y  6 + 4y + 8 = 2y + 4y  6 + 8 = 6y + 2 8. 5a  3 + a + 2 = 5a + a  3 + 2 = 4a  1 9. 4x + 2  5x + 3 = 4x  5x + 2 + 3 = x + 5

2

x  x 10x  25  x  20x 100 x2 10x  75  0 (x 15)(x  5)  0 x 15  0 or x  5  0 x  15 x  5 Discard x = 5 since length cannot be negative. The shorter leg is 15 cm, the longer leg is 15 + 5 = 20 cm, and the hypotenuse is 15 + 10 = 25 cm. 28. The height of the object is 0 when it reaches the ground. h  16t2 1089 0  16t2 1089 0  1(16t2 1089) 0  1[(4t)2  332 ] 0  1(4t  33)(4t  33) 4t  33  0 or 4t  33  0 33 33 t or 8.25 t 4 4 33 Discard t   since time cannot be negative. 4 The object reaches the ground after 8.25 seconds. Cumulative Review Chapters 111

10. 2x + 5x  6 = 7x  6 11.

3(3x  5)  10x 9x 15  10x 9x  9x 15  10x  9x 15  x

12.

2(7x 1)  15x 14x  2  15x 14x 14x  2  15x 14x 2  x

13. 3(2x  6)  6  0 6x 18  6  0 6x 12  0 6x 12 12  0 12 6x  12 6x 12  6 6 x2 14. 4(x  3) 12  0 4x 12 12  0 4x  0 4x 0  4 4 x0

1. x  2 y  z  3  2(5)  (4)  3 10  4  3 2. 5x  y = 5(2)  4 = 10  4 = 14 3. 7  x2  7  (4)2  7 16  9 Copyright © 2025 Pearson Education, Inc.

451


ISM: Prealgebra and Introductory Algebra

Chapter 11: Factoring Polynomials

15.

16.

21.

x 1 x  7  2 3  x 1   x  7  6  6 2  3      3(x 1)  2(x  7) 3x  3  2x 14 x  3  14 x  17

23. (53 )6  536  518

17. a. b. c. 18. a.

22. 3x  2 y  5 3x  2 y  5 3x 2 y  5  3 3 2y  5 x 3

24. (79 )2  792  718 25. ( y8 )2  y82  y16 11 3 113  x33 26. (x )  x

Nine is less than or equal to eleven is translated as 9  11.

27.

(x3 )4 x x7

x7

Three is not equal to four is translated as 3  4.

x12  x1 x7 x121 x7 x13

x7  x137

Five is greater than or equal to one is translated as 5  1.

3(x  4)  3x 12 3x 12  3x 12 3x  3x 12  3x  3x 12 12  12 Since this results in a true statement, all real numbers are solutions.

x34  x1

 

Eight is greater than one is translated as 8 > 1.

 x6

b. Two is not equal to negative four translates as 2  4. 19.

V  lwh V lwh wh  wh V V  l or l  wh wh

x5 x2  3 5  x5  x  2  15   15   5  3     5(x  5)  3(x  2) 5x  25  3x  6 2x  25  6 2x  31 2x 31  2 2 31 x 2

( y3 )9  y 28.

y6

 

20. 2(x  5)  2x  9 2x 10  2x  9 10  9 Since 10 = 9 is a false statement, there is no solution.

y6 y27  y1 y6 y271 y6 y28 y6

 y286  y22 3 6 6

29. ( y z )

452

y39  y1

Copyright © 2025 Pearson Education, Inc.

y

36 66

z

18 36

y z

y18 

z36


ISM: Prealgebra and Introductory Algebra

4 2

30. (xy

31.

)

x7 (x4 )3

x7 x43

2 5

y

(y ) 32.

x

2

4 2

(y

)

x7

x12

10

x

y 

44.

x2

x127

103

y

20a2b3  5ab 10b

1

x12(7)

10(3)

y3  3  y y

y8

2 8

1

Chapter 11: Factoring Polynomials

5ab

1 x19

20a2b3

10b  5ab 5ab 5ab 2 2  4ab 1 a 

5ab

45. 5(x  3)  y(x  3)  (x  3)(5  y) 46. 9(y  2) + x(y  2) = (y  2)(9 + x)

13

y 47. x4  5x2  6  x4  2x2  3x2  6

33. 3x + 7x = (3 + 7)x = 4x

 x2 (x2  2)  3(x2  2)

34. y + y = 2y

 (x2  2)(x2  3)

35. 11x2  5  2x2  7  11x2  2x2  5  7

48. x4  4x2  5  x4  x2  5x2  5

 13x2  2 2

 x2 (x2 1)  5(x2 1)

2

2

36. 8 y  y  4 y  y  8 y  4 y  y  y

 (x2 1)(x2  5)

2

 12 y  2 y2

49. 6x2  2x  20  2(3x2  x 10)  2(3x2  6x  5x 10)  2[3x(x  2)  5(x  2)]  2(x  2)(3x  5)

37. (2x  y)2  (2x  y)(2x  y)  2x(2x)  2x( y)  ( y)(2x)  ( y)( y)  4x2  2xy  2xy  y2  4x  4xy  y 2

50. 10x2  25x 10  5(2x2  5x  2)

2

 5(2x2  4x  x  2)  5[2x(x  2) 1(x  2)]  5(x  2)(2x 1)

38. (3x 1)2  (3x 1)(3x 1)  3x(3x)  3x(1) 1(3x) 1(1)

51. The height is 0 when the diver reaches the ocean.

 9x2  3x  3x 1

h  16t 2 144

 9x 2  6x 1

0  16t 2 144 0  16(t 2  9) 0  16(t  3)(t  3) t  3  0 or t  3  0 t 3 t  3 Discard t = 3 since time cannot be negative. The diver reaches the ocean after 3 seconds.

39. (t  2)2  t 2  2(t)(2)  22  t2  4t  4 40. (x  4)2  x2  2(x)(4)  42  x2  8x 16 41. (x2  7 y)2  (x2 )2  2(x2 )(7 y)  (7 y)2  x4 14x2 y  49 y2 52. 2

2

2 2

2

2

42. (x  7 y)  (x )  2(x )(7 y)  (7 y) 4

2

2x

x2  2x 120  0 (x 12)(x 10)  0 x 12  0 or x 10  0 x  12 x  10

4xy

The number is 12 or 10.

2

 x 14x y  49 y 8x2 y2 16xy  2x 43.

4xy



8x2 y2

4xy  2xy  4 

16xy 4xy 1



x2  2x  120

2y

Copyright © 2025 Pearson Education, Inc.

453


Chapter 12 2x2  5x 12

Section 12.1 Practice Exercises 1. a. b.

2. a.

x3 43 1 1    5x 1 5(4) 1 20 1 21

3.

x 8  0 x  8

x2  5x  4  0 (x  4)(x 1)  0 x40 or x 1  0 x  4 x  1 When x = 4 or x = 1, the expression x3 is undefined. 2 x  5x  4 x2  3x  2 The denominator of is never 0, 5 so there are no values of x for which this expression is undefined.

x4  x3 5x  5

x3 (x 1) 5(x  1)

x2 11x 18 4.

x2  x  2



x3

b.

454

(x  4)(2x  3)

(4  x)(4  x) (x  4)(2x  3)  (1)(x  4)(4  x) 2x  3  (1)(x  4)

(x  9)(x  2) (x 1)(x  2)

2x  3 2x  3 or x4 x4

9.  3x  7  (3x  7)  3x  7 or x6 x6 x6 3x  7 3x  7  (x  6) x  6 Vocabulary, Readiness & Video Check 12.1 1. A rational expression is an expression that can be P written in the form Q , where P and Q are polynomials and Q  0. 2. The expression

3. The expression

x3 3 x x3 3 x

simplifies to 1.

simplifies to 1.

4. A rational expression is undefined for values that make the denominator 0.

5 

x9

5. The expression

x4 x4 1    1 4  x (1)(x  4) 1

is undefined for x = 2.

6. The process of writing a rational expression in lowest terms is called simplifying. a a a 7. For a rational expression,    . b b b 8.

x x7

x4 x4  1 4 x x4

7x x2

x 1

2 5. x 10x  25  (x  5)(x  5)  x  5 x(x  5) x x2  5x x5 x5 1 6.   x2  25 (x  5)(x  5) x  5

7. a.



undefined.

c.

16  x2

x  3 (3)  3  6 6 3 5x      1 5(3) 1 15 1 14 7

x When x = 8, the expression x  8 is

b.

8.

cannot be simplified.

9. Since 3 + x = x + 3,

3 x can be simplified. x3

10. Since 5  x = 1(x  5),

Copyright © 2025 Pearson Education, Inc.

5 x can be simplified. x5


ISM: Prealgebra and Introductory Algebra

11.

x2 cannot be simplified. x 8

12. replacement values of variables; by evaluating the expression for different replacement valuesvariables are replaced with these values and the expression is simplified 13. Rational expressions are fractions and are therefore undefined if the denominator is zero; if a denominator contains variables, set it equal to zero and solve. 14. Although x is a factor in the numerator, it is not a factor in the denominatorfactor means to write as a product, and the denominator is a difference, not a product. 15. We would need to write parentheses around the numerator or denominator if it had more than one term because the negative sign needs to apply to the entire numerator or denominator.

Chapter 12: Rational Expressions 14. 5x  2  0 5x  2 2 x 5 x 1 2 is undefined for x  . 5x  2 5 16.

19x3  2 x2  x

20.

x  8 2  8 10 x 1  2  1  3

7 y 1 7(2) 1 14 1 15 4.    5 y 1 2 1 3 3 6.

z z 5

2

8.

5

 5  5   1 4 (5)  5 25  5 20

x5 x2  4x  8

2

25 22  4(2)  8

10. 5x  0 x0 3 is undefined for x = 0. 5x 12. x  9  0 x9 5x 1 is undefined for x = 9. x9

7 7  488 4

is undefined for x = 0 and x = 1.

18. Since 9  0, there are no values of x for which 9 y5  y3 is undefined. 9

Exercise Set 12.1 2.

x2  x  0 x(x 1)  0 x = 0 or x 1  0 x 1

x2  5x 14  0 (x  7)(x  2)  0 x  7  0 or x  2  0 x7 x  2 11x2 1 x2  5x 14

is undefined for x = 7 and x = 2.

22. 2x2 15x  27  0 (2x  9)(x  3)  0 2x  9  0 or x  3  0 2x  9 x  3 9 x  2 9 x is undefined for x   2x2 15x  27 x = 3. 24.

y9 y9  1 9 y y9

26.

y  9  1( y  9) 1(9  y)    1 9 y 9 y 9 y

28.

3 3 1   9x  6 3(3x  2) 3x  2

30.

x5 2

x  25

Copyright © 2025 Pearson Education, Inc.

2

and

x5 1  (x  5)(x  5) x  5

455


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

32.

3x  9 3(x  3)  can’t be simplified. 4x 16 4(x  4)

34.

4x  4 y 4(x  y)   4 x y x y 9x  99

36.

x2  11x

9(x 11) x(x 11)

x 3 38.

x2  6x  9



x

(x  3)(x  3)

1 x3

2 40. 12x  4x 1  (6x 1)(2x 1)  

2x 1 x4 10x3 42.

44.

x2 17x  70

2x  1 

x3 (x 10) (x  7)(x 10)

  6x 1

4x2  24x 4x(x  6)   4x x6 x6

5x2  500 5(x2 100)  35x  350 35(x 10) 5(x 10)(x 10)  5  7(x 10) x 10  7

x2 16 x  8x  16 2

456

(x  4)(x  4) (x  4)(x  4)

2x( y 1)  3( y 1) 

2x( y  2)  3( y  2) ( y 1)(2x  3)  ( y  2)(2x  3) y 1  y2

62.  x 11  (x 11) x4 x4 x 11  x4 x 11  (x  4) x 11  x  4 8 y 1  (8 y 1)  y 15 y 15 8 y 1  y 15 8 y 1 ( y 15) 8 y 1   y  15 

66.

2xy  4x  3y  6

64. 

2 49  y2 ( y  49)  y7 y7 ( y  7)( y  7)  y7  ( y  7)

54.

60.

x7

2 48. 4x  4x 1  (2x 1)(2x 1)  2x 1 (2x 1)(x  5) x5 2x2  9x  5

52.

2xy  2x  3y  3

x3

2 46. 2x  7x  4  (2x 1)(x  4)  2x 1 (x 1)(x  4) x 1 x2  3x  4

50.

ab  ac  b2  bc a(b  c)  b(b  c)  bc bc (a  b)(b  c)  bc  ab

58. xy  6x  2 y 12  x( y  6)  2( y  6) y( y  6) y2  6 y (x  2)( y  6)  y( y  6) x2  y

9

x3

56.

x4 x4

100  x2 100  x2  (10  x) x 10 (10  x)(10  x)  (10  x) 10  x  1  10  x The given answer is correct.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 2 68. 2 15x  8x  (2  x)(1 8x) (8x 1)(8x 1) 64x2 1 (x  2)(1 8x)  (8x 1)(1 8x) x2  8x  1 The given answer is correct.

70.

72.

1

46 2  23 23 6 86. 54  2  27  27  5 The given answer is incorrect. 88. answers may vary 90. no; answers may vary 92. a.

5 2 2   5  2  27 5 27  5 27 7

Chapter 12: Rational Expressions

7 2   7  2  7 8 1 2  2  2 1 4

8 74.

2

8 5 8 8 8 8 64      15 8 15 5 15  5 75

76. Use S 

H  D  2T  3R

with H = 152, D = 24,

b.

B T = 1, R = 22, and B = 522. 152  24  2(1)  3(22) 244 S   0.467 522 522 Carlos Correa’s 2022 slugging percentage was 0.467. H  D  2T  3R with H = 158, D = 39, B T = 0, R = 28, and B = 527. 158  39  2(0)  3(28) 281 S    0.533 527 527 José Altuve’s 2022 slugging percentage was 0.533.

78. Use S 

80. Use S 

H  D  2T  3R

with H = 172, D = 37, B T = 1, R = 32, and B = 578. 172  37  2(1)  3(32) 307 S   0.531 578 578 Manny Machado’s 2022 slugging percentage was 0.531.

82. José Altuve had the second-greatest slugging percentage in 2022. 7m  9

84.

9  m  7 7 7 7 The given answer is incorrect. 

7m

9

c.

250(100) 10, 000 100 25, 000 10, 000  100 35, 000  100  350 The cost per fax machine when producing 100 fax machines is $350. C 

250(1000) 10, 000 1000 250, 000 10, 000  1000 260, 000  1000  260 The cost per fax machine when producing 1000 fax machines is $260. C

decrease; answers may vary

94. Use B 

703w

with w = 198 and h = 68. h2 703w 703(198) 139,194 B    30 4624 h2 682 The body-mass index is approximately 30. R C R with R = 151.7 and C = 129.0. R  C 151.7 129.0 22.7 P  R  151.7  151.7  

96. Use P 

Ford’s gross profit margin in 2022 was 15%. Section 12.2 Practice Exercises 1. a.

16 y  1  16 y 1  16 y 3 x2 3 x2 3x2

Copyright © 2025 Pearson Education, Inc.

457


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

5a3 2b2 5a3  2b2   3b3 15a 3b3 15a 5  a3  2  b2  3 b32 3 5  a 2a  9b

b.

3x  6

b.

3(x  2)  7x2

7x2

3  3   14 x  2x2 2  7  x2 (x  2) 2

3.

4x  8  3x2  5x  2 7x2 14x 9x2 1

9. 288 sq in. 

4(x  2) (3x 1)(x  2)  7x(x  2) (3x 1)(3x 1) 4(x  2)(3x 1)(x  2)  7x(x  2)(3x 1)(3x 1) 4(x  2)  7x(3x  1) 

4.

6

10x  4 x2  4

3x 12 2

(x  4)2

2

5x3  2x2 10x  4 x2  2  3 x2 x  4 5x  2x2 2(5x  2)(x  2)  (x  2)(x  2)  x2 (5x  2) 2  2 x (x  2)

3x2 10x  8 9x 12 7.  7x2 14 21 3x 10x  8 21   7x 14 9x 12 (3x  4)(x  2)  3 7  7(x  2)  3(3x  4) 1

458

 2 sq ft

144 sq in.

 600, 003 sq ft

9 sq ft 1 sq yd

12. 102.7 feet/second 102.7 feet 3600 seconds 1 mile    1 second 1 hour 5280 feet 102.7  3600  miles/hour 5280  70.0 miles/hour or 70.0 mi/hr Vocabulary, Readiness & Video Check 12.2 1. The expressions

x 2y

reciprocals. 2.

a c ac   b d bd

3.

a c ad   b d bc

x x x2   4. 7 6 42 5.

x 7

8. a.

1

1 sq ft

11. 66, 667 sq yd  66, 667 sq yd 

3x 12 6 (x  4)(x  4)  2  2  3 3(x  4) x4  9



288 sq in.

3.5 sq ft 144 sq in.   504 sq in. 1 1 sq ft

7x2 2 y 7  x  x  2  y 7xy      2  3 x 3 6 2y 6 x

5.

6.

10. 3.5 sq ft 

x

(x  4)2

2

3 x 2x 10  x2  6x  5 x2  7x 12 (3  x)  2(x  5)  (x  5)(x 1)  (x  4)(x  3)  1(x  3)  2  (x 1)(x  4)(x  3) 2  (x 1)(x  4)

c.

2.

7x2

x3 7 x  3 x  3 (x  3)     x x3 x 7 7x

x 6

6 7

x3 7 (x  3)  7 7    x x  3 x  (x  3) x

Copyright © 2025 Pearson Education, Inc.

and

2y x

are called


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

6. Yes, multiplying and simplifying rational expressions often require polynomial factoring. Video Notebook Number 2 alone involves factoring out a GCF, factoring a trinomial with a  1, and factoring a difference of squares.

16.

7. Dividing rational expressions is exactly like dividing fractions. Therefore, to divide by a rational expression, multiply by its reciprocal.

9 y4 18.

8. Multiplication and division of rational expressions are performed similarlyboth involve multiplicationbut there are important differences. Note the operation first to see whether you multiply by the reciprocal or not. 9. We’re converting to cubic feet, so we want cubic feet in the numerator. We want cubic yards to divide out, so cubic yards is in the denominator. Exercise Set 12.2

65 x x  x

5x



y2

6y

9 y4

3  2 6y y 3 3 3 3 y  y  y  y  3 2  y  y  y 3 3 y  2  9y   2 

2

7a b 

20.

2 2. 9x  4 y3  3 3 4  x  x  y  12 3 x  x  x  y x y 3x

6x2

x2  9x  20  x2 11x  28  x2 15x  44 x2 12x  35 (x  4)(x  5) (x  7)(x  4)   (x  4)(x 11) (x  7)(x  5) (x  4)(x  7)  (x 11)(x  7)

2 2

21a b

3b2

14b

1

   10x 3 12 5  2  6  2  x  x  x 4 9x3 y2 6.   3 9x3 y2 y3   5 1 5 y 18xy 18xy 9  x  x  x  y  y  y  y  y  9 2 x y  y  y  y  y x x  2 x2  2

7a b  14b  3ab2 21a2b2 27 7 a  a bb  3 3 7  a  a  b  b  b  b 2  7  3 3 b  b 

4x  24

20x 10.

x6



4(x  6) 4  5x

5 x6



(x  3)2 22.

5

5x 15 25

mn

m 2

m  mn

 

m  nm  n

25  5 5x 15 (x  3)(x  3) 5  5   5 5(x  3) x3  1  x3 

2 9x5  27x  9x5  3b  3a 2 3b  3a a2  b2  27x2 24. a  b

1

9x2  x3 3(a  b)  (a  b)(a  b) 3 9x2 x3  ab

x

(m  n)(m  n)

(x  3)2

2

x(x 1) 8  2 x  2 x2  x 16      2x 8 x 1 8 x 1 1 (m  n)2

12.

5

14  9b2

4.

8.

2

(m  n)2

m m(m  n)

26.

mn

mn

a  4a  4 a  3 (a  2)(a  2) a  3 a  3     14. a  2 (a  2)(a  2) a  2 a  2 a2  4 2

Copyright © 2025 Pearson Education, Inc.

m2  mn m

(m  n)2

m  m  n m2  mn (m  n)(m  n) m   mn m(m  n) mn  mn 

459


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions x2  3x 18 x  3 x2  2x  8    28. 2  x x2  2x  8 2  x x2  3x 18 x  3 (x  4)(x  2)   2  x (x  6)(x  3) x  3 (x  4)(x  2)   (x  2) (x  6)(x  3) x4  x6 x3

x3

x  3 (x  3)2    40. 2 x  9 (x  3)2 x2  9 5x 15 x3 (x  3)(x  3)   (x  3)(x  3) 5(x  3) x3  5(x  3) 3y 42.

30.

32.

x 1 20x 100  2 2x  5x  3 2x  3 x 1 2x  3   (x 1)(2x  3) 20x 100 x 1 2x  3   (x 1)(2x  3) 20(x  5) 1  20(x  5) 6x  6 9x  9 6x  6 10    5 10 5 9x  9 6(x 1) 5  2   5 9(x 1) 3 2  2  3 3 4  3 3x2 12x

34.

6

9 2x  8



3x(x  4)

3 2 3 3 x  22 9x  4

3 3  2(x  4)

3(x  2) 4  2  2 10 4(x  2) 3  10

x2  y2 3x2  6x 38. 3x2  3xy  3x2  2xy  y2 (x  y)(x  y) 3x(x  2)  3x(x  y) (3x  y)(x  y) x2  3x  y 

460

x2  9  x2  9 3  x 12xy 3y (x  3)(x  3)  3  x  12xy 3y  (x  3)(x  3) 3 4xy (x  3) x3  4x x3  4x

12xy

b2  2b  3

44.

3y

b2  4

 b2(b b  2 b2  6b  8 3)(b 1) (b  2)(b  2)   (b  2)(b 1) (b  2)(b  4) (b  3)(b  2)  (b  2)(b  4)

9x 18  4x2 11x  6 46. 4x2  3x x2  4 9(x  2) (4x  3)(x  2)  x(4x  3) (x  2)(x  2) 9  x

48.

36. 3x  6  4x  8  3x  6  8 20 8 20 4x  8

3 x

5x 15

36n2  64 3n2  5n 12  3n2 10n  8 n2  9n 14 36n2  64 n2  9n 14   3n2 10n  8 3n2  5n 12 2 4(9n 16) (n  7)(n  2)   (3n  4)(n 2) (3n  4)(n  3) 4(3n  4)(3n  4) (n  7)(n  2)   (3n  4)(n  2) (3n  4)(n  3) 4(n  7)  n3

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

50. 1008 square inches 

1008 square inches

1  7 square feet 52.

2

Chapter 12: Rational Expressions

 1 square foot 144 square inches

2 square yards 9 square feet 144 square inches   1 1 square yard 1 square feet  2592 square inches

square yards 

2 cubic yards 27 cubic feet 1728 cubic inches   1 1 cubic yard 1 cubic foot  93, 312 cubic inches

54. 2 cubic yards 

56.

58.

10 feet 10 feet  1 mile 3600 seconds    1 second 1 second 5280 feet 1 hour  6.8 miles per hour 3.6

3.6 square yards 9 square feet  1 1 square yard  32.4 square feet

square yards 

3, 705, 793 square feet 1 square yard  1 9 square feet  411, 755 square yards

60. 3, 705, 793 square feet 

200 miles 5280 feet 1 hour   1 hour 1 mile 3600 seconds  293.3 ft/sec

62. 200 miles per hour 

64.

3

6

15 15 66.

3  6  9 3 3 3    15 15 3 5 5 

4 8 4  8 4 4     3 3 3 3 3

68.  3   1  3    3    2    5 2 2 2 2 2 2     

70.

2 2 4 1 2     3 4 12 3 7 The statement is false.

72. 7  3  21  21 a a a2 a The statement is false.

Copyright © 2025 Pearson Education, Inc.

461


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

74.

2x 2x  4x2   5x 3 5x  3 (5x  3) 2

3.

2x2  5x x2

4x  6 x2

4x2

The area is square meters. (5x  3)2 2 2  x  9 x  2x 1  2x  3   76.  2  x 1 2x2  9x  9   1 x   x2  9 x2  2x 1 1 x  2   x 1 2x2  9x  9 2x  3 (x  3)(x  3) (x 1)(x 1) (x 1)    (x 1)(x 1) (2x  3)(x  3) 2x  3 (x  3)(x 1)  (2x  3)2

LCD  32  5  9  5  45

5 11 , 6x3 18x5

b.

6x3  2  3  x3 and 18x5  2  32  x5

2 2

x y  xy 8x  8 y y  x   4x  4 y 3y  3x 8 xy(xy 1) 8(x  y) y  x    4(x  y) 3( y  x) 8 xy(xy 1)  12

LCD  2  2  x5  2  9  x5  18x5

5.

3a

, 7a a5 a5 LCD = (a + 5)(a  5) 7x2

6.

80. answers may vary 82. 30 gallons per minute 30 gallons 1 minute 1 cubic foot    1 minute 60 seconds 7.48 gallons  0.067 cubic foot per second The flow rate is not in violation of the regulations.

5x ,

(x  4)2 3x 12 (x  4)2  (x  4)(x  4) and 3x  12 = 3(x  4) LCD  3(x  4)(x  4)  3(x  4)2

7.

y5 2

y  2y  3

,

y4 2

y  3y  2

y2  2 y  3  ( y  3)( y 1)

Section 12.3 Practice Exercises

2.

x2 2x2  5x  4x  6  x2 2x2  x  6  x2 (2x  3)(x  2)  x2  2x  3

9  32 and 15 = 3  5

1.

2x2  5x  (4x  6)

2 7 , 9 15

4. a.

 x2 y2  xy 3y  3x   y  x   78.    4x  4 y 8x  8 y   8 

y 2  3y  2  ( y  2)( y 1)

8x x 8x  x 9x 3x     3y 3y y 3y 3y

LCD = (y + 3)(y  1)(y  2)

3x 7 3x  7 1    or 1 3x  7 3x  7 3x  7 1

8.

6

,

9

x4 4 x (4  x) = (x  4) LCD = (x  4) or (4  x) 2x 4x2 y 8x3 y 9.  1    5y 5y 5 y 4x2 y 20x2 y2 2x

462

2x

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 3

10.

3

2

x  25

Chapter 12: Rational Expressions 8 y 16 8( y  2) 8y 16   8  y2 y2 y2 y2

6.

(x  5)(x  5) 3 x3   (x  5)(x  5) x  3 3(x  3)  (x  5)(x  5)(x  3) 3x  9  (x  5)(x  5)(x  3)

9

8.

y9

x2  9x 10.

y5 9 y5 y 4   y9 y9 y9 

4x 14

x7

x7

x2  9x  (4x 14)

x7 x  9x  4x 14  x7 x2  5x 14  x7 (x  7)(x  2)  x7   x 2 2

Vocabulary, Readiness & Video Check 12.3 7 1.

2.

9

11 11 11 7 2 5   11 11 11 a

3.

2

b

c b



ac

12.

3y

y  3y 10 2

b

4.

a c ac   b b b

5.

5 6  x 5  (6  x)   x x x

3x 1

14.

x  5x  6 2

6. in order to carry out the subtraction properlyparentheses make sure each term in the numerator is affected by the subtraction, not just the first term 7. We completely factor denominatorsincluding coefficientsso we can determine the greatest number of times each unique factor occurs in any one denominator for the LCD. 8. To write an equivalent rational expression, we multiply the numerator of the rational expression by the same expression as the denominator. This means we’re multiplying the original rational expression by a factor of one and therefore not changing the value of the original expression. Exercise Set 12.3 x 1 2. 7 4.

6 7

x 1  6 7



x7 7

3 p 11p 3 p 11p 14 p 7 p     2q 2q 2q 2q q

16.

18.

 

y  3y 10 2

2x  7

3y  6



6

y  3y 10 3( y  2)  ( y  5)( y  2) 3  y5 2

3x 1 (2x  7) x2  5x  6 x  5x  6 3x 1 2x  7  2 x  5x  6 x6  (x  6)(x 1) 1  x 1 2

4 p  3 3p  8 4p 3 3p 8 7 p  5    2p 7 2p  7 2p7 2p 7 6x2 25  2x2 6x2  (25  2x2 )   2x  5 2x  5 2x  5 6x2  25  2x2  2x  5 4x2  25  2x  5 (2x  5)(2x  5)  2x  5  2x  5

Copyright © 2025 Pearson Education, Inc.

463


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

20.

7x 1 2x  21 7x 1 (2x  21)   x4 x4 x4 7x 1 2x  21  x4 5x  20  x4 5(x  4)  x4 5

22. 4y = 2  2  y

42.

LCD  2  2  2  y  8 y 5

46.

4x 1 4x 1 (4x 1) y  4xy  y    3x  6 3(x  2) 3(x  2) y 3y(x  2) 5 y

2

2x  10

2(x  5)

x  2x  3x 3

2

(5  y)  2

2

2(x  5)  2

10  2 y 4(x2  5)

6m  5 52.

30. 7x  14 = 7(x  2) (x  2)2  (x  2)(x  2) LCD  7(x  2)(x  2)  7(x  2)2 32. 4x  12 = 4(x  3) 2x2 12x 18  2(x2  6x  9)  2(x  3)2 LCD  4(x  3)2 34. 7  3x = (3x  7) LCD = 3x  7 or 7  3x

x(x  2x  3) 5x  x(x  3)(x 1) 5x(x  5)  x(x  3)(x 1)(x  5) 2

5x2  25x x(x  3)(x 1)(x  5)

(6m  5)4 (3x2  9)4

24m  20 

12x2  36

5x 9x 5x  9x 45x2    7 7 77 49

56. x  3  2x 1  x  3  (2x 1) 4 4 4 x  3  2x 1  4 x  4  4 58.  2x  3x  2x  3x x3  8x x3  8x x3  8x x  2 x(x  8) 1  2 x 8

36. x2  4x  3  (x  3)(x 1) x2 10x  21  (x  3)(x  7) LCD = (x + 3)(x + 1)(x + 7) 2

38. 4x  5x 1  (4x 1)(x 1) 3x2  2x 1  (3x 1)(x 1) LCD = (4x + 1)(x + 1)(3x + 1)(x  1) 40. x2  25  (x  5)(x  5)

54.

3x2  9



5x

28. x + 5 = x + 5 4x + 20 = 4(x + 5) LCD = 4(x + 5)

60.

 2x x3  8x

3x

2x

 3   x  8x x3  8x

3x 15x  3x (x  5) 2

LCD  3x2 (x  5)(x  5) 464

2

5x

50.

26. x  1 = x  1 x+5=x+5 LCD = (x  1)(x + 5)

2

5 y

5

24. 6y = 6  y = 2  3  y 4y + 12 = 4(y + 3) = 2  2  (y + 3) LCD = 3  4  y  (y + 3) = 12y(y + 3)

3

24 y4

 9 y5  8 y4 72 y9 5 8 yx 40 yx 44.   4 y2 x 4 y2 x  8 yx 32 y3 x2 9 y5 5

48.

3y5  2  2  2  y5

38 y4

3

Copyright © 2025 Pearson Education, Inc.

x3  8x 3x

2 

3


ISM: Prealgebra and Introductory Algebra

62.

64.

12x  6 4x2 13x  3  x2  3x 4x2 1 6(2x 1) (4x 1)(x  3)   x(x  3) (2x 1)(2x 1) 6(4x 1)  x(2x  1)

86. 8 = 2  2  2 12 = 2  2  3 LCD = 2  2  2  3 = 24 24 = 8  3 24 = 12  2 You should buy 3 packages of hot dogs and 2 packages of buns.

9

88. answers may vary

3   9  3  2  9  6  3 10 5 10 5  2 10 10 10 

66. 68.

Chapter 12: Rational Expressions

11 5 11 3 5  5 33 25 58       15 9 15  3 9  5 45 45 45 7

3

  7  3  3  5  21  15  36  2 30 18 30  3 18  5 90 90 90 5

90. answers may vary Section 12.4 Practice Exercises y 3y y  3 3y 3 y  3 y 0      0 5 15 5  3 15 15 15

1. a.

5

b.

70. 14x  2  7  x 2

2

8x

6x3  2  3  x3

LCD  2  3 7  x3  42x3; c

72. answers may vary

3 y 3 y 74.   x x x Choice c is correct. 76.

2 x

8y 1(2  x)

5  10x 5(x  3) 2.    x2  9 x  3 (x  3)(x  3) (x  3)(x  3) 10x  5(x  3)  (x  3)(x  3) 10x  5x 15  (x  3)(x  3) 5x 15  (x  3)(x  3) 5(x  3)  (x  3)(x  3) 5  x3 10x

3 y 3 x 3 x 3      x x x y x y y Choice a is correct. 8y

78.

 11  5  5x  11 4 10x2 8x  5x 10x2  4 25x 44   40x2 40x2 25x  44  40x2

 

8y x2

x  3 1(x  3) x  3 3  x     80. (x  2)  x  2  x  2 x2 x2 x3

82. The perimeter of a trapezoid is the sum of the lengths of its sides. x4 5 x 1 5    x3 x3 x3 x3 x  4  5  x 1 5  x3 2x 15  x3 2x 15 The perimeter is inches. x3

3.

5 7x

2

5(x 1)  2(7x)  x 1 7x(x 1) (x 1)(7x) 5(x 1)  2(7x)  7x(x 1) 5x  5 14x  7x(x 1) 19x  5  7x(x  1) 

84. answers may vary

Copyright © 2025 Pearson Education, Inc.

465


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

4.

10

15

x6

6 x

x

5. 2 

x5

10

3. The exercise is adding two rational expressions with denominators that are opposites of each other. Recognizing this special case can save us time and effort. If we recognize that one denominator is 1 times the other denominator,

15

x  6 (x  6) 10  15   x6 x6 10  (15)  x6 25  x6

we may save many steps. Exercise Set 12.4 2.

2 x  1 x5 2(x  5)  x   1(x  5) x  5 2x 10  x  x5 3x 10  x5 

4. 6.

4

3x

4

16  3x2 4x(3x  2)

6x x  4x6x 4  2



x 2

x 4 

x

(x  2)(x  2) (x  2)(x  2) 6x(x  2) x(x  2)  (x  2)(x  2)(x  2) (x  2)(x  2)(x  2) 6x(x  2)  x(x  2)

 

(x  2)2 (x  2) 6x2 12x  x2  2x

(x  2) (x  2) 7x2 10x

(x  2)2 (x  2) x(7x 10)

(x  2)2 (x  2)

Vocabulary, Readiness & Video Check 12.4 1.

3

6

7x 1

2

2.

x

466

x2

1 x xx

2 x

2

x2 x2

14

6  3x

5 4x 5 4x    x  4 x2 16 x  4 (x  4)(x  4) 5(x  4) 4x   (x  4)(x  4) (x  4)(x  4) 5x  20  4x  (x  4)(x  4) 9x  20  (x  4)(x  4)

5

 3  5  x  3  5x ; b 7 7x 7  x 7x

4c  5 8d  d  5 d 5 5 d 20c 8d 2   5d 5d 20c  8d 2  5d

8d

8 3 8 3 8. x     4 3x 12 x  4 3(x  4) 8 1   x4 x  4 7  x4 10.

2

14 18x 14 18x       3x2 x 3x2 x  3x 3x2 3x2  3x2 14

6. 7.

4c d

3x

   3x2  2x 12x  8 x(3x  2) 4(3x  2) 4(4) 3x(x)   x(3x  2)(4) 4(3x  2)(x) 

15 8 15  6 8  7    7a 6a 7a  6 6a  7 90 56   42a 42a 146  42a 73  21a

; a

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

5

12.

   2 1) (2 y 1)( y2 ) 2 2 y 1 y (2 y  y 102y  5  y3  y (2 y 1)  15

14.

16.

y( y2 )

5(2 y 1)

y

y4

5

a7

20 4 y

5

7a

15



20.

x2

5

5

a7 5

22.

5x

7

y5

1  y5 1 6 y 1( y  5)   y  5 1( y  5) 6y  y  5  y5 7y 5  y5

1 

6y

2x  3

7 2x  3 7

3

1 3(2x  3)   2x 3 1(2x  3) 6x  9 7  2x  3  2x  3 7  (6x  9)  2x  3 7  6x  9  2x  3 16  6x  2x  3 2(8  3x)  2x  3

26.  y 1  2 y  5  ( y 1)3  2 y  5 y 3y y 3 3y 3y  3 2 y  5   3y 3y 3y  3  (2 y  5)  3y 3y  3  2 y  5  3y 5 y  8 5y  8  or  3y 3y

5x  x2

 5x  2   2   1 x x 1 x2

6y

 3 

20

(a  7)   5 a7 a7 0  a   7 0

7

7

y2 (2 y  1)

7  9 7 18.  9    2 2 2 25x 1 (25x2 1) 25x 1 1 25x  9  7 2 2   25x 1 25x 1  16  25x2 1 16  25x2  1 7

24.

5 10 y  3y

y  4 ( y  4) 15 20   y4 y4  5  y4 5  y4

Chapter 12: Rational Expressions

7x 28.

x3

4x  9 x3

7  5x3 x2

30.



7x  (4x  9)

x3  7x  4x  9 x3 3x  9  x 3 3(x  3)  x3 3

5x 11x2 5x 11x2  3    6 2 6 23 5x 33x2   6 6 5x  33x2  6

Copyright © 2025 Pearson Education, Inc.

467


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

5x

32.

2

(x  2)

34.

5x  3(x  2) 3    x  2 (x  2)(x  2) (x  2)(x  2) 5x  3(x  2)  (x  2)2 5x  3x  6  (x  2)2 5x  3x  6  (x  2)2 2x  6  (x  2)2 2(x  3)  (x  2)2 

1 2 1 (3y) 2( y  5)    y  5 3y ( y  5)(3y) 3y( y  5) 3y 2 y 10   3y( y  5) 3y( y  5) 3y  2 y 10  3y( y  5) 5 y 10 3y( y  5)

5

42.

(x 1)(x  5) (x  5)2 5(x  5) 2(x 1)   (x 1)(x  5)(x  5) (x  5)2 (x 1) 5x  25  2x  2  (x  5)2 (x 1) 3x  23  (x  5)2 (x  1) 44.

x  5  2 x  4 x  4x  4 x(x  2) 5(x  2)   (x  2)(x  2)(x  2) (x  2)2 (x  2) 2

 

x2  2x  5x 10 (x  2)2 (x  2) x2  7x 10 (x  2)2 (x  2) 1

46.

2x  2 y

5( y  2)  3y( y  5) 6 36.

38.

x

1 

6 x

x x



6 x

48.

x

y

( y)(2)  x  y 2(x  y) (x  y)(2) 1 2 y  2(x  y) 

9x  27x  (x 10x) (x 10)(x  3) 2

2

9x2  27x  x2 10x  (x 10)(x  3) 8x2 17x  (x 10)(x  3) x(8x 17)  (x 10)(x  3) 10 5 10 5   40. 3n   4 4  3n 3n  4 (3n  4) 10 5   3n  4 3n  4 10  5  3n  4 15  3n  4

1

x6 6 (x  6)(5x 1) 6    5x 1 (5x 1)2 (5x 1)2 (5x 1)2

9x x 9x(x  3)  x(x 10)    x 10 x  3 (x 10)(x  3) (x  3)(x 10) 

468

2

5x2  x  30x  6  6 (5x 1)2 5x2  29x (5x 1)2 x(5x  29) (5x  1)2

4 50.  1  4   1  a  2 4  2a (2  a) 2(2  a) (1) 2   2a 2 a 1 2  2a 3  2a

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

2

52.

x2  4x  4

54.

1 2 1(x  2)   x  2 (x  2)2 (x  2)(x  2) 2 x2  (x  2)2 x4  (x  2)2

Chapter 12: Rational Expressions

60.

 7  2  y2  3y  2 y 1  7 2( y  2)  ( y 1)( y  2) ( y 1)( y  2)  7  2 y  4  ( y 1)( y  2)  3  2 y  ( y 1)( y  2) 

56.

9z  5 62.

27 3  y2  81 2( y  9) 27  2 3( y  9)   ( y  9)( y  9)2 2( y  9)( y  9) 54  3y  27  2( y  9)( y  9) 3y  27  2( y  9)( y  9) 3( y  9)  2( y  9)( y  9) 3  2( y  9)

58.

6 2  5 y2  25 y  30 4 y2  8 y 64y 2( y  3)  5   5( y  3)( y  2)4 y 4 y( y  2)( y  3)5 24 y 10 y  30  20 y( y  3)( y  2) 14 y  30  20 y( y  3)( y  2) 2(7 y 15)  20 y( y  3)( y  2) 7 y 15  10 y( y  3)( y  2)

2

2

2

2

64. 2z  z  2z  2z  (z  2z ) 4z 1 4z 1 2 4z 1 2 2z  z  2z  4z 1 2 4z  z  4z 1 z(4z 1)  4z 1 z 66.

x4 x 1  x2 12x  20 x2  8x  20 (x  4)(x  2) (x 1)(x  2)   (x 10)(x  2)(x  2) (x 10)(x  2)(x  2) x2  2x  4x  8  x2  2x  x  2 (x 10)(x  2)(x  2) 2x2  5x  6  (x 10)(x  2)(x  2)

5z 9z  5 5z    15 81z2  25 3 5 (9z  5)(9z  5) z  3(9z  5)

68.

9 12 9 3x  3   2  x 1 3x  3 x 1 12 9 3(x 1)   (x 1)(x 1) 3 4 9  4(x  1) 2

4 2  2x2  5x4 3 x  3   2(2x 1) 

(2x 1)(x  3) 4  4x  2  (2x 1)(x  3) 4x  2  (2x 1)(x  3) 2(2x 1)  (2x 1)(x  3)

Copyright © 2025 Pearson Education, Inc.

(2x 1)(x  3)

469


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions 70. 5x 1  8 5x  9 9 x 5 72.

4x2  9  0 (2x  3)(2x  3)  0 2x  3  0 or 2x  3  0 2x  3 2x  3 3 3 x x 2 2

74. 2(3x 1) 15  7 6x  2 15  7 6x 17  7 6x  24 x  4 76.

5 7x 11 5 7x 11      x  2 x2  4 x x  2 (x  2)(x  2) x 5x(x  2) 7x  x 11(x  2)(x  2)    (x  2)x(x  2) (x  2)(x  2)  x x(x  2)(x  2) 5x2 10x  7x2 11x2  44 x(x  2)(x  2) 2 x 10x  44  x(x  2)(x  2) 

8

78.

x  6x  5 2

80.

3x

2



8 3x 2   x 1 (x  5)(x 1) (x  5)(x 1) (x 1)(x 1) 8(x 1) 3x(x 1) 2(x  5)    (x  5)(x 1)(x 1) (x  5)(x 1)(x 1) (x 1)(x 1)(x  5) 

x  4x  5 2

2

8x  8  3x2  3x  2x 10 (x  5)(x 1)(x 1)

3x2  7x  2 (x  5)(x 1)(x 1)

x 10

8 9 x 10 8 9  2  2    x  3x  4 x  6x  5 x  x  20 (x  4)(x 1) (x 1)(x  5) (x  4)(x  5) (x 10)(x  5) 8(x  4) 9(x 1)    (x  4)(x 1)(x  5) (x 1)(x  5)(x  4) (x  4)(x  5)(x 1) 2

470

x2  5x 10x  50  8x  32  9x  9 (x  4)(x 1)(x  5)

x2  2x  73 (x  4)(x 1)(x  5)

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

  82. Perimeter  2  3   2  2       y 5  y  6 4   y 5 y 6y 4( y  5)   ( y  5) y y( y  5) 6 y  4 y  20  y( y  5) 10 y  20  y( y  5) 10( y  2)  y( y  5) 3 2 6 6 Area     y  5 y y( y  5) y2  5 y 10( y  2) The perimeter is feet and the area is y( y  5) 

6 y2  5 y square feet.

84.

DA D( A 1)  A 12 24 DA  24 D( A 1)( A 12)   ( A 12)24 24( A 12) 

24DA  D( A2 12 A  A 12) 24( A 12)

2

24DA  DA 12DA  DA 12D 24( A 12)

11DA  DA 12D 24( A  12)

2

86. answers may vary x  2 180 x  2 88. 100  x  1  x 180x x  2  x

90. answers may vary

Section 12.5 Practice Exercises 1. The LCD is 20. x 4 1   4 5 20  x 4  1  20     20  4 5     x  420  1  20    20    20  4     5 5x 16  1 20 5x  15 x  3 x 4 1   Check: 4 5 20 3 4 1  0 4 5 20 15 16 1  0 20 20 20 1 1  True 20 20  The solution is 3.  2. The LCD is 15.  x  2 x 1  1   3 5 15  x  2 x 1   1  15 3  5   15   15      x2  x 1   1  15   15  5   15  15  3       5(x  2)  3(x 1)  1 5x 10  3x  3  1 2x 13  1 2x  12 x  6 x  2 x 1 1 Check:   3 5 15 6  6 1 

2

x

180x  x  2 x 179x  2  x  179x  2   The supplement measures   . x  

3



0

1

5 15 4 7 1   0 3 5 15 20 21 1   0 15 15 1 15 1 15  15 True

The solution is 6.

Copyright © 2025 Pearson Education, Inc.

471


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

3. The LCD is x. 6 2  x7 6x  x  2    x(x  7) x   6 x(2)  x  x x  x7  x    2x  6  x2  7x 0  x2  5x  6 0  (x  6)(x 1) x6 0 or x 1  0 x  6 x 1 6 Check x = 6: 2   x  7 x 6 2 0 67 6 2 10 1 1  1 True 6 Check x = 1: 2   x  7 x 6 2  01 7 1 26 08 8  8 True Both 6 and 1 are solutions. 4. The LCD is (x + 3)(x  3). 2  3  2   x  3 x3 3 x2  9   2  (x  3)(x  3)     (x  3)(x  3)  2  x  3 x 3   2   3   x  9  2  (x  3)(x  3)   (x  3)(x  3)  2  (x  3)(x  3)  

x3

x3 2(x  3)  3(x  3)  2 2x  6  3x  9  2 5x  3  2 5x  5 x  1

 2  x 9 

The solution is 1.

472

Copyright © 2025 Pearson Education, Inc.


 

ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

5. The LCD is x  1. 5x  5  3  x 1 x 1  5  5x  (x 1) x 1   (x 1)  x 1  3      5x 5 (x 1)   (x 1)   (x 1)  3 x 1 x 1 5x  5  3(x 1) 5x  5  3x  3 2x  2 x 1 1 makes the denominator 0 in the original equation. Therefore 1 is not a solution and this equation has no solution. 6. The LCD is x + 3. (x 

x 

6 x3 6 

 2x  2 x3  2x



3)  x  6   (x  3)  2x  2      (x  3)(x)  (x  3) x  3  (x  3) x  3  (x  3)(2)     x3 x  3  (x  3)(x)  6  2x  2(x  3) x2  3x  6  2x  2x  6 x2  x 12  0 (x  4)(x  3)  0 x  4  0 or x  3  0 x4 x3 x = 3 can’t be a solution of the original equation. The only solution is 4. 7. The LCD is abx. 1 1 1   a b x 1 1 1 abx   abx  a b  x     1 1 1 abx  abx  abx  a          b bx  ax  ab x bx  ab  ax bx  a(b  x) bx a(b  x)  b x b x bx a b x

Copyright © 2025 Pearson Education, Inc.

473


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

 Vocabulary, Readiness & Video Check 12.5 1.

Exercise Set 12.5

 3x   1  4   5  4   2    4   3x   1  4 2  4  5  4 4      

2. The LCD is 5. x  x 5  2  9 5  2  5(9) 5    x 10  45 x x 55 2 9 Check: 5

6x  20  1 The correct choice is c. 1 3  2. 5x     5x(2) x 5x   1 3  5x  5x  5x(2) x  5x      5  3  10x The correct choice is b. 3. The LCD of

4. The LCD of

5. The LCD of

8

1

, , 3x x 9

8

8 1

3 ,

7

7

9

and

x 1

x2

and

7 2

(x  1)

 2 x 4

is 9x; d.

3 3 is (x 1)2; a. 3 (x  2)(x  2)

, and

is (x2  4); c.

7. These equations are solved in very different ways, so we need to determine the next correct step to make. For a linear equation, we first “move” variable terms to one side and numbers to the other; for a quadratic equation, we first set the equation equal to 0. 8. If there are variables in any denominators, we should first check to see if the proposed solutions make these denominators zero in the original equation, giving us an undefined rational expression. If so, that solution is rejected, and it is not a solution to the equation. 9. the steps for solving an equation containing rational expressions; as if it’s the only variable in the equation

474

209

5

9 3 1 1  is 12x; b. , , and x 4 12 3  4

1 6. The LCD of

55

11 0 9 9  9 True The solution is 55. 4. The LCD is 18. x 4x x   6 3 18  x 4x   x  18    18   6     24x  x 3x 3 18 27x  x 26x  0 x0 x 4x x   Check: 6 3 18 0 4(0) 0  0 6 3 18 00 0 0 0  0 True The solution is 0. 6. The LCD is x. 4 5 1 x 4  x 5  x(1)   x   5x  4  x 4x  4  0 4x  4 x  1 4 5 1 Check: x 4 5  01 (1) 5  (4) 0 1 1  1 True The solution is 1.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

8. The LCD is y. 5 2 6  y  y y  5  2  y  6    y  y   y y    2 6y  5  y  2 

0  y2  6 y  7 0  ( y  7)( y 1) y  7  0 or y 1  0 y7 y  1 5 2 Check y = 7: 6   y  y y 5 2 6 0 7 7 7 42 5 49 2  0  7 7 7 7 47 47  True 7 7 Check y = 1:

6

5

 y

y 5

2

y 2 0 1 1 1 6  (5) 0 1 (2) 1  1 True 6

The solutions are 7 and 1. 10. The LCD is 5  6 = 30. b b2  5 6 b  b  2  30    30  5 6      6b  5(b  2) 6b  5b 10 b  10 b b2 Check: 5  6 10 10  2 0 5 6 10 12 0 5 6 2  2 True The solution is 10.

Chapter 12: Rational Expressions 12. The LCD is 4  2 = 8. a5 a5 a   4 2 8  a 5 a 5  a  8  8 4 2   8      2(a  5)  4(a  5)  a 2a 10  4a  20  a 6a  30  a 5a  30 a  6 a5 a5 a Check:   4 2 8 (6)  5 (6)  5 6  0 4 2 8 1 1 3   0 4 2 4 1 2 3   0 4 4 4 3 3    True 4 4 The solution is 6. 

14. The LCD is 4  3x. 6 3 4  3x    6   (4  3x)(3)    4  3x  6  12  9x 18  9x 2x 6 Check:  3 46 3x 0 3 (4  3x)

4  3(2) 6 0 3 46 6 0 3 2 3  3 True The solution is 2.

Copyright © 2025 Pearson Education, Inc.

475


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

16. The LCD is a + 2. 2a 7a 5  a  2  a  2  7a   2a (a  2) a  2  5   (a  2)   a  2      2a  5(a  2)  7a 2a  5a 10  7a 3a 10  7a 10  10a 1  a 7a 2a 5  Check: a2 a2 2(1) 7(1) 50 (1)  2 (1)  2 2 7 50 1 7 1  7 True The solution is 1. 18. The LCD is y  2. 2y 4  4 y2 y2  2y 4  ( y  2)     ( y  2)(4)  y  2 y  2  2y  4  4y 8 4  2y 2 y Since 2 makes a denominator 0 in the original equation, y = 2 does not check and the equation has no solution. 20. The LCD is (x  2)(x  2)  x2  4. 1 4  2 1 x2 x 4  1 4  2 (x2  4)     1(x  4) x  2 x2  4    (x  2)  4  x2  4 x  2  x2  4

1

Check x = 3:

476

4

1

x2 1 4 3  2  32  4 01 1 4  01 5 5 5  1 True 5 The solution is 3. x2  4

22. The LCD is y + 1. 5y 3  4  5yy1 y3 1 ( y 1)     ( y 1)(4) y 1 y 1    5y  3  4y  4 5y  4y  7 y7 5y



3

4 y 1 y 1 5(7) 3  04 7 1 7 1 35 3  04 8 8 32 04 8 4  4 True The solution is 7.

Check:

24. The LCD is ( y  3)( y  3)  y2  9. 4y 3y 1 3  y3 y3  4y   3y 1  ( y2  9)   3  ( y2  9)  y 3    y3     4 y( y  3)  3( y2  9)  ( y  3)(3y 1) 4 y2 12 y  3y2  27  3y 2  y  9 y  3 y2 12 y  27  3y 2 10 y  3 0  2 y2  22 y  24

0  x2  x  6 0  (x  3)(x  2) x  3  0 or x  2  0 x3 x  2 Since 2 makes a denominator 0 in the original equation, x = 2 does not check.

y 12  0 or y  12

Copyright © 2025 Pearson Education, Inc.

0  2( y2 11y 12) 0  2( y 12)( y 1) y 1  0 y  1


ISM: Prealgebra and Introductory Algebra

Check y = 12:

4y

3y 1 y 3 y 3 4(12) 3(12) 1 12  3  3 0 12  3 48 27 36 1  0 9 9 15 21 35 0 9 15 7 7  True 3 3 3 

Check y = 1:

3y 1

4y

3  y 3 y3 4(1) 3(1) 1

1 3  3 0 1 3 4 3 1 3 0 4 2 4 1 3 0 2 2  2 True The solutions are 12 and 1. 26. The LCD 6 is 33y. 3y  y  1

Chapter 12: Rational Expressions 30. The LCD is 3  2x = 6x. 5 3 3    53 32x 2  3  6x   3 2x   6x  2      5(2x)  3(3)  3(3x) 10x  9  9x x9 The solution x = 9 checks. 

32. The LCD is (x + 1)(x  1). 3 x 1  x 1 x 1  x   (x 1)(x 1)  (x 1)(x    3     1) 1 x 1   x 1  1(x 1)(x 1)  3(x 1)  x(x 1) 

x2 1 3x  3  x2  x 2x  4 x2 The solution x = 2 checks. 34. The LCD is 15. 3x x  6 2   5 2   3x5 x 36  15     15  5  5 3     

6 3 3y    3y(1)  3y y 6  3(3)  3y 6  9  3y 15  3y 5 y The solution y = 5 checks.

3(3x)  5(x  6)  3(2) 9x  5x  30  6 4x  36 x  9 The solution x = 9 checks.

28. The LCD is (x  6)(x  2). 5 x x 6  x2 (x  6)(x  2)

 5   x   (x  6)(x  2)       x6  x  2  5(x  2)  x(x  6)

36. The LCD is x(x + 4). 15 x4  x4 x  15   x4 x(x  4) x  4  x(x  4)     x      15x  (x  4)(x  4) 15x  x2 16 0  x2 15x 16 0  (x 16)(x 1)

5x 10  x  6x 2

0  x2 11x 10 0  (x 10)(x 1) x 10  0 or x 1  0 x  10 x 1 The solutions x = 10 and x = 1 check.

x 16  0 or x 1  0 x  16 x  1 The solutions x = 16 and x = 1 check.

Copyright © 2025 Pearson Education, Inc.

477


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

38. The LCD is (x  2)(x  2)  x2  4. 1  4  1  2   x1 2 x 2  4  x 42 (x2  4)  (x  4) 1    2   x  2  x  4 x  2   1(x  2)  4 1(x  2) x2  4 x2 2x  4 x2 

The solution x = 2 makes the denominators x2  4 and x  2 equal to zero, so the equation has no solution. 40. x2  7x 12  (x  3)(x  4) The LCD is (x + 3)(x + 4). 3  12x 19  5   x3 3 x2  7x 12  x  4   (x  3)(x  4)    (x  3)(x  4)  12x 19  5  x3  (x  3)(x  4) x  4      3(x  4)  12x 19  5(x  3) 3x 12  12x 19  5x 15 3x 12  7x  4 8  4x 2 x The solution x = 2 checks. 

42. t 2  2t  3  (t  3)(t 1) The LCD is (t + 3)(t  1). 2t  3  2  5  6t   t1 t2 3 t2  2t  3  2t 3   (t  3)(t 1)     (t  3)(t 1)  5  6t  t 1 t  3   2     t  2t  3  (2t  3)(t  3)  2(t 1)  5  6t 

2t 2  6t  3t  9  2t  2  5  6t 2t 2  7t 11  5  6t

2t 1  0 2t  1 1 t 2

2t2 13t  6  0 (2t 1)(t  6)  0 or t  6  0 t  6

The solutions t  

1 2

478

and t = 6 check.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

44. The LCD is Q. V T Q V  Q(T )  Q   Q   QT  V V Q T 46. The LCD is t + B. A i tB  A  (t  B)i  (t  B)    t  B  ti  Bi  A ti  A  Bi A  Bi t i 48. The LCD is W. A L W  A W W  W (L)    A  WL A W L 50. The LCD is 24. D( A 1) 24  D( A 1)  24(C)  24   24    24C  D( A 1) 24C  DA  D 24C  D  DA 24C  D A D

Chapter 12: Rational Expressions

54. The LCD is 5xy. 1 2 1    1 5 2 y x  1  5xy   5xy      5 y x     xy  2(5x)  5 y xy 10x  5 y x( y 10)  5 y 5y x y  10 1 56. The reciprocal of x + 1 is x  1 . 58. The reciprocal of x, subtracted from the 1 1 reciprocal of 5 is  . 5 x 60.

1

of the beach is cleaned in 1 hour.

4 62. answers may vary 1 64.

C

66.

5

2

is an equation. The LCD is 9x. 3 1 5 2   x 9 3  1 5  2  9x  x  9   9x  3      9  5x  6x 9 x The solution x = 9 checks. x

9

5 x 1 5 x 1

 

2 x 2 x

52. The LCD is 2. CE2 W  2  CE2  2(W )  2   2    2W  CE 2 2W C E2

Copyright © 2025 Pearson Education, Inc.

is an expression. 

5 x

2 (x 1)

(x 1)  x x  (x 1) 5x  2(x 1)  x(x 1) 5x  2x  2  x(x 1) 3x  2  x(x  1)

479


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

68.

70.

5x

25x

 180 2 2 The5xLCD25x is 2.   2   2(180) 2 2    5x  25x  360 30x  360 x  12 5x 5(12) 60     30 2 2 2 25x 25(12) 300     150 2 2 2 The angles measure 30 and 150. 80 100   90 x x The80 LCD is x. 100   x   x(90) x x    80 100  90x 180  90x 2x 80 80   40 x 2 100 100    50 x 2 The angles measure 40 and 50.

72. a2  2a  8  (a  4)(a  2) a2  9a  20  (a  4)(a  5) a2  3a 10  (a  5)(a  2) The LCD is (a + 4)(a + 5)(a  2). 4 1   4    2 2 2  a  42a  8 a 19a  20 a  3a 10  4  (a  4)(a  5)(a  2)  a2  2a  8  a2  9a  20   (a  4)(a  5)(a  2)  a2  3a 10      4(a  5) 1(a  2)  4(a  4) 4a  20  a  2  4a 16 3a  22  4a 16 a6 The solution a = 6 checks.

480

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Mid-Chapter Review 1.

1 x

2 3

1 3 x3

2 x 3 x

3 3x

2x

5a

3x



7.

3  2x 3x

Chapter 12: Rational Expressions

This is an expression. 2.

3

5

3 6

5 a

18

a 6 a  6 6  a 6a This is an expression. 1

3.

2

1  1  2x 1 1 x x(x 1)     x(x 1)(1) x 1 x    2x  (x 1)  x(x 1) 2x  x 1  x2  x

18  5a

6a

x 1  x2  x

6a

0  x2 1 1  x2 There are no solutions. This is an equation.

3

x 3 x 1 2  3    3x  x 3   x   3  2x  9 2x  6 x3 This is an equation.

4 1 6   x  3 x x(x  3) 1   6   4 x(x  3)     x(x  3)   x  3 x   x(x  3)  4x 1(x  3)  6 4x  x  3  6 3x  3 x 1 This is an equation. 15x 2x 16 3 5x 2(x  8)     5  2  10 9. x8 3x x8 3x This is an expression.

3x

4.

2

8.

3

5  1  3 a 5 6 6a    6a(1) a 6 18  5a  6a 18  a This is an equation. 2 1 2 x 1(x 1)    x 1 x (x 1)  x x  (x 1) 2x  x 1   x(x 1) x(x 1) 2x  x 1  x(x 1) x 1  x(x  1) This is an expression.

5z 9z  5 5z 10. 9z  5    15 81z 2  25 3 5 (9z  5)(9z  5) z  3(9z  5) This is an expression.

4 1 4 x 1 (x  3) 6. x     3 x (x  3)  x x  (x  3) 4x  x3   x(x  3) x(x  3) 4x  x  3  x(x  3) 3x  3  x(x  3) 3(x 1)  x(x  3) This is an expression.

4 p 3 3p  8 4 p  3 3p 8 7 p  5 12. 2 p  7 2 p  7   2p 7 2p7 This is an expression.

5.

11.

2x  3 3x  6 2x 1 3x  6 5x  7  x  3 x3  x3  x3 This is an expression.

x5 13.



8

7 2  x5  8  14  7   14  2     

2(x  5)  7(8) 2x 10  56 2x  46 x  23 This is an equation.

Copyright © 2025 Pearson Education, Inc.

481


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

14.

1 x 1  2 8 1  x 1  8    8  2  8  4  x 1 3 x This is an equation. 5a 10

15.

16.

19. x  7  x  2  (x  7)  5  x  2 x 5x x 5 5x 5x  35  x  2  5x 4x  37  5x This is an expression.

5a 10 10a  18  a2  4 18 10a 5(a  2) 2  5a   2  9 (a  2)(a  2) 5  5a  9(a  2) 25a  9(a  2) This is an expression. 

a2  4

21. 

x2 3x 1

5 2

(3x 1)

 

(x  2)(3x 1)

5

(3x 1)(3x 1) (3x 1)2 (x  2)(3x 1)  5

(3x 1)2  3x  x  6x 2 2  5 (3x 1) 2

3x2  5x  3 

(3x  1)2

This is an expression. 18.

4 (2x  5)

2

x 1 2x  5

   

4

(x 1)(2x  5)

(2x  5) (2x  5)(2x  5) 4  (x 1)(2x  5) 2

(2x  5)2 4  2x2  5x  2x  5 (2x  5)2

(10x  9)  3

x4

x 3 3x 3(10x  9)  x  4  3x 30x  27  x  4  3x 29x  23  3x This is an expression. 3x

 2 3  5   x  3 x2  9 x  3  5 2   3  2 2  9)  2  (x  9)     (x  x x  3  9 x3  3(x  3)  5  2(x  3) 3x  9  5  2x  6 3x  9  2x 1 5x  8 8 x 5 This is an equation.

22.

9  2  1   x2  4 x  2 x  2  9 2    1  2 (x2  4)  2    (x  4)   x2 x2     x 4  9  2(x  2)  1(x  2) 9  2x  4  x  2 2x  5  x  2 3x  7 7 x  3 This is an equation.

23. answers may vary 24. answers may vary

2x2  3x 1 (2x  5)2

This is an expression.

482

x4

9 4(x  1) This is an expression. 17.

10x  9 x

9 12 9 3x  3    x2 1 3x  3 x2 1 12 9 3(x 1)  (x 1)(x 1)  3  4

  

20.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

25. 414.92 feet per second 414.92 ft 3600 sec 1 mi    1 sec 1 hr 5280 ft 414.92  3600 mi  5280 hr 1, 493, 712 mi  5280 hr  282.9 mi/hr

1 1 1   2 3 x 1 1  1  6x    6x    6x  2     3 3x  2x  6 x 5x  6 6 1 x   1 5 5

26. a.

Together they can sort one batch in 1

b.

2920 miles per hour 2920 mi 1 hr 5280 ft    1 hr 3600 sec 1 mi 2920  5280 ft  3600 sec 15, 417, 600 ft  3600 sec  4282.7 ft/sec

3.

18 feet per second 18 ft 1 mi 3600 sec    1 sec 5280 ft 1 hr 18  3600 mi  5280 hr 64,800 mi  5280 hr  12.3 mi/hr

x

1

1

hours.

5 distance

=

rate

time

Car

600

x + 15

600 x15

Motorcycle

450

x

450

600



x

450

x 15 x 600x  450(x 15) 600x  450x  6750 150x  6750 x  45 x + 15 = 45 + 15 = 60 The speed of the motorcycle is 45 mph. The speed of the car is 60 mph.

Section 12.6 Practice Exercises 1.

hr

Vocabulary, Readiness & Video Check 12.6

x

1. The time to complete the job working together will be less than both of the individual times. The answer is c.

2 3 6  x 1  x  6    6  2 3   63x  2  x 2x  2 x1 The number is 1.

2. The time to fill the pond with both pipes on at the same time will be less than both of the individual times. The answer is a. 3. A number: x

Hours to Complete Total Job

Part of Job Completed in 1 Hour

Guillaume

2

1 2

Greg

3

1 3

Together

x

1 x

2.

The reciprocal of the number:

1

x The reciprocal of the number, decreased by 3: 1 3 x 4. A number: y The reciprocal of the number:

1

y The reciprocal of the number, increased by 2: 1 2 y

Copyright © 2025 Pearson Education, Inc.

483


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

5. A number: z The sum of the number and 5: z + 5 The reciprocal of the sum of the number and 5: 1 z5

4. Let n be the number. 1 6  n  5  n   6  n  n  5(n) n    6  n2  5n

 6. A number: x The difference of the number and 1: x  1 The reciprocal of the difference of the number 1 and 1: x 1 7. A number: y Twice the number: 2y Eleven divided by twice the number:

n2  5n  6  0 (n  3)(n  2)  0 n3  0 or n  2  0 n  3 n  2 The number is 3 or 2.

11 2y

8. A number: z Triple the number: 3z Negative 10 divided by triple the number: 10 3y 9. divided by, quotient 10. Two machines (or people) take different amounts of time to complete the task, one faster and one slower than the other. When working together, they will complete the task in less time than the faster machine, so our answer must be less than the time of the faster machine. 11.

d

t

325

x+7

325 x7

Motorcycle

290

x

290

 Exercise Set 12.6

484

r

Car

325 290 x  7  x

2.

=

12

 4 x2 x2 12(x  2)  4(x  2) 12x  24  4x  8 8x  32 x4

x

6. Let x be the time in hours that it takes them to complete the job working together. The 1 experienced bricklayer completes of the job in 3 1 1 hour. The apprentice completes of the job in 6 1 1 hour. Together, they complete of the job in x one hour. 1 1 1   3 6 x The LCD is 6x. 1 1  1  6x     6x   3 6  x 2x  x  6 3x  6 x2 It takes them 2 hours to construct the wall. 8. Let t be the amount of time to move 1200 pounds. 300 1200  t 1 12 1200 1 1   300t   2 

300t  1800 t6 It will take 6 minutes for the conveyor belts to move 1200 pounds of cans.

10. Let r be the speed of the boat in still water. distance

=

rate

Upstream

9

r3

Downstream

11

r+3

Copyright © 2025 Pearson Education, Inc.

time 9 r 3

11

r 3


ISM: Prealgebra and Introductory Algebra

Since the time is the same,

Chapter 12: Rational Expressions

9

 11 . r 3 r 3

The LCD is (r 93)(r  + 3).  11  (r  3)(r  3)  (r  3)(r  3) 

  r  3   r  3   9(r  3)  11(r  3) 9r  27  11r  33 60  2r 30  r The speed of the boat in still water is 30 mph. 12. Let x be the speed of the semi-truck through the flatland. distance

=

rate

It will take Mr. Dodson and his son 2

2

days to

9 paint the house. 18. Let r be the rate in still water.

time

Flatland

300

x

300

Mountains

180

x  20

180 x20

distance

=

rate

time

x

300 180  x x  20 The LCD is300 x(x  20).    x(x  20)    x(x  20)  180  x x  20      300(x  20)  180x 300x  6000  180x 120x  6000 x  50 The speed through the flatland is 50 mph and the speed through the mountains is 300 mph. 

1 1 1   4 5 x The LCD is 20x. 1 1 1 20x   20x      4 5 x     5x  4x  20 9x  20 20 2 x 2 9 9

14. Let x be the number. 4x  5 7  6 2  4x  5   7  6   6    6  2 4x  5  21 4x  16 x4 The number is 4.

Downstream

9

r+6

Upstream

3

r6

9

r 6

3

r 6

9 3  r6 r6 9(r  6)  3(r  6) 9r  54  3r 18 6r  72 r  12 9 9 9 1    r  6 12  6 18 2 It takes the same amount of time to travel the 9 miles downstream as it does the 3 miles upstream. If it takes half an hour to travel downstream then it would take 1 hour to travel the entire 12 miles. t

20. Let x be the number.  1  9x  7 15   x  2  9 x   The LCD is x(x + 2).  15 9x  7  x(x  2)   9x(x  2)  x    x 15(x 2) 2  x(9x  7)  9x(x  2)

16. Let x be the time in days that it takes Mr. Dodson and his son to paint the house together. Mr. 1 Dodson can paint of the house in 1 day. His 4 1 son can paint of the house in 1 day. Together, 5 1 they paint of the house in 1 day. x

15x  30  9x2  7x  9x2 12x

9x2  8x  30  9x2 18x 30  10x 3 x The number is 3.

Copyright © 2025 Pearson Education, Inc.

485


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

22. Let r be the rate of the car. distance = rate Jet

1080

Car

240

time

6r

1080 6r

r

240

28. Let x be the amount of time the second proofreader takes to do the job alone. 1 1 1   4 x 5 2

1 1 2    1 4 1 x 5  2  20x     20x   4 x 5     5x  20  8x 20  3x 20 x 32

r

The car ride is one hour longer than the jet ride. 240

1080

1 r 6r The LCD is 6r.  240   1080  6r  r   6r  6r 1  

   1440  1080  6r 360  6r 60  r 1080 1080 1080   3 6r 6(60) 360 240 240  4 r 60 It took the manager 3 hours to travel by jet and 4 hours to travel by car. 24. Let x be the number. x 7 1  5 5 x   7  5  5 1   5  5      x5  7 x  12 The number is 12.

6

3

x

It will take the second proofreader 6

2

hours to

3 do the job alone. 30.

r x3

Upstream

t

=

6

d 6

x3

Downstream

10

x+3

10

x3

6 10  x 3 x 3 6(x  3)  10(x  3) 6x 18 48  10x 4x  30 12  x The speed of the boat in still water is 12 mph. 32. Let x be the speed of the second car.

26. Let x be the time Gary traveled at 70 mph. Since Gary was stopped for 30 minutes, he spent a total of 4 hours driving. He drove at 60 mph for (4  x) hours. The distance he traveled at 700 mph is 70x, and the distance he traveled at 60 mph is 60(4  x). The total distance is 255 miles. 255  70x  60(4  x) 255  70x  240  60x 15  10x 15 x 10 3 x 2 1 Gary traveled at 70 mph for 1 hours before 2 getting stopped.

486

distance

=

rate

time

first car

224

x + 14

224 x14

second car

175

x

175 x

224 175  x x 14 224x  175(x 14) 224x  175x  2450 49x  2450 x  50 x + 14 = 50 + 14 = 64 The speed of the first car is 64 miles per hour and the speed of the second car is 50 miles per hour.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

34. Let x be the speed of the wind. distance

=

40. Let x be the speed traveled on the winding road. 

rate

against wind

1365

490  x

1365 490 x

with wind

1575

490 + x

1575 490 x

1365 1575  490  x 490  x 1365(490  x)  1575(490  x) 668,850 1365x  771, 750 1575x 2940x  102, 900 x  35 The speed of the wind is 35 miles per hour. 36. Let t be the time it takes the bus to overtake the car. distance Bus

60t

=

distance

time

rate

 time

60

t

Car 40(t + 1.5) 40 t + 1.5 60t  40(t  1.5) 60t  40t  60 20t  60 t 3 It will take the bus 3 hours to overtake the car. 38. Let x be the time it takes the faster pump to fill the tank. 1 1 1   x 2x 18 1 1   1  18x x 2x    18x  18      18  9  x 27  x 54  2x It will take the faster pump 27 minutes to fill the tank by itself and 54 minutes for the slower pump to fill the tank by itself.

=

rate

time

level road

3(x + 20)

x + 20

3

winding road

4x

x

4

The total distance is 305 miles. 305  3(x  20)  4x 305  3x  60  4x 245  7x 35  x 55 = x + 20 The average speed on the level road is 55 mph. 42. Let x be the amount of time it takes to balance the books working together. 1 1 1   8 12 x 1 1  1 24x   24x   8 12   x     3x  2x  24 5x  24 24 4 x 4 5 5 4 It will take 4 hours to balance the company’s 5 books together. 44. Let x be the speed of the slower car. distance

=

rate

time

Slower car

2.5x

x

2.5

Faster car

2.5(x + 8)

x+8

2.5

2.5x  2.5(x  8)  280 2.5x  2.5x  20  280 5x  20  280 5x  260 x  52 x + 8 = 52 + 8 = 60 The slower car’s speed was 52 mph and the faster car’s speed was 60 mph. 96 15 5 5  5  3 46. 17  7 24 4 6

6

Copyright © 2025 Pearson Education, Inc.

6

487


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

Section 12.7 Practice Exercises

 48. 43 74  3 4 7   1

5

6

8

8

8 8 6 4  10 8

1.

3 7  3  5  3  9  27 5 9

7

3

3(3)

2

35

2(4)

2(4) 8 9  8  124 12 3 8 8 1  12 7 8

50. From the graph, the U.S. wind capacity in 2020 was approximately 122,000 megawatts.

1 8  12 7 1 2  4  3 4  7 2  21 

52. answers may vary 54. Let x be the time it takes pump C to fill the tank. 1 1 1 1     1 9 115 1 x 5  1  45x    45x   9 15    x   5 5x  3x  45  9x 8x  45  9x 45  x It takes pump C 45 hours to fill the tank. 56. You can use cross products when each side of the equation contains a single fraction, as in case a.

2( x)

2 1  5 x

3.

2x  1 15 3

5( x)

1(5)

 x(5)

2x 1(5) 15 3(5) 2x 5 5x  5x 2x 5 15 15 2x5 5x  2x5 15

2x  5  15  5x 2x  5 2x 15 3 5  5x  2x 15 3  x

D  RT D RT 

R R D D  T or T  R R 60. Let x be the top speed of the Bugatti Chiron Super Sport 300+. Then the top speed of the Koenigsegg Absolut is x + 26, Since d = rt, then d t r. 495 456   x  26 x 495  x  456(x  26) 495x  456x 11,856 39x  11,856 x  304 x + 26 = 304 + 26 = 330 The top speed of the Chiron is 304 miles per hour and the top speed of the Absolut is 330 miles per hour.

488

7 5

 4(3)  3(4) 2. 41 33  1(4) 3   2 8

6 10  4 8 6 8   4 10 2  3 2  4  4 25 6  5 

58.

9

4. The LCD is 24. 32 24 43  23 4 3 13  24 1  3

   2 8  2 8 24  3   24  2   24 41  24 33   2   8 18 16 12  9 2  21 

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

  y(1)  y     yx        2x 1 y y

5. The LCD is y. x 1 x y 1 y 2x1 y

Chapter 12: Rational Expressions

y

2x

2x1 y

 

y 5 y 6xy 65y  x 6y x  y y 6xy  x x 3 3

 6xy    6xy    6xy    6xy(x)

 8. The LCD of

5x  6 y2 2

2

2xy  6x y 5x  6 y2 2xy( y  3x)

Vocabulary, Readiness & Video Check 12.7

2.

   5xy

y 2 y2 2  5x 2 5x 2 2

 

3.

x 5 x2

4.

x2

2.

  2a    b

6.

a a 20 10 10  b b 20 20 20



1

4 22 2  2  3 = 12; c.

,

1 12 5



112

3   85 10

6x3 6x  3 2x 1 5x2   2 x1 10x 5x2 10x

6x  3 10x  5x2  2x 1 3(2x 1) 10x  2 5x  (2x 1) 6   x

1 1 1 is , , and 2 3 2

3 2 1 1 1 1 , ,  , and  is 5 3 10 2  5 6 23 2  3  5 = 30; b.

6. The LCD of

5

9

5 x2

1

1

8     5 8 12 8 12

y 6y 9 6 y  9   27 6 y 4y 4. 4611 y   11  9   11  4 y   11 4 y 22

  5

5. The LCD of

11 11 10 7  7 , and 5 is ,  , 6 2  3 x2 9 3 3 x

10. In Method 2, we find the LCD of all fractions in the complex fraction, then multiply it by both the numerator and the denominator so that both will no longer contain fractions; in Method 1, we find the LCD of the fractions only in the numerator and then the LCD of the fractions only in the denominator in order to perform the addition and/or subtraction and get single fractions in the numerator and in the denominator.

1

  10   z x 2  3x  3x

2222 x

Exercise Set 12.7

10 x 10x x z  z x x x 3

16x

,

9. a single fraction in the numerator and in the denominator

y 3

1.

3

2  x2  18x2; c.

y x

5 6y

3

,

2  2  2  2  x2  16x2; a.

6. The LCD is 6xy.

2

x x 3  3 is 8  2  2  2 , and 4x 2  2  x

y

2x1 y

5

7. The LCD of

x

  18 12 6 4 2 8. 43  12    8 6 24  38  16  9  4 13 11  4  11 12 4   48 11 37 10. 12 12  5  1  12 5  1   60  3  63 4 4 31

24 3  1

Copyright © 2025 Pearson Education, Inc.

489


10  7  3  7  6

73

12. 10 1 5 

10



3

14.

16.

3

4

20.

 87y



7

21

8y

315



4y

5

m  2 m2  4  m  2  2m  4 m  2 (m  2)(m  2)

45

m2 m2  2

74y 1 7 4y    8 y 21 8 y  21 6

 x2

 x  4  x4

 

y2 1

3 2

 y2 3  6 y2  1  2 

   

6 y2 1y  56

2(3  2 y2 )  

6 y  5 y2

32.

x(2x 1) 1 (2x 1)  x

 36.

25  5 x5  x 35  5 

25  5x  25 3  5x  25 5x  50  5x  22

  24  

26.

56 y 168 9 y  27 56( y  3)

28.

490

   4  x2 4  x2 38. x2 2x  2x  2x  x2 4  x2 or (2  x)(2  x)  x 2 x 2 2x

56 9

2x 2  x

 3  40 y    3  40 y  8 5y   8

5 y3  8 

3 5y

5x  50 5x  22 5(x 10)  5x  22 

3 3 y9 8

 9( y  3)

3 1 43

5y 3  8 5y

53y



3(3)

 

3 1 43

9 3 4

 25  5 x5 3 (x  5)  x5  5 (x  5)

7 y21

24

 2x  6x x2  9 2x(x  3)  (x  3)(x  3) 2x  x3

y(6  5 y)

 

(2x 1)(x 1) x 1  2x 1



x2 x2 1 9 2

1 9



3 3 y9 8

   x 2  16

2x  x 1  2x 1 x

24.

 6 x2 2  6x 34. 2 xx   

2

7 y21

2(m  2)

8  18 18 9

18 8 9

1 1 x  2x1  (2x 1) x  2x1 x 1 x (2x 1) 1 2x1 2x1



18  x2

2

6  4 y2 

m2

m2

x 2 2 x 2 2 2x 2  2 x 2 2 2

1y  56

22.



5

3 15

2m  4 m2   30. 2m4 m  2  m2  4 m2 4

1

8       4 8 15 8 4 8  4 32 15

21 4y

18.

5

10 21

2

ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions



9 1

 9

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

40.

Chapter 12: Rational Expressions 11 1 1 54. 3   x  3 x 1 9  x2 19  12

4( x1) 4 x xx x(x1)  ( x1)x x x1  1  1 1(x6)  12x 2x x6 2x(x6) 2 ( x6)2x 4x4 x

x 1x  13 x3 2  1x3x  19

x(x1)

 x62x

9x2 x29 x3  2 3x x 9 9x2

2x(x6) x2 4x4 x(x1)  3x6 2x(x6)

( x2)2 x(x1)  3( x2) 2x(x6) 2

(x  2) 2x(x  6)  x(x    2) 1) 3(x 2(x  2)(x  6)  3(x  1)

Venus Williams has earned $2 million more prize money than Simona Halep over her career. 44.

39

 1 million or 1,000,000

39 Maria Sharapova earned $1,000,000 on average per tournament. 46. answers may vary 3 5 3n  5 3n  5 1 3n  5 n2  nn n2    2 2 n2 2 2

48. n

2n

50. The distance is the average of the two given distances. 7.2 10.3 17.5 3   8.75 or 8 2 2 3 4  He should drill 8.75  or 8  inches from the 4   left side of the board. J3 52.

7

J 2  3 2J  3 1 2J  3 2  2 2   

7

2

7

14

x3

3x 3x

9x2 (x  3)(x  3)

x3

  4x 1 56. 3  x1  3  1x  x 3  1x 3x 1 x x 4  x1

42. 42  40 = 2

x  3 9x2  3x x2  9

58. w 

4 1

x

4 1

A l

4x2  3 6x3 5

4x  2 5  3 6x  3 2(2x 1) 5   3 3(2x 1) 10  9 10 The width is meters. 9 

Chapter 12 Vocabulary Check 1. A rational expressionP is an expression that can be written in the form

, where P and Q are Q polynomials and Q is not 0. 2. In a complex fraction, the numerator or denominator or both may contain fractions. 3. For a rational expression, 

a b

a b

a

. b

4. A rational expression is undefined when the denominator is 0.

Copyright © 2025 Pearson Education, Inc.

491


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

5. The process of writing a rational expression in lowest terms is called simplifying. 6. The expressions

2x

and

7

7

6.

8. A unit fraction is a fraction that equals 1.

9.

x2  4  0 (x  2)(x  2)  0 x20 x  2 x5 The expression is undefined for x = 2 x2  4 and x = 2.

x  2  0 or x2

4x2  4x 15  0 (2x  5)(2x  3)  0 2x  5  0 or 2x  3  0 2x  5 2x  3 5 3 x x  2 2 5x  9 The expression is undefined for 2 4x  4x 15 5 3 x  and x   . 2 2

3. Replace z with 2. 2  z 2  (2) 4   z 5 2  5 3 4. Replace x with 5 and y with 7. x2  xy  y2 (5)2  (5)(7)  (7)2  57 x y 25  35  49  12 11  12

3(x  4) x(x  4) 

x2  3x  10 x4

8.

Chapter 12 Review

5.

x  4x

x2 7.

7. The least common denominator of a list of rational expressions is a polynomial of least degree whose factors include all factors of the denominators in the list.

2.

2

are called

2x

reciprocals.

1.

3x 12

x2  5x  4 x3  4x

11.

x x2

(x  5)(x  2) x4 (x  4)(x 1)



1 x 5 1

x 1

x2  2x 15

x2  x  6 x2  3x  10

5(x2  25)

(x  5)(x  3) 5(x  5)(x  5)  (x  5)(x  3) 5(x  5)  x 3 

(x  3)(x  2) (x  5)(x  2)

x3 x5

x2  2x x(x  2)  x 12. x2  2x  8  (x  4)(x  2)  x  4 2 2 13. x 2  xa  xb  ab  (x 2  xa)  (xb  ab) x  xc  bx  bc (x  xc)  (bx  bc) x(x  a)  b(x  a)  x(x  c)  b(x  c) (x  b)(x  a)  (x  b)(x  c) xa  xc

x2  5x  2x 10 14.

(x2  5x)  (2x 10)

x2  3x  2x  6 

2x  6 2(x  3) 2   x2  3x x(x  3) x

(x2  3x)  (2x  6) x(x  5)  2(x  5)  x(x  3)  2(x  3) (x  2)(x  5)  (x  2)(x  3) 

492

3

x(x2  4) x  3x  2 (x  2)(x 1) x(x  2)(x  2)  (x  2)(x 1) x(x  2)  x 1 2

5x2 125 10.

Copyright © 2025 Pearson Education, Inc.

x5 x3


ISM: Prealgebra and Introductory Algebra 15x3 y2 15.

16.

z

Chapter 12: Rational Expressions

3 5  x  x2  y2  z 3x2   y 5xy3  z  5  x  y  y2

2x2  9x  9

z

23.

x2  y2 24.

18. 2x  5  2x  2x  5  2x x  6 x  6 x  6 (x  6) 2x(2x  5)  (x  6)2 2x(2x  5)  (x  6)2

2x

x2  5x  24  x2  x  6  x2  x 12 x2 10x 16 (x  8)(x  3) (x  3)(x  2)   (x  4)(x  3) (x  8)(x  2) x3  x4 

4x  4 y xy

2

3x  3y 2

x y

26.

4x  4 y  x2 y  3x  3y xy2

4(x  y)  x2 y  3(x  y) xy2 4x  3y

2

2x2  9x  9

2x  2 x  3x 8x 12 (2x  3)(x  3)  2x   4(2x  3) x(x  3) 1  2  

3x2  2xy  y2

 3x2  6x x2  xy  2 x2  y2  3x  6x  2  3x2  2xy  y2 x  xy (x  y)(x  y) 3x(x  2)   x(x  y) (3x  y)(x  y) 3(x  2)  3x  y

x7 x  7  25. x2  9x 14  x2  9x 14  x2  9x 14 x7  (x  7)(x  2) 1  x2

2 2 19. x 2 5x  24  x 210x 16 x  x 12 x  x6

2

x5 x  5   2  2 x  2x 15 x  2x 15 x  2x 15 x5  (x  5)(x  3) 1  x 3 2

4x  5 27.

3x

2

2x  5

 3x2 

2

21. x  x  42  (x  3)  (x  7)(x  6)  (x  3) x3 x3 x7 x7  (x  6)(x  3) 22.

x2  3x

 y3 9x2 y3  9x2 9x2     8 8 y3 8  y3

x2  9 x  2 (x  3)(x  3) x  2 x  3     17. x2  4 x  3 (x  2)(x  2) x  3 x  2

20.

8x 12

2a  2b a  b 2(a  b) ab  2 2   3 3 a b (a  b)(a  b) 2  3

4x  5  2x  5 3x2 2x 10 3x2 2(x  5) 3x2

28. 9x  7  3x  4  9x  7  3x  4 6x2 6x2 6x2 6x  3  6x2 3(2x 1)  6x2 2x 1  2x2 29. The LCD is 2  7  x or 14x.

Copyright © 2025 Pearson Education, Inc.

493


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

30.

x2  5x  24  (x  8)(x  3) x2 11x  24  (x  8)(x  3) The LCD is (x + 3)(x + 8)(x  8).

32.

33.

5  2x2 y

7x

10x2 y  7x  2x2 y 14x3 y

9

9  4 y2 x

5

31.

4y

4 y  4 y2 x

x2

x2 (x  2)(x  9) x 11x 18 (x  2)(x  5)  (x  2)(x  9)(x  5)  3x  5 x  4x  4 2

  

4 35.

36.

5x2

2 x 3

37.

4 x3

494

16 y3 x

2

34.

36 y2 x

6 y

 4

x2  3x 10 (x  2)(x  5)(x  9)

3x  5 (x  2)2 (3x  5)(x  3) (x  2)2 (x  3) 3x2  4x 15 (x  2)2 (x  3)

4y 5x2 y

6  5x2 y  5x2

4 y  30x2 

5x2 y

 

2(2 y 15x2 ) 

5x2 y

2(x 1)  4(x  3) x 1 (x  3)(x 1) 2x  2  4x 12  (x  3)(x 1)  2x 10  (x  3)(x 1)  2(x  5)  (x  3)(x  1)

2 

4  2(x  3) x3

4  2x  6 x3

2x  2 x3

2(x 1) x3

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

3

38.

x  2x  8 2

39.

2

Chapter 12: Rational Expressions

 

3 2  x  3x  2 (x  4)(x  2) (x  2)(x 1) 3(x 1)  2(x  4)  (x  4)(x  2)(x 1) 3x  3  2x  8  (x  4)(x  2)(x 1) 5x  5  (x  4)(x  2)(x 1) 5(x 1)  (x  4)(x  2)(x 1) 

2

4 4 2x  5  2x  5   2   6x  9 2x  3x 3(2x  3) x(2x  3) x(2x  5)  4(3)  3x(2x  3) 2x2  5x 12 3x(2x  3) (2x  3)(x  4)  3x(2x  3) x4  3x 

40.

x 1

x 1 x 1 x 1    x  2x 1 x 1 (x 1)(x 1) x 1 1 x 1   x 1 x 1 1 x 1  x 1 x  x 1 2

41.

n

9

n

10 5 n   n  10   10  9    10   5  n  90  2n 3n  90 n  30 The solution is 30.

Copyright © 2025 Pearson Education, Inc.

495


42.

2 1 1   x 1 x  2 2 1   2  1 2(x 1)(x  2)  x 1  x  2   2(x 1)(x  2)   2      2  2(x  2)  2(x 1)  1(x 1)(x  2) 4x  8  2x  2  (x2  x  2) 2x 10  x2  x  2 x2  x 12  0 (x  4)(x  3)  0 x40 or x  3  0 x  4 x3 The solutions are 4 and 3.

43.

y 2 y 16 y  3   2y  2 4y  4 y 1 y 2 y 16 y  3    2( y 1) 4( y 1) y 1 4( y 1)  y 2 y 16   y  3    4( y 1)     2( y 1) 4( y 1)  y 1  

2 y  2 y 16  4( y  3) 4 y 16  4 y 12 0y  4 0  4; no solution

44.

ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

45.

2  4  8   x2  3 x4 3 x2  9  8    (x2  9)  x  3  x  3   (x2  9)  2     x  9  2(x  3)  4(x  3)  8 2x  6  4x 12  8 2x 18  8 2x  10 x5 The solution is 5. x3 x6  0 3 x x65  x x 1 (x 1)(x  5)     (x 1)(x  5)0 x 1 x  5    (x  5)(x  3)  (x 1)(x  6)  0 x2  2x 15  x2  5x  6  0 7x  9  0 7x  9 9 x 7 9 The solution is . 7

496

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

46.

x5 

Chapter 12: Rational Expressions

6

50. Let x be the speed of the boat in still water.

x 6 x(x  5)  x   x    x2  5x  6

distance

x2  5x  6  0 (x  6)(x 1)  0 x6  0 or x 1  0 x  6 x 1 The solutions are 6 and 1.

48

x4

Downstream

72

x+4

48 x4

72 x 4

51. Let x be the time for Maria alone. Together, 1 Mark and Maria complete 5

of the job in

1 hour. Individually, they complete

1 7

 1  

49. Let x be the speed of the faster car. =

rate

Faster car

90

x

Slower car

60

x  10

and

1

of

x

the job in 1 hour. 1 1 1    15 7 x1 1  35x  35x   5  7 x      7x  5x  35 2x  35 35 1 x  17 2 2 1 It will take Maria 17 hours to manicure Mr. 2 Sturgeon’s lawn alone.

distance

Upstream

time

The speed of the boat in still water is 20 mph.

n(4  n)    n(4  n)   n  4  n  4n  n 4  2n 2n The number is 2. 

rate

The times are equal. 48 72  x4 x4 48(x  4)  72(x  4) 48x 192  72x  288 480  24x 20  x

47. Let n be the number. 1 31 7 5  n   2  n  6     5 3 7   n 2n 6 5  3 7  6n  n   6n 2n 6      30  9  7n 21  7n 3n The number is 3. 48. Let n be the number. 1 1 n  4n 1

=

time

The times are equal. 90 60  x x 10 90(x 10)  60x 90x  900  60x 30x  900 x  30 x  10 = 20 The faster car is traveling at 30 mph and the slower car is traveling at 20 mph.

90 x

60 x10

52. Let x be the time for the pipes to fill the pond 1 of the pond in working together. Pipe A fills 20 1 1 day, pipe B fills of the pond in 1 day, and 15 1 together they fill of the pond in one day. x

Copyright © 2025 Pearson Education, Inc.

497


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

1

1 1    120 115 x  1  60x   60x       20 15  x  3x  4x  60 7x  60 60 4 x 8 7 7 4 It takes 8 days to fill the pond using both 7 pipes. 53.

5x 10xy 27  5x   27 21  10xy 21 

 x6 2  4  56. x2  8 8 4  x 2  4 (x  2)  x2  6

6  4x  8 8  4x  8 4x 14  4x 2(2x  7)  2  2x 2x  7   2x 4x 12

57.

5x 21  27 10xy 5  x  3 7  3 9  2  5  x  y 7  18 y 37

6

58.

31 31  35 30 31 30   35 31 31 5  6  5  7  31 6  7

  55.  3y 1 2   y  2   2 y 1 y 1 y

498

8x(x  3) 



1 2x

x(x2  6x  9)

(x  7)(x  3) x(x  3)(x  3)  (x  7)(x  3) x(x  3)  x7

x2  x  72  x2  6x  27 60. x2  x  30 x2  9x 18 x2  x  72  x2  9x 18  x2  x  30 x2  6x  27 (x  9)(x  8) (x  6)(x  3)   (x  6)(x  5) (x  9)(x  3) (x  9)(x  8)  (x  5)(x  9) 

y 3 1

1y y

4(x  3)

2 2 59. x 29x  20 x 2  9x  20 x  25 x  8x 16 (x  4)(x  5) (x  4)(x  5)   (x  5)(x  5) (x  4)(x  4) x4  x4

56 65 2110  35 625 30 31  35 31 30

x2  4x  21

25

3 1

8x2  24x

x3  6x2  9x

2 54. 5  7 57 75 1  5  16  55 5

6  4(x  2) 8  4(x  2)

3

(x  2)

4

x6 6   61. 2 2 2 x  36 x  36 x  36 x6  (x  6)(x  6) 1  x6 x

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

62.

63.

5x 1 3x  2 5x 1 3x  2 2x 1    4x 4x 4x 4x 3x 6x

Chapter 12: Rational Expressions

66.

 x2  9x 14 x2  4x  21 3x 6x  (x  7)(x  2)  (x  7)(x  3) 

3x(x  3) 6x(x  2)  (x  7)(x  2)(x  3) (x  7)(x  3)(x  2)

3x2  9x  6x2 12x (x  7)(x  2)(x  3) 3x2  21x  (x  7)(x  2)(x  3) 

 3x(x  7) (x  7)(x 3x 2)(x  3)  

(x  2)(x  3) 4

64.

65.

2  2 3x2  8x  3 3x  7x  2 4 2   (3x 1)(x  3) (3x 1)(x  2) 4(x  2) 2(x  3)   (3x 1)(x  3)(x  2) (3x 1)(x  2)(x  3) 4x  8  2x  6  (3x 1)(x  3)(x  2) 6x  2  (3x 1)(x  3)(x  2) 2(3x 1)  (3x 1)(x  3)(x  2) 2  (x  3)(x  2) 4

3  2  a 1  3  a 1  4  (a 1)  a 1  2   (a 1)  a 1    4  2(a 1)  3 4  2a  2  3 2  2a  3 2a  1 a1 2 1 The solution is . 2

x

x

 xx  3  x  3  x  (x  3)  x  3 4  (x  3)   x  3      x  4(x  3)  x x  4x 12  x 5x 12  x 4x 12  0 4x  12 x  3 3 makes the denominator x + 3 zero. Therefore there is no solution.

67. Let n be the number. 2n 1 n   3 6 2  2n 1   n  6  3  6   6  2   4n 1  3n n 1  0 n1 The number is 1. 68. Let x be the time to paint the shed together. Mr. 1 Crocker can paint of the shed in one day, and 3 1 his daughter can paint . Together, they can 4 1 paint . x 1 1 1   3 4 x 1 1 1 12x   12x  3 4  x      4x  3x  12 7x  12 12 5 x  7 or 1 7 5



It will take 1

7 work together.

days to paint the shed when they



12 1

1

4

3 3 69. 1 4 1  12 1 4 1  4  6 10 3

2

4 2 70.

 3 2  x 4  2  4x  2

x  6 3 x x

Copyright © 2025 Pearson Education, Inc.

x 3 6 x

 6x  3

2(2x 1) 

3(2x 1)

2 

3

499


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

71. 1.8 square yards  1.8 sq yd 

32 sq ft

8.

1 cu yd 72. 135 cubic feet  135 cu ft  3 3 cu ft 135  cu yd 27  5 cu yd Chapter 12 Getting Ready for the Test

 2.

x 8

x 8

x 8



8  x 1(8  x) Choice B is correct. 8

4

x2

x2

8 4 2

2

x x



x 8

 1 

32 x4

 

Choice C is correct. 8 3.

4.

5.

x2

4 

8

x2

x2

x2

 

4 Choice D is correct. 8 x2

4

x2

8 4 x2

8x2 4x2

1 2   contains an equal sign, so it is an

x 3 x equation; B.

1 sq yd

 1.8  9 sq ft  16.2 square feet

1.

5

8 x2     21 2 2 4 x 

12

x2 Choice D is correct.

9.

a5  9 contains an equal sign, so it is an 11 equation; B.

10.

a5  9 does not contain an equal sign, so it is 11 an expression; A.

11. The LCD of 4, 6, and 1 is 12. x3 5  3 4 6  x3 5  3  12     12   4 6 1      x3 5  3  12  12    12   4  6 1  3(x       3)  2  5  12  3 The correct choice is C.

9

2. a.

C 

b.

C

z ,

25x 10x3 2 3 3 25x  5  x and 10x  2  5  x LCD  2  52  x3  2  25  x3  50x3

Choice D is correct. 7.

500

5

1

 does not contain an equal sign, so it is an x 3 expression; A.

x2  4x  3  0 (x 1)(x  3)  0 x  1  0 or x  3  0 x  1 x  3 x5 The expression is undefined for x2  4x  3 x = 1 and x = 3.

Choice A is correct. 6.

12. “The quotient of a number and 5 equals the sum x of that number and 12” translates to  x  12; 5 A. Chapter 12 Test 1.

7x 5  2x 7x  (5  2x)   x 1 x 1 x 1 7x  5  2x  x 1 5x  5  x 1 5(x 1)  x 1 5

3.

100x  3000 100(200)  3000   $115 x 200

100x  3000 x 100(1000)  3000  1000  $103

3x  6 3(x  2) 3   5x 10 5(x  2) 5

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

4.

x6 x6 1   x 12x  36 (x  6)(x  6) x  6

5.

7  x (x  7)   1 x7 x7

6.

Chapter 12: Rational Expressions

13.

2

yx x2  y2

 (x  y) 1  (x  y)(x  y) x y

3 2 2 7. 2m  2m 12m  2m(m  m  6) m2  5m  6 (m  3)(m  2) 2m(m  3)(m  2)  (m  3)(m  2) 2m(m  2)  m2

14.

10.

3

 (5x  5) 

x 1 11.

3

x2  9 15.

 5(x 1)  15

x 1

y2  5 y  6 y  2 ( y  3)( y  2) y  2    2y  4 2y  6 2( y  2) 2( y  3) y2  4 5

6

6 3  6 3    x 1 x 1 (x 1)(x 1) x 1 6   3(x 1) (x 1)(x 1) (x 1)(x 1) 6  3x  3  (x 1)(x 1) 3x  3  (x 1)(x 1) 3(x 1)  (x 1)(x 1) 3  x 1

56 1 12.    2x  5 2x  5 2x  5 2x  5

2

ay  3a  2 y  6 (ay  3a)  (2 y  6) 8.  ay  3a  5 y 15 (ay  3a)  (5 y 15) a( y  3)  2( y  3)  a( y  3)  5( y  3) (a  2)( y  3)  (a  5)( y  3) a2  a 5 x2 13x  42 x2  4 2 2 9. x 10x    x  6 x2 13x 2142 xx2  x  6   2 x 10x  21 x2  4 (x  6)(x  7) (x  3)(x  2)   (x  3)(x  7) (x  2)(x  2) (x  6)(x  7)  (x  7)(x  2)

5a 2  a  a 6 a 3 5a 2   (a  3)(a  2) a  3 5a 2(a  2)   (a  3)(a  2) (a  3)(a  2) 5a  2(a  2)  (a  3)(a  2) 5a  2a  4  (a  3)(a  2) 3a  4  (a  3)(a  2) 2

16.

2

x  3x

x2  4x 1 2x 10

2x 10  2 x  3x x  4x 1 (x  3)(x  3) 2(x  5)   2 x(x  3) x  4x 1 2(x  3)(x  5)  x(x2  4x  1) 

x2  9 2

5 x2   x2 11x 18 x2  3x 10 x2 5   (x  9)(x  2) (x  5)(x  2) (x  2)(x  5) 5(x  9)   (x  9)(x  2)(x  5) (x  5)(x  2)(x  9) 

x2  3x 10  5x  45 (x  9)(x  2)(x  5)

x2  2x  35  (x  9)(x  2)(x  5)

Copyright © 2025 Pearson Education, Inc.

501


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

17.

3 4y   y  6 y  5 y2  5 y  4

21. The LCD is x2  25  (x  5)(x  5). 10 3 1   x2  25 x  5 x  5  10  1   3 (x2  25)  (x  5)(x  5) x  5 x  5     x 2  25 

2

 

4y 3  ( y  5)( y 1) ( y 1)( y  4) 4 y( y  4)  3( y  5) ( y 1)( y  5)( y  4)

10  3(x  5) 1(x  5) 10  3x 15  x  5 10  4x 10 20  4x 5 x

4 y2 16 y  3y 15  ( y 1)( y  5)( y  4) 

4 y2 13y 15 ( y 1)( y  5)( y  4)

Since x = 5 causes the denominators x2  25 and x  5 to be 0, the equation has no solution.

18. The LCD is 3  5  y = 15y. 4 5 1 y35  4 5  1  15 y     15 y     y 3   5  60  25 y  3y 60  22 y 60 y 22 30 y 11 30 The solution is . 11 19.

5

22.

 

(x 

14 x 1 14 

 4  

2x x 1  

2x 

1)  x    (x 1)  4   1   4(x 1)  2xx 1  x(x 1)x 14 

x2  x 14  4x  4  2x x2  x 14  2x  4 x2  3x 10  0 (x  5)(x  2)  0 x  5  0 or x  2  0 x5 x  2 The solutions are 5 and 2.

4

2

y 1 y  2 5( y  2)  4( y 1) 5 y 10  4 y  4 y  6

23.

5x 2 5x2 10x yz  2  3 10x yz z 3 z 2 3

The solution is 6. 20. The LCD is 2(a  3). a 3 3   a  3 a  3 2  a   3 3 2(a  3)   2(a  3)       a 3   a  3 2  2a  6  3(a  3) 2a  6  3a  9 5a  15 a3 Since a = 3 causes the denominator a  3 to be 0, the equation has no solution.

502

x

5x

z

yz2 10x 5  x  x  z  z2

y  z2  2  5  x xz  2y

 

 

b a ba a  b ab 24. a1  1b  1  1 ab b

a

b 2

a

b  a2 ab (b  a)(b  a)  ab ba 

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

  y2 5  1  2   2 y  5 y 1 y2     25. 1 2   2 2  1 2  y y y  y  2  y  2 y   5 1

 1 1  1   60x       12 15   x  5x  4x  60 9x  60 60 x 9 20 x 3 20 2 It takes both pipes  6 hours to fill the 3 3 tank. 60x

26. Let n be the number. 1 n5 6  n    5 n  6 n 5  n n  n(6)   n   n2  5  6n 2 n  6n  5  0 (n  5)(n 1)  0 n  5  0 or n 1  0 n5 n 1 The number is 1 or 5.

Cumulative Review Chapters 112 7 1.

4

Downstream

14 16

5 3.

=

rate

time

x2

14

x+2

16

x2

2

1

28. Let x be the time in hours that it takes for both inlet pipes together to fill the tank. 1 The first pipe fills of the tank in 1 hour, the 12 1 second pipe fills of the tank in 1 hour, and 15 1 the two pipes fill of the tank in 1 hour. x 1 1 1   12 15 x The LCD is 60x.

6. 3

20

4

100% 

100% 

2

1

4

20

400

100% 

200

100% 

100

9 

700

%  35%

%  80%

5

3

1

x 2

14 16  x2 x2 14(x  2)  16(x  2) 14x  28  16x  32 60  2x 30  x The speed of the boat in still water is 30 mph.

9 5. 2

7

5

3 4.

Upstream

20

2.

27. Let x be the speed of the boat in still water. Let x + 2 be the speed of the boat going downstream. Let x  2 be the speed of the boat going upstream. distance

9

4

9 4

2 %  66 % 3 3

1 %  11 % 9 9

100% 

900 4

%  225%

3 15 15 1500   100%  %  375% 4 4 4 4

7. 2  (z  5) = 2  (5  z) illustrates the commutative property of multiplication. 8. 3 + y = y + 3 illustrates the commutative property of addition. 9. (x + 7) + 9 = x + (7 + 9) illustrates the associative property of addition. 10. (x  7)  9 = x  (7  9) illustrates the associative property of multiplication. 11. Let x be the length of the shorter piece. Then 3x is the length of the longer piece. x  3x  48 4x  48 x  12 3x = 3(12) = 36 The shorter piece is 12 inches. The longer piece is 36 inches.

Copyright © 2025 Pearson Education, Inc.

503


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

12. Let x be the length of the longer pieces. Then x  3 is the length of the shorter piece. x  x  x  3  45 3x  3  45 3x  48 x  16 x  3 = 16  3 = 13 The longer pieces both have length 16 feet. The shorter piece has length 13 feet. 13.

y  mx  b y  b  mx yb x m

15.

x  4  6 x  4  4  6  4 x  10 –12–10 –8 –6 –4 –2 0

x2

19. 4 20.

3

2

4

6 8

3

1 16

1

1

(3)3



27

1 27

2

2 3 33. 4x  7  8x  4x 2  4x  6  11 2x  3 2x  3

4x2  4x  6 2x  3 8x33  4x22  0x1  7 8x 12x

 4  256

52

 (3)

3

 (3)

8x2  0x1 8x2 12x 12x  7

 27

12x 18 11

(3)

(4)9  (4) (4)7

97

2

 (4)

 16

5 2 5 2 4 23. 2x y  2  x  y  2x51 y21  2x y xy 1 x y

504

4

32. 5y(7y  3y  1)  5y(7y2 )  (5y)(3y)  (5y)(1)  35y3  15y2  5y

4

(3)5

22.

1

31. 3x2 (5x2  6x 1)

8 712 7124  7  5, 764,801  4 7

2

1 9 2 26. 9x  9  2  2 x x

 15x4 18x3  3x2

73

21.

1  13b  a  13ab

30. 3y(4y2  2)  3y(4y2 )  3y(2)  12y3  6y

x

4

54

29. 5x(2x3  6)  5x(2x3 )  5x(6)  10x4  30x

9 9 18. x  x  x91  x8 x x1

47

 13b  a

 3x2 (5x2 )  (3x2 )(6x)  (3x2 )(1)

52

x

a4

1 2 3 25. 2x  2  3  3 x x

28. (3)3 

16. x 1  10 x  9 17.

a4

a5

13b 

(2)

y  mx  b y  mx  b

x

13a5b

27. (2)4 

14.

5

24.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 6 x2  7x  4 34.

2x  1

 3x  5 

Chapter 12: Rational Expressions 3x2  2x 10x  5 3x2  2x 10x  5   43. x 1 x 1 x 1  3x2  8x  5  x 1 (3x  5)(x 1)  x 1  3x  5

9 2x  1

3x  5 2x  1 6x 2  7x  4 6x  3x 2

10 x  4 10x  5 9

44.

4x

8

x2

x2

6x

35. x2  7x 12  (x  4)(x  3) 45.

2

x 4

36. x 17x  70  (x  7)(x 10) 2

2 2 37. 25x  20xy  4 y  (5x  2 y)(5x  2 y)  (5x  2 y)2

38. 36a2  48ab  16b2  4(9a2 12ab  4b2 )  4[(3a)2  2  3a  2b  (2b)2 ]  4(3a  2b)2

2 46.

39.

x2  9x  22  0 (x 11)(x  2)  0 x 11  0 or x  2  0 x  11 x  2 The solutions are 11 and 2.

40.

x2  2x 15  0 (x  5)(x  3)  0 x5 0 or x  3  0

47.

x  5 x3 The solutions are 5 and 3. 2 41. x  x  6  x(x 1)  2  3  2 3x 5x  5 3x 5(x  1) 5

42. 3x 12  5x  20  3x 12  4x 2 5x  20 2 4x 3(x  4) 2  2x   2 5(x  4) 3  2x  5 6x  5

48.

x 3

4x  8 x2

4(x  2)

4

x2

3  6x  3(x  2)   x  2 (x  2)(x  2) (x  2)(x  2) 6x  3x  6  (x  2)(x  2) 3x  6  (x  2)(x  2) 3(x  2)  (x  2)(x  2) 3  x2 

5x x2  9

2(x  3)

(x  3)(x  3) 2x  6  5x  (x  3)(x  3) 7x  6  2 x 9

5x (x  3)(x  3)

t  4 t 3 5   2 9 18 t  4 t  3    5  18  2  9   18   18     9(t  4)  2(t  3)  5 9t  36  2t  6  5 7t  30  5 7t  35 t 5 The solution is 5. y y 1   2  y y4 6 1 12   12    6 2 4 6y  3y  2 3y  2 2 y 3 2 The solution is . 3

Copyright © 2025 Pearson Education, Inc.

505


ISM: Prealgebra and Introductory Algebra

Chapter 12: Rational Expressions

49. Let x be the time in hours for Sam and Frank to complete the tour together. Sam completes 13 of a tour in 1 hour, and Frank completes

1 7

z 1 1 2 51. z1  2z  2z2 2z  z 3 6 6 6 2z

 2z

of a

2z

26

1

tour in 1 hour. Together, they complete x of a tour in 1 hour. 1 1 1 3  7 x 1 1 1 21x   21x  3 7  x      7x  3x  21 10x  21 21 1 x 2 10 10 Sam and Frank can complete a quality control tour together in 2

1

x  9 x1 52. 9 3x  9x 9x 1 x3 2

x

hours.

10 50. Let x be the time in hours for both machines to complete the task together. The first machine 1 completes of the task in 1 hour and the 18 1 second machine completes of the task in 1 12 1 hour. Together, the machines complete of the x task in 1 hour. 1 1 1   18 112 x 1  1 36x   36x    18 12  x 2x  3x  36 5x  36 36 x 5 Both machines can complete the task in 36 1  7 hours. 5 5

506

 z 2z  2z  6 2z  6  2 2z z 2  3 (2  z)  2  z  (2  z) 3  z

x x x2 9 9x  x3 x 2

x 9 x3  9x x 2 x 9 x   9x x 3 x (x  3) (x  3)  9  x  (x  3) x 3  9 

Copyright © 2025 Pearson Education, Inc.


Chapter 13 Section 13.1 Practice Exercises 1. a.

b.

Point (4, 2) lies in quadrant I.

b.

Point (1, 3) lies in quadrant III.

c.

Point (2, 2) lies in quadrant IV.

d.

Point (5, 1) lies in quadrant II.

e.

Point (0, 3) lies on the y-axis.

f.

Point (3, 0) lies on the x-axis.

g.

Point (0, 4) lies on the y-axis.

h. i.

 1  Point 2 , 0 lies on the x-axis.    2  3  Point 1,  3  lies in quadrant IV. 4  

c. 3. a.

Let x = 3 and y = 1. x  3y  6 3  3(1) 0 6 33 0 6 6  6 True Yes, (3, 1) is a solution.

b.

Let x = 6 and y = 0. x  3y  6 6  3(0) 0 6 6006 6  6 True Yes, (6, 0) is a solution.

c.

Let x = 2 and y 

y 6 5 4

(0, 3)

3

 1 2 (–5, 1) 2 , 0   2 1 –6 –5 –4 –3 –2 –1–1

(–1, –3)

2. a.

–2

–3 –4 –5 –6

(3, 0)

(4, 2)

1 2 3 4 5 6

(2, –2)

The number of wildfires varies greatly from year to year.

x

3  1,  3 4    (0, –4)

2

.

3

The ordered pairs are (2016, 68), (2017, 71), (2018, 58), (2019, 50), (2020, 57), (2021, 59), and (2022, 69)

x  3y  6  2 2  3 06  3    2  2 0 6 0  6 False 2  No, 2, is not a solution.  3    4. a.

x + 2y = 8 In (0, ), the x-coordinate is 0. 0  2y  8 2y  8 y4 The ordered pair is (0, 4).

Copyright © 2025 Pearson Education, Inc.

507


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

b.

x + 2y = 8 In ( , 3) the y-coordinate is 3. x  2(3)  8 x6 8 x2 The ordered pair is (2, 3).

c.

x + 2y = 8 In (4, ), the x-coordinate is 4. 4  2 y  8 2 y  12 y6

b.

Let x = 0. 1 y  x 1 3 1 y  (0) 1 3 y  0 1 y  1

c.

Let y = 0. 1 0  x 1 3 1 1 x 3 3(1)  x 3 x

The ordered pair is (4, 6). 5. a.

b.

c.

Let x = 3 y = 2x y = 2(3) y=6

The ordered pairs are (3, 2), (0, 1), and (3, 0).

Let y = 0. y = 2x 0 = 2x 0=x Let y = 10. y  2x 10  2x 5  x

The ordered pairs are (3, 6), (0, 0), and (5, 10). x

y

a.

3

6

b.

0

0

c.

5

10

6. a.

Let x = 3. 1 y  x 1 3 1 y  (3) 1 3 y  11 y  2

x

y

a.

3

2

b.

0

1

c.

3

0

7. When x = 1, y = 50x + 250 y = 50(1) + 250 y = 50 + 250 y = 200 When x = 2, y = 50x + 250 y = 50(2) + 250 y = 100 + 250 y = 150 When x = 3, y = 50x + 250 y = 50(3) + 250 y = 150 + 250 y = 100 When x = 4, y = 50x + 250 y = 50(4) + 250 y = 200 + 250 y = 50 The completed table is shown.

508

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

x

1

2

3

4

y

200

150

100

50

Chapter 13: Graphing Equations and Inequalities

Exercise Set 13.1 2.

Vocabulary, Readiness & Video Check 13.1 1. The horizontal axis is called the x-axis. 2. The vertical axis is called the y-axis. 3. The intersection of the horizontal axis and the vertical axis is a point called the origin. 4. The axes divide the plane into regions, called quadrants. There are four of these regions. 5. In the ordered pair of numbers (2, 5), the number 2 is called the x-coordinate and the number 5 is called the y-coordinate. 6. Each ordered pair of numbers corresponds to one point in the plane. 7. An ordered pair is a solution of an equation in two variables if replacing the variables by the coordinates of the ordered pair results in a true statement. 8. The graph of paired data as points in a rectangular coordinate system is called a scatter diagram. 9. origin; left or right; up or down 10. paired data, which can be written as ordered pairs and graphed 11. (7, 0) and (0, 7); since one of these points is a solution and one is not, it shows that it is very important to remember that the first number is the x-value and the second number is the y-value and not to mix them up. 12. Replace both values of the ordered pair in the linear equation and see if a true statement results.

(2, 4) is in quadrant I. (2, 1) and (3.4, 4.8) are in quadrant II. (3, 3) is in quadrant III. 1  (5, 4) and 3 ,  5 are in quadrant IV.      3   3 , 0 lies on the x-axis.  4  (0, 2) lies on the y-axis.  4. Point B is 3 2

units right from the origin and is

 1  on the x-axis, so its coordinates are  3 , 0 .  2  6. Point D is 1 unit left and 3 units up from the origin, so its coordinates are (1, 3). 8. Point F is on the y-axis and 1 unit down from the origin, so its coordinates are (0, 1). 10. Point A is 2 units right from the origin and is on the x-axis, so its coordinates are (2, 0). 12. Point C is 2 units left and 3 units up from the origin, so its coordinates are (2, 3). 14. Point E is 1 unit right and 1 unit down from the origin, so its coordinates are (1, 1). 16. Point G is 2 units left from the origin and is on the x-axis, so its coordinates are (2, 0). 18. a.

The ordered pairs are (2016, 66.8), (2017, 69.5), (2018, 90.5), (2019, 97.1), (2020, 103.6), and (2021, 123.6).

b. The ordered pair (2021, 123.6) indicates that in 2021, $123.6 billion was spent on petrelated expenditures.

Copyright © 2025 Pearson Education, Inc.

509


Chapter 13: Graphing Equations and Inequalities

ISM: Prealgebra and Introductory Algebra

c.

d. The scatter diagram shows that pet-related expenditures increased every year. 20. a.

The ordered pairs are (8.00, 1), (7.50, 10), (6.50, 25), (5.00, 50), and (2.00, 100).

b. The ordered pair (2.00, 100) indicates for the price of $2.00 per board, 100 boards were purchased. c.

d. answers may vary 22. a.

The ordered pairs are (2016, 439), (2017, 441), (2018, 443), (2019, 444), (2020, 444), (2021, 445), and (2022, 446).

b. We plot the ordered pairs. We label the horizontal axis “Year” and the vertical axis “Farm Size (in acres).”

510

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities 30. x  5y = 1 In ( , 2), the y-coordinate is 2. x  5(2)  1 x  10  1 x  11 In (4, ), the x-coordinate is 4. 4  5 y  1 5 y  5 y 1 The completed coordinates are (11, 2) and (4, 1).

24. For (2, 3), let x = 2 and y = 3. 3x  y  8 3(2)  3 0 8 6308 9  8 False No, (2, 3) is not a solution. For (0, 8), let x = 0 and y = 8. 3x  y  8 3(0)  8 0 8 080 8 8  8 True Yes, (0, 8) is a solution.

32. y 

1

34.

y  9x

x2 5 In (10, ), the x-coordinate is 10. 1 y  (10)  2 5 y  2  2 y  4 In ( , 1), the y-coordinate is 1. 1 1 x2 5 1 3 5x 15  x The completed coordinates are (10, 4) and (15, 1).

For (8, 0), let x = 8 and y = 0. 3x  y  8 3(8)  0 0 8 24  0 0 8 24  8 False No, (8, 0) is not a solution. 26. For (0, 0), let x = 0 and y = 0. 1 y  x 2 1 0 0  (0) 2 0  0 True Yes, (0, 0) is a solution. For (4, 2), let x = 4 and y = 2. 1 y x 2 1 2 0  (4) 2 2  2 False No, (4, 2) is not a solution.

1

 yx 9

28. For (2, 2), let x = 2 and y = 2. y  2 2  2 False No, (2, 2) is not a solution.

For (0, 2), let x = 0 and y = 2. y  2 2  2 True Yes, (0, 2) is a solution.

y = 9x

 19 (0)  0

0

3

9(3) = 27

 1 (2)   2 9

36. For (2, 2), let x = 2 and y = 2. y  2 2  2 True Yes, (2, 2) is a solution.

x   19 y

9

2

x  y  4 x  4  y x  4  y x = y + 4

y = x + 4

0 + 4 = 4

0

0

0 + 4 = 4

(3) + 4 = 3 + 4 = 7

3

Copyright © 2025 Pearson Education, Inc.

511


Chapter 13: Graphing Equations and Inequalities

38.

y

1

46. y = 3x x = 0: y = 3(0) = 0 x = 2: y = 3(2) = 6 y = 9: 9  3x 3  x The ordered pairs are (0, 0), (2, 6), and (3, 9).

x

3 3y  x x = 3y

y1x

0

1 (0)  0 3

x

y

6

1 (6)  2 3

0

0

3(1) = 3

1

2

6

3

9

3

40. 2x  y  4 2x   y  4 1 x  y  2 2

y = 2x + 4

y (–3, 9) 10 (–2, 6) 8

x  1 x2 2

y = 2x + 4

0

2(0) + 4 = 0 + 4 = 4

 1 (0)  2  0  2  2

0

 1 (2)  2  1 2  1

2

2

2

42.

6 4 2

y  5x 10 y 10  5x 1 y2  x 5

1

0

1 (5)  2  1  2  1 5

5

0

5(0)+10 = 0 + 10 = 10

44. x  6 y  3 x  6y  3

6y  x  3 x 3 y 6

x = 6y + 3

y  x3 6

0

03  3   1 6 6 2

1

13  2   1 6 6 3

6(1) + 3 = 6 + 3 = 3

1

x

x3

2 1

(0)  3  0  3  3

2

x = 4: y 

1 (0)  2  0  2  2 5

2 4 6 8 10

–4 –6 –8 –10

x = 0: y 

y = 5x + 10

(0, 0)

–10 –8 –6 –4 –2–2

48. y 

x  1 y2 5

512

ISM: Prealgebra and Introductory Algebra

y = 0: 0  3 

1 2 1

(4)  3  2  3  1 x3

2 1

x 2 6  x The ordered pairs are (0, 3), (4, 1), and (6, 0). x

y

0

3

4

1

6

0

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

y 5 4

3 2

(–4, 1)

(0, 3)

1

(–6, 0)

–5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

50. a.

x y = 0.25x + 9

0

1

5

10

0.25(0) + 9 =0+9 =9

0.25(1) + 9 = 0.25 + 9 = 9.25

0.25(5) + 9 = 1.25 + 9 = 10.25

0.25(10) + 9 = 2.5 + 9 = 11.50

b. Find x when y = 12.25. 12.25  0.25x  9 3.25  0.25x 13  x The employee must produce 13 units to earn $12.25 per hour. 52. a.

x

0

y = 3.37x + 88.18

3.37(0) + 88.18 = 0 + 88.18 = 88.18

6 3.37(6) + 88.18 = 20.22 + 88.18 = 108.40

b.

Find x when y = 105.00. 105.00  3.37x  88.18 16.82  3.37x 5 x 2015 + 5 = 2020 The average NFL ticket price was approximately $105.00 in 2020.

c.

Find x when y = 130.00. 130.00  3.37x  88.18 41.82  3.37x 12  x 2015 + 12 = 2027 The average NFL ticket price is predicted to be $130.00 in 2027.

9 3.37(9) + 88.18 = 30.33 + 88.18 = 118.51

54. The shortest bar on the graph corresponds to Germany, so Germany is predicted to be the least popular tourist destination. 56. The bars for Italy, Thailand, Spain, France, United States, and China extend beyond 70, so these six countries are predicted to have more than 70 million tourist visits per year. 58. The height of the bar for Mexico appears to be 58, so Mexico is predicted to have 58 million tourist arrivals per year. 60. x  y  3  y  x  3 y  x 3 Copyright © 2025 Pearson Education, Inc.

513


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities 62. 5x  2 y  7 2 y  7  5x 7  5x y 2

Section 13.2 Practice Exercises 1. a.

3x + 2.7y = 5.3 is a linear equation in two variables because it is written in the form Ax + By = C with A = 3, B = 2.7, and C = 5.3.

b.

x2  y  8 is not a linear equation in two variables because x is squared.

c.

y = 12 is a linear equation in two variables because it can be written in the form Ax + By = C: 0x + y = 12.

d.

5x = 3y is a linear equation in two variables because it can be written in the form Ax + By = C: 5x + 3y = 0.

64. 4 y  8x y  2x 66. False; point (3, 0) lies on the x-axis. 68. False;

2x  3y  6 2 2(2)  3  0 6  3  420 6 26

70. Points in quadrant I are to the right and up from the origin, so the x- and y-coordinates are positive. (positive, positive) corresponds to quadrant I. 72. Points in quadrant II are to the left and up from the origin, so the x-coordinate is negative and the y-coordinate is positive. (negative, positive) corresponds to quadrant II. 74. If the y-coordinate of a point is 0, the point is neither up nor down from the origin, so it is on the x-axis. 76. answers may vary

2. x + 3y = 6 x = 0: 0  3y  6 3y  6 y2 x = 3: 3  3y  6 3y  3 y 1 y = 0: x  3(0)  6 x0 6 x6 The ordered pairs are (0, 2), (3, 1), and (6, 0). y

78. A point three units to the left of the origin has coordinates (3, 0). 80. The length of the rectangle is 2  (6) = 8 and the width of the rectangle is 5  0 = 5. Area = length  width = 8  5 = 40 The area is 40 square units.

12 10 8 6 4

2 –12–10 –8 –6 –4 –2–2

86. no; answers may vary 88. answers may vary 90. answers may vary

514

(6, 0)

2 4 6 8 10 12

–4 –6 –8 –10 –12

82. Seven years after 2010, or in 2017, there were 1822 Target stores in the United States. 84. answers may vary

(3, 1) (0, 2)

3. 2x + 4y = 8 x = 2: 2(2)  4 y  8 4  4y  8 4y  4 y 1 x = 0: 2(0)  4 y  8 0  4y  8 4y  8 y2

Copyright © 2025 Pearson Education, Inc.

x


ISM: Prealgebra and Introductory Algebra x = 2: 2(2)  4 y  8 4  4 y  8 4 y  12 y3 The ordered pairs are (2, 1), (0, 2), and (2, 3).

Chapter 13: Graphing Equations and Inequalities

y 12 10 8

(–6, 7)

4 2

y

–12 –10 –8 –6 –4 –2–2

6 5 4 3 2

(–2, 1)

1

–6 –5 –4 –3 –2 –1–1

6

(4, 2) 2 4 6 8 10 12

x

–4 –6 –8 –10

(2, 3) (0, 2) 1 2 3 4 5 6

(0, 4)

–12

x

6. The equation x = 3 can be written in standard form as x + 0y = 3. No matter what value replaces y, x is always 3. It is a vertical line. Plot points (3, 2), (3, 0), and (3, 4), for example.

–2 –3 –4 –5 –6

y

4. y = 2x x = 2: y = 2(2) = 4 x = 0: y = 2(0) = 0 x = 3: y = 2(3) = 6 The ordered pairs are (2, 4), (0, 0), and (3, 6).

6 5 4 3 2 1 –6 –5 –4 –3 –2 –1–1 –2 –3 –4 –5 –6

(3, 2) (3, 0) 1 2 3 4 5 6

x

(3, –4)

7. y = 2x + 3 x = 2: y = 2(2) + 3 = 4 + 3 = 7 x = 0: y = 2(0) + 3 = 0 + 3 = 3 x = 3: y = 2(3) + 3 = 6 + 3 = 3 The ordered pairs are (2, 7), (0, 3), and (3, 3). 5. y  

1

x4

2 1 x = 6: y   (6)  4  3  4  7 2 1 x = 0:  (0)  4  0  4  4 2 1 x = 4: y   (4)  4  2  4  2 2 The ordered pairs are (6, 7), (0, 4), and (4, 2).

The graph of y = 2x + 3 is the same as the graph of y = 2x except that the graph of y = 2x + 3 is moved three units upward.

Copyright © 2025 Pearson Education, Inc.

515


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

8. a.

y = 430x + 7000 x = 0: y = 430(0) + 7000 = 7000 x = 5: y = 430(5) + 7000 = 9150 x = 10: y = 430(10) + 7000 = 11,300 The ordered pairs are (0, 7000), (5, 9150), and (10, 11,300).

5.

y

3

x

10

32 5

10

–10

10

–10

6. y 

2

x

9

22 3 10

–10

10

–10

b. 2028  2019 = 9 The graph shows that we predict approximately 10,900 wind turbine service technicians in 2028.

Vocabulary, Readiness & Video Check 13.2 1. In the definition, x and y both have an understood power of 1. Video Notebook Number 3 shows an equation where y has a power of 2, so it is not a linear equation in two variables.

Calculator Explorations 2. It is always good practice to use a third point as a check to see that our points lie along a straight line.

1. y = 3x + 7 10

–10

10

–10

3. An infinite number of points make up the line, and every point corresponds to an ordered pair that is a solution of the linear equation in two variables. Exercise Set 13.2

2. y = x + 5 10

–10

2. Yes; it can be written in the form Ax + By = C. 10

4. No; y is cubed. –10

6. Yes; it can be written in the form Ax + By = C.

3. y = 2.5x  7.9

8. Yes; it can be written in the form Ax + By = C.

10

–10

10

–10

4. y = 1.3x + 5.2 10

–10

10

–10

516

10. x  y = 4 x = 0: 0  y  4 y  4 y = 2: x  2  4 x6 x = 1: 1 y  4 y  5 y  5 The ordered pairs are (0, 4), (6, 2), and (1, 5).

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

16. y = 5x + 2 x = 0: y = 5(0) + 2 = 0 + 2 = 2 x = 1: y = 5(1) + 2 = 5 + 2 = 3 x = 2: y = 5(2) + 2 = 10 + 2 = 8 The ordered pairs are (0, 2), (1, 3), and (2, 8).

y 10 8 6 4 2

(6, 2)

–10 –8 –6 –4 –2–2

2 4 6 8 10

Chapter 13: Graphing Equations and Inequalities

y

x

10 8 6

(–1, –5)–4 (0, –4) –6 –8 –10

`

4

(0, 2)

2

12. y = 5x x = 1: y = 5(1) = 5 x = 0: y = 5(0) = 0 x = 1: y = 5(1) = 5 The ordered pairs are (1, 5), (0, 0), and (1, 5). y

–10 –8 –6 –4 –2–2 –4 –6 –8 –10

2 4 6 8 10

(1, –3)

x

(2, –8)

18. x + y = 7

(–1, 5) 5

4 3 2

1

–5 –4 –3 –2 –1–1 –2 –3 –4 –5

14. y 

1

(0, 0) 1 2 3 4 5

x

(1, –5)

x

20. x + y = 6

2

x = 0: y 

1

(0)  0 2 1 x = 4: y  (4)  2 2 1 x = 2: y  (2)  1 2 The ordered pairs are (0, 0), (4, 2), and (2, 1). y 5 4 3 2

(0, 0)1 –5 –4 –3 –2 –1–1

(–4, –2)

22. x + 5y = 5 (2, 1) 1 2 3 4 5

x

–2 –3 –4 –5

Copyright © 2025 Pearson Education, Inc.

517


Chapter 13: Graphing Equations and Inequalities

ISM: Prealgebra and Introductory Algebra

24. y = 2x + 7

32. x = 4y

26. y = 5

34. 2x + y = 2

28. x = 1

36. y 

1

x3

4

30. y = x 38. 2x  7y = 14

518

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

40. y = 1.5x  3

42. Comparing y = 5x  4 to y = mx + b, we see that b = 4. We see that graph B crosses the y-axis at (0, 4). 44. Comparing y = 5x + 2 to y = mx + b, we see that b = 2. We see that graph A crosses the y-axis at (0, 2). 46. a.

b. x = 4: y = 4.1(4) + 10 = 16.4 + 10 = 26.4 The ordered pair is (4, 26.4). c. 48. a.

2016 + 4 = 2020 In 2020, U.S. food delivery app revenue was $26.4 billion. y = 1.1x + 86 x = 6: y = 1.1(6) + 86 = 92.6 The ordered pair in (6, 92.6).

b. 2015 + 6 = 2021 Six years after 2015, in 2021, 92.6% of U.S. adults say they use the Internet. c.

2026 is 11 years after 2015, so let x = 11. y = 1.1x + 86 x = 11: y = 1.1(11) + 86 = 98.1 If the trend continues, 98.1% of U.S. adults will use the Internet in 2026.

d.

answer may vary

50. The length of the side of the square is 2  (3) = 2 + 3 = 5. Therefore the remaining vertices could be 5 units up from the given two or 5 units down from the given two. Five units up from y = 1 is y = 1 + 5 = 4. Five units down from y = 1 is y = 1  5 = 6. The remaining vertices could be (3, 4), (2, 4) or (3, 6), (2, 6).

Copyright © 2025 Pearson Education, Inc.

519


Chapter 13: Graphing Equations and Inequalities 52. y  x = 5 x = 0: y  0  5 y 5 y = 0: 0  x  5 x  5 x

y

0

5

5

0

ISM: Prealgebra and Introductory Algebra

60. y = |x| x = 0: y = |0| = 0 x = 1: y = |1| = 1 x = 1: y = |1| = 1 x = 2: y = |2| = 2 x = 2: y = |2| = 2

54. x = 3y x = 0: 0  3y 0 y y = 0: x  3(0) x0

x

y

0

0

1

1

1

1

2

2

2

2 y

x

y

0

0

5 4 3 2 1

0

0

–5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

56. y = 2x y = 2x + 5 y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

62. The perimeter is the distance around. x  y  x  y  50 2x  2 y  50 x  y  25 y = 20: x  20  25 x5 If y is 20 miles, then x is 5 miles. 64. no; answers may vary

58. y = x y=x7

Section 13.3 Practice Exercises y

1. x-intercept: (2, 0) y-intercept: (0, 4)

10 8 6 4 2 –10 –8 –6 –4 –2–2 –4 –6 –8 –10

2. x-intercepts: (4, 0), (2, 0) y-intercept: (0, 2) 2 4 6 8 10

x

3. x-intercept and y-intercept: (0, 0) 4. no x-intercept y-intercept: (0, 3) 5. x-intercepts: (1, 0), (5, 0) y-intercepts: (0, 2), (0, 2)

520

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 6. 2x  y = 4 y = 0: 2x  0  4 2x  4 x2 x-intercept: (2, 0) x = 0: 2(0)  y  4 0 y  4 y  4 y  4 y-intercept: (0, 4) x = 3: 2(3)  y  4 6 y  4  y  2 y2 Third point: (3, 2)

Chapter 13: Graphing Equations and Inequalities

8. 3x = 2y + 4 y = 0: 3x  2(0)  4 3x  0  4 3x  4 4 1 x  1 3 3  1  x-intercept: 1 , 0   3  x = 0: 3(0)  2 y  4 0  2y  4 4  2 y 2  y y-intercept: (0, 2) y = 1: 3x  2(1)  4 3x  2  4 3x  6 x2 Third point: (2, 1)

7. y = 3x y = 0: 0  3x 0x x-intercept: (0, 0) x = 0: y  3(0) y0 y-intercept: (0, 0) Let x = 1 to find a second point. x = 1: y = 3 (1, 3) is another point on the line. Let x = 1 to find a third point. x = 1: y = 3 (1, 3) is a third point on the line.

9. x = 3 The graph of x = 3 is a vertical line with x-intercept (3, 0). y

(–3, 0)

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1–1

1 2 3 4 5 6

x

–2 –3 –4 –5 –6

Copyright © 2025 Pearson Education, Inc.

521


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

10. y = 4 The graph of y = 4 is a horizontal line with y-intercept (0, 4). y 6 5 4 3 2 1 –6 –5 –4 –3 –2 –1–1

6. 5.9x  0.8y = 10.4 10

–10

(0, 4)

10

–10

Vocabulary, Readiness & Video Check 13.3 1 2 3 4 5 6

–2 –3 –4 –5 –6

3. The graph of the equation y = 1 is a horizontal line.

1. x = 3.78y

4. The graph of the equation x = 5 is a vertical line.

10

10

5. A point where a graph crosses the y-axis is called a y-intercept. 6. A point where a graph crosses the x-axis is called an x-intercept.

–10

2. 2.61y = x

7. Given an equation of a line, to find the x-intercept (if there is one), let y = 0 and solve for x.

10

–10

1. An equation that can be written in the form Ax + By = C is called a linear equation in two variables. 2. The form Ax + By = C is called standard form.

Calculator Explorations

–10

x

10

8. Given an equation of a line, to find the y-intercept (if there is one), let x = 0 and solve for y.

–10

3. 3x + 7y = 21 10

–10

10

9. False; a horizontal line (other than y = 0) has no x-intercept and a vertical line (other than x = 0) has no y-intercept. 10. True

–10

11. True

4. 4x + 6y = 12

12. False; x = 5: y = 5(5) = 25, so the point (5, 1) is not on the graph of y = 5x.

10

–10

10

–10

14. It is always good practice to use a third point as a check to see that your points lie along a straight line.

5. 2.2x + 6.8y = 15.5 10

–10

13. because x-intercepts lie on the x-axis; because y-intercepts lie on the y-axis

10

15. For a horizontal line, the coefficient of x will be 0; for a vertical line, the coefficient of y will be 0.

–10

522

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

Exercise Set 13.3

14. x  2y = 8 y = 0: x  2(0)  8 x  0  8 x  8 x-intercept: (8, 0) x = 0: 0  2 y  8 2 y  8 y4 y-intercept: (0, 4)

2. x-intercept: (4, 0) y-intercept: (0, 3) 4. x-intercepts: (3, 0), (3, 0) y-intercept: (0, 5) 6. x-intercepts: (4, 0), (1, 0), (1, 0) y-intercept: (0, 4)

y

8. x-intercepts: (3, 0), (3, 0) y-intercepts: (0, 2), (0, 2)

10 8 6

10. x  y = 4 y = 0: x  0  4 x  4 x-intercept: (4, 0) x = 0: 0  y  4  y  4 y4 y-intercept: (0, 4)

4

(–8, 0)

–10 –8 –6 –4 –2–2

(–4, 0)

–5 –4 –3 –2 –1–1

(0, 4)

1 2 3 4 5

2 4 6 8 10

x

16. 2x + 3y = 6 y = 0: 2x  3(0)  6 2x  0  6 2x  6 x3 x-intercept: (3, 0) x = 0: 2(0)  3y  6 0  3y  6 y2 y-intercept: (0, 2)

5 3 2 1

(0, 4)

–4 –6 –8 –10

y 4

2

x

–2 –3 –4 –5

y

12. x = 2y y = 0: x = 2(0) = 0 x-intercept: (0, 0) x = 0: 0  2 y 0 y y-intercept: (0, 0) Let y = 4 to find a second point. y = 4: x = 2(4) = 8 (8, 4) is another point on the line.

5 4 3

2 1 –5 –4 –3 –2 –1–1

(0, 2) (3, 0) 1 2 3 4 5

x

–2 –3 –4 –5

18. y = 2x y = 0: 0  2x 0x x-intercept: (0, 0) (0, 0) is also the y-intercept. Let x = 4 to find a second point. x = 4: y  2(4)  8 (4, 8) is another point on the line.

Copyright © 2025 Pearson Education, Inc.

523


Chapter 13: Graphing Equations and Inequalities

ISM: Prealgebra and Introductory Algebra

24. The graph of x = 0 is a vertical line with x-intercept (0, 0). y 5 4 3 2 1 –5 –4 –3 –2 –1–1

20. y = 2x + 10 y = 0: 0  2x 10 2x  10 x  5 x-intercept: (5, 0) x = 0: y  2(0) 10 y  0 10 y  10 y-intercept: (0, 10)

(–5, 0)

8 6 4 2

–10 –8 –6 –4 –2–2

y 5 4 3 2 1

(0, 10)

2 4 6 8 10

–5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

x

–4 –6 –8 –10

22. The graph of y = 5 is a horizontal line with y-intercept (0, 5).

28. y  6  0 y6 The graph of y = 6 is a horizontal line with y- intercept (0, 6). y

y

10 8 6 4 2

5 4 3 2 1 –5 –4 –3 –2 –1–1

x

26. x  2  0 x2 The graph of x = 2 is a vertical line with x-intercept (0, 2).

y 10

1 2 3 4 5

–2 –3 –4 –5

–10 –8 –6 –4 –2–2 1 2 3 4 5

2 4 6 8 10

x

–4 –6 –8 –10

x

–2 –3 –4 –5

30. x = y y = 0: x = 0 = 0 x-intercept: (0, 0) (0, 0) is also the y-intercept. Let x = 3 to find a second point. x = 3: 3   y 3 y (3, 3) is another point on the line.

524

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities 36. x + 9y = 10 y = 0: x  9(0)  10 x  0  10 x  10 x  10 x-intercept: (10, 0) x = 0: 0  9 y  10 9 y  10 10 y 9  10  y-intercept: 0, 9     

32. x + 3y = 9 y = 0: x  3(0)  9 x0 9 x9 x-intercept: (9, 0) x = 0: 0  3y  9 3y  9 y3 y-intercept: (0, 3) y 10 8 6 4 2 –10 –8 –6 –4 –2–2

(0, 3)

38. x  1

(9, 0) 2 4 6 8 10

x

3 4

 3  This is a vertical line with x-intercept  1 , 0 .  4 

–4 –6 –8 –10

y

34. 4 = x  3y y = 0: 4  x  3(0) 4  x0 4x x-intercept: (4, 0) x = 0: 4  0  3y 4  3y 4  y 3  4 y-intercept:  0,   3  

      

5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

1 40. y  2 2 This is a horizontal line with y-intercept 1   0, 2 2 .  

Copyright © 2025 Pearson Education, Inc.

525


 

ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

3 42. y   x  3 5

3

3

x3

5

48.

x3

5

–5 –4 –3 –2 –1–1

(0, 3) (5, 0) 1 2 3 4 5

–2 –3 –4 –5

44. 9x  6y + 3 = 0 y = 0: 9x  6(0)  3  0 9x  0  3  0 9x  3 1 x 3  1  x-intercept:   , 0   3  x = 0: 9(0)  6 y  3  0 0 6y  3  0 6 y  3 1 y 2  1 y-intercept: 0, 2      526

1 1

1

12  3 9  9 10  9 1

 3  54. The graph of y = 2x + 3 has x-intercept   , 0   2  and y-intercept (0, 3). This is graph b.

5 3 2 1

1 0

52. The graph of y = 2x + 2 has x-intercept (1, 0) and y-intercept (0, 2). This is graph d.

y 4

45

50. 2  2  0  0 3  5 2

x5 x-intercept: (5, 0) 3 x = 0: y   (0)  3 5 y  03 y3 y-intercept: (0, 3)

     

0 

y = 0:

46.

56. The smallest number of x- and y-intercepts occurs when the line is vertical or horizontal. Then it has 1 x- or y-intercept.

x

58. The circle can have a maximum of 4 x- and y-intercepts because it could cross each axis twice; for example a circle centered at the origin. 60. answers may vary 62. 3x + 6y = 1200 y = 0: 3x  6(0)  1200 3x  1200 x  400 The ordered pair (400, 0) corresponds to manufacturing 400 chairs and 0 desks. 64. Manufacturing 50 chairs corresponds to x = 50. 3x + 6y = 1200 x = 50: 3(50)  6 y  1200 150  6 y  1200 6 y  1050 y  175 When 50 chairs are manufactured, 175 desks can be manufactured.

Copyright © 2025 Pearson Education, Inc.


 

c.

8.

ISM: Prealgebra and Introductory Algebra 66.

Chapter 13: Graphing Equations and Inequalities y y 5 1 4 2. m  2 1   x2  x1 3  (2) 5

y

5 4 3 2 1 –1–1 –2 –3 –4 –5

y (1, 0) 1 2 3 4 5 6 7 8 9

x (–2, 1)

x=5

b. The y-intercept of (0, 650) means that there were 650 stores in 2015 (0 years after 2015).

0  1.6x  47.4 1.6x  47.4 x  29.6 The x-intercept is (29.6, 0).

a.

y = 0:

b.

About 29.6 years after 2013, there should be no more desktop Internet use.

answers may vary Section 13.4 Practice Exercises y  y1  1 3 4 2 1. m  2    x2  x1 4  (2) 6 3

3. y 

2

x  2 is in slope-intercept form,

3 y = mx + b. The slope is m 

2

4.  y  2x  7  y 2x 7   1 1 1 y  2x  7 The slope is m = 2 and the y-intercept is (0, 7). 5. 5x  2 y  8 2 y  5x  8 2 y 5x 8   2 2 2 5 y   x4 2 The slope is m  

y

5 2

6 5 4 3 2 1

–2 –3 –4 –5 –6

x

1 2 3 4 5 6

, and the 3 y-intercept is (0, b), which is (0, 2).

70. y = 1.6x + 47.4

–6 –5 –4 –3 –2 –1–1

(3, 5)

–2 –3 –4 –5 –6

y = 7.6x + 650 x = 0: y  7.6(0)  650  650 The y-intercept is (0, 650).

(–2, 3)

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1–1

The equation of the line is x = 1. 68. a.

and the y-intercept is

(0, 4). 6. y = 3 is a horizontal line. Horizontal lines have a slope of m = 0. 1 2 3 4 5 6

(4, –1)

x

7. x = 2 is a vertical line. Vertical lines have undefined slopes. a.

x y 5 2x  y  5 y  x  5 y  2x  5 slope = 1 slope = 2 The slopes are not the same, so the lines are not parallel. The product, (1)(2) = 2, is not 1, so the lines are not perpendicular.

Copyright © 2025 Pearson Education, Inc.

527


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

b.

5 y  2x  3 2 3 y  x 5 5 slope 

5x  2 y  1 2 y  5x 1 5 1 y  x  2 2 5 slope  

2

–10

y = 2x + 1

–10

4x  2 y  8 2 y  4x  8

4x 8  2 2 y  2x  4 slope = 2 slope = 2 The slopes are the same, so the lines are parallel. rise 3 9. grade    0.15  15% run 20 The grade is 15%. y

12.15 11.61 0.54   0.09 2023  2017 6 Each year, the number of workers employed in the U.S. restaurant industry increases by 0.09 million, or 90,000, workers per year. Calculator Explorations 10. m 

10

The lines are parallel since they all have a slope 1 1 of 4 . The graph of y  4 x  5 is the graph of 1 y  x moved 5 units up with a y-intercept of 5. 4 1 1 The graph of y  x  8 is the graph of y  x 4 4 moved 8 units down with a y-intercept of 8.

5 2 The slopes are not the same, so the 2 5   lines are not parallel. The product,      1, is 5 2    1, so the lines are perpendicular. c.

10

3.

10

4. –10

10

–10

The lines are parallel since they all have a slope 3 3 of  . The graph of y   x  5 is the graph 4 4 3 of y   x moved 5 units down with a 4 3 y- intercept of 5. The graph of y   x  6 is 4 3 the graph of y   x moved 6 units up with a 4 y-intercept of 6.

10

1.

Vocabulary, Readiness & Video Check 13.4 –10

10

1. The measure of the steepness or tilt of a line is called slope. –10

The lines are parallel since they all have a slope of 3.8. The graph of y = 3.8x  3 is the graph of y = 3.8x moved 3 units down with a y-intercept of 3. The graph of y = 3.8x + 9 is the graph of y = 3.8x moved 9 units up with a y-intercept of 9. 10

5. If the graph of a line moves upward from left to right, the line has positive slope.

10

–10

The lines are parallel since they all have a slope of 4.9. The graph of y = 4.9x + 1 is the graph of y = 4.9x moved 1 unit up with a y-intercept of 1. The graph of y = 4.9x + 8 is the graph of y = 4.9x moved 8 units up with a y-intercept of 8. 528

3. The slope of a horizontal line is 0. 4. The slope of a vertical line is undefined.

2. –10

2. If an equation is written in the form y = mx + b, the value of the letter m is the value of the slope of the graph.

6. If the graph of a line moves downward from left to right, the line has negative slope. 7. Given two points of a line, slope 

Copyright © 2025 Pearson Education, Inc.

change in y change in x

.


ISM: Prealgebra and Introductory Algebra

8. The line slants downward, so its slope is negative. 9. The line slants upward, so its slope is positive. 10. The line is vertical, so its slope is undefined. 11. The line is horizontal, so its slope is 0. 12. Since m 

7

Chapter 13: Graphing Equations and Inequalities 10. (x1, y1)  (3,  2), (x2 , y2 )  (1, 3) y2  y1 3  (2) 3 2 5 m    x2  x1 1 (3) 1 3 2 12. (x1, y1)  (3, 3), (x2 , y2 )  (1,  4) y  y1 4  3 4  3 7 7 m 2     x2  x1 1 (3) 1 3 4 4

is positive, the line slants upward.

6

14. The line goes up. The slope is positive.

13. Since m = 3 is negative, the line slants downward. 14. Since m = 0, the line is horizontal. 15. Since m is undefined, the line is vertical. 16. Whatever y-value we decide to start with in the numerator, we must start with the corresponding x-value in the denominator. 17. Solve the equation for y; the slope is the coefficient of x. 18. Zero slope indicates m = 0 and a horizontal line; undefined slope indicates m is undefined and a vertical line; “no slope” refers to an undefined slope.

16. The line is horizontal. The slope is 0. 18. The slope is negative. The line is “downward.” 20. The slope is undefined. The line is vertical. 22. Line 1 has a positive slope and line 2 has a negative slope, so line 1 has the greater slope. 24. Line 1 has a positive slope and line 2 has a slope of 0, so line 1 has the greater slope. 26. y = 2x + 6 The slope is m = 2 and the y-intercept is (0, 6). 28. y = 7.6x  0.1 The slope is m = 7.6 and the y-intercept is (0, 0.1).

19. Slope-intercept form; this form makes the slope easy to see, and we need to compare slopes to determine if two lines are parallel or perpendicular.

30. 5x  y  10 y  5x  10 The slope is m = 5 and the y-intercept is (0, 10).

20. Step 4: INTERPRET the results.

32. The line is horizontal, so it has a slope of 0.

Exercise Set 13.4 y  y1 4 16 12 2. m  2    3 x2  x1 3  (1) 4 y  y1 6 1  5  5 4. m  2   x2  x1 2  3 1 

y  y1 33 0 6. m  2   0 x2  x1 2  (8) 6

34. 3x  5 y  1 5 y  3x 1 3 1 y x 35 1 5 y  x 5 5 3 The slope is m  . 5 36. y = 2 is a horizontal line, so its slope is 0.

y  y1 5  (3) 53 8 8. m  2    x2  x1 2  (2) 2  2 0 The slope is undefined.

Copyright © 2025 Pearson Education, Inc.

529


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

38.

x  4 y x y 4 1 y  x 4

50. y 

40. x = 5 is a vertical line, so its slope is undefined. 42. 4x  7 y  9 7 y  4x  9 4x 9 y  7 7 4 9 y   x  7 7 4 The slope is m   . 7

x2  x1

4  (2) 1 6

y 

1

1

5 1

x

  , so the lines are not parallel. 5 5 1  1, so the lines are not  1  1   5   5    25    perpendicular. The lines are neither parallel nor perpendicular. 52. y = 4x  2 4x  y  5 y  4x  5 4  4, so the lines are not parallel. (4)(4) = 16  1, so the lines are not perpendicular. The lines are neither parallel nor perpendicular.

44. 24x  3y  5.7 3y  24x  5.7 24x 5.7 y  3 3 y  8x  1.9 The slope is m = 8. y2  y1

x  20

5

1 The slope is m   . 4

46. m 

1

54. x  2 y  2 2 y  x1  2 y  x 1

42 5



2 2x  4 y  3 4 y  2x  3 1 3 y  x 2 4

6 5

1

and the y-intercepts are 2 different, so they are parallel.

Both lines have slope 6

a.

The slope of a parallel line is  . 5

b.

The slope of a perpendicular line is 1 5  6 . 6  5

48. m  y2  y1  10  (1)  10 1  9  9 4  6 4  6 10 10 x2  x1 9 a.

The slope of a parallel line is

.

56. 10 + 3x = 5y 3 3 2  x  y or y  x  2 5 5 5x  3y  1 3y  5x 1 5 1 y  x  3 3  3  5  so the lines are perpendicular.   1,  5  3    

10 

b.

The slope of a perpendicular line is

58. slope 

rise

run 1

10  9   . 9

5 10

1 2

The pitch of the roof is

1

.

2

10

60. slope 

rise

16

 0.16  16% run 100 The grade of the road is 16%.

530

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

62. slope 

rise

0.25

 0.02  2%

run 12 The grade is 2%. rise 1 foot   0.083  8.3% run 12 feet The grade is 8.3%.

64. grade 

y  y1 66. m  2 x2  x1 37  49  2021  2013 12 8 1.5  or  1.5 1 Every 1 year the average daily desktop Internet use per person worldwide decreases by 1.5 minutes. 

Chapter 13: Graphing Equations and Inequalities

82. answers may vary 84. For 2018, the average fuel economy was 24.4 miles per gallon and for 2019 it was 24.1 miles per gallon. This is a decrease of 24.4  24.1 = 0.3 mile per gallon. 86. The average fuel economy was the highest for 2020, the high point on the graph. The average fuel economy for automobiles produced during 2020 was 25.3 miles per gallon. 88. The points are (2020, 25.3) and0.3 (2021, 25.0). y2  y1 25.0  25.3   0.3 m  x2  x1 2021 2020 1 0.3 The slope is  or 0.3. 1 90. pitch 

run 1 x  3 18 3x  18 x6

68. m  y2  y1  121.2 115.6  5.6  0.8 x2  x1 2021 2014 7 Every year, the number of U.S. households with televisions increases by 0.8 million. 70. y  7  9(x  6) y  7  9x  54 y  9x  61

92. a.

b.

72. y  (3)  4(x  (5)) y  3  4(x  5) y  3  4x  20 y  4x  17

c.

74. The line is horizontal, so its slope is 0; A. 76. (x1, y1)  (1, 3),(x2 , y2 )  (0, 0) y  y1 0  3 3 m 2   3 x2  x1 0 1 1 The slope is m = 3; C. 78. (x1, y1)  (2, 1), (x2 , y2 )  (2,  2) y  y1  2 1 3 m 2   x2  x1 2  (2) 4 3 The slope is m   ; F. 4 80. no; answers may vary

rise

The ordered pairs are (2020, 270) and (2022, 419). y  y1 419  270 149 m 2    74.5 x2  x1 2022  2020 2 The slope is 74.5 For the years 2020 through 2022, attendance at the National Air and Space Museum increased at a rate of 74.5 thousand per year.

94. Slope through (3, 0) and (1, 1): 1 0 1 m  1 (3) 4 Slope through (3,4 0) and (4, 4): 40   4 m  4  (3) 1 1 Their product is (4)  1, so the sides are 4 perpendicular. y2  y1 9.3  6.7 2.6 96. m  x  x  8.3  2.1  10.4  0.25 2

1

98. m  y2  y1  5.1 0.2  4.9  0.875 x2  x1 7.9  2.3 5.6

Copyright © 2025 Pearson Education, Inc.

531


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

10

100.

4.

–10

10 –10

As the absolute value of the slope becomes larger, the line becomes steeper. Section 13.5 Practice Exercises 1. From y 

2

x  4, the y-intercept is (0, 4). The

2  3 5  5 1 4 y  y1  m(x  x1) 5 y 3  (x 1) 4 5  4( y  3)  4 (x 1)   4 

5. m 

3

2 slope is , so another point on the graph is 3 (0 + 3, 4 + 2) or (3, 2). y

4( y  3)  5(x 1) 4 y 12  5x  5 5x  4 y  17

12 10 8 6 4 2 –12 –10 –8 –6 –4 –2–2 –4

–6 –8 –10 –12

y  y1  m(x  x1) y  (4)  3(x  2) y  4  3(x  2) y  4  3x  6 y  3x  2 3x  y  2 The slope-intercept form is y = 3x + 2 and the standard form is 3x + y = 2.

2 4 6 8 10 12

x

(0, –4)

6. The equation of a vertical line can be written in the form x = c, so an equation of the vertical line through (3, 2) is x = 3. 7. Since the graph of y = 2 is a horizontal line, any line parallel to it is also horizontal. The equation of a horizontal line can be written in the form y = c, so an equation of the horizontal line through (4, 3) is y = 3.

2. 3x  y  2 y  3x  2 3 and the y-intercept is 1 (0, 2). Another point on the graph is (0 + 1, 2  3) or (1, 1). The slope is 3 

8. a.

y  y1  m(x  x1) y  200  50(x 10) y  200  50x  500 y  50x  700

y 6 5 4 3

2 1 –6 –5 –4 –3 –2 –1–1 –2 –3 –4 –5 –6

3. y  mx  b 3 y  x  (2) 5 3 y  x2 5 532

b. Let x = 7.50. y = 50x + 700 y = 50(7.50) + 700 y = 375 + 700 y = 325 The predicted weekly sales is 325.

(0, 2)

1 2 3 4 5 6

(10, 200), (9, 250) y  y1 250  200 50 m 2    50 x2  x1 9 10 1

x

Calculator Explorations 10

1. –10

10

–10

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

10

2. –10

11. Write the equation with x- and y-terms on one side of the equal sign and a constant on the other side.

10

12. Yes, if one of the points given is the y-intercept. We will still need to use the slope formula to find the slope, but then we’ll have the slope and y-intercept for the slope-intercept form.

–10 10

3. –10

13. Video Notebook Number 6: y = 3; Video Notebook Number 7: x = 2

10

–10

14. We need to know what our variables stand for in order to solve part b., and that depends on how we set up our ordered pairs in part a.

10

4. –10

Chapter 13: Graphing Equations and Inequalities

10

Exercise Set 13.5

–10

Vocabulary, Readiness & Video Check 13.5 1. The form y = mx + b is called slope-intercept form. When a linear equation in two variables is written in this form, m is the slope of its graph and (0, b) is its y-intercept. 2. The form y  y1  m(x  x1) is called pointslope form. When a linear equation in two variables is written in this form, m is the slope of its graph and (x1, y1) is a point on the graph.

2. From y = 4x  1, the y-intercept is (0, 1). The 4 , so another point on the graph slope is 4 or 1 is (0 + 1, 1  4) or (1, 5). y 5 4 3 2 1 –5 –4 –3 –2 –1–1 –2 –3 –4 –5

3. y  7 = 4(x + 3); point-slope form 4. 5x  9y = 11; standard form 5. y 

4. From y 

3

1 x  ; slope-intercept form 4 3

6. y  2 

1

slope is

1 4

1 2 3 4 5

(0, –1)

x

x  3, the y-intercept is (0, 3). The

1

, so another point on the graph is 4 (0 + 4, 3 + 1) or (4, 2).

(x  2); point-slope form

y

3

10 8 6 4 2

1 7. y  ; horizontal line 2

–10 –8 –6 –4 –2–2

8. x = 17; vertical line 9. Start by graphing the y-intercept. From this point, find another point by applying the slopeif necessary, rewrite the slope as a fraction. 1  10.  0,   6  

Copyright © 2025 Pearson Education, Inc.

2 4 6 8 10

x

–4 (0, –3) –6 –8 –10

533


 

ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities 6. From y = 6x, the y-intercept is (0, 0). The slope 6 , so another point on the graph is is 6 or 1 (0 + 1, 0 + (6)) or (1, 6).

x

y 5 4 3 2 1 –5 –4 –3 –2 –1–1

3

y 2 2 x y 3 2 y  x0 3

12.

and the y-intercept is (0, 0). 3 Another point on the graph is (0 + 3, 0 + 2) or (3, 2).

(0, 0) 1 2 3 4 5

x

y

–2 –3 –4 –5

5 4 3 2 (0, 0)1

8. 3x  y  2 y  3x  2 The slope is 3 

–5 –4 –3 –2 –1–1

3

14. y = mx + b y = 3x + (3) y = 3x  3

y 5 4 3 1 –5 –4 –3 –2 –1–1

16. y  mx  b 3 y  2x  4

(0, 2) 1 2 3 4 5

x

–2 –3 –4 –5

10. 3x  4 y  4 4 y  3x  4 3 y  x 1 4 3 The slope is and the y-intercept is (0, 1). 4 Another point on the graph is (0 + 4, 1 + 3) or (4, 2). y

  

–2 –3 –4 –5

534

18. y  mx  b 4 y  x0 5 4 y x 5 20. y = mx + b y = 0x + (2) y = 2 22. y  mx 1  b 1  y  x    3  2   1 1 y  x 2 3 

5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

–2 –3 –4 –5

and the y-intercept is (0, 2). 1 Another point on the graph is (0 + 1, 2 + 3) or (1, 5).

2

2

The slope is

1 2 3 4 5

(0, –1)

x

24.

y  y1  m(x  x1) y  3  4(x 1) y  3  4x  4 y  4x 1 4x  y  1

Copyright © 2025 Pearson Education, Inc.

x


ISM: Prealgebra and Introductory Algebra

26.

28.

y  y1  m(x  x1) y  (12)  2[x  (11)] y 12  2(x 11) y 12  2x  22 y  2x  34 2x  y  34 y  y  m(x  x ) 1

1

2

y  9  [x  (8)] 3 2 y  9  (x  8) 3 2 3( y  9)  3 (x  8) 3 3y  27  2x 16 3y  2x  43 2x  3y  43 or 2x  3y  43 30.

y  y  m(x  x ) 1

1

1 y  0   (x  4) 5 1 y   (x  4) 5 5  y  1(x  4) 5 y  x  4 x  5y  4 32. m  y2  y1  8  2  6  3 x2  x1 8  6 2 y  y1  m(x  x1) y  2  3(x  6) y  2  3x 18 y 16  3x 16  3x  y 3x  y  16 y  y1  1 0 1   34. m  2 x2  x1 6  (4) 10 y  y1  m(x  x1) 1 y  0   [x  (4)] 10 1 y   (x  4) 10 10 y  x  4 4  x 10 y x 10 y  4

Chapter 13: Graphing Equations and Inequalities 36. m  y2  y1  110  11  11 x2  x1 1 7 8 8 y  y1  m(x  x1) 11 y 10  (x  7) 8 8( y 10)  11(x  7) 8 y  80  11x  77 8 y  3  11x 3  11x  8 y 11x  8 y  3 y y

1 0

1

2

2

1  2 2 3 1       38. m  2 1  31  3  1  3 x2  x1   0  

y  y1  m(x  x1) 2 y  0   (x  0) 23 y  x 3 3y  2x 2x  3y  0 40. The horizontal line through (1, 4) has equation y = 4. 42. The vertical line through (1, 3) has equation x = 1. 2

 44. The horizontal line through  , 0 has equation  7  y = 0. 46. The line y = 5 is horizontal, so a line perpendicular to y = 5 is a vertical line. The vertical line through (1, 2) has equation x = 1. 48. The line y = 4 is horizontal, so a line parallel to y = 4 is also a horizontal line. The horizontal line through (0, 3) has equation y = 3. 50. The line x = 7 is vertical, so a line perpendicular to x = 7 is a horizontal line. The horizontal line through (5, 0) has equation y = 0. 52. y  mx  b 5 y  x 3 7

Copyright © 2025 Pearson Education, Inc.

535


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities 54. m  y2  y1  5  (6)  11  1 x2  x1 6  5 11 y  y1  m(x  x1) y  (6)  1(x  5) y  6  x  5 y  x 1 56. A line with a slope of 0 is a horizontal line. this one has a y-intercept of (0, 12.1). The equation is y = 12.1. 58.

70. a. b.

66. A line perpendicular to the x-axis is a vertical line. x=0 68. y  y1  m(x  x1) 3 y  4   (x  4) 5 3 12 y4   x 5 5 3 12 20 y  x   5 5 5 3 32 y  x  5 5

1

y  y1  m(x  x1) y  4.3  1.5(x  0) y  4.3  1.5x y  1.5x  4.3 c.

72. a.

62. A line parallel to the y-axis is a vertical line. x=1 y2  y1 7  0 7 64. m    x2  x1 4  0 4 y  y1  m(x  x1) 7 y  0  (x  0) 4 7 y x 4

y2  y1 7.3  4.3 3 m  x  x  2  0  2  1.5 2

y  y1  m(x  x1) y  (8)  5(x  6) y  8  5x  30 y  5x  38

60. y = mx + b y = 2x + (4) y = 2x  4

The ordered pairs are (0, 4.3) and (2, 7.3).

2028 corresponds to x = 9. x = 9: y  1.5(9)  4.3  13.5  4.3  17.8 If the trend were to continue, there would be 17.8 million digital magazine subscriptions in 2028. The ordered pairs are (1, 30,000) and (4, 66,000). p  p1 66, 000  30, 000 m 2  t2  t1 4 1 36, 000  3  12, 000 p  p1  m(t  t1) p  30, 000  12, 000(t 1) p  30, 000  12, 000t 12, 000 p  12, 000t  18, 000

b. t = 7 p  12, 000(7) 18, 000  84, 000 18, 000  102, 000 The profit is predicted to be $102,000 after 7 years. 74. a.

The ordered pairs are (0, 2.29) and (8, 3.77). y  y1 3.77  2.29 1.48 m 2    0.185 x2  x1 80 8 y  y1  m(x  x1) y  2.29  0.185(x  0) y  2.29  0.185x y  0.185x  2.29

b. The year 2030 is 12 years after 2018. x = 12: y  0.185(12)  2.29  2.22  2.29  4.51 The global value of the hot sauce market is predicted to be $4.51 billion in 2030.

536

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

76. a.

The ordered pairs are (0, 10,884) and (7, 12,697). y  y1 12, 697 10,884 m 2  70 x2  x1 1813  7  259 y  y1  m(x  x1) y 10,884  259(x  0) y 10,884  259x y  259x  10,884

86. The graph of y 

The ordered pairs are (7, 225,000) and (12, 195,000). y  y1 195, 000  225, 000 m 2  x2  x1 12  7 30, 000  5  6000 y  y1  m(x  x1) y  225, 000  6000(x  7) y  225, 000  6000x  42, 000 y  6000x  267, 000 or V = 6000x + 267,000

b. x = 2018  2000 = 18 V = 6000(18) + 267,000 V = 108,000 + 267,000 V = 159,000 The depreciated value in 2018 was $159,000.

5

x  2 has slope m 

3 y-intercept (0, 2). This is graph A.

5 3

and

88. The slope of the line y = 3x  1 is m = 3. y  y1  m(x  x1) y  0  3(x  3) y  3x  9 3x  y  9 90. a.

b. The year 2026 is 12 years after 2014. x = 12: y  259(12) 10,884  3108 10,884  13, 992 The number of Dunkin’ stores worldwide is predicted to be 13,992 in 2026. 78. a.

Chapter 13: Graphing Equations and Inequalities

b.

A line parallel to the line y = 2x + 3 will have slope 2. y  y1  m(x  x1) y  0  2(x  4) y  2x  8 2x  y  8 A line perpendicular to the line y = 2x + 3 1 will have slope . 2 y  y1  m(x  x1) 1 y  0  (x  4) 2 1 y  x2 2 2y  x  4 4  x  2y x  2y  4

Mid-Chapter Review 1. Select two points on the line, such as (0, 0) and (1, 2). y  y1 2  0 2 m 2   2 x2  x1 1 0 1 2. Horizontal lines have slopes of m = 0. 3. Select two points on the line, such as (0, 1) and (3, 3). y  y1 3 1 2 2 m 2    x2  x1 3  0 3 3

80. x = 5: x2  3x 1  52  3(5) 1  25 15 1  10 1  11

4. Vertical lines have undefined slopes. 82. x = 3: x2  3x 1  (3)2  3(3) 1  9  9 1  19 84. The graph of y = x + 1 has slope m = 1 and y-intercept (0, 1). This is graph C. Copyright © 2025 Pearson Education, Inc.

537


Chapter 13: Graphing Equations and Inequalities 5. y = 2x y = 0: 0  2x 0x The x-intercept is (0, 0). x = 0: y = 2(0) = 0 The y-intercept is (0, 0). Find another point, for example let x = 1. y = 2(1) = 2 Another point on the line is (1, 2).

ISM: Prealgebra and Introductory Algebra

8. The graph of y = 4 is a horizontal line with a y-intercept of (0, 4). y 5 4 3 2 1 –5 –4 –3 –2 –1–1

y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

6. x + y = 3 y = 0: x  0  3 x3 The x-intercept is (3, 0). x = 0: 0  y  3 y 3 The y-intercept is (0, 3).

The y-intercept is (0, 3). y 10 8 6 4 2

y 5 4 3 2 1

–10 –8 –6 –4 –2–2

1 2 3 4 5

x

x

7. The graph of x = 1 is a vertical line with an x-intercept of (1, 0). y 5 4 3 2 1 1 2 3 4 5

x

10. y = 3x + 2 y = 0: 0  3x  2 2  3x 2  x 3  2  The x-intercept is   , 0 .  3  x = 0: y  3(0)  2 y  02 y2 The y-intercept is (0, 2).

–2 –3 –4 –5

538

2 4 6 8 10

–4 –6 –8 –10

–2 –3 –4 –5

–5 –4 –3 –2 –1–1

x

9. x  2y = 6 y = 0: x  2(0)  6 x0  6 x6 The x-intercept is (6, 0). x = 0: 0  2 y  6 2 y  6 y  3

–2 –3 –4 –5

–5 –4 –3 –2 –1–1

1 2 3 4 5

–2 –3 –4 –5

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

3 11. y   x  3 4 y = 0: 0  

3 4 3

13. y = mx + b y = 3x  1 The slope is m = 3. x3

14. y = mx + b y = 6x + 2 The slope is m = 6.

3   x 4 4x The x-intercept is (4, 0). 3 x = 0: y   (0)  3 4 y  03 y3 The y-intercept is (0, 3).

15. y = mx + b 7x  2 y  11 2 y  7x 11 7 11 y  x  2 2 7 The slope is m   . 2

y 5 4

3 2 1 –5 –4 –3 –2 –1–1

16.

(0, 3) (4, 0) 1 2 3 4 5

–2 –3 –4 –5

12. 5x  2y = 8 y = 0: 5x  2(0)  8 5x  0  8 5x  8 8 x 5 8  The x-intercept is  , 0  .  5  x = 0: 5(0)  2 y  8 0  2y  8 2 y  8 y  4 The y-intercept is (0, 4).

x

y = mx + b 2x  y  0  y  2x y  2x y  2x  0 The slope is m = 2. 17. The graph of x = 2 is a vertical line. Vertical lines have undefined slopes. 18. The graph of y = 4 is a horizontal line. Horizontal lines have slopes of m = 0. 19. y  mx  b 1   y  2x     3    1 y  2x  3 20. y  y1  m(x  x1) y  3  4[x  (1)] y  3  4(x 1) y  3  4x  4 y  4x 1

Copyright © 2025 Pearson Education, Inc.

539


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities y  y1 3  0 3   1 21. m  2 x2  x1 1 2 3 y  y1  m(x  x1) y  0  1(x  2) y  x2 x  y  2 or x  y  2 22. 6x  y  7  y  6x  7 y  6x  7 m=6

2x  3y  4 3y  2x  4 2 4 y  x  3 3 2 m 3

The x-value 1 is paired with two y-values, 4 and 3, so this set of ordered pairs is not a function.

3. a.

This is the graph of the relation {(3, 2), (1, 1), (0, 0), (1, 1)}. Each x-coordinate has exactly one y-value, so this is the graph of a function.

b. This is the graph of the relation {(1, 1), (1, 2), (1, 0), (3, 1)}. The x-value 1 is paired with two y-values, 1 and 2, so this is not the graph of a function.

2 Since 6   , the lines are not parallel. Since 3  2 6    4  1, the lines are not  3  perpendicular. The lines are neither parallel nor perpendicular.

4. a.

No vertical line will intersect the graph more than once, so the graph is the graph of a function.

b.

No vertical line will intersect the graph more than once, so the graph is the graph of a function.

23. 3x  6 y  4 y  2x 6 y  3x  4 m  2 1 2 y  x 2 3 1 m 2 1 Since (2)  1, the lines are perpendicular.  2   

c.

Vertical lines can be drawn that intersect the graph in two points, so the graph is not the graph of a function.

d.

A vertical line can be drawn that intersects this line at every point, so the graph is not the graph of a function.

24. a.

b. c.

The ordered pairs are (2019, 4732) and (2021, 5041).

For the years 2019 through 2021, the amount of yogurt produced increased at a rate of 154.5 million pounds per year.

1. The domain is the set of x-coordinates: {3, 4, 7}. The range is the set of y-coordinates: {0, 1, 5, 6}. a.

540

5. a, b, and c are functions because their graphs are nonvertical lines. d is not a function because its graph is a vertical line. 6. a.

y  y1 5041 4732 309 m 2    154.5 x2  x1 2021 2019 2

Section 13.6 Practice Exercises

2.

b.

Each x-value is only assigned to one y-value, so the relation is a function.

b.

7.

According to the graph, the time of sunrise on March 1st is 6:30 a.m. According to the graph, the sun rises at 6 a.m. in the middle of March and the middle of October.

f (x)  x2  1 a.

f (1)  12 1  11  2 Ordered pair: (1, 2)

b.

f (3)  (3)2 1  9 1  10 (3, 10)

c.

f (0)  02 1  0 1  1 (0, 1)

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

8. a.

In this function, x can be any real number. The domain of h(x) is the set of all real numbers.

b. Since we cannot divide by 0, the domain of f(x) is the set of all real numbers except 0. 9. a.

b.

The x-values go from 4 to 6, so the domain is 4  x  6. The y-values go from 2 to 3, so the range is 2  y  3. There are no restrictions on the x-values, so the domain is all real numbers. The y-values are all less than or equal to 3, so the range is y  3.

Vocabulary, Readiness & Video Check 13.6 1. A set of ordered pairs is called a relation. 2. A set of ordered pairs that assigns to each x-value exactly one y-value is called a function. 3. The set of all y-coordinates of a relation is called the range. 4. The set of all x-coordinates of a relation is called the domain. 5. All linear equations are functions except those whose graphs are vertical lines. 6. All linear equations are functions except those whose equations are of the form x = c.

Chapter 13: Graphing Equations and Inequalities

13. f(2) = 6 corresponds to (2, 6) and f(3) = 11 corresponds to (3, 11). Exercise Set 13.6 2. The domain is the set of x-coordinates: {2, 1, 3} The range is the set of y-coordinates: {6, 2, 4} 4. The domain is the set of x-coordinates: {5} The range is the set of y-coordinates: {3, 0, 3 , 4} 6. Each x-value is only assigned to one y-value, so the relation is a function. 8. The x-value 1 is paired with two y-values, 2 and 4, so the relation is not a function. 10. No vertical line will intersect the graph more than once, so the graph is the graph of a function. 12. The vertical line x = 2 will intersect the graph in two points, so the graph is not the graph of a function. 14. No vertical line will intersect the graph more than once, so the graph is the graph of a function. 16. Vertical lines can be drawn that intersect the graph in two points, so the graph is not the graph of a function. 18. If x = 5, the relation is not also a function; d.

7. If f(3) = 7, the corresponding ordered pair is (3, 7). 8. The domain of f(x) = x + 5 is all real numbers. 9. For the function y = mx + b, the dependent variable is y and the independent variable is x. 10. A relation is a set of ordered pairs and an equation in two variables defines a set of ordered pairs. Therefore, an equation in two variables can also define a relation. 11. Yes, this is a function. The definition restricts x-values to be assigned to exactly one y-value, but it makes no such restriction on the y-values. 12. A vertical line represents one x-value paired with many y-values. A function only allows an x-value paired with exactly one y-value, so if a vertical line intersects a graph more than once, there’s an x-value paired with more than one y-value and we don’t have a function.

20. 2x  3y = 9 The graph of this linear equation is not a vertical line, so the equation describes a function. 22. x = 3 The graph of this linear equation is a vertical line, so the equation does not describe a function. 24. y = 9 The graph of this linear equation is not a vertical line, so the equation describes a function. 2 26. y  x  3 Each x-value will generate exactly one y-value, so the equation describes a function.

28. On November 1, the graph shows sunset to be at approximately 3:45 p.m. 30. At 9 p.m., the graph shows this happens in midMay and in mid-July.

Copyright © 2025 Pearson Education, Inc.

541


Chapter 13: Graphing Equations and Inequalities

ISM: Prealgebra and Introductory Algebra

32. Yes; every location has exactly 1 sunset time per day.

60. f(x) = 3x f(2) = 3(2) = 6 f(0) = 3(0) = 0 f(3) = 3(3) = 9 The ordered pairs are (2, 6), (0, 0), and (3, 9).

34. For 2006, the graph shows the minimum wage was $5.15 per hour. 36. According to the graph, the minimum wage that was in effect for the greatest number of years was $7.25 per hour. 38. answers may vary 40. According to the graph, the postage would be $2.94. 42. From the graph, the heaviest large envelope that can be mailed for $4.00 weighs 12 ounces. 44. yes; answers may vary 46. h(x) = 3x h(1) = 3(1) = 3 h(0) = 3(0) = 0 h(4) = 3(4) = 12

62. f(x) = |2  x| f(2) = |2  (2)| = |2 + 2| = |4| = 4 f(0) = |2  0| = |2| = 2 f(3) = |2  3| = |1| = 1 The ordered pairs are (2, 4), (0, 2), and (3, 1). 64. The domain of f(x) is all real numbers. 66. x  6 cannot be 0. x6  0 x6 The domain of f(x) is all real numbers except 6. 68. The domain is all real numbers. The range is y  5. 70. The domain is all real numbers. The range is all real numbers.

48. h(x)  3x2

72. The domain is {3}. The range is all real numbers.

h(1)  3(1)2  3(1)  3 h(0)  3(0)2  3(0)  0

74. When x = 3, y = 2, so the ordered pair solution is (3, 2).

h(4)  3(4)2  3(16)  48 50. The ordered pair solution corresponding to f(7) = 2 is (7, 2).

76. When x = 3, y = 2, so f(3) = 2.

52. The ordered 7 pair 7  corresponding to  solution g(0)   is 0,  . 8 8  

78. When y = 1, x = 0 and x = 4. 80. 3x 1  11  3x  12 x4 

54. The ordered pair solution corresponding to h(10) = 1 is (10, 1). 56. f(x) = 3  7x f(2) = 3  7(2) = 3 + 14 = 17 f(0) = 3  7(0) = 3  0 = 3 f(3) = 3  7(3) = 3  21 = 18 The ordered pairs are (2, 17), (0, 3), and (3, 18). 58.

f (x)  x2  4

  

82. 2x  3  3 2x  0 x0  3 

 5 

6

10

16

  84. 2   2  x2 x  2  x  2  x  2 x  2 16 The perimeter is inches. x2

f (2)  (2)2  4  4  4  0

86. (9, 20) written in function notation is g(9) = 20.

f (0)  02  4  0  4  4

88. (3, 4) written in function notation is f(3) = 4.

f (3)  3  4  9  4  5 The ordered pairs are (2, 0), (0, 4), and (3, 5).

90. The other x-intercept of the graph is (3, 0). In function notation, this is f(3) = 0.

2

542

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

92. answers may vary 94. y = 3 written in function notation is f(x) = 3. 96.

f (x) 

136

x

25 a.

f (35) 

136

(35) 

4760

952

 190.4 25 25 5 The proper dosage for a 35-pound dog is 190.4 milligrams.

b.

f (70) 

136

(70) 

9520

1904

Chapter 13: Graphing Equations and Inequalities 3. Graph the boundary line, x  4y = 4, with a solid line. Test (0, 0): x  4 y  4 0  4(0)  4 00  4 0  4 True Shade the half-plane containing (0, 0).

 380.8 25 25 5 The proper dosage for a 70-pound dog is 380.8 milligrams.

Section 13.7 Practice Exercises 1. x  4y > 8 a.

(3, 2): 3  4(2)  8 3  8  8 11  8 False (3, 2) is not a solution of the inequality.

b.

4. Graph the boundary line, y = 3x, with a dashed line. Test (1, 1): y  3x 1  3(1) 1  3 True Shade the half-plane containing (1, 1).

(9, 0): 9  4(0)  8 90 8 9  8 True (9, 0) is a solution of the inequality.

2. Graph the boundary line, x  y = 3, with a dashed line. Test (0, 0): x  y  3 00  3 0  3 False Shade the half-plane not containing (0, 0). 5. Graph the boundary line, 3x + 2y = 12, with a solid line. Test (0, 0): 3x  2 y  12 3(0)  2(0)  12 0  0  12 0  12 False Shade the half-plane not containing (0, 0).

Copyright © 2025 Pearson Education, Inc.

543


Chapter 13: Graphing Equations and Inequalities

ISM: Prealgebra and Introductory Algebra

Vocabulary, Readiness & Video Check 13.7 1. The statement 5x  6y < 7 is an example of a linear inequality in two variables. 2. A boundary line divides a plane into two regions called half-planes. 3. The graph of 5x  6y < 7 includes its corresponding boundary line. false

6. Graph the boundary line, x = 2, with a dashed line. Test (0, 0): x  2 0  2 True Shade the half-plane containing (0, 0).

4. When graphing a linear inequality, to determine which side of the boundary line to shade, choose a point not on the boundary line. true 5. The boundary line for the inequality 5x  6y < 7 is the graph of 5x  6y = 7. true 6. The graph shown is y < 2. 7. An ordered pair is a solution of an inequality if replacing the variables with the coordinates of the ordered pair results in a true statement. 8. We find the boundary line equation by replacing the inequality symbol with =. The points on this line are solutions (line is solid) if the inequality is  or ; they are not solutions (line is dashed) if the inequality is > or <. Exercise Set 13.7

7. Graph the boundary line, y 

1 4

x  3, with a

solid line. Test (0, 0): y  0

1 4 1

x3

(0)  3 4 0  03 0  3 False Shade the half-plane not containing (0, 0).

2. y  x < 2 (2, 1): 1 2  2 1  2 False (2, 1) is not a solution of the inequality. (5, 1): 1 5  2 6  2 True (5, 1) is a solution of the inequality. 4. 2x + y  10 (0, 11): 2(0) 11  10 0 11  10 11  10 True (0, 11) is a solution of the inequality. (5, 0): 2(5)  0  10 10  0  10 10  10 True (5, 0) is a solution of the inequality. 6. y > 3x (0, 0): 0  3(0) 0  0 False (0, 0) is not a solution to the inequality.

544

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

(1, 4): 4  3(1) 4  3 True (1, 4) is a solution to the inequality.

14. Graph the boundary line, x = 2y, with a dashed line. Test (1, 1): x  2 y 1  2(1) 1  2 True Shade the half-plane containing (1, 1).

8. Graph the boundary line, x + y = 2, with a solid line. Test (0, 0): x  y  2 0  0  2 0  2 True Shade the half-plane containing (0, 0).

10. Graph the boundary line, x  3y = 3, with a dashed line. Test (0, 0): x  3y  3 0  3(0)  3 0  3 True Shade the half-plane containing (0, 0).

12. Graph the boundary line, y = 3x, with a solid line. Test (1, 1): y  3x 1  3(1) 1  3 True Shade the half-plane containing (1, 1).

16. Graph the boundary line, y = x + 1, with a solid line. Test (0, 0): y  x  1 0  0 1 0  1 True Shade the half-plane containing (0, 0).

18. Graph the boundary line, y = 2, with as dashed line. Test (0, 0): y  2 0  2 False Shade the half-plane not containing (0, 0).

Copyright © 2025 Pearson Education, Inc.

545


Chapter 13: Graphing Equations and Inequalities 20. Graph the boundary line, x = 1, with a solid line. Test (0, 0): x  1 0  1 False Shade the half-plane not containing (0, 0).

22. Graph the boundary line, 4x + 3y = 12, with a solid line. Test (0, 0): 4x  3y  12 4(0)  3(0)  12 0  0  12 0  12 False Shade the half-plane not containing (0, 0).

24. Graph the boundary line, x = y, with a solid line. Test (1, 1): x   y 1  1 False Shade the half-plane not containing (1, 1).

546

ISM: Prealgebra and Introductory Algebra 26. Graph the boundary line, x  y = 10, with a dashed line. Test (0, 0): x  y  10 0  0  10 0  10 False Shade the half-plane not containing (0, 0).

28. Graph the boundary line, y = 0, with a solid line. Test (1, 1): y  0 1  0 False Shade the half-plane not containing (1, 1).

30. Graph the boundary line, 3x + 5y = 2, with a solid line. Test (0, 0): 3x  5 y  2 3(0)  5(0)  2 0  0  2 0  2 False Shade the half-plane not containing (0, 0).

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

32. Graph the boundary line, y  Test (0, 0): y  0

2

2 5

Chapter 13: Graphing Equations and Inequalities

x  3, with a dashed line.

x3

5 2

(0)  3 5 0  03 0  3 False Shade the half-plane not containing (0, 0).

1 34. Graph the boundary line, y  x  4, with a dashed line. 3 1 Test (0, 0): y  x  4 3 1 0   (0)  4 3 0  04 0  4 False Shade the half-plane not containing (0, 0).

36. The point of intersection appears to be (3, 0). 38. The point of intersection appears to be (3, 3). 40. The graph is the half-plane with the solid boundary line y = 2x. The choice is C. 42. The graph is the half-plane with the solid boundary line y = 3x. The choice is D. 44. The inequality is x + y  13.

Copyright © 2025 Pearson Education, Inc.

547


Chapter 13: Graphing Equations and Inequalities

ISM: Prealgebra and Introductory Algebra

46. Test (1, 1): y  5x 1  5(1) 1  5 False (1, 1) is not included in the graph of y > 5x. 48. Test (1, 1): x  3 1  3 False (1, 1) is not included in the graph of x > 3. 50. a.

The sum of x and y must be at most $5000. x + y  5000

b.

c.

answers may vary

Section 13.8 Practice Exercises 1. Use (4, 8). y  kx 8  k 4 8 k 4  4 4 2k Since k = 2, the equation is y = 2x. 2. Let y = 15 and x = 45. y  kx 15  k(45) 15 k (45)  45 45 1 k 3 1 The equation is y  x. 3

548

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Let x = 3. 1 y x 3 1 y  3 3 y 1 Thus, when x is 3, y is 1.

Let r = 4. A  r2 A   42 A  16 The area is 16 square feet. 7.

3. Use (1, 2) and (0, 0). 0  (2) 2 slope   2 0  (1) 1 Thus, k = 2 and the variation equation is y = 2x. 4. Use (4, 5). k y x k 5 4 k 45  4 4 20  k

d  kt2 144  k (3)2 144  9k 16  k The equation is d  16t 2. Let t = 5. d  16t 2 d  16  52 d  16  25 d  400 The object will fall 400 feet in 5 seconds.

Vocabulary, Readiness & Video Check 13.8

Since k = 20, the equation is y 

20

.

x

5. Let y = 4 and x = 0.8. k y x k 4 0.8 k  0.8(4)  0.8

1. y 

k

, where k is a constant. inverse

x 2. y = kx, where k is a constant. direct 3. y = 5x direct 5 4. y  x inverse

  0.8  

3.2  k

7 5. y  2 inverse x

The equation is y  3.2 . x Let x = 20. 3.2 y 20 y  0.16 Thus, when x is 20, y is 0.16. 6.

Chapter 13: Graphing Equations and Inequalities

6. y  6.5x4 direct 7. y 

11

8. y = 18x direct

A  kr

2

49 k (7) 49 49k  k

inverse

x

9. y  12x

2

The formula for the area of a circle is A  r 2 .

2

direct

20 10. y  3 inverse x 11. linear; slope

Copyright © 2025 Pearson Education, Inc.

549


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

12. With inverse variation, we know that y 

k

or

x yx = k, so we just need to multiply the values of x and y together to find k.

13. No; the direct relationship is the power of x times a constant, and the inverse relationship is the reciprocal of the power of x times a constant. 14. This is a direct variation problem, y = kx (with k positive), so as either amount (y or x) increases, the other amount also increases. We’re asked to find the new distance given a weight increase, so we know that our answer will also show a distance increase.

12.

y 0.1 

k x k

4 0.4  k 0.4 y x 14. a varies directly as b is written as a = kb. k 16. s varies inversely as t is written as s  . t 18. p varies inversely as x2 is written as p 

Exercise Set 13.8 2.

y  kx 14  k(2) 7k y = 7x

22. y varies directly as d 2 is written as y  kd 2 . 24. y = kx y = 27 when x = 3: 27  k (3) 9k y = 9x x = 2: y = 9  2 = 18 y = 18 when x = 2. 26. y 

y  y1 1 0 1 6. m  2   40 4 x2  x1 1 y x 4 y2  y1 5  0 5 8. m  x  x  2  0  2 y

5

x

1

k x

y = 200 when x = 5: 200 

k

5 1000  k y

1000 x

x = 4: y 

1000

 250

4 y = 250 when x = 4.

2 10.

y 11 

k x k

2 22  k 22 y x

550

x2

20. x varies directly as y4 is written as x  ky4 .

4. y  kx 3  k (9) 1 k 3 1 y x 3

2

k

28. s  kt 3 s = 270 when t = 3: 270  k (3)3 270  27k 10  k s  10t3

t = 1: s  10(1)3  10(1)  10 s = 10 when t = 1.

Copyright © 2025 Pearson Education, Inc.

.


ISM: Prealgebra and Introductory Algebra

30.

k p q2 5 5 k p  when q = 8:  16 16 82 5 k  16 64 20  k 20 p 2 q 1 20 q : p  20  4  80 2 2 1

Chapter 13: Graphing Equations and Inequalities

w = 20: d 

1

(20)  6

3 The spring stretches 6

2 3 2

3 is attached to the spring.

2

1 p = 80 when q  . 2 32. Let p be the paycheck amount when h hours are worked. p = kh p = 304.50 when h = 30: 304.50  k (30) 10.15  k p = 10.15h h = 34: p = 10.15(34) = 345.10 The pay is $345.10 for 34 hours. 34. Let c be the cost per notebook when n notebooks are manufactured. k c n k c = 0.50 when n = 10,000: 0.50  10, 000 5000  k 5000 c n 5000 n = 18,000: c   0.28 18, 000 The cost to manufacture 18,000 notebooks is $0.28 per notebook. 36. Let d be the distance when a weight of w is attached. d = kw d = 10 when w = 30: 10  k (30) 1 k 3 1 d w 3

inches when 20 pounds

38. Let t be the time and r be the rate. k r t k r = 55 when t = 4: 55  4 220  k 220 r  t 220 r = 60: 60  t 2 t3 3 2 The trip will take 3 hours at 60 mph. 3 40. d  kr 2 r = 60 when d = 300: 300  k (60)2 300  k (3600) 1 k 12 1 d  r2 12 1 1 r = 30: d  (30)2  (900)  75 12 12 It takes 75 feet to stop a car traveling 30 mph. 42.

x  y  9 x  y  14 2 y  23

44.

1.9x  2 y  5.7 1.9x  0.1y  2.3 2.1y  8.0

46. If y varies directly as x2 , then y  kx2. If x is tripled, to become 3x, then y  k (3x)2  9(kx), and y is multiplied by 9. 48. 6 min 

6 min

1 hr

1

hr 1 60 min 10 4 min 1 hr 1 4 min    hr 1 60 min 15

Copyright © 2025 Pearson Education, Inc.

551


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

r

k

16. The slope of a line measures the steepness or tilt of a line.

t r = 100 when t 

1 10

: 100 

k

17. The equation y = kx is an example of direct variation.

1 10

100  10k 10  k r t

10 t 1 15

18. The equation y 

k x

is an example of inverse

variation. : r

Chapter 13 Review

10

 15 10  150 1

16.

15

The rate must be 150 mph. Chapter 13 Vocabulary Check 1. An ordered pair is a solution of an equation in two variables if replacing the variables by the coordinates of the ordered pair results in a true statement. 2. The vertical number line in the rectangular coordinate system is called the y-axis.

7. 2 + y = 6x In (7, ), the x-coordinate is 7. 2  y  6(7) 2  y  42 y  44 The ordered pair solution is (7, 44).

3. A linear equation can be written in the form Ax + By = C. 4. A(n) x-intercept is a point of the graph where the graph crosses the x-axis. 5. The form Ax + By = C is called standard form. 6. A(n) y-intercept is a point of the graph where the graph crosses the y-axis. 7. A set of ordered pairs that assigns to each x-value exactly one y-value is called a function. 8. The equation y = 7x  5 is written in slopeintercept form. 9. The set of all x-coordinates of a relation is called the domain of the relation. 10. The set of all y-coordinates of a relation is called the range of the relation. 11. The set of ordered pairs is called a relation. 12. The equation y + 1 = 7(x  2) is written in point-slope form. 13. To find an x-intercept of a graph, let y = 0. 14. The horizontal number line in the rectangular coordinate system is called the x-axis.

8. y = 3x + 5 In ( , 8), the y-coordinate is 8. 8  3x  5 13  3x 13  x 3  13  The ordered pair solution is  ,   8 .  3  

9. 9 = 3x + 4y y = 0: 9  3x  4(0) 9  3x  0 9  3x 3  x y = 3: 9  3x  4(3) 9  3x 12 3  3x 1 x x = 9: 9  3(9)  4 y 9  27  4 y 36  4 y 9 y

15. To find a y-intercept of a graph, let x = 0. 552

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

x

y

3

0

1

3

9

9

13. x  y = 1 y 5 4 3 2 1 –5 –4 –3 –2 –1–1

10. y = 5 for each value of x. x

y

7

5

7

5

0

5

Chapter 13: Graphing Equations and Inequalities

1 2 3 4 5

x

2 4 6 8 10

x

2 4 6 8 10

x

2 4 6 8 10

x

–2 –3 –4 –5

14. x + y = 6 y 10 8 6 4 2

11. x = 2y y = 0: x  2(0) x0

–10 –8 –6 –4 –2–2 –4 –6 –8 –10

y = 5: x  2(5) x  10 y = 5: x  2(5) x  10

15. x  3y = 12 y

12. a.

x

y

0

0

10

5

10

5

10 8 6 4 2 –10 –8 –6 –4 –2–2

y = 5x + 2000 x = 1: y = 5(1) + 2000 = 5 + 2000 = 2005

16. 5x  y = 8

x = 100: y  5(100)  2000  500  2000  2500

y

x = 1000: y  5(1000)  2000  5000  2000  7000

b.

–4 –6 –8 –10

x

1

100

1000

y

2005

2500

7000

10 8 6 4 2 –10 –8 –6 –4 –2–2 –4 –6 –8 –10

Let y = 6430 and solve for x. 6430  5x  2000 4430  5x 886  x 886 compact disc holders can be produced for $6430. Copyright © 2025 Pearson Education, Inc.

553


Chapter 13: Graphing Equations and Inequalities

23. x  3y = 12 y = 0: x  3(0)  12 x  0  12 x  12 x-intercept: (12, 0) x = 0: 0  3y  12 3y  12 y  4 y-intercept: (0, 4)

17. x = 3y y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

24. 4x + y = 8 y = 0: 4x  0  8 4x  8 x  2 x-intercept: (2, 0) x = 0: 4(0)  y  8 0 y 8 y8 y-intercept: (0, 8)

18. y = 2x y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

ISM: Prealgebra and Introductory Algebra

x

–2 –3 –4 –5

25. (x1, y1)  (1, 2), (x2 , y2 )  (3,  1) y y 1 2  3 3 m 2 1     x2  x1 3  (1) 3 1 4 

 19. The x-intercept is (4, 0). The y-intercept is (0, 2). 20. The x-intercepts are (2, 0) and (2, 0). The y-intercepts are (0, 2) and (0, 2).

26. (x1, y1)  (2,  2), (x2 , y2 )  (3, 1) y  y1 1 (2) 1 2 1 m 2    x2  x1 3  (2) 3 2 5

21. y = 3 is a horizontal line with y-intercept (0, 3).

27. When m = 0, the line is horizontal. The choice is d.

y

28. The slope is m = 1. The choice is b.

5 4 3 2 1 –5 –4 –3 –2 –1–1

29. When the slope is undefined, the line is vertical. The choice is c. 1 2 3 4 5

30. The slope is m = 4. The choice is a.

x

–2 –3 –4 –5

31. m  y2  y1  8  5  3 x2  x1 6  2 4

22. x = 5 is a vertical line with x-intercept (5, 0). y 10 8 6 4 2 –10 –8 –6 –4 –2–2 –4 –6 –8 –10

554

32. m  y2  y1  2  7  5  5 x2  x1 1 4 3 3 33. m  y2  y1  9  3  12  4 x2  x1 2 1 3

2 4 6 8 10

x

34. m  y2  y1   6 1  6 1  7  1 x2  x1 3  (4) 3 4 7

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

y  y1 7416  7293 123    24.6 43. m  2 x2  x1 2020  2015 5 The total number of U.S. magazines in print increases by 24.6 magazines per year.

35. y = mx + b y = 3x + 7 The slope is m = 3. 36.

y = mx + b x  2y  4 2 y  x  4 1 y  x2 2

44. m  y2  y1  2693  2315  378  63 x2  x1 2022  2016 6 The number of U.S. lung transplants increases by about 63 transplants per year.

1 The slope is m  . 2 37. y = mx + b y = 2 y = 0x  2 The slope is m = 0. 38. x = 0 is a vertical line. The slope is undefined. x y 3 39. x  y  6  y  x  6 y  x  3 y  x6 m=1 m = 1 Since (1)(1) = 1, the lines are perpendicular. 3x  y  10  y  3x 10 y  3x 10 m = 3 m = 3 Since the slopes are equal, the lines are parallel.

40. 3x  y  7 y  3x  7

41. y  4x 

1

4x  2 y  1 2 y  4x 1 1 y  2x  2 m=4 m = 2 Since 4  2 and (4)(2) = 8  1, the lines are neither parallel nor perpendicular. 2

1 42. y  6x  3

m=6

Chapter 13: Graphing Equations and Inequalities

x  6y  6 6 y  x  6 1 y   x 1 6 1 m 6

 1  Since (6)     1, the lines are perpendicular.  6 

45. y = mx + b x  6 y  1 6 y  x 1 1 1 y  x 6 6 1  1 m  6 ; y-intercept 0, 6      46. y = mx + b 3x  y  7 y  3x  7 m = 3; y-intercept (0, 7) 47. y  mx  b 1 y  5x  2 48. y  mx  b 2 y  x6 3 49. y = mx + b y = 2x + 1 m = 2, y-intercept (0, 1) The choice is d. 50. y = mx + b y = 4x y = 4x + 0 m = 4; y-intercept (0, 0) The choice is c. 51. y = mx + b y = 2x y = 2x + 0 m = 2; y-intercept (0, 0) The choice is a. 52. y = mx + b y = 2x  1 m = 2; y-intercept (0, 1) The choice is b.

Copyright © 2025 Pearson Education, Inc.

555


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities 53. y  y1  m(x  x1) y  0  4(x  2) y  4x  8 4x + y = 8 54.

55.

56.

59. The x-value 7 is paired with two y-values, 1 and 5, so the relation is not a function. 60. Each x-value is only assigned to one y-value, so the relation is a function.

y  y1  m(x  x1) y  (5)  3(x  0) y  5  3x y  3x  5 3x  y  5

61. No vertical line will intersect the graph more than once, so the graph is the graph of a function. 62. No vertical line will intersect the graph more than once, so the graph is the graph of a function.

y  y1  m(x  x1) 3 y  4  (x 1) 5 3 5( y  4)  5  (x 1) 5 5 y  20 3(x 1) 5 y  20  3x  3 5 y  3x 17 3x  5 y  17

63. The vertical line x = 3 will intersect the graph at more than one point, so the graph is not the graph of a function.

y  y1  m(x  x1) 1 y  3   [x  (3)] 3y  9  3  (3)] 1[x 3y  9  (x  3) 3y  9  x  3 3y  x  6 x  3y  6

66. f(x) = 2x + 6 f(2) = 2(2) + 6 = 4 + 6 = 10

64. No vertical line will intersect the graph more than once, so the graph is the graph of a function. 65. f(x) = 2x + 6 f(0) = 2(0) + 6 = 0 + 6 = 6

67. f(x) = 2x + 6

y y 7  7 14   14 57. m  2 1  x2  x1 2 1 y  y1  m(x  x1) y  7  14(x 1)

1

y  7  14x  14 y  14x  21 58. m  y2  y1  6  5  6  5  1   1 x x 4  (2) 4  2 2 2 2

1 1  2  6  1 6  5 2      2 68. f(x)= 2x 1 +6  1 f   2   6  1 6  7  2  2      f

69. Graph the boundary line, x + 6y = 6, with a dashed line. Test (0, 0): x  6 y  6 0  6(0)  6 00  6 0  6 True Shade the half-plane containing (0, 0).

1

y  y1  m(x  x1) 1 y  5   [x  (2)] 2 1 y  5   (x  2) 2 1  2( y  5)  2   (x  2) 2   2 y 10  1(x  2) 2 y 10  x  2 2 y  x  8 1 y   x4 2 556

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 70. Graph the boundary line, x + y = 2, with a dashed line. Test (0, 0): x  y  2 0  0  2 0  2 True Shade the half-plane containing (0, 0).

71. Graph the boundary line, y = 7, with a solid line. Test (0, 0): y  7 0  7 True Shade the half-plane containing (0, 0).

72. Graph the boundary line, y = 4, as a solid line. Test (0, 0): y  4 0  4 False Shade the half-plane not containing (0, 0).

Chapter 13: Graphing Equations and Inequalities 73. Graph the boundary line, x = y, as a solid line. Test (1, 1): x  y 1  1 True Shade the half-plane containing (1, 1).

74. Graph the boundary line, x = y, as a solid line. Test (1, 1): x   y 1  1 True Shade the half-plane containing (1, 1).

75. y = kx y = 40 when x = 4: 40  k (4) 10  k y = 10x x = 11: y = 10(11) = 110 y = 110 when x = 11. 76. y 

k x

y = 4 when x = 6: 4 

k

6 24  k y

24 x

x = 48: y  y

24 1  48 2

1 2

when x = 48.

Copyright © 2025 Pearson Education, Inc.

557


Chapter 13: Graphing Equations and Inequalities

77. y 

81. 2x  5y = 9 y = 1: 2x  5(1)  9 2x  5  9 2x  14 x7

k x3

y = 12.5 when x = 2: 12.5  12.5 

k 23 k

8 100  k y

x = 2: 2(2)  5 y  9 4  5y  9 5 y  5 y  1

100 x3

x = 3: y  100  100 27 33 100 y when x = 3. 27

y = 3: 2x  5(3)  9 2x 15  9 2x  6 x  3

78. y  kx2 y = 175 when x = 5: 175  k(5)2 175  25k 7k 2

y  7x

x = 10: y  7(10)2  7(100)  700 y = 700 when x = 10. 79. Let c be the cost for manufacturing m milliliters. k c m k c = 6600 when m = 3000: 6600  3000 19,800, 000  k 19,800, 000 c m 19,800, 000 Let m = 5000: c   3960 5000 It costs $3960 to manufacture 5000 milliliters. 80. Let d be the distance when a weight of w is attached. d = kw d = 8 when w = 150: 8  k(150) 4 k 75 4 d w 75 4 4 Let w = 90: d   90  4 75 5 4 The spring stretches 4 inches when 90 pounds 5 is attached. 558

ISM: Prealgebra and Introductory Algebra

x

y

7

1

2

1

3

3

82. x = 3y x = 0: 0  3y 0 y y = 1: x  3(1) x  3 x = 6:

6  3y 2  y

x

y

0

0

3

1

6

2

83. 2x  3y = 6 y = 0: 2x  3(0)  6 2x  0  6 2x  6 x3 x-intercept: (3, 0) x = 0: 2(0)  3y  6 0  3y  6 3y  6 y  2 y-intercept: (0, 2)

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

87. y = 4x y = 0: 0  4x 0x x-intercept: (0, 0) The y-intercept is also (0, 0). Find another point. Let x = 1. y = 4(1) = 4 Another point is (1, 4).

84. 5x + y = 10 y = 0: 5x  0  10 5x  10 x  2 x-intercept: (2, 0) x = 0: 5(0)  y  10 0  y  10 y  10 y-intercept: (0, 10)

y 5 4 3 2

85. x  5y = 10 y = 0: x  5(0)  10 x  0  10 x  10 x-intercept: (10, 0) x = 0: 0  5 y  10 5 y  10 y  2

1

–5 –4 –3 –2 –1–1

y

–10 –8 –6 –4 –2–2 –4 –6 –8 –10

(0, 0) 1 2 3 4 5

x

–2 –3 –4 –5

y-intercept: (0, 2) 10 8 6 4 2

Chapter 13: Graphing Equations and Inequalities

(10, 0) 2 4 6 8 10

x

(0, –2)

88. 2x + 3y = 6 y = 0: 2x  3(0)  6 2x  0  6 2x  6 x  3 x-intercept: (3, 0) x = 0: 2(0)  3y  6 0  3y  6 y  2 y-intercept: (0, 2) y

86. x + y = 4 y = 0: x  0  4 x4 x-intercept: (4, 0) x = 0: 0  y  4 y4 y-intercept: (0, 4)

5 4 3 2 (–3, 0) 1 –5 –4 –3 –2 –1–1 –2 –3 –4 –5

y 5 4 3 2 1 –5 –4 –3 –2 –1–1 –2 –3 –4 –5

1 2 3 4 5

(0, –2)

x

(0, 4)

89. x = 3 is a vertical line with x-intercept (3, 0). y (4, 0) 1 2 3 4 5

5 4 3 2 1

x

–5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

Copyright © 2025 Pearson Education, Inc.

559


Chapter 13: Graphing Equations and Inequalities 90. y = 2 is a horizontal line with y-intercept (0, 2).

y  y1 2  (5) 25 7    91. m  2  1 x2  x1 4  3 4  3 7 92. m  y2  y1  8  3  11  11 x2  x1 6 1 7 7 93. (x1, y1)  (0,  4), (x2 , y2 )  (2, 0) y  y1 0  (4) 4 m 2   2 x2  x1 20 2 94. (x1, y1)  (0, 2), (x2 , y2 )  (6, 0) y2  y1 0  2 2 1 m     x2  x1 6  0 6 3 95. y = mx + b 2x  3y  15 3y  2x 15 2 y  x5 3 2 m  ; y-intercept: (0, 5) 3 96. y = mx + b 6x  y  2  0 6x  y  2 y  6x  2 m = 6; y-intercept: (0, 2) 97.

560

y  y1  m(x  x1) y  (7)  5(x  3) y  7  5x 15 y  5x  8 5x  y  8

ISM: Prealgebra and Introductory Algebra 98. y  y1  m(x  x1) y  6  3(x  0) y  6  3x 6  3x  y 3x  y  6 99. m  y2  y1  5  9  5  9  4  4 1 x2  x1 2  (3) 2  3 y  y1  m(x  x1) y  9  4[x  (3)] y  9  4(x  3) y  9  4x 12 y  4x  3 4x  y  3 100. m  y2  y1  9 1  10  5 x2  x1 5  3 2 y  y1  m(x  x1) y 1  5(x  3) y 1  5x 15 y  5x 16 5x  y  16 Chapter 13 Getting Ready for the Test 1. A. x  y = 7  2 = 5 B. x  y = 0  (5) = 0 + 5 = 5 C. x  y = 2  3 = 5  5 D. x  y = 2  (7) = 2 + 7 = 5 Choice C is correct. 2. All ordered-pair solutions of y = 4 are of the form (x, 4) where x can be any real number. (4, 0) is not of this form, so choice A is correct. 3. The lines x = 0 (the y-axis) and y = 0 (the x-axis) each have an infinite number of intercepts. Any other line must intercept at least one of the axes, so the fewest intercepts a line may have is 1; B. 4. A is not a linear equation because it involves x. B is a linear equation since 2x  62 is 2x = 36. C is not a linear equation since both x and y are raised to the third power. D is not a linear equation because it involves |x|. Choice B is correct.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

5. The line has negative slope and goes downward more steeply than the other line with negative slope, so the slope is m = 10; B.

4. The slope of a horizontal line is m = 0. y  y1 2  (5) 7  1 5. m  2   x2  x1 1 6 7

6. The line has positive slope and goes upward more steeply than the other line with positive slope, so the slope is m = 5; A.

6. m  y2  y1  1 (8)  1 8  7  7 1  0 1 1 x2  x1

7. The line has negative slope, but does not go downward as steeply as the other line with 4 negative slope, so the slope is m   ; D. 7

7. y = mx + b 3x  y  5 y  3x  5 m=3

8. The line has positive slope, but does not go upward as steeply as the other line with positive 1 slope, so the slope is m  ; C. 2

8. x = 6 is a vertical line. The slope of a vertical line is undefined. 9. 2x + y = 8 y = 0: 2x  0  8 2x  8 x4 x-intercept: (4, 0) x = 0: 2(0)  y  8 y 8

9. (0, 5) in function notation is f(0) = 5; C. 10. Let (x1, y1)  (2, 3) and (x2 , y2 )  (0, 9). y  y1 9  3 6 m 2    3 x2  x1 0  2 2 y  y1  m(x  x1) y  3  3(x  2) y  3  3x  6 y  3x  9 This is the slope-intercept form for the equation of the line through the two points ; C.

y-intercept: (0, 8) y 10 8 6 4 2 –10 –8 –6 –4 –2–2

11. f(0) = 2; B

2 4 6 8 10

x

–4 –6 –8 –10

12. f(4) = 0; D 13. If f(x) = 0 then x = 2 or x = 4; A, C. 14. f(1) = 3; E Chapter 13 Test 1. 12y  7x = 5 x = 1: 12 y  7(1)  5 12 y  7  5 12 y  12 y 1 The ordered pair is (1, 1). 2. y = 17 for each value of x. The ordered pair is (4, 17).

10. x + 4y = 5 y = 0: x  4(0)  5 x  0  5 x  5 x  5 x-intercept: (5, 0) x = 0: 0  4 y  5 4y  5 5 y  54 y-intercept: 0,     4  

3. (x1, y1)  (1, 1), (x2 , y2 )  (4, 1) y  y1 1 (1) 11 2 m 2    x2  x1 4  (1) 4 1 5 Copyright © 2025 Pearson Education, Inc.

561


Chapter 13: Graphing Equations and Inequalities

y 10 8 6 4 2 –10 –8 –6 –4 –2–2

2 4 6 8 10

x

–4 –6 –8 –10

11. Graph the boundary line, x  y = 2, with a solid line. Test (0, 0): x  y  2 0  0  2  0  2 True Shade the half-plane containing (0, 0).

ISM: Prealgebra and Introductory Algebra 13. 5x  7y = 10 y = 0: 5x  7(0)  10 5x  0  10 5x  10 x2 x-intercept: (2, 0) x = 0: 5(0)  7 y  10 0  7 y  10 7 y  10 10 y 7 10   y-intercept: 0,    7    y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

12. Graph the boundary line, y = 4x, with a solid line. Test (1, 1): y  4x 1  4(1) 1  4 True Shade the half-plane containing (1, 1).

562

14. Graph the boundary line, 2x  3y = 6, with a dashed line. Test (0, 0): 2x  3y  6 2(0)  3(0)  6 0  0  6 0  6 True Shade the half-plane containing (0, 0).

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 15. Graph the boundary line, 6x + y = 1, with a dashed line. Test (0, 0): 6x  y  1 6(0)  0  1 0  0  1 0  1 True Shade the half-plane containing (0, 0).

Chapter 13: Graphing Equations and Inequalities y  y1 7  0 7 7    19. m  2 x2  x1 60 6 6

  

16. The graph of y = 1 is a horizontal line with a y-intercept of (0, 1). y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

17. y = 2x  6 The slope is m = 2 and the y-intercept is (0, 6). 4x  2 y 2x  y y  2x  0 The slope is m = 2 and the y-intercept is (0, 0). Since the slopes are different, the lines are not parallel. Since 2(2) = 4  1, the lines are not perpendicular. The lines are neither parallel nor perpendicular. y  y1  m(x  x1) 1 y  2   (x  2) 4 1  4( y  2)  4  (x  2)  4    4 y  8  1(x  2) 4 y  8  x  2 4 y  x 10 x  4 y  10

20. m  y2  y1  3  (5)  3  5  8 x2  x1 1 2 1 y  y1  m(x  x1) y  (5)  8(x  2) y  5  8x 16 y  8x 11 8x  y  11 1 21. m  ; b = 12 8 1 y  x 12 8 8 y  x  8(12) 8 y  x  96 x  8 y  96

–2 –3 –4 –5

18.

y  y1  m(x  x1) 7 y  0   (x  0) 6 7 y  x 6 7  6y  6  x     6  6 y  7x 7x  6 y  0

22. Each x-value is only assigned to one y-value, so the relation is a function. 23. The x-value 3 is assigned to two y-values, 3 and 2, so the relation is not a function. Note that the x-value 0 is also assigned to two y-values, 5 and 0. 24. No vertical line will intersect the graph more than once, so the graph is the graph of a function. 25. No vertical line will intersect the graph more than once, so the graph is the graph of a function. 26. f(x) = 2x  4 a. f(2) = 2(2)  4 = 4  4 = 8 b. f(0.2) = 2(0.2)  4 = 0.4  4 = 3.6 c.

f(0) = 2(0)  4 = 0  4 = 4

Copyright © 2025 Pearson Education, Inc.

563


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

27.

f (x)  x3  x a.

f (1)  (1)  (1)  11  0

b.

f (0)  0  0  0  0  0

c.

x2

3

y = 8 when x = 5:

k

8 8

3

52 k

25 200  k

f (4)  43  4  64  4  60

28. 2x  2(2 y)  42 2(x  2 y)  2(21) x  2 y  21 Let y = 8: x  2(8)  21 x 16  21 x5 When y = 8 meters, x = 5 meters. 29. a.

k

32. y 

The ordered pairs are (2018, 7.3), (2019, 8.9), (2020, 10.1), (2021, 12.4), and (2022, 13.3).

b.

200

y

x2

Let x = 15: y  200  200  8 152 225 9 8 When x = 15, y  . 9 Cumulative Review Chapters 113 1. Area  length  width  (380 miles)  (280 miles)  106, 400 square miles The area of Colorado is about 106,400 square miles. 2. 21  7 = 147 There are 147 trees in the orchard. 3. 1 (10)  (8)  9  9  (8)  9  17  9  8 4. 2  (7)  3  (4)  9  3  (4)  6  (4)  10 5.

8

8 8 8 8 64    3x 8 3x  8 24x 

30. m  y2  y1  7.37  2.12  5.25  2.625 x2  x1 2022  2020 2 For every 1 year, gross box office sales increase by $2.625 billion. 31. y = kx y = 10 when x = 15: 10  k (15) 2 k 3 2 y x 3 2 Let x = 42: y  (42)  28 3 When x = 42, y = 28.

564

3x 6.

3

2c 7.

14 8

3 4 3  4 12    2c 4 2c  4 8c

13 3

7

Copyright © 2025 Pearson Education, Inc.

7

7 3 8 7 4 5 7


ISM: Prealgebra and Introductory Algebra

8.

15 4

14

Chapter 13: Graphing Equations and Inequalities 14. 3x  9 3x 9  3 3 x  3 {x|x  3}

5

5 2 4 5 3 10 5

2 5

–5 –4 –3 –2 –1

9. 2x + 5 = 2(3.8) + 5 = 7.6 + 5 = 2.6

15. a.

10. 6x  1 = 6(2.1)  1 = 12.6  1 = 13.6 3.142  3.14 11. 7 22.000 21 10 7 30 28 20 14 6 7  3.14 22

2

3

4 5

The degree of the trinomial 2t 2  3t  6 is 2, the greatest degree of any of its terms.

The degree of the polynomial 7 x  3x3  2x2 1 is 3. It is not a monomial,

binomial, nor a trinomial, so the answer is none of these. 16. a.

The degree of the binomial 7y + 2 or 7 y1  2 is 1.

  

b.

The degree of the trinomial 8x  x2  1 is 2, the greatest degree of any of its terms.

c.

The degree of the polynomial 9 y3  6 y  2  y2 is 3. It is not a monomial, binomial, or trinomial, so the answer is none of these.

17. (2x2  5x 1)  (2x2  x  3)  2x2  5x 1 2x2  x  3  (2x2  2x2 )  (5x  x)  (1 3)  4x2  6x  2 2 18. (9x  5)  (x  6x  5)

 9x  5  x2  6x  5  x2  (9x  6x)  (5  5)  x2  3x

2x  4 2x 4  2 2 x  2 –5 –4 –3 –2 –1

1

b. The degree of the binomial 15x  10 or 15x1  10 is 1. c.

1.9473  1.947 12. 19 37.0000 19 18 0 17 1 90 76 140 133 70 57 13 37   1.947 19 13.

0

19. (3y 1)2  (3y 1)(3y 1)  (3y)(3y)  (3y)(1) 1(3y) 1(1)  9 y2  3y  3y 1 0

1

2

3

 9 y2  6 y  1

4 5

Copyright © 2025 Pearson Education, Inc.

565


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

20. (2x  5)2  (2x  5)(2x  5)  (2x)(2x)  (2x)(5)  (5)(2x)  (5)(5)

x2  9x 14  0 (x  2)(x  7)  0 x  2  0 or x  7  0 x2 x7 The solutions are 2 and 7.

 4x2 10x 10x  25  4x2  20x  25 21. 9a5 18a2  3a  3a(3a4 )  3a(6a)  3a(1)  3a(3a4  6a 1) 22. 2x5  x3  x3  2x2  x3 1  x3 (2x2 1) 2

23. x  4x  12 Look for two numbers whose product is 12 and whose sum is 4.

2 2 29. 2x 11x  5  4x  2  2x 11x  5  10 5x  25 10 5x  25 4x  2 (2x 1)(x  5)  2  5  5(x  5)  2(2x 1) 1  or 1 1

3x2 17x  6

30.

x  4x 12  (x  2)(x  6) 2

24. x2  4x  21 Look for two numbers whose product is 21 and whose sum is 4. x2  4x  21  (x  3)(x  7) 25. Factors of 8x2: 8x2  8x  x, 8x2  4x  2x Factors of 5: 5 = 1  5 8x  22x  5  (4x 1)(2x  5) 26. Factors of 15x2: 15x2  15x  x, 15x2  5x  3x Factors of 2: 2 = 2  1, 2 = 2  1 15x2  x  2  (5x  2)(3x 1) 27.

4x2  28x  49

2x  2  5x  5 4x  24 (3x 1) (x  6)  2 (x 1)  5  (x 1)  2  2(x  6) 3x 1  5 2 3x 1  10 4b

31. 2

x2  9x  14

28.

9a

4b 9a

(2x  7)2  0 2x  7  0 2x  7 7 x  2 7 The solution is . 2

566

4b 3ab 4b(3ab) 12ab2    9a 3ab 9a(3ab) 27a2b

7x 7x 32. 11y  1 11y  

4x2  28x  49  0 (2x)2  2  2x  7  72  0

1 

7x 9x2 y  11y 9x2 y 7x(9x2 y) 11y(9x2 y) 63x3 y 99x2 y2

33. 1 m  1  m m 1 1 m 1 1(m 1)  m   1(m 1) m 1 m 1 m  m 1 2m 1  m 1

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

34. 1

35.

Chapter 13: Graphing Equations and Inequalities

m

1 m   m 1 1 m 1 1(m 1) m   1(m 1) m 1 m 1 m  m 1 1  m 1 3

 x 8 x 6  x 3  x(x  8)   x   3x  6  x2  8x

2

In ( , 6), the y-coordinate is 6. y = 6: 3x  6  12 3x  6 x2 The ordered pair solution is (2, 6).

c.

In (1, ), the x-coordinate is 1. x = 1: 3(1)  y  12 3  y  12 y  15 The ordered pair solution is (1, 15).

6

40. x + 4y = 20 a.

0  x2  5x  6 0  (x  3)(x  2) x3  0 or x  2  0 x  3 x  2 The solutions are 3 and 2. 36.

b.

In (0, ), the x-coordinate is 0. x = 0: 0  4 y  20 4 y  20 y  5 The ordered pair solution is (0, 5).

b.

10

 x5 x 10   x  2    x(x  5) x   2x 10  x2  5x 0  x2  3x 10 0  (x  5)(x  2) x5  0 or x  2  0 x  5 x2 The solutions are 5 and 2.

In ( , 0), the y-coordinate is 0. y = 0: x  4(0)  20 x  0  20 x  20 x  20

x1 y

      

The ordered pair solution is (20, 0). c.

x  12 x  12 The ordered pair solution is (12, 2).

x1  y x1  x 1 y  y y  y x  2  y x  y(2)  37. x x  2y 2 y

y

y

  x  4 38. 2x  2x  2 2 2  2  2 x  4 x 2

2 x2

39. 3x + y = 12 a.

In ( , 2), the y-coordinate is 2. y = 2: x  4(2)  20 x  8  20

In (0, ), the x-coordinate is 0. x = 0: 3(0)  y  12 0  y  12 y  12 The ordered pair solution is (0, 12).

41. 2x + y = 5 y = 0: 2x  0  5 2x  5 5 x 2 The x-intercept is  5 , 0 .  2  x = 0: 2(0)  y  5 0 y  5 y5 The y-intercept is (0, 5).

Copyright © 2025 Pearson Education, Inc.

567


ISM: Prealgebra and Introductory Algebra

Chapter 13: Graphing Equations and Inequalities

y

45.

y  y1  m(x  x1) y  5  2[x  (1)] y  5  2(x 1) y  5  2x  2 y  2x  3 2x  y  3

46.

y  y1  m(x  x1) y  (7)  5(x  2) y  7  5x 10 y  5x  3 5x  y  3

5 4 3 2 1 –5 –4 –3 –2 –1–1 –2 –3 –4 –5

1 2 3 4 5

x

2x + y = 5

42. y = 2x y

2

5 4 3 2 1

47. g(x)  x  3 2

–5 –4 –3 –2 –1–1

1 2 3 4 5

–2 –3 –4 –5

y = –2x

b.

g(2)  (2)2  3  4  3  1 The ordered pair is (2, 1).

c.

g(0)  02  3  0  3  3 The ordered pair is (0, 3).

48. 3 4

and the y-intercept is (0, 1).

44. y = mx + b 7x  4 y  10 4 y  7x 10 7 5 y   x 4 2 7 The slope is m   and the y-intercept is 4  5  0, 2 .  

568

g(2)  2  3  4  3  1 The ordered pair is (2, 1).

x

43. y = mx + b 3x  4 y  4 4 y  3x  4 3 y  x 1 4 The slope is m 

a.

f (x)  3x2  2 a.

f (0)  3(0)2  2  3 0  2  0  2  2 The ordered pair is (0, 2).

b.

f (4)  3(4)2  2  316  2  48  2  50 The ordered pair is (4, 50).

c.

f (1)  3(1)2  2  31  2  3  2  5 The ordered pair is (1, 5).

Copyright © 2025 Pearson Education, Inc.


 

Chapter 14 Section 14.1 Practice Exercises

5.

1.

5x  2 y  3 y  3x 9 0 3(3) 5(3)  2(9) 0  3 99 15 18 0  3 3  3 (3, 9) is a solution of the system.

2.

2x  y  8 x  3y  4 2(3)  (2) 0 8 3  3(2) 0 4 6 2 08 3  6 0 4 88 3  4 (3, 2) is not a solution of the system. y

3.

The system has no solution because the lines are parallel. 6.

12 10 8 6 4 2 –12 –10 –8 –6 –4 –2–2

x–y=6

–4 –6 –8 –10 –12

2 4 6 8 10 12

x

(2, –4) –3x + y = –10

(2, 4) is a solution of the system. 4.

There are an infinite number of solutions because it is the same line. 7. 5x  4 y  6 4 y  5x  6 5 3 y  x  4 2

x y 3  y  x  3 y  x 3

5 The slope of the first line is  , while the slope 4 of the second line is 1. Since the slopes are not equal, the system has one solution. 8.  (4, 1) is a solution of the system.

2

x y 6

3 y

2 3

x6

3y  2x  5 2 5 y  x 3 3

2 Both lines have slope , but the y-intercepts are 3 different. The lines are parallel, so the system has no solution.

Copyright © 2025 Pearson Education, Inc.

569


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

4. A solution of a system of two equations in two variables is an ordered pair of numbers that is a solution of both equations in the system.

Calculator Explorations 1. y  2.68x 1.21 y  5.22x 1.68

5. A system of equations that has no solution is called an inconsistent system.

10 –10

10

6. In a system of linear equations in two variables, if the graphs of the equations are different, the equations are independent equations.

–10

(0.37, 0.23) is the approximate point of intersection. 2. y = 4.25x + 3.89 y = 1.88x + 3.21

8. Since the lines are parallel and do not intersect, there is no solution.

10 –10

9. Since the lines are the same, there is an infinite number of solutions.

10 –10

(0.11, 3.42) is the approximate point of intersection. 3. 4.3x  2.9 y  5.6  y  (5.6  4.3x) / 2.9 8.1x  7.6 y  14.1  y  (14.1 8.1x) / 7.6 10 –10

10. The lines intersect at (3, 4); therefore there is one solution. 11. The ordered pair must satisfy all equations of the system in order to be a solution of the system, so we must check that the ordered pair is a solution of both equations. 12. Graphing is not the most accurate method, especially if your graph is off just slightly, or the point of intersection does not have integer coordinates.

10 –10

(0.03, 1.89) is the approximate point of intersection. 4. 3.6x  8.6 y  10  y  (10  3.6x) / 8.6 4.5x  9.6 y  7.7  y  (7.7  4.5x) / 9.6 10 –10

7. The lines intersect at (1, 3); therefore there is one solution.

13. Writing the equations of a system in slopeintercept form lets us see and compare their slopes and y-intercepts. Different slopes mean one solution; same slopes with different y-intercepts mean no solution; same slopes with same y-intercepts mean an infinite number of solutions.

10

Exercise Set 14.1 –10

(0.41, 0.99) is the approximate point of intersection.

2. a.

Vocabulary, Readiness & Video Check 14.1 1. In a system of linear equations in two variables, if the graphs of the equations are the same, the equations are dependent equations. 2. Two or more linear equations are called a system of linear equations. 3. A system of equations that has at least one solution is called a consistent system. 570

b.

First equation: 2x  y  5 2(5)  0 0 5 10  0 0 5 10  5 False (5, 0) is not a solution of the first equation, so it is not a solution of the system. First equation: 2x  y  5 2(2) 1  5 4 1 0 5 5  5 True

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Second equation: x  3y  5 2  3(1) 0 5 2305 5  5 True Since (2, 1) is a solution of both equations, it is a solution of the system. 4. a.

First equation: 2x  3y  8 2(2)  3(4) 0 8 4 12 0 8 8  8 True Second equation: x  2y  6 2  2(4) 0 6 2  8 0 6 6  6 True Since (2, 4) is a solution of both equations, it is a solution of the system.

b. First equation: 2x  3y  8 2(7)  3(2) 0 8 14  60 8 8  8 True Second equation: x  2y  6 7  2(2) 0 6 7406 3  6 False (7, 2) is not a solution of the second equation, so it is not a solution of the system. 6. a.

First equation: x  5 y  4 4  5(0) 0  4 4  0 0  4 4  4 True Second equation: 2x  10 y  8 2(4) 0 10(0)  8 80 08 8  8 True Since (4, 0) is a solution of both equations, it is a solution of the system.

Chapter 14: Systems of Equations

b. First equation: x  5 y  4 6  5(2) 0  4 6  (10) 0  4 4  4 True Second equation: 2x  10 y  8 2(6) 010(2)  8 12 0  20  8 12  12 True Since (6, 2) is a solution of both equations, it is a solution of the system. 8. a.

First equation: 4x  1 y 4(0) 0 11 0  0 True Second equation: x  3y  8 0  3(1) 0  8 030 8 3  8 False (0, 1) is not a solution of the second equation, so it is not a solution of the system.

b. First equation: 4x  1 y 1 1 4 0 1  6 3   2 2  True 3 3 Second equation: 1 x  13y  8 3 0 8   6  3  1 10  8 6 5   8 False 6 1 1    ,  is not a solution of the second  6 3  equation, so it is not a solution of the system.

Copyright © 2025 Pearson Education, Inc.

571


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

10.

14.

First equation: x y 3 4  (1) 0 3 4 1 0 3 3  3 True Second equation: x y 5 4  (1) 0 5 4 1 0 5 5  5 True The solution of the system is (4, 1).

First equation: y  3x 3 0  3(1) 3  3 True Second equation: 2x  y  5 2(1)  3 0  5 2  3 0  5 5  5 True The solution of the system is (1, 3). 16.

12.

First equation: y  3x  4 5 0 3(3)  4 5094 5  5 True Second equation: y  x2 5 0 3 2 5  5 True The solution of the system is (3, 5).

First equation: x y 1 2  (1) 01 2 1 0 1 1  1 True Second equation: x  y  3 2  (1) 0  3 3  3 True The solution of the system is (2, 1). 18.

572

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

First equation: 2x  y  1 2(1)  3 01 2  3 0 1 1  1 True Second equation: 3x  y  0 3(1)  3 0 0 3  3 0 0 0  0 True The solution of the system is (1, 3).

Chapter 14: Systems of Equations

24.

First equation: x y 5 4 1 0 5 5  5 True Second equation: x4 4  4 True The solution of the system is (4, 1).

20.

26.

First equation: y  x 1 2 0 1 1 2  2 True Second equation: y  3x  5 2 0  3(1)  5 2 0 3  5 2  2 True The solution of the system is (1, 2).

First equation: x  3y  7 1  3(2) 0 7 1 6 0 7 7  7 True Second equation: 2x  3y  4 2(1)  3(2) 0  4 26 0 4 4  4 The solution of the system is (1, 2).

22.

28. First equation: x y  4 x4  y Second equation: x y 1 x 1  y The lines have the same slope, but different y-intercepts, so they are parallel. The system has no solution. Copyright © 2025 Pearson Education, Inc.

573


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

First equation: y  2x  3 y  2x  3 Second equation: 4x  2  2 y 2 y  4x  2 y  2x 1 The lines have the same slope, but different y-intercepts, so they are parallel. The system has no solution.

34.

First equation: y  x5 2 0 35 2  2 True Second equation: y  2x  4 2 0  2(3)  4 20 64 2  2 True The solution of the system is (3, 2).

30.

First equation: x  2 y  6 2 y  x  6 x y 3 2 Second equation: 2x  4 y  12 4 y  2x 12 x y 3 2 The graphs of the equations are the same line, so the system has an infinite number of solutions. 32.

36.

First equation: 4x  y  7 4(3)  5 0 7 12  5 0 7 7  7 True Second equation: 2x  3y  9 2(3)  3(5) 0  9 6 15 0  9 9  9 True The solution of the system is (3, 5).

First equation: x  5 5  5 True Second equation: y 3 3  3 True The solution of the system is (5, 3).

574

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

46. y = 3 horizontal line

38.

First equation: 3x  y  6  y  3x  6 y  3x  6 Second equation: 1 y  2  x 3 1 y  x2 3 y  3x  6 The graphs of the equations are the same line, so the system has an infinite number of solutions. 40. 3x  y  1 y  3x 1

3x  2 y  6 2 y  3x  6 3 y   x3 2

x = 4 vertical line

a.

The slopes of the lines are different, so the lines intersect.

b.

The system has one solution.

48. 2 y  x  2 1 y  x 1 2

y  2x  3 y  2x  3

a.

The slopes of the lines are different, so the lines intersect.

b.

The system has one solution.

50. 8 y  6x  4 8 y  6x  4 3 1 y   x 4 2

4 y  2  3x 4 y  3x  2 3 1 y  x  4 2

a.

The slopes of the lines are different, so the lines intersect.

b.

The system has one solution.

52. 2x  y  0 y  2x

y = 2x + 1

a.

The slopes of the lines are different, so the lines intersect.

a.

The lines have the same slope, but different y-intercepts, so the lines are parallel.

b.

The system has one solution.

b.

The system has no solution.

42. 3x  y  0 y  3x

2 y  6x y  3x

a.

The lines are identical.

b.

The system has an infinite number of solutions.

44. 3x  y  2 3x  2  y

1 3

y  2  3x y  9x  6

a.

The slopes of the lines are different, so the lines intersect.

b.

The system has one solution.

54. 2x  3(x  6)  17 2x  3x 18  17 x  1  y 1  3  4     y  3( y 1)  3  y  3y  3  3 2y  6 y3

56.  y 12

58. 3z  (4z  2)  9 3z  4z  2  9 z  7 z  7

Copyright © 2025 Pearson Education, Inc.

575


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

60. Answers may vary. Possible answer:

62. Answers may vary. Possible answer:

64. The per person availability of corn sweeteners was greater than the per person availability of refined sugar for the years 19862009. 66. The per person availability of chicken was closer to the per person availability of beef in 2005 than in 2021. 68. answers may vary 70. answers may vary 72. a.

(1, 1) appears in both tables, so it is a solution of the system.

b.

Section 14.2 Practice Exercises 1. 2x  3y  13  x  y  4 Substitute y + 4 for x in the first equation and solve for y. 2( y  4)  3y  13 2 y  8  3y  13 5y  5 y 1 Solve for x. x=y+4=1+4=5 The solution of the system is (5, 1). 2. 4x  y  2  y  5x  Substitute 5x for y in the first equation and solve for x. 4x  5x  2 x  2 x  2 Solve for y. y = 5x = 5(2) = 10 The solution of the system is (2, 10). 3.  3x  y  5 3x  2 y  7  Solve the first equation for y. 3x  y  5 y  3x  5 Substitute 3x + 5 for y in the second equation. 3x  2 y  7 3x  2(3x  5)  7 3x  6x 10  7 9x  3 3 1 x  9 3 Solve for y. 1 y  3x  5  3  5  1 5  4    3  1  The solution of the system is  , 4  .  3 

 c.

Yes; the two lines intersect at (1, 1).

4. 5x  2 y  6  3x  y  3 Solve the second equation for y. 3x  y  3 y  3x  3 Substitute 3x  3 for y in the first equation.

576

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 5x  2 y  6 5x  2(3x  3)  6 5x  6x  6  6 x  0 x0 Solve for y. y = 3x  3 = 3(0)  3 = 0  3 = 3 The solution of the system is (0, 3). 5. x  3y  6  1  y  x2  3 1 Substitute x  2 for y in the first equation. 3 x  3y  6 1  x  3 x  2  6 3    x  x  6  6 0x  0 00 The statement 0 = 0 indicates that this system has an infinite number of solutions. It is a graph of the same line. 6.  2x  3y  6 4x  6 y  12  2x  3y  6 3y  2x  6 2 y  x2 3 2 Substitute 3 x  2 for y in the second equation. 4x  6 y  12 2  4x  6  x  2   12 3  4x  4x 12  12 12  12 The statement 12 = 12 indicates that this system has no solution. It is a graph of parallel lines. Vocabulary, Readiness & Video Check 14.2 1. x = 1: y = 4(1) = 4 The solution is (1, 4). 2. 0 = 34 is a false statement. The system has no solution. 3. 0 = 0 is a true statement. The system has an infinite number of solutions.

Chapter 14: Systems of Equations

4. y = 0: x = 0 + 5 = 5 The solution is (5, 0). 5. x = 0: 0  y  0 y0 The solution is (0, 0). 6. 0 = 0 is a true statement. The system has an infinite number of solutions. 7. We solved one equation for a variable. Next, be sure to substitute this expression for the variable into the other equation. Exercise Set 14.2 2. x  y  20  x  3y Substitute 3y for x in the first equation and solve for y. x  y  20 3y  y  20 4 y  20 y5 Now solve for x. x = 3y = 3(5) = 15 The solution of the system is (15, 5). 4. x  y  6  y  4x Substitute 4x for y in the first equation and solve for x. x y 6 x  (4x)  6 3x  6 x  2 Now solve for y. y = 4x = 4(2) = 8 The solution of the system is (2, 8). 6.  y  2x  3  5 y  7x  18 Substitute 2x + 3 for y in the second equation and solve for x. 5 y  7x  18 5(2x  3)  7x  18 10x 15  7x  18 3x  3 x1 Now solve for y. y = 2x + 3 = 2(1) + 3 = 5 The solution of the system is (1, 5).

Copyright © 2025 Pearson Education, Inc.

577


 

ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 8.  y  5x  3  y  8x  4  Substitute 5x  3 for y in the second equation and solve for x. y  8x  4 5x  3  8x  4 3x  7 7 x  3 Now solve fory. 7  35 9 44 y  5x  3  5   3   3  3   3 3   44   7 The solution of the system is   ,  . 3 3   

10. 4x  3y  10  y  x  5 Substitute x  5 for y in the first equation and solve for x. 4x  3y  10 4x  3(x  5)  10 4x  3x 15  10 x  5 Now solve for y. y = x  5 = 5  5 = 10 The solution of the system is (5, 10). 12.  x  3y  5 2x  2 y  6  Solve the first equation for x. x  3y  5 x  3y  5 Substitute 3y  5 for x in the second equation and solve for y. 2x  2 y  6 2(3y  5)  2 y  6 6 y 10  2 y  6 4 y  16 y  4 Now solve for x. x = 3y  5 = 3(4)  5 = 12  5 = 7 The solution of the system is (7, 4).

578

14. 2x  3y  18  x  2 y  5 Substitute 2y  5 for x in the first equation and solve for y. 2x  3y  18 2(2 y  5)  3y  18 4 y 10  3y  18 7 y  28 y4 Now solve for x. x = 2y  5 = 2(4)  5system = 8  is 5 =(3,3 4). The solution of the

16.  3y  x  6  4x 12 y  0 Solve the first equation for x. 3y  x  6 3y  6  x Substitute 3y  6 for x in the second equation and solve for y. 4x 12 y  0 4(3y  6) 12 y  0 12 y  24 12 y  0 24 y  24 y 1 Now solve for x. x = 3y  6 = 3(1)  6 = 3  6 = 3 The solution of the system is (3, 1). 18. 2 y  x  2  6x 12 y  0 Solve the first equation for x. 2y  x  2 2y  2  x Substitute 2y  2 for x in the second equation and solve for x. 6x 12 y  0 6(2 y  2) 12 y  0 12 y 12 12 y  0 12  0 False Since the statement 12 = 0 is false, the system has no solution. 20.  3x  y  14 4x  3y  22  Solve the first equation for y. 3x  y  14 y  3x 14 Substitute 3x  14 for y in the second equation and solve for x.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 4x  3y  22 4x  3(3x 14)  22 4x  9x  42  22 5x  20 x  4 y = 3x  14 = 3(4)  14 = 12  14 = 2 The solution of the system is (4, 2). 22. 5x  4 y  2  6  7 y  3x   3x  4x  y  3 Simplify each equation. 8x  4  3y   7x  y  3 Solve the second simplified equation for y. 7x  y  3 7x  3  y Substitute 7x  3 for y in the first simplified equation and solve for x. 8x  4  3y 8x  4  3(7x  3) 8x  4  21x  9 13  13x 1 x Now solve for y. y = 7x  3 = 7(1)  3 = 7  3 = 4 The solution of the system is (1, 4). 24. 10x  5 y  21  x  3y  0  Solve the second equation for x. x  3y  0 x  3y Substitute 3y for x in the first equation and solve for y. 10x  5 y  21 10(3y)  5 y  21 30 y  5 y  21 35 y  21 21 3 y  35 5 Now solve for x. 3  9 x  3y  3   5   5  9 3 The solution of the system is  , .  5 5   

Chapter 14: Systems of Equations 26.  2x  y  7  4x  3y  11 Solve the first equation for y. 2x  y  7 2x  7  y Substitute 2x + 7 for y in the second equation and solve for x. 4x  3y  11 4x  3(2x  7)  11 4x  6x  21  11 2x  10 x  5 Now solve for y. y = 2x + 7 = 2(5) + 7 = 10 + 7 = 3 The solution of the system is (5, 3). 28.  x  3y  18  3x  2 y  19 Solve the first equation for x. x  3y  18 3y 18  x Substitute 3y  18 for x in the second equation and solve for y. 3x  2 y  19 3(3y 18)  2 y  19 9 y  54  2 y  19 7 y  54  19 35  7 y 5 y Now solve for x. x = 3y  18 = 3(5)  18 = 15  18 = 3 The solution of the system is (3, 5). 30. 6x  3y  12  9x  6 y  15 Solve the first equation for y. 6x  3y  12 3y  6x 12 y  2x  4 Substitute 2x + 4 for y in the second equation and solve for x. 9x  6 y  15 9x  6(2x  4)  15 9x 12x  24  15 3x  9 x3 Now solve for y. y = 2x + 4 = 2(3) + 4 = 6 + 4 = 2 The solution of the system is (3, 2).

Copyright © 2025 Pearson Education, Inc.

579


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 32.  2x  4 y  6  5x 10 y  16 Solve the first equation for x. 2x  4 y  6 2x  4 y  6 x  2 y  3 Substitute 2y + 3 for x in the second equation and solve for y. 5x 10 y  16 5(2 y  3) 10 y  16 10 y 15 10 y  16 0 1 Since the statement 0 = 1 is false, the system has no solution.

1 34.  x  2 y  1 4  x  8 y  4 Solve the second equation for x. x  8y  4 x  8y  4 Substitute 8y + 4 for x in the first equation and solve for y. 1 x  2y 1 4 1 (8 y  4)  2 y  1 4 2 y 1 2 y  1 00 Since 0 = 0 is a true statement, the two equations in the original system are equivalent. The system has an infinite number of solutions. 5  36. x  y  2  6 12x  5 y  9 5 Substitute y  2 for x in the second equation 6 and solve for y. 12x  5 y  9 5  12  y  2  5 y  9 6   10 y  24  5 y  9 5 y  15 y3 Now solve for x. 5 5 5 1 x  y  2  (3)  2   2  6 6 2 2  1  The solution of the system is  , 3.  2  580

38.

x  y  10 5(x  y)  5(10) 5x  5 y  50

40.

5a  7b  4 4(5a  7b)  4(4) 20a  28b  16

42. 2x  5y 2x  11y 16 y 44.

9q  p 9q  p 0

46. 5x  2 y  4x  2 y  2(2 y  6)  7  3(2x  y)  4x  1 9 Simplify each equation. x  4y  5 2x  3y  10 Substitute 4y + 5 for x in the second simplified equation and solve for y. 2x  3y  10 2(4 y  5)  3y  10 8 y 10  3y  10 5y  0 y0 Now solve for x. x = 4y + 5 = 4(0) + 5 = 0 + 5 = 5 The solution of the system is (5, 0). 48. answers may vary 50. The solution of the system is (0, 0). 52. a.

There is 1 solution for a system with lines intersecting in one point.

b.

There are 0 solutions for a system with parallel lines.

c.

There are an infinite number of solutions for a system with the same line.

54. Using a graphing calculator, the solution of the system is (3.5, 5.5). 56. Using a graphing calculator, the solution of the system is (8.1, 7.1).

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 

 58. a.

Chapter 14: Systems of Equations

 y  849x  60, 028  y  2255x  34, 720  Substitute 2255x + 34,720 for y in the first equation and solve for x. y  849x  60, 028 2255x  34, 720  849x  60, 028 2255x  849x  25, 308 1406x  25, 308 x  18 Now solve for y. y  849x  60, 028  849(18)  60, 028  15, 282  60, 028  75, 310 The solution is (18, 75,310).

b. In 1990 + 18 = 2008, the number of men and women receiving doctoral degrees was the same, about 75,310. c.

answers may vary Section 14.3 Practice Exercises 1. x  y  13 x  y  5  Add the equations to eliminate y; then solve for x. x  y  13 x y 5 2x  18 x 9 Now solve for y. x  y  13 9  y  13 y4 The solution of the system is (9, 4).

Copyright © 2025 Pearson Education, Inc.

581


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 2.  2x  y  6 x  4 y  17  Multiply the first equation by 4. 4(2x  y)  4(6)   8x  4 y  24  x  4 y  17 x  4 y  17   Add the equations to eliminate y; then solve for x. 8x  4 y  24 x  4 y  17 7x  7 x  1 Now solve for y. 2x  y  6 2(1)  y  6 2  y  6  y  4 y4 The solution of the system is (1, 4). 3.  x  3y  2 3x  9 y  5 Multiply the first equation by 3. 3(x  3y)  3(2)   3x  9 y  6  3x  9 y  5 3x  9 y  5   Add the equations to eliminate y; then solve for x. 3x  9 y  6 3x  9 y  5 0  1 Since the statement 0 = 1 is false, there is no solution to the system. 4.  2x  5 y  1 4x 10 y  2  Multiply the first equation by 2. 2(2x  5 y)  2(1)  4x 10 y  2  4x 10 y  2 4x 10 y  2   Add the equations to eliminate y; then solve for x. 4x 10 y  2 4x 10 y  2 00 Since the statement 0 = 0 is true, there are an infinite number of solutions. 5. 4x  5 y  14 3x  2 y  1  Multiply the first equation by 2 and multiply the second equation by 5.

582

 5 y)  2(14)  8x 10 y  28 2(4x 5(3x  2 y)  5(1)  15x 10 y  5   Add the equations to eliminate y; then solve for x. 8x 10 y  28 15x 10 y  5  23 x 1

23x

Now solve for y. 4x  5 y  14 4(1)  5 y  14 5 y  10 y2 The solution of the system is (1, 2). 4  x 6.   y   3 3  x 5 1   y    2 2 2 Multiply the first equation by 3 and the second equation by 2.   x   4  3   y   3  x  3y  4   3  3    x 5   1   x  5 y  1 2  y  2   2      2 2  Add the equations to eliminate x; then solve for y. x  3y  4 x  5 y  1 2 y  3 3 y  2 Now solve for y through elimination. Multiply the first equation by 15 and the second equation by 6.   x   4  5x 15 y  20 15   y   15    3 3   3x 15 y  3 5   1    6  x  y   6        2 2   2  Add the equations to eliminate y; then solve for x. 5x 15 y  20 3x 15 y  3  17 2x 17 x 2 3   17  The solution to the system is  ,  . 2   2 

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra   Vocabulary, Readiness & Video Check 14.3 1. 3x  2 y  9   x  5 y  14 Multiply the second equation by 3, then add the resulting equations. 3x  2 y  9 3x 15 y  42 17 y  51 The y’s are not eliminated; the statement is false. 2. 3x  2 y  9  5 y  14  x Multiply the second equation by 3, then add the resulting equations. 3x  2 y  9 3x 15 y  42 17 y  51 The statement is true. 3. 3x  2 y  9   x  5 y  14 Multiply the first equation by 5 and the second equation by 2, then add the two new equations. 15x 10 y  45 2x 10 y  28 17x  17 The statement is true. 4. 3x  2 y  9  x  5 y  14  Multiply the first equation by 5 and the second equation by 2, then add the two new equations. 15x 10 y  45 2x 10 y  28 13x  20 y  73 The y’s are not eliminated; the statement is false. 5. The multiplication property of equality; be sure to multiply both sides of the equation by the nonzero number chosen. Exercise Set 14.3 2. 4x  y  13 2x  y  5  Add the equations to eliminate y; then solve for x.

Chapter 14: Systems of Equations 4x  y  13 2x  y  5 6x  18 x3 Now solve for y. 4x  y  13 4(3)  y  13 12  y  13 y 1 The solution of the system is (3, 1). 4.  x  2 y  11 x  5 y  23  Add the equations to eliminate x; then solve for y. x  2 y  11 x  5 y  23 3y  12 y4 Now solve for x. x  2(4)  11 x  8  11 x  3 The solution of the system is (3, 4). 6.  4x  y  13  6x  3y  15 Multiply the first equation by 3. 3(4x  y)  3(13) 12x  3y  39   6x  3y  15 6x  3y  15   Add the equations to eliminate y; then solve for x. 12x  3y  39 6x  3y  15  54 18x x  3 Now solve for y. 4x  y  13 4(3)  y  13 12  y  13 y  1 The solution of the system is (3, 1). 8. 4x  2 y  2 3x  2 y  12  Add the equations to eliminate y; then solve for x. 4x  2 y  2 3x  2 y  12 7x  14 x2

Copyright © 2025 Pearson Education, Inc.

583


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

16.  2x  y  6  4x  2 y  12 Multiply the first equation by 2.  y)  2(6) 4x  2 y  12 2(2x   4x  2 y  12 4x  2 y  12

Now solve for y. 4x  2 y  2 4(2)  2 y  2 8  22 yy  26 y  3 The solution of the system is (2, 3). 10.  x  4 y  14  5x  3y  2 Multiply the first equation by 5. 5(x  4 y)  5(14) 5x  20 y  70   5x  3y  2 5x  3y  2   Add the equations to eliminate x; then solve for y. 5x  20 y  70 5x  3y  2 17 y  68 y4 Now solve for x. x  4 y  14 x  4(4)  14 x  16  14 x  2 The solution of the system is (2, 4). 12.  x  y  1 x  2 y  0  Add the equations to eliminate x; then solve for y. x x  y  1  2y  0 y 1 Now solve for x. xx1y  11 x2 The solution of the system is (2, 1). 14.  3x  y  4  9x  3y  6 Multiply the first equation by 3. 3(3x  y)  3(4) 9x  3y  12   9x  3y  6 9x  3y  6   Add the equations to eliminate y. 9x  3y  12 9x  3y  6 0  6 Since the statement 0 = 6 is false, the system has no solution. 584

  Add the equations to eliminate y. 4x  2 y  12 4x  2 y  12 00 Since the statement 0 = 0 is true, the system has an infinite number of solutions. 18.  6x  5 y  25  4x 15 y  13 Multiply the first equation by 3.  5 y)  3(25) 18x 15 y  75 3(6x   4x 15 y  13 4x 15 y  13   Add the equations to eliminate y; then solve for x. 18x 15 y  75 4x 15 y  13  88 22x x4 Now solve for y. 6x  5 y  25 6(4)  5 y  25 24  5 y  25 5 y  1 y

1 5

1 

The solution of the system is  4,  . 5   10x  3y  12 10x  3y  12 20. 5x  4 y 16 5x  4 y  16    Multiply the second equation by 2.  10x  3y  12  10x  3y  12 2(5x  4 y)  2(16)  10x  8 y  32   Add the equations to eliminate x; then solve for y. 10x  3y  12 10x  8 y  32 5 y  20 y  4 Now solve for x.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 10x  3y  12 10x  3(4)  12 10x 12  12 10x  0 x0 The solution of the system is (0, 4).  3y  10 22. 2x 3x  4 y  2  Multiply the first equation by 3 and the second equation by 2.  3y)  3(10) 6x  9 y  30 3(2x   6x  8 y  4 2(3x  4 y)  2(2)   Add the equation to eliminate x; then solve for y. 6x  9 y  30 6x  8 y  4 17 y  34 y2 Now solve for x. 2x  3y  10 2x  3(2)  10 2x  6  10 2x  4 x  2 The solution of the system is (2, 2). 24.  9x  3y  12 12x  4 y  18

Chapter 14: Systems of Equations 12x 10 y  14 12x 18 y  21 8 y  7 7 y 8 Multiply the first original equation by 6 and the second original equation by 5.  5 y)  6(7)  30 y  42 6(6x 36x 5(4x  6 y)  5(7) 20x  30 y  35    Add the equations to eliminate y; then solve for x. 36x  30 y  42 20x  30 y  35 16x  7 7 x 16 7  7 The solution of the system is  ,  . 8   16 x y 28. 2  8  3  y  x 0  4 Multiply the first equation by 8 and the second by 4.   x y    8(3) 4x  y  24 8     2 8    y   4x  y  0  4 x   4(0)     4  Add the equations to eliminate y; then solve for x. 

Multiplying the first equation by 4 and the second equation by 3.  3y)  4(12) 36x 12 y  48 4(9x 3(12x  4 y)  3(18)   36x 12 y  54   Add the equations to eliminate y. 36x  12 y  48 36x 12 y  54 06 Since the statement 0 = 6 is false, the system has no solution. 26. 6x  5 y  7  4x  6 y  7 Multiply the first equation by 2 and the second equation by 3. 2(6x  5 y)  2(7) 12x 10 y  14   12x 18 y  21 3(4x  6 y)  3(7)   Add the equations to eliminate x; then solve for y.

4x  y  24 4x  y  0 8x  24 x3 Now solve for y. y x  0 4 y 3  0 4 y 3 4 12  y The solution of the system is (3, 12). 10  x  4 y  4 30.  3  5x  6 y  6 Multiply the first equation by 3 and the second equation by 2.

Copyright © 2025 Pearson Education, Inc.

585


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations   10  10x 12 y  12 3 x 4 y  3( 4)           3   2(5x  6 y)  2(6) 10x 12 y  12 Add the equations to eliminate x. 10x 12 y  12 10x 12 y  12 00

  Add the equations to eliminate x; then solve for y. 9x  8 y  27 9x  9 y  24 17 y  51 y  3 Now solve for x.

586

3x  9  8 3x  1 1 x 3  1  The solution of the system is  ,   3 .   3  x y   1 36.  2 4  x y    1  4 8 Multiply the first equation by 4 and the second by 8.   x y  4     4(1)  2x  y  4     8  x2  y4   8(1)   2x y 8      4 8  Add the equations to eliminate y. 2x  y  4 2x  y  8 0  12 Since the statement 0 = 12 is false, the system has no solutions. 

Since the statement 0 = 0 is true, the system has an infinite number of solutions. 3y  32. 2x   3 4   x  y 13  9 3 Multiply the first equation by 4 and the second equation by 27.   3y  8x  3y  12 4 2x 4( 3) 27x    4     3y  117     y 13       27 x     27    9 3 Add the equations to eliminate y; then solve for x. 8x  3y  12 27x  3y  117 35x  105 x3 Now solve for y. y 13 x 9  3 y 13 3  9 3 9  3 y  9  13    9    3      27  y  39 y  12 The solution of the system is (3, 12). 34. 9(x  3)  8 y  3x  3y  8  Multiply the second equation by 3. 9x  8 y  27  9(x  3)  8 y   9x  9 y  24 3(3x  3y)  3(8)

3x  3y  8 3x  3(3)  8

7 3  3x  y  38.   x 25 45   y    2 3 4 Multiply the first equation by 4 and the second equation by 24. 

7    3  4  3x  y   4     x 52   4  24   y   24   5   4    2 3        12x 14 y  3  12x  40 y  30  Add the equations to eliminate x; then solve for y. 12x 14 y  3 

12x  40 y  30 54 y  27 27 1 y  54 2 Now solve for x.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 3x 

7

y

3

7 1 3 3x  2   22   44   7 3 3x   7 4 4 3   4  3x    4   4 4     12x  7  3 12x  10 10 5 x  12 6 The solution of the system is 

Chapter 14: Systems of Equations 40x  50 y  105  2(20x  60 y)  2(105)   40x  50 y  105  40x 120 y  210  Add the equations to eliminate x; then solve for y. 40x  50 y  105 40x 120 y  210

1 5 , . 6   2

40. 2.5x  6.5 y  47   0.5x  4.5 y  37 Multiply the first equation by 10 and the second equation by 50. 10(2.5x  6.5 y)  10(47)   50(0.5x  4.5 y)  50(37) 25x  65 y  470   25x  225 y  1850 Add the equations to eliminate x; then solve for y. 25x  65 y  470 25x  225 y  1850 290 y  2320 y  8 Now solve for x. 0.5x  4.5 y  37 0.5x  4.5(8)  37 0.5x  36  37 0.5x  1 x2 The solution of the system is (2, 8). 42. 0.04x  0.05 y  0.105   0.2x  0.6 y  1.05 Multiply the first equation by 1000 and the second equation by 100 to eliminate decimals. 1000(0.04x  0.05y)  1000(0.105)  100(0.2x  0.6 y)  100(1.05)  40x  50 y  105   20x  60 y  105  Multiply the second equation by 2.

70 y  105 y  1.5 Now solve for x. 0.2x  0.6 y  1.05 0.2x  0.6(1.5)  1.05 0.2x  0.9  1.05 0.2x  0.15 x  0.75 The solution of the system is (0.75, 1.5). 44. The sum of three consecutive integers is 66 is written as x + (x + 1) + (x + 2) = 66. 46. Twice the sum of 8 and a number is the difference of the number and 20 is written as 2(8 + x) = x  20. 48. The quotient of twice a number and 7 is subtracted from the reciprocal of the number and 1 2x the result is 2 is written as   2. x 50. a.

7

To eliminate the variable x, multiply the first equation by 5 and the second equation by 3.  5(3x  y)  5(8)  3(5x  3y)  3(2)  15x  5 y  40  15x  9 y  6  Add the equations to eliminate x; then solve for y. 15x  5 y  40 15x  9 y  6 14 y  46 y

46 23  14 7

b. To eliminate the variable y, multiply the first equation by 3.  y)  3(8) 9x  3y  24 3(3x  5x  3y  2 5x  3y  2   Add the equations to eliminate y; then solve for x.

Copyright © 2025 Pearson Education, Inc.

587


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 9x  3y  24 5x  3y  2  22 14x 22 11 x  14 7  11 23  The solution of the system is   , . 7 7    52. a; answers may vary

c.

54. answers may vary 56. a.

When b = 2, the system has an infinite number of solutions.

b.

When b is any real number except 2, the system has a single solution. 5x  2 y  19.8  58. 3x  5 y  3.7  Multiply the first equation by 5 and the second equation by 2.  5(5x  2 y)  5(19.8) 2(3x  5 y)  2(3.7)   25x 10 y  99   6x  10 y  7.4 Add the equations to eliminate y; then solve for x. 25x 10 y  99 6x 10 y  7.4  106.4 19x x  5.6 Now solve for y. 5x  2 y  19.8 5(5.6)  2 y  19.8 28  2 y  19.8 2 y  8.2 y  4.1 The solution of the system is (5.6, 4.1). 60. a.

588

b.

0.42x  y  13.71 0.15x  y  15.77  Add the equations to eliminate y. 0.42x  y  13.71 0.15x  y  15.77 0.57x  2.06 x4 Let x = 4 in the first equation.

0.42(4)  y  13.71 1.68  y  13.71  y  15.39 y  15 The solution is approximately (4, 15). In 2003 (1999 + 4), the percent of workers age 55 and older was the same as the percent of workers ages 16 to 24. In 2003, each of these age groups composed 15% of the work force.

Mid-Chapter Review 1. 2x  3y  11  y  4x  3 Substitute 4x  3 for y in the first equation and solve for x. 2x  3y  11 2x  3(4x  3)  11 2x 12x  9  11 10xx   220 Now solve for y. y = 4x  3 = 4(2)  3 = 8  3 = 5 The solution to the system is (2, 5). 2. 4x  5 y  6  y  3x 10  Substitute 3x  10 for y in the first equation and solve for x. 4x  5 y  6 4x  5(3x 10)  6 4x 15x  50  6 11x  44 x4 Now solve for y. y = 3x  10 = 3(4)  10 = 12  10 = 2 The solution of the system is (4, 2). 3. x  y  3  x  y  7 Add the equations to eliminate y; then solve for x. x y 3 xy7 2x  10 x5 Now solve for y.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra x y 3 5 y  3 y  2 The solution of the system is (5, 2). 4.  x  y  20 x  y  8  Add the equations to eliminate y; then solve for x. x  y  20 x  y  8 2x  12 x6 Now solve for y. x  y  8 6  y  8 y  14 The solution of the system is (6, 14). 5.  x  2 y  1 3x  4 y  1  Solve the first equation for x. x  2y 1 x  2 y 1 Substitute 2y + 1 for x in the second equation and solve for y. 3x  4 y  1 3(2 y 1)  4 y  1 6 y  3  4 y  1 2 y  4 y2 Now solve for x. x = 2y + 1 = 2(2) + 1 = 4 + 1 = 3 The solution of the system is (3, 2). 6.  x  3y  5 5x  6 y  2  Solve the first equation for x. x  3y  5 x  3y  5 Substitute 3y + 5 for x in the second equation and solve for y. 5x  6 y  2 5(3y  5)  6 y  2 15 y  25  6 y  2 9 y  27 y3 Now solve for x. x = 3y + 5 = 3(3) + 5 = 9 + 5 = 4 The solution of the system is (4, 3).

Chapter 14: Systems of Equations 7. y  x  3 3x  2 y  6 Substitute x + 3 for y in the second equation and solve for x. 3x  2 y  6 3x  2(x  3)  6 3x  2x  6  6 x0 Now solve for y. y=x+3=0+3=3 The solution of the system is (0, 3). 8.  y  2x 2x  3y  16  Substitute 2x for y in the second equation and solve for x. 2x  3y  16 2x  3(2x)  16 2x  6x  16 8x  16 x  2 Now solve for y. y = 2x = 2(2) = 4 The solution of the system is (2, 4). 9.  y  2x  3  y  5x 18  Substitute 2x  3 for y in the second equation and solve for x. y  5x 18 2x  3  5x 18 15  3x 5 x Now solve for y. y = 2x  3 = 2(5)  3 = 10  3 = 7 The solution of the system is (5, 7). 10.  y  6x  5  y  4x 11 Substitute 6x  5 for y in the second equation and solve for x. y  4x 11 6x  5  4x 11 2x  6 x  3 Now solve for y. y = 6x  5 = 6(3)  5 = 18  5 = 23 The solution of the system is (3, 23).

Copyright © 2025 Pearson Education, Inc.

589


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 1 1  11.  x  y   6 2 3x  2 y  3

12.

590

Multiply the first equation by 6 to eliminate fractions. 1   1 6  x  y   6     2  6  6x  y  3 Now solve for y.  y = 6x + 3 Substitute 6x + 3 for y in the second equation and solve for x. 3x  2 y  3 3x  2(6x  3)  3 3x 12x  6  3 9x  3 3 1 x  9 3 Now solve for y. 1 y  6x  3  6  3  2  3  1  3     1  The solution of the system is  , 1.  3  x

1

y

5

3 12 8x  3y  4 Multiply the first equation by 12 to eliminate fractions. 1   5 12 x  y  12     12  3     12x  4 y  5 Multiply the revised first equation by 3 and the second original equation by 4. 3(12x  4 y)  3(5) 36x 12 y  15   32x 12 y  16  4(8x  3y)  4(4)   Add the equations to eliminate y; then solve for x. 36x 12 y  15 32x 12 y  16 1 4x 1 x 4 Now solve for y.

8x  3y  4  1 8   3y  4  4    2  3y  4 3y  6 y2  1   The solution of the system is   , 2 .  4  

x  5y  1 13.  2x 10 y  3  Solve the first equation for x. x  5y  1 x  5y 1 Substitute 5y + 1 for x in the second equation and then solve for y. 2x 10 y  3 2(5 y 1) 10 y  3 10 y  2 10 y  3 2  3 Since the statement is false, the system has no solution. 14. x  2 y  3  3x  6 y  9 Solve the first equation for x. x  2 y  3 x  2y 3 Substitute 2y  3 for x in the second equation and solve for y. 3x  6 y  9 3(2 y  3)  6 y  9 6 y  9  6 y  9 00 Since the statement 0 = 0 is true, the system has an infinite number of solutions. 15. 0.2x  0.3y  0.95  0.4x  0.1y  0.55 Multiply both equations by 100 to eliminate decimals. 100(0.2x  0.3y)  100(0.95) 100(0.4x  0.1y)  100(0.55)  20x  30 y  95   40x 10 y  55 Multiply the second revised equation by 3. 20x  30 y  95  20x  30 y  95 3(40x 10 y)  3(55)  120x  30 y  165  

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra   Add the equations to eliminate y; then solve for x. 20x  30 y  95 120x  30 y  165  70 140x x  0.5 Now solve for y. 0.4x  0.1y  0.55 0.4(0.5)  0.1y  0.55 0.2  0.1y  0.55 0.1y  0.35 y  3.5 The solution of the system is (0.5, 3.5). 16. 0.08x  0.04 y  0.11  0.02x  0.06 y  0.09 Multiply both equations by 100 to eliminate decimals.  0.04 y)  100(0.11) 100(0.08x  100(0.02x  0.06 y  100(0.09) 8x  4 y  11   2x  6 y  9 Multiply the second revised equation by 4. 8x  4 y  11   8x  4 y  11 4(2x  6 y)  4(9)  8x  24 y  36   Add the equations to eliminate x; then solve for y. 8x  4 y  11 8x  24 y  36 20 y  25 y  1.25 Now solve for x. 0.08x  0.04 y  0.11 0.08x  0.04(1.25)  0.11 0.08x  0.05  0.11 0.08x  0.06 x  0.75 The solution of the system is (0.75, 1.25). 17. x  3y  7 2x  6 y  14 Substitute 3y  7 for x in the second equation and solve for y. 2x  6 y  14 2(3y  7)  6 y  14 6 y 14  6 y  14 00 Since the statement 0 = 0 is true, the system has an infinite number of solutions.

Chapter 14: Systems of Equations x  18.  y   3  2 2x  4 y  0 x Substitute  3 for y in the second equation and 2 solve for x. 2x  4 y  0 x  2x  4 3  0 2    2x  2x 12  0 12  0 Since the statement 12 = 0 is false, the system has no solution. 19. 2x  5 y  1  3x  4 y  33 Multiply the first equation by 3 and the second equation by 2.  3(2x  5 y)  3(1)   6x 15 y  3 2(3x  4 y)  2(33) 6x  8 y  66

  Add the equations to eliminate x; then solve for y. 6x 15 y  3 6x  8 y  66 23y  69 y  3 Now solve for x. 2x  5 y  1 2x  5(3)  1 2x 15  1 2x  14 x7 The solution of the system is (7, 3).

20. 7x  3y  2  6x  5 y  21 Multiply the first equation by 5 and the second equation by 3. 5(7x  3y)  5(2) 35x 15 y  10 3(6x  5 y)  3(21)  18x 15 y  63   Add the equations to eliminate y; then solve for x. 35x 15 y  10 18x 15 y  63  53 53x x  1 Now solve for y.

Copyright © 2025 Pearson Education, Inc.

591


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 7x  3y  2 7(1)  3y  2 7  3y  2 3y  9 y  3 The solution of the system is (1, 3). 21. answers may vary 22. answers may vary Section 14.4 Practice Exercises 1. x  y  50 x  y  22  Add the equations to eliminate y; then solve for x. x  y  50 x  y  22 2x  72 x  36 Now solve for y. x  y  50 36  y  50 y  14 The two numbers are 36 and 14. 2.  A  C  587 7 A  5C  3379  Multiply the first equation by 5. 5( A  C)  5(587)  5A  5C  2935 7 A  5C  3379 7 A  5C  3379   Add the equations to eliminate C; then solve for A. 5A  5C  2935 7 A  5C  3379 2A  444 A  222 Now solve for C. A  C  587 222  C  587 C  365 There were 222 adults and 365 children. r 

t =

d

Faster car

x

6

6x

Slower car

y

6

6y

3.

6x  6 y  780 x  y  5 

592

Substitute y + 5 for x in the first equation and solve for y. 6x  6 y  780 6( y  5)  6 y  780 6 y  30  6 y  780 12 y  750 y  62.5 Now solve for x. x  y  5  62.5  5  67.5 One car’s speed is 62.5 mph and the other car’s speed is 67.5 mph. 4. Let x be the liters of 20% solution. Let y be the liters of 70% solution. x  y  50  0.2x  0.7 y  0.6(50)  Multiply the first equation by 2 and the second equation by 10. 2(x  y)  2(50)  10(0.2x  0.7 y)  10(30)  2x  2 y  100   2x  7 y  300  Add the equations to eliminate x; then solve for y. 2x  2 y  100 2x  7 y  300 5 y  200 y  40 Now solve for x. x  y  50 x  40  50 x  10 10 liters of the 20% alcohol solution and 40 liters of the 70% alcohol solution make 50 liters of the 60% alcohol solution. Vocabulary, Readiness & Video Check 14.4 1. Up to now we’ve been working with one variable/unknown and one equation. Because systems involve two equations with two unknowns, for these applications we need to choose two variables to represent two unknowns and translate the problem into two equations. Exercise Set 14.4 2. In choice a, the perimeter is 6 + 6 + 7 = 19, not 20 feet. In choice c, no 2 sides have the same length. Choice b gives the solution, since 7 + 7 + 6 = 20.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

4. In choice a, the total cost is 2(12) + 4(4) = 24 + 16 = $40 but the second part is 3(12) + 5(4) = 36 + 20 = $56, not $55. In choice b, the total cost is 2(15) + 4(2) = 30 + 8 = $38, not $40. Choice c gives the solution since 2(10) + 4(5) = 20 + 20 = $40 and 3(10) + 5(5) = 30 + 25 = $55. 6. In choice a, the total number of gallons is 15 + 5 = 20, not 28. In choice b, 3 times 8 is 24, not 20. Choice c gives the solution, since 21 + 7 = 28 and 3 times 7 is 21. 8. Let x be the first number and y the second. x  y  16  x  3y  2  18  10. Let x be the amount in his checking account and y be the amount in his savings account. x  y  2300  y  4x  12. Let x be the first number and y be the second. x  y  76 x  y  52 Add the equations to eliminate y; then solve for x. xx   52 76  yy  2x

 128 x  64

Now solve for y. x  y  76 64  y  76 y  12 The numbers are 64 and 12. 14. Let x be the first number and y the second. xx  y2 y254  Substitute 2y + 4 for x in the second equation and solve for y. x  y  25 2 y  4  y  25 3y  21 y7 Now solve for x. x  y  25 x  7  25 x  18 The numbers are 18 and 7.

Chapter 14: Systems of Equations

16. Let x be the number of points that Breanna Stewart scored and y be the number that Kelsey Plum scored. x  y 15  x  y  1467 Substitute y + 15 for x in the second equation and solve for y. x  y  1467 y 15  y  1467 2 y 15  1467 2 y  1452 y  726 Now solve for x. x = y + 15 = 726 + 15 = 741 Breanna Stewart scored 741 points and Kelsey Plum scored 726 points. 18. Let x be the cost of a DVD and y be the cost of a CD. 5x  2 y  65  3x  4 y  81 Multiply the first equation by 2. 2(5x  2 y)  2(65) 10x  4 y  130   3x  4 y  81 3x  4 y  81   Add the equations to eliminate y and then solve for x. 10x  4 y  130 3x  4 y  81 7x x  49 7 Now solve for y. 5x  2 y  65 5(7)  2 y  65 35  2 y  65 2 y  30 y  15 DVDs cost $7 and CDs cost $15 each. 20. Let x be 47¢ stamps and y be 34¢ stamps. x  y  40  0.47x  0.34 y  18.15 Solve the first equation for x. x  y  40 x   y  40 Substitute y + 40 for x in the second equation and solve for y. 0.47 x  0.34 y  18.15 0.47( y  40)  0.34 y  18.15 0.47 y 18.8  0.34 y  18.15 0.13 y  0.65 y5

Copyright © 2025 Pearson Education, Inc.

593


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

Now solve for x. x = y + 40 = 5 + 40 = 35 They purchased 35 47¢ stamps and 5 34¢ stamps. 22. Let x be the number of shares of Meta Platform, Inc. stock and y be the number of shares of Alphabet, Inc. stock.  y  x 15 288.70x 120.76 y  10, 410.06  Substitute x + 15 for y in the second equation and solve for x. 288.70x 120.76 y  10, 410.06 288.7x 120.76(x 15)  10, 410.06 288.7x 120.76x 1811.4  10, 410.06 409.46x  8598.66 x  21 Now solve for y. y = x + 15 = 21 + 15 = 36 The couple owned 21 shares of Meta Platform, Inc. and 36 shares of Alphabet, Inc. 24. Let x be the daily fee and y be the mileage charge.  300 y  178 5x 4x  500 y  197  Multiply the first equation by 4 and the second by 5. 4(5x  300 y)  4(178) 5(4x  500 y)  5(197)   20x  1200 y  712  20x  2500 y  985 Add the equations to eliminate x; then solve for y. 20x 1200 y  712 20x  2500 y  985 1300 y  273 y  0.21 Now solve for x. 5x  300 y  178 5x  300(0.21)  178 5x  63  178 5x  115 x  23 There is a $23 daily fee and a $0.21 per mile mileage charge. 

 26. 10  5 (x  y)  4 10  4(x  y) Multiply the first equation by

4

equation by 4

. 4 4 5

 (x  y)    58  x  y  5  51 4   x y 1  (10)  [4(x  y)] 2  4 4 Add the equations to eliminate y; then solve for x. 8 x y 2.5  x  y 10.5  2x 5.25  x Now solve for y. 8 x y 8  5.25  y 2.75  y The rate of the current is 2.75 mph. (10) 

28. Let x be the rate of the plane in still air; then let y be the rate of the wind. 19  2400  (x  y)  4 2400  6(x  y) 4 Multiply the first equation by and the second 19 1 equation by . 6 4 4 19   (2400)   (x  y)   19 19   505.26 1 1  4 400  xx  yy   (2400)  [6(x  y)]  

 6

6

Add the equations to eliminate y; then solve for x. 505.26  x  y 400  x  y 905.26  2x 452.6  x Now solve for y. 2400  6(x  y) 2400  6(452.6)  6 y 2400  2715.6  6 y 315.6  6 y 52.6  y The speed of the plane in still air is 452.6 mph and the rate of the wind is 52.6 mph.

and the second

5 594

1

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

30. Let x be the speed of the eastbound train, and let y be the speed of the westbound train. 1.25x 1.25 y  150 y  2x Substitute 2x for y in the first equation. 1.25x 1.25 y  150 1.25x 1.25(2x)  150 1.25x  2.5x  150 3.75x  150 x  40 Now solve for y. y = 2x = 2(40) = 80 The eastbound train is traveling at 40 mph and the westbound train is traveling at 80 mph. 32. Let x be liters of the 40% solution, and let y be liters of the 10% solution. x  y  15  0.40x  0.10 y  0.25(15)  Solve the first equation in terms of x. x  y  15 x   y 15 Substitute y + 15 for x in the second equation and solve for x. 0.40x  0.10 y  3.75 0.40( y 15)  0.10 y  3.75 0.40 y  6  0.10 y  3.75 0.30 y  2.25 y  7.5 Now solve for x. x = y + 15 = 7.5 + 15 = 7.5 The technician will need 7.5 liters of the 10% solution and 7.5 liters of the 40% solution to make 15 liters of the 25% solution. 34. Let x be the number of pounds of macadamias, and let y be the number of pounds of standard mix. x  y  40  16.50x  9.25 y  10(40)  Solve the first equation in terms of x. x  y  40 x   y  40 Substitute y + 40 for x in the second equation and solve for y. 16.50x  9.25 y  10(40) 16.50x  9.25 y  400 16.50( y  40)  9.25 y  400 16.50 y  660  9.25 y  400 7.25x  260 x  35.9

Chapter 14: Systems of Equations

Now solve for y. x = y + 40 = 35.9 + 40 = 4.1 Combining 4.1 pounds of macadamias and 35.9 pounds of standard mix will produce 40 pounds, which costs $10 per pound. 36. Let x be the measure of one angle, and let y be the measure of the other angle. x + y = 180 y = 4x + 20 Substitute 4x + 20 for y in the first equation and solve for x. x  y  180 x  4x  20  180 5x  160 x  32 Now solve for y. y = 4x + 20 = 4(32) + 20 = 148 One angle is 32 and the other is 148. 38. Let x be the measure of one angle and y be the measure of the other. x  y  90  x  10  3y Substitute 10 + 3y for x in the first equation and solve for y. x  y  90 10  3y  y  90 10  4 y  90 4 y  80 y  20 x = 10 + 3y = 10 + 3(20) = 10 + 60 = 70 The angles measure 20 and 70. 40. Let x be the number of adults, and let y be the number of children. x  y  387  6.80x  3.40 y  2444.60  Solve the first equation in terms of x. x  y  387 x  387  y Substitute 387  y for x in the second equation and solve for y. 6.80x  3.40 y  2444.60 6.80(387  y)  3.40 y  2444.60 2631.60  6.80 y  3.40 y  2444.60 3.4 y  187 y  55 Now solve for x. x = 387  y = 387  55 = 332 332 adults and 55 children attended the supper.

Copyright © 2025 Pearson Education, Inc.

595


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

42. Let x be the rate of the faster car and y be the rate of the slower car. 3x + 3y = 123 x=y+1 Substitute y + 1 for x in the first equation and solve for y. 3x  3y  123 3( y  1)  3y  123 3y  3  3y  123 6 y  120 y  20 Now solve for x. x = y + 1 = 20 + 1 = 21 One car traveled at 21 mph and the other traveled at 20 mph. 44. Let x be the number of ounces of the 10% solution and y be the number of ounces of the 50% solution. x  y  120   0.10x  0.50 y  0.20(120) Solve the first equation in terms of x. x  y  120 x  120  y Substitute 120  y for x in the second equation and solve for y. 0.10x  0.50 y  0.20(120) 0.10x  0.50 y  24 0.10(120  y)  0.50 y  24 12  0.10 y  0.50 y  24 0.40 y  12 y  30 Now solve for x. x = 120  y = 120  30 = 90 Combining 90 ounces of 10% solution with 30 ounces of 50% solution will make 120 ounces of 20% solution. 46. Let x be the length and y the width. 2(x  y)  60 x  y6 Substitute y + 6 for x in the first equation and solve for y. 2(x  y)  60 2( y  6  y)  60 2(2 y  6)  60 4 y 12  60 4 y  48 y  12 Now solve for x. x = y + 6 = 12 + 6 = 18 The length is 18 inches and the width is 12 inches. 596

48. 32  3  3  9 50. (11y)2  (11y)(11y)  121y2 52. (8x5 )2  (8x5 )(8x5 )  64x10 54. The strength of the acid mixture must be between 50% and 100%, so choices c and d are the only possibilities. 56. 2x  y  152 1 x  y4 2 1 Substitute y  4 for x in the first equation and 2 solve for y. 2x  y  152 1  2 y  4  y  152 2    y  8  y  152 2 y  144 y  72 Now solve for x. 1 1 x  y  4  (72)  4  36  4  40 2 2 The width is 40 feet and the length is 72 feet.

Chapter 14 Vocabulary Check 1. In a system of linear equations in two variables, if the graphs of the equations are the same, the equations are dependent equations. 2. Two or more linear equations are called a system of linear equations. 3. A system of equations that has at least one solution is called a(n) consistent system. 4. A solution of a system of two equations in two variables is an ordered pair of numbers that is a solution of both equations in the system. 5. Two algebraic methods for solving systems of equations are addition and substitution. 6. A system of equations that has no solution is called a(n) inconsistent system. 7. In a system of linear equations in two variables, if the graphs of the equations are different, the equations are independent equations.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 14 Review 1. a.

3. a.

2x  3y  12 3x  4 y  1  First equation: 2x  3y  12 2(12)  3(4) 012 24 12 0 12 12  12 True Second equation: 3x  4 y  1 3(12)  4(4) 01 36 16 0 1 20  1 False (12, 4) is not a solution of the system.

b. First equation: 2x  3y  12 2(3)  3(2) 012 6  6 0 12 12  12 True Second equation: 3x  4 y  1 3(3)  4(2) 01 98 01 1  1 True (3, 2) is a solution of the system. 2. a.

Chapter 14: Systems of Equations

2x  3y  1  3y  x  4  First equation: 2x  3y  1 2(2)  3(2) 01 4 6 01 10  1 False (2, 2) is not a solution of the system.

b. First equation: 2x  3y  1 2(1)  3(1) 01 2  3 0 1 1  1 True Second equation: 3y  x  4 3(1)  (1) 0 4 3 1 0 4 4  4 True (1, 1) is a solution of the system.

5x  6 y  18 2 y  x  4  First equation: 5x  6 y  18 5(6)  6(8) 018 30  48 0 18 18  18 True Second equation: 2 y  x  4 2(8)  (6) 0  4 16  6 0  4 10  4 False (6, 8) is not a solution of the system.

b. First equation: 5x  6 y  18 5 5(3)  6 018  2    15 15 0 18 0  18 False  5 3, is not a solution of the system.    2  4. a.

 4x  y  0 8x  5 y  9  First equation: 4x  y  0 3   4  (3) 0 0   4 3 3 0 0 0  0 True Second equation: 8x  5 y  9 3 8  5(3) 0 9  4    6 15 0 9 9  9 True 3   ,  3 is a solution of the system. 4 

b. First equation: 4x  y  0 4(2)  8 0 0 8  8 0 0 0  0 True

Copyright © 2025 Pearson Education, Inc.

597


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

Second equation: 8x  5 y  9 8(2)  5(8) 0 9 16  40 0 9 24  9 False (2, 8) is not a solution of the system.

8. x  3  y  2 The solution of the system is (3, 2).

5. x  y  5 x  y  1  The solution of the system is (3, 2).

9. 2x  y  5  x  3y The solution of the system is (3, 1).

6. x  y  3 x  y  1  The solution of the system is (1, 2).

10. 3x  y  2  y  5x The solution of the system is (1, 5).

7. x  5  y  1  The solution of the system is (5, 1).

11.  y  3x  6x  2 y  6 There are no solutions to the system because the lines are parallel.

598

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

      

Chapter 14: Systems of Equations 15.  x  3y  3  2x  y  4 Solve the second equation in terms of y. 2x  y  4 y  2x  4

12.  x  2 y  2  2x  4 y  4 Since they are the same lines, there are an infinite number of solutions.

13.  y  2x  6  3x  2 y  11 Substitute 2x + 6 for y in the second equation and solve for x. 3x  2 y  11 3x  2(2x  6)  11 3x  4x 12  11 x  1 x  1 Now solve for y. y = 2x + 6 = 2(1) + 6 = 2 + 6 = 4 The solution of the system is (1, 4). 14.  y  3x  7  2x  3y  7 Substitute 3x  7 for y in the second equation and solve for x. 2x  3y  7 2x  3(3x  7)  7 2x  9x  21  7 7x  14 x2 Now solve for y. y = 3x  7 = 3(2)  7 = 6  7 = 1 The solution of the system is (2, 1).

Substitute 2x + 4 for y in the first equation and solve for x. x  3y  3 x  3(2x  4)  3 x  6x 12  3 5x  15 x3 Now solve for y. y = 2x + 4 = 2(3) + 4 = 6 + 4 = 2 The solution of the system is (3, 2). 16. 3x  y  11  x  2 y  12 Solve the first equation in terms of y. 3x  y  11 y  3x 11 Substitute 3x + 11 for y in the second equation and solve for x. x  2 y  12 x  2(3x 11)  12 x  6x  22  12 5x  10 x2 Now solve for y. y = 3x + 11 = 3(2) + 11 = 6 + 11 = 5 The solution of the system is (2, 5). 17. 4 y  2x  6  x  2 y  3 Solve the second equation in terms of x. x  2 y  3 x  2y 3 Substitute 2y  3 for x in the first equation and solve for y. 4 y  2x  6 4 y  2(2 y  3)  6 4y  4y  6  6 00 Since the statement 0 = 0 is true, there are an infinite number of solutions for the system. 18. 9x  6 y  3  6x  4 y  2 Solve the first equation in terms of x.

Copyright © 2025 Pearson Education, Inc.

599


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 9x  6 y  3 6 3 x y 9 9 2 1 x  y 3 3 2 1 Substitute y  for x in the second equation 3 3 and solve for y. 6x  4 y  2 1 2 6 y   4y  2 3   3 4 y  2  4 y  2 00 Since the statement 0 = 0 is true, there are an infinite number of solutions for the system. 19. xy  yx 6 4 Substitute x  4 for y in the first equation and solve for x. x y  6 x  ( x  4)  6 0  10 False Since the statement 0 = 10 is false, there is no solution for the system. 20. 3x  y  6  y  3x  2 Substitute 3x + 2 for y in the first equation and solve for x. 3x  y  6 3x  3x  2  6 2  6 False Since the statement 2 = 6 is false, there is no solution for the system. 21. 2x  3y  6  x  3y  12  Add the equations to eliminate y and solve for x. 2x  3y  6 x  3y  12 3x  18 x  6 Now solve for y. x  3y  12 6  3y  12 3y  6 y2 The solution for the system is (6, 2).

600

22.  4x  y  15 4x  3y  19  Add the equations to eliminate x and solve for y. 4x  y  15 4x  3y  19 4 y  4 y  1 Now solve for x. 4x  y  15 4x 1  15 4x  16 x4 The solution for the system is (4, 1). 23. 2x  3y  15  x  4 y  31 Multiply the second equation by2x 2. 3y  15  2x  3y  15  2(x  4 y)  2(31)   2x  8 y  62

  Add the equations to eliminate x and solve for y. 2x  3y  15 2x  8 y  62 11y  77 y7 Now solve for x. x  4 y  31 x  4(7)  31 x  28  31 x3 The solution of the system is (3, 7).

24.  x  5 y  22  4x  3y  4 Multiply the first equation by 4.  5 y)  4(22) 4x  20 y  88 4(x   4x  3y  4 4x  3y  4    Add the equations to eliminate x and solve for y. 4x  20 y  88 4x  3y  4 23y  92 y4 Now solve for x. x  5 y  22 x  5(4)  22 x  20  22 x  2 The solution of the system is (2, 4).

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

25.  2x  6 y  1 x  3y  1  2 Multiply the second equation by 2.   2x  6 y  1  1    2x  6 y  1 2(x  3y)  2 2x  6 y  1      2  Add the equations to eliminate x. 2x  6 y  1 2x  6 y  1 00 Since the statement 0 = 0 is true, there are an infinite number of solutions for the system. 26.  0.6x  0.3y  1.5 0.04x  0.02 y  0.1  Multiply the first equation by 10 and the second by 100 to eliminate decimals.  10(0.6x  0.3y)  10(1.5) 100(0.04x  0.02 y)  100(0.1)   6x  3y  15  4x  2 y  10  Multiply the first revised equation by 2 and the second revised equation by 3. 2(6x  3y)  2(15)  12x  6 y  30 3(4x  2 y)  3(10)  12x  6 y  30   Add the equations to eliminate y. 12x  6 y  30 12x  6 y  30 00 Since the statement 0 = 0 is true, there are an infinite number of solutions for the system. 2 3 27.

x y  2 4 3y  x   6  3 Multiply the first equation by 12 and the second by 3 to eliminate fractions.  3 2  9x  8 y  24 12  x  y   12(2) 3  4     3x  y  18 y    3 x   3(6)  3     Multiply the second revised equation by 3.  9x  8 y  24  9x  8 y  24 3(3x  y)  3(18)  9x  3y  54   Add the equations to eliminate x and solve for y.

Chapter 14: Systems of Equations 9x  8 y  24 9x  3y  54 5 y  30 y  6 Now solve y for x. x 6  63 6    3  x  (2)  6 x8 The solution of the system is (8, 6). x

 2y  0 28. 10x 3x  5 y  33  Multiply the first equation by 5 and the second by 2.  2 y)  5(0) 50x 10 y  0 5(10x 2(3x  5 y)  2(33)  6x 10 y  66   Add the equations to eliminate y and solve for x. 50x 10 y  0 6x 10 y  66  66 44x 66 3 x  44 2 Now solve for y. 10x  2 y  0  3 10   2 y  0  2    15  2 y  0 2 y  15 15 y 2  3 15  The solution of the system is  , .  2 2   29. Let x be the smaller number and y be the larger.  x  y  16 3y  x  72  Solve the first equation in terms of y. x  y  16 y  x 16 Substitute x + 16 for y in the second equation and solve for x. 3y  x  72 3(x 16)  x  72 3x  48  x  72

Copyright © 2025 Pearson Education, Inc.

4x  24 x  6

601


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

Now solve for y. y = x + 16 = (6) + 16 = 6 + 16 = 22 The two numbers are 6 and 22. 30. Let x be the number of orchestra seats and y be the number of balcony seats. x  y  360  45x  35 y  15,150  Solve the first equation in terms of x. x = y + 360 Substitute y + 360 for x in the second equation and solve for y. 45x  35 y  15,150 45( y  360)  35 y  15,150 45 y 16, 200  35 y  15,150 10 y  1050 y  105 Now solve for x. x  y  360 x 105  360 x  255 There are 255 orchestra seats and 105 balcony seats. 31. Let x be the rate of the current and y be the speed in still water. 19(x  y)  340 14(x  y)  340 Multiply the first equation by

1 19

by

1

and the second

. 14 1 1 [19(x  y)]  (340) 19  x  y  17.9 19 1 1  x  y  24.3   [14(x  y)]  14 14 (340)  Add the equations to eliminate y and solve for x. x  y  17.9 x  y  24.3 2x  42.2 x  21.1 Now solve for x. x  y  24.3 21.1 y  24.3 y  3.2 The speed in still water is 21.1 mph and the current of the river is 3.2 mph.

32. Let x = number of cc of 6% acid solution and y = number of cc of 14% acid solution. x  y  50 0.06x  0.14 y  0.12(50)  0.06x  0.14 y  6 Solve the first equation in terms of x. x  y  50 x   y  50 Substitute y + 50 for x in the second equation and solve for y. 0.06x  0.14 y  6 0.06( y  50)  0.14 y  6 0.06 y  3  0.14 y  6 0.08 y  3 y  37.5 Now solve for x. x = y + 50 = 37.5 + 50 = 12.5 12.5 cc of the 6% solution and 37.5 cc of the 14% solution are needed to make 50 cc of the 12% solution. 33. Let x be the cost of an egg and y be the cost of a strip of bacon. 3x  4 y  3.80 2x  3y  2.75  Multiply the first equation by 2 and the second by 3. 2(3x  4 y)  2(3.80)  6x  8 y  7.60 3(2x  3y)  3(2.75)  6x  9 y  8.25   Add the equations to eliminate x and solve for y. 6x  8 y  7.60 6x  9 y  8.25  y  0.65 y  0.65 Now solve for x. 2x  3y  2.75 2x  3(0.65)  2.75 2x 1.95  2.75 2x  0.80 x  0.40 Each egg costs $0.40 and each strip of bacon costs $0.65. 34. Let x be time spent jogging, and let y be the time spent walking. x y 3  7.5x  4 y  15  Solve the first equation in terms of x. x y 3 x  y 3 Substitute y + 3 for x in the second equation and solve for y.

602

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 7.5x  4 y  15 7.5( y  3)  4 y  15 7.5 y  22.5  4 y  15 3.5 y  7.5 y  2.14 Now solve for x. x y 3 x  2.14  3 x  0.86 He spent 0.86 hour jogging and 2.14 hours walking. 35.  x  2 y  1 2x  3y  12  The solution to the system is (3, 2).

36.  3x  y  4 6x  2 y  8  The system has an infinite number of solutions because it is the same line.

37.  x  4 y  11  5x  9 y  3 Solve the first equation in terms of x. x  4 y  11 x  4 y 11 Substitute 4y + 11 for x in the second equation and solve for y.

Chapter 14: Systems of Equations 5x  9 y  3 5(4 y 11)  9 y  3 20 y  55  9 y  3 29 y  58 y2 Now solve for x. x = 4y + 11 = 4(2) + 11 = 8 + 11 = 3 The solution of the system is (3, 2). 38.  x  9 y  16  3x  8 y  13 Solve the first equation in terms of x. x  9 y  16 x  9 y 16 Substitute 9y + 16 for x in the second equation and solve for y. 3x  8 y  13 3(9 y 16)  8 y  13 27 y  48  8 y  13 35 y  35 y 1 Now solve for x. x = 9y + 16 = 9(1) + 16 = 9 + 16 = 7 The solution of the system is (7, 1). 39. y  2x 4x  7 y  15 Substitute 2x for y in the second equation and solve for x. 4x  7 y  15 4x  7(2x)  15 4x 14x  15 10x  15 15 3 x  10 2 Now solve for y. 3 y  2x  2  3  2    3 The solution of the system is 2 , 3.    

3y  2x 15   2x  3y  15 2x  3y  21 40. 2x  3y  21   Add the equations to eliminate x. 2x  3 y  15 2x  3 y  21 06 False Since the statement 0 = 6 in false, there is no solution for the system.

Copyright © 2025 Pearson Education, Inc.

603


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 41. 3x  y  4  4 y  12x 16 Solve the first equation in terms of y. 3x  y  4 3x  4  y Substitute 3x  4 for y in the second equation and solve for x. 4 y  12x 16 4(3x  4)  12x 16 12x 16  12x 16 00 Since the statement 0 = 0 is true, there are an infinite number of solutions for the system. 42. x  y  19  x  y  3 Add the equations to eliminate y and solve for x. x  y  19 x  y  3 2x  16 x8 Now solve for y. x  y  19 8  y  19 y  11 The solution of the system is (8, 11). 43.  x  3y  11 4x  5 y  10  Solve the first equation in terms of x. x  3y  11 x  3y  11 Substitute 3y  11 for x in the second equation and solve for y. 4x  5 y  10 4(3y 11)  5 y  10 12 y  44  5 y  10 17 y  34 y2 Now solve for x. x = 3y  11 = 3(2)  11 = 6  11 = 5 The solution of the system is (5, 2). 44. x 15y  44   2x  3y  20 Solve the first equation in terms of x. x 15 y  44 15 y  44  x Substitute 15y  44 for x in the second equation and solve for y. 604

2x  3 y  20 2(15 y  44)  3 y  20 30 y  88  3 y  20 27 y  108 y  4 Now solve for x. x = 15y  44 = 15(4)  44 = 60  44 = 16 The solution of the system is (16, 4). 45.  2x  y  3  6x  3y  9 Solve the first equation in terms of y. 2x  y  3 y  2x  3 Substitute 2x + 3 for y in the second equation and solve for x. 6x  3y  9 6x  3(2x  3)  9 6x  6x  9  9 00 Since the statement 0 = 0 is true, there are an infinite number of solutions for the system. 46. 3x  y  5  3x  y  2 Solve the first equation in terms of y. 3x  y  5 y  3x  5 Substitute 3x + 5 for y in the second equation and solve for x. 3x  y  2 3x  3x  5  2 5  2 False Since the statement 5 = 2 is false, there is no solution for the system. 47. Let x be the smaller number and y be the larger number.  x  y  12 3x  y  20  Solve the first equation in terms of y. x  y  12 y  x 12 Substitute x + 12 for y in the second equation and solve for x. 3x  y  20 3x  (x 12)  20 2x 12  20 2x  8 x4

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 1.05x  0.63y  20.58 1.05( y  26)  0.63y  20.58 1.05 y  27.3  0.63y  20.58 0.42 y  6.72 y  16 Now solve for x. x = y + 26 = 16 + 26 = 10 The purchase included 10 $1.05 stamps and 16 63¢ stamps.

Now solve for y. y = x + 12 = 4 + 12 = 8 The two numbers are 4 and 8. 48. Let x be the smaller number and y be the larger number. x  y  18 2x  y  23 Solve the first equation in terms of x. x  y  18 x  y  18 Substitute y  18 for x in the second equation and solve for y. 2x  y  23 2( y 18)  y  23 2 y  36  y  23 y  13 Now solve for x. x = y  18 = 13  18 = 5 The two numbers are 5 and 13. 49. Let x be nickels and y be dimes. x  y  65 0.05x  0.1y  5.30 Solve the first equation in terms of x. x  y  65 x   y  65 Substitute y + 65 for x in the second equation and solve for y. 0.05x  0.1y  5.30 0.05( y  65)  0.1y  5.30 0.05 y  3.25  0.1y  5.30 0.05 y  2.05 y  41 Now solve for x. x = y + 65 = 41 + 65 = 24. There are 24 nickels and 41 dimes. 50. Let x be the number of $1.05 stamps and y be the number of 63¢ stamps. x  y  26  1.05x  0.63y  20.58  Solve the first equation for x. x  y  26  x   y  26 Substitute y + 26 for x in the second equation and solve for y.

Chapter 14 Getting Ready for the Test 1. A.

5x  y  7 5(1)  2 0  7 5  2 0  7 7  7 True

x y 3 1 2 0 3 1 2 0 3 3  3 False

B.

3x  y  5 3(1)  2 0  5 3  2 0  5 5  5 True

x y 1 1 2 0 1 1  1 True

C.

x2 1  2 False

x y 1 1 2 0 1 1  1 True

D.

y  1 2  1 False

x  y  3 1 2 0  3 1  3 False

(1, 2) is a solution to system B.

x  3 2. Graph D is the graph of  . y  3 x  3 3. Graph A is the graph of  . y  3

4. Graph B is the graph of

x  3 . y  3 

 x  3 5. Graph C is the graph of  . y  3 6. When solving a system of two linear equations in two variables, if all variables subtract out and the resulting equation is 0 = 5, this means that the system has no solution; C. 7. the slopes of the two lines are different, so the system has one solution; B.

Copyright © 2025 Pearson Education, Inc.

605


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

8. The two lines have the same slope, but different y-intercepts, so the graph of the system is two parallel lines. The system has no solution; A. 9. Solve the second equation for y. 8x  2 y  4 2 y  8x  4 y  4x  2 The two lines have the same slope and the same y-intercept, so the graph of the system is one line. The system has an infinite number of solutions; D. 10. the slopes of the two lines are different, so the system has one solution; B. 11.

7.  x  y  2  3x  y  2

3(5x  y)  3(8) 3(5x)  3( y)  3(8) 15x  3y  24 Choice D is correct.

12.

6. 4x  3y  24  4x  5 y  8 First equation: 4x  3y  24 4(3)  3(4) 0 24 12 12 0 24 24  24 True Second equation: 4x  5 y  8 4(3)  5(4) 0  8 12  20 0  8 8  8 True (3, 4) is a solution of the system.

5(2x  3y)  5(1) 5(2x)  (5)(3y)  5(1) 10x 15 y  5 Choice C is correct.

Chapter 14 Test 1. False; a system of two linear equations can have no solutions, exactly one solution, or infinitely many solutions.

8.  y  3x  3x  y  6 y

2. False; a solution has to be a solution to both equations to be a solution of the system.

5 4 3 2 1

3. True; when the resulting statement is false the system has no solutions. 4. False; when 3x = 0  x = 0; the system does have a solution. 5. First equation: 2x  3 y  5 2(1)  3(1) 0 5 230 5 5  5 True Second equation: 6x  y  1 6(1)  (1) 01 6 1 0 1 5  1 False Since the statement 5 = 1 is false, (1, 1) is not a solution of the system.

606

–5 –4 –3 –2 –1–1

no solution

1 2 3 4 5

x

–2 –3 –4 –5

9. 3x  2 y  14  y  x  5 Substitute x + 5 for y in the first equation and solve for x. 3x  2 y  14 3x  2(x  5)  14 3x  2x 10  14 x 10  14 x  4 y = x + 5 = 4 + 5 = 1 The solution of the system is (4, 1).

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

15 1 10.  x  2 y   2 4 4x   y Multiply the second equation by 1. (1)4x  (1)( y) 4x  y Substitute 4x for y in the first equation. 1 15 x  2y   2 4 1 15 x  2(4x)   2 4 1 15 x  8x   2 4 1   15  4 2 x  8x  4  4          2x  32x  15 30x  15 15 1 x  30 2 Now solve for y. 1 y  4x  4  2  2    1  The solution of the system is  2 , 2 .   11. x  y  28   x  y  12 Add the equations to eliminate y. x  y  28 x  y  12 2x x   40 20

13.  3x  y  7 4x  3y  1  Solve the first equation for y. 3x  y  7 y  7  3x Substitute 7  3x for y in the second equation and solve for x. 4x  3y  1 4x  3(7  3x)  1 4x  21 9x  1 21 5x  1 5x  20 x4 y = 7  3x = 7  3(4) = 7  12 = 5 The solution of the system is (4, 5).

Now solve for y. x  y  28 20  y  28 y 8 The solution of the system is (20, 8). 12.  4x  6 y  7 2x  3y  0  Multiply the second equation by 2. 4x  6 y  7   4x  6 y  7 2(2x  3y)  2(0) 4x  6 y  0   Add the equations to eliminate x. 4x  6 y  7 4x  6 y  0 07 Since the statement 0 = 7 is false, the system has no solution.

14. 3(2x  y)  4x  20   x  2 y  3 Simplify the first equation. 3(2x  y)  4x  20 6x  3y  4x  20 2x  3y  20 2x  3y  20  x  2y  3  Multiply the second equation by 2. 2x  3y  20  2x  3y  20 2(x  2x  4 y  6  2 y)  2(3)   Add the equations to eliminate x; then solve for y. 2x  3y  20 2x  4 y  6 7 y  14 y2 Now solve for x. x  2y  3 x  2(2)  3 x4 3 x7 The solution of the system is (7, 2).  x3 2 y 15.  2  4 7  2x y   3 2  Multiply the first equation by 4 and the second equation by 6 to eliminate fractions and simplify.

Copyright © 2025 Pearson Education, Inc.

607


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

  x3  2  y  4  4  2x  6  2  y   2  4       14  4x  3y   7  2x   3   6  y2  6      2x  y  8   4x  3y  14  Multiply the first revised equation by 3. 3(2x  y)  3(8)  6x  3y  24  4x  3y  14  4x  3y  14   Add the equations to eliminate y. 6x  3y  24 4x  3y  14  10 2x x5 Now solve for y. 2x  y  8 2(5)  y  8 10  y  8 y  2 The solution of the system is (5, 2).

16. 8x  4 y  12  y  2x  3  Substitute 2x  3 for y in the first equation and solve for x. 8x  4 y  12 8x  4(2x  3)  12 8x  8x  12  12 00 Since the statement 0 = 0 is true, the system has an infinite number of solutions. 17. 0.01x  0.06 y  0.23   0.2x  0.4 y  0.2 Multiply the first equation by 100 and the second equation by 10 to eliminate decimals. 100(0.01x  0.06 y)  100(0.23)  10(0.2x  0.4 y)  10(0.2)   x  6 y  23   2x  4 y  2 Multiply the first equation by 2. 2(x  6 y)  2(23) 2x 12 y  46   2x  4 y  2  2x  4 y  2   Add the equations to eliminate x; then solve for y. 2x 12 y  46 2x  4 y  2 16 y  48 y3 608

Now solve for x. x  6 y  23 x  6(3)  23 x 18  23 x  5 The solution of the system is (5, 3). 2  18.  x  3 y  3 2x  3y  10 Solve the first equation in terms of x. 2 x y 3 3 2 x  y3 3 2 Substitute y  3 for x in the second equation 3 and solve for y. 2x  3y  10 2  2 y  3  3y  10 3    4  y  6  3y  10 3 4 y 18  9 y  30 5 y  48 48 y 5 Now solve for x. 2 2  48  32 15 47 x  y  3    3    3 3  5  5 5 5  47 48  The solution of the system is , .  5   5 19. Let x be the first number and the y be the second. x  y  124  x  y  32 Add the equations to eliminate y then solve for x. x  y  124 x  y  32 2x  156 x  78 Now solve for y. x  y  124 78  y  124 y  46 The numbers are 78 and 46.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

20. Let x = number of cc of 12% solution and y = number of cc of 16% solution. x  80  y  0.12x  0.22(80)  0.16 y  Substitute x + 80 for y in the second equation; then solve for x. 0.12x 17.6  0.16 y 0.12x 17.6  0.16(x  80) 0.12x 17.6  0.16x 12.8 4.8  0.04x 120  x 120 cc of the 12% saline is needed to make the 16% solution. 21. Let t be the number of farms in Texas (in thousands) and let m be the number of farms in Missouri (in thousands). t  m  342 t  m 152  Substitute m + 152 for t in the first equation and solve for m. t  m  342 m 152  m  342 2m 152  342 2m  190 m  95 t = m + 152 = 95 + 152 = 247 There were 247 thousand farms in Texas and 95 thousand farms in Missouri. 22. Let x be speed of one hiker and y be the speed of the other hiker. 4x  4 y  36  y  2x  Substitute 2x for y in the first equation; then solve for x. 4x  4 y  36 4x  4(2x)  36 4x  8x  36 12x  36 x3 Now solve for y. y = 2x = 2(3) = 6 One hiker hikes at 3 mph and the other hikes at 6 mph. Cumulative Review Chapters 114 1. 8  15 = 8 + (15) = 7 2. 4  7 = 4 + (7) = 3

Chapter 14: Systems of Equations 4. 3  (2) = 3 + 2 = 5 5. x = 60 + 4 + 10 x = 56 + 10 x = 46 6.

4x  2  3x 4x  3x  2  3x  3x x  2

7. “1.2 is 30% of what number?” translates as 1.2 = 30%  x. 8. “9 is 45% of what number?” translates as 9 = 45%  x. 9. x  50  8 50 x 8  50 50 x  0.16  16% 16% of 50 is 8. 10. x 16  4 16x 4  16 16 x  0.25  25% 25% of 16 is 4. 11. Let x be the number of freshmen at Slidell High. 31 is 4% of what number? 31  4%  x 31  0.04x 31 0.04x  0.04 0.04 775  x There are 775 freshmen at Slidell High. 12. Let x be the number of apples in the shipment. 29 is 2% of what number? 29  2%  x 29  0.02x 29 0.02x  0.02 0.02 1450  x There are 1450 apples in the shipment. 13. 2(x  5)  10  3(x  2)  x 2x  10  10  3x  6  x 2x  20  2x  6 20  6 Since the statement 20 = 6 is false, the equation has no solution.

3. 4  (5) = 4 + 5 = 1 Copyright © 2025 Pearson Education, Inc.

609


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 14. 4(4y  2)  2(1  6y)  8 16y  8  2  12y  8 16y  8  12y  10 4y  8  10 4y  2 4y 2  4 4 1 y 2

2x  4 23. 3x 1 6x 10x  5 2

6x2  2x 12x  5 12x  4 1 6x2 10x 1 1  2x  4  3x 1 3x 1 3x  2

15. 5x  7  2(x  3) 5x  7  2x  6 13  7x 13 x 7  13 x x  7   

24. x 1 3x2  x  4 3x2  3x 2x  4 2x  2 2 3x2  x  4 13 7

–5

–4

–3

–2

–1

0

1

x 1

2

3

4

5

–4

–3

–2

2x2  7x  4  0 (2x 1)(x  4)  0 2x 1  0 or x  4  0 2x  1 x4 1 x 2 1 The solutions are x   or x = 4. 2

–1

0

1

2

3

4

5

7

m m7 where n  0 17.    n7  n 

x(x  5)  24

26. 3

x 1

2x2  7x  4

2  x {x|x  2} –5

2

x(2x  7)  4

25.

16. 7x  4  3(4  x) 7x  4  12  3x 4  12  4x 8  4x

 3x  2 

4

3

4

34

18. (5x )(7x )  5(7)x  x  35x

7

 35x

x2  5x  24 x  5x  24  0 (x  3)(x  8)  0 2

 2x4  19.

 3y5     5x2 

20.

4

2

 4y3   

24 x44 34 y54 52 x22 42 y32

16x16 81y20 25x4

where y  0

where y  0

16y6

x3  0 or x  8  0 x  3 x 8 The solutions are 3 and 8. 27. x = one leg x + 2 = other leg x + 4 = hypotenuse

3 2 3 2 21. (2x  8x  6x)  (2x  x 1) 3

2

3

2

 2x  8x  6x  2x  x 1

x  x2  4x  4  x2  8x 16

 9x2  6x 1

x2  4x 12  0 (x  6)(x  2)  0 x  6  0 or x  2  0 x6 x  2

22. (7x  1)  (x  3)  (7x  1)  (x  3)  7x  x  1  3  8x  4

610

x2  (x  2)2  (x  4)2 2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations

Discard x = 2 because length cannot be negative. one leg: x = 6 other leg: x + 2 = 6 + 2 = 8 hypotenuse: x + 4 = 6 + 4 = 10 The lengths of the sides of the right triangle are 6, 8, and 10 units. 28. Let x be the number. x  x2  132

2y

2y  7 30.

7 2y  7

36. {(2, 3), (2, 0), (2, 2), (2, 4)} Domain: {2} Range: {2, 0, 3, 4}

2y  7 1 2y  7

37.  x  2 y  7 2x  2 y  13  Multiply the first equation by 1. 1(x  2 y)  1(7) x  2 y  7  2x  2 y  13 2x  2 y  13   Add the equations to eliminate y; then solve for x.

x2  3 9x  3 x2  3  9x  3   x9 x9 x9 

x2  9x x9 x(x  9)  x9 x 

x  2 y  7 2x  2 y  13 x 6 Now solve for y. x  2y  7 6  2y  7 2y 1 1 y  1 2 The solution of the system is 6, .  2   

31. y = mx + b If y = 1, then m = 0. 32. Pick any 2 points on the line x = 2. Let (x1, y1)  (2, 0) and (x2 , y2 )  (2, 5). y y 50 5  m  x22  x11  2  2  0  undefined

 33. m  y2  y1  4  5  1  1 x2  x1 3  2 5 5 y  y1  m(x  x1) 1 y  5  (x  2) 5 1 2 y5  x 5 5 2 1 5( y  5)  5 x   5   5 y  25  x 52 x  5 y  23

y  y1  m(x  x1) y  (6)  1(x  5) y  6  x  5 y  x  1 x  y  1 35. {(0, 2), (3, 3), (1, 0), (3, 2)} Domain: {1, 0, 3} Range: {2, 0, 2, 3}

x2  x 132  0 (x  12)(x 11)  0 x  12  0 or x 11  0 x  12 x  11 The number is 12 or 11. 29.

y  y1 5  (6) 11    1 34. m  2 x2  x1 6  5 11

3y  x  6 38. 4x  12y  0  Solve the first equation for x. 3y  6 = x Substitute 3y  6 for x in the second equation and solve for y. 4x  12y  0 4(3y  6)  12y  0 12y  24  12y  0 24y  24  0 24y  24 y1 Now solve for x.

Copyright © 2025 Pearson Education, Inc.

611


ISM: Prealgebra and Introductory Algebra

Chapter 14: Systems of Equations 3y  x  6 3(1)  x  6 3 x6 3  x The solution of the system is (3, 1). y 5  39. x    x 2y 2   0  6 2 Multiply the first equation by 6 and the second equation by 6.   y 5 6 x    6   6x  3y  15   2 2        x y  x  3y  0  6   6(0)     6 2  Add the equations to eliminate y; then solve for x. 6x  3y  15 x  3y  0 7x  15 15 x 7 Now solve for y y.5 x   2 2  15  y 5    7  2  2    15 y   5  14     14  7     230  7 y  35 2 7 y  5 5 y  7 5  15 The solution of the system is   ,  . 7 7   3  3y x   8 2 40.   x  y  13  9 3 Multiply the first equation by 8 and the second equation by 9.   3y   3  8 x    8   8x  3y  12 8   2     y   13   9x  y  39  9 x    9      3    9  Multiply the second equation by 3. 

612

 8x  3y  12  8x  3y  12 3(9x  y)  3(39)  27x  3y  117   Add the equations to eliminate y, then solve for x. 8x  3y  12 27x  3y  117 35x  105 x 3 Now solve for y. 8x  3y  12 8(3)  3y  12 24  3y  12 3yy  12 36 The solution of the system is (3, 12). 41. Let x be the first number and y be the second. x  y  37  x  y  21 Add the equations to eliminate y; then solve for x. x  y  37 x  y  21 2x  58 x  29 Now solve for y. x  y  37 29  y  37 y 8 The two numbers are 29 and 8. 42. Let x be the first number and y be the second. x  y  75  x  y  9 Add the equations to eliminate y, then solve for x. x  y  75 xy9 2x  84 x  42 Now x  ysolve  75for y. 42  y  75 y  33 The two numbers are 42 and 33.

Copyright © 2025 Pearson Education, Inc.


Chapter 15 Section 15.1 Practice Exercises

18. 3 64x9 y24  4x3 y8 because (4x3 y8 )3  64x9 y24 .

100  10, because 102  100 and 10 is

1.

positive. 2.  81  9. The negative sign in front of the radical indicates the negative square root of 81. 2

25 5 5 5 25 3.  , because    and is 81 9  9  81 9 positive.

19. 3 64x9 y24  4x3 y8 because (4x3 y8 )3  64x9 y24 . Calculator Explorations 6  2.449; since 6 is between perfect squares 4

1.

and 9, 2 1  1, because 1  1 and 1 is positive.

4. 5.

6.

3

27  3 because 33  27.

7.

3

8  2 because (2)3  8.

squares 196 and 225, 196  14 and

5

5 1  1 because (1)  1.

11.

4

256  4 because 44  256 and 4 is positive.

12.

6

1 is not a real number because the index 6 is

22  4.690.

z8  z4 because (z 4 )2  z8.

15.

x20  x

16.

4x  2x because (2x )  4x .

17.

3 8 y12

20

because (x )  x .

3

3 2

4

4 3

82 is between

81  9

and 100  10.

14.

6

200 is between

82  9.055; since 82 is between perfect

5.

46  6.782; since 46 is between perfect

6.

squares 36 and 49, and

even and the radicand 1 is negative.

10 2

9  3 and

225  15.

squares 81 and 100,

10.

10

11 is between

200  14.142; since 200 is between perfect

4.

16 is not a real number since the index 4 is even and the radicand 16 is negative.

9  3 and

11  3.317; since 11 is between perfect

4

13. To three decimal places,

14 is between

squares 9 and 16, 16  4.

3

9  3.

16  4. 3.

1 1 1 8. 3 1  because   .   64 4  4  64 9.

squares 9 and 16,

2

4  2 and

14  3.742; since 14 is between perfect

2.

0.81  0.9 because (0.9)  0.81 and 0.9 is positive.

6 is between

46 is between

36  6

49  7.

7.

3

40  3.420

8.

3

71  4.141

9.

4

20  2.115

10.

4

15  1.968

11.

5

18  1.783

12.

62

6

12

 2 y because (2 y )  8 y .

 1.122

Copyright © 2025 Pearson Education, Inc.

613


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

Vocabulary, Readiness & Video Check 15.1 1. The symbol is used to denote the positive, or principal, square root. 2. In the expression 4 16, the number 4 is called the index, the number 16 is called the radicand, and is called the radical sign. 3. The reverse operation of squaring a number is finding a square root of a number. 4. For a positive number a,  a is the negative square root of a and a is the positive square root of a. 5. An nth root of a number a is a number whose nth power is a.

2

1 1 1 1 1 4.  , because    and is 64 8  8  64 8 positive. 6.  36  6. The negative sign indicates the negative square root of 36. 8.

25 is not a real number, because there is no real number whose square is 25.

10.  49  7. The negative sign indicates the negative square root of 49. 2

4 2 2 2 4  and is  , because  12.   81 9 9  9  81 positive. 400  20, because 202  400 and 20 is

14. 6.

4  2; the statement is false.

7.

9 is not a real number; the statement is false.

8.

1000  31.623; the statement is false.

positive.

positive. 18.

9. True

169  13, because 132  169 and 13 is

16.

10. True 11. The radical sign, , indicates a positive square root only. A negative sign before the , indicates a negative square radical sign,  root.

20.

12. The square root of a negative number is not a real number; the cube root of a negative number is a real number.

24.

2 1 1 , because  1  1 and 1 is     121 11 11  11  121 positive.

0.49  0.7, because 0.72  0.49 and 0.7 is

positive. 22. 3 64  4, because 43  64. 3

27  3, because (3)3  27.

26. 3 27  3, because 33  27.

13. an odd-numbered index

3

1 1  , because    . 64 4 64 4

3 1

1

14. Take the two integers that your answer falls between and square them; then check to make sure that the radicand falls between these two squares.

28.

15. Divide the index into each exponent in the radicandbut still check by raising your answer to a power equal to the index.

32. 4 81  3, because 34  81 and 3 is positive.

30.

3

1  1, because (1)3  1.

34.

49  7, because 72  49 and 7 is positive.

36.

9 is not a real number, because there is no real number whose square is 9.

Exercise Set 15.1 2.

614

64  8, because 82  64 and 8 is positive.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 3

8 2  2 8   , because      . 38. 3  27 27 3  3   40. 5 32  2, because 25  32. 51

42.

Chapter 15: Roots and Radicals 78. 90 = 9  10 1 is not a real number because the index is even and the radicand is negative.

80. a.

3 1

b.

 1, because 1  1. 5

44.

10  3.162

46.

27  5.196

4 1

c.

is not a real number because the index is even and the radicand is negative.

d.

5 1

8  2.828

48.

82. The length of a side is 2

1 1    ,  9  81

5 5 2 10 y10  y , because ( y )  y .

52.

is a real number because the index is

odd.

29  5.39 480  29  480  5.39  2587.2 The area is approximately 2587 square feet.

50.

is a real number because the index is

odd.

x6  x3 , because (x3 )2  x6 .

54.

1  1 . The length of a side of 81 9 1

the square is

meter.

9

84. The length of a side is 12

6 2

56.

36x

58.

100z 4  10z2 , because (10z2 )2  100z4 .

60.

x12 y20  x6 y10 , because (x6 y10 )2  x12 y20 .

2

86. 3 3 1  1 since 13  1. 88.

4m14n2  2m7 n, because (2m7 n)2  4m14n2 .

62.

64. 3 x12 y18  x4 y6 , because (x4 y6 )3  x12 y18.

67.24 feet. Since

8.2  67.24, 67.24  8.2. The length of a side is 8.2 feet.

12

 6x , because (6x )  36x . 6

1 meter. Since 81

1, 600, 000, 000  200 since 2002  40, 000 and 40, 0002  1, 600, 000, 000

90. Since

28 is between

25 and

36, then

28 is between 5 and 6. 3

66.

27a6b30  3a2b10 , because

92. Since

(3a2b10 )3  27a6b30 . 2

 70.

2

2

4x  2x  4x  , because    . 81 9 81  9  2

2x

81 and 100, then

98 is between 9 and 10.

 y4  y8 y4 y8  , because  .  7  49 7   49

68.

98 is between

94. 3 195,112  58, because 583  195,112. One side of the cube would be 58 feet. 96. answers may vary

72. 8 = 4  2 74. 75 = 25  3 76. 44 = 4  11 Copyright © 2025 Pearson Education, Inc.

615


 

ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

98.

x

y3x

8

3 8  2

2

3 2  1.3

1

3 1  1

0

30 0

1

21 1

2

3 2  1.3

8

38 2

5. 7 75  7  25  3  7  25  3  75 3  35 3 6.

16  16  4 81 81 9

7.

2  25 8. 45 49

2

25

5

45 49

9 5 7

3 5 7

x11  x10  x  x10  x  x5 x

9.

 10.

2 

18x4  9  2  x4  9x4  2  9x4  2  3x2 2

11. 2

100.

4x  (2x)2  2x  2 x

102.

x2  6x  9  (x  3)2  x  3 12.

104. The graph of y  x  3 ‘starts’ at (3, 0). 106. The graph of y  x  5 ‘starts’ at (5, 0). Section 15.2 Practice Exercises 1.

40  4 10  4 10  2 10

2.

18  9  2  9  2  3 2

3.

500  100  5  100  5  10 5

4.

27 

27  9  3 

x8

x8

x4

9

3  3 3

x4

x4

7 y7 7 y7  25 25 

y6  7 y 5 6

 y  7 5  y3 7 y 5 13. 3 88  3 8 11  3 8  3 11  23 11

15 The radicand 15 contains no perfect square factors other than 1. Thus 15 is in simplest form.

14. 3 50 The number 50 contains no perfect cube factors, so 3 50 cannot be simplified further. 10 3 10 3 10   15. 3 27 3 27 3 81 3 81 3 27  3 3 27  3 3 33 3     16. 3 38 8 2 2 2

616

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Vocabulary, Readiness & Video Check 15.2 1. If

a and

b are real numbers, then

a  b  a  b. 2.

If

a and

b are real numbers, then

a a  . b b  3.

16  25  16  25  4  5  20

4.

36  3  36  3  6  3  6 3

5.

48  2 12  2 43

Chapter 15: Roots and Radicals

10.

90  9 10  9  10  3 10

12.

150  25  6  25  6  5 6

14.

75  25  3  25  3  5 3

16. 9 36  9  6  54 18. 11 99  11 9 11  11 9  11  11 3 11  33 11 20. 6 75  6  25  3  6  5  3  30 3

2 4 3  22 3 4 3 The statement is false.

22.

3 7 63  63  9  7  9  7  16 4 4 4 16

24.

46 24  24   4  6 2 6  13 13 13 169 169

26.

100 100 10   7 49 49

28.

27  100

6. True; 6 has no perfect cube factors. 7. Factor until we have a product of primes. A repeated prime factor means a perfect squareif more than one factor is repeated, we can multiply all the repeated factors together to get one larger perfect square factor. 8. In words, the quotient rule for square roots says that the square root of a quotient is equal to the square root of the numerator over the square root of the denominator. 9. The power must be 1. Any even power is a perfect square and can be simplified; any higher odd power is the product of an even power times the variable with a power of 1. 10. If a factor is repeated the same number of times as the index, then we have a perfect root and the product rule can be applied.

30.

27

100

93 10

9 3 3 3  10 10

30 30 30   49 49 7

 84 84   32.  121 121  4  21  11 4  21  11 2   21 11

Exercise Set 15.2 2. 

44  4 11  4  11  2 11

34.

y3 

y2  y 

 y16  y 

y2

yy y

y16  y  y8 y

4.

28  4  7  4  7  2 7

36.

y17

6.

21 is in simplest form.

38.

81b5  81b4  b  81b4  b  9b2 b

8.

125  25  5  25  5  5 5

40.

40 y10  4 y10 10  4 y10  10  2 y5 10

Copyright © 2025 Pearson Education, Inc.

617


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

42.

44.

46.

63 p2

34 34 4   68. 3 27 3 27 3

 9  7  9  7  3 7 p p p p2

63

2 6 y2  6 y 

70. 3 108  3 27  4  3 27  3 4  33 4

y2  6  y 6 z8 z8

z16

z16

500 

500  100  5  100 5 10 5 y11 y11 y11 y22

y22

72. (6x)(8x)  48x2 74. (2x + 3) + (x  5) = 3x  2 76. (9 y2 )(8 y2 )  72 y4

48. 6 49  6  7  42

a12b14  a  a12b14  a

a13b14 

78. 50.

25  25  5 144 144 12

 a6b7 a

52.

700  100  7  100  7  10 7

54.

45  45  9  5  9  5  3 5 64 8 8 8 64

56.

50n13  25n12  2n

  

3x4 y5 3y

 82.

 25n12  2n 84.

 5n6 2n

8 10 27x8 y11  9x y  3y  9x8 y10  3y

80.

3

27x12  3 27  3 x12  3x4 11, 600  400  29  400  29  20 29

The distance is 20 29 feet. 58.

41x5 9 y8

 

 

41x5

86. answers may vary; possible answer: let a = 1 and b = 1 so a  b  2 and a  b  2.

9 y8 x4  41x 3y 4

88.

6

x4  41x 3y 4 x2 41x 3y 4

60. 3 81  3 27  3  3 27  3 3  33 3 62. 3 56  3 8  7  3 8  3 7  23 7 3 32 383 4 3 8 4 32 23 4   5   64. 3 5 5 125 3 125

618

 6  594 6 3564  6 324 11  6 324  11  6 18 11  6  3 11

The length of a side is 3 11 feet. 90.

37 3 37 3 37   66. 3 27 3 27 3

6A

6A 6  6144 36,864 192     32 6 6 6 6 The length of a side is 32 feet.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

92. C  1003 n  700  1003 500  700  1493.70 The cost is approximately $1493.70. 94. B 

18385 3600 18385  3600 15, 555  60 2.1 The surface area is approximately 2.1 square meters.

9.

36  48  4 3  9  6  16  3  4 3  3  6  16  3  4 3  3  6 4 3  4 3 3  38 3

10.

9x4  36x3  x3

hw 3600

Chapter 15: Roots and Radicals

 3x2  36x2  x  x2  x  3x2  36x2  x  x2  x  3x2  6x x  x x  3x2  5x x 11. 103 81p6  3 24 p6  103 27 p6  3  3 8 p6  3  103 27 p6  3 3  3 8 p6  3 3

Section 15.3 Practice Exercises

 10  3 p2 3 3  2 p2 3 3

1. 6 11  9 11  (6  9) 11  15 11 2.

7  3 7  1 7  3 7  (1 3) 7  2 7

3.

2  2  15  1 2 1 2  15  (1 1) 2  15  2 2  15

4. 3 3  3 2 cannot be simplified further since the radicands are not the same. 5. 63 5  23 5 113 7  (6  2)3 5 113 7  43 5  113 7 6. 4 13  53 13 cannot be simplified further since

 30 p2 3 3  2 p2 3 3  28 p2 3 3 Vocabulary, Readiness & Video Check 15.3 1. Radicals that have the same index and same radicand are called like radicals. 2. The expressions 73 2 x and 3 2 x are called like radicals. 3. 11 2  6 2  17 2, choice b. 4.

5 is the same as 1 5, choice b.

5.

5  5  2 5, choice c.

the indices are not the same. 7.

6. 9 7  7  8 7, choice a.

27  75  9  3  25  3  9  3  25  3  3 3 5 3 8 3

7. Both like terms and like radicals are combined using the distributive property; also, only like (vs. unlike) terms can be combined, as with like radicals (same index and same radicand).

8. 3 20  7 45  3 4  5  7 9  5  3 4 5 7 9 5  3 2 5  7  3 5  6 5  21 5  15 5

8. Sometimes we can’t see until we simplify that there are like radicals to combine, so we may incorrectly think we cannot add or subtract unless we simplify first. 9. the product rule for radicals Exercise Set 15.3 2.

5  9 5  1 5  9 5  (1 9) 5  8 5

Copyright © 2025 Pearson Education, Inc.

619


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

4. 12 2  3 2  8 2 10  (12  3  8) 2 10  17 2  10

22.

6. 4 3  3 3  5  (4  3) 3  5  1 3  5  3  5 8.

13 13  13  1 13 1 13 13  (11) 13 13  2 13  13

10. 5 7  2 11 7  2  (5 11) 7  2  6 7 12.

50  18  25  2  9  2  25 2  9 2  5 2 3 2  (5  3) 2 8 2

24.

26.

20.

620

2

2

6  3 6  6  (1 3 1) 6  5 6

28. 2 80  45  2 16  5  9  5  2 16 5  9 5  24 5 3 5  8 5 3 5  (8  3) 5 5 5 30.

18. x  6 x2  2 x  x  6x  2 x  5x  2 x

2  2  25 9

25 9 2 2   5 3 3 2 5 2   15 15  3 5    15 15  2  8  2 15 8 2  15

14. 5 32  72  5 16  2  36  2  5 16 2  36 2  5 4 2  6 2  20 2  6 2  (20  6) 2  14 2 16. 2 8  128  48  18  2 4  2  64  2  16  3  9  2  2 4 2  64 2  16 3  9 2  22 2 8 2  4 3  3 2  4 2 8 2  4 3 3 2  (4  8  3) 2  4 3  1 2  4 3   2 4 3

3  3  3  3 64 16 64 16 3 3   8 4 3 2 3   8 8  1 2      3  8 8  3  3 8 33  8

5  10  5  10

32. x 16x  x3  x 16  x  x2  x

9x  16x  2 x  9 x  16 x  2 x 3 x 4 x 2 x  (3  4  2) x  x

Copyright © 2025 Pearson Education, Inc.

 x 16 x  x2 x  4x x  x x  (4x  x) x  3x x


ISM: Prealgebra and Introductory Algebra

34.

6  16  24  25  6  4  4  6  5  6  4 6 9  6 2 6 9  (1 2) 6  9  3 6 9

Chapter 15: Roots and Radicals

52.

 x 3 36x2 2 9 6x 25 2 2x  6x 2  3 6x  5x 2  3 2x  (6x  5x) 2  3 6x  3 2x  x 2  3 6x  3 2x

36. 11  5 7  8  5 7  3 38. 5 18  2 32  5 9  2  2 16  2  5 9 2  2 16 2  53 2  24 2  15 2  8 2  (15  8) 2  23 2 40.

15  135  15  9 15  15  9 15  15  3 15  (1 3) 15  2 15

72x2  54x  x 50  3 2x  36x2  2  9  6x  x 25  2  3 2x

54. 83 4  23 4  3 49  (8  2)3 4  3 49  103 4  3 49 56. 53 9  2 113 9  2  53 9 113 9  2  (5 11)3 9  2  63 9 58. 3 32  3 4  3 8  4  3 4  3 8 2 4 3 4  23 4  3 4  (2 1)3 4  33 4

42. 8  2  5 2  8  (1 5) 2  8  6 2

60.

3 64

3 3 3  14  9  4  14  9  5  14

44. 5 2x  98x  5 2x  49 2x  5 2x  7 2x  (5  7) 2x  12 2x 46.

3

3

 9z  3 3z 3 3  9z  9z 3 3 3

3

3 2

3

z  5z3 z2

3

3

 19z3 z2  5z3 z2 3

 (19z3  5z3 ) z2 3

 14z3 z2 66.

2

 9x  2  4x  6x  x  2 2

3

 19 z9

x

18x2  24x3  2x2 2

3

3 3 2 9 2 3 2 64. 19 z11  z 125z  19 z  z  z 3 125 z

48. x 4x  9x3  x 4  x  9x2  x

50.

3

 9z  3 27z3 3 3

100x2  3 x  36x2  10x  3 x  6x  4x  3 x

 x 4 x  9x2  2x x  3x x  (2x  3x) x  5x x

3

62. 3 27z3  3 81z3  3 3z  3 27z3  3

 9x2 2  4x2 6x  x2 2  3x 2  2x 6x  x 2  (3x  x) 2  2x 6x  4x 2  2x 6x

72x2  3 54  x 50  33 2  36x2  2  3 27  2  x 25  2  33 2  36x2 2  3 27 3 2  x 25 2  33 2  6x 2  3 3 2  5x 2  3 3 2  (6x  5x) 2  (3  3)3 2 x 2

Copyright © 2025 Pearson Education, Inc.

621


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

68.

(3x  2)2  (3x)2  2(3x)(2)  (2)2  9x2  12x  4

70. (x  5)2  (x)2  2(x)(5)  (5)2  x2 10x  25 72. answers may vary 74. 15 6 15 6  20 6  30 6  (15 15  20  30) 6  80 6 The perimeter is 80 6 feet. 76. 4 52  4 80  4 4 13  4 16  5  4 4 13  4 16 5  4  2 13  4  4 5  8 13  16 5

The total length is 8 13  16 5

 feet.

78. The expression 3 7  3 6 cannot be simplified. 80. The expression can be simplified. 5x 2  8x 2  (5x  8x) 2  13x 2 82. The expression can be simplified. 6 5  5  (6 1) 5  5 5 84. 7 x11 y7  x2 y 25x7 y5  8x8 y2  7 x10 y6  xy  x2 y 25x6 y4  xy  4x8 y2  2  7 x10 y6 xy  x2 y 25x6 y4 5 3

xy  x y  5x y

5 3

5 3

 7x y  7x y

2

3 2

xy  5x y

xy  4x8 y2

xy  2x y 2 4

xy  2x4 y 2

 (7x5 y3  5x5 y3 ) xy  2x4 y 2  2x5 y3 xy  2x4 y 2 Section 15.4 Practice Exercises

2.

5  2  5  2  10  7  7  7  7  49  7

3.

6  3  18  9  2  9  2  3 2

4.

10x  2x  10x  2x

1. 

 20x2  4x2  5  4x2  5  2x 5 622

Copyright © 2025 Pearson Education, Inc.

2


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

 7  3   7  7  7  3  7  21 5x  x  3 5   5x  x  5x  3 5

5. a.

7

b.

12.

2  45x 

9  5x 2 5x   3 5x 5x 2  5x  3 5x  5x 10x  3 5x

 5x  x  3 5x  5  5  x2  3 25  x  5  x2  3 25  x  x 5  3  5  x  x 5  15 x

 x  5  x  3 

c.



6. a.

3 8





3 8

2

13.

2

  3 364 8

3 2  7  

 5x  4   5x   2  5x (4)  (4) 2

2

2

 5x  8 5x 16 7. 8.

9.

10.

11.

21 3

90  90  45 2 2 125x3

5x 5 3

5

7 20

3



95

 9

3

7 45 7 5   2 5 5 7 5  2 5 5 35  25 35  10

 22   7  3  2  7   2

47 3 2 7



3 3 2 7

 1 2  7  2  7

14.

5 3 5 3  3 3  3

2 5  2 1



3

5

 3 2 7



3 5

125x3 2  25x  5x 5x 3

 

21  7 3

3 2  7  2  7  2  7    

 61 b.

10x 15x

 x  x  x  3  5  x  5  3  x  3x  5x  15 

2 45x 2



 2  5 2 1  2 1 2 1

2 2 5 2 5 2 1 76 2  1  76 2 

7

15.

7 2

2  x  2  x

Copyright © 2025 Pearson Education, Inc.

x

7 2

 2  x  4  x

x



623


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

Vocabulary, Readiness & Video Check 15.4 1.

 3.

8 y   8 y 8 y   64  y   64 y 2

2

7  3  7  3  21

2.

12.

10  10  10 10  100 or 10

14.

7 21y7  3y  21y  3y

 63y8  9 y8  7

15 or 5  3 3

15

8

4. The process of eliminating the radical in the denominator of a radical expression is called rationalizing the denominator.

 9 y 7 3y4 7 16.

2 2 2 18x2 y2  2x2 y  18x y  2x y

 36x4 y3   36x4 y2  y

5. The conjugate of 2  3 is 2  3.

6. In each Video Notebook, the product rule is first used to multiply the radicals and then later used to simplify the radical. 7. The square root of a positive number times the square root of the same positive number (or the square root of a positive number squared) is that positive number. 8. if we notice that some simplifying can be done to the fraction if both radicands are under one radical

10

 30  70

20.

6

 3  2   6  3  6  2  18  12  9  2  4  3   9 2  4 3  3 22 3

22.

 2 5b  b  5b  5

 2 b2  5  25  b

3  12  36  6

4.

2  14  28  4  7  4 7  2 7

8.

5 y  5 y 

10.

 2 b2 5  25 b  2b 5  5 b 24.

 5  2 5  2   5   22  5  4  1

26.

 7  5  2  5 

2

 5y   5y 2

3 10    3 10  3 10  2  9  10  2

2

 7  2  7  5  5  2  5  5  14  35  10  25  14  35  10  5

 9 10  90

624

5b 2 b  5  5b  2 b  5b  5  2 5b2  25b

2.

 10   10

 3  7   10  3  10  7

Exercise Set 15.4

6.

6x2 y y

18.

9. to write an equivalent expression without a radical in the denominator 10. Using the FOIL order to multiply, the Outer product and the Inner product are the only terms with radicals and they will subtract out.

 36x4 y2 y

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

28.

Chapter 15: Roots and Radicals

5 3  2 3 1  5 3  3  5 3 1 2  3  2 1  53  5 3  2 3  2  15  3 3  2  13  3 3

3x2 y

 y  5 y  5   y   (5)2  y  25

32.

 x  4   x   2  x (4)  (4) 2

 16x2 y2 2x

2

4xy 2x 2

50.

34.

 3y  2    3y   2  3y (2)  (2) 2

2

3

 x  8 x 16 2

3x2 y

  32x3 y2

2

2

96x5 y3



 16x2 y2  2x

30. 

96x5 y3

48.

2

3

3

3

6 3

8  8  11 8 11 11 11 11 11

52.

 3y  4 3y  4 1

54. 36.

40 10

40  42 10 56.

38.

40.

42.

44.

46.

55 5

55  11 5

96  96  12  4  3  4 3  2 3 8 8 24x7 6x 120 3

24x7 6  4x  2x3 6x 120  40  4 10  4 10  2 10 3

54x3

54x3  2x 2x  27x2 2

 9x  3  9x2 3  3x 3

58.

60.

10z

1

10z

10z 10z



10z 10z

7 7  12 12 7  43 7 3   2 3 3 7 3  2 3 3 21  23 21  6 5  x

5 

5

x

x

 x  5x x x

1 1  27 27 1  93 1  33 1   3 3 33 3  3 3 3  9

Copyright © 2025 Pearson Education, Inc.

625


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

62.

11  11  11  14  154 14 14 14 14 14

72.

x x  20 y 20 y

64.

66.

3  50 50 3  25  2 3  5 2 3 2   5 2 2 6  5 2 6  10

68.

70.

4 5y

7x 2

3y 7x

2 5y

2

2

2 5y



74. 5y

3y 5 3y  3y 3

 

5y 5y

52

 

6 52  5 2 5 2 6 52



 5   22 2

z 49 y

6

6 5 12 54 6 5 12  1  6 5  12

7x 2 2

76.

2 2 10  3   10  3 10  3 10  3 2 10  3  2 10  32

z 7 y





 5xy 2 5y 5xy  10 y

z  z 49 y 49 y 

x



3y 2

x



5 y  5 y  3y  3y

x



3

 

z  y  7 y y

2 10  6 10  9 2 10  6  1  2 10  6 

yz 7 y yz 7y 78.

3 1 3 1 3  2    3  2 3 2 3 2 

3  2   3 1 2 2  3    2 

3 3  3 2 1 3 1 2 32 3 6  3  2  1  3  6  3  2 

626

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

 

80.

2 2

2 3

2 2 2 3  2 3 2 3 22 2 3





2

2

2 

 3 

2 2  2 3  22  2 3 43 2 2  6 42 3  1

3 x

5  3  5  3  15

3x  3x  (11) 3x  2 3x The statement is true.

100.

11  2  11 2  22 The statement is true.

3 x

102. answers may vary

3 x 3 x  9 3 x

104. answers may vary

9



2 2 3   x 

2 22 2   2 106. 2  2 2  3 2 3 2 2 2 2 2  2  3 2 2

   

27  9x  9 x 84.

96.

98.

 2 2  6 42 3 9

S  4

The statement is false.

82.

S  S  S    S  4 2  2   2

94.

4  x 1  

x1 x 1

4  x 1 4

2

x 1

 x  1 2

2

4 x 4 x 1

2



24  22  3  2  2 2

3

2 2 4 6 2 3

Mid-Chapter Review 1.

36  6, because 62  36 and 6 is positive.

2 y  9 1 2 y  10 y 5

2.

48  16  3  16  3  4 3

3.

x4  x2 , because (x2 )2  x4 .

88. 16x2  x  9  (4x)2

4.

y7  y6  y 

5.

16x2  4x, because (4x)2  16x2 .

6.

18x11  9x10  2x  9x10 2x  3x5 2x

86. 2 y 1  32

16x2  x  9  16x2 x9  0 x  9 90. x2  3x  4  (x  2)2 x2  3x  4  x2  4x  4 3x  4x 0x

y6

y  y3 y

7. 3 8  2, because 23  8. 8. 4 81  3, because 34  81.

92. Volume = (length)(width)(height) 3 2  2  32  2 3 The volume is 2 3 cubic feet.

9. 3 27  3, because (3)3  27. 10.

4 is not a real number.

Copyright © 2025 Pearson Education, Inc.

627


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

11.

12.

 2 7    2 7  2 7   4  7   4  7  28 2 2 28.  3 5    3 5  3 5   9  5   9  5  45

11 11 11   9 3 9 3 7

64

37 3 64

3

2

27.

7 4

13.  16  4. The negative sign indicates the negative square root of 16.

2

29.

3

 11 1  3  11  3 1  33  3

30.

6

 3  2  6  3  6  2  18  2 6  92  2 6 3 2 2 6

14.  25  5. The negative sign indicates the negative square root of 25. 15.

16.

9  49

9 3 49 7

1  1 1 64 64 8

31.

8y 2 y  8y  2 y  16 y2  4 y

32.

15x2  3x2  15x2  3x2  45x

17.

a8a2  a8 b2  a4b

18.

x10 y20  x10 y20  x y

19.

25m  25

20.

9n16

 9x4  5  3x2 5

5 10

 x  5 x  2  x  x  2 x  5 x  5  2

33. 6

 9

m6  5m3

n16

 x  3 x 10

 3n

2

34.

26.

628

8

35.

2

  37.

45

36.

23. 5 2  5 3 cannot be simplified.

25.

2

 96 2 2  11 6 2

50  8  25  2  4  2  25 2  4 2  5 2 2 2  (5  2) 2 3 2

24. 2 x  25x  36x  3x  2 x  25 x  36 x  3x  2 x  5 x  6 x  3x  (2  5  6) x  3x  x  3x

3  2   (3)2  2(3)  2    2 

8

21. 5 7  7  (5 1) 7  6 7 22.

4

15

8  42 2

45  3 15

24x5 

2 24x5  12x4  4x4  3  2x 3 2x

2x 38.

75a4b5 5ab

75a4b5 5ab

 15a3b4  a2b4 15a

2  15  2 15  30

 ab2 15a

3  3  3  3  9  3

Copyright © 2025 Pearson Education, Inc.

  


ISM: Prealgebra and Introductory Algebra

39.

1  1  1  1  6  6 6 6 6 6 6 6

40.

x

Chapter 15: Roots and Radicals

4.

 x 5 x 5 x 5      10 4  5 2 5 2 5 5 25 x

20 41.

4 6 1

x

2 y 10  0 2 y  10 y 5

4 6 1  6 1 6 1

 6 1  6 2 12 4

5.

4 64 6 1 4 6 4  5 

42.

9 y2  2 y 10  3y  9 y2  2 y 10  2  (3y)2     9 y2  2 y 10  9 y2

2 1 2 1    5 x 5 x

x 5 x 5

 2 12 x  5 2  x 5

 52 1x 1 5 x  25 2x  5 2  x  5  x  25  2 x

x 1  x  5  x5 x 12

x 1

2

 (x  5)

x 1  x2 10x  25 0  x2 11x  24 0  (x  8)(x  3) 0  x  8 or 0  x  3 8 x 3 x Replacing x with 3 results in a false statement. 3 is an extraneous solution. The only solution is 8. 6.  3  x  x 15  2 2 x 3  x 15

 



x  6 x  9  x 15 6 x 6 x 1 x 1

Section 15.5 Practice Exercises 1.

Vocabulary, Readiness & Video Check 15.5

x2  7

1. The squaring property can result in extraneous solutions, so we need to check our solutions in the original equationbefore the squaring property was appliedto make sure they are actual solutions.

 x  2   72 2

x  2  49 x  51

2.

6x 1  x

 6x 1     2

x

2. No; if the first squaring leaves a radical term, this new equation can be thought of as an equation that needs the property applied once.

2

6x 1  x 5x 1  0 5x  1 1 x 5

3.

Exercise Set 15.5 2.

x 4

 x   42 2

x  16

x 9  2 x  7 x cannot equal 7. Thus, the equation has no solution.

Copyright © 2025 Pearson Education, Inc.

629


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

4.

x 12  3

16.

 x 12   32

2

x 12  9 x  3

x  x2  4x  4 0  x2  5x  4 0  (x  4)(x 1) 0  x  4 or 0  x 1 4x 1 x x = 1 does not check, so the solution is x = 4.

6. 4 x  7  5 4 x  12 x 3

 x   32 2

18.

x9

2

x  5  x2  2x 1 0  x2  3x  4 0  (x  4)(x 1) x  4  0 or x 1  0 x4 x  1 x = 1 does not check, so the solution is x = 4.

x cannot equal 1. Thus, the equation has no solution. x  4x  3 2 2 x  4x  3

  

(x 1) 2 

2

x2  6x  8  0 (x  4)(x  2)  0

5x  42  x  8 2 5x  4  x  8 4x  4  8 4x  12 x3

4x2  3x  9  2x  2 2 2  4x  3x  9   (2x)   4x2  3x  9  4x2 3x  9  0 3x  9 x3

630

 4x  7 

x2  2x 1  4x  7

 5x  4    x  8 

14.

x  4x  7 1 x 1  4x  7

20.

x  4x  3 3x  3 x 1 12.

x  5  x 1

 x  5   (x 1)2

8. 3 x  8  5 3 x  3 x  1

10.

x  x2

 x   (x  2)2

2

x  4  0 or x4 22.

x2 0 x2

4x2  3x  2  2x  4x2  3x  2  2 2    (2x)   2 4x  3x  2  4x2 3x  2  0 3x  2 2 x  3 2 x   does not check, so the equation has no 3 solution.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

24.

3x2  6x  4  2  3x2  6x  4  2  22     3x2  6x  4  4

3x  0 x0 26.

Chapter 15: Roots and Radicals

34.

 x  5   32 2

3x2  6x  0 3x(x  2)  0 or x  2  0 x  2

x5 9 x4 36.

x8  x  2

 x  8    x  2 2

2x 1  7  1 2x 1  6 2x 1 cannot equal 6. Thus, the equation has no solution.

2

x8  x  4 x 4

2

 9x2  2x  8   (3x)2     9x2  2x  8  9x2 2x  8  0 2x  8 x4

2  

32  x 9 x

x  25  x  55 2

 x  5   x  55 

9x2  2x  8  3x

38.

12  4 x 3  x

28.

x 5 2  5 x 5  3

40.

y

 8

y 8

 y   82 2

x 10 x  25 x  x  55

y  64

10 x  30 3

 x   32 2

30.

 x  6   x  36  2

 x 1   x  15 

2

x  2 x 1  x 15 2 x  14 x 7

 x   02 2

x0 x = 0 does not check, so the equation has no solution.

 x   72 2

x  49

3x  7  5

3x 1 1  4 3x 1  3

 3x  7   52

 3x 1  32

44. 32.

2

3x  7  25 3x  18 x6

2

x 12 x  36  x  36 12 x  0 x 0

x 1  x 15 2

x  6  x 36

42.

x9

2

3x 1  9 3x  10 10 x 3

Copyright © 2025 Pearson Education, Inc.

631


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

46.

56. 2x  (x  3)  11 2x  x  3  11 x  3  11 x  14

x  5  10 x 5

 x   52 2

x  25

48.

58. Let x be the width of the rectangle, then the length is x + 2. 2x  2(x  2)  24 2x  2x  4  24 4x  4  24 4x  20 x5 x+2=5+2=7 The length of the rectangle is 7 inches.

5x  6  8x

 5x  6    8x  2

2

5x  6  8x 6  3x 2x

50.

2x  5  x  5

 2x  5   (x  5)2 2

2x  3 

60.

 2x  3    x  2  2

2x  5  x2 10x  25 0  x2 12x  20 0  (x 10)(x  2) x 10  0 or x  2  0 x  10 x2 x = 2 does not check, so the only solution is x = 10. 52.

2x  4  2  x 2x  4  x  2 2

2x  4  x2  4x  4

2x  3  x  2  4 x  2  4 x 1  4 x  2

(x 1)2  4 x  2

2

x2  2x 1  16(x  2) x2  2x 1  16x  32

64. a.

x2  0 x2

2x  5 1  x 2x  5  x 1

For V = 1000, r 

 2x  5   (x  1)2 2x  5  x2  2x 1 0  x2  4 0  (x  2)(x  2) x20 or x  2  0 x  2 x2 x = 2 does not check, so the only solution is x = 2.

10

 1.3. 2 100 For V = 100, r   4.0. 2 For V = 10, r 

2

632

62. no; answers may vary

0  x2  6x  8 0  (x  4)(x  2)

54.

2

x2 14x  33  0 (x 11)(x  3)  0 x 11  0 or x  3  0 x  11 x3

 2x  4   (x  2)2

x  4  0 or x4

x2 2

2

1000  12.6. 2

V

10

100

1000

r

1.3

4.0

12.6

b. No, the volume increases by a factor of 10.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

 66. Use r 

3V 3 4

with V = 212,067.

3 212, 067 3 636, 201 r3   37.0 4 4 The radius of the baseball is approximately 37.0 millimeters. 68. Use r  3

3V

with V = 435.

3 435 3 1305   4.7 4 4 The radius of the basketball is approximately 4.7 inches. r3

10 –10

10

 

–10

The solution of

x 1  2x  3 is x  2.43.

1600  b2  4225

The distance across the pond is 5 105 feet or approximately 51.2 feet. 4. v  2gh  2  32  20  1280  16 5 The velocity of the object after falling 20 feet is exactly 16 5 feet per second or approximately 35.8 feet per second. Vocabulary, Readiness & Video Check 15.6

10

72.

402  b2  652 b2  2625 b  2625  5 105

4

70.

3. The property owner is using a right triangle with one leg measuring 40 feet and hypotenuse measuring 65 feet to find the unknown distance. a2  b2  c2

1. The Pythagorean theorem applies to right –10

triangles only, and in the formula a2  b2  c2 , c is the length of the hypotenuse.

10 –10

The solution of  x  5  7x 1 is x  0.48. Section 15.6 Practice Exercises 1. a2  b2  c2 32  42  c2 9 16  c2 25  c2 25  c 5c The hypotenuse has a length of 5 centimeters.

2. Our answer is a number that when squared equals another value. We’re looking for a distance, which must be positive, so our answer must be positive. 3. This Video Notebook asks for an answer rounded to a given place, meaning an estimated answer is expected rather than an exact answer. An exact answer would be given in radical form. Exercise Set 15.6 2. a2  b2  c2 52  b2  102

2. a2  b2  c2 52  32  c2 25  9  c

2

34  c2 34  c 5.83  c

25  b2  100 b2  75 b  75  5 3  8.66 The length of the leg is exactly 5 3 miles or approximately 8.66 miles.

Copyright © 2025 Pearson Education, Inc.

633


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

4. a2  b2  c2

16.

42  b2  82 16  b2  64 b2  48

a 2  b 2  c2 102  242  c2 100  576  c2

7  b  35 b2  28 2

b  28 b  2 7  5.29 18. The length of the shortest pipe is the length of the hypotenuse of a right triangle with legs both measuring 3 feet. a2  b2  c2

676  c2

32  32  c2

676  c2 26  c 8.

9  9  c2 18 c2

a2  b2  c2

18  c2 c  18  4.24 The length of the shortest pipe is 4.24 feet.

 5   b 2  62 2

5  b2  36 b2  31 b2  31 b  31  5.57

20. The height of the kite is the length of one leg of a right triangle where the other leg is 32 feet and the hypotenuse is 80 feet. a2  b2  c2 322  b2  802

2 2 2 10. a  b  c

2

1024  b  6400

52  b2  92 25  b2  81

b2  5376 2

b  5376 b  5376  73 The height of the kite is 73 feet.

b2  56 b2  56 b  2 14  7.48 12. a2  b2  c2 22  72  c2 4  49  c22 53  c 53  c2 c  53  7.28

 

14. a2  b2  c2

d 22. t  4 1730 t 4 t  10.40 It takes 10.40 seconds. 24.

s  30 fd 60  30  0.95d 60  28.5d

 28.5d 

2

a2 12  52

602 

a2 1  25

3600  28.5d 126  d The car will skid 126 feet.

a2  24 a2 

24 a  2 6  4.90

634

 7   b22   35 2 2

b2  48 b  4 3  6.93 6.

a2  b2  c2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

26.

v  2.5r 30  2.5r



2

302  2.5r 900  2.5r 360  r The radius of curvature is 360 feet.

Chapter 15: Roots and Radicals

40. The height is the length of one leg of a right 1 triangle with other leg (1200)  600 inches 2 1 and hypotenuse (1201)  600.5 inches. 2 a2  b2  c2 6002  b2  600.52

28. d  3.5 h d  3.5 202.7 d  49.8 You can see a distance of 49.8 kilometers. 30. d  3.5 h d  3.5 386.1 d  68.8 You can see a distance of 68.8 kilometers. 32.

25  5 and  25  5, so 5 and 5 are numbers whose square is 25.

34.

49  7 and  49  7, so 7 and 7 are numbers whose square is 49.

36.

121  11 and  121  11, so 11 and 11 are numbers whose square is 121.

38. y is one leg of a right triangle with other leg 5 and hypotenuse 15.

360, 000  b2  360, 600.25 b2  600.25 b2  600.25 b  24.5 The height of the bulge is 24.5 inches. Chapter 15 Vocabulary Check 1. The expressions 5 x and 7 x are examples of like radicals. 2. In the expression 3 45 the number 3 is the index, the number 45 is the radicand, and called the radical sign.

is

3. The conjugate of a + b is a  b. 4. The principal square root of 25 is 5.

a2  b2  c2

5. The process eliminating the radical in the denominator of a radical expression is called rationalizing the denominator.

52  y2  152

6. The Pythagorean theorem states that for a right

25  y  225

triangle, (leg)2  (leg)2  (hypotenuse)2 .

2

y2  200 Chapter 15 Review

y2  200 y  10 2 We now find the length of the second leg in the right triangle with leg 5 and hypotenuse 13.

2.  49  7. The negative indicates the negative

a 2  b 2  c2

square root of 49.

52  b2  132 25  b2  169 b2  144 b2  144 b  12 x  y  b  10 2 12

81  9, because 92  81 and 9 is positive.

1.

3.

3

27  3, because 33  27. 4

4. 4 81  3, because 3  81. 2

9 3  3  . 5.  9   because   64 8  8  64

Copyright © 2025 Pearson Education, Inc.

635


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals 2

36 6 6 2 6 36  because    , and  . 81 9 9 3  9  81

6. 7.

4

16  2 because 24  16.

8.

3

8  2 because (2)3  8.

10. a, c; 5 and 4 5 are not real numbers because the radicands are negatives and the indexes are even. 6 2

11.

x

12.

4 4 2 8 x8  x , because (x )  x .

13.

25  3  25 3 5 3   8 8 8

28.  12   12   49 49 29.

30.

12

 x , because (x )  x . 6

75  75  64 64

27.  50   50   9 9

9. c; 4 is not a real number because the radicand is negative and the index is even.

12

26.

11 

11  11 x x2

7

7

x2

y4

y4

25  2 3 43 7

  25 2   5 2 3 3

  4 3   2 3 7 7

7  2 y

31.

y5 y5   100 100 x3  81

y4

y4  y  10

y2 y

10

x3

x2  x  9

10

x2 x x x  9 9

14.

25x4  5x2 , because (5x2 )2  25x4 .

15.

40  4 10  4 10  2 10

33. 5 8  8 2  (5  8) 2  3 2

16.

24  4  6  4 6  2 6

34.

17.

54  9  6  9 6  3 6

18.

88  4  22  4 22  2 22

19.

x5  x4  x  x4 x  x

20.

y7  y6  y 

21.

20x2  4x2  5  4x2 5  2x 5

22.

50 y4  25 y4  2  25 y4 2  5 y

y6

81

3  6 3  (1 6) 3  5 3

35. 6 5  3 6  2 5  6  (6  2) 5  (3 1) 6  4 54 6 36.  7  8 2  7  6 2  (1 1) 7  (8  6) 2  2 7  2 2

2

x

y  y3 y

37.

2

28  63  56  4  7  9  7  4 14  4 7  9 7  4 14  2 7  3 7  2 14  (2  3) 7  2 14

  5 7  2 14

2

23. 3 54  3 27  2  3 27 3 2  33 2

38.

   23 11 24. 3 88 3 8 11 3 8 3 11

636



9 y2  3y, because (3y)2  9 y2 . 32.

25.

y

18  18  9  2  9 2  3 2 25 5 5 5 25

75  48  16  25  3  16  3  4  25 3  16 3  4 5 34 34  (5  4) 3  4

Copyright © 2025 Pearson Education, Inc.

9 34


ISM: Prealgebra and Introductory Algebra

39.

40.

5 5  5 5 9 36 9 36 5 5   3 6 2 5 5   6 6 5  6 11

11  11  25 16

47.

41.

 3 2  5 3  2 6 10 48.

11

2

49.

50.

44.

51.

2

50x  9 2x  72x  3x  25  2x  9 2x  36  2x  3x  25 2x  9 2x  36 2x  3x  5 2x  9 2x  6 2x  3x  (5  9  6) 2x  3x  2 2x  3x

46.

52.

5

2

2

27 3

27  9 3 3

20

20  4 2 5

5

53.

160  160  20  4  5  4 5  2 5 8 8

54.

96  96  32  16  2  16 2  4 2 3 3

55.

30x6  30x6 2x3

2x3

 15x3 

3  6  3 6  18  9  2  9  2  3 2  5  15  5 15  75  25  3

2

 y  4   y   2  y (4)  42

2

x2 15x

 x2 15x  x 15x

56.

 25  3 5 3 45.

 x  2   x   2  x (2)  22

 y  8 y 16

 9x2 5  3 x2 5  7x 5 10  3x 5  3x 5  7x 5 10  (3x  3x  7x) 5 10  x 5 10 or 10  x 5

43.

2

 x4 x 4

 9x  5  3 x  5  7x 5 10

42.

 5  1 5  3  5 5  3 5 1 5 1 3  5  (3 1) 5  3  22 5

45x  3 5x  7x 5 10 2

 3  2 6  5  3 6  5 3  2 6  2  5  18  5 3  2 6 10  9  2  5 3  2 6 10

25 16 11 11   5 4 4 11 5 11   20 20 9 11  20

2

Chapter 15: Roots and Radicals

54x5 y2 3xy2

 5  7   2 5  2 7  10  14  11  3   5 11  5 3  55  15 Copyright © 2025 Pearson Education, Inc.



54x5 y2 3xy2

 18x4  9x4  2  9x4 2  3x2 2

637


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

57.

2

2

11 58.

3

11

2 11 22  11 11

313 39  13 13

11

3

13 59.

11

13

13

13

5 5 5 6     6 6 6 6

56  6

60.

7 7 7 10     10 10 10 10

61.

5x 1  1  5x  5x 5x 5x 5x

62.

63.

64.

65.

5 3y

5

3  x

3  x

x

6  y

6 y

68.

y

69.



3

3 8 10  3

3 1

3 2  5 2

32 52  5 2 52 3 5  2 3  2 5  22  54 15  2 3  2 5  4  1  15  2 3  2 5  4

10

10  x  5  x 5 x 5

x 5

10

 x  5

x  25 10 x  50  x  25

6y y

8

70.

8

x 1

3 52   52 52 52



3 1 3 1 2 3 1 2 1 3 11  3 1 6  2  3 1  2

3 1

3

2 1

7 10 70  10 10

5 3y 3y

y

y

3

2 1

 x  3x x x

6

3y 3



66.

3y

3y

30 6

67.

71.





 1 8 x 1 8 8 x    x x 1 x 1 x 1 x 1

2x  6

 2x2x  6362

52 5 4

2

 5  2 

x  18

1

 5  2 or 3 5  6 8

10  3

 10  3 10  3

 10  3  10  9 8 10  3 8

72.

 x  3 2  42 x  3  16 x  13

 

73.

x 38 x2  5

 x   52



x3  4

1

 10  3 or 8 10  24

x  25

8

74.

x 8  3 x  5 x cannot equal 5. Thus, the equation has no solution.

638

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

75.

Chapter 15: Roots and Radicals

2x 1  x  7

2 2 2 80. a  b  c

 2x  1   (x  7)2 2

6 2  9 2  c2 36  81  c2

2x 1  x2 14x  49 0  x2 16x  48 0  (x 12)(x  4) x 12  0 or x  4  0 x  12 x4 x = 4 does not check, so the solution is x = 12. 76.

3x 1  x 1

117  c2 117  c2 c  3 13  10.82 81. The distance between Romeo and Juliet is the length of the hypotenuse of a right triangle with legs of length 20 feet and 12 feet. a2  b2  c2

 3x  1  (x 1)2 2

202 122  c2

3x 1  x  2x 1 2

0  x  5x 0  x(x  5) x = 0 or x  5  0 x5 x = 0 does not check, so the solution is x = 5. 2

77.

x  3  x 15

 x  3   x  15  2

2

400 144  c2 544 c2 544  c2 c  4 34  23.32 The distance is exactly 4 34 feet or approximately 23.32 feet. 82. The diagonal of a rectangle forms right triangles with the sides of the rectangle.

x  6 x  9  x 15 6 x6 x 1

a2  b2  c2 52  b2  102 25  b2  100

 x   12 2

b2  75

x 1

78.

b2  75 b  5 3  8.66 The length of the rectangle is exactly

x  52  x 1 2

 x  5    x 1

5 3 inches or approximately 8.66 inches.

x  5  x  2 x 1 6  2 x 3  x 2 2

 

3  x 9 x

83.

r

S r

4 72

4 r  2.4 The radius is 2.4 inches.

2 2 2 79. a  b  c

52  b2  92 25  b2  81 b2  56 b2  56 b  2 14  7.48

Copyright © 2025 Pearson Education, Inc.

639


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

84.

S 4 S 4

r  6

95.

2

 62 

S   4    S 36  4 144 S The surface area is 144 square inches.

96.

2

85.

144  12, because 12  144 and 12 is

86. 3 64  4, because 43  64. 8 8 2 16 16x16  4x , because (4x )  16x .

88.

4x24

89.

18x7  9x6  2x1  9x6

90. 

48 y6 y4  81

92.

x9  9

94.

12 2



16 y6  3 y4  y 81

x9 9

2x  3x

16 y6 3

7  14  7 14  98  49  2  49 2 7 2

3

 4 y3

98.

3

2x 3

9 

 9  2   3 3  2 

2

x8  x  3

x 8 x x4 x  3 3

99.

 3 3  3 2  3 3  6

 2  4 5 1  2 5 1 2  4 5  4 1  10  2  4 5  4

12  75  4  3  25  3  4 3  25 3  2 3 5 3  (2  5) 3 7 3

100.

 x  3   x   2  x (3)  (3) 2

2

 x6 x 9 101.

63  28  9  9  7  4  7  3  9 7  4 7 3  3 7  2 7 3  (3  2) 7  3  5 7 3

640

97. 24

 2x , because (2x )  4x .

91.

93.

12

45x3  x 20x  5x3  9x2  5x  x 4  5x  x2  5x  9x2 5x  x 4 5x  x2 5x  3x 5x  2x 5x  x 5x  (3x  2x  x) 5x  4x 5x

positive.

87.

3  3  3  3 16 4 16 4 3 3   4 2 3 2 3   4 4 3  4

102.

120 5

60x9 15x

4

120  24  4  6  2 6 5

60x9 15x7

 4x2  2x

103.

2  2  2  7  14 7 7 7 7 7

104.

2x 3 2x 3 3    2x 2x 2x 2x

Copyright © 2025 Pearson Education, Inc.

2


ISM: Prealgebra and Introductory Algebra

105.

3

3  x  6 x 6 x 6

x 6

Chapter 15: Roots and Radicals

2 2 2 111. a  b  c 2 2 3  7  c2

 x  6

9  49  c2

3

x  36 3 x 18  x  36

106.

107.

7 5

7 5

5 3

58  c2 2 58  c c  58  7.62

5 3

5 3 5 3 7 5  3 7  5 5  53  59 35  3 7  5 5 15  4

112. The diagonal is the hypotenuse of a right triangle with the sides of the rectangle as its legs. a 2  b 2  c2 22  b2  62 4  b2  36 b2  32 b2  32 b  4 2  5.66 The length of the rectangle is exactly

4x  2

 4x   22 2

4x  4 x 1

108.

4 2 inches or approximately 5.66 inches. Chapter 15 Getting Ready for the Test

x4  3

 x  4   32 2

1.  16  4 while 38

x4 9 x  13 109.

4x  8  6  x 4x  8  x  6

4x  8  x2 12x  36 0  x2 16x  28 0  (x 14)(x  2) x 14  0 or x  2  0 x  14 x2 x = 2 does not check, so the solution is x = 14.

4.

2

x 8  x  4 x  4 12  4 x 3  x

 

x 32  9x

4 5   4 2 5   16  5  80 2

2

Choice B is correct. 5.

x8  x  2 2

8  2; B.

3. 7 3  2  7 3  2  7 6 Choice B is correct.

2

 x  8    x  2

16 is not a real number,

2. 7 3  3  7 3 1 3  (7 1) 3  6 3 Choice C is correct.

 4x  8   (x  6)2

110.

 2, and

3

28

 28  4  7  5 25 25 Choice C is correct.

4 7 2 7  5 5

6.

18x16  9x16  2  9x16  2  3x8 2 Choice D is correct.

7.

64  3 43  4 Choice B is correct. 3

2

8.

3 27 x

3

 x39  3 (x9 )3  x9 Choice B is correct.

Copyright © 2025 Pearson Education, Inc.

641


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

2  2  2, to rationalize the

9. Since

5

denominator of

, we multiply by

2 10.

2

13  13  4 13  (11 4) 13  2 13

16.

18  75  7 3  8  9  2  25  3  7 3 

3 x 2   10x  9  2 2 3  x    10x  9  2

25

x 1  9x  9 2 (x  1) 2  9x  9

17.

x  2x 1  9x  9 Choice A is correct.

3 3   4 25

16  4, because 42  16 and 4 is positive.

2. 3 125  5, because 53  125. 3. 4 81  3, because 34  81. 2

9 3 3  9  , because   . 16 4 16 4

18.

5. 4 81 is not a real number since the index 4 is even and the radicand 81 is negative. 6.

x10  x5 , because (x5 )2  x10 .

7. 8.

54  9  6  9 6  3 6  92  4  23  4 23  2 23

9.

y7  y6  y 

10.

24x  4x  6  4x

y6

yy

3

19.

8

8

8

3



5

y 4

6  2x

12. 3 16  3 8  2  3 8 3 2  23 2 

3

 7  14  7 14  98  49  2  49 2 7 2 2

 6  5   2 6  2 5

 x  2 x  3  x  x  3 x  2 x  2  3

6

 x3 x 2 x 6  x x 6

11. 3 27  3 21.

50 10

5

642

y y

 12  10  4  3  10  2 3  10 20.

13.



4 25 3 3   2 5 5 3 2 3   10 10 5 32 3  10 (5  2) 3  10 7 3  10

Chapter 15 Test

y

5

42  9 2  25 3  7 3  4 2  3 2 5 3 7 3 2 2  (3  2) 2  (5  7) 3  22 3

2

3 x  10x  9

11.

y2

15.

; C.

9x  10x  9 Choice C is correct.

4.

y2  y  5

y3  25

2

2

1.

y3

14.

5  5  16 4 16

Copyright © 2025 Pearson Education, Inc.

50  5 10


ISM: Prealgebra and Introductory Algebra

22.

40x4 2x

2x  2  x  5

29.

40x4 2x

Chapter 15: Roots and Radicals

 2x  2   (x  5)2 2

 20x3

2x  2  x2 10x  25

 4x2  5x  4x2 5x  2x 5x 23.

24.

25.

2  3

2 

8

8

2

6  3 3 3 3

3

5y

5y

5y

8 62

5y 8

0  x2 12x  27 0  (x  3)(x  9) x  3  0 or x  9  0 x3 x9 x = 3 does not check, so the solution is x = 9.

6 2



2 2 2 30. a  b  c 2 2 8  b  122

8 5y 5y

64  b2  144 b2  80 b2  80

6 2

b4 5

6 2

 6  2 2  6   22 8 6  2 

The length is 4 5 inches.

8

31. r 

A  15 r   r  2.19 The radius is 2.19 meters.

64



 6  2

8

2

4

 6  2

Cumulative Review Chapters 115

 4 6 8

26.

1 3 

 x

27.

  28.

3 x   2 3  x x 3 3 

1

x  8  11 x 3 x

1 3 x

2

 2  39 xx

 x 

1. 736.2359 rounded to the nearest tenth is 736.2. 2. 328.174 rounded to the nearest tenth is 328.2. 3.

23.850  1.604 25.454

4.

12.762  4.290 17.052

5.

3.7 y  3.33 3.7(9) 0  3.33

 32 x9

3x  62  x  4 2

 3x  6    x  4  3x  6  x  4 2x  6  4 2x  10 x5

33.3  3.33 False No, 9 is not a solution. 6.

2.8x  16.8 2.8(6) 0 16.8 16.8  16.8 True Yes, 6 is a solution.

Copyright © 2025 Pearson Education, Inc.

643


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals 2

1 1 1 1 1 1 1 and is 7.  because      36 6 6  6  6 6 36 positive. 2

8.

2 2 2 2 4 2 4 and is  because      25 5 5  5  5 5 25 positive.

15. xy  2x  3y  6  x( y  2)  3( y  2)  ( y  2)(x  3) 16. 16x3  28x2  12x  21  4x 2 (4x  7)  3(4x  7)  (4x  7)(4x 2  3) 17. 3x2 11x  6  (3x  2)(x  3) 18. 9x2  5x  4  9x2  9x  4x  4  9x(x 1)  4(x 1)  (x 1)(9x  4)

9. 4(2x  3)  7  3x  5 8x 12  7  3x  5 8x  5  3x  5 5x  5  5 5x  10 x2

19. a.

The expression is undefined for x = 3, since the denominator, x  3, is 0 when x = 3.

b.

The expression is undefined for x = 2 and x = 1, since the denominator, x2  3x  2  (x  2)(x 1), is 0 when x = 2 or x = 1.

c.

There are no values for which the expression is undefined, since the denominator, 3, is never 0.

20. a.

The expression is undefined for x = 0, since the denominator, x, is 0 when x = 0.

b.

There are no values for which the expression is undefined, since the denominator, 5, is never 0.

c.

The expression is undefined for x = 2 and x = 2, since the denominator,

10. 3(2  5x)  24x  12 6 15x  24x  12 6  9x  12 9x  6 6 2 x  9 3 11. a.

12.

1.02 105  102, 000

b.

7.358103  0.007358

c.

8.4 107  84, 000, 000

d.

3.007 105  0.00003007

a.

8.26 104  82, 600

b.

9.9 102  0.099

x2  4  (x  2)(x  2), is 0 when x = 2 or x = 2. x2  4x  4 21.

c.

1.002 105  100, 200

d.

8.039 103  0.008039

13. (3x  2)(2x  5)  (3x)(2x)  (3x)(5)  2(2x)  2(5)  6x2 15x  4x 10

x2  2x

 

(x  2)(x  2) x(x  2)

x2 x

2 2 2 2 22. 16x  4y  4(4x  y ) 4x  2y 2(2x  y) 2  2(2x  y)(2x  y)  2(2x  y)  2(2x  y)

 6x2 11x 10 14. (5x 1)(4x  1)  (5x)(4x)  (5x)(1)  (1)(4x)  (1)(1)

23. a.

 20 x2  5x  4x 1  20 x2  x 1

644

b.

a 2a a a    0 4 8 4 4 3 10x

2

Copyright © 2025 Pearson Education, Inc.

7 15 14x  15 14x    25x 50x2 50x2 50x2


ISM: Prealgebra and Introductory Algebra

24. a.

b.

x 3x 2x 3x x     5 10 10 10 10 9 2

12a

25.

26.

Chapter 15: Roots and Radicals

5

 36  15a 2 16a 48a2 48a 36  15a  48a2 3(12  5a)  3 16a2 12  5a  16a2

  2  1 x 4x  x  30 x2 5 x  6   1  (x  5)(x  6)  (x  5)(x  6)  x  5   (x  5)(x  6)  x  6      4x  2(x  6)  x  5 4x  2x 12  x  5 6x 12  x  5 5x 12  5 5x  17 17 x 5 4x

2

3  12x  19  5  2  x  3  3  x  7x  12  x  4 (x  3)(x  4)    (x  3)(x  4)  12x  19  5  x 3  (x  3)(x  4) x  4      3(x  4)  12x  19  5(x  3) 3x  12  12x  19  5x 15 3x  12  7x  4 4x  12  4 4x  8 x2 

27.

Copyright © 2025 Pearson Education, Inc.

645


ISM: Prealgebra and Introductory Algebra

Chapter 15: Roots and Radicals

y

28.

5 4 3 2 1 –5 –4 –3 –2 –1–1

41. 2 x2  25x5  x5  2x  25x4  x  x4  x x=2

 2x  25x4  2x  5x

x

1 2 3 4 5

x x

xx

2

2

4

x

x

 2x  (5x  x ) x 2

–2 –3 –4 –5

2

 2x  4x2 x 42. 5 x2  36x  49x2  5x  36  x  (7x)2

29. 3 1  1, because 13  1.

 5x  36 x  7x  5x  6 x  7x

30. 3 8  2, because 23  8.

 12x  6 x

31.

3

32.

3

27  3, because (3)3  27. 8  2, because (2)3  8. 3

33.

3

1 . 1 , because  1  1     125 5  5  125 3

3 27 27 34. 3  , because    . 64 4 64 4 3

35.

54  9  6  9 6  3 6

36.

40  4 10  4 10  2 10

37.

200  100  2  100 2  10 2

38.

646

44.

45.

7

2

 7  2 7 7 7 7

4  4  54 5 5 5 5 5 x  5x  2

 x 2   5x  2 2 x  5x  2 4x  2 2 x 4 1 x 2 The solution is

125  25  5  25 5  5 5

75  48  25  3  16  3  25 3  16 3 5 34 3 9 3

1

.

2

39. 7 12  2 75  7 4  3  2 25  3  7 4 3  2 25 3  7 2 3  25 3  14 3 10 3  (14 10) 3 4 3 40.

2 43.

46.

x  5  x 1

 x  5   (x 1)2 2

x  5  x2  2x  1 0  x2  3x  4 0  (x  4)(x  1) x  4  0 or x  1  0 x  1 x4 The possible solution x = 1 does not check. The solution is 4.

Copyright © 2025 Pearson Education, Inc.


Chapter 16 Section 16.1 Practice Exercises

x

1. x2 16  0

The solutions are

x2  16 x  16 or x   16 x4 x  4 The solutions are 4 and 4.

7.

x

11 3 11  3

or x  

3 3 33 x 3 The solutions are

11

3 11  3 x 3 3 33 x 3 33 33 . and  3 3

x  4  49 or x  4   49 x4  7 x  4  7 x  11 x  3 The solutions are 11 and 3. 4. (x  5)2  18

Vocabulary, Readiness & Video Check 16.1 1. To solve, a becomes the radicand and the square root of a negative number is not a real number. 2. A quadratic equation must be in the form of a variable (or polynomial) squared equal to some nonnegative number in order for the property to be used. For Video Notebook 6, we use h  16t2, so this equation can easily be placed in this form. The negative value is rejected because it will not be used in the context of the application. Exercise Set 16.1 2.

x  5  18 or x  5   18 x 5  3 2 x  5  3 2 x  53 2 x  53 2 x  53 2 The solutions are 5  3 2.

4.

5. (x  3)  5 This equation has no real solution because the square root of 5 is not a real number. 2

4x 1  15 4x  1 15 1 15 x 4

or

h  16t 2 759  t 2 27.5  t or 27.5  t 27.5 is rejected because time cannot be negative. The free-falling dive of 12,144 feet lasted approximately 27.5 seconds.

3. (x  4)2  49

6. (4x 1)2  15

1 15 . 4

12,144  16t 2

2. 3x2  11 11 x2  3 x

1 15 4

k2  9  0 (k  3)(k  3)  0 k  3  0 or k  3  0 k 3 k  3 The solutions are k = 3 and k = 3. m2  6m  7 m2  6m  7  0 (m  7)(m 1)  0 m  7  0 or m 1  0 m  7 m 1 The solutions are m = 7 and m = 1.

4x 1   15 4x  1 15 1 15 x 4

Copyright © 2025 Pearson Education, Inc.

647


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

2x2  98  0

6.

2(x2  49)  0 2(x  7)(x  7)  0 x  7  0 or x  7  0 x7 x  7 The solutions are x = 7 and x = 7. 7a2 175  0

8.

7(a2  25)  0 7(a  5)(a  5)  0 a  5  0 or a  5  0 a5 a  5 The solutions are a = 5 and a = 5. x2 10x  24

10.

x2 10x  24  0 (x  6)(x  4)  0 x6 0 or x  4  0 x  6 x  4 The solutions are x = 6 and x = 4. 12. x2  121 x  121 or x   121 x  11 x  11 The solutions are x = 11. 14. x2  22 x  22

or x  

16. x  x x

1 4

x x

5 2

22

5 10

5 5

10 . 5

9 2 x 9 2 2 2 3 2 x 2

or x  

3 2 . 2

x2  15 x  15

or

x   15

The solutions are x   15. or x  

16 x

26. (x  2)2  25

1 16 1

x  2  25 or x  2   25 x2 5 x  2  5 x3 x  7 The solutions are x = 3 and x = 7.

4

1 The solutions are x   . 4

28. (x  7)2  2

18. x2  25 has no real solution because the square root of 25 is not a real number.

x7  2 x  7  2

or

x  7   2 x  7  2

The solutions are x  7  2.

648

5

The solutions are  22. 2x2  9 9 x2  2 9 x 2 9 2 x  2 2 3 2 x 2

2

24. 3x2  45  0 3x2  45

1 16 1

or x  

The solutions are x  

The solutions are x   22. 2

20. 5x2  2 2 x2  5 2 x 5 2 5 x  5 5 10 x 5

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra 2

1 1  30.  m    3 9  1 1 m  or 3 9 1 1 m  3 3 m0

Chapter 16: Quadratic Equations 40. (5x 11)2  54

m m

1 3 1

 

5x 11  54 5x 11  3 6

1 1

5x  11  3 6 11 36 x 5

5x  11  3 6 11 3 6 x 5 11 3 6 . The solutions are x  5

3

3 3 2 m 3

2 The solutions are m = 0 or m   . 3

or

p  7  13

x2  35 x  35 or x   35

p  7   13

The solutions are x   35.

p  7  13

The solutions are p  7  13.

44. (x  5)2  20 x  5  20 x5 2 5 x  5  2 5

34. (4 y  3)2  81 4 y  3  81 4y  3  9

or

 

42. x2  35  0

32. ( p  7)2  13 p  7  13

or 5x 11   54 5x 11  3 6

4 y  3   81 4 y  3  9

4 y  6 6 3 y  4 2 3 The solutions are y = 3 and y   . 2 36. (z  7)  20 has no real solution because the

x  5   20 x  5  2 5 x  5  2 5

The solutions are x  5  2 5.

4 y  12 y3

2

or

46.

1 2 y 2 5 y2  10 y  10 or

y   10

The solutions are y   10.

square root of 20 is not a real number. 38. (3x 17)2  28 3x 17  28 3x 17  2 7 3x  17  2 7 17  27 x 3

or 3x 17   28 3x 17  2 7 3x  17  2 7 17  2 7 x 3 17  2 7 The solutions are x  . 3

48. (7x  2)2  11 7x  2  11 7x  2  11 x

or 7x  2   11 7x  2  11

2  11 7

The solutions are x 

x 2  11

2  11 7

.

7 50. 3z 2  24 z2  8 z 8 z2 2

or z   8 z  2 2

The solutions are z  2 2.

Copyright © 2025 Pearson Education, Inc.

649


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

52. (10  9x)2  75  0

62.

(10  9x)2  75

10 r2

10  9x  75 10  9x  5 5 9x  10  5 5 10  5 5 x 9

10  r2

or 10  9x   75 10  9x  5 5 9x  10  5 5 10  5 5 x 9 10  5 5 The solutions are x  . 9 54.

A  r 2

10  r or  10  r Since the radius does not have a negative length, reject the solution  10. The radius is 10 units. 64. y2 10 y  25  y2  2( y)(5)  (5)2  ( y  5)2 66. x2  20x 100  x2  2(x)(10)  (10)2

A  s2

 (x  10)2

32  s2 32  s or  32  s 4 2s 4 2  s Since the length of a side is not a negative number, reject the solution 4 2. The sides have length 4 2  5.66 meters. 56.

y  5  11 y  5  11 y  5  11

h  16t

 

h  16t 2 400  16t 2 25  t2 25  t or  25  t 5t 5  t Since the time of a fall is not a negative number, reject the solution 5. It would take 5 seconds for the goggles to hit the water.

or

y  5   11 y  5  11

The solutions are y  5  11. 72. (x 1.37)2  5.71 x 1.37  5.71 or

 x 1.37   5.71

x 1.37  2.39 x 1.37  2.39 x  3.76 x  1.02 The solutions are x = 3.76 and x = 1.02.

2

696  t2 696  t or  696  t 26.4  t 26.4  t Since the time would not be a negative number, reject the solution 26.4. The free-fall lasted approximately 26.4 seconds.

650

( y  5)2  11

As

11,136  16t2

60.

70. y2 10 y  25  11

2

3039  s2 3039  s or  3039  s 55.13  s 55.13  s Since the length of a side is not a negative number, reject the solution  3039. The sides have length 3039 feet  55.13 feet. 58.

68. answers may vary

74.

y  760(x 12)2  95, 628 400, 000  760x  21)2  95, 628 495, 628  760(x 12)2 495, 628  (x  12)2 760 495, 628  x 12 760 495, 628 12  x 760 14  x or 495, 628   x 12 760 495, 628 12  x 760 38  x If the trend continues, the first year after 2015 in

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

which there will be 400,000 thousand paying Spotify subscribers worldwide will be 2029 (2015 + 14).

Chapter 16: Quadratic Equations

4.

2x2 10x  13 13 x2  5x   2 25 13 25 x2  5x    42 2 4 5 1   x     2 4  There is no real solution to this equation since the square root of a negative number is not a real number.

5.

2x2  6x  5 5 x2  3x  2 5 x2  3x  2 9 5 9 x2  3x    4 2 4 2 3 19   x    2 4  3 19 3 19 or x    x  2 4 2 4 3 19 3 19 x   x    2 2 2 2 3 19 3 19 x   x   2 2 2 2 3  19 The solutions are . 2

Section 16.2 Practice Exercises 1.

x2  8x  1  0 x2  8x  1 x2  8x 16  1 16 (x  4)2  15 x  4  15 x  4  15

or x  4   15 x  4  15

The solutions are 4  15. 2.

x2 14x  32 x 14x  49  32  49 2

(x  7)2  17 x7  or 17 x  7  17

x  7  

17 x  7  17

The solutions are 7  17. 3. 4x2 16x  9  0 9 x2  4x   0 4 9 x2  4x  4 9 x2  4x  4   4 4 25 2 (x  2)  4 25 25 x2 or x  2   4 4 5 5 x2  x2   2 2 5 5 x  2 x  2 2 2 9 1 x x  2 2 9 1 The solutions are and  . 2 2

Vocabulary, Readiness & Video Check 16.2 1. By the zero-factor property, if the product of two numbers is zero, then at least one of these two numbers must be zero. 2. If a is a positive number, and if x2  a, then x   a. 3. An equation that can be written in the form ax2  bx  c  0 where a, b, and c are real numbers and a is not zero is called a quadratic equation. 4. The process of solving a quadratic equation by writing it in the form (x  a)2  c is called completing the square. 5. To complete the square on x2  6x, add 9.

Copyright © 2025 Pearson Education, Inc.

651


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations 2

b 6. To complete the square on x bx, add   .  2

4.

2

z2  6z  9 2 2 6 6 2 z  6z     9    2 2 z2  6z  9  9  9 (z  3)2  18

2

8 7.    42  16; p2  8 p  16  2  2

6 2 2 8.    3  9; p  6 p  9  2 

z  3  18 z3 3 2 z  3  3

2

 20  2 2 9.    10  100; x  20x 100  2   18 

2

2

2

 14 

2

6. 

2

y2  4 y  0 2  4 2 4 y2  4 y    0      2  2  2 y  4y  4  0  4 ( y  2)2  4 y  2  4 or y  2   4 y  2  2 y  2  2 y0 y  4

2

2 2 2 12.    1  1; y  2 y  1  2 13. When working with equations, whatever is added to one side must also be added to the other side to keep equality. 2

14. The coefficient of y is 2. The method of completing the square works only when the coefficient of the squared variable is 1, so we must first divide through by 2. Exercise Set 16.2 x2 10x2  24 2  10   10  2 x 10x     24     2   2  x2 10x  52  24  52 x2 10x  25  24  25

The solutions are y = 0 and y = 4. 8.

y2  5 y  6  0 y2  5 y2  6 2  5   5  y2  5 y     6     2   2  2 5 1  y     4 2  5 1 5 1 y  or y    2 4 2 4 5 1 5 1 y  y  2 2 2 2 6 4 y 3 y 2 2 2 The solutions are y = 3 and y = 2.

(x  5)2  1 x 5  1 or x  5   1 x  5 1 x  5 1 x6 x4 The solutions are x = 6 and x = 4.

652

2

z  3   18 z  3  3 2 z  3  3

11.    7  49; y 14 y  49  2 

2.

or

The solutions are z  3  3 2.

2

10.    9  81; x 18x  81  2 

z2  6z  9  0

Copyright © 2025 Pearson Education, Inc.

2


ISM: Prealgebra and Introductory Algebra

10.

x2  4x  2  0

Chapter 16: Quadratic Equations

x2  4x  2 2 2  4   4  2 x  4x     2     2   2  2 x  4x  42  2  4 (x  2)  2 x2 2 x  2 2

or

3 2 2 14  4   4 x  4x            2  3  2  2 2 (x  2)   3 2

x  2   2 x  2 2

The solutions are x  2  2. 12.

14.

3x2 12x 14  0 14 x2  4x  0 3 14 x2  4x  

16.

This has no real solution because

x2  7x  5 2 2 x 2  7x   7   5   7 2 2     49 69 2 x  7x   4 4 2 7 69  x   2   4    7 69 7 69 x   or x    2 4 2 4 7  69 7 69 x   x   2 2 2 2 7 69 7 69 x  x  2 2 2 2 7  69 The solutions are . 2 2x2 18x  40 x2  9x  20 2 2 x 2  9x   9   20   9  2 2  2   9 1   x    2 4  9 9 x  1 or x    1 4 4 2 2 9 1 9 1 x  x   2 2 2 2 8 10 x    4 x    5 2 2 The solutions are x = 4 and x = 5.

2 is not a 3

real number. 4x2  20x  3

18.

4x2  20x  3 3 x2  5x  4  5 2 3  5 2 2  5x         x  2 2 4  2  5 28   x    2  4 

5 28  2 4 5 2 7 x  2 2 5 2 7 x  2 2 x

or x  x

5 2 5

28

 

4 2 7

2

2

2 7 x  2 2 5  2 7 The solutions are x  or 2 5 x    7. 2

Copyright © 2025 Pearson Education, Inc.

5

653


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

20.

4z 2  8z 1  0 1 z2  2z   0 4 1 z2  2z   4 2 2 1  2   2  2 z  2z         3 2 (z 21)2  4 4 3 3 z 1  or z 1   4 z  1

26.

4 3

z  1

2

3 2

The solutions are z  1

3

.

2 x2  6x  7  0

22.

x2  6x2  7 2  6   6  2 x  6x     7     2   2  (x  3)2  2 x3  2 x  3  2

or

 3 2  3 2 x2  3x     18       2  2  2 3 81   x    4 2

x  3   2 x  3  2

3 81 3 81 or x     2 4 2 4 3 9 3 9 x  x  2 2 26 9 12 x 6 x    3 2 2 The solutions are x = 6 or x = 3. x

x2  9x  3  0 x2  9x  3  92  9 2 x  9x    3     2  2  2   9 69   x    2 4  9 69 9 69 or x    x  2 4 2 4 9 69 9 69 x  x  2 2 2 2 2

The solutions are x  9  2 69 .

654

x(x  3)  18 x2  3x  18

28.

The solutions are x  3  2. 24.

2 y2  y 1  0 y 1 y2    0 2 2 y 1 y2   2 2 2 2 1  1 2 y  1 y           2 41 2 29 4  y    4 16  1 9 1 9 or y    y   4 16 4 16 1 3 1 3 y  y  4 4 4 4 4 2 1 y  1 y  4 4 2 1 The solutions are y = 1 and y   . 2

30.

2 y2  8 y  9  0 9 y2  4 y   0 2 9 y2  4 y   2 2 2 9 4 4 2 y  4 y         2 2 12 ( y  2)2   2 The equation has no real solution, since the 1 square root of  is not a real number. 2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

6x2  30x  36

32.

1786  20x2 147x 1487 299  20x2 147x 299 2 147 x  x 20 20 2  147  299  147 2 2 147       20  x  20 x2   40  40  45, 529  147  x   1600 40   45, 529 147  x 1600 40 147 45, 529  x 40 40 9x or 45, 529 147   x 1600 40 147 45, 529  x 40 40 2  x Since the time will not be a negative number in this context, reject the solution x  2. The solution is x  9, so the model predicts that the year-opening price of gold was $1786 per ounce in 2022 (2013 + 9). 

16 3 4 7 3     25 5 5 5 5

9 36. 10 

y  20x2 147x 1487

48.

x2  5x  6 2 2  5  5 2 x  5x      6      2 2  2  1 x 5   2   4    x  52  1 or x  52   1 54 1 5 41 x  x  2 2 2 2 6 4 x 3 x 2 2 2 The solutions are x = 3 and x = 2. 34.

Chapter 16: Quadratic Equations

9 7 2 1 49     5 100 10 10 10

38.

10 20 3 10  20 3    5 10 3 2 2 2

40.

12  8 7 12 8 7 3 2 7 3  2 7      16 16 16 4 4 4

50. The solutions are x = 4 and x = 6.

42. answers may vary

52. The solutions are x  0.65 and x  7.65.

44. answers may vary

Section 16.3 Practice Exercises 2

46. x  kx   k   is a perfect square trinomial, 2  then 2 k 2

   25  2 k k  25 or   25 2 2 k  25 k  2(5) k  10 k  10 2 x  kx  25 is a perfect square trinomial when k = 10 or k = 10.

1.

2x2  x  5  0

a = 2, b = 1, c = 5 x 

b  b2  4ac 2a 

x

(1)  (1)2  4(2)(5) 2(2)

1 1 40 4 1 41  4

The solutions are

Copyright © 2025 Pearson Education, Inc.

1 41 . 4

655


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

3x2  8x  3

2.

1

5.

3x2  8x  3  0 a = 3, b = 8, c = 3

2 1  2 2  x  5x 11  2(0) 2  x2 10x  22  0 a = 1, b = 10, c = 22

b  b2  4ac x  2a x

x 

(10)  (10)2  4(1)(22) 2(1) 10  12  2 10  2 3  2

5x  2  0 a = 5, b = 0, c = 2 6.

0  0  4(5)(2) 2(5) 40  10 2 10  10 10  5  10 . The solutions are  5 2

1. The quadratic formula is x 

b  b2  4ac . 2a

2. 5x2  7x 1  0; a = 5, b = 7, c = 1 3. x2  3x  7  0; a = 1, b = 3, c = 7 4. x2  6  0; a = 1, b = 0, c = 6 5. x2  x 1  0; a = 1, b = 1, c = 1

b  b  4ac 2a 2

2  22  4(1)(3) 2(1)

6. 9x2  4  0; a = 9, b = 0, c = 4  2  8 2

There is no real number solution because not a real number.

656

 1.4

Vocabulary, Readiness & Video Check 16.3

x  2x  3  0 a = 1, b = 2, c = 3

x

4 41

 1.9

4

2

x 

1 41

1

x2  2x  3

4.



The solutions are 5  3.

b  b2  4ac x  2a

2 5 3 2  5 3 

2

x

b  b2  4ac 2a

x 

5x2  2

3.

2 x2  5x 11  0

1

8  82  4(3)(3) 2(3) 8  64  36  6 8  100  6 8 10  6 8 10 1 8 10 x  or  3 6 6 3 1 The solutions are and 3. 3

x2  5x  11

8 is

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

7.

1 12  4(1)(2) 2(1)

Chapter 16: Quadratic Equations

1 1 8 2 1 9  2 1 3  2

x 

2(1) 5  25  24  2 5  49  2 57  2 5  7 12 57 2 x   6 or x     1 2 2 2 2 The solutions are x = 6 and x = 1.

1 3 2  1 2 2 1 3 4   2 2 2

(5)  (5)2  4(2)(3) 5  25  24 8.  4 2(2)   5 1 6 3 4  4 2

4. 7k 2  3k 1  0 a = 7, b = 3, c = 1

5 1 4 5 1 4

k 

9.

7  72  4(2)(1) 7  49  8 7  41   4 4 2(2)

10.

5  52  4(1)(2) 5  25  8 5  17   2(1) 2 2

3  32  4(7)(1) 2(7) 3  9  28  14 3  37  14 3  37 The solutions are k  . 14

12. The exact solution values are keyed into a calculator, and the decimal approximations are then rounded to the requested place value. Exercise Set 16.3 2. x2  5x  6  0 a = 1, b = 5, c = 6 x  b  b  4ac 2a 2

25x2 15  0

6.

25x2  0x 15  0 a = 25, b = 0, c = 15

yes, in order to make sure you have correct values for a, b, and c

b. No; it simplifies calculations, but you would still get a correct answer using fraction values in the formula.

b  b2  4ac 2a

k

5 1 4  1 4 4

11. a.

(5)  (5)2  4(1)(6)

x 

b  b2  4ac 2a

2 x  0  0  4(25)(15) 2(25)  1500  50 10 15  50 15  5

The solutions are x  

Copyright © 2025 Pearson Education, Inc.

15 . 5

657


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

8. 3x2  2x  1  0 a = 3, b = 2, c = 1 x 

b  b  4ac 2a

x

2  22  4(3)(1) 2(3)

m2 14  5m

14.

m2  5m 14  0 a = 1, b = 5, c = 14

2

2 m  b  b  4ac 2a (5)  (5)2  4(1)(14) m  2(1) 5  25  56  2 5  81  2 59  2 5  9 4 5  9 14   2 m   7 or m  2 2 2 2 The solutions are m = 7 and m = 2.

2  4 12 6 2  8  6 The equation has no solution, since the square root of 8 is not a real number. 

y2  5 y  36

10.

y2  5 y  36  0 a = 1, b = 5, c = 36 b  b2  4ac

y y 

10  x 2  2x 16. 0  x2  2x 10 a = 1, b = 2, c = 10

2a (5)  (5)2  4(1)(36)

2(1) 5  25 144  2 5  169  2 5 13  2 5 13 y  9 or y  5 13  4 2 2 The solutions are y = 9 and y = 4.

x 

x 

5x2 15  0 a = 5, b = 0, c = 15 b  b  4ac x  2a 2

x

0  02  4(5)(15) 2(5)

 300 10 10 3  10  3 

2  22  4(1)(10)

2(1) 2  4  40  2 2  44  2 2  2 11  2  1 11 The solutions are x  1 11.

5x2  15

12.

b  b2  4ac 2a

 18.

3x2  9x  8 3x2  9x  8  0 a = 3, b = 9, c = 8 2 x  b  b  4ac 2a

The solutions are x   3.

658

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

x

Chapter 16: Quadratic Equations

24. 5x2  8x  2  0 a = 5, b = 8, c = 2

(9)  (9)2  4(3)(8) 2(3)

2  b  b  4ac x 2a

9  81 96 6 9  177  6

The solutions are x 

y 9  177

8  64  40 10 8  24  10 8 2 6  10 4 6  5

.

6 11p2  2  10 p

20.

11p2 10 p  2  0 a = 11, b = 10, c = 2 p 

b  b2  4ac 2a 

(10)  (10)2  4(11)(2) p 2(11) 10  100  88  22 10  12  22 10  2 3  22 5 3  11 The solutions are p 

5 3 . 11

22. x2 10x  19  0 a = 1, b = 10, c = 19 x x 

b  b2  4ac 2a (10)  (10)2  4(1)(19) 2(1)

10  100  76  2 10  24  2 10  2 6  2  5 6

(8)  (8)2  4(5)(2) 2(5)

The solutions are x 

4 6

.

5 5 y2  4  y

26.

5 y2  y  4  0 a = 5, b = 1, c = 4 2 y  b  b  4ac 2a

y

1 12  4(5)(4) 2(5)

1 1 80 10 1 81  10 1 9  10 1 9 8 4 or y  1  9  10  1 y   10 10 5 10 10 4 The solutions are y  and y = 1. 5 

The solutions are x  5  6.

Copyright © 2025 Pearson Education, Inc.

659


6z 2  2  3z

28.

34. x2  2x  5  0 a = 1, b = 2, c = 5

6z2  3z  2  0 a = 6, b = 3, c = 2

z 

2 x  b  b  4ac 2a

b   b  4ac 2a 2

(2)  (2)2  4(1)(5) 2(1) 2  4  20  2 2  24  2 22 6  2

x

3  32  4(6)(2) 2(6) 3  9  48  12 3  57  12 3  57 The solutions are z  . z

 1 6 The solutions are x  1 6.

12 30. k 2  2k  5  0 a = 1, b = 2, c = 5 k 

36. 5x2 13x  6  0 a = 5, b = 13, c = 6

b  b2  4ac 2a

2  22  4(1)(5) 2 4  20 2 16   2 2 2(1) The equation has no solution, since the square root of 16 is not a real number. 2z 2  z  3

32.

2z2  z  3  0 a = 2, b = 1, c = 3 b  b2  4ac 2a (1)  (1)2  4(2)(3)

z z  

b  b2  4ac 2a

x 

k

  

ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

2(2)

1 1 24 4

2 x  (13)  (13)  4(5)(6) 2(5) 13  169 120  10 13  289  10 13 17  10 13 17 30 13 17 4 2 x   3 or x    10 10 10 10 5 2 The solutions are x = 3 and x   . 5 2 m   38.  3m 1 2 m2    3m 1 0 2 m2  6m  2  0 a = 1, b = 6, c = 2 

1 25 4 1 5  4 1 5 6 3 1 5 4 z   or z    1 4 4 2 4 4 3 The solutions are z  and z = 1. 2 

660

m

b  b2  4ac 2a

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

 m 

Chapter 16: Quadratic Equations

10  2 12 3 10  2 8 1   or p    16 16 4 16 16 2 3 1 The solutions are p  and p  . 4 2

(6)  (6)2  4(1)(2) 2(1)

p

6  36  8 2 6  28  2 62 7  2  3 7 

2x2 

44. 2

2x 

x 

a = 5, b = 2, c = 1

p 

b  b2  4ac 2a (2)  (2)2  4(5)(1)

4 p2  2

4p 5p 

3

 5p

2 3

0 2 8 p2 10 p  3  0 a = 8, b = 10, c = 3 2 p  b  b  4ac 2a

p

(10)  (10)2  4(8)(3) 2(8)

10  100  96 16 10  4  16 10  2  16 

2 0

2

(5)  (5)2  4(4)(7)

2(4) 5  25 112  8 5  137  8

2(5) 2  4  20  10 2  16  10 The equation has no solution, since the square root of 16 is not a real number. 42.

7

2 x  b  b  4ac 2a

5 2 1 p  p  0 40. 2 2 5 p2  2 p 1  0

7

x

x 2 2 4x2  5x  7  0 a = 4, b = 5, c = 7

The solutions are m  3  7.

p 

5

5

The solutions are x 

 46.

5  137 . 8

2 2 2 x  2x   0 3 3 2x2  6x  2  0 a = 2, b = 6, c = 2 2 x  b  b  4ac 2a

x 

(6)  (6)2  4(2)(2)

2(2) 6  36 16  4 6  52  4 6  2 13  4 3  13  2 The solutions are x 

3  13

.

2

Copyright © 2025 Pearson Education, Inc.

661


48.

9z 2 12z  1

x

9z2  12z 1  0 a = 9, b = 12, c = 1

b  b2  4ac z  2a

x2  7x  5

54.

x  7x  5  0 a = 1, b = 7, c = 5 2

2 x  b  b  4ac 2a

(7)  (7)2  4(1)(5) x 2(1) 7  49  20  2 7  69  2 7  69 The solutions are x  or x  7.7 or 2 x  0.7.

2x2  26 2x2  0x  26  0 a = 2, b = 0, c = 26 x  x 

b  b2  4ac 2a 0  02  4(2)(26) 2(2)

 208  4 4 13  4   13

56. 5x2  3x 1  0 a = 5, b = 3, c = 1 x 

The solutions are x   13 or x  3.6 and x  3.6. 52. x2  4x  2  0 a = 1, b = 4, c = 2 b  b2  4ac x

4  16  8 2

4  8 2 4  2 2  2  2  2 The solutions are x  2  2 or x  3.4 and x  0.6.

12  12  4(9)(1) 2(9) 12  144  36  18 12  108  18 12  6 3  18 2  3  3 2  3 The solutions are z  . 3 50.

4  42  4(1)(2) 2(1)

2

z

ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

2a

b  b2  4ac 2a

2 x  (3)  (3)  4(5)(1) 2(5) 3  9  20  10 3  29 

10 The solutions are x  x  0.2.

662

Copyright © 2025 Pearson Education, Inc.

3  29 or x  0.8 and 10


  

ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

58. x = 4 is a vertical line with x-intercept (4, 0). x 

6  62  4(1)(95)

2(1) 6  36  380  2 6  416  2 6  4 26  2  3  2 26 x  3  2 26  7.2 or x  3  2 26  13.2 Since the width is not a negative number, discard the solution x = 13.2. x + 6 = 7.2 + 6 = 13.2 The width was approximately 7.2 feet and the length was approximately 13.2 feet.

60. y = 2x + 3 is a line with slope of 2 and y-intercept (3, 0).

2 68. y  2 5 y 1  0

a = 1, b  2 5, c = 1 y 

 

2

62.

5x  2  x 5x2  x  2  0 c = 2, which is choice d.

y

0  7 y2  3y  0 c = 0, which is choice c. 66. Let x be the width of the table. Then the length is x + 6. Area  (length)(width) 95  (x  6)(x) 0  x2  6x  95 a = 1, b = 6, c = 95 x

b  b2  4ac 2a

  2 5   4(1)(1) 2

 2 5 

2(1)

2 5  20  4 2 2 5  24  2 2 52 6  2  5 6 

64. 7 y2  3y

95  x2  6x

b  b2  4ac 2a

The solutions are y  5  6. 70. answers may vary 72. 1.2x2  5.2x  3.9  0 c = 1.2, b = 5.2, c = 3.9 x 

b  b2  4ac 2a

(5.2)  (5.2)2  4(1.2)(3.9) 2(1.2) 5.2  27.04 18.72  2.4 5.2  45.76  2.4

x 

Copyright © 2025 Pearson Education, Inc.

663


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

x

5.2 

Mid-Chapter Review Practice Exercises

45.76  5.0 or 2.4

5.2  45.76 x  0.7 2.4 The solutions are x  5.0 and x  0.7.

1. y2  4 y  6  0 Use the quadratic formula with a = 1, b = 4, and c = 6. 2 y  b  b  4ac 2a

74. h  16t 2 120t  80

0  16t2 120t  80 a = 16, b = 120, c = 80 t

b  b2  4ac 2a

t

120  1202  4(16)(80) 2(16)

120  14, 400  5120 32

 t

120  19, 520 32 120  19, 520 32

(4)  (4)2  4(1)(6) 2(1) 4  16  24  2 4  40  2 4  2 10  2  2  10 

y

The solutions are y  2  10. 2. (2x  5)2  45

 0.6 or

Use the square root property.

120  19, 520 t  8.1 32 Since the time of the flight is not a negative number, discard the solution 0.6. The rocket will strike the ground approximately 8.1 seconds after it is launched. 76.

y  0.2x2  0.9x 15.4

(2x  5)2  45 2x  5   45 2x  5  3 5 2x  5  3 5 5  3 5 x 2

22  0.2x2  0.9x 15.4

The solutions are x 

0  0.2x  0.9x  6.6 a = 0.2, b = 0.9, c = 6.6

3.

2 x  b  b  4ac 2a

(0.9)  (0.9)  4(0.2)(6.6) x 2(0.2) 0.9  0.81 5.28  0.4 0.9  6.09  0.4 0.9  6.09 0.9  6.09 x  8 or x   4 0.4 0.4 Since the time is not negative in this context, discard the solution x  4. The solution is x  8, so the model predicts that the number of restaurant and food service jobs will reach 22 million in 2027 (2019 + 8). 664

.

2

2

2

5  3 5

5 3 x 2 2 3 2 5 x  x 0 2 2 x2 

2x2  5x  3  0 (2x  3)(x 1)  0 2x  3  0 or x 1  0 2x  3 x 1 3 x 1 x 2 3 The solutions are x  and x = 1. 2

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

Mid-Chapter Review 1.

5x2 11x  2  0 (5x 1)(x  2)  0 5x 1  0 or x  2  0 5x  1 x2 1 x 5 1 The solutions are x  and x = 2. 5

2.

5x2 13x  6  0 (5x  2)(x  3)  0

2 x  (6)  (6)  4(1)(7) 2(1) 6  36  28  2 6 8  2 62 2  2  3 2

The solutions are x  3  2.

5x  2  0 5x  2 2 x 5

or

5. a2  20 a   20 a  2 5

x3 0 x  3

The solutions are x 

The solutions are a  2 5. 2 5

6. a2  72 and x = 3.

a   72 a  6 2 The solutions are a  6 2.

x2 1  2x

3.

x  2x 1  0 a = 1, b = 2, c = 1

7. x2  x  4  0 a = 1, b = 1, c = 4

2  x  b  b  4ac 2a 

2 x  b  b  4ac 2a

(2)  (2)2  4(1)(1) x 2(1)

(1)  (1)2  4(1)(4) 2(1) 1 116  2 1 15  2 The equation has no solution, since the square root of 15 is not a real number.

2

x

2 44 2 2 8  2 22 2  2  1 2 

8. x2  2x  7  0 a = 1, b = 2, c = 7

The solutions are x  1 2. x2  7  6x

4.

x2  6x  7  0 a = 1, b = 6, c = 7 x

b  b2  4ac 2a

x 

b  b2  4ac 2a

2 x  (2)  (2)  4(1)(7) 2(1)

2  4  28 2 2  24  2 The equation has no solution, since the square root of 24 is not a real number. 

Copyright © 2025 Pearson Education, Inc.

665


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

9. 3x2 12x 12  0

15.

x2  3x  2  0 (x  2)(x 1)  0 x  2  0 or x 1  0 x2 x 1 The solutions are x = 1 and x = 2.

16.

x2  7x 12  0 (x  3)(x  4)  0 x  3  0 or x  4  0 x  3 x  4 The solutions are x = 3 and x = 4.

3(x2  4x  4)  0 3(x  2)(x  2)  0 x  2  0 or x  2  0 x2 x2 The solution is x = 2. 10. 5x2  30x  45  0 5(x2  6x  9)  0 5(x  3)(x  3)  0 x  3  0 or x  3  0 x3 x3 The solution is x = 3. 11.

12.

13.

9  6 p  p2  0 (3  p)(3  p)  0 3  p  0 or 3  p  0 3 p 3 p The solution is p = 3. 49  28 p  4 p2  0 (7  2 p)(7  2 p)  0 7 2p  0 or 7  2 p  0 7  2p 7  2p 7 7 p p 2 2 7 The solution is p  . 2 4 y 16  0 2

4( y  4)  0 4( y  2)( y  2)  0 y20 y  2  0 or y  2 y2 2

The solutions are y = 2. 14.

3y2  27  0 3( y2  9)  0 3( y  3)( y  3)  0 y  3  0 or y3

y3  0 y  3

The solutions are y = 3.

666

17. (2z  5)2  25 2z  5  25 or 2z  5   25 2z  5  5 2z  5  5 2z  0 2z  10 z0 z  5 The solutions are z = 0 and z = 5. 18. (3z  4)2  16 3z  4  16 3z  4  4 3z  8 8 z 3

or 3z  4   16 3z  4  4 3z  0 z0

The solutions are z 

8 3

and z = 0.

19. 30x  25x2  2 0  25x2  30x  2 a = 25, b = 30, c = 2 b  b2  4ac 2a 2  ( 30)  (30)  4(25)(2) x 2(25) 30  900  200  50 30  700  50 30 10 7  50 3 7  5 3 7 The solutions are x  . 5 x 

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

20. 12x  4x2  4

x

0  4x 12x  4 2

0  4(x2  3x 1)

5  25  80 20 5  105  20 

a = 1, b = 3, c = 1 x 

x 

(5)  (5)2  4(10)(2) 2(10)

b  b2  4ac 2a

The solutions are x 

(3)  (3)2  4(1)(1)

5  105

.

20

2(1) 3 9 4 2 3 5  2 3 5 The solutions are x  .

2 24. x 

2

x 

5 2 m 1  0 m 8 2 5m2  8m  4  0 (5m  2)(m  2)  0 5m  2  0 or m  2  0 5m  2 2 m 5

2 5

23.

x2 

1 1 x  0 2 5

2

10x  5x  2  0 a = 10, b = 5, c = 2 2 x  b  b  4ac 2a

1

b  b2  4ac 2a

x

The solutions are

m  2

The solutions are m 

x

4  42  4(8)(1) 2(8) 4  16  32  16 4  48  16 4  4 3  16 1 3  4

2 2  1 m 1  0 m 21. 3 3 2m2  m  3  0 (2m  3)(m 1)  0 2m  3  0 or m 1  0 2m  3 m  1 3 m 2 3 The solutions are m  and m = 1. 2 22.

1

0 2 8 8x2  4x 1  0 a = 8, b = 4, c = 1

and m = 2.

1 3 . 4

25. 4x2  27x  35  0 (4x  7)(x  5)  0 4x  7  0 or x  5  0 4x  7 x5 7 x 4 7 The solutions are x  and x = 5. 4 26.

9x2 16x  7  0 (9x  7)(x 1)  0 9x  7  0 9x  7 7 x  9

or

x 1  0 x 1

The solutions are x 

7 9

Copyright © 2025 Pearson Education, Inc.

and x = 1.

667


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

27. (7  5x)2  18 7  5x  18 5x  7  3 2 x

2 5x  7  3 2 7  3 73 2 x  5 5 7  3 2 73 2 The solutions are x  or . 5 5

5  4x   75 4x  5  5 3 5  53 5  5 3 x  4  4

31. x  x2 110

5  5 3

or

4

55 3 . 4

32. x  56  x2 0  56  x  x2 0  (8  x)(7  x) 8 x  0 or 7  x  0 x  8 x7 The solutions are x = 7 and x = 8. 33.

2 z  b  b  4ac 2a

(7)  (7)2  4(3)(12)

2(3) 49 144  6 7  193  6 7

34.

The solutions are z  7  193 . 6

668

. 12

3z 2  7z  12 3z2  7z 12  0 a = 3, b = 7, c = 12

6z 2  7z  6 6z  7z  6  0 a = 6, b = 7, c = 6

7  193

0  x2  x 110 0  (x 11)(x 10) x 11  0 or x 10  0 x  11 x  10 The solutions are x = 11 and x = 10.

5  4x  75 4x  5  5 3 5  53 5  5 3 x  4 4 or

2

7 

The solutions are z 

28. (5  4x)  75

30.

7  (7)2  4(6)(6) 2(6)

49 144 12 7  193  12

2

z 

z 

or 7  5x   18

29.

b   b2  4ac 2a

7  3 2 7  3 2  5 5

The solutions are x 

z 

3 2 5 x  x20 4 2 2 3x 10x  8  0 (3x  2)(x  4)  0 3x  2  0 or x  4  0 3x  2 x4 2 x 3 2 The solutions are x   and x = 4. 3 6 8 x2  x   0 5 5 5x2  6x  8  0 (5x  4)(x  2)  0 5x  4  0 or x  2  0 5x  4 x2 4 x  5 4 The solutions are x   and x = 2. 5

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

x2  0.6x  0.05  0 (x  0.5)(x  0.1)  0 x  0.5  0 or x  0.1  0 x  0.5 x  0.1 The solutions are x = 0.5 and x = 0.1.

35.

 

(8)  (8)2  4(2)(3) 2(2) 8  64  24  4 8  40  4 8  2 10  4 4  10  2 4  10 The solutions are z  . 2 z 

x2  0.1x  0.06  0 (x  0.3)(x  0.2)  0 x  0.3  0 or x  0.2  0 x  0.3 x  0.2 The solutions are x = 0.3 and x = 0.2.

36.

37. 10x2 11x  2  0 a = 10, b = 11, c = 2 2 x  b  b  4ac 2a

x

(11)  (11)2  4(10)(2) 2(10)

121 80 20 11 41  20 

11

The solutions are x 

11 41

.

b  b2  4ac 2a

2 x  (11)  (11)  4(20)(1) 2(20) 11 121 80  40 11 41  40 11 41 The solutions are x  . 40

1 3 39. z 2  2z   0 2 4 2z2  8z  3  0 a = 2, b = 8, c = 3

1 2 1 z  z2 0 5 2 2 2z  5z  20  0 a = 2, b = 5, c = 20

(5)  (5)2  4(2)(20) 2(2) 5  25 160  4 5  185  4 5  185 The solutions are z  . 4 z

38. 20x2 11x  1  0 a = 20, b = 11, c = 1

40.

2 z  b  b  4ac 2a

20

x 

b  b2  4ac 2a

z

41. answers may vary Section 16.4 Practice Exercises 1. y  3x2 x

y

2

12

1

3

0

0

1

3

2

12

Copyright © 2025 Pearson Education, Inc.

669


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

3. y  x2  2x  3 a = 1, b = 2, c = 3 b (2) 2 x   1 2a 2(1) 2 y  12  2(1)  3  1  2  3  4 The vertex is (1, 4). Let x = 0. y  02  2(0)  3  3 The y-intercept is (0, 3). Let y = 0. 2. y  x2  9 Let x = 0. y  02  9  9 The y-intercept is (0, 9). Let y = 0. 0  x2  9 0  (x  3)(x  3) x  3  0 or x  3  0 x3 x  3 The x-intercepts are (3, 0) and (3, 0).

0  x2  2x  3 0  (x  3)(x 1) x  3  0 or x  1  0 x3 x  1 The x-intercepts are (3, 0) and (1, 0). x

y

1

0

0

3

1

4

x

y

2

3

3

0

3

0

2

5

1

8

0

9

1

8

2

5

3

0

y

(–1, 0)

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1–1

(0, –3)

–2 –3 –4 –5 –6

(3, 0) 1 2 3 4 5 6

(1, –4)

4. y  x2  4x 1 a = 1, b = 4, c = 1 b (4) 4 x   2 2a 2(1) 2 y  22  4(2) 1  4  8 1  3 vertex = (2, 3) 2 x  b  b  4ac 2a

670

Copyright © 2025 Pearson Education, Inc.

x


ISM: Prealgebra and Introductory Algebra

x 

Chapter 16: Quadratic Equations

Vocabulary, Readiness & Video Check 16.4

(4)  (4)2  4(1)(1)

1. If a parabola opens upward, the lowest point is called the vertex; if a parabola opens downward, the highest point is called the vertex. If a graph can be folded along a line such that the two sides coincide or form mirror images of each other, we say that the graph is symmetric about that line and that line is the line of symmetry.

2(1) 4  16  4  2 4  12  2 42 3  2  2 3  3.7 or 0.3

2. The vertex; it is a very useful point to plot since it is the highest or lowest point on your graph.

x

y

2

3

2  3  3.7

0

2  3  0.3

0

0

1

4

1

3. For example, if the vertex is in quadrant III or IV and the parabola opens downward, then there won’t be any x-intercepts and there’s no need to let y = 0 and solve the equation for x. Exercise Set 16.4 2.

x

y  3x2

2

3(2)2  3(4)  12

1

3(1)2  3(1)  3

0

3(0)2  3(0)  0

1

3(1)2  3(1)  3

2

3(2)2  3(4)  12

Calculator Explorations 1. x2  7 x  3  0

x  0.41, 7.41 x  0.09, 5.59

2.

2x2 11x 1  0

3.

1.7x2  5.6x  3.7  0

4.

5.8x2  2.3x  3.9  0 No real solutions

5. 5.8x2  2.6x 1.9  0 6.

7.5x2  3.7 x 1.1  0

x  0.91, 2.38

x  0.39, 0.84 x  0.21, 0.70

Copyright © 2025 Pearson Education, Inc.

671


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

4.

8. y  x2  9

x

y  4x2

2

4(2)2  4(4)  16

1

4(1)2  4(1)  4

0

4(0)2  4(0)  0

x = 0: y  02  9  9 y-intercept: (0, 9)

1

4(1)2  4(1)  4

2

4(2)2  4(4)  16

y  x2  0x  9 a = 1, b = 0, c = 9 b 0 0   0 2a 2(1) 2

0  x2  9

y = 0:

9  x2  9  x x-intercepts: none

x = 0: y  02  9  9 The vertex is (0, 9).

6. y  x2  16 y = 0:

0  x2 16

16  x2  16  x 4  x x-intercepts: (4, 0), (4, 0) x = 0: y  02 16  16 y-intercepts: (0, 16) y  x2  0x 16 a = 1, b = 0, c = 16 b 0 0   0 2a 2(1) 2 x = 0: y  02 16  16 The vertex is (0, 16).

10. y  x2  2x 1 y = 0: 0  x2  2x 1 0  (x2  2x 1) 0  (x 1)2 0  (x 1)2 0  x 1 1  x x-intercept: (1, 0) x = 0: y  02  2(0) 1  1 y-intercept: (0, 1) y  x2  2x 1 a = 1, b = 2, c = 1 b (2)  2  1   2a 2(1) 2 x = 1: y  (1)2  2(1) 1  1 2 1  0 The vertex is (1, 0).

672

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

x 

x 

b  b2  4ac 2a (6)  (6)2  4(1)(10)

2(1) 6  36  40  2 6  4  2 There are no x-intercepts, since real number.

12. y  x2  7x 10 y = 0: 0  x2  7x 10 0  (x  5)(x  2) 0  x  5 or 0  x2 5  x 2  x x-intercepts: (5, 0) and (2, 0) x = 0: y  02  7(0) 10  10 y-intercept: (0, 10) y  x2  7x 10 a = 1, b = 7, c = 10 b 7 7   2a 2(1) 2 2 7    7   7  10 x   : y   7     2  2  2  49 49   10 4 2 49 98 40    4 4 4 9  9 1  47  31, The vertex is   2 ,  4  or  2  2 4 .     

4 is not a

x = 0: y  02  6(0) 10  10 y-intercept: (0, 10) y  x2  6x 10 a = 1, b = 6, c = 10 b (6) 6   3 2a 2(1) 2 x = 3: y  32  6(3) 10  9 18 10  1 vertex: (3, 1)

16. y  3  x2 2 y = 0: 0  3  x

x2  3 x  3 x-intercepts:

 3, 0 and  3, 0

x = 0: y  3  02  3 y-intercept: (0, 3) y  3  x2 a = 1, b = 0, c = 3 b  0 0   0 2a 2(1) 2 14. y  x2  6x 10 y = 0: 0  x  6x  10 a = 1, b = 6, c = 10 2

x = 0: y  3  02  3 vertex: (0, 3)

Copyright © 2025 Pearson Education, Inc.

673


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

x4  0 x4 x-intercepts: (0, 0) and (4, 0) x = 0 or

x = 0: y  02  4(0)  0 y-intercept: (0, 0) y  x2  4x  0 a = 1, b = 4, c = 0 b (4) 4   2 2a 2(1) 2 18. y 

x = 2: y  (2)2  4(2)  4  8  4

1 2 x 2

vertex = (2, 4)

1 y = 0: 0  x2 3 0  x2 0x x-intercept: (0, 0) The y-intercept is also (0, 0). 1 y  x2  0x  0 2 1 a  , b = 0, c = 0 2 b  0 0   0 2a 2 12 1 1 2 1 x = 0: y  (0)  (0)  0

22. y  x2  2x  3 y = 0: 0  x2  2x  3 0  (x  3)(x 1)



2 2 vertex: (0, 0) For additional points use x = 2. 1 1 2 x = 2: y  (2)  (4)  2 2 2 1 2 1 x = 2: y  (2)  (4)  2 2 2 (2, 2) and (2, 2) are also on the graph.

x  3  0 or x 1  0 x3 x  1 x-intercepts: (3, 0) and (1, 0) x = 0: y  02  2(0)  3  3 y-intercept: (0, 3) y  x2  2x  3 a = 1, b = 2, c = 3 b (2) 2   1 2a 2(1) 2 x = 1: y  12  2(1)  3  1 2  3  4 vertex: (1, 4)

20. y  x2  4x y = 0: 0  x2  4x 0  x(x  4)

674

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

1 2 24. y   3 x y = 0: 0  

2      1   3 : y  2  1   4   4  4  1 1 y   3 8 4 1 2 24 y   8 8 8 25 y 8  25  1 vertex:  ,    4  8  

x 

1 2 x 3

0  x2 0x x-intercept: (0, 0) The y-intercept is also (0, 0). 1 y   x2  0x  0 3

1 a   , b = 0, c = 0 3 0 b  0  0   2 1 2a 2  3

1

 3

1 2 1 x = 0: y   (0)   (0)  0 3 3 vertex: (0, 0)

28. y  x2  6x  8 y = 0: 0  x2  6x  8 0  x2  6x  8 0  (x  4)(x  2) x  4  0 or x  2  0 x4 x2 x-intercepts: (4, 0) and (2, 0) x = 0: y  02  6(0)  8  8

26. y  2x2  x  3 y = 0: 0  2x2  x  3 0  (2x  3)(x 1) 2x  3  0 or x 1  0 2x  3 x 1 3 x 2 x-intercepts:   3, 0 and (1, 0)  2  x = 0: y  2(0)2  0  3  3

y-intercept: (0, 8) y  x2  6x  8 a = 1, b = 6, c = 8 b  6 6   3 2a 2(1) 2 x = 3: y  (3)2  6(3)  8  9 18  8  1 vertex: (3, 1)

y-intercept: (0, 3) y  2x2  x  3 a = 2, b = 1, c = 3 b  1 1   2a 2(2) 4

Copyright © 2025 Pearson Education, Inc.

675


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

30.

3 3 1 3 7 21 8      1 8 7 8 1 8 7

x x x x2 32. 5  x  2    2 5 x 5 2 10

x

34.

36.

x

x(x)

x  1x

x x  1x

2a2

2a2

a

x2



x2 1 2a2 3  a

a3     a a 3 3 a a 3 3a

40. y  x2  2x  5  2a

a

y = 0: 0  x2  2x  5 a = 1, b = 2, c = 5

y = 0: 0  x2  4x  3 a = 1, b = 4, c = 3

2 x  b  b  4ac 2a 

x  

(4)  (4)2  4(1)(3) 2(1) 4  16 12 2 4  28

(2)  (2)2  4(1)(5) x 2(1) 2  4  20  2 2  24  2 22 6  2  1 6 x-intercepts: 1 6, 0   

2 4  27 2  2 7 

x-intercepts:

2 x  b  b  4ac 2a

38. y  x2  4x  3

2  7, 0  (0.6, 0),

2  7, 0  (4.6, 0)

1 6, 0  (3.4, 0)

x = 0: y  02  2(0)  5  5 y-intercept: (0, 5) b

(2)

2

1

x = 0: y  02  4(0)  3  3

2a

y-intercept: (0, 3) b (4) 4   2 2a 2(1) 2

x = 1: y  12  2(1)  5  1 2  5  6

2(1)

vertex: (1, 6)

x = 2: y  22  4(2)  3  4  8  3  7 vertex: (2, 7)

676

Copyright © 2025 Pearson Education, Inc.

2


ISM: and Introductory Algebra 42. Prealgebra answers may vary

Copyright © 2025 Pearson Education, Inc.

Chapter 16: Quadratic Equations

677


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

44. With a < 0, the parabola opens downward. A downward opening parabola that crosses the x-axis once is graph E.

3m2  5m  2  0 (3m 1)(m  2)  0 3m 1  0 or m  2  0 3m  1 m2 1 m 3 1 The solutions are m   and m = 2. 3

46. With a > 0, the parabola opens upward. An upward-opening parabola that does not touch or cross the x-axis (no x-intercept) is graph C. 48. With a < 0, the parabola opens downward. A downward-opening parabola that crosses the x-axis twice is graph B. Chapter 16 Vocabulary Check

2. The graph of y  x2 is called a parabola. b

, where y  ax2  bx  c, is 2a called the vertex formula.

4. The process of solving a quadratic equation by writing it in the form (x  a)2  c is called completing the square. 2 5. The formula x  b  b  4ac is called the 2a quadratic formula.

6. The lowest point on a parabola that opens upward is called the vertex. 7. The zero-factor property states that if the product of two numbers is zero, then at least one of the two numbers is zero. Chapter 16 Review 1. x2 121  0 2

x  121 x   121 x  11 The solutions are x = 11. 2. y2 100  0 y2  100 y   100 y  10 The solutions are y = 10. 678

7m2  2m  5

4.

1. If x2  a, then x  a or x   a. This property is called the square root property.

3. The formula

3m2  5m  2

3.

7m  2m  5  0 (7m  5)(m 1)  0 7m  5  0 or m 1  0 7m  5 m  1 5 m 7 5 The solutions are m  and m = 1. 7 2

5. x2  36 x   36 x  6 The solutions are x = 6. 6. x2  81 x   81 x  9 The solutions are x = 9. 7. k 2  50 k   50 k  5 2 The solutions are k  5 2. 8. k 2  45 k   45 k  3 5 The solutions are k  3 5. 9. (x 11)2  49 x 11   49 x 11  7 x  11 7 or x  11 7 x  18 x4 The solutions are x = 18 and x = 4.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

10. (x  3)2  100 x  3   100  310  10or x  3 10 x  x3 x7 x  13

Chapter 16: Quadratic Equations

15.

x2  9x  8 2 2  9  9 2 x  9x      8     29 2 81 2   8   x   4 2 2  9 49   x    2 4  9 49 x   2 4 9 7 x   2 2 9 7 16 9 7 2 x    8 or x     1 2 2 2 2 2 2 The solutions are x = 8 and x = 1.

16.

x2  8x  20 2 2 8 8 2 x  8x     20    2  2  (x  4)2  36

The solutions are x = 7 and x = 13. 11. (4 p  5)2  41 4 p  5   41 4 p  5  41 5  41 p 4 The solutions are p 

5  41 . 4

12. (3 p  7)2  37 3 p  7   37 3 p  7  37 7  37 p 3

x  4   36 x  4  6 x = 4 + 6 = 2 or x = 4  6 = 10 The solutions are x = 7 and x = 10.

The solutions are p  7  37 . 3 13.

h  16t 2 100  16t 2

17.

2

6.25  t2 2.5  t

5280 ft

2

4  x 2  4x   4    1    2 2     (x  2)2  5

Reject 2.5 because time is not negative. It will take Kara 2.5 seconds to hit the water. 14. 5 miles 

x2  4x  1

x2  5 x  2  5

 26, 400 feet

The solutions are x  2  5.

1 mile

y  16t2 18.

2 26, 400  16t 1650  t2 40.6  t

Reject 40.6 because time is not negative. A 5-mile freefall will take 40.6 seconds.

x2  8x  3 2 2  8  8 2 x  8x      3      2  2  2 (x  4)  19 x  4   19 x  4  19 The solutions are x  4  19.

Copyright © 2025 Pearson Education, Inc.

679


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

x2  6x  7  0

19.

x2  6x  7 2 2  6  6 2 x  6x      7        2  (x 23)2  2

4 y2 33y  11 y2  y  2 3  342 14  3 y2  y         4 8 4 8     2 3 25   y    8 64  3 5 y  8 64 3 5 y  3 5 28 1 8 3 5 8 y      or y       1 8 8 8 4 8 8 8 1 The solutions are y  and y = 1. 4

x  3   2 x  3  2 The solutions are 3  2. x2  6x  7  0

20.

x2  6x2  7 2 6 6 2 x  6x     7    2  2  (x  3)2  2 x3   2 x  3  2

2 y2  y 1  0

2

y 

2 y2  y  1 1 1 y2  y  22 2 2 1 1 1 1

x 

b  b2  4ac 2a

x

30  302  4(9)(25) 2(9)   

y   2     2 41  29 4 y     4 16  1 9 y  4 16 1 3 y  4 4 1 3 2 1 y    or 4 4 4 2 1 3 4 y       1 4 4 4 1 The solutions are y  and y = 1. 2

680

23. 9x2  30x  25  0 a = 9, b = 30, c = 25

The solutions are 3  2. 21.

4 y2  3y 1  0

22.

900 900 18 30  0  18 30  18 5  3 5 The solution is x   . 3 

Copyright © 2025 Pearson Education, Inc.

30


ISM: Prealgebra and Introductory Algebra

24. 16x2  72x  81  0 a = 16, b = 72, c = 81 x 

 x 

2

27. x2 10x  7  0 a = 1, b = 10, c = 7

b  b2  4ac 2a

x 

(72)  (72)2  4(16)(81)

2(16) 72  5184  5184  32 72  0  32 72  32 9  4 9 The solution is x  . 4 25.

Chapter 16: Quadratic Equations

7x2  35

x 

2 28. x  4x  7  0 a = 1, b = 4, c = 7

x

b  b  4ac 2a

0  02  4(7)(35) 2(7)  980  14 14 5  14  5

x 

26.

11x2  33 11x2  33  0 a = 11, b = 0, c = 33 x

b  b2  4ac 2a

0  02  4(11)(33) 2(11)  1452  22 22 3  22  3

x

b  b2  4ac

2a 4  42  4(1)(7) x 2(1) 4  16  28  2 4  44  2 4  2 11  2  2  11

2

The solutions are x   5.

(10)  (10)2  4(1)(7)

2(1) 10  100  28  2 10  72  2 10  6 2  2  53 2 The solutions are x  5  3 2.

7x  35  0 a = 7, b = 0, c = 35 x 

b  b2  4ac 2a

The solutions are x  2  11.

29. 3x2  x 1  0 a = 3, b = 1, c = 1 x

b  b2  4ac 2a 2

1 (1)  4(3)(1) x 2(3) 1  1 12 6 1 13  6 

The solutions are x 

1 13 . 6

The solutions are x   3. Copyright © 2025 Pearson Education, Inc.

681


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

30. x2  3x 1  0 a = 1, b = 3, c = 1 x 

2300  2x2 1.2x 1787 0  2x2 1.2x  513

b  b2  4ac 2a 3  32  4(1)(1)

a = 2, b = 1.2, c = 513

x

2(1) 3  9  4  2 3  13  2

The solutions are x 

3  13

.

1 12  4(2)(5) 2(2)

1 1 40 4 1 39  4 The equation has no solution, since the square root of 39 is not a real number. 2 32. 7 x  3x  1  0

b  b2  4ac

3  9  28 14 3  19  14 The equation has no solution since the square root of 19 is not a real number. 

2 682

 0.3 or x 

25, 300  191x2 1581x  28, 461 0  191x2 1581x  3161 a = 191, b = 1581, c = 3161

x 

2a (3)  (3)2  4(7)(1) x 2(7)

1 13  0.4 or x  6

y  191x2 1581x  28, 461

36.

2 x  b  b  4ac 2a  (1581)  (1581)2  4(191)(3161)

a = 7, b = 3, c = 1

3  13

1.2  1.22  4(2)(513) 2(2)

1.2  4105.44  16 or 4 1.2  4105.44 x  16 4 Since time will not be negative in this context, discard the solution x  16. The solution is x  16, so the model predicts that there will be 2300 Target stores in the United States in 2029 (2013 + 16).

34. x 

x

x

2 x  b  b  4ac 2a

33. x 

b  b2  4ac 2a

1.2  1.44  4104 4 1.2  4105.44  4

2 31. 2x  x  5  0 a = 2, b = 1, c = 5

x

x 

 2

x

y  2x2 1.2x 1.2x 1787

35.

1 13  0.8 6 3  13

2(191) 1581 2, 499, 561 2, 415, 004  382 1581 84, 557  382 1581 84, 557 x  5 or 382 1581 84, 557 3 382 The solutions are x  3 and x  5, so the model predicts that the global production of silver was 25,300 metric tons in 2019 (2016 + 3) and 2021 (2016 + 5). x

 3.3

2 Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

37. y  5x2

Chapter 16: Quadratic Equations

x

y   1 x2

2

 1 (2)2   1 (4)  2

1

 1 (1)2  1 (1)   1

y = 0: 0  5x2 0  x2 0 x x-intercept: (0, 0) The y-intercept is also (0, 0).

2 2 2

5(2)2  5(4)  20

1

5(1)  5(1)  5

0

5(0)2  5(0)  0

1

5(1)2  5(1)  5

2

5(2)2  5(4)  20

2

2

0

 1 (0)   1 (0)  0

1

 1 (1)2   1 (1)   1

2

 1 (2)2   1 (4)  2

y  5x

2

2 2

2

2

x

2

2 2

2 2

2

2

2 39. y  x  25

y = 0:

38. y   1 x 2 2 y = 0: 0  

1

x2

2 2

0x 0x x-intercept: (0, 0) The y-intercept is also (0, 0).

0  x2  25

25  x2  25  x 5  x x-intercepts: (5, 0) and (5, 0) x = 0: y  02  25  25 y-intercept: (0, 25) y  x2  0x  25 a = 1, b = 0, c = 25 b 0 0   0 2a 2(1) 2 x = 0: y  02  25  25 vertex: (0, 25)

Copyright © 2025 Pearson Education, Inc.

683


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

40. y  x2  36 y = 0:

0  x2  36

36  x2  36  x 6  x x-intercepts: (6, 0) and (6, 0) x = 0: y  02  36  36 y-intercept: (0, 36) y  x2  0x  36 a = 1, b = 0, c = 36 b 0 0   0 2a 2(1) 2 x = 0: y  02  36  36 vertex: (0, 36)

42. y  x2  8 0  x2  8 y = 0: 8  x2  8  x x-intercepts: none x = 0: y  02  8  8 y-intercept: (0, 8) y  x2  0x  8 a = 1, b = 0, c = 8 b 0  0  0  2a 2(1) 2 x = 0: y  02  8  8 vertex: (0, 8)

41. y  x2  3 y = 0:

0  x2  3

3  x2  3  x x-intercepts: none x = 0: y  02  3  3 y- intercept: (0, 3) y  x2  0x  3 a = 1, b = 0, c = 3

43. y  4x2  8 y = 0:

2

0  4x  8 0  4(x2  2)

b 0 0   0 2a 2(1) 2

0  x2  2 2  x2  2x

x = 0: y  02  3  3 vertex: (0, 3)

x-intercepts:

 2, 0 and  2, 0

x = 0: y  4(0)2  8  8 y-intercept: (0, 8) y  4x2  0x  8 a = 4, b = 0, c = 8 684

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra b  0  0  0   2a 2(4) 8

Chapter 16: Quadratic Equations

45. y  x2  3x 10 y = 0: 0  x2  3x 10 0  (x  5)(x  2) 0  x  5 or 0  x  2 5  x 2x x-intercepts: (5, 0) and (2, 0)

x = 0: y  4(0)  8  8 vertex: (0, 8) 2

x = 0: y  02  3(0) 10  10 y-intercept: (0, 10) y  x2  3x 10

44. y  3x2  9 y = 0:

0  3x2  9 0  3(x2  3) 0  x2  3

3  x2  3x x-intercepts: 3, 0 and  3, 0

 

x = 0: y  3(0)2  9  9 y-intercept: (0, 9)



a = 1, b = 3, c = 10 b 3 3   2a 2(1) 2 2 3    3  3  10 x   : y   3   2   2    2  9 9   10 4 2 9 18 40    4 4 4 49  4 49   3 vertex:  ,    2 4   

y  3x2  0x  9 a = 3, b = 0, c = 8 b  0 0   0 2a 2(3) 6 x = 0: y  3(0)2  9  9 vertex: (0, 9) 46. y  x2  3x  4 y = 0: 0  x2  3x  4 0  (x  4)(x 1) 0  x  4 or 0  x 1 4  x 1 x x-intercepts: (4, 0) and (1, 0) x = 0: y  02  3(0)  4  4 y-intercept: (0, 4) y  x2  3x  4 a = 1, b = 3, c = 4 b 3 3   2a 2(1) 2

Copyright © 2025 Pearson Education, Inc.

685


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

2    3  3   4 : y   3     2  2  2  9 9   4 4 2 9 18 16    4 4 4 25  4  25  3 vertex:   ,   2 4  

x 

3

2 48. y  3x  x  2 y = 0: 0  3x2  x  2 0  (3x  2)(x 1) 0  3x  2 or 0  x 1 2  3x 1 x 2  x 3 x-intercepts:   2, 0 and (1, 0)  3  2 x = 0: y  3(0)  0  2  2

47. y  x2  5x  6 y = 0: 0  x2  5x  6

y-intercept: (0, 2)

0  x  5x  6 0  (x  3)(x  2) 0  x  3 or 0  x  2 3  x 2  x x-intercepts: (3, 0) and (2, 0)

y  3x2  x  2

2

x = 0: y  02  5(0)  6  6 y-intercept: (0, 6) y  x2  5x  6 a = 1, b = 5, c = 6 5 b (5) 5     2a 2(1) 2 2 2 5    5  5   6 x   : y    5  2 2     2  

y

25

25

a = 3, b = 1, c = 2 b (1) 1   2a 2(3) 6 2 1 1 1 x  : y  3    2 6  6  6 3 1 y  2 36 6 3 6 72 y   36 36 36 75 25 y  36 25  12 1 vertex:  ,   6 12   

 6 4 2 25 50 24 y   4 4 4 1 y  5 14  vertex:   ,  2 4  

686

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

49. y  2x2 11x  6

4  42  4(1)(8) 2(1) 4  16  32  2 4  48  2 4  4 3   2  2 2 3

x

y = 0: 0  2x2 11x  6 0  (2x 1)(x  6) 0  2x 1 or 0  x  6 1  2x 6x 1  x 2 x-intercepts:   1, 0 and (6, 0)  2  x = 0: y  2(0)2 11(0)  6  6

x-intercepts:

y-intercept: (0, 6)

x = 0: y  02  4(0)  8  8

y  2x 11x  6

y-intercept: (0, 8)

2  2 3, 0 and 2  2 3, 0

2

a = 2, b = 11, c = 6 b (11) 11   2a 2(2) 4 2 11 11  11  x  4 : y  2   11 4  6 4       242 121 y  6 16 4 242 484 96 y   16 16 16 338 169 y  16  8  11 169 vertex:  ,    4 8  

y  x2  4x  8 a = 1, b = 4, c = 8 b  4 4    2 2a 2(1) 2 2 x = 2: y  (2)  4(2)  8  4  8  8  12 vertex: (2, 12)

 

 51. y  2x2 matches graph A. 52. y  x2 matches graph D. 53. y  x2  4x  4 matches graph B. 50. y  x2  4x  8

54. y  x2  5x  4 matches graph C.

y = 0: 0   x2  4x  8 a = 1, b = 4, c = 8

55. The graph crosses the x-axis once so there is one real solution.

2 x  b  b  4ac 2a

56. The graph crosses the x-axis twice so there are two real solutions. 57. The graph doesn’t cross the x-axis so there are no real solutions. 58. The graph crosses the x-axis twice so there are two real solutions.

Copyright © 2025 Pearson Education, Inc.

687


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

59. x2  49 x   49 x  7 The solutions are x = 7.

64.

2 60. y  75

2

x  x           4  81 2 2 8 33

y   75 y  5 3 The solutions are y  5 3. 61. (x  7)2  64 x  7   64 x  7  8 x  7  8 or x  7  8 x  15 x  1 The solutions are x = 15 and x = 1. 62.

x2  4x  6 2

2 4 2 x  4x     6   4 2  2  (x  2)2  10 x  2   10 x  2  10

2

63.

688

 x    8 64  1 33 x  8 64 1 33 x   8 8 1 33 x  8 8 1 33 x 8 1 33 The solutions are x  . 8 65. 4x2  3x  2  0 a = 4, b = 3, c = 2

The solutions are x  2  10. 

4x2  x  2  0 1 1 x2  x   0 4 2 1 1 x2  x  42 2 2 1 1  1  1

3x  x  2 1 2 x2  x  32 3 2 2 1 1 2 1 x  x        3  61 2 325  6     x    6 36  1 25 x   6 36 1 5 x   6 6 1 5 x  6 6 1 5 4 2 1 5 6 x    or x       1 6 6 6 3 6 6 6 2 The solutions are x  and x = 1. 3

2 x  b  b  4ac 2a  (3)  (3)2  4(4)(2) x  2(4) 3  9  32  8

3  41 8 3  41 The solutions are x  . 8 

66. 5x2  x  2  0 a = 5, b = 1, c = 2 2 x  b  b  4ac 2a

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

x 

1 12  4(5)(2)

x-intercepts: (2, 0) and (2, 0) x = 0: y  4  02  4 y-intercept: (0, 4)

2(5)

1 1 40 10 1 41  10 

The solutions are x 

Chapter 16: Quadratic Equations

y  4  0x  x2 a = 1, b = 0, c = 4 b  0 0   0 2a 2(1) 2

1 41 .

x = 0: y  4  02  4 vertex: (0, 4)

10 67. 4x2  12x  9  0 a = 4, b = 12, c = 9 x  x 

b  b2  4ac 2a 12  122  4(4)(9)

2(4) 12  144 144  8 12  0  8 12  8 3  2

70. y  x2  4 y = 0:

4  x2  4  x x-intercepts: none

3 The solution is x   . 2

x = 0: y  02  4  4 y- intercept: (0, 4) y  x2  0x  4 a = 1, b = 0, c = 4 b 0 0   0 2a 2(1) 2

68. 2x2  x  4  0 a = 2, b = 1, c = 4 x  x 

0  x2  4

b  b2  4ac 2a 1 12  4(2)(4)

x = 0: y  02  4  4

2(2) 1 1 32  4 1 31  4 The equation has no solution, since the square root of 31 is not a real number.

vertex: (0, 4)

2 69. y  4  x

y = 0: 0  4  x2 x2  4 x  4 x  2 Copyright © 2025 Pearson Education, Inc.

689


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

b (2) 2   1 2a 2(1) 2

71. y  x2  6x  8 y = 0: 0  x2  6x  8 0  (x  4)(x  2) x40 or x  2  0 x  4 x  2 x-intercepts: (4, 0) and (2, 0)

x = 1: y  12  2(1)  4  1 2  4  5 vertex: (1, 5)

x = 0: y  02  6(0)  8  8 y- intercept: (0, 8) y  x2  6x  8 a = 1, b = 6, c = 8 b 6 6    3 2a 2(1) 2 x = 3: y  (3)2  6(3)  8  9 18  8  1 Chapter 16 Getting Ready for the Test

vertex: (3, 1)

1. To solve x2  6x  1 by completing the square, the correct next step is to add 2  6  2    (3)  9 to both sides of the equation  2  to obtain x2  6x  9  1 9; B. 2. To solve x2  5x  4 by completing the square, 2 5 25 the correct next step is to add    to both 4  2  sides of the equation to obtain 25 25 x2  5x   4  ; D. 4 4

72. y  x2  2x  4 y = 0: 0  x2  2x  4 a = 1, b = 2, c = 4 x  b  b2  4ac 2a (2)  (2)2  4(1)(4) x  2(1) 2  4 16  2 2  20  2 22 5  2  1 5

x-intercepts:



12  37 3 4  3 7  3 4  7  4  7  3 3  3 9 33

3.

Choice C is correct. 4.

5 102 5 1 5  2 2  5 1 5 5 1 2 2  5 1 1 2 2  1  1 2 2 Choice A is correct.

1 5, 0 and 1 5, 0

x = 0: y  0  2(0)  4  4



2

x-intercept: (0, 4) y  x2  2x  4

5.

7 x2  3  x in standard form is 7 x2  x  3  0.

The value of c is 3; B.

a = 1, b = 2, c = 4 690

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

6. 7 x2  3  x in standard form is 7 x2  x  3  0. The value of b is 1; C.

Chapter 16 Test 1.

7.

y  x2  3  x2  0x  3 a = 1, b = 0, c = 3 b 0 0 x   0 2a 2(1) 2 x = 0: y  02  3  0  3  3

2.

y  x2  2x  x2  2x  0 a = 1, b = 2, c = 0 b (2) 2 x   1 2a 2(1) 2 x = 1: y  (1)  2(1)  1 2  1 2

The vertex of the graph of y  x2  2x is at

3. 5k 2  80

(1, 1); D.

k 2  16 k   16 k  4 The solutions are k = 4.

9. y  x2  2x  4 a = 1, b = 2, c = 4 b  2 2 x   1 2a 2(1) 2

2

x = 1: y  (1)2  2(1)  4  1 2  4  3 The vertex of the graph of y  x2  2x  4 is at (1, 3); D. 10. x = 0: y  0  0 1  1 The y-intercept is (0, 1). 2

4. (3m  5)  8 3m  5   8 3m  5  2 2 3m  5  2 2 52 2 m 3 The solutions are m 

y = 0: 0  x2  x  1 a = 1, b = 1, c = 1 5.

2

1 1  4(1)(1) 2(1)

5 2 2

.

3

b  b2  4ac x 2a x

2x2 11x  21 2x2 11x  21  0 (2x  3)(x  7)  0 2x  3  0 or x  7  0 2x  3 x7 3 x  2 3 The solutions are x   and x = 7. 2

The vertex of the graph of y  x2  3 is at (0, 3); B. 8.

x2  400  0 (x  20)(x  20)  0 x  20  0 or x  20  0 x  20 x  20 The solutions are x = 20.

1 1 4 2

1

3 2

Since 3 is not a real number, there are no real-number solutions, so the graph has no x-intercepts. The only intercept of the graph of y  x2  x 1 is (0, 1); B.

x2  26x 160  0 x2  26x  160 2 2  26   26  2 x  26x     160     2   2  x2  26x  (13)2  160  (13)2 x2  26x 169  160 169 (x 13)2  9 x 13  9 or x 13   9 x 13  3 x 13  3 x  16 x  10 The solutions are x = 10 and x = 16.

Copyright © 2025 Pearson Education, Inc.

691


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

6.

3x2 12x  4  0 4 x2  4x   0 3 4 x2  4x  3  4 2 4 x2  4x      4 2 2 3  2     4 2 2 2  2 x  4x  (2) 3 16 (x  2)2  3 16 x2   3 16 3 x2    3 3 4 3 x2   3 4 3 x  2  3 4 3 The solutions are x  2  . 3 2

8. p2 

p

1

0 3 5 1 a = 1, b   , c   3 3 3

2 p  b  b  4ac 2a

  53   4(1) 13  p  2

 53 

2(1) 5  25 4 9 3

 3

2

5  25 12 3 9  9

2

5  37 9  3

2

5  37

 3 

2 x  b  b  4ac 2a 2  ( 3)  (3)  4(1)(10) x 2(1) 3  9  40  2 3  49   2 37  2 3  7 10 3  7 4 x   5 or x    2 2 2 2 2 The solutions are x = 5 and x = 2.

3

2

5  37 6

The solutions are p  5  37 . 6

7. x  3x 10  0 a = 1, b = 3, c = 10

692

5

(3x  5)(x  2)  6

9.

3x  6x  5x 10  6 3x2  x 10  6 2

3x2  x  4  0 a = 3, b = 1, c = 4

b   b2  4ac x  2a x  

1 12  4(3)(4) 2(3) 1 1 48 6 1 49

6 1 7  6 1 7 1 7 4 x  1 or x   6 6 3 4 The solutions are x = 1 and x   . 3

Copyright © 2025 Pearson Education, Inc.


  

ISM: Prealgebra and Introductory Algebra

10. (3x 1)2  16 3x 1   16 3x 1  4 3x  1 4 1 4 x 3 1 4 5 1  4 3 x    1 or x  3 3 3 3 5 The solutions are x  and x = 1. 3

x

x 

b  b  4ac 2a

x  (7)  (7)  4(3)(2) 2(3) 7  49  24  6 7  25  6 75  6 2

and x = 2.

15. Let x = the length of the base. 4x = height 1 A  bh 2 1 18  (x)(4x) 2 36  4x2

.

x2  4x  5  0 (x  5)(x 1)  0 x  5  0 or x 1  0 x5 x  1 The solutions are x = 5 and x = 1.

2

3

2 x  (6)  (6)  4(2)(1) 2(2) 6  36  8  4 6  28  4 62 7  4 3 7  2 3 7 The solutions are x  . 2

6

13. 3x2  7 x  2  0 a = 3, b = 7, c = 2

1

b  b2  4ac x  2a

12.

6 1

14. 2x2  6x  1  0 a = 2, b = 6, c = 1

2 (7)  (7)  4(3)(2) 2(3)

7  73

75

3

2 x  b  b  4ac 2a

The solutions are x 

 2 or x 

The solutions are x 

a = 3, b = 7, c = 2

7  49  24 6 7  73  6

75 6

11. 3x2  7 x  2  0

x

Chapter 16: Quadratic Equations

9  x2

 

 9x 3  x 4x = 4(3) = 12 The base is 3 feet. The height is 12 feet. 16. y  5x2 y = 0: 0  5x2 0  x2 0x x-intercept: (0, 0) The y-intercept is also (0, 0). y  5x2  0x  0 a = 5, b = 0, c = 0 b  0 0   0 2a 2(5) 10 x = 0: y  5(0)2  0

Copyright © 2025 Pearson Education, Inc.

693


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

vertex: (0, 0)

17. y  x2  4 y = 0: 0  x2  4 0  (x  2)(x  2) 0  x2 or 0  x  2 2  x 2x x-intercepts: (2, 0), (2, 0)

b (7) 7   2a 2(1) 2 2 7 7  7  x  2 : y     7   10 2   2  49 49   10 4 2 49 98 40    4 4 4 9  4 9 7 vertex: ,  2   4

x = 0: y  02  4  4 y-intercept: (0, 4) y  x2  0x  4 a = 1, b = 0, c = 4 b 0 0   0 2a 2(1) 2

19. y  2x 2  4x 1 y = 0: 0  2x2  4x 1 a = 2, b = 4, c = 1

x = 0: y  02  4  4 vertex: (0, 4)

x 

 x 

18. y  x2  7x 10 y = 0: 0  x2  7x 10 0  (x  5)(x  2) x  5  0 or x  2  0 x5 x2 x-intercepts: (5, 0) and (2, 0) x = 0: y  02  7(0) 10  10 y-intercept: (0, 10) 2 y  x  7x 10 a = 1, b = 7, c = 10

694

b  b2  4ac 2a 4  42  4(2)(1)

2(2) 4  16  8  4 4  24  4 4  2 6  4 2  6  2  2  x-intercepts:  2  6  6  and , 0  , 0     2 2     x = 0: y  2(0)2  4(0) 1  1 y-intercept: (0, 1) y  2x2  4x 1 a = 2, b = 4, c = 1

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra b  4 4    1 2a 2(2) 4

Chapter 16: Quadratic Equations

4.

5.03

 0.0503

100

x = 1: y  2(1)2  4(1) 1  2  4 1  3 vertex: (1, 3)

5. Add the percentages for Mexico and Canada: 47% + 11% = 58% 58% of the visitors to the U.S. were from Mexico or Canada. 6. Add the percentages for India and the United Kingdom: 2% + 2% = 4% 4% of the visitors to the U.S. were from India or the United Kingdom. 7. Perimeter = 11 + 3 + 11 + 3 = 28 The perimeter is 28 inches. 8. Perimeter = 6 + 8 + 11 = 25 The perimeter is 25 feet.

2 20. d  n  3n 22 n  3n 9 2 18  n2  3n

9. Area = bh = (3.4 mi)(1.5 mi) = 5.1 sq mi The area is 5.1 square miles. 1 1 10. Area  bh  (17 in.)(8 in.)  68 sq in. 2 2 The area is 68 square inches.

0  n  3n 18 0  (n  6)(n  3) n  6  0 or n  3  0 n6 n  3 A 6-sided polygon has 9 diagonals. 2

11. 3210 ml 

4321 L  43.21 L 12. 4321 cl  4321 cl  1 L  1 100 cl 100

h  16t 2

21.

193.83  16t 2 193.83  t2 16 193.83 193.83  t or  t 16 16 3.5  t 3.5  t Since the time of the dive is not a negative number, discard the solution 3.5. The dive took approximately 3.5 seconds. Cumulative Review Chapters 116 1.

786.1  0.7861 1000 818

2.

 0.818

1000 3. 

0.12 10

 0.012

3210 ml 1L 3210  1000 ml  1000 L  3.21 L 1

13. 8(2  t)  5t 16  8t  5t 16  3t 16 t 3 14.

5

1 x 1  x  4  52  1  4 x 1       2  4 x    4  10x  4  4x 1 6x  4  1 6x  5 5 x 6 

15. 30  1 0 0 16. 2  (2 )  1

Copyright © 2025 Pearson Education, Inc.

695


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

x2  8x  7

17. r 2  r  42  (r  7)(r  6) 27. 18. y  3y  70  ( y  7)( y 10)

(x  7)(x 1)

(x  5)(x 1)

x2  4x  5

x7 x 5

2

2

2 28. x  6x  5  (x 1)(x  5)  x  5 (x 1)(x  7) x  7 x2  6x  7

2

19. 10x 13xy  3y  (2x  3y)(5x  y) 20. 72x2  35xy  3y2  (9x  y)(8x  3y)

29.

21. 8x2 14x  5  8x2  4x 10x  5  4x(2x 1)  5(2x 1)  (2x 1)(4x  5) 22. 15x2  4x  4  15x2 10x  6x  4  5x(3x  2)  2(3x  2)  (3x  2)(5x  2) 23. a.

30.

4x3  49x  x(4x2  49)  x(2x  7)(2x  7) 

b.

162x4  2  2(81x4 1)  2(9x2  1)(3x 1)(3x 1)

b.

9x3  x  x(9x2 1)  x(3x 1)(3x 1)

4n  5 7  6 2  4n  5   7  6  6   2  6     4n  5  21 4n  16 n4 The number is 4. 

 2(9x2 1)(9x2 1)

24. a.

n 5 n   6 3 2  n 5  n  6    6 6 3   2 n 10  3n 10  2n 5  n The number is 5.

x

y = 3x

a.

1

3

 5(x2  1)(x2 1)

b.

0

0

 5(x2  1)(x  1)(x 1)

c.

3

9

31.

5x4  5  5(x4 1)

25. (5x 1)(2x2 15x 18)  0 (5x 1)(2x  3)(x  6)  0 5x 1  0 or 2x  3  0 or x  6  0 5x  1 2x  3 x  6 1 3 x x 5 2 1 3 The solutions are x  , x   , and x = 6. 5 2

10x 1  0 10x  1 1 x 10 3 1 The solutions are x = 4, x  , and x  . 4 10

696

or

y = 2x + 7

a.

0

7

b.

7 2

0

c.

5

3

33. a. 26. (x  4)(40x2  34x  3)  0 (x  4)(4x  3)(10x 1)  0 x40 or 4x  3  0 x  4 4x  3 3 x 4

y7 2

x

32.

y

1

x 1 5 2x 10 y  3 10 y  2x  3 2 3 y x 10 10 1 3 y   x 5 10 These two equations have the same slope, therefore they are parallel.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

b.

x  y  3  y  x  3 x  y  4  y  x  4 These two equations have slopes whose product is 1, therefore they are perpendicular.

c.

3x + y = 5  y = 3x + 5 2x + 3y = 6  3y = 2x + 6 2  y   x2 3 These two equations have different slopes (and their product is  1), so they are neither parallel nor perpendicular.

34. a.

y = 2x + 3 y = 2x + 5 These two equations have the same slope, therefore they are parallel.

b. 2x + y = 3  y = 2x + 3 x + 2y = 9  2y = x + 9  y  

1

x

9

2 2 These two equations have slopes whose product is 1, therefore they are perpendicular. c.

35. a.

3x  2y = 8  2y = 3x  8 3  y  x4 2 3x + 2y = 1  2y = 3x + 1 3 1  y   x  2 2 These two lines have different slopes (and their product is  1), so they are neither parallel nor perpendicular.

b.

8x  3y  4 38.  y  7x  3 Substitute 7x  3 for y in the first equation. 8x  3(7x  3)  4 8x  21x  9  4 13x  9  4 13x  13 x 1 Solve for y. y = 7x  3 = 7(1)  3 = 7  3 = 4 The solution for this system is (1, 4). 39.

36  6 because 62  36.

40.

81  9 because 9  81.

41.

9 3  3 9 .  because    100 10  10  100

42.

4 16 16 4  because    . 25 5 5   25

43.

2 1 3 2  2 3 2  2 3      1  3 1 3 2 1 3 1  3

{(2, 3), (5, 7), (9, 3), (0, 0)} This is a function because each x-value is assigned to only one y-value.    1 (9, 1), 0, , (2, 1), (9, 0)       2   This is not a function because the x-value 9 is paired with two different y-values.

2

2

2

{(1, 1), (2, 3), (7, 3), (8, 6)} This is a function because each x-value is assigned to only one y-value.

b. {(0, 2), (1, 5), (0, 3), (7, 7)} This is not a function because the x-value 0 is paired with two different y-values. 36. a.

2x  y  10 37.  x  y  2 Substitute y + 2 for x in the first equation. 2( y  2)  y  10 2 y  4  y  10 3y  6 y2 Solve for x. x=y+2=2+2=4 The solution for this system is (4, 2).

44.

7 5 2





5 2 7 5 2  5 4 52 7 5 2  1 7

 5  2

45. (x  3)2  16 x  3   16 x  3  4 x  34 x = 3 + 4 = 7 or x = 3  4 = 1 The solutions are x = 7 and x = 1.

Copyright © 2025 Pearson Education, Inc.

697


ISM: Prealgebra and Introductory Algebra

Chapter 16: Quadratic Equations

46. (x  4)2  9 x4  9 x  4  3 x  4  3 x = 4 + 3 = 1 or x = 4  3 = 7 The solutions are x = 1 and x = 7. 47.

1 2 x x2 2 1 2 x x2 0 2 1 a  , b = 1, c = 2 2 x 

 x 

b  b2  4ac 2a

 

(1)  (1)2  4 12 (2)

 

2 12

2x2 

48.

x

7

2 2 7 5 2(2x )  2 2 x  2      4x2  5x  7 2

4x2  5x  7  0 a = 4, b = 5, c = 7 2 x  b  b  4ac 2a  (5)  (5)2  4(4)(7) x  2(4) 5  25 112  8 5  137  8 5  137 The solutions are x  . 8

1 1 4 1  1 5 

The solutions are x  1  5.

698

5

Copyright © 2025 Pearson Education, Inc.



Appendix Appendix B Exercise Set

18. s3  216  s3  63  (s  6)[s2  (s)(6)  62 ]

2. b3  8  b3  23

 (s  6)(s2  6s  36)

 (b  2)[b2  (b)(2)  22 ]  (b  2)(b2  2b  4) 3

3

20. 8t3  s3  (2t)3  s3  (2t  s)[(2t)2  (2t)(s)  s2 ]  (2t  s)(4t 2  2ts  s2 )

3

4. 64x 1  (4x) 1

 (4x 1)[(4x)2  (4x)(1) 12 ]  (4x 1)(16x2  4x 1)

Appendix C Practice Exercises 1. Let x represent the liters of 20% solution.

6. 6r3 162  6(r3  27)

Number of Liters

Dye Strength

Amount

20% solution

x

20%

0.2x

50% solution

6x

50%

0.5(6  x)

40% solution

6

40%

0.4(6)

 6(r3  33 ) 2

2

 6(r  3)[r  (r)(3)  3 ]  6(r  3)(r2  3r  9) 8. 8x3  y3  (2x)3  y3 2

2

 (2x  y)[(2x)  (2x)( y)  y ]  (2x  y)(4x2  2xy  y2 ) 10. a3  216  a3  63 2

2

 (a  6)[a  (a)(6)  6 ]  (a  6)(a2  6a  36) 12. 375 y6  24 y3  3y3(125 y3  8)  3y3[(5 y)3  23 ]  3y3 (5 y  2)[(5 y)2  (5 y)(2)  22 ] 3

0.2x  0.5(6  x)  0.4(6) 0.2x  3  0.5x  2.4 0.3x  3  2.4 0.3x  0.6 x2 6x=62=4 2 liters of the 20% solution should be mixed with 4 liters of the 50% solution. 2. Let x represent the number of $5 bills.

2

 3y (5 y  2)(25 y 10 y  4)

Number of Bills

Value of Bills (in dollars)

$5 bills

x

5x

$20 bills

x  47

20(x  47)

Denomination 14. 125  r3  53  r3  (5  r)[52  (5)(r)  r 2 ]  (5  r)(25  5r  r 2 ) 16. 54r3  2  2(27r3 1)  2[(3r)3  13]  2(3r  1)[(3r)2  (3r)(1) 12 ]  2(3r  1)(9r 2  3r 1)

698

The total value was $1710. 5x  20(x  47)  1710 5x  20x  940  1710 25x  940  1710 25x  2650 x  106 x  47 = 106  47 = 59 There were 106 $5 bills and 59 $20 bills.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Appendix 0.25x  0.60(10)  0.30(x 10) 0.25x  6  0.3x  3 6  0.05x  3 3  0.05x 60  x 60 cc of the 25% antibiotic solution should be used.

3. Let x represent the time it took to hike up the mountain. Rate  Time = Distance Up

1.5

x

1.5x

Down

4

x1

4(x  1)

The distance up is the same as the distance down. 1.5x  4(x 1) 1.5x  4x  4 2.5x  4 x  1.6 x  1 = 1.6  1 = 0.6 The total time is 1.6 + 0.6 = 2.2 hours. 4. Let x represent the speed of the eastbound train. 

r

t

=

4. Let x represent the amount of cashews. Number of  Cost per = Value Pounds Pound

$3 per lb Peanuts

20

3

3(20)

$5 per lb Cashews

x

5

5x

$3.50 per lb mixture

20 + x

3.50

3.50(20 + x)

d

East Train

x

1.5

1.5x

West Train

x  10

1.5

1.5(x  10)

The total distance after 1.5 hours is 171 miles. 1.5x 1.5(x 10)  171 1.5x 1.5x 15  171 3x 15  171 3x  186 x  62 x  10 = 62  10 = 52 The eastbound train is going 62 miles per hour and the westbound train is going 52 miles per hour. Appendix C Exercise Set 2. Let x represent the amount of the 25% antibiotic solution. Number of  Antibiotic = Amount of Strength Cubic cm Antibiotic

3(20)  5x  3.50(20  x) 60  5x  70  3.5x 60 1.5x  70 1.5x  10 10 2 x 6 1.5 3 2 6 pounds of cashews should be used. 3 Number of Coins or Bills

Value of Coins or Bills (in dollars)

6.

quarters

z

0.25z

8.

halfdollars

(20  z)

0.50(20  z)

10.

$100 bills

97z

100(97z) or 9700z

12.

$10 bills

(15  y)

10(15  y)

14. Let x represent the number of $50 bills.

25% solution

x

60% solution

10

30% solution

x + 10

25% 60% 30%

0.25x Number of Bills

Value of Bills

$20 bills

6x

20(6x)

$50 bills

x

50x

0.60(10) 0.30(x + 10)

Total

Copyright © 2025 Pearson Education, Inc.

3910

699


ISM: Prealgebra and Introductory Algebra

Appendix 20(6x)  50x  3910 120x  50x  3910 170x  3910 x  23 6x = 6(23) = 138 There were 23 $50 bills and 138 $20 bills.

28. Let x represent the time the bus is driving. 60x  40(x 1.5) 60x  40x  60 20x  60 x3 The bus will overtake the car after 3 hours.

16. Let x represent the amount of water (which is 0% antifreeze). 0x  0.70(30)  0.60(x  30) 21  0.6x 18 3  0.6x 5 x 5 gallons of water should be added.

30. Let x represent the amount of time they were going 50 miles per hour. 50x  40(7.2  x) 50x  288  40x 90x  288 x  3.2 50x = 50(3.2) = 160 The distance to Disneyland was 160 miles.

18. Let x represent the amount of chocolate-covered peanuts. 5x  2(10)  3(x 10) 5x  20  3x  30 2x  20  30 2x  10 x5 5 pounds of chocolate-covered peanuts should be used. 20. Let x represent the time that the two cars drive. 65x  41x  530 106x  530 x5 The cars are 530 miles apart after 5 hours. 22. Let x be the speed of the slower train. 1.5x 1.5(x  8)  162 1.5x 1.5x 12  162 3x 12  162 3x  150 x  50 x + 8 = 50 + 8 = 58 The slower train is traveling 50 miles per hour and the faster train is traveling 58 miles per hour. 24. Let x represent the time both cars travel. 65x  45x  330 110x  330 x3 The cars will be 330 miles apart after 3 hours.

32. Let x represent the amount of time they walk. 4x  5x  20 9x  20 20 2 x 2 9 9 2 They can talk for 2 hours. 9 34. Let x represent the time they both walk. 3x  (3 1)x  12 3x  4x  12 7x  12 12 5 x 1 7 7 5 They will meet in 1 hours. 7 36. Let x represent the time he spent driving 70 miles per hour. 70x  60(4  x)  255 70x  240  60x  255 10x  240  255 10x  15 x  1.5 1 He was speeding for 1 hours. 2

26. Let x represent the time both cars travel. 50x  40x  20 10x  20 x2 The cars will be 20 miles apart after 2 hours.

700

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Appendix

38. Since there are x quarters, there are (x + 136) dimes, 8x nickels, and (16x + 32) pennies. 0.01(16x  32)  0.05(8x)  0.10(x 136)  0.25x  44.86 0.16x  0.32  0.4x  0.1x 13.6  0.25x  44.86 0.91x 13.92  44.86 0.91x  30.94 x  34 x + 136 = 34 + 136 = 170 8x = 8(34) = 272 16x + 32 = 16(34) + 32 = 544 + 32 = 576 The jar contained 34 quarters, 170 dimes, 272 nickels, and 576 pennies. Appendix D Exercise Set y  x  3 2.  y  1 x

 y  2x 1 4.  y  x  2

 y  2x  4 6.  y  x  5

Copyright © 2025 Pearson Education, Inc.

701


Appendix

ISM: Prealgebra and Introductory Algebra

y  x  5 8.  y  3x  3

 x  3 16.  y  2

  2x  y x  2 y  3 

18.  y  2 x  1 

10.

12.  y  2x  0 5x  3y  2 

20. 3x  2 y  6  x2 

14.  4x  y  2 2x  3y  8 

22. 2x  5 y  10  y 1 

702

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

Appendix

3 y   x3  2 24.   y  3 x  6  2 x  3

26. The graph of the system

y  5 

is graph A.

y  5 28. The graph of the system  is graph B. x  3

Copyright © 2025 Pearson Education, Inc.

703


Practice Final Exam Chapters 18

12.  16   3   16   12 3 12 3 3 16 12  3 3 16  3 4  3 3 64 1  or 21 3 3

1. 23  52  2  2  2  5  5  200 2. 16  9  3 4  7  16  3  4  7  16 12  7  28  7  21 3. 18  24 = 18 + (24) = 6

13.

4. 5  (20) = 100 49  7 because 72  49.

5.

18

19 23 11

2 16

6. (5)  24  (3)  125  24  (3)  125  (8)  125  8  117

0.23 1.63 14. 15.

8. 62  0 is undefined. 9. 

8

2

15 y 15 y

11 8 11

3

7. 0  49 = 0

11 11 3

8  2 10 25  2   15 y 15 y 3 5  y 3y

0.3 10.2  4.01 102 40 800 40.902

1.86 0.3

 6.2

1 decimal place 2 decimal places

1  2  3 decimal places

16. 0.6% = 0.6(0.01) = 0.006 10.

11 3 5 11 2 3 3 5      12 8 24 12  2 8  3 24 22 9 5    24 24 24 22  9  5  24 18  24 3 6  46 3  4

17. 6.1 = 6.1(100%) = 610% 18.

3 100 300   %  %  37.5% 8 8 1 8

19. 0.345 

20. 

345 5  69 69   1000 5  200 200

13 113 1 1 5 5       0.5 26 2 13 2 25 10

21. 34.8923 rounded to the nearest tenth is 34.9.

11. 3a  16  3a 16  3 a 8  2  1  1 8 6a3 8  6a3 8  2  3 a  a  a a  a a2 

3

22. Let x be 2. 5(x3  2)  5(23  2)  5(8  2)  5(6)  30 23. 10  y2  10  (3)2  10  9  1

704

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

24. x  y 

1

3

Practice Final Exam

7 30.

2 8 1 31 2 8

1 8  2 31 18  2  31 1 2  4  2  31 4  31 

25. (3z  2)  5z 18  1(3z  2)  5z 18  1 3z  (1)  2  5z 18  3z  2  5z 18  3z  5z  2 18  8z  20

31.

26. perimeter = 3(5x + 5) = 3  5x + 3  5 = 15x + 15 The perimeter is (15x + 15) inches. 27.

28.

n 7  4 n 7   7  4 77  n  7  4 7 n  28 The solution is 28. 4x  7  15 4x  7  7  15  7 4x  8 4x 8  4 4 x  2

29. 4(x 11)  34  10 12 4x  44  34  10 12 4x 10  2 4x 10 10  2 10 4x  12 4x 12  4 4 x3

32.

x 24 x 5 5  x   24  5 5  x   5    5     x 5   5  x  24 5 x  5x  24 6x  24 6x 24  6 6 x  4 

2(x  5.7)  6x  3.4 2x 11.4  6x  3.4 2x 11.4 11.4  6x  3.4 11.4 2x  6x 14.8 2x  6x  6x  6x 14.8 4x  14.8 4x 14.8  4 4 x  3.7 5 4  y 1 y  2 5( y  2)  4( y 1) 5 y 10  4 y  4 y 10  4 y  6

33. Perimeter  (20 10  20 10) yards  60 yards Area  (length)(width)  (20 yards)(10 yards)  200 square yards 34. average  12  (13)  0  9  16  4 4 4 35. The difference of three times a number and five times the same number is 4 translates to 3x  5x  4 2x  4 2x 4  2 2 x  2 The number is 2. 36. 258 10 3  258  43  258  4  43  6  4  24 4 1 4 1 43 1 43 Expect to travel 24 miles on 1 gallon of gas.

Copyright © 2025 Pearson Education, Inc.

705


ISM: Prealgebra and Introductory Algebra

Practice Final Exam

37. Let x be the number of children participating in the event. Since the number of adults participating in the event is 112 more than the number of children, the number of adults is x + 112. Since the total number of participants in the event is 600, the sum of x and x + 112 is 600. x  x  112  600 2x  112  600 2x 112 112  600 112 2x  488 2x 488  2 2 x  244 244 children participated in the event. 38. Let x be the number of defective bulbs out of 510 bulbs. x defective defective  3  bulbs 85 510 bulbs 3 510  85  x 1530  85x 1530 85x  85 85 18  x There should be 18 defective bulbs in 510. 39. Amount of discount  15% $120  0.15 $120  $18 Sale price = $120  $18 = $102 The amount of the discount is $18; the sale price is $102. 40. hypotenuse  (leg)2  (other leg)2 2

2

 4  4  16 16  32  5.66 The hypotenuse is 5.66 centimeters. 41. The complement of an angle that measures 78 is an angle that measures 90  78 = 12. 42. x and the angle marked 73 are vertical angles, so mx  73. x and y are alternate interior angles, so my  mx  73. x and z are corresponding angles, so mz  mx  73.

706

43. The unmarked vertical side has length 11 in.  7 in. = 4 in. The unmarked horizontal side has length 23 in.  6 in. = 17 in. P = (6 + 4 + 17 + 7 + 23 + 11) in. = 68 in. Extending the unmarked vertical side downward divides the region into two rectangles. The region’s area is the sum of the areas of these: A  11 in. 6 in.  7 in.17 in.  66 sq in. 119 sq in.  185 sq in. 44. Circumference: C  2   r  2   9 in.  18 in.  56.52 in. Area: A  r2  (9 in.)2  81 sq in.  254.34 sq in. 2 1 gal 4 qt 1 2   2  4 qt  10 qt 45. 2 gal  2 1 1 gal 2 1

46. 2.4 kg 

2.4 kg 1000 g   2.4 1000 g  2400 g 1 1 kg

Chapters 916 47. 34  (3 3 3 3)  81 3 48. 4 

1 43

1 64

49. 7  2(5 y  3)  7  10 y  6  7  6  10 y  1 10 y  10 y  1 50.

5x3  x2  5x  2  (8x3  4x2  x  7)

  

5x3  x2  5x  2 8x3  4x2  x  7 3x3  5x2  4x  5

51. (4x  2)2  (4x)2  2(4x)(2)  22  16x2 16x  4

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

52. (3x  7)(x2  5x  2)  3x(x2  5x  2)  7(x2  5x  2)  3x(x2 )  3x(5x)  3x(2)  7(x2 )  7(5x)  7(2)  3x3 15x2  6x  7x2  35x 14  3x3  22x2  41x 14

Practice Final Exam

60.

53. 6t 2  t  5  6t2  5t  6t  5  t(6t  5) 1(6t  5)  (6t  5)(t 1) 54. 180  5x2  5(36  x2 )  5(62  x2 )  5(6  x)(6  x) 2

55. 3a  3ab  7a  7b  3a(a  b)  7(a  b)  (a  b)(3a  7)

x2 2 61. x  5 x  7x 10 x2  5x 2x 10 2x  10

3 2 2 56. 3x  21x  30x  3x(x  7x 10)  3x(x  5)(x  2)

57.

 4x2 y3 

2

0 x  7x 10  x  2 x5 2

42 x22 y32

 x3 y4   32 42 x y   16x4 y6  x6 y8  16x46 y6(8)

62.

 16x2 y14 16 y14 

x2  y 5 1  2 5 1   2 y  5 y 1 y 2    y  2 58. 1 2   2  1 2  2 y y y  y  2  y   2

2

x 9 59.

x2  3x

2

x  4x 1  x2  9 2x 10   2 2x 10 x  3x x2  4x 1 (x  3)(x  3) 2(x  5)   2 x(x  3) x  4x 1 2(x  3)(x  5)  x(x2  4x  1)

5a  2  a2  a  6 a  3 5a  2   (a  3)(a  2) a  3 5a    2(a  2) (a  3)(a  2) (a  3)(a  2) 5a  2(a  2)  (a  3)(a  2) 5a  2a  4  (a  3)(a  2) 3a  4  (a  3)(a  2)

63.

4(n  5)  (4  2n) 4n  20  4  2n 4n  20  2n  4  2n  2n 2n  20  4 2n  20  20  4  20 2n  16 2n 16  2 2 n 8 2

(3x  5)(x  2)  6

3x  6x2 5x 10  6 3x  x 10  6 3x2  x  4  0 a = 3, b = 1, c = 4 x 

b  b2  4ac 2a

Copyright © 2025 Pearson Education, Inc.

707


ISM: Prealgebra and Introductory Algebra

Practice Final Exam

1 12  4(3)(4) 2(3)  1 1 48 6

x

1 49

6 1 7  6 1 7 1 7 4 x  1 or x    6 6 3 4 The solutions are x = 1 and x   . 3 64.

5(x 1)  6  3(x  4) 1 5x  5  6  3x 12 1 5x 11  3x 11 5x 11 3x  3x 11 3x 2x 11  11 2x 1111  1111 2x  22 2x  22 2  2 x  11 {x|x  11}

65. 2x2  6x  1  0 a = 2, b = 6, c = 1 x

b  b  4ac 2a 2

2

(6)  (6)  4(2)(1) 2(2) 6  36  8  4 6  28  4 62 7  4 3 7  2 3 7 The solutions are x  . 2 x

708

66. The LCD is 3  5  y = 15y. 4 5 1   y 3 5  4 5  1 15 y   15 y      5  y 3     60  25 y  3y 60  22 y 60 y 22 30 y 11 30 The solution is . 11 67. The LCD is 2(a  3). a 3 3   a3 a3 2 3   a   3 2(a  3)      2(a  3)  a 3   a  3 2  2a  6  3(a  3) 2a  6  3a  9 5a  15 a3 Since a = 3 causes the denominator a  3 to be 0, the equation has no solution. 68.

2x  2  x  5

 2x  2   (x  5)2 2

2x  2  x2 10x  25 0  x2 12x  27 0  (x  3)(x  9) x  3  0 or x  9  0 x3 x9 x = 3 does not check, so the solution is x = 9. 69. 5x  7y = 10 y = 0: 5x  7(0)  10 5x  0  10 5x  10 x2 x-intercept: (2, 0) x = 0: 5(0)  7 y  10 0  7 y  10 7 y  10 10 y 7

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

10   y-intercept: 0,    7   

Practice Final Exam 74. m  y2  y1  3  (5)  3  5  8 x x 1 2 1 2

5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

70. The graph of y = 1 is a horizontal line with a y-intercept of (0, 1). y 5 4 3 2 1 –5 –4 –3 –2 –1–1

1 2 3 4 5

x

–2 –3 –4 –5

71. Graph the boundary line, y = 4x, with a solid line. Test (1, 1): y  4x 1  4(1) 1  4 True Shade the half-plane containing (1, 1).

y2  y1

2  (5) 7  1 72. m    1 6 7 x2  x1 73.

1

y  y1  m(x  x1) y  (5)  8(x  2) y  5  8x 16 y  8x 11 8x  y  11

y

y = mx + b 3x  y  5 y  3x  5 m=3

1 75. m  ; b = 12 8 1 y  x 12 8 8 y  x  8(12) 8 y  x  96 x  8 y  96 76. 3x  2 y  14  y  x  5 Substitute x + 5 for y in the first equation and solve for x. 3x  2 y  14 3x  2(x  5)  14 3x  2x 10  14 x 10  14 x  4 y = x + 5 = 4 + 5 = 1 The solution of the system is (4, 1). 77.  4x  6 y  7 2x  3y  0  Multiply the second equation by 2. 4x  6 y  7  4x  6 y  7 2(2x  4x  6 y  0  3y)  2(0)   Add the equations to eliminate x. 4x  6 y  7 4x  6 y  0 07 Since the statement 0 = 7 is false, the system has no solution. 78.

f (x)  x3  x a.

f (1)  (1)3  (1)  1 1  0

b.

f (0)  03  0  0  0  0

c.

f (4)  43  4  64  4  60

Copyright © 2025 Pearson Education, Inc.

709


ISM: Prealgebra and Introductory Algebra

Practice Final Exam 79. The x-value 3 is assigned to two y-values, 3 and 2, so the relation is not a function. Note that the x-value 0 is also assigned to two y-values, 5 and 0. 80.

54  9  6  9 6  3 6

81.

24x8  4x8  6  4x8 6  2x4 6

82.

18  75  7 3  8  9  2  25  3  7 3  4  2  9 2  25 3  7 3  4 2  3 2 5 3 7 3 2 2  (3  2) 2  (5  7) 3  2 2 3

83.

40x4 2x

40x4 2x



 20x3  4x2  5x  4x2 5x  2x 5x

 84.

 6  5   2 6  2 5

2

87. y  x2  7x 10 y = 0: 0  x2  7x 10 0  (x  5)(x  2) x  5  0 or x  2  0 x5 x2 x-intercepts: (5, 0) and (2, 0) x = 0: y  02  7(0) 10  10 y-intercept: (0, 10) y  x2  7x 10 a = 1, b = 7, c = 10 b (7) 7   2a 2(1) 2 2 7 7  7  x  2 : y     7   10 2   2  49 49   10 4 2 49 98 40    4 4 4 9  4 9 7 vertex: ,  2   4

 12  10  4  3  10  2 3  10 

85.

86.

8 5y

8

8 62

5y

5y 5y

 6  2 2  6   22 8  2 6 8

64

 6  2 2  4  6  2 

8

 4 6 8

710

8 5y 5y

8 6 2  6 2 6 2

 

88. Let n be the number. 1 n5 6  n    5 n  6 n 5   n  n    n(6) n   n2  5  6n n2  6n  5  0 (n  5)(n 1)  0 n  5  0 or n 1  0 n5 n 1 The number is 1 or 5.

Copyright © 2025 Pearson Education, Inc.


ISM: Prealgebra and Introductory Algebra

89. Let x be the number. 2 x  x  35 3 3 2 x  x  35 3 3 5 x  35 3 3 5 3  x   35 5 3 5 x  21 The number is 21.

Practice Final Exam

91. Let x be the speed of the boat in still water. Let x + 2 be the speed of the boat going downstream. Let x  2 be the speed of the boat going upstream. distance

90. Let t be the number of farms in Texas (in thousands) and let m be the number of farms in Missouri (in thousands). t  m  342 t  m 152  Substitute m + 152 for t in the first equation and solve for m. t  m  342 m 152  m  342 2m 152  342 2m  190 m  95 t = m + 152 = 95 + 152 = 247 There were 247 thousand farms in Texas and 95 thousand in Missouri.

=

rate

time

Upstream

14

x2

14 x2

Downstream

16

x+2

16 x2

14 16  x2 x2 14(x  2)  16(x  2) 14x  28  16x  32 60  2x 30  x The speed of the boat in still water is 30 mph.

Copyright © 2025 Pearson Education, Inc.

711


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.