2008 Korloy Metric Catalogue - Technical Information

Page 1

Technical Information Contents General Information I Workpiece material grades Steel, Non-ferrous metal symbol list SI unit conversion table Hardness calculating table Properties of Korloy grades Technical Info. for Stainless steel

K02 K06 K07 K08 K09 K10

Turning

K12

Milling

K20

Tapers

K24

Endmills

K27

Drilling

K30

General Information II The comparision of chip breakers The comparision of grades

K36 K37


General Information I Carbon steel and alloy steel for structural use Korea Type Carbon steel

KS

General Information Turning

OCT

1015

S20C

1020

C25 C25E4 C25M2 C30 C30E4 C30M2

S25C

1025

S30C

1030

C35 C35E4 C35M2 C40 C40E4 C40M2

S35C

1035

S40C

1039 1040

SM43C

-

S43C

SM45C

C45 C45E4 C45M2 C50 C50E4 C50M2

S45C

1042 1043 1045 1046

S458C S50C

1049

SM53C

-

S53C

SM55C

C55 C55E4 C55M2

S55C

1050 1053 1055

SM58C

C60 C60E4 C60M2

S58C

SM48C SM50C

Milling

JIS

ISO

S15C

SM40C

Tapers Endmills Drilling

Russia

NF NF/EN

C15E4 C15M2 -

>>>

Technical Information General Information

France

DIN DIN/EN

SM15C

Korea KS

ISO ISO

-

-

C22 C22E C22R C25 C25E C25R C30 C30E C30R

-

C35 C35E C35R C40 C40E C40R

C35 C35E C35R C40 C40E C40R

35

-

-

40

C45 C45E C45R 080A47 080M50 C50 C50E C50R -

C45 C45E C45R C50 C50E C50R

C45 C45E C45R C50 C50E C50R

45

-

-

50

070M55 C55 C55E C55R C60 C60E C60R

C55 C55E C55R

C55 C55E C55R

-

C60 C60E C60R

C60 C60E C60R

60

070M20 C22, C22E C22R C25 C25E C25R 080A30 080M30 CC30 C30E C30R C35 C35E C35R 080M40 C40 C40E C40R 080A42

Germany

France

JIS

BS BS/EN

DIN DIN/EN

NF NF/EN

30

40

45 50

Russia OCT

655M13(655H13) 805A20 805M20 805A22 805M22 -

15NiCr13 20NiCrMo2 20NiCrMoS2

20NCD2

40XH 30XH3A -

-

-

-

SNCM415 SNCM420(H) SNCM431 SNCM439 SNCM447 SNCM616 SNCM625 SNCM630 SNCM815 SCr415(H)

8615 8617(H) 8620(H) 8622(H) 8637 8640 4320(H) 4340 -

-

-

SCr420(H)

5120(H)

-

17Cr3 17CrS3 -

20XH2M(20XHM) 15X 15XA 20X

SCr430(H)

34Cr4 34CrS4 37Cr4 37CrS4

34Cr4 34CrS4 37Cr4 37CrS4

34Cr4 34CrS4 37Cr4 37CrS4

30X

SCr435(H)

5130(H) 5132(H) 5135(H)

SCr440(H)

5140(H)

530M40 41Cr4 41CrS4

41Cr4 41CrS4

41Cr4 41CrS4

40X

SNCM240

20Cr4(H) 20CrS4 34Cr4 34CrS4 34Cr4 34CrS4 37Cr4 37CrS4 37Cr4 37CrS4 41Cr4 41CrS4

SCr445(H)

C15E C15R C22 C22E C22R C25 C25E C25R C30 C30E C30R

Great Britain

41CrNiMo2 41CrNiMoS2 -

SCr440(H)

-

AISI SAE

SNCM240

SCr435(H)

XC10

U.S.A

SNC236 SNC415(H) SNC631(H) SNC815(H) SNC836 SNCM220

SCr420(H)

C10E C10R

Japan

15NiCr13 20NiCrMo2 20NiCrMoS2

SNCM415 SNCM420(H) SNCM431 SNCM439 SNCM447 SNCM616 SNCM625 SNCM630 SNCM815 SCr415(H)

040A10 045A10 045M10 055M15

1059 1060

SNC236 SNC415(H) SNC631(H) SNC815(H) SNC836 SNCM220

SCr430(H)

K 02

Germany

BS BS/EN

1010

SM35C

Chromium steel

Great Britain

AISI SAE

S10C

SM30C

Nickel chromium molybdenum steel

U.S.A

C10

SM25C

Alloy Nickel steel chromium steel

Japan

SM10C

SM20C

Type

ISO

SCr445(H)

-

35X

45X


General Information I

Type Alloy Chromium steel molybdenum steel

Korea KS

U.S.A

Great Britain

Germany

France

Russia

JIS

AISI SAE

BS BS/EN

DIN DIN/EN

NF NF/EN

OCT

SCM415(H) SCM418(H)

-

SCM420(H) SCM430

4130

34CrMo4 34CrMoS4 42CrMo4 42CrMoS4

SCM432 SCM435(H)

(4135H) 4137(H) 4140(H) 4142(H)

SCM445(H)

-

SCM445(H)

SMn420(H) SMn433(H)

22Mn6(H) -

SMn420(H) SMn433(H)

4145(H) 4147(H) 1522(H) 1534

SMn438(H)

36Mn6(H)

SMn438(H)

1541(H)

150M36

SMn443(H)

42Mn6(H)

SMn443(H)

1541(H)

SMnC420(H) SMnC443(H) SACM645

41CrAlMo74

SMnC420(H) SMnC443(H) SACM645

-

SCM432 SCM435(H) SCM440(H)

SCM440(H)

-

18CrMo4 18CrMoS4 708M20(708H20) -

-

20XM

-

34CrMo4 34CrMoS4 708M70 709M40 42CrMo4 42CrMoS4 -

34CrMo4 34CrMoS4 42CrMo4 42CrMoS4

34CrMo4 34CrMoS4 42CrMo4 42CrMoS4

20XM 30XM 30XMA 35XM

-

-

-

150M19 150M36

-

-

-

-

-

-

-

-

30 35 35 40 40 45 -

-

>>>

2 2 2 2 2 2

General Information Turning

Aluminum chromium molybdenum steel

ISO

Japan

18CrMo4 18CrMoS4 -

SCM415(H) SCM418(H) SCM420(H) SCM430

Manganese steel and Manganese chromium steel

ISO

Milling

Tool steel Type

Great Britain

JIS

AISI SAE

BS BS/EN

T1 T4 T5 T15 M2 M3-1 M3-2 M4 M 35 M36 M7 M42 F2 L6 W2-9 1/2 W2-8 1-2 D3 D2 A2 H21 H11 H13 H12 H10 H19 L6

DIN DIN/EN

France

France NF "NFNF/EN"

NF/EN

BM 2

S6/5/2

Z 85 WDCV

BM 35

S6/5/2/5

6-5-2-5

Russia OCT

S2/9/2

105WCr6

105WC13

BD3

X210Cr12

Z200C12

BA2

X100CrMoV5 1

Z100CDV5

BH21

X30WCrV9 3

Z30WCV9

BH13

X40CrMoV5 1

Z40CDV5

55NiCrMoV6

55NCDV7

Technical Information

SKH2 SKH3 SKH4 SKH10 SKH51 SKH52 SKH53 SKH54 SKH55 SKH56 SKH57 SKH58 SKH59 SKS11 SKS2 SKS21 SKS5 SKS51 SKS7 SKS8 SKS4 SKS41 SKS43 SKS44 SKS3 SKS31 SKS93 SKS94 SKS95 SKD1 SKD11 SKD12 SKD4 SKD5 SKD6 SKD61 SKD62 SKD7 SKD8 SKT3 SKT4

Germany

Germany

General Information

HS18-0-1 HS6-5-2 HS6-6-2 HS6-5-3 HS6-5-4 HS6-5-2-5 HS10-4-3-10 HS2-9-2 HS2-9-1-8 105V 105WCr1 210Cr12 100CrMoV5 X30WCrV9-3 X37CrMoV5-1 X40CrMoV5-1 X35CrWMoV5 32CrMoV12-28 55NiCrMoV7

U.S.A

Drilling

SKH2 SKH3 SKH4 SKH10 SKH51 SKH52 SKH53 SKH54 SKH55 SKH56 SKH57 SKH58 SKH59 STS11 STS2 STS21 STS5 STS51 STS7 STS8 STS4 STS41 STS43 STS44 STS3 STS31 STS93 STS94 STS95 STD1 STD11 STD12 STD4 STD5 STD6 STD61 STD62 STD7 STD8 STF3 STF4

ISO

Japan

Endmills

Alloy tool steel

KS

ISO

Tapers

High speed steel

Korea

K 03


General Information I Special use steel

Free cutting carbon steel

>>>

Turning

General Information

High carbon chromiom

Milling Tapers Endmills Drilling

Technical Information General Information

KS

Japan

U.S.A

Great Britain

Germany

France

Russia

JIS

AISI SAE

BS BS/EN

DIN DIN/EN

NF NF/EN

OCT

ISO

SUM11 SUM12 SUM21 SUM22 SUM22L SUM23 SUM23L SUM24L SUM25 SUM31 SUM31L SUM32 SUM41 SUM42 SUM43 STB1 STB2 STB3

9S20 11SMn28 11SMnPb28 11SMnPb28 12SMn35 44SMn28 B1 B2

SUM11 SUM12 SUM21 SUM22 SUM22L SUM23 SUM23L SUM24L SUM25 SUM31 SUM31L SUM32 SUM41 SUM42 SUM43 SUJ1 SUJ2 SUJ3

STB4 STB5

-

SUJ4 SUJ5

1110 1109 1212 1213 12L13 1215 12L14 1117 1137 1141 1144 52100 ASTM A 485 Grade 1 -

230M07 240M07

534A99

9SMn28 9SMnPb28 9SMn36

S250 S250Pb S 300

9SMnPb36

S300Pb

100Cr6

100Cr6

Stainless steel Type

K 04

ISO

Korea

Type

Stainless Austenitic steel

Korea KS STS201 STS202 STS301 STS301L STS301J1 STS302 STS302B STS303 STS303Se STS303Cu STS304 STS304L STS304N1 STS304LN STS304J1 STS305 STS309S STS310S SUS316 STS316L

STS316N STS317 STS321 STS347 STS384 STS405 Ferritic STS410L STS429 STS430 STS430F STS434 STS444 STSXM27 Martensitic STS403 STS410 STS416 STS420J1 STS431 STS440A Precipitation STS630 hardening STS631 type STS631J1

ISO ISO X12CrMnNiN17-7-5 X12CrMnNiN18-9-5 X10CrNi18-8 X2CrNiN18-7

X12CrNiSi18-9-3 X10CrNiS18-9

X5CrNi18-9 X2CrNi18-9 X2CrNi19-11 X5CrNiN18-8 X2CrNiN18-8 X6CrNi18-12 X6CrNi25-20 X5CrNiMo17-12-2 X3CrNiMo17-12-3 X2CrNiMo17-12-2 X2CrNiMo17-12-3 X2CrNiMo18-14-3

X6CrNiTi18-10 X6CrNiNb18-10 X3NiCr18-16 X6CrAl13

X6Cr17 X7CrS17 X6CrMo17-1 X2CrMoTi18-2

X12Cr13 X12CrS13 X20Cr13 X19CrNi16-2 X70CrMo15 X5CrNiCuNb16-4 X7CrNiAl17-7

Japan

U.S.A AISI SAE

Great Britain

Germany

France

BS BS/EN

DIN DIN/EN

NF NF/EN

JIS

UNS

SUS201 SUS202 SUS301 SUS301L SUS301J1 SUS302 SUS302B SUS303 SUS303Se SUS303Cu SUS304

S20100 S20200 S30100

201 202 301

S30200 S30215 S30300 S30323

302 302B 303 303Se

S30400

304

SUS304L SUS304N1 SUS304LN SUS304J1 SUS305 SUS309S SUS310S SUS316

S30403 S30451 S30453

304L 304N 304LN

S30500 S30908 S31008 S31600

305 309S 310S 316

SUS316L

S31603

316L

SUS316N SUS317 SUS321 SUS347 SUS384 SUS405 SUS410L SUS429 SUS430 SUS430F SUS434 SUS444 SUSXM27 SUS403 SUS410 SUS416 SUS420J1 SUS431 SUS440A SUS630 SUS631 SUS631J1

S31651 S31700 S32100 S34700 S38400 S40500

316N 317 321 347 384 405

317S16 321S31 347S31

S42900 S43000 S43020 S43400 S44400 S44627 S40300 S41000 S41600 S42000 S43100 S44002 S17400 S17700

429 430 430F 434 444

430S17

403 410 416 420 431 440A S17400 S17700

410S21 416S21 420S29 431S29

284S16 301S21

X12CrNi17-7 X2CrNiN18-7 X12CrNi17-7

Z12CMN17-07Az

X10CrNiS18-9

Z12CN18-09

Russia OCT 12X17 √ 9AH4 07X16H6

Z11CN17-08 12X18H9

302S25 303S21 303S41

Z8CNF18-09

12X18H10E

X5CrNi18-10 08X18H10

304S31 X2CrNi19-11

Z7CN18-09

X2CrNiN18-10

Z3CN19-11 Z6CN19-09Az Z3CN18-10Az

03X18H11

304S11

X5CrNi18-12

06X18H11

305S19 310S31 316S31 316S11

X5CrNiMo27-12-2 X5CrNiMo27-13-3 X2CrNiMo17-13-2 X2CrNiMo17-14-3

Z8CN18-12 Z10CN24-13 Z8CN25-20 Z7CND17-12-02 Z6CND18-12-03 Z3CND17-12-02 Z3CND17-12-03

X6CrNiTi18-10 X6CrNiNb18-10 X6CrAl13

405S17 X6Cr17 X7CrS18 X6CrMo17-1

434S17

X10Cr13 X20Cr13 X20CrNi17-2

X7CrNiAl17-7

Z6CNT18-10 Z6CNNb18-10 Z6CN18-16 Z8CA12 Z3C14

10X23H18

03X17H14M3

08X18H10T 08X18H12

12X17 Z8C17 Z8CF17 Z8CD17-01 Z3CDT18-02 Z1CD26-01 Z13C13 Z11CF13 Z20C13 Z15CN16-02 Z70C15 Z6CNU17-04 Z9CNA17-07

20X13 20X17H2

09X17H7IO


General Information I Casting or forging steel Type Casting Gray iron Iron casting

Korea

ISO

KS

Japan

U.S.A

Great Britain

Germany

France

JIS

AISI SAE

BS BS/EN

DIN DIN/EN

NF NF/EN

ISO 100,150, 200, 250, FC100 300, 350 FC150 FC200 FC250 FC300 FC350

GC100 GC150 GC200 GC250 GC300 GC350

Spheroidal GCD400 graphite iron GCD500 casting GCD600 GCD700 Austempered FCAD

80-55-06 100-70-03 -

Type 1, 2, Type D-2, D-3A Class 1, 2

FCAFCDA-

L-, S-

Grade 150 Grade 220 Grade 260 Grade 300 Grade 350 Grade 400 SNG 420/12 SNG 370/17 SNG 500/7 SNG 600/3 SNG 700/2 EN-GJS-

F1, F2, S2W, S5S

OCT

GG 10 GG 15 GG 20 GG 25 GG 30 GG 35 GG 40 GGG 40 GGG 40.3 GGG 50 GGG 60 GGG 70 EN-GJS-

Ft 10 D Ft 15 D Ft 20 D Ft 25 D Ft 30 D Ft 35 D Ft 40 D FCS 400-12 FGS 370-17 FGS 500-7 FGS 600-3 FGS 700-2 EN-GJS-

-

GGL-, GGG-

L-, S-

-

B

-

>>>

Spheroidal graphite iron casting FCAAustenitic iron casting FCDA-

700-2, 600-3, 500- FCD400 7, 450-10, 400-15, FCD500 400-18, 350-22 FCD600 FCD700 FCAD -

No 20 B No 25 B No 30 B No 35 B No 45 B No 50 B No 55 B 60-40-18

Russia

Type

Great Britain

Germany

France

Russia

JIS

AISI SAE

BS BS/EN

DIN DIN/EN

NF NF/EN

OCT

LM-6 LM-25 LM-16 LM-5 LM-13 LM-26 LM-29 LM20 LM24 LM2 LM2 LM30 EN AW-5052 EN AW-5454 EN AW-5083 EN AW-5086 EN AW-6061 EN AW-6063 EN AW-7003 EN AW-7075

G(GK)-AlSi9Cu3 G(GK)-AlSi7MG G(GK)-AlMg5 GD-AlSi12 (Cu) GD-AlSi10Mg GD-AlMg9 GD-AlSi9Cu3 GD-AlSi9Cu3 EN AW-5052 EN AW-5454 EN AW-5083 EN AW-5086 EN AW-6061 EN AW-6063 EN AW-7003 EN AW-7075

A-U5GT A-S7G A-U4NT A-S12UNG A-S10UG A-S10UG A-S18UNG A-S13 A-S9G A-G6 A-G3T EN AW-5052 EN AW-5454 EN AW-5083 EN AW-5086 EN AW-6061 EN AW-6063 EN AW-7003 EN AW-7075

General Information

204.0 319.0 356.0 A356.0 355.0 242.0 514.0 A413.0 A360.0 518.0 A380.0 A380.0 383.0 383.0 B390.0 5052 5454 5083 5086 6061 6063 7075

Drilling

AC1B AC2A AC2B AC3A AC4A AC4B AC4C AC4CH AC4D AC5A AC7A AC8A AC8B AC8C AC9A AC9B ADC1 ADC3 ADC5 ADC6 ADC10 ADC10Z ADC12 ADC12Z ADC14 A5052S A5454S A5083S A5086S A6061S A6063S A7003S A7N01S A7075S

Endmills

Al-Cu4MgTi Al-Si7Mg(Fe) Al-Si7Mg Al-Si5Cu1Mg Al-Cu4Ni2Mg2 Al-Si12CuFe Al-Si8Cu3Fe Al-Si8Cu3Fe AlMg4.5Mn0.7 AlMg1SiCu AlMg0.7Si AlZn5.5MgCu

U.S.A

Tapers

Aluminum alloy extruded shapes

AC1B AC2A AC2B AC3A AC4A AC4B AC4C AC4CH AC4D AC5A AC7A AC8A AC8B AC8C AC9A AC9B ALDC1 ALDC2 ALDC3 ALDC4 ALDC7 ALDC7Z ALDC8 ALDC8Z ALDC9 A5052S A5454S A5083S A5086S A6061S A6063S A7003S A7N01S A7075S

ISO

Japan

Milling

Aluminum alloy die casting

KS

ISO

Turning

Alumin Aluminum alloy ingots um for casting alloy

Korea

General Information

Non-ferrous alloy

Heat resistant steel

Austenitic Heat resistant steel

Ferritic

Martensitic

Korea KS STR31 STR35 STR36 STR37 STR38 STR309 STR310 STR330 STR660 STR661 STR21 STR409 STR409L STR446 STR1 STR3 STR4 STR11 STR600 STR616

ISO ISO

X6CrTi12 X2CrTi12

Japan JIS SUH31 SUH35 SUH36 SUH37 SUH38 SUH309 SUH310 SUH330 SUH660 SUH661 SUH21 SUH409 SUH409L SUH446 SUH1 SUH3 SUH4 SUH11 SUH600 SUH616

U.S.A UNS

AISI SAE

S63008 S63017 S30900 S31000 309 N08330 310 S66286 N08330 R30155

Great Britain

Germany

France

Russia

BS BS/EN

DIN DIN/EN

NF NF/EN

OCT

331S42 349S52 349S54 381S34 309S24 310S24

X53CrMnNi21-9

CrNi2520

Z35CNWS14-14 Z52CMN21-09-Az Z55CMN21-09-Az Z15CN24-13 Z15CN25-20 Z12NCS35-16 Z6NCTV25-20

20X25H20C2

CrAl1205 X6CrTi12 409S19

S40900 409 S44600 S65007 446

Technical Information

Type

X45CrSi9-3 401S45 443S65

Z6CT12 Z3CT12 Z12C25 Z45CS9 Z40CSD10 Z80CSN20-02

15X28 40X10C2M 40X9C2 20X12BHM P

S42200

K 05


General Information I Steel, Non-ferrous metal symbol list Comparison of workpiece material standards GROUP

STANDARD TERM Rolled Steel for Welded Suructure

Turning

General Information

>>>

Milling Tapers Endmills Drilling

Iron and Steel

SWS

Chromium Molybdenum Steel Forging

SFCM

SB

Nickel Chromium Molybdenum Steel Forging

SFNCM

Light Gauge Steel for General Structure

SBC

Gray Cast iron

GC

Hot- rolled Steel Plate, Sheet/Strip for Automobile Structural Use

SAPH

Spheroidal Graphite Cast iron

GCD

Blackheart Malleable Cast iron

BMC

SBR

Cast iron

SBC

Hot-rolled Soft Steel Sheet/Strip

SHP

Whiteheat Malleable Cast iron

WMC

Carbon Steel Pipe for Ordinary Piping

SPP

Pearlitic Malleable Cast iron

PMC

Carbon Steel Pipe for Boiler and Heat Exchanger

STH

Carbon Cast Steel

SC

Seamless Steel Pipe for High Pressure Gas Cylinder

STHG

High Tensile Strength Carbon Cast Steel&Low Alloy Cast Steel

HSC

Carbon Steel Pipe for General Structural Use

SPS

Stainless Cast Steel

SSC

Carbon Steel Pipe for Machine Structural Use

STST

Heat Resisting Cast Steel

HRSC

Alloy Steel Pipe for Structural Use

STA

High Manganese Cast Steel

HMnSC

Stainless Steel Pipe for Machine and Structural Use

STS-TK

Cast Steel for High Temperature and High Pressure Service

SCPH

Carbon Steel Square Pipe for General Structural Use

SPSR

Brass Casting

BsC

Alloy Steel Pipe

SPA

High Strength Brass Casting

HBsC

Carbon Steel Pipe for Pressure Service

SPPS

Bronze Casting

BrC

Carbon Steel Pipe for High Temperature Service

SPSR

Phosphoric Bronze Casting

PCB

Carbon Steel Pipe for High Pressure Service

SPPH

Aluminum Bronze Casting

AIBC

Stainless Steel Pipe

STSxT

Aluminum Alloy Casting

ACxA

Carbon Steel for Machine Structural Use

SMxxC, SMxxCK

Magnesium Alloy Casting

MgC

Aluminum Chromium Molybdenum Steel

SACM

Zinc Alloy Die Casting

ZnDC

Chromium Molybdenum Steel

SCM

Aluminum Alloy Die Casting

AIDC

Chromium Steel

SBCR

Magnesium Alloy Die Casting

MgDC

Nickel Chromium Steel

SNC

White Metal

WM

Nickel Chromium Molybdenum Steel

SNCM

Aluminum Alloy Casting for Bearing

AM

Brass Alloy Casting for Bearing

KM

Carbon Tool Steel

Tool Hollow Drill Steel steel Alloy Tool Steel

Special steel

Technical Information General Information

Forged steel

Cold-rolled Steel Sheet/Strip

Manganese Steel and manganese Chromium Steel for Machine Structural Use SMn STC STC STS, STD, STT

High Speed Tool Steel

SKH

Free Cutting Carbon Steel

SUM

Stainless High Carbon Chromium Bearing Steel steel Spring Steel

STB SPS

Stainless Steel Bar

STS

Heat Resisting Steel

STR

Heat resisting Heat Resisting Steel Bar steel

Heat Resisting Steel Sheet

K 06

CODE

STANDARD TERM SF

Structural Rolled Steel for General Structure Steel

Steel Pipe

GROUP

Carbon Steel Forging

Rerolled Steel

Steel Plate

CODE

STR STR

Cast steel

Casting


General Information I SI unit conversion table Major SI unit conversion table Force N

kgf

dyn

1

1.019 72 10-1

1 10-5

9.806 65

1

9.806 65 105

1 10-5

1.019 72 10-6

1

Stress MPa or N/mm2

kgf/mm2

1

1 10-6

1.019 72 10-7

6

-1

1

1 10

6

1.019 72 10

kgf/m2

1.019 72 10-5

1.019 72 10-1

1.019 72 10

1.019 72 105

2

9.806 65

9.806 65 104

9.806 65 10-2

1 10-2

-6

-6

1

1 10

1 106

1

1 104 -4

9.806 65 10

1 10

1 10

1

kPa

MPa

bar

kgf/cm2

1 10-3

1 10-6

1 10-5

1.019 72 10-5

-3

-2

General Information

9.806 65 10 9.806 65

kgf/cm2

>>>

Pa or N/m2

Pressure 1 3

1

1 10

6

3

1 10

1 10

1.019 72 10-2 1.019 72 10

1 10

1

1 10

1 105

1 102

1 10-1

1

4

-2

9.806 65 10

9.806 65 10

9.806 65 10

1.019 72 -1

9.806 65 10

Milling

1 10

Turning

Pa

1

J

kW h 2.777 78 10

1 6

2.724 07 10

-3

3

3.670 98 10

8.600 00 102

1

2.342 70 10-3 2

4.268 58 10

1.162 79 10

4.186 05 10

2.388 89 10-4

5

Endmills

-6

9.806 65

-1

1.019 72 10

1

3.600 00 10

kcal

kgf m -7

Tapers

Work, Energy, Calorie

1

kW

kgf m/s

PS

kcal/h

1

1 10-3

1.019 72 10-1

1.359 62 10-3

8.600 00 10-1

1 103

1

1.019 72 102

1.359 62

8.600 00 102

-3

-2

9.806 65

9.806 65 10

1

1.333 33 10

8.433 71

7.355 102

7.355 10-1

7.5 10

1

6.325 29 102

1.162 79

1.162 79 10-3

1.185 72 10-1

1.580 95 10-3

1

J/(kg

Technical Information

Specific heat

General Information

W

Drilling

Power

Thermal conductivity kcal/(kg

K)

C)

cal/(g

W/(m

C)

4.186 05 103

kcal/(h

k)

m C)

2.388 89 10

1

8.600 0 10-1

1

1.162 79

1

-4

1

Revolution per minute min-1

s-1

r.p.m.

1

0.0167

1

60

1

60

K 07


General Information I Hardness calculating table Work piece hardness calculating table Brinell, 3000kgf HB

Rockwell

Tensile Vickers Standard Cemented A scale B scale C scale D scale Shore strength (approximate 50kgf ball carbide 60kgf 100kgf 150kgf 100kgf value) 10 ball Diamond 1/16in ball Diamond Diamond 10 HV

Technical Information General Information

Drilling

Endmills

Tapers

Milling

Turning

General Information

>>>

K 08

940 920 900 880 860 840 820 800 780 760 740 720 700 690 680 670 660 650 640 630 620 610 600 590 580 570 560 550 540 530 520 510 500 490 480 470 460 450 440 430 420 410 100 390 380 370 360 350 340 330

(505) (496) (488) (480) (473) (465) (456) 488 441 433 425 415 405 397 388 379 369 360 350 341 331 322 313

(767) (757) (745) (733) (722) (710) (698) (684) (670) (656) (647) (638) 630 620 611 601 591 582 573 564 554 545 535 525 517 507 497 488 479 471 460 452 442 433 425 415 405 397 388 379 369 360 350 341 331 322 313

particle HRA

HRB

85.6 85.3 85.0 84.7 84.4 84.1 83.8 83.4 83.0 82.6 82.2 81.8 81.3 81.1 80.8 80.6 80.3 80.0 79.8 79.5 79.2 78.9 78.6 78.4 78.0 77.8 77.4 77.0 76.7 76.4 76.1 75.7 75.3 74.9 74.5 74.1 73.6 73.3 72.8 72.3 71.8 71.4 70.8 70.3 69.8 69.2 68.7 68.1 67.6 67.0

(100.0) (109.0) (108.0) -

particle HRC

particle HRD

HS

68.0 67.5 67.0 66.4 65.9 65.3 64.7 64.0 63.3 62.5 61.8 61.0 60.1 59.7 59.2 58.8 58.3 57.8 57.3 56.8 56.3 55.7 55.2 54.7 54.1 53.6 53.0 52.3 51.7 51.1 50.5 49.8 49.1 48.4 47.7 46.9 46.1 45.3 44.5 43.6 42.7 41.8 40.8 39.8 38.8 39.9 36.6 35.5 34.4 33.3

76.9 76.5 76.1 75.7 75.3 74.8 74.3 74.8 73.3 72.6 72.1 71.5 70.8 70.5 70.1 69.8 69.4 69.0 68.7 68.3 67.9 67.5 67.0 66.7 66.2 65.8 65.4 64.8 64.4 63.9 63.5 62.9 62.2 61.6 61.3 60.7 60.1 59.4 58.8 58.2 57.5 56.8 56.0 55.2 54.4 53.6 52.8 51.9 51.1 50.2

97 96 95 93 92 91 90 88 87 86 84 83 81 80 79 77 75 74 72 71 69 67 66 64 62 59 57 55 52 50 47 -

Brinell, 3000kgf HB

Tensile Vickers Standard Cemented A scale B scale C scale D scale Shore strength (approximate 50kgf ball carbide 60kgf 100kgf 150kgf 100kgf value) 10 ball Diamond 1/16in ball Diamond Diamond 10

MPa(1)

2055 2020 1985 1950 1905 1860 1825 1795 1750 1705 1660 1620 1570 1530 1495 1460 1410 1370 1330 1290 1240 1205 1170 1130 1095 1070 1035

Rockwell

320 310 300 295 290 285 280 275 270 265 260 255 250 245 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 95 90 85

303 294 284 280 275 270 265 261 256 252 247 243 238 233 228 219 209 200 190 181 171 162 152 143 133 124 114 105 95 90 86 81

303 294 284 280 275 270 265 261 256 252 247 243 238 233 228 219 209 200 190 181 171 162 152 143 133 124 114 105 95 90 86 81

particle HRA

HRB

particle HRC

particle HRD

HS

MPa(1)

66.4 65.8 65.2 64.8 64.5 64.2 63.8 63.5 63.1 62.7 62.4 62.0 61.6 61.2 60.7 -

(107.0) (105.5) (104.5) (103.5) (102.0) (101.0) 99.5 98.1 96.7 95.0 93.4 91.5 89.5 87.1 85.0 81.7 78.7 75.0 71.2 66.7 62.3 56.2 52.0 48.0 41.0

32.2 31.0 29.8 29.2 28.5 27.8 27.1 26.4 25.6 24.8 24.0 23.1 22.2 21.3 20.3 (18.0) (15.7) (13.4) (11.0) (8.5) (6.0) (3.0) (0.0) -

49.4 48.4 47.5 47.1 46.5 46.0 45.3 44.9 44.3 43.7 43.1 42.2 41.7 41.1 40.3 -

45 42 41 40 38 37 36 34 33 32 30 29 28 26 25 24 22 21 20 -

1005 980 950 935 915 905 890 875 855 840 825 805 795 780 765 730 695 670 635 605 580 545 515 490 455 425 390 -

Note1.) Gothic number is ASTM E 1 in the list 140 Note2.) 1. 1MPa = 1N/ 2. The number In the blank is not generally used ranges.


General Information I Properties of Korloy grades Physical properties of Korloy grades ISO Application Classification symbol

P

M

Ultra fine grain alloy

(kgf/mm2)

Young s modulus

(kg/mm2)

(103kgf/mm2)

Thermal expansion coefficient (10-6/ )

Thermal conductivity (cal/cm sec

P01

ST05

10.6

92.7

140

440

-

-

-

P10

ST10

10.0

92.1

175

460

48

6.2

25

P20

ST20

11.8

91.9

200

480

56

5.2

42

P30

ST30A

12.2

91.3

230

500

53

5.2

-

M10

U10

12.9

92.4

170

500

47

-

-

M20

U20

13.1

91.1

210

500

-

-

88

M30

ST30A

12.2

91.3

230

500

53

5.2

-

M40

U40

13.3

89.2

270

440

-

-

-

K01

H02

14.8

93.2

185

-

61

4.4

105

K10

H01

13.0

92.9

210

570

66

4.7

109

K20

G10

14.7

90.9

250

500

63

-

105

Z10

FA1

14.1

91.4

290

-

58

5.7

-

Z20

FCC

12.5

91.3

235

-

-

-

-

V1

D1

15.0

92.3

205

520

-

-

-

V2

D2

14.8

90.9

250

150

-

-

-

V3

D3

14.6

89.7

310

410

-

-

-

V4

G5

14.3

89.0

320

380

-

-

-

V5

G6

14.0

87.7

350

330

-

-

-

E1

GR10

14.8

90.9

220

-

-

-

-

E2

GR20

14.8

90.3

240

-

-

-

-

E3

GR30

14.8

89.0

270

-

-

-

-

E4

GR35

14.8

88.2

270

-

-

-

-

E5

GR50

14.5

87.0

300

-

-

-

-

)

Tapers

E

(HRA)

compressive strength

Milling

Grade for mining and civil engineering tools

V

TRS

Turning

Grade for tungsten carbide wear parts

Z

(g/cm3)

Hardness

General Information

K

Specific gravity

>>>

Grades for cutting tools

Korloy grades

Endmills

The physical properties of element Thermal conductivity

Thermal expansion coefficient

Specific gravity

Hardness

Young s modulus

(g/cm3)

(HRA)

( 103kgf/mm2)

WC

15.6

2,150

70

0.3

5.1

2,900

TiC

4.94

3,200

45

0.04

7.6

3,200

Element

)

( 10 / )

Melting point ( )

14.5

1,800

29

0.05

6.6

3,800

8.2

2,050

35

0.04

6.8

3,500

5.43

2,000

26

0.07

9.2

2,950

3.98

3,000

42

0.07

8.5

2,050

cBN

3.48

4,500

71

3.1

4.7

-

Diamond

3.52

9,000

99

5.0

3.1

-

Co

8.9

-

10~18

0.165

12.3

1,495

Ni

8.9

-

20

0.22

13.3

1,455

Technical Information

TiN AI203

General Information

TaC NbC

Drilling

(cal/cm sec

-6

K 09


General Information I Technical information for Stainless steel Guide of stainless-steel machining Stainless steels are well known for their excellent anti-corrosive property. Excellent anti-corrosive property are due to Chromium added to these alloys. In general, stainless steels have 4%~10% content of Chromium.

Classifications & Features of Stainless steel.

Turning

General Information

>>>

1) Austenite series : One of the most general kinds of stainless steels, it has some of the best corrosion-resistance properties due to a high Cr & Ni content. A high Nickel content also makes machining more difficult. Austenite series stainless steels are usually used for can processing, chemical products and construction purposes. (AISI 303,304,316) 2) Ferrite series : It has Chromium content similar to Austenite series, but none of Ni content which results in freer machining. (AISI 410,430,434) 3) Martensite series : The only stainless steel with the ability to be heat treated. It has high carbon content but poor corrosion resistance, so it is used for parts that need higher hardness. (AISI410, 420,432) 4) Precipitate hardened series : A Chromium-Nickel alloy, it has improved hardness through low temperature heat-treatment and has superior corrosion resistance and toughness at the same time. (AISI 17, 15) 5) Austenite-Ferrite series : Though it has similar properties with Austenite and Ferrite, it has much more superior heat-resistance (approx. 2 times better). Usually used where thermal-corrosion stability is needed, such as condensers (AISI S2304, 2507).

Difficult-to-Cut Factors of Stainless steel. 1) Work-hardening property - Causes premature wear of tool and poor control chip. 2) Low thermal conductivity - Causes plastic deformation of cutting edge and fast wear of tools. 3) Built-up-edge - More susceptible to micro-chipping on cutting edges and causes bad surface-finish. 4) Chemical affinity between tool and workpiece caused by work-hardening and low thermal-conductivity of workpiece, this might generate abnormalwear, chipping and/or abnormal fracture.

Technical Information General Information

Drilling

Endmills

Tapers

Milling

Tips for Machining of Stainless steel.

K 10

1) Use a tool that has higher thermal-conductivity Low thermal-conductivity of stainless steels accelerates tool wear resulting from a decline in hardness of the cutting edge of an insert, this is due to heat piling up. It is better to use a tool that has higher thermal conductivity and with enough coolant. 2) Sharper cutting edge-line It is necessary to utilize larger rake-angles and wider chip-breaker lands to reduce cutting-load pressure and prevent build-up-edge. This will help provide better chip control to an operator. 3) Optimal cutting condition Inappropriate machining conditions like extremely low or high-speeds or low feed rates can cause poor tool life due to work-hardening of work piece. 4) Choose an appropriate tool Tools for stainless steels should have good toughness attributes, enough strength on their edge-line (cutting edge) & a higher film adhesion.


General Information I

Chip Breakers for Stainless steel HA / Finishing Sharp edge for shallow depth cutting Increase tool life through reduce chip control friction at high speed cutting Good surface finish of work piece

HS / Medium cutting >>>

Enhanced cutting efficiency and increase tool life due to enhanced chip flow. Reinforce wear resistance through adopting high land rake angle. Special land design to prevent notching and enhance toughness

General Information

GS / Medium to Rough cutting

Turning

Superior tool life at light intermittent cutting Better chip flow through wide chip pocket Prevent build-up-edge by low cutting force design

Milling

VM / Roughing

Tapers

Chip breaker for intermittent cutting Unique chip breaker design provide smooth chip control. Strong edge line permit superior toughness

Endmills

Korloy’s New Grades for Stainless steel machining. KORLOY New Grades for Stainless steel machinig

NC9020, For high speed turning of Stainless steel. Drilling General Information

Specially designed substrate & film suitable for high-speed machining of stainless steels. Superior cutting performance under conditions in moderate-speed applications for cutting lowcarbon steels and low-carbon alloy steel Longer tool-life can be achieved thanks to a superior chipping-resistance design in the grade. Obtain better cutting performance. Korloy offers a variety of combinations of chip breakers to machine easily even in deeper depth of cut.

PC9030, for medium to low speed turning of Stainless steel. Technical Information

By using an ultra fine carbide substrate, the PC9030 has a tougher substrate for moderate speed machining and intermittent cutting of Stainless steel A PVD coating is applied to this grade to enhance chipping-resistance and adhesion-resistance during machining of difficult-to-cut material Exclusive grade for stainless steel, using tougher carbide as a substrate and a PVD coated, this gives the insert superior lubrication properties. Enhance your surface finish and reduce burrs by utilizing our chip-breakers, exclusively made for Stainless steels.

PC9530, for medium to low speed milling of Stainless steel. Tough ultra-fine carbide substrate primarily used for roughing and/or intermittent milling applications in stainless steel A PVD coating is applied to achieve better tool life in stainless steel and Ni-Cr steel applications. To reduce chipping in the cutting edge Korloy uses a tough carbide substrate and PVD coating to help prevent material build up around the cutting edges.

K 11


Turning Insert shape and terminology End cutting edge angle Side relief angle Shank width Side rake angle

Nose radius

Side cutting edge angle Cutting edge angle

Rake angle Total length Cutting edge height

>>>

Relating angles between tool and workpiece Cutting edge inclination

Terminology Side rake angle

Rake angle

Rake angle

Relief angle

Relief angle Side relief angle

Cutting edge angle

Cutting edge angle Side cutting edge angle

Drilling

Effect

Function Cutting force, Cutting heat, The effects of chip control on tool life

(+) : Excellent machine-ability (reducing cutting force, weakening cutting edge strength) (+) : When machining excellent machine-ability or thin workpiece. ( - ) : When strong cutting edge is needed at interrupted condition or mill scale.

Only cutting edge contact with cutting face

( - ) : Cutting edge is strong but has short tool life to make bad influence on flank wear.

Affects chip control and cutting force direction

(+) : Improved chip control because chip thickness is big.

Affects chip control and cutting force direction

(+) : Strong cutting edge due to distributed cutting force but chip control is bad by thin chip thickness ( - ) : Improved chip performance.

End cutting edge angle Prevent friction between cutting edge and cutting face

( - ) : Cutting edge is strong but has short tool life to make bad influence on flank wear.

Calculation formulas for machining Cutting speed

Feed vc =

Endmills

Tapers

Milling

Turning

General Information

Relief angle

D n (m/min) 1000

vc : Cutting speed (m/min) D : Diameter (mm)

fn =

n : Revolution per minute (min-1) : Circular constant(3.14)

vf (mm/rev) n

fn : Feed per revolution(mm/rev) vf : Table feed (mm/min)

n : Revolution per minute (min-1)

Surface finish

Technical Information General Information

Theoretical surface roughness 2 Rmax = fn 1000( ) 8r

Practical surface roughness Rmax : Profile depth(Maximum height roughness) ( ) fn : feed (mm/rev) r : nose radius

Power requirement

(1.5~3)

Cast iron : Rmax

Material removal rate Rough Kc

P = HP

kc W ap fn 4500

PKW : Power requirement [kW] PHP : Power requirement (horse power) [HP] vc : Cutting speed [m/min] ap : Depth of cut [mm]

K 12

Steel : Rmax

P = KW

kc W ap fn 6120

fn : Feed per revolution [mm/rev] kc : Specific cutting resistance [MPa] : Machine efficiency rate (0.7~0.8)

Mild steel Medium carbon steel High carbon steel Low alloy steel High alloy steel Cast iron Malleable cast iron Bronze, Brass

190 210 240 190 245 93 120 70

Q = vc ap fn2 Q vc d fn

: : : :

Material removal rate [ /min] Cutting speed [m/min] Depth of cut [m] Feed per tooth [mm/tooth]

(3~5)


Turning Machining time External face machining 1 T L fn: n D vc

Constant Revolution per minute 60 L T= fn n Constant cutting speed 60 L D T= 1000 fn n

: Machining time [sec] : Cutting length [mm] Feed per revolution [mm/rev] : Revolution per minute [min] : Diameter of workpiece [mm] : Cutting speed [m/min]

N

General Information

T : Machining time [sec] L : Cutting length [mm] fn : Feed per revolution [mm/rev] n : Revolution per minute [min] D1 : Maximum diameter of workpiece [mm] D2 : Minimum diameter of workpiece [mm] vc : Cutting speed [m/min] N : The number of pass = (D1-D2)/d/2

Constant Revolution per minute 60 L N T= fn n Constant cutting speed 60 L (D1 + D2) T= 2 1000 fn n

>>>

External face machining 2

Turning

Facing Constant Revolution per minute 60 (D1 - D2) 2 fn n

N

Constant cutting speed 60 (D1 + D2) (D1 - D2) T1 = 4000 fn vc

N

Machining time [sec] Machining time before the maximum rpm[sec] Width of machining [mm] Feed per revolution [mm/rev] Revolution per minute [min-1] Maximum diameter of workpiece [mm] Minimum diameter of workpiece [mm] Cutting speed [m/min] The number of pass = (D1-D2)/d/2

T T1 L fn n D1 D2 vc

: Machining time [sec] : Machining time before the maximum rpm[sec] : Width of machining [mm] : Feed per revolution [mm/rev] : Revolution per minute [min-1] : Maximum diameter of workpiece [mm] : Minimum diameter of workpiece [mm] : Cutting speed [m/min]

Tapers

: : : : : : : : :

Milling

T=

T T1 L fn n D1 D2 vc N

Grooving

Drilling

Constant cutting speed 60 (D1 + D2) (D1 - D2) T1 = 4000 fn vc

Endmills

Constant Revolution per minute 60 (D1 - D2) T= 2 fn n

General Information

Parting

Constant cutting speed 60 (D1 + D3)(D1 - D3) T1 = 4000 fn vc T3 = T1 +

T : Machining time [sec] T1 : Machining time before the maximum rpm[sec] T3 : Machining time till maximum RPM[sec] fn : Feed per revolution [mm/rev] n : Revolution per minute [min-1] nmax : Maximum revolution per minute [min-1] D1 : Maximum diameter of workpiece [mm] D3 : Maximum diameter at maximum RPM [mm] vc : Cutting speed [m/min]

Technical Information

Constant Revolution per minute 60 D1 T= 2 fn n

60 D3 2 fn nmax

K 13


Turning The affects of cutting condition The most desirable machining means short machining time, long tool life and good precision. This is the reason that proper cutting condition for each tools should be selected according to material s properties, hardness, shapes, the efficiency of machine.

Cutting speed 500 400 300 200 150

NC3030 NC3120

Workpiece : S45C (180HB) Tool life criterion : VB=0.2mm Depth of cut : 1.5mm Feed : 0.3mm/rev Holder : PCLNR2525-M12 Insert : CNMG120408 Dry cutting

NC3010

100 80 60

Turning

General Information

>>>

Milling

Low grade

High grade

- The tool life feature of P grade 500 400 300 200 150

Low grade

PC9030

NC3030

NC9020

100 80 60

Low grade

Workpiece : STS304 (200HB) Tool life criterion : VB=0.2mm Depth of cut : 1.5mm Feed : 0.3mm/rev Holder : PCLNR2525-M12 Insert : CNMG120408 Dry cutting

High grade

- The tool life feature of M grade -

Workpiece : GC300 (180HB) Tool life criterion : VB=0.2mm Depth of cut : 1.5mm Feed : 0.3mm/rev Holder : PCLNR2525-M12 Insert : CNMG120408 Dry cutting

NC315K NC6110

100 80 60

500 400 300 200 150

High grade

- The tool life feature of K grade -

Cutting Speed’s effects When the cutting speed increases up to 20% in an application, the tool life respectively decreases down 50%. Although inversely, if the cutting speed increases up to 50% the tool life decreases down to 20%. On the other hand if cutting speed is too low (20-40m/min) Tool life shortens due to vibration.

Tapers

Feed The feed rate in turning means the progressed interval of a distance in a work piece within 1 revolution. The feed rate in a milling application means the table feed divided by number of teeth of cutter (feed rate per tooth).

- Relationship between feed and flank wear in steel turning Cutting condition Workpiece: SNCN431 Grade : ST20 Cutting speed : 200m/min Depth of cut : 1.0mm Feed : 0.2mm/rev Cutting time : 10min

Drilling

Endmills

The effects of feed When the feed rate decreases the flank wear is increases. When the feed rate is too low, the tool life radically shortens. When the feed rate increases, the flank wear gets larger due to high temperatures, however the feed rates effect tool life less than the cutting speed. And higher feed rates improve machining efficiency.

Technical Information General Information

Depth of cut Determined by required allowances in machining a material and the capacity the machine can tolerate. There are cutting limits according to the different shapes and sizes of the insert.

The effect of a depth of cut The depth of cut does not have a big influence on tool life. When the depth of cut is small the work piece is not cut but rather rubbed. In these cases, machine off the work hardened parts that decrease tool life. When machining a cast skin or milling scale smaller depth of cuts usually cause chipping and abnormal wear because of hard impurities in the surface of the work piece. - Relationship between depth of cut and flank wear in steel turning Cutting condition Workpiece : SNCN431 Grade : ST20 Cutting speed : 200m/min Depth of cut : 1.0mm Feed : 0.2mm/rev Cutting time : 10min

K 14

- Surface parts including mill scale Roughing


Turning Relief angle Relief angle avoids the friction between workpiece and relief face and makes cutting edge move along workpiece easily.

Relationship between various relief angle and flank wear

Selection system 1. Hard workpiece / When strong cutting edge is needed - Low relief angle 2. Soft workpiece / Workpiece turning to work hardening easily - High relief angle

General Information

Affects 1. If relief angle is big Flank wear decreases. 2. If relief angle is big Cutting edge strength weakens. 3. If relief angle is small Chattering occurs .

Turning

Side cutting edge angle Side cutting edge angle has big influence on chip flow and cutting force therefore proper Side cutting edge angle is very important.

Side cutting edge angle and Chip thickness

Approach angle 15

Approach angle 30

Workpiece : SCM440 Grade : P20 ap : 3mm f n : 0.2mm/rev

Tapers

Approach angle 0

Side cutting edge angle and Tool life Milling

As side cutting edge angle is getting bigger chips are getting thinner and wider(refer to left picture). At the same feed and depth of cut with approach angle 0 Chip thickness is the same as feed(t=fn) and chip width is equal to depth of cut (W=ap). t1 = 0.97t, W1 = 1.04W t2 = 0.87t, W2 = 1.15W

Endmills

Side cutting edge angle and 3 cutting forces Affects

Drilling

1. Big side cutting edge angle with the same feed makes chip attaching length longer and chip thickness thinner. So that cutting forces scatter to long cutting edge therefore tool life gets longer. 2. Big side cutting edge angle for machining long bars can cause bending.

Force P is scattered to P1, P2.

Technical Information

Force P is loaded.

As approach angle gets bigger Back force gets bigger and feed force gets smaller.

General Information

Workpiece : SCM440(HB250) Selection system Grade : TNGA220412 1. Deep depth of cut finishing / Long thin vc = 100m/min workpiece / Low machine rigidity ap= 4mm - Low relief angle fn = 0.45mm/rev 2. Hard and high calorific power workpiece / Roughing big workpiece / High machine rigidity - High relief angle

Side cutting edge angle and Cutting load

>>>

Workpiece : SNCM431(HB200) Grade : P20 ap : 1mm fn : 0.32mm/rev T : 20min

Side cutting edge angle and Cutting performance Specification

Low

Wear rate Workpiece Machining power Chatter How to machine Workpiece rigidity Machine rigidity

High Easy to cut material Small Hard to occur Finishing

Approach angle

High Low Difficult to cut material Big Easy to occur Roughing

Long thin workpiece

Thick workpiece

In case of low rigidity

In case of high rigidity

K 15


Turning End cutting edge angle It affects machined surface to prevent interference between surface of workpiece and insert.

Affects 1. If end cutting edge angle reduces Cutting edge get stronger but cutting heat generated by machining increases. 2. Small end cutting edge angle can cause chattering due to the increases cutting force.

Nose R 1. Nose r affects not only surface roughness but strength of cutting edge. 2. In general, It s desirable that nose R is 2~3 times bigger than feed.

Nose R and tool life

Nose R and wear of tool

Tool life(the number of impact)

Flank wear (mm)

Milling

Turning

General Information

>>>

Nose R and surface finish Surface finish( )

nose R (mm)

nose R (mm)

Workpiece : SNCM439, HB200 Grade : P20 vc = 120m/min, ap = 0.5mm

Workpiece : SCM440, HB280 Grade : P10 vc = 100m/min, ap = 0.5mm fn = 0.3mm/rev

nose R (mm) Workpiece : SNCM439, HB200 Grade : P10 vc = 140m/min, ap = 2mm fn = 0.2mm/rev, T = 10min

Technical Information General Information

Drilling

Endmills

Tapers

Affects of nose R 1. Big nose R improves surface finish. 2. Big nose R improves cutting edge strength. 3. Big nose R reduces flank wear and crater wear. 4. Too big nose R causes chattering due to increased cutting force.

Selection system 1. For finishing with small depth of cut / long and thin workpiece / When machine power is low - Small Nose R” 2. For applications that need strong cutting edge such as intermittent and machining mill scale / For roughing of big workpiece / When the machine power is strong eough - Big Nose R”

Relationship between nose radius, feed and various surface roughness. Nose “R” Feed(mm/rev) 0.15

0.26

0.46

K 16

0.4

0.8

1.2


Turning Cutting edge shape and the affects Rake angle[ ] Rake angle has big influence on cutting force, chip flow and tool life.

Affects = -5

= -5

= 15

1. High rake angle results in good suface finish. 2. As the rake angle increases by 1 Machining power decreases by 1%. 3. High rake angle weakens cutting edge.

= 15

Selection system = 25 = 25

>>>

1.For hard workpiece / For applications that need strong cutting edge such as interrupted and machining mill scale - Low rake angle 2.For soft workpiece / Easy to cut material / When the rigidity of machine power and workpieceis is low - High rake angle

General Information

Rake angle and the direction of chip flow Rake angle :

Side rake angle :

:nega(-) :nega(-)

:nega(-) :posi(+)

Turning Milling

:posi(+) :nega(-)

:posi(+) :posi(+)

Tapers

In order to prevent machined surface from damages Avoid nega, posi combination. :nega(-) :posi(+)

Endmills

Selecting proper tools Nowadays, It s very difficult to select the best tools in complicating tooling system and various cutting conditions. However, It can be simplified by classifying basic factors below.

Drilling

Selection of inserts and tool holder Listed below is the basic factors and choose B according to A.

B : Selection system Select as big approach angle as possible. Select as big shank as possible. Select as strong cutting edge of insert as possible Select as big nose radius as possible In finishing, Select the insert using many corners Select as small insert as possible Cutting speed should be determined carefully according to cutting conditions Select as deep depth of cut as possible Select as fast feed as possible Cutting condition should be determined within chip breaker application ranges.

Technical Information

Workpiece material Workpiece shape Workpiece size Hardness of workpiece Surface roughness of workpiece (before machining) Surface finish required Type of lathe machine Condition of lathe machine (rigidity, power etc) Horse power of machine Clamping method of workpiece

General Information

A : Basic factors

K 17


Turning Trouble shooting Tool Failure

Improper grade Excessive cutting condition

Choose harder grade Decrease cutting condition

Fracture

Improper grade Excessive feed Shorten cutting edge strength Insufficient rigidity of holder

Choose tougher grade Decrease feed Apply to large honed or chamfered edge Choose bigger size holder

Plastic deformation

Improper grade Excessive cutting condition High cutting temperature

Choose harder grade Decrease cutting condition Choose grade wich heat conductivity are big

Wear on nose radius

When the hardness of workpiece is too high compare with tool When machinig surface hardened workpiece

Flank wear

Improper grade Excessive cutting speed Too small relief angle Too low feed

Choose harder grade Decrease cutting speed Choose lager relief angle Increase feed

Thermal crack

Expansion and shrinking by cutting temperature Improper grade (*Specially milling operation)

Apply to dry cutting (In case of wet cutting, use enough coolant) Choose tougher grade

Chipping

Improper grade Excessive feed Shorten cutting edge strength Insufficient rigidity of holder

Choose tougher grade Decrease feed Apply to large honing or chamfer edge Choose bigger size holder

Notch wear

Surface hardened workpiece Friction due to bad chip geometry (Generate vibration)

Choose harder grade Improve chip control form large rake angle

Deposition on cutting edge Bad chip control

Improve cutting performance fromd large rake angle Apply to chip pocket with big size

Drilling

Endmills

Tapers

Milling

Turning

General Information

>>>

Technical Information General Information

Solution

Crater wear

Flaking

Complete breakage

Built-up edge

K 18

Cause

Unusable condition due to wear off the most parts of cutting edge by progress of wear


Turning Types of tool failure and trouble shooting Solution

Machine vibration

Holder overhang

Clamping workpiece

Improving holder rigidity

Machine clamping

Cutting edge strength Honing Improving insert precision M class G class

Side cutting edge angle

Nose radius

Rake angle

Chip breaker valuation

Select tougher grade

Select better heat-impact resistance grade Select better adhesion resistance grade

Select harder grade

Coolant

Depth of cut

Tool shape

Insert precision is variable

>>>

Poor precision

Causes

Feed

Troubles

Cutting speed

Cutting conditions Selecting insert grade

Unstable machining size

Workpiece, Separation of tool

It s necessary to adjust because machining precision changes during operation.

Criterion of tool life.

Cutting condition is improper Weakened cutting force by increasing wear of tool

Wet cutting

Turning

Poor surface roughness for finishing

Flank wear increase

General Information

Cutting edge back thrust is big

Cutting edge chipping Wet cutting

Improper cutting conditions

Wet cutting

Milling

Adhesion, built-up edge

Tools, Improper cutting edge shape

Cutting heat generation

Wet cutting

Improper cutting conditions

Endmills

Poor machining precision and short tool life by cutting heat

Tapers

Vibration, chattering

Tools, Improper cutting edge shape

burr, chipping, nap Improper cutting conditions steel, aluminum (burr)

Wet cutting

Improper cutting conditions

General Information

Cast iron (Weak chipping)

Drilling

Wear of tool, Improper cutting conditions.

Wear of tool, Improper cutting conditions. Soft steel (nap)

Improper cutting conditions

Wet cutting

Technical Information

Wear of tool, Improper cutting conditions. : Increase

: Decrease

: use

: Correct use

Tool life criterion KS B0813 Flank wear width

ISO B8688 0.2mm

Precision light cutting , Finishing in nonferrous alloy

0.4mm

Machining special steel

0.7mm

General cutting in cast iron, steel etc

1~1.25mm General cutting in cast iron, steel etc Depth of crater wear

In general 0.05~0.1 mm

Tool life criterion

Application

Complete breakage Flank wear width VB = 0.3mm VBmax = 0.5mm Crater wear width KT = 0.06+0.3fmm (f : mm/rev) Criterion by surface roughness 1, 1.6, 2.5, 4, 6.3, 10 Ra

Machining special steel Even flank wear of cemented carbides, Ceramic tool Uneven flank wear Cemented carbides tool When surface roughness is important

K 19


Milling Milling cutter shape and designation Diameter of cutter body Diameter of flange Width of key way

Approach angle

Depth of key way Axial-rake angle

Height of cutter

>>>

Back ring

General Information

Chip pocket

Radial relief angle

Diameter of cutter

Turning

Locater

Setting ring

Tapers

Milling

Radial rake angle

Major cutting edge

Endmills Drilling

Minor cutting edge

Chamfer

AR RR AA TA IA FA

: Axial rake angle : Radial rake angle : Approach angle : True rake angle : Cutting edge inclination angle : Face angle

(-90 <AR<90 (-90 <RR<90 (0 <AA<90 (-90 <TA<90 (-90 <IA<90 (-90 <FA<90

The terminology and functions of cutting edge angle Tool failure

Technical Information General Information

Cutting edge inclination angle

Face relief Screw for angle wedge

Face angle

K 20

Part A

True rake angle

Symbol

Effects

Function

1

Axial rake angle

A.R

Chip flow direction, Adhesion

-

2

Radial rake angle

R.R

Affecting on thrust

-

3

Approach angle

A.A

Chip thickness, Determines flow direction

(+) : Chip thickness become thinner, cutting force could be reduced.

4

True rake angle

T.A

Effective rake angle

(+) : Better cutting. Preventing adhesion, Weakening cutting edge strength. ( -) : Cutting edge strength increases, easy to adhere

5

Cutting edge inclination angle

I.A

Determines chip flow direction

(+) : Good chip flow, cutting force decreases, Corner edge strength weakens

6

Face angle

F.A

Controlling surface roughness for finishing

( -) : Surface roughness improves

7

Relief angle

R.A

Controlling cutting edge strength, tool life and chattering

-

) ) ) ) ) )


Milling Features by combination of rake angle Double positive angle

Double negative angle

Nega - Positive angle

Posi - Negative angle

Machining difficult to cut material Roughing with deep depth of cut and wide width of cut in steel and cast iron

As for tough workpiece material It prevents built-up edge to improve surface roughness. Low cutting load and better machinability

Strong cutting edge. Roughing of workpiece that has bad surface condition containing sand, mill scale Double sided inserts can be applied(Economical). Good chip control.

Good chip flow and machinability. Suitable for machining of difficult-to-cut material Un-even partition clamping prevents chattering

-

Weak cutting edge strength. Only single sided inserts are available (No economical). Machine and cutter need enough power and rigidity.

Machine and cutter need enough power and rigidity.

Only single sided inserts are available (No economical)

Since the chips flows toward the center of cutter. Chips scratch on machined surface. Bad chip flow. No economical

Chip flows to center of cutter body

Turning Milling

Disadvantages Advantages

Under interrupted cutting condition Roughing of cast iron and steel

General Information

Use

>>>

General machining of steel, cast iron, stainless steel Machining soft steel that brings about builtup edge easily Machining material having tendency to poor surface roughness

Major cutting formulas Tapers

Cutting speed D n (m/min) 1000

vc =

Cutting speed (m/min) Diameter of tool (mm) Revolution per minute (min-1) Circular constant (3.14)

fz vf n z

Feed per tooth (mm/t) Feed per minute (mm/min) Revolution per minute (min-1) Number of tooth

Endmills

vc: D: n: :

Feed fz=

vf

(mm/t)

z n

Drilling

: : : :

Chip removal amount Q: L : vf : ap:

Chip removal amount ( /min) Width of cut (mm) Table feed (mm/min) Depth of cut (mm)

Pc : H : Q : kc : :

Power requirement (kW) Horse power requirement (hp) (mm/min) Chip removal amount (cm3/min) Specific cutting resistance (kgf/mm3) Machine efficiency rate (0.7~0.8)

T : Lt : Lw : D : vf :

Machining time (sec) Total length of table feed (mm)(=Lw+D+2R) The length of workpiece (mm) The diameter of cutter body (mm) Table feed (mm/min) R : Relief length (mm)

General Information

L vf ap Q= ( /min) 1000

Power requirement Pc H= (hp) 0.75

(kw)

Technical Information

Q kc Pc = 60 102

Machining time T=

60

Lt vf

(sec)

True rake angle / Cutting edge inclination angle True rake angle Cutting edge inclination angle

tan(T) = tan(R) x cps(AA) + tan(A) x sin(C) tan(I) = tan(A) x cos(AA) - tan(R) x sin(C)

K 21


Milling Values of specific cutting resistance Tensile strength (kg/ ) and hardness

Workpiece Soft steel Medium carbon steel High carbon steel Tool steel Tool steel Chrome manganese steel Chrome manganese steel Chrome molybdenum steel Chrome molybdenum steel

Turning

General Information

>>>

Nickel Chrome molybdenum steel Nickel Chrome molybdenum steel

Cast steel Hardened cast iron Meehanite cast iron Gray cast iron Brass Light alloy(Al - Mg) Light alloy(Al - Si)

Milling

0.1

0.2

0.3

0.4

0.6

(mm/t)

(mm/t)

(mm/t)

(mm/t)

(mm/t)

220 198 252 198 203 230 275 254 218 200 210 280 300 218 175 115 58 70

195 180 220 180 180 200 230 225 200 180 190 250 270 200 140 95 48 60

182 173 204 173 175 188 206 214 186 168 176 232 250 175 124 80 40 52

170 160 185 170 170 175 180 200 180 160 170 220 240 160 105 70 35 45

158 157 174 160 158 166 178 180 167 150 153 204 220 147 97 63 32 39

Selection by machine rigidity Machine horse power(PS) Proper cutter body specification(mm)

10~15

Over 20

15~20

80~ 100

125~ 160

160~ 200

Selection by machine rigidity

D D1 d E

Workpiece

E

Steel Cast iron Light alloy

+20 ~-10 Under +50 Under +40

3:2 5:4 5:3

: External diameter of cutter body : Width of workpiece : Projected part of cutter body : Engage angle : Ratio of cutter body and width of workpiece(D:D1)

Selection by machining time The bigger size cutter the longer machining time.

Length of workpiece medium small

Chip removal amount(cm3/min) per rated horse power Workpiece Steel

Cast iron Bronze Brass

Tapers

52 62 72 67 77 77 63 73 60 94 HB352 52 HRC46 36 HB200 50 16 20

Selection of MILL-MAX diameter(D)

Specific cutting resistance according to various feed kc(MPa)

Soft Medium hard Soft Medium hard Soft Medium hard

Aluminum

big Small cutter movement

Rated horse power 5Hp

10Hp

20Hp

30Hp

40Hp

50Hp

32 26 18 52 32 26 77 54 26 90

75 55 41 116 75 55 163 118 55 195

163 127 93 260 163 127 390 275 127 440

295 212 163 455 295 212 670 490 245 780

425 310 228 670 425 310 980 700 325 1,110

570 425 310 880 570 425 1,280 910 425 1,500

Medium cutter movement Big cutter movement

Selection by number of tooth Workpiece

Steel

Cast iron

Light alloy

Number of tooth

D (1~1.5)

D (1~4)

D 1+

ex) D= 100

4

(1~1.5)=4~6

D is the size of cutter body converted into inch size.

Type

Symbol

Technical Information General Information

The distance between the top of profile peak line and the bottom of profile valley line on this sampled portion is measured in the longitudinal magnification direction of roughness curve ( Expressed by unit: ). Exclude extraordinary values(too small or big) that look like grooves or mountains.

Rmax

+10 point mean roughness

Rz

Sampled from the roughness curve in the direction of its mean line, the sum of the average value of absolute value of the highest profile peaks and the depths of five deepest profile valleys measured in the vertical magnification is expressed by micro meter( ).

Ra

Sampling only the reference length from the roughness curve in the direction of mean line , taking X-axis in the direction of mean line and Y-axis in the direction of longitudinal magnification of this sampled part and is expressed by micro meter( ). Generally, Read measured value by Ra measurer.

Arithmetic mean roughness

Finish mark Rmax Surface Rz roughness Ra

K 22

Measured value

How to calculate

Maximum height Drilling

Endmills

Classification of surface roughness

~ 0.8s 0.8z 0.2a

6.3s 6.3z 1.6a

25s 25z 6.3a

100s 100z 25a

Unspecified


Milling Trouble shooting for milling Solutions Trouble

Causes

Cutting conditions Cutting Depth speed of cut

Flank wear

Improper insert grade Improper cutting conditions Chattering

Crater wear

Improper cutting conditions Improper insert grade

Relief Approach Chattering at Nose Toughness Hardness angle angle cutting edge radius

>>>

Lack of insert toughness Excessive feed Excessive cutting load

Chipping

Improper cutting conditions Improper cutting edge shape Improper insert grade

Built-up edge

General Information

Improper cutting conditions Lack of number of cutting teeth Improper cutting edge shape Bad chip flow Unstable workpiece clamping

Chattering

Improper cutting conditions Improper insert grade

Milling

Thermal crack

Turning

Poor surface finish

Built-up edge Improper cutting conditions Chattering Bad chip flow

Fracture

Feed

Insert grade

Tool shape Rake Coolant angle

: Increase

: Decrease

: Use

Tapers

Improper insert grade Excessive cutting load Bad chip flow Chattering Excessive overhang : Correct use

Endmills

General formulas for milling Machine efficiency rate ( ) Power transmission mode

Efficiency rate (E)

Principal axis direct connection driving

0.90 0.75

Oil pressure driving

0.60~0.90

Double connection : 0.85

0.85

0.70

General Information

0.85

Drilling

Belt driving Starting driving

Reference

Technical Information

K 23


Tapers Morse taper (Tang type)

MT No. Taper

Taper angle( )

D

a

D1

d1

d2

b

c

e

R

r

1 29 27

9.045

3

9.201

6.104

56.5

59.5

6.0

3.9

6.5

10.5

4

1

1 25 43

12.065

3.5

12.240 8.972

62.0

65.5

8.7

5.2

8.5

13.5

5.

1.2

1 25 50

17.780

5

18.030 14.034 75.0

80.0

13.5

6.3

10

16

6

1.6

1 26 16

23.825

5

24.076 19.107 94.0

99.0

18.5

7.9

13

20

7

2

1 29 15

31.267

6.5

31.605 25.164 117.5

124.0

24.5

11.9

16

24

8

2.5

1 30 26

44.399

6.5

4.741 36.531 149.5

156.0

35.7

15.9

19

29

10

3

1 29 36

63.348

8

63.765 52.399 210.0

218.0

51.0

19.0

27

40

13

4

1 29 22

83.058

10

83.578 68.186 286.0

296.0

66.8

28.6

35

54

19

5

Taper angle( )

D

a

D1

d

t

r

1 29 27

9.045

3

9.201

6.442

4

0.2

1 25 43

12.065

3.5

1 25 50

17.780

1 26 16

1 19.212 1 20.047 1 20.020 1 19.922

0 1 2 3

1

4

19.254 1 19.002 1 19.180 1 19.231

5 6 7

1

2

>>>

General Information

Morse taper (Screw type)

MT No. Taper 1 19.212 1 20.047 1 20.020 1 19.922

0 1 2

Turning

3

1

4

19.254 1 19.002 1 19.180 1 19.231

5

7

53

6

-

53.5

57

9

M6

16

5

0.2

18.030 14.583

64

69

14

M10

24

5

0.2

5

24.076 19.759

81

86

19

M12

28

7

0.6

31.267

6.5

31.605 25.943

02.5

109

25

M16

32

9

1

1 30 26

44.399

6.5

4.741 37.584

129.5

136

35.7

M20

40

9

2.5

1 29 36

63.348

8

63.765 53.859

182

190

51

M24

50

12

4

1 29 22

83.058

10

83.578 70.058

250

260

65

M33

80

18.5

5

50

12.230 9.396

5

23.825

1 29 15

B&S No.

D

a

D1

d

d1

4 5 6 7 8 9 10 11 12 13 14 15 16

10.221 13.286 15.229 18.424 22.828 27.104 32.749 38.905 45.641 52.654 59.533 66.408 73.292

2.4 2.4 2.4 2.4 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

10.321 13.386 15.330 18.524 22.962 27.238 32.887 39.039 45.774 52.787 59.666 66.541 73.425

8.890 11.430 12.700 15.240 19.090 22.863 26.534 31.749 38.103 44.451 50.800 57.150 63.500

8.0 10.0 11.0 14.0 17.0 21.0 24.0 29.0 35.0 41.0 47.0 53.0 59.0

Brown sharp taper (Tang type)

B&S No.

D

a

D1

d1

d2

4 5 6 7 8 9 10 11 12 13 14 15 16

10.221 13.286 15.229 18.424 22.828 28.104 32.749 38.905 45.641 52.654 59.533 66.408 73.292

2.4 2.4 2.4 2.4 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

10.321 13.386 15.330 18.524 22.962 27.238 32.887 39.039 45.774 52.787 59.666 66.541 73.425

8.458 10.962 12.167 14.675 18.453. 22.200 25.751 30.985 37.246 43.589 49.841 56.186 62.441

8.1 10.7 11.7 14.2 18.0 21.8 25.7 30.7 37.1 43.4 49.8 56.1 62.2

Drilling

Technical Information General Information

K 24

d2

2

Brown sharp taper (Screw type)

Endmills

Tapers

Milling

6

d1

1

1

2

31.0 44.4 60.0 76.2 90.5 101.6 144.5 171.4 181.0 196.8 209.6 222.2 35.0

1

42.1 55.6 73.0 89.7 104.8 117.5 162.7 189.7 201.6 217.5 232.6 245.3 260.4

34.2 46.8 62.7 78.6 93.7 104.8 147.7 174.6 184.2 200.0 212.8 225.4 238.2

2

44.5 58.0 75.4 92.1 108.0 120.7 165.9 192.9 204.8 220.7 235.8 248.5 263.6

k

t

r

d2

K

2 3 3 4 4 4 5 5 6 6 7 7 8

0.2 0.2 0.2 0.2 0.6 0.6 1.0 1.0 2.5 3.0 4.0 4.0 5.0

M 8(1/4) M10(3/8) M12(1/2) M12(1/2) M16(5/8) M16(5/8) M20(3/4) M20(3/4) M24(1) M24(1) M30(11/8)

20 24 28 28 32 32 40 40 40 50 60

b

c

e

R

r

5.5 6.3 7.1 7.9 8.7 9.5 11.1 11.1 12.7 12.7 14.2 14.2 15.8

8.7 9.5 11.1 11.9 12.7 14.3 16.7 16.7 190 19.0 21.4 21.4 23.8

14.4 16.2 18.0 20.3 22.0 25.4 28.1 30.0 32.5 35.7 41.2 44.4 50.0

7.9 7.9 7.9 9.5 9.5 11.1 11.1 12.7 12.7 15.9 19.0 22.2 25.4

1.3 1.5 1.5 1.8 2.0 2.5 2.8 3.3 3.8 4.3 4.8 5.3 5.8


Tapers (mm)

NTNo.

Standard taper of American milling machine

D

D1

1

30

14

40

14

50

24

60

44

L

1

70

20

44.450 25.32 - 0.384 95

25

130 210

- 0.29

31.750 17.40 - 0.36 - 0.30

3

- 0.31

3

69.850 39.60 - 0.41 - 0.34

1

107.950 60.20 - 0.46

M

a

t

b

50

1.6

15.9

6

30

60

1.6

15.9

22.5

45

90

3.2

25.4

35

56

110

3.2

25.4

60

2

3

UNC 2

24

UNC 8

5

25

UNC

45

UNC 4

1

1

(mm)

BT No. D1

D2

t1

t2

t3

t4

d1

d3

L

M

b1

t5

>>>

Bottle grip taper

d5

53

43

22

10

14.6

2

38.1

13

56.5

M12 1.75 16.1 19.6 21.62

40

63

52

25

10

16.6

2

44.45

17

65.4

M16 2

16.1 22.6 25.3

45

85

73

30

12

21.2

3

57.15

21

82.8

M20 25

19.3 29.1 33.1

50

100

85

35

15

23.2

3

69.85

25

101.8

M24 3

25.7 35.4 40.1

60

155

135

45

20

28.2

3

107.95 31

161.8

M30 3.5

25.7 60.1 60.7

General Information

35

Turning Milling

HSK shank (DIN 69893)

Tapers Endmills Drilling General Information

(mm)

b1

HSK50

10.54

63

b2

b3

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14

12

14

50

38

36.90

42

43

59.3

7

26

32

29

12.5

16

14

63

48

46.53

53

55

72.3

7

34

40

37

100

20

20

14

100

75

72,80

85

92

109.75

7

53

63

58

Shank No

f1

f2

f3

f4

b1

b2

L1

L2

L3

L4

L5

L7

L8

L9

L10

L1

L12

r1

HSK50

26

42

18

3.75

2

15.5

25

5

11

7.5

4.5 14.13 10

10

23

3

1

19

1

63

26

42

18

3.75 28.5

20

32

6.3 14.7 10

6 18.13 10

12 24.5

3

1

21

100

29

45

20

3.75 44

31.5

50

10

10 28.56 12.5

16

3

1.5

24

a1

a2

M16X1

10

6.8

6.8

13.997 7.648

M18X1

12

8

8.4

17.862

M24X1.5 16

12

12

27.329 15.00

Technical Information

Shank No

9.25

(mm)

24

15

L6

28

r2

r4

r5

r6

r7

r8

6

0.5

1

2

6

3

8

0.6

1.5

3

8

3

12

1

1.5

3

10

1.5 2.38

1.2 1.5 2

r3

2

K 25


Tapers (mm)

DIN 69871

Shank No D1

D2

D3

D4

D5

L1

L2

L3

L

b

M

30

50.0

44.3

31.75

13

17.8

47.8

16.4

19.0

33.5

16.

M12 1.75

40

63.5

56.2

44.45

17

24.5

68.4

22.8

25.0

42.5

16.1

M16 2

45

82.5

57.2

57.15

21

33.0

82.7

29.1

31.3

52.5

19.3

M20 2.5

50

97.5

91.2

68.85

25

40.1

101.7

35.5

37.7

61.5

25.7

M24 3

(mm)

Shank No

D1

D2

M

d1

d2

d3

L1

L2

L3

G

CAT40

63.5

56.36

44.45

44.45

16.28

21.84

68.25

28.45

4.78

5/8-11

CAT45

82.55

75.41

57.15

57.15

19.46

27.69

82.55

38.1

4.78

3/4-10

CAT50

98.43

91.29

69.85

69.85

26.19

35.05

101.6

44.45

6.35

1-8

Turning

General Information

>>>

CAT shank

Endmills

Tapers

Milling

Standard of milling cutter hole (KSB3203)

Type A Diameter 8

Drilling

10 13 16

Technical Information General Information

Type B

19

DH7 8 10 13 16 19

22

22

27

27

32

32

+ 0.015 0 + 0.015 0 + 0.018 0 + 0.018 0 + 0.021 0 + 0.021 0 + 0.021 0 + 0.025 0 + 0.025 0

40

40

50

+ 0.025 50 0 60 +00.030 + 0.030 70 0 + 0.030 80 0 100 +00.035

60 70 80 100

E 8.9

+ 0.25 0

11.5 +00.25 + 0.25 14.6 0 17.7 +00.25 21.1 24.1 29.8 34.8

+ 0.25 0 + 0.25 0 + 0.25 0 + 0.25 0

43.5 +00.3 53.5 + 0.3 0 64.2 + 0.3 0 + 75.0 00.3 85.5 +00.3 + 0.3 107.0 0

F + 0.16

2 + 0.06 3 3 4 5 6 7 8 10 12 14 16 18 24

+ 0.16 + 0.06 + 0.16 + 0.06 + 0.19 + 0.07 + 0.19 + 0.07 + 0.19 + 0.07 + 0.23 + 0.08 +0.23 +0.08 + 0.23 + 0.08 + 0.275 + 0.095 + 0.275 + 0.095 + 0.275 + 0.095 + 0.275 + 0.095 + 0.32 + 0.11

r 0.4 0.4 0.6 0.6 1 1 1.2 1.2

Diameter 1 2 5 8 3 4 7 8 1

1 1 4 1 1 2 3 1 4

1.2

2

1.6

2 12

1.6

3

2

3 1

2

4

2.5

4 1 2

2

5

K 26

DH7 + 0.018

E + 0.25

F + 0.31

12.70 0

14.17 0

2.38 + 0.13

+ 0.018 15.875 0

+ 0.25 17.74 0 + 0.25 20.89 0 + 0.25 24.07 0 + 0.25 28.04 0 + 0.25 35.18 0 + 0.25 42.32 0 + 0.25 49.48 0 + 0.25 55.83 0 + 0.25 69.42 0 + 0.25 82.93 0 + 0.25 98.81 0 111.51+00.25 125.81+00.25 140.08+00.25

+ 0.31 3.18 + 0.13 + 0.31 3.18 + 0.13 + 0.31 3.18 + 0.13 + 0.31 6.35 + 0.13

+ 0.021 19.050 0 + 0.021 22.225 0 + 0.021 25.40 0 + 0.025 31.750 0 38.10 +00.025 44.450+00.025 50.80 +00.03 63.50 + 0.03 0 76.20 +00.03 88.90 +00.035 + 0.035 101.60 0 114.30+00.035 + 0.04 127.0 0

+ 0.32 7.94 + 0.14 +0.89 9.53 +0.25 +0.89 11.11+0.25 +0.89 12.7 +0.25 +0.89 15.81+0.25 +0.89 19.05+0.25 +0.89 22.23+0.25 +0.89 25.4 +0.25 +0.89 25.58+0.25 +0.89 31.75+0.25

r 0.5 0.8 0.8 0.8 1.2 1.6 1.6 1.6 1.6 1.6 2.4 2.4 2.4 3.2 3.2


Endmills Endmill s shape and names Peripheral Cutting edge Coner

Helix angle

Shank diameter

Diameter

The 2nd end relief

Shank length

Cutting length

The 2nd relief angle The 3rd relief angle

End Cutting edge

The 3rd end relief

Total length

Concavity angle

The comparison according to number of flute Features of number of flute

Affection of number of flute Tool rigidity Surface finish

Usages

44mm2

46mm2

48mm2

56% Good chip flow Weak rigidity Side facing, Grooving Multi-functional

58% Good chip flow

61% High rigidity Bad chip flow Side cutting Finishing

Difficult to measure external diameter

Side facing, Grooving Medium, finishing

Chip control Grooving Side facing

Bending rigidity Surface roughness Machining precision Chip clogging Chip evacuation Chip evacuation Grooving

Turning

Cross section Ratio Advantages Disadvantages

4 flutes

2 flutes

Torsional rigidity

General Information

Shape

Major features

Specification

>>>

10mm 2 flutes (SSE2100) 3 flutes (SSE3100) 4 flutes (SSE4100)

Surface finish Vibration -Excellent

-Good

Milling

The differences between general endmills and high speed endmills General endmills

Features

Cross section shape

Features

Tapers

Cross section shape

High speed endmills

- Applied for high speed, low depth of cut, high feed - Useful for hardened workpiece such as die steel

- Applied for Low speed, High depth of cut, Low feed - Low hardness workpiece(general steel, cast iron)

Endmills

Calculations of cutting condition

D n 1000

n=

1000 vc D

vf= n fn or n fz z fn=

vf n

fz=

vc : Cutting speed(m/min) : Circular constant (3.141592) D : Endmill diameter(mm) n : Revolution per minute(min

vc 1000 D

Cutting speed

vc =

D n 1000

Feed per tooth

fz =

Feed per revolution Feed speed Chip removal rate

fn = fz z vf = fz z n Q = ae ap vf

vf z n

Technical Information

Calculations of feed speed

n=

General Information

vc=

Revolution per minute

Drilling

Calculations of Cutting speed

Ball endmills cutting speed calculation formulas

Effective diameter of Ball Endmill

fn z

or

vf n z

vf : Feed speed(m/min) fn : Feed per revolution(mm/rev) fz : Feed per flute (mm/t) z : Number of flute

Deff =2 Deff =D

D ap-ap

sin

arccos

Calculation Table

( D-2ap D )

K 27


Endmills The affection of flute length Expression of aspect ratio

Deformation rate according to length

Aspect ratio /d Ex) 3D, 15D, 22D

Deformation rate is reaction force against external force. Proportional to the cube of length Set flute length and overall length as short as possible The more flute the better rigidity When flute width rate is narrower drill s rigidity is higher.

= Deformation volume

P = Cutting force

>>>

General Information Turning Milling Tapers Endmills Drilling

Technical Information General Information

3

d4 ) 64

2

E = Elasticity coefficient

1

1

=8 1=

2

Spindle revolution conversion table(RPM) - external diameter vc External

K 28

I = Inertia moment ( =

= Length of cut

P

= 3El

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Cutting speed (vc, m/min) 20

30

40

50

60

70

80

90

100

120

140

150

180

200

250

300

31,831

47,746

63,662

79,577

95,493 111,408 127,324 143,239 159,155 190,986 222,817

21,221

31,831

42,441

53,052

63,662

74,272

84,883

95,493 106,103 127,324 148,545 159,155 190,986 212,207 265,258 318,310

15,915

23,873

31,831

39,789

47,746

55,704

63,662

71,620

79,577

95,493 111,408 119,366 143,239 159,155 198,944 238,732

12,732

19,099

25,465

31,831

38,197

44,563

50,930

57,296

63,662

76,394

89,127

95,493 114,592 127,324 159,155 190,986

10,610

15,915

21,221

26,526

31,831

37,136

42,441

47,746

53,052

63,662

74,272

79,577

95,493 106,103 132,629 159,155

9,095

13,642

18,189

22,736

27,284

31,831

36,378

40,926

45,473

54,567

63,662

68,209

81,851

90,946 113,682 136,419

7,958

11,937

15,915

19,894

23,873

27,852

31,831

35,810

39,789

47,746

55,704

59,683

71,620

79,577

99,472 119,366

7,074

10,610

14,147

17,684

21,221

24,757

28,294

31,831

35,368

42,441

49,515

53,052

63,662

70,736

88,419 106,103

6,366

9,549

12,732

15,915

19,009

22,282

25,465

28,648

31,831

38,197

44,563

47,746

57,296

63,662

79,577

95,793

4,244

6,366

8,488

10,610

12,732

14,854

16,977

19,099

21,221

25,465

29,709

31,831

38,197

42,441

53,052

63,662

3,183

4,775

6,366

7,958

9,549

11,141

12,732

14,324

15,915

19,099

22,282

23,873

28,648

31,831

39,789

47,746

2,546

3,820

5,093

6,366

7,639

8,913

10,186

11,459

12,732

15,279

17,825

19,099

22,918

25,465

31,831

38,197

2,122

3,183

4,244

5,305

6,366

7,427

8,488

9,549

10,610

12,732

14,854

15,915

19,099

21,221

26,526

31,831

1,819

2,728

3,638

4,547

5,457

6,366

7,276

8,185

9,095

10,913

12,732

13,642

16,370

18,189

22,736

27,284

1,592

2,387

3,183

3,979

4,775

5,570

6,366

7,162

7,958

9,549

11,141

11,937

14,324

15,915

19,894

23,873

1,415

2,122

2,829

3,537

4,244

4,951

5,659

6,366

7,074

8,488

9,903

10,610

12,732

14,147

17,684

21,221

1,273

1,910

2,546

3,183

3,820

4,456

5,093

5,730

6,366

7,639

8,913

9,549

11,459

12,732

15,915

19,099

1,157

1,736

2,315

2,894

3,472

4,051

4,630

5,209

5,787

6,945

8,102

8,681

10,417

11,575

14,469

17,362

1,061

1,592

2,122

2,653

3,183

3,714

4,244

4,775

5,305

6,366

7,427

7,958

9,549

10,610

13,263

15,915

979

1,469

1,959

2,449

2,938

3,428

3,918

4,407

4,897

5,876

6,856

7,346

8,815

9,794

12,243

14,691

909

1,364

1,819

2,274

2,728

3,183

3,638

4,093

4,547

5,457

6,366

6,821

8,185

9,095

11,368

13,642

849

1,273

1,698

2,122

2,546

2,971

3,395

3,820

4,244

5,093

5,942

6,366

7,639

8,488

10,610

12,732

796

1,194

1,592

1,989

2,387

2,785

3,183

3,581

3,979

4,775

5,570

5,968

7,162

7,958

9,947

11,937

749

1,123

1,498

1,872

2,247

2,621

2,996

3,370

3,745

4,494

5,243

5,617

6,741

7,490

9,362

11,234

707

1,061

1,415

1,768

2,122

2,476

2,829

3,183

3,537

4,244

4,951

5,305

6,366

7,074

8,842

10,610

670

1,005

1,340

1,675

2,010

2,345

2,681

3,016

3,351

4,021

4,691

5,026

6,031

6,701

9,377

10,052

637

955

1,273

1,592

1,910

2,228

2,546

2,865

3,183

3,820

4,456

4,775

5,730

6,366

7,958

9,549

579

868

1,157

1,447

1,736

2,026

2,315

2,604

2,894

3,472

4,051

4,341

5,209

5,787

7,234

8,681

531

796

1,061

1,326

1,592

1,857

2,122

2,387

2,653

3,183

3,714

3,979

4,775

5,305

6,631

7,958

490

735

979

1,224

1,469

1,714

1,959

2,204

2,449

2,938

3,428

3,673

4,407

4,897

6,121

7,346

455

682

909

1,137

1,364

1,592

1,819

2,046

2,274

2,728

3,183

3,410

4,093

4,547

5,684

6,821

424

637

849

1,061

1,273

1,485

1,698

1,910

2,122

2,546

2,971

3,183

3,820

4,244

5,305

6,366

398

597

796

995

1,194

1,393

1,592

1,790

1,989

2,387

2,785

2,984

3,581

3,979

4,974

5,968

374

562

749

969

1,123

1,311

1,498

1,685

1,872

2,247

2,621

2,809

3,370

3,745

4,681

5,617

354

531

707

884

1,061

1,238

1,415

1,592

1,768

2,122

2,476

2,653

3,183

3,537

4,421

5,305

335

503

670

838

1,005

1,173

1,340

1,508

1,675

2,010

2,345

2,513

3,016

3,351

4,188

5,026

318

477

637

796

955

1,114

1,273

1,432

1,592

1,910

2,228

2,387

2,865

3,183

3,979

4,775

303

455

606

758

909

1,061

1,213

1,364

1,516

1,819

2,122

2,274

2,728

3,032

9,789

4,547

289

434

579

723

868

1,013

1,157

1,302

1,447

1,736

2,026

2,170

2,604

2,894

3,617

4,341

277

415

554

692

830

969

1,107

1,246

1,384

1,661

1,938

2,076

2,491

2,768

3,460

4,152

265

398

531

663

796

928

1,061

1,194

1,326

1,592

1,857

1,989

2,387

2,653

3,316

3,979

255

382

509

637

764

891

1,019

1,146

1,273

1,528

1,783

1,910

2,292

2,546

3,183

3,820

23,872 286,479 318,310 397,887 477,465


Endmills Tool failure and trouble shooting Solution

Overhang

Workpiece fixing

Machine vibration

etc Machine rigidity

Hardness

Toughness

Chip pocket

Honing

Number of flute

Lead angle

Relief angle

Up cut down cut

Coolant

Depth of cut

Feed

Cutting speed

Causes

Grade

Excessive periphery cutting edge Improper cutting condition Chipping

Improper cutting condition Generating built up edge Weak tool rigidity Improper grade

Fracture during operation

Improper cutting conditions Excessive cutting load Excessive overhang Generating built-up edge Chattering Poor straightness Improper cutting conditions Improper tool shape

Bad chip evacuation

Excessive cutting volume Improper chip pocket Improper cutting conditions

Turning

Poor machining precision (Machined size, Perpendicularity)

General Information

Poor surface finish

>>>

Damage at cutting edge

Troubles

Length of flute

Tool shape

Cutting condition

Milling Tapers Endmills Drilling General Information

Technical Information

K 29


Drilling The shape of drills and the names Height of point Margin width

Point relief angle

Relief angle

Lead

Chisel edge Flank

Helix angle Shank diameter

Drill diameter

Chisel angle

Heel

Flute width Width of land

Cuting face

Cutting edge

Flute length

General Information

>>>

Total length

Shape and the feature of cutting

Length of flute

Point angle

Margin

Endmills

Back taper

Technical Information General Information

low - Helix angle - high low - Helix angle - high

Smooth chip evacuation Soft material(aluminum etc)

The path of both chip evacuation and cooling lubricant. Too big length of flute weakens drill rigidity and too small length of flute worsens chip evacuation to breakage.

thrust resistance decrease Torque increase, Burr on exit increase Soft material(aluminum etc)

low - Point angle - high low - Point angle - high low - Point angle - high

thrust resistance increase Torque decrease, Burr on exit decrease Hard workpiece(hardened steel)

While machining Margin is the part of contact between workpiece and drill s external. It prevents bending and plays guide s role . It depends on drill size. Cutting force decrease Poor guide

small - Margin - big small - Margin - big

Cutting force increase Good guide

Web is the part of center of drill and drill s rigidity depends on the web. Drill needs cutting edge, chisel edge, at the tip of drill because drill makes a hole at the beginning of drilling . When web thickness is big Thinning is needed to reduce cutting force.

Web thickness

K 30

Poor machinability Hard workpiece(hardened steel)

Point angle has big influence on cutting performance. It mainly depends on workpiece. In case of standard drills Point angle is generally 118.

Drilling

Tapers

Milling

Turning

Helix angle

Plays rake angle of cutting edge s role If helix angle increases Cutting force decreases. On the other hand If helix angle is too big Drill rigidity decreases.

Cutting force decrease Rigidity decrease Good chip evacuation Soft material(aluminum etc)

small - Web thickness - big small - Web thickness - big small - Web thickness - big small - Web thickness - big

Cutting force increase Rigidity increase Bad chip evacuation Hard workpiece(hardened steel)

Drill diameter size is getting smaller from point to shank in order to avoid the friction between drill periphery and workpiece. The decrease of diameter divided by flute length 100mm generally becomes 0.04~0.1mm. As for high performance drills and drills for hole shrinkage workpiece during operation have big back taper. In general drills Thrust effects on chisel over 50%. Chisel edge length depends on web thickness and chisel angle. But if web is thin Drill rigidity weaken. Therefore without web thickness change Thinning makes chisel edge short or gives rake angle. In other words, Thinning makes rake angle at chisel and improves chip evacuation and decrease thrust.

Types of Thinning

Edge shape

Feature

Korloy s drills

X type

Good centering High central thickness Crank shaft

Mach drill(MSD) Vulcan drill(VZD)

S type

For wide use For general Easy regrinding

Solid drill(SSD)


Drilling Major cutting formulas Cutting speed vc =

Feed

D n (m/min) 1000

vc : Cutting speed (m/min) D : Drill diameter (mm) n : Revolution per minute (min-1) : Circular constant (3.14)

fn =

Helix angle

vf (mm/rev) n

= tan -1

fn: Feed per revolution (mm/rev) vf : Feed per minute (mm/min) n : Revolution per minute (min-1)

( DL )

Machining time tc =

: Helix angle D : Drill diameter (mm) L : Lead (mm) : Circular constant (3.14)

Id (min) n fn

tc : Machining time (min) n : Revolution per minute (min-1) Id : Drilling time (mm) fn : Feed (mm/rev)

Cutting torque and thrust(calculation formulas) Md : Cutting torque (kg cm) T : Cutting thrust (kg) D : Drill diameter (mm)

Md = KD2 (0.0631+1.686 fn)(kg cm) T = 57.95KDfn (kg) 0.85

Cast iron

Chrome steel Chrome vanadium steel

21

177

1.00

Cast iron

28

198

1.39

Cast iron (Ductile)

35

224

1.88

1020(carbon steel C 0.2%)

55

160

2.22

1112(C 0.12, S 0.2%)

62

183

1.42

1335(Mn 1.75%)

63

197

1.45

3115 (Ni 1.25, Cr 0.6, Mn 0.5)

53

163

1.56

3120 (Ni 1.25, Cr 0.6, Mn 0.7)

69

174

2.02

3140

88

241

2.32

4115 (Cr 0.5, Mo 0.11, Mn 0.8)

63

167

1.62

4130 (Cr 0.95, Mo 0.2, Mn 0.5)

77

229

2.10

4140 (Cr 0.95, Mo 0.2, Mn 0.85)

94

269

2.41

4615 (Ni 1.8, Mo 0.25, Mn 0.5)

75

212

2.12

4820 (Ni 3.5, Mo 0.25, Mn 0.6)

140

390

3.44

5150 (Cr 0.8, Mn 0.8)

95

277

2.46

6115 (Cr 0.6, Mn 0.6, V 0.12)

58

174

2.08

6120 (Cr 0.8, Mn 0.8, V 0.1)

80

255

2.22

Tapers

Nickel molybdenum steel

Cast iron (Gray)

Milling

Chrome molybdenum steel

Material coefficient K

Turning

Nickel Chrome steel

Hardness(HB)

General Information

General steel

Tensile strength( / )

>>>

Workpiece material(SAE/AISI)

fn : Feed per revolution(mm/rev) K : Material coefficient

Endmills

Cutting torque and thrust (empirical formula) 2

m

Md : Cutting torque ( T : Thrust ( )

)

fn : Feed (mm/rev) K1, K2, m, n : Experimental Data Characteristic value

d : Drill diameter (mm)

Drilling

Md = K1 d fn T= K2 d fnn Workpiece

K1

m

K2

n

5.9

1.00

125.0

0.88

3.5

1.00

55.0

0.88

7-3 brass

2.5

0.94

44.4

0.87

Aluminum

1.5

0.90

33.3

0.78

1.4

0.88

27.0

0.74

2.0

0.94

21.6

0.75

Galvanized Iron

0.3

0.57

6.4

0.55

Technical Information

Zinc Gun metal

General Information

Soft steel Rolled steel

K 31


Drilling Tool failures and solutions Solution

Too sharp cutting edge (too big relief angle) (thinning edge is too sharp) Excessive cutting speed

>>>

Chipping Built-up edge

Excessive cutting speed (Abnormal wear at margin)

Wear

Insufficient cutting speed (Abnormal wear at center)

Turning

General Information

Vibration and chattering

Long chip

Chip Milling

Over lap Chip burning

Tapers

Tool clamping precision

Hole precision Burr, Poor surface finish

Excessive feed, sharp point angle

Endmills

Excessive cutting speed (Considered tool grade) Poor surface finish

Breakage Drilling

on contact Fracture

Improper cutting condition

Technical Information General Information

Breakage

K 32

Insufficient machine rigidity

Crooked hole

at hole bottom

Chip clogging

Clamping workpiece

Guide bush

Machine vibration

etc Machine rigidity

Hardness

Toughness

Thinning

Grade Flute width rate

Honing

Thinning angle

Point angle

Relief angle

Tool shape Coolant

Initial feed

Step feed

Feed

Causes

Trouble

Cutting speed

Cutting condition


Drilling Hole size for threading Metric coarse screw threads Hole diameter

Specification M1

X

Metric fine screw threads

0.25

Specification

Hole diameter

0.75

M2.5

X

0.35

2.2

X

0.35

2.7

M1.1

X

0.25

0.85

M3

M1.2

X

0.25

0.95

M3.5

X

0.35

3.2

M4

X

0.5

3.5

M4.5

X

0.5

4

M5

X

0.5

4.5

M5.5

X

0.5

5

M6

X

0.75

5.3

M1.4

X

0.3

1.1

M1.6

X

0.35

1.25

M1.7

X

0.35

1.35

M1.8

X

0.35

1.45

M7

X

0.75

6.3

1.75

M8

X

1

7

M2.3

X

0.4

1.9

M8

X

0.75

7.3

M2.5

X

0.45

2.1

M9

X

1

8

M2.6

X

0.45

2.2

M9

X

0.75

8.3

M10

X

1.25

8.8

M10

X

1

9

M10

X

0.75

9.3

M11

X

1

10

M11

X

0.75

10.3

M12

X

1.5

10.5

M12

X

1.25

10.8

M3

X

0.6

2.4

M3

X

0.5

2.5 2.9

0.75

3.25

M4

X

0.7

3.3

M4.5

X

0.75

3.8

M5

X

0.9

4.1

M12

X

1

11

M5

X

0.8

4.2

M14

X

1.5

12.5

M5.5

X

0.9

4.6

M14

X

1

13

M6

X

1

5

M15

X

1.5

13.5

M7

X

1

6

M15

X

1

14

M16

X

1.5

14.5

M16

X

1

15

M17

X

1.5

15.5

M17

X

1

16

M18

X

2

16

M18

X

1.5

16.5

X

1.25

6.8

M9

X

1.25

7.8

M10

X

1.5

8.5

M11

X

1.5

9.5

M12

X

1.75

10.3

M14

X

2

12

M18

X

1

17

M16

X

2

14

M20

X

2

18

M18

X

2.5

15.5

M20

X

1.5

18.5

X

1

19

X

2.5

17.5

M22

X

2.5

19.5

M22

X

2

20

M22

X

1.5

20.5

M22

X

1

21

M24

X

2

22

M24

X

1.5

22.5

M24

X

1

23

M24

X

3

21

M27

X

3

24

M30

X

3.5

26.5

M33

X

3.5

29.5

M36

X

4

32

M25

X

2

23

M39

X

4

35

M25

X

1.5

23.5

M42

X

4.5

37.5

M25

X

1

24

M45

X

4.5

40.5

M26

X

1.5

24.5

M48

X

5

43

M27

X

2

25

Technical Information

M20

M20

General Information

M8

Drilling

0.6

X

Endmills

X

M4

Tapers

M3.5

Milling

1.6

0.45

Turning

0.4

X

General Information

X

>>>

M2 M2.2

K 33


Drilling Cautions Selection of drill chuck

Coolant supply

Collect chuck is favorable Because it has strong grip power

Supply enough coolant around hole entrance. Standard cutting oil pressure : 3~5kg/ , Flux : 2~5 /min.

(General drill-chuck and Keyless chuck don t have enough grip power.)

Supply much coolant at hole entrance

General drill-chuck

Mounting drill

How to clamp workpiece

When mounting drill Periphery chattering should be within 0.02 . Flute should not be clamped.

At high performance drilling High thrust, torque and horizontal cutting force work at the same time so that workpiece should be clamped strongly to prevent chattering.

Turning

General Information

>>>

Collect chuck

Uniformed and strong clamping is needed (Right and left, up and down)

Strong clamping is needed because bending causes chipping

Notice

Regrinding procedures Regrinding mathod (MACH drill) Point Thining

N/L, Horning

1) Preparation -Determination of regrinding areas Check the cutting edgefor damage and wear If large fracture is found, remove it by rough grinding.

K 34

No clamping flute

1) For better drill s life, small damage and wear are favorable to be reground. 2) Damage and wear size should be within 1.5 for regrinding. 3) If drill has crack, regrinding is impossible. 4) Ordering for regrinding is acceptable or purchase regrinding machine

Technical Information General Information

Drilling

Endmills

Tapers

Milling

Periphery chattering within 0.02

Feed mark Chipping

2) Grinding operation - Drills setting Drill is clamped to collet chuck Chattering is kept within 0.02mm.

Max. 0.02mm


Drilling

3) Grinding operation-Grinding point - Check damage and wear at the point and remove it completely. - The difference of the lip height is kept within 0.02mm.

Point angle(a) : 140 Point relief angle(b)t : 8 ~15

a 20째

The difference of the lip height Max. 0.02mm

8 ~15 b

>>>

Thinning angle(a) : 155 ~160 / Thining open angle(b) : 100 ~105 Thinning relief angle(c) : 34 ~ 40

General Information

4) Grinding operation-Thinning grinding - Considering N/L width Cutting edge length from the center of drill axis should be 0.03~0.08mm for balancing. - Set the wheel to tilt drill axis by 34 ~ 40

Turning Milling

5) Grinding - N/L grinding and honing - Using diamond chisel Grinds the width flat along point cutting edge. - After negaland operation Finishes with brush or handstone.

Tapers

N/L width(a) : 0.05mm~0.16mm / N/L angle(b) : 24 ~26

N/L Endmills

TIP

Drilling

Making point - Without center drill, the point width should be below 0.10mm.

General Information

Recommended grinding condition - Diamond wheel : 240~400 mesh - Diamond chisel : 400~600 mesh - Diamond hand stone : 800~1500 mesh

Technical Information

Hexagonal socket bolt(Clamping screw) size Counter boring and size of bolt hole for hexagonal socket bolt ISO (d)

M3

M4

M5

M6

M8 M10 M12 M14 M16 M18 M20 M22 M24 M27 M30

d1 d D D H H H

3 3.4 5.5 5 3 2.7 3.3

4 4.5 7 8 4 3.6 4.4

5 5.5 8.5 9.5 5 4.6 5.4

6 6.5 10 11 6 5.5 6.5

8 6 13 14 8 7.4 8.6

10 11 16 17.5 10 9.2 10.8

12 14 18 20 12 11.0 13.0

14 16 21 23 14 12.8 15.2

16 18 24 26 16 14.5 17.5

18 20 27 29 18 16.5 19.5

20 22 30 32 20 18.5 21.5

22 24 33 35 22 20.5 23.5

24 26 36 39 24 22.5 25.5

27 30 40 43 27 25 29

30 33 45 48 30 28 32

K 35


General Information II The comparison of chip breakers Application

KORLOY Main Sub

For ultra-finishing HU D02

For steel

NEGA TYPE

General Information

>>>

Turning

TAEGUT KENNA- KYOCE MITSU ISCAR TOSHIBA SECO WALTER DIJET EC METAL RA -BISHI

FA FL

QF

FF

GP DP CF

FS FH FY

SF

TF

GF

SU LU

PF

FN FP K

CQ HQ

SA SH SY

NF

TSF TS,SS CF,ZF

MF2

NF NF5

FT UA

FG SF

For medium to finishing

HC

VM

SX UU

SM

P

CQ HQ

SH

NF RF LF

ZM NM

MF1

NS4 NS8

GP UR PF

ML

Medium machining

VM

GM

GU UX UG

PM QM

MN MP

GS HS CS PS

MV MA MH

TF PP

CM TM SM

M3 MR3 MF5

NM,NM4 NM5 NM7

UB GG

MP MC MT

Roughing

HR

GR

MU MX

PR

RN

GT HT

GH

NR

TH CH

MR4 M5

NR5 NR7

UD

B40

HG MP HP

HR

RH

HX

HZ HV HH HX

TNM

TU 57 65

RR9

GUW LUW

WF,WM WR,WL

MW FW RW

WQ WP

MW SW

WG WF

AFW ASW

M3,M5

MT, MV

GN

FS, FJ SH, MJ MS, GJ GH,FY

PP TF

GH

For better surface VW finish LW WIPER I/S B25

GR

UZ

23

MG

Tapers

Stainless steel, soft steel

HA HS GS

HC VM GR X38

SU EX (GU) MU FL

MF MM,QM MR,QM LC

FF,FW FP,MP MW,RN

Endmills

For cast iron

GR

B20 B25 HR

KF KM,QM KR,QR

FF,FW MP,MW RN,UN

UZ UX

HA

Drilling

For aluminum

GU,HU XP,XQ XS MU,MS GC ZS

F GP MS

AH

MA GH

PF KF

MT-UF MT-LF GT-LF

GP DP HQ

FV SQ

SJ,SU SK

(PM) (KM)

MT-LF

XQ HQ GK

SV R/L R/L-F

C25 HMP

SF MU

(PR) (KR)

MT-MF

For aluminum

AR AK MA

AG

AL

HP

A3

For stainless steel

HMP

SU

MF, MM MR

LF

(XQ)

LUW

WF WM

S04 R06

51,53 56,58

cast iron For steel

HFP

For medium to HMP finishing (medium machining) Medium machining (Roughing)

AK

WIPER I/S Indexable drills

DM C20 DS,DA C21 DF

G

SU,SP

GN

UC

RH HT

WS WT

NF,NM

GN TF SS SA TU MS 33

MF1 MF3 M5

MF3 M5

CM

NS4 NM4 NR7

SF

NS4,NS8

FG,ML MP,MT RH,ET EA MT,RT

NM4

MV MQ

SM

14,SM 17,19

19

01 PF

F1

PF5

PS 23 PM

F1 F2

PS4 PS5

FG

F2

PM2 PM5 (PR5)

MT

24

AS

PP

FV

14,SM 17,19

SS

SW MW

WF WG SW,GF GG,DT

FT

ALU ACB PS4 PM5

FA

FL FA FG MT WT

C1,P1 85,86 : Simple Type

K 36 36

RT

PP

LU FP

For finishing

POSI TYPE

FA EA

VF

For general

Technical Information General Information

F1 FA

Finishing

Heavy duty machining

Milling

SMITOMO SANDVIK

: Non - Name


General Information II The comparison of grade for turning WC

Turning

ISO KORLOY SUMITOMO KYOCERA ISCAR ST05 ST10 ST15 ST20 P MA2 ST30 ST30A ST30N ST40 U10 M U20

SECO

KENNAMETAL TOSHIBA MITSUBISHI HITACHI VALENITE WALTER TAECUTEC

S1P

ST10P ST20E

TX10S TX20

STi10T STi20T

TX30

UTi20T

TX40 TU10 TU20

UTi20T

SRN5 WS20B

NTK

DIJET

NTK

DIJET

S1F P10 P20

SM30 A30

PW30

IC50M IC54

ST40E U10E U2 A30 A40

H13A H10F

TTX TTM TTR AT10 AT15 TTR

K45 KM K420 K2885 K2S

VC6 VC5 EX35 VC56 EX40 EX45 WAM10B VC27 VC28 EX35

P30 P40 M10 M20 M40

TU40

H1 G10E

S30T S6

KW10H

IC4

H1P

THM

K68

IC20 IC28

H10F

THR

K8735

TH03 TH10 KS20

HTi10T HTi20T

WH05 W10 WH20

>>>

U40 H02 H01 K H05 H10 G10

SANDVIK

K10 K20 K20M K30

VC3 VC2 VC1

General Information

CVD COATED ISO KORLOY SUMITOMO KYOCERA ISCAR NC3010

Turning

M

NC3020 NC3120 AC2000 CA5525 NC3030 AC3000 CA5535 NC500H NC9020 AC610M CA6515 AC630M CA6525

IC8250 IC8350

GC4005 GC4215 TP1000 TP2500 GC4225 TP2000 GC4235 TP3000 GC2015 TM2000

IC9025

AC410K CA4110 AC300G CA4125 AC700G CR7015

IC5005 IC5010 IC428 IC9150

KC9105 KC9110 KC9115 KU30T KC9125 KC9240 KC9245 KC9215 KC9225

T9005 T9015

UE6005 UE6110

T9025 T9035

TT8115

UE6020 UE6035

HG8025 VP5525 VP5535

WPP20 WPP30

US7020

MR8515

WAM20

MR8525

WAM30

TT5100

VP1505 HG3315 VP1510 GM8015 VP5515 GM8020

WAK10 WAK20

TT7310 TT1300

US735

GC3205 GC3210 TK1000 GC3215 TK2000

HG8015 VP5515

WPP01 WPP05 WPP10

CP5

GC2025 TM4000

NC305K K NC6110 NC6010 NC315K

KENNAMETAL TOSHIBA MITSUBISHI HITACHI VALENITE WALTER TAECUTEC

GM25 GX30

JC110V JC215V JC325V

TT3500 TT5100 TT7100

JC450 JC5003 JC110V JC5015

Milling

NC3030

IC8150

SECO

Turning

P

CA5505 AC700G CA5515

SANDVIK

KC9245 CP2 KC9315 KC9325

T5105 T5115 T5125

UC5105 UC5115

CP5

JC105V JC110V JC215V

Tapers

PVD COATED ISO KORLOY SUMITOMO KYOCERA ISCAR

P

Turning

PR915 PR930 PC9030

EH510Z EH520Z

PR1125 PR630 PR660

CP200

CP500 IC520 IC907 IC3028 IC928 IC1008 IC1028 IC328

GC4125 GC1020 GC1025 GC2035

AH330 GH330 AH120 GH730 AH140

CZ25

VC905

WTA43 WTA41

CP500

VC929 VC927 VC902 VC901 VC905

CP200 CP250 CP500

VC929 VC903 VC927 CY110H VC902 VC901 VC907

CP200 CP250

DIJET

GH730 AH330 AH740 AH120 GH330

CP250

VP15TF VP20MF UP20M

TT5030

ZM3 QM3 VM1 TAS

JC8015

GC2145

IC220 IC908 IC228

PC215K

KU10T KU25T

NTK

VC907 VC927

AH110 GH110 AH120

Technical Information

K PC205K

AH710

General Information

M

KENNAMETAL TOSHIBA MITSUBISHI HITACHI VALENITE WALTER TAECUTEC

Drilling

PC230 PC3535 PC3545

SECO

Endmills

PR1005 PR915 PR1115 PR930 PR1025 PR630 PR660

SANDVIK

IC220 IC570 IC907 IC507

CERMET

Turning

ISO KORLOY SUMITOMO KYOCERA ISCAR CN1000 CT10 CC115 P CN2000 CN20

T110A T2000Z T1200A T3000Z

SANDVIK

PV30 TN30 PV60 TN60 TN6020 TN90

IC20N CT5015 IC520N CT525 IC30N GC1525 IC530N

SECO CM C15M

KENNAMETAL TOSHIBA MITSUBISHI HITACHI VALENITE WALTER TAECUTEC

NTK

DIJET

PV3010 CT3000 HT2 KT125 HT5 KT175 KT195M

NS520 GT530 NC530 NC540 NC730

NX2525 NX3035 UP35N AP25N NX335

CH350 CZ25 CH530 CH550 CH570

VC83

WTA43 WTA41

T3N T15 N20

LN10 CX50 CX75

C30

CX90 CX99

N40

M

T1200A

K CN1000 T110A

T1200A

NX2525 NX2525

CT3000 T15

: PVD Coated cermet

LN10 CX75 CX99 LN10 CX75

: New Grade

K 37


General Information II The comparison of grade for milling CVD COATED ISO KORLOY SUMITOMO KYOCERA ISCAR ACP100

SANDVIK

SECO

GC4220

T20M T250M

T325

T350M

T3030

F7030

SM245

T1015

F5010

V01 VN8

NCM325

Milling

P NCM335

M

IC520M

GC4230

IC635

GC4240

KENNAMETAL TOSHIBA MITSUBISHI HITACHI VALENITE WALTER TAECUTEC

MP2500 NCM335

GC2040 ACK100 ACK200

K

GC3220

MK1500

IC4050

KC992M

>>>

MK3000

WQM15 WKP25 WQM25 WKP35 WQM35 WQM25 WTP35 WXP45

NTK

DIJET

QM3 TT7800

WAK15 WKP25 WKP35

ISO KORLOY SUMITOMO KYOCERA ISCAR

SANDVIK

SECO

KENNAMETAL TOSHIBA MITSUBISHI HITACHI VALENITE WALTER TAECUTEC VP15TF AP20M GP20M

Turning

General Information

PVD COATED

P

PC3525

Milling

PC230 PC3535

IC903 IC908 IC950

AC230 ACP200

PR730

ACZ330

PR830 PR630

IC1008

GC1030

PR660

IC928

GC1030 F40M T60M

PR730

IC903

PR1025 PR630 PR660

IC900 IC250 IC928

GC1025 F25M GC2030 GC1030 F30M

IC328

F40M

F25M F30M

PC9530

Drilling

Technical Information General Information

VP30RT

JX1060 PTH40H TB6060 GF30 GX30 JX1020 CY9020 JX1015 TB6020 CY250

KC5510 KC7020

ACP200

M

ACP300 ACZ350

PC3545 PR510 PR905

PC205K

K PC6510 PC215K

DT7150 IC900 IC910 IC950 IC350

AH120 KC7030

JX1045 TB6045

AH140

KC722

TT8020

VC928 VC902 VC901

JX1060 TB6060

KC510M KC915M KC520M

TT7070 TT7080 TT7030

AH120

VP10MF VP15TF

VC903 VC928

VP20RT

VC902 VC901

JC8015 WQM35

TT9080

WSP45

TT8020

TT6030 TT6060 TT6290

CERMET ISO KORLOY SUMITOMO KYOCERA ISCAR P Milling

M

K

SANDVIK

SECO

KENNAMETAL TOSHIBA MITSUBISHI HITACHI VALENITE WALTER TAECUTEC

TN100M

CN20

TC60M

T250A

IC30N

KT195M

NS540 NS740

NX4545

CT530 NX2525

NTK

CT3000

NX2525

T250A CN30

K 38

KC935M KC7140 KC720

JX1045 TB6045 CY250 PTH30E

DIJET

JC8015 VC935

UP20M

Milling

Endmills

Tapers

ACP300 ACZ350 PC3545

KC522M KUC20M KC525M AH120 KUC30M

NTK

PTH08M PCA08M PCS08M PCA12M PC20M JX1005 TB6005 JX1020 CY9020

CH550 CH570

C50 CT5000

DIJET


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.