Znali bomo
Æ skicirati mrežo valja, Æ povedati, kaj vpliva na velikost površine valja, Æ po obrazcu izračunati površino valja, Æ izračunati različne količine, povezane s površino valja.

Znali bomo
Æ skicirati mrežo valja, Æ povedati, kaj vpliva na velikost površine valja, Æ po obrazcu izračunati površino valja, Æ izračunati različne količine, povezane s površino valja.
Marjeta je izdelala darilno škatlo, v katero bo lahko pospravila steklenico z domačim sokom. Naredila je dno in pokrov škatle v obliki kroga s premerom, ki je malo večji od premera steklenice. Osrednji del škatle pa je izdelala iz lepenke v obliki pravokotnika. Pravokotnik ima dolžino, enako obsegu kroga, ki predstavlja dno oziroma pokrov, višina pravokotnika (škatle) pa je enaka višini steklenice. Darilna škatla je torej sestavljena iz dveh krogov (ki ležita na vzporednih ravninah) in ustreznega pravokotnika, ki je ukrivljen. Nastala škatla ima obliko valja.
osnovna ploskev
V nadaljevanju bomo obravnavali le pokončne valje in izraz valj bo pomenil pokončni valj.
Valj je geometrijsko telo, ki je omejeno z dvema skladnima krogoma, ki ležita na vzporednih ravninah in eno krivo ploskvijo, ki ima v ravnini obliko pravokotnika
Kroga imenujemo osnovni ploskvi valja O, krivo ploskev pa plašč valja pl Razdalja med osnovnima ploskvama je višina valja, stranica valja pa je daljica na plašču valja, ki povezuje obe osnovni ploskvi in je pri pokončnih valjih vzporedna z višino.
Presečišče valja z ravnino, ki poteka skozi os valja, je osni presek in ima obliko pravokotnika.
Presečišče valja z ravnino, ki poteka vzporedno z osnovnima ploskvama, je vzporedni presek valja, ki ima pri pokončnem valju obliko kroga in je skladen z osnovno ploskvijo.
Če je višina valja enaka premeru osnovne ploskve, je valj enakostraničen. Ugotovimo lahko, da je v enakostraničnem valju osni presek kvadrat.
Osnovni pojmi v valju plašč višina os valja osnovna ploskev stranica
osni presek
kvadrat
2r v = 2r p0 – ploščina osnega preseka
Valj je okroglo geometrijsko telo, ki ga omejujeta dva skladna kroga (osnovni ploskvi), ki ležita na vzporednih ravninah ter ena kriva ploskev (plašč).
Če je višina valja enaka premeru osnovne ploskve, je valj enakostraničen
Površina valja
S pomočjo mreže valja lahko zapišemo obrazec za računanje površine valja, ki je po obliki podoben obrazcu za prizme:
vzporedni presek
Zapisani obrazec lahko zapišemo še bolj podrobno, če upoštevamo obrazce za ploščino in obseg kroga.
Znak za množenje v obrazcih običajno opuščamo.
Pogosto najdemo v priročnikih tudi obrazec, ki ga dobimo, če v zapisanem obrazcu izpostavimo najmanjši skupni faktor 2r.
Obrazca za izračun površine prizme in površine valja sta v splošnem enaka, saj tako mrežo prizme kot mrežo valja sestavljata dve osnovni ploskvi in plašč.