Portfolio
Rasmus Holst
architectural engineering: Design, parametricism, structure
contact details Rasmus Holst Nørre allé 75, 611 2100 KBH Ø Denmark email: rasmuskholst@gmail.com mobile: +45 25212534
Introduction
For me Architectural Engineering is to use technical knowledge in a creative way to lift the Architectural vision and obtain the best result. All projects contain a huge solution space, satisfying different parameters.
I am very passionate about design, architecture and engineering. I believe that a combination of passion, motivation and technical skills great projects that can improve the lives around us.
Throughout my education I have aimed at obtaining a thorough knowledge within geometry, energy and especially structures. This knowledge I use to construct parametric models by means of scripting/programming.
My name is Rasmus Holst and I am an Architectural Engineer. I was born on the small island, Bornholm at the easterns seas of Denmark. I moved to Copenhagen where I have been living throughout my studies in order to obtain my M.Sc in Architectural Engineering from the Technical University of Denmark.
This way a combined model can be evaluated and simulated in regards to many different parameters simultaneously. By doing so a very multidisciplinary design- and optimization process emerges. By thinking out of the box and having a creative and diverse approach to engineering I am always trying to challenge the existing methods and solutions to ďŹ nd the right one in the given situation.
This is my portfolio.
CV 2001 – 2004:
Linguistic gymnasium - Bornholm, Denmark
2004
Carpenter/worker Aarsdale Byggeforretning.
:
2005 - :
Carpenter/worker Holst & Holst ApS. Part/Full time
2006 - 2010:
B.Sc. Architectural Engineering at the Technical University of Denmark (DTU). (ref Lotte Bjerregård)
2009
Internship at Danielsen architecture. CPH
:
2009 - 2010:
On and off employment at Danielsen architecture. (ref. Malin Meyer)
2010 - :
M.Sc. Architectural engineering at DTU. (ref. Christian Rønne)
2010
: -
Assistant teacher at the Technical University of Denmark: Analysis and Design of Concrete Structures Urban context & Large scale structures Analysis and Design of Steel and Wood Structures Geometric Operations in Plane and Space
2009
:
Part of the selected Danish Solar Decathlon team 2010. (Ass. Richard Horden)
2011
:
Master of Advanced Architecture – study abroad at UTS. (ref. David Pigram)
-
Architectural Design : Computational Environments.
-
Master Class Design Technologies. (ref. David Pigram & Ezio Blassetti)
2011
:
Assistant - supermanouevre Sydney
2012
: -
Assistant teacher at Technical University of Denmark: Construction and Building Design Theory and Practice of Architectural Engineering CDIO project
Resume
2012 - 2013:
Master thesis: Think, Script, Build. - Henning Larsen Architects (ref.Jakob Strømann Andersen)
ANDRE AKTIVITETER Sep. 2010:
Konference: Advances in Architectural Geometry 2010 Konferencen arrangeres af førende personer indenfor kompleks geometri og parametrisk design. Derfor tiltrækker den mange dygtige folk fra hele verden til foredrag og workshops. Workshop: Designing panelisations of architectural freeform surfaces using subdivision modeling and optimization
2012:
Team DTU - Solar decathlon 2012. Udarbejdelse af parametrisk model og udførelse af geometri. Opførelse og nedtagning af byggeri.
Sep. 2012:
Konference: Advances in Architectural Geometry 2012 Workshop: The emergent agent, geometry optimization though agent based interaction using genetic algorithms
BIM AND MODELLING Revit ArchiCAD Maxwell rendering AutoCAD Rhino3D VRay Rendering 3D Studio Max Google SketchUp VICO OfямБce
PROGRAMMING SCRIPTING Matlab Grasshopper Rhino.Python
VISUALISATION
skills
Adobe Photoshop Adobe Illustrator Adobe IN-Design Adobe Premier Pro
STRUCTURAL ANALYSIS Staad.Pro Autodesk Robot ABAQUS
ENERGY ANALYSIS ABAQUS Ecotect iDBuild
Registrering Rejsen Når stien brydes, brydes illusionen/rejsen. Man bliver hevet ud af sin løbetur og skal til at koncentrere sig om andre omgivelser, biler o.s.v. Dette gælder både for de små og store veje.
Vest
Ved bygn definere milepæle dtu’s sp både træ klatrevæ
Øst
Trafikretning. Bilerne kommer hovedsa fra Lundtoftegårdsvej og kører ind t og videre ud mod Lundtoftevej.
Uberørte. I den ene ende af løberuten, bliver stien til en græsplæne hvor stien forsvinder og man har mulighed for at danne sin egen rute. i området er der også en bakke hvor der er mulighed for at udfordre sin fysik. Bakken deler sig i tre veje.
Impulser -
Januar 2008, B
Anders Biehl s & Victor Aalund
Analyse Vision
Bridge connection
Løberuten skal være på løberens primisser. En rejse i etaper, uden forstyrrelsr. Det er vigtigt at man skal kunne koncentre sig om motionen. Man skal kunne udfordre sig selv og det skal være muligt at vælge imellem sværhedsgrader. Broerne bliver en del af løberuten, de fuldender rejsen. Broerne bliver derfor etableret i løbestien istedet for at henvende sig til fodgængere på Anker engelundsvej.
Hele vejen langs ruten, svinger stien ind og ud imellem træer. på vest siden er terrænet bakket og slingrende og på øst siden, er stien mere et lige stræk, dog stadig slingrende. Dette gør at ruten bliver mere overskuelig. Løber man på en helt lige sti, vil den synes meget lang, da man kigger ud i uendelighederne. Vi holder derfor fast i at have en sti med et spændende forløb, en sti i bevægelse.
Da DTU i sin tid blev anlangt var en af de vigtigste koncepter, at Dyrehavens grønne, vilde natur skulle kræse sig op til DTU og skabe en grøn skovklædt “slette”. mange steder på ruten bliver den grønne smukke natur brudt af larm fra biler, synet af kontainere og andre fabriks embalager. Ved at skabe tættere beplantning, afskærmes der fra omgivelserne, og løberen kan koncentrere sig om sin løbetur.
Impuls
Bridge connection Two pedestrian bridges are designed in connection with the running track at the Danish Technical University. As part of the project, one of the two bridges is precisely calculated and dimensioned in the context of the overall project. When you are running, the heart beats rapidly and you feel the pulse of your body. Pulse has two different meanings in mechanical physics, impulse is related to the speed and mass of an object, in electronics it refers to a short term discharging of voltage. This is the basis of this project. 2007
Ildfluer
Fibre
Delfin
Snoet plante
Belægning
Landskabssnit Vest
Øst
Grus
Skovbund
Rough Skovbund
Flis
Græs
1:500
Langs stien skifter belængningen mange gange karakter. Belægningen veksler mellem sand/grus, jord(skovbund), fils og græs. Dette gør, at stien løber gennem forskellige faser, man kan relatere til hvor langt man er på ruten. Vekslende belægning kan også få sværhedsgraden til at variere.
Afskærmning Vest
Øst
ning 101 er løbestiens start et. Dette ses undervejs ved ene. Derudover virker 101 som portscentrum. Her findes der æningscenter, sportshaller og æg.
Kontainere, industri embalage og biler præger synet mens man løber på stien. Man mister koncentrationen og kommer til at fokusere på omkring liggende ting og bevægelser.
Vest
Øst Østen broen skal være DTU’s port. det er her folk kommer ind. Og derfor skal området/ broen virke tillokkende og modtagende. Her er terrænet meget mere tæmmet. Her føler man opløbet. Lige stræk. Målstreg. Slutter ved badet.
agligt il DTU
Ved nord siden af stien er terrænet utrolig utæmmet. En del af ruten, skal blive i illusionen. En del af det vilde.
2 stibroer i forbindelse med running track, Anker Engelundsvej Byens rum og den store konstruktion
1:200
062481, Miriam Ann Hellmann s062483, Rasmus Holst s061860 d-Olsen s062460
Snit & Plan
1:200
1:2000
I mekanisk fysik, betyder Impuls en størrelse relateret til hastigheden og massen af et objekt Impuls kan også betyde, et kortvarigt strøm- eller spændingsudsving (elektricitet) Impuls vil tilføre ruten en helhed, fart og identitet Siv
Etaper Belysning Opløbet her starter løberuten, man klæder om i bygning 101 og starter sin løberute. Stien er stortset lige uden forhindringer. Efter man er blevet varmet op, når man til etape-Adventure, her kan man så begynde at udfordre sig selv og virkelig træne sin krop. Når man er ved at have løbet hele ruten, kommer man tilbage til opløbet, man løber forbi kampsax og villum kann kollegiet, her kan folk stå og se en løbe i mål. Målstregen nås når man kommer over øst broen, DTU’s port. Her er anbragt plateauer i niveauer hvor man kan strække ud før man begiver sig op i træningscentret eller ned i bad. Plateauerne kan også bruges som tribuner og tilskuepladser ved evt. arrangementer.
Adventure Som tidligere nævnt kan man på denne etape udfordre sig selv og sin motorik. I dette område vil der være forskellige slags motionsredskaber. Dette ses både i form af stænger man kan hænge sig i, bomme man kan gå på line på, eller hoppe over, i det hele taget naturpræget udfordringer som tager udgangspunkt i en militær forhindringsbane. Alle disse redskaber vil være udført i overensstemmelse med impulsernes bevægelse. Stien vil nogle steder dele sig i to, så man kan vælge om man vil løbe forbi forhindringerne, eller man har lyst til at udfordre sog selv. Redskaberne danner tilsammen en slags udendørs træningscenter.
Rough’en I dette område er terrænet i forvejen utrolig bakket og snoet. Dette har vi valgt at udnytte. Løberen kan i på denne etape udfordre sit løb. Etapen starter efter man har haft mulighed for at styrketræne sin krop. På nuværende tidspunkt bliver rough’en brudt af ANker Engelundsvej, da løberen ikke skal miste koncenttrationen omkring sit løb, har vi valgt at vest broen skal indgå i etapen. Broen virker i sig selv som en bakket sti i skoven. Broen følger naturens kurver.
Parken På den sidste etape når løberen til en kæmpe græsplæne hvor man nu igen har mulighed for at enten udfordre sig selv, eller tage et lille hvil. Der vil være indhak og plateauer i den store bakke der afgrænser området fra vejen, Her er der mulighed for at tage en tår vand af en af vandposterne der står rundt på ruten, eller sætte sig ned. Der vil også være bænke (impuler der kommer op af jorden) hvorpå man også kan tage sig en lille pause. Ellers er bakken i sig selv en forhindring. Allerede på nuværende tilspunkt har man mulighed for at løbe op ad flere forskellige stier, med forskellig hældning.
Rundt på ruten vil der blive opsat Lygter. Disse vil oplyse stien om aftenen, således vil løberen på alle tider af døgnet kunne se stien og løbe sig en tur.
Belægning
Omlæggelse af løberuten
Situationsbilleder
For at de forskellige etapers karakter bliver understreget,vil der være forskellig slags belægning på de fire etaper. Dette vil være sand, naturlig flis, græs og i de områder der er mudret, vil der blive lagt rubber mulch, som er et plastik underlag, formet som flis. Påbroerne, vil der være playtiels som belægning.
Afskærmning
Broer Løberute
Øst
På billederne ses østbroen, proten til DTU. Impulserne slanger sig Broen er 49 meter lang og brobanen varierer i bredden fra 2,5 mete Der hvor ruten brydes af vejen, skal stien være tegnet op, således at løberen ikke mister illusionen om sin rejse.
For at undgå at biler, og anden form for støj og afledning skal forstyrre løberen plantes der tættere beplantning. Dette vil ske både i form af buske og træer. På denne måde vil løberuten få en mere skov agtig fornemmelse som vil appelere mere til dyrehaven. Den grønne slette som Edith og Ole Nørgaard i sin tid ville opnå, vil være understreget. Løberuten vil blive mere attraktiv og folk vil løbe på stien i stedet for fortorvet ude ved vejen.
Vandpost
vest
Plateauer Vores vision med ‘målområdet’ er at placere nogle plateauer som man kan bruge til at få et lille hvil efter en hård træning. De er også beregnet til at man enten kan varme op eller strække ud et ordentlig sted. Plateauerne kan ved evtuelle arrangementer bruges som tilskuerpladser
Playtiles
Bliver man tørstig undervejs og har glemt sin drikkeflaske, vil ruten være forsynet med vandposter således at man aldrig løber tør for vand.
Tidsmåler
Ved bygning 101 vil der være opstillet et maskine hvor løberen kan
Broen fortsætter ud fra det bakkede terræn over på den anden side af Anker Engelundsvej. koncentration omkring sit løb. Broen er 78.8 meter lang og varierer lige som østbroen fra 2, der et spændende forløb over broen.
langs gelænderet og fortætter et stykke ind i skoven. er til 4,5 meter.
Staad.Pro beregning af øst bro
Profil størrelser
Øst
Udbøjning med jævn fordelt last Udbøjning med jævn fordelt last over hele brobanen .
Vest
Max udbøjning: 58,7mm
Udbøjning med jævn fordelt last over halvdenen af brobanen
Tryk og træk kræfter
Max udbøjning: 65mm Ved dette lasttilfælde fås den største udbøjning. Den størt tilladelige udbøjning er 66mm. Dette lasttilfælde er altså dimensionerende for profilerne Udfra dette ses det hvordan tryk og træk fungerer for det mest kritiske tilfælde.
Udbøjning med jævn fordelt last over hele brobanen men UDEN de skrå afstivere
1:100
Max udbøjning: 107mm Det ses hvor stor forskel det gør, at stålprofilerne bruges som et led i det statiske system. Udbøjningen reduceres med 54.9% ved brug af stålprofilerne
Spændinger
Optimering af stabilitsevnen
De største spændinger fremkommer ved lasttilfælde 1 med lastkombination q1. I dette tilfælde bliver max spændingen ca. 220 MPa < 314 MPa og overstiger altså ikke flydespændingen.
Detalje 2 - snit i bakke For at opnå de mindst mulige profiler til kassedragerne, beregnes det samlede inertimoment for systemet, når brobanen styrkes med to skrå stålplader. Der opnås tynde profiler til kassedragerne så en svejsning blliver mulig.
Konstruktion Detalje 1 - snit i bro
Modstandsmomentet
Overslagsberegning af vest bro
Udbøjning og inertimoment
Der er fundet nogle profiler der kan klare det moment, systemet vil blive påvirket af, dog er udbøjningen for stor. Ved at finde inertimonetet, vil det optimale profil kunne findes.
Reaktioner
Impulser bevægersig over brobanen og fastholder derved løberens illusion, ,5 meter til 4,5 meter. På denne måde, i fællesskab md impulserne, skabes Dette inertimonet er utrolig stort, dette skyldes bl.a., at systemet der her er beregnet er simplificeret, og en række faktorer der kunne nedsætte udbøjningen, indgår derfor ikke. Det gælder f.eks. det planlagte gelænder, som tænkes at udgøre en del af konstruktionen. Virkningen af dette kan ses af beregningerne på Østbroen. Desuden tages der i disse beregninger ikke højde for at hoveddragerne er forbundet af tværbjælker der bidrager til stivheden.
Cultural center copenhagen Cultural centre A cultural centre placed in the heart of a beautiful nature reservation in the middle of Copenhagen. A flat marshland with a magnificent water view. A unique location which requires blending with the surroundings. In this case, we did not go for the obvious - to fit with nature, go organic shape. Instead we looked at how the area allready seemed to box up and hide it self i straight segments when looking from the distance. When one then starts to look between the rushes, the smaller organic shapes turns up.
Therefore the concept of organic in a box. This project shows and practices how an architectural project also involves structural, acoustic, indoor-climate and sustainability concerns. A video animation of the project is also available at youtube. 2008
Internship danielsen architecture
Internship - Danielsen Architecture An internship is always a great way to gain experience and see how a firm works from the inside. To see the processes, challenges, deadlines in action and be part of it, is invaluable. As an intern a the Copenhagen based architecture firm Danielsen Architecture. I worked in different groups within the company - the competion group, where projects where developed and in the project design group. Parallel to the work in the firm, I did a special report on sustainability, using a company project as case. Following the internship in 2009 I have been working on and off for Danielsen Architecture.
The work in the project design group, meant mostly documentation in Archicad. 2009
ERHVERV BOLIG NATUR
RUM
ZONER
FORBINDELSER
+31,000 +27,500 +24,500
+24,000
+21,000
+18,500
+20,500
+17,500
+17,500
+17,000
+14,000
+14,000
+13,500
+10,500
+10,500
+10,000
+7,000
+6,500
+7,000 +3,500
+2,000
+2,000 ±0,000
+2, +2,000
+2,000 ±0,000
+2,000
Åbning i bygning +2,000
+2,000
+0,700 Gående indgang Parkering under bolig
-2,100
BMW 64 5
Ci
Internship - danielsen architecture
Sustainability
Sustainability How do we utilize sustainable energy sources as part of our life and in the buildings we live in? The most important thing is to be as sure as possible of the effects our efforts will cause. Alternative, green technologies are rarely inexpensive to install and maintain, so therefore we have to simulate and compare all our options. Some solutions might be very suited in one project, but not in the one next door. Setup of correct scenarios and simulations are key aspects if want to keep aiming for sustainable projects, and making it economical interesting for investors and etc. 2009
Bæredygtig arkitektur. Specialemne rapport om muligheder og værktøjer.
En rapport om arkitektens rolle indenfor den bæredytige udvikling. Hvilke muligheder er der for bæredygtigheds tiltag? Hvordan indarbejdes bæredygtigheden tidligt i design processen?
VAND
JORD
RASMUS HOLST - S061860
SOL
SUSTAIN ABLE ARCHI TEC TURE
VIND
Ene
Type 1 Orientering -100.0째 Energiforbrug per 책r: 49 kWh/m2 Energiklasse 1 Areal: 25,4 m2
ergiforbrug
Emergency shelter
Emergency shelter In a world where millions of people are affected by natural disasters each year, the need for emergency aid will be persistent. This project is a redesign proposal for the original shelter. People live in these tents for long periods of time, and there for they need to be able to do more. They need to become a home.
“Familien flyttede ind i et midlertidigt nødhjælpstelt dette faldt dog sammen”
A
z
@
KATASTROFE
NØDHJÆLP
yx TAG OVER HOVEDET
yx yx
HJEM
SAMFUND
størrelse
nødhjælp
skygge
modul
sne ly
læ
logistik
bru pe gsrio de
klinik
vægt
iso
Aerodynamik
emballage
ler
ing
samlesæt hede tørre tøj
aflåse
funktion
mad
sove
bolig
yx
Fo rsl ag
1
design
n
tio
logistik
Fors la
2
g3
Fo rsl ag
nk Fu
konstruktion
Emergency shelter handbook
Kassen leveres
Kassen åbnes - elementer pakkes ud
5
6
6
7
8
5
4
1
3
Stængerne monteres i bundpladerne og samles i toppen.
Dugen monteres fra 1 til 7. Stykker mellem 7-8-1 er slappe.
9
Færdig top med overdækning. Krans med vægt holder membran nede. Åbnes vha. indvendig snor og trisse. Ved kraftig vind, spændes udvendige kabler.
2
10
Rammen samles
Top og bund sættes sammen
7
Topstykke samles med bolt gennem de tre plade stykker. Bolt og møtrik har påsvejst ringelement. Membran i topstykke er ikke vist for overblik.
8
Kabler i dug fastgøres med karabinhager. Kabel til punkt 8 spændes.
11
Ved at spænde kabel mellem top og punkt 8 rejses teltet. Dette gøres vha. skraldestrop system.
A
B
C
CASE
Bachelor project
digital architecture Vertical zoo - Buenos Aires
Digital Architecture This is the ďŹ nal project of my bachelors degree. The overall theme is digital architecture. The thesis is that to get the most out of the digital tools, we need to have a genuine understanding of geometry and the math behind. The project consists of three parallel processes. Geometry and algorithmic modelling is explored and at the end utilized in a speciďŹ c design case. The design case is a competition proposal for a vertical zoo to be build in Buenos Aires. Parallel to researching the geometrical theory and the algorithmic methods, the competition is treated as normally, with registrations, concept development etc. to set up how to use the two other processes in the best way. The geometrical theory is not presented in this portfolio. Link: http://issuu.com/RasmusHolst 2009
ZOO
A GEOMETRIC KNOWLEDGE
B ALGORITHMIC MODELLING
!
C DESIGN CASE
Bachelor project
Algorithmic modelling
Algorithmic modelling One part of the project, is the investigation of algorithmic modelling. On this page some of the investigations are shown. The greatest advantage is for the designer is to be able to create very accurate outputs, designed for particular situations. Particularly in ďŹ nding solutions to a design idea that takes many iterations - too many to be able to do manually. From the top left: - Simple construction elements of double curved surface. - Optimal column solution between to irregular free-form surfaces. - Systematical random generations. - Solar responsive facade design. - Mathematical surfaces.
Bachelors Project Algoritmic modelling
Structural Analysis example Structural analysis Through the control of the parametric model, here it is shown how adding extra layers to the defintion can give the designer enhanced overview and help optimize the design. In this simple example the model allows me to discover how stresses are distributed and figure out which elements that needs to be have an increased cross section. These kind of discoveries can help the iterative design process between architect and structural engineer on its way. The illustrations at the top shows parts of the definition (script) and the pictures on the right shows the analysis of the model and the strucure. Green marked elements in the second figure shows elements that reaches max yield stresses, with their current cross section properties.
au
mul
360 vie
terasse se & ophold terasse & ophold
tapir
Indgang
Opbevaring
LEVEL 0
LEVEL 0.1
LEVEL 1
krokodille
tiger lemur
surikat ik t
hyene
LEVEL 2
LEVEL 3
LEVEL 4
Administration & medarbejder lokaler
bæltedyr
observation
orangutan
uditorium
leopard
uger myresluger
LEVEL 5
observation
LEVEL 6
LEVEL 7 koala
abe be
panda
fugle café
lti use salon
souvenir
LEVEL 8
ew terasse
LEVEL 11
LEVEL 9
LEVEL 10
component design
Concrete comfort To generate realizable and clever designs, a knowledge of the processes present in the manufacturing, maintaining and use of building components are essential. This is about the whole process of creating a sustainable urban lightning furniture in concrete. The aim for the project is a 1:1 prototype of the actual design case. The optimal production methods for the design was not available in the project, but we did not comprise our main aim, to create concrete comfort.
CONCEPT
LIGHT EXPERIMENTS
PROTOTYPE
PRODUCTION
Fig 15. Polystyren block before CNC moulding
Fig 18. Polystyrene ready moulding form - xray.
Fig. 16. - CNC cutting machine
Fig.19. Moulding form. Xray shows the different curvatures for support edges.
Fig. 17. Polystyrene moulding moulding form.
Fig 20. Casting form the top of the moulding form.
Fig 23.Support - connection 1. Simple
Fig 24. Connection
solar decathlon ´10
Solar decathlon 2010 Each year the U.S. Department of Energy Solar Decathlon challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energyefficient, and attractive. The winner of the competition is the team that best blends afford ability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. A selected team from DTU were asked to develop a proposal for to compete in the solar decathlon. Under the guidance of Richard Horden, we created a project that was highly energy efficient while giving reference to the virtues of older Danish modernist architects.
parametric modelling and digital crafting
In the realm of architectural geometry many disciplines are present. In this interdisciplinary field, different aspects and demands come together. Architects, engineers, mathematicians and computer scientist all have different ways of looking at the field, but they share the same need of control ,to be able to test their ideas and visions for further progress. This project looks into the need for build-ability that especially engineers and architects have. It shows how far the limits can be pushed in order to obtain and build almost any shape using digital methods. The digital methods for the modelling phase as well as in the production phase are introduced - hence the title “Parametric modelling and digital fabrication”. Parametric modelling is essential to be able to see how different design choices will affect the project and give the designer the needed control, even when dealing with complex geometries.
Digital fabrication is the future and the arrival of new possibilities and less limitations. All ready today, many production processes are automated, but most have certain restrictions of shape. So to keep a healthy project economy, this needs to be considered in the design phase. But as the new methods as; laser-cutting, CNC milling, 3D printing etc. become more feasible, these restrictions seem to slowly vanish. This project focus on a architectural geometry design case in order to go through the three digital fabrication methods: - Laser cutting
- CNC milling
- 3D printing
and looks at the different demands and possibilities that follows 2010
connections elements
exact shape positive curvature
double curvature
full spatial shape
freeform surfaces approxshape
generating points
connections
positive curvature
random
generating points
tangent planes
double curvature
changing curvature
tangent planes changing curvature
regular
panelization
negative curvature
irregular
single curvature
negative curvature
freeform
control tangentplanes
1
2
single curvature
freeform
3
4
5
6
Advanced building design LM Project - Copenhagen The LM Project is an architectural competition that concerns the design of a new multi-use ofďŹ ce building complex connecting Marmormolen pier and Langelinie pier. The complex project is meant to be the entrance gate to Copenhagen and act as a trademark for the city. This project takes the Steven Holl competition project as its starting point and focus on the Langelinie-Tower. As part of the 6 man team with different areas of expertise, I was the architect to combine the different expertises to obtain the best results in the realized documentation of the project
Entrance/exit Entrance/exit
Entrance/exit
Kitchen café
Café/Lounge area Sea view area
Retail store
Retail store Elevator
E
Elevator Elevator
q
Retail store
w Core
Entrance/exit
Technical Elevator room
Entrance/exit
Elevator Elevator
Retail store Main entrance
Main entrance
Pedestrian
Public transport
Overall reception Information/lobby
Terasse
Office level 0.0 Office level 0.300
Open office
Elevator
Meeting room
E
Elevator Elevator Office
q
w Office
Core
Kitchen + Lounge area Technical room Elevator
Office level 0.0
Open office
Elevator Elevator
Printer/copy room
Open office All same level 0
Café/Lounge area Sea view area Terasse entrance/exit
Terasse
Kitchen + Lounge area
Open space Copy/print Elevator
E
Elevator Elevator
Elevator
E
Office
Elevator Elevator
Terasse
q
Bridge Entrance/Exit
w
Retail
Core
Small elevation to bridge deck slab Technical Elevator room
q
Smaller shops + food/coffee stands
Office
Core
Kitchen + Lounge area Technical room Elevator
Elevator Elevator
w
Meeting room
Elevator Elevator
Open space Copy/print
Auditorium
Presenter room
Open office All same level 0
Terasse
Architectural Design: Computational Environments UTS - Master of Advanced Architecture. This studio critically explores the impact of newly forming informatic territories and their relationship to the conceptualisation and development of architectural design. These informatic territories encompass a wide deďŹ nition of integrated information systems from multiple disciplines and may include exploration of responsive or intelligent environments, robotics, intelligent building information modelling (BIM) systems, parametric systems, generative systems, advanced structural modelling systems, genetic algorithms, evolutionary structural optimisation and design environments, etc. The project aim is to re-master a unique piece of architecture from the great architects of the last century. In this case we where handed Mill Owners Ass. Building in India, Le Corbusier to challenge. We chose to try and beat the Corbusier on the organisational strategy to a strategy more ďŹ tting for today. Through opened networks and collaboration between borders. Concept development and programming are run in parallel processes until they melt together to from the ďŹ nal project. 2011
path
room path
space
interspace place room
path room
interspace
place
DISCRETE SPACES
ENFILADE
PATH
CORRIDOR
PATH
CORRIDOR
[-]
[-]
[-]
[+]
[+]
[+]
[+]
[+]
[+]
solar decathlon ´12
fold Solar decathlon 2012 Each year the U.S. Department of Energy Solar Decathlon challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. This year the DTU team was selected amongst final 10 to build and compete in Madrid After returning from my stay in Sydney, Australia, the project had been going on for a while and I was asked to look at the geometry and buildability of the Fold project. The architectural vision of the Fold project was to fold a regular rectangle into the building envelope. There are parameters that needs to be fulfilled, amongst these are: - Adjustable folded geometry - Maximum area of the roof with 20 degrees south slant - Usable heights within the house - Construction site envelope The script was set up to relate to all of these parameters, quickly generate a correct geometry and output results.
nature
s a cell
org math
voron
Superlight Voronoi Superlight structures
Superligth Voronoi Superlight structures is the initiative to use the principles of superlight concrete by Prof. Kristian Hertz (DTU). This project is an example of architectural engineering from beginning to end. The superlight principle resembles very much the skin and bone structures known from our body and in nature. We looked at the special cell structures found many places in nature. This cellular pattern is interesting when thinking of optimal structures. Looking into this using mathematical theory of Voronoi, we created a parametric model. This model was connected with structural analysis software ROBOT and optimal conďŹ gurations in relation to stress trajectories were tried out.
The theory, inspiration and scripting where combined in a design case - House in GĂŞres, by Correia/Ragazzi Architects. The reason for choosing this particular project, was the huge cantilever structure, which gives a big challenge in architecture. Eventually using the superlight concrete principle, which combines strong concrete where necessary and lightweight concrete elsewhere, the building ended up weighing less than half of the original while changing the expression completely. The production and erection method is proposed. This method turned out to be very useful, and the combination of ideas, parametric modelling and engineering analysis software will be suitable for all kinds of projects. 2012
optimized system skin/bone
structure
anic
noi
force distribution
STRUCTURAL ANALYSIS OF SIMPLE MODEL
SIMPLIFICATION OF MAIN STRESS TRAJECTORIES
Virtural construction -From a management perspective
Tuborg Sundpark - case. The virtual construction process is about building and using BIM models to setup and create 5D models for time scheduling and cost estimates. BIM stands for Building Information Modelling - which basically means that we model geometry containing the needed information. In this process clash-detection and validaition is possibel and very necesarry to obtain great buildability and setup cost and design alternatives. If setup correctly, these models will be very useful in the planning and management process. Location based scheduling means to set different zones on a construction site, so that subcontractors can work in different places at the same time. This leads to Flowline chart, which gives a very easy-to--understand plan of the whole construction for all parties.
• Overview
Price data
Labour data
• Project setup
Classification system
• 3D model - ArchiCAD • Visual validation
Structural model
Energi model - other analysis models 3D model - BIM
Link
• 5D model - VICO office
VICO Office
• Cost estimate • Time estimate - LBS
Project price
Alternative 1
CLASH DETECTION
LOCATION BASED SCHEDULING
Project plan
Alternative 2
COST CALCULATION
Total price
32.557.880,41 dkr.
1 Substructure
817.888 kr.
2 Superstructure
14.073.269 kr.
3 Finishes
9.297.149 kr.
4 Fittings
1.161.918 kr.
5 Mechanical & electrical
6.556.278 kr.
6 Site
126.377 kr.
7 Salaries
525.000 kr.
FLOWLINE CHART ArchiNice
Flowline view
Second floor
East First floor Ground
Basement
East@4
East
West@4
West
East@4
East
West@4
West
East@4
East
West@4
West
East@4
East
Second floor
Structure First floor
RESSOURCE CHART
IND OO RW
ALL S-
W
2
-E 1 11 OF 11 1 RO 1 1 11 1
1 1
( AP
P.)
ING INT O FL
-W
ND SA OR
- W GS ILIN CE S-W OM RO TH A B
1
1 11
1
KIT CH EN ,W INN PA ER D ARD INT OO ING RS ROB (ST -W ES -W AIR S)W LA ND SC AP ING
Basement@4
PA
OF -W
Ground
RO
First floor
ON IE AIL S (RA -EINGS ILIN )-W GS) -E S LC(B OA NLYCDONY OORDO S)-OWRS )-E
Second floor
West
Milestone: Order windows
Third floor
1
NGS, ELEVATORS EELEVAT ORS)-W )-E
App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2
Fourth floor
Third floor
1
Basement
Interior
Fourth floor
E S-
D -E (A AN G MS IN RS OO O NT HR I O T BA PA FL
Milestone: Order concrete
Basement@4
G IN IL CE
E .)PP
8
Project end
Third floor
Planner: Mar A 9 10 11 12 13 1 1 11 1
KIT CH EN ,W AR INN DR PA ER DO OB INT ES -E ING ORS-E ( ST AIR S)E
App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2
Fourth floor
Tuborg Sundpark - ArchiNice
version 25-4-2012 15:19 2012 2013 Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 1 1 2 1
AL L S- E
5
INDO OR W
4
Project start
Responsible person: 2 3
CONSTRUCTION SITE
ID[461203] ID[120284]
ID[751339]
ID[212910]
ID[01024]
ID[0124]
ID[74950]
ID[0284201]
ID[11238]
I
ID[2221100] ID[012401]
ID[000122] ID[012401] ID[3521]
ID[461203]
ID[0284201]
ID[212910]
ID[461203] ID[3811264]
ID[0284201]
ID[12 ID[8171102]
Think, script, build -MASTER THESIS 2012/2013
Think, script, build. Architectural engineering through parametric modelling of intelligent systems in architecture. This is a project about programming of intelligent systems by implementing information of physical behaviour, materialproperties and connection design regarding advanced architectural projects. The motivation and inspiration for this project are the smooth shapes that come from bending and deforming simple elements. Furthermore, the fact that these shapes come from the very nature of minimizing internal potential energy, makes this approach very interesting in terms of both architecture and engineering. 2012/13
Fig. 1 New main office - Birdview. Henning Larsen Architects ©
01 - EUROPEAN PATENT OFFICE
02 - STRUCTURAL ANALYSIS. FREEFORM TRUSS
03 - SIMPLE ADVANCED STRUCTURES
04 - PARAMETRIC INVESTIGATIONS
4
05 - CASE STUDY. JUKBUIN PAVILLION
Z
ƛ
ƛ N
2 1
3
GRID SIMU
3
SIMULATION of member behaviour, through dynamic relaxation with Kangaroo. Controls: Anchor points, controlpoints, properties, internal and external forces.
EVAL
1 2
A geometrical regular GRID can be created of triangles, squares and hexagons. Controls: type, side length, rotation, boundary.
EVALUTION of the curvature of the curves. Section and material properties determine the allowed curvature and evaluates the actual max. curvature in each element. Controls: Cross section, material strength.
κmax = ((ffy / (--zz∙E E))
7
PREP
6
STRU
5
STRUCTURE. Sweep of cross-sections along the element curves with the correct rotation, corresponding to the normals at the given points. Here also the different sets of elements are offset to the correct layer.
BEND
4
PREPARATION of geometry for FEM analysis by dividing splines into straight elements and finding normals of each part element. These normals, are also used for creating solid geometry in Rhino. Controls: Geodesic curves or Kangaroo output.
BENDING stresses from the initial bending M0 is calculated in the centre of each part element. This can then be super-positioned with moment from external loads.
FEM.A
κ = 1/(r)
FINITE ELEMENT ANALYSIS are carried out using plugin analysis software Karamba3d. Section and element properties follows settings earlier in the script. Support, materials, loads and combinations are setup and analysis are carried out.
My
Mz
5 4
6 7
M = -EI/r E
06- NORDEA BANK ØRESTAD
WOOD STRUCTURE Length
7014,55 m
Volume
34,7 m3
Density
600 kg/m3
Total weight
20820 kg
Lifetime
... years
Cost
... Dkr
GLASS STRUCTURE Area
1117,5 m
Total weight
...kg
Lifetime
... years
Cost
... Dkr
SOLAR CELLS Area Energy gain Lifetime Cost Payback time
270 m2 29349 kWh/y ... years ... Dkr ... years
07- PAVILLION PROTOTYPE
mAKING SPACES -PAVILLION, koNGENS HAVE, cph
Making spaces Competetion proposal. This pavillion is considered as a great opportunity to experiement with wood as a material in a combination of digital formďŹ nding and simple fabrication. on. It is a project about a practical approach roach to parametric design, with design, material and fabrication rication as equal parameters. The inspiration for the project is the e way that we intereact and position us self amongst each other.
2012/13
PRACTICAL \\ PARAMETRICISM
FORM
PUNKTER
VORONOI
PUNKTER
GEOMETRI // DIAGRAM
CELLER
PLAN 1:50
A
A 3,0m
SNIT AA 1:50
OPSTALT 1:50 7,0m
Recommendations
Portfolio - Rasmus Holst architectural engineering: Design, parametricism, structure