combinatoria

Page 1

Actividades Combinatoria

1. ¿De cuántas formas diferentes se pueden cubrir los puestos de presidente, vicepresidente y tesorero de un club de fútbol sabiendo que hay 12 posibles candidatos? 2. Con las letras de la palabra libro, ¿cuántas ordenaciones distintas se pueden hacer que empiecen por vocal? 3. ¿De cuántas formas pueden mezclarse los siete colores del arco iris tomándolos de tres en tres? 4. ¿Cuántos números de cinco cifras distintas se pueden formar con las cifras impares? ¿Cuántos de ellos son mayores de 70.000? 5. ¿De cuántos partidos consta una liguilla formada por cuatro equipos? 6. A una reunión asisten 10 personas y se intercambian saludos entre todos. ¿Cuántos saludos se han intercambiado? 7. Con las cifras 1, 2 y 3, ¿cuántos números de cinco cifras pueden formarse? ¿Cuántos son pares? 8. ¿Cuántas apuestas de Lotería Primitiva de una columna han de rellenarse para asegurarse el acierto de los seis resultados, de 49? 9. ¿De cuántas formas pueden colocarse los 11 jugadores de un equipo de fútbol teniendo en cuenta que el portero no puede ocupar otra posición distinta de la portería? 10. Con el punto y raya del sistema Morse, ¿cuántas señales distintas se pueden enviar, usando como máximo cuatro pulsaciones? 11. Una mesa presidencial está formada por ocho personas, ¿de cuántas formas distintas se pueden sentar, si el presidente y el secretario siempre van juntos?


Actividades Combinatoria

12. ¿Cuántas diagonales tiene un pentágono y cuántos triángulos se puede informar con sus vértices? 13. Un grupo, compuesto por cinco hombres y siete mujeres, forma un comité de 2 hombres y 3 mujeres. De cuántas formas puede formarse, si: a) Puede pertenecer a él cualquier hombre o mujer. b) Una mujer determinada debe pertenecer al comité. c) Dos hombres determinados no pueden estar en el comité. 14. Sea A un alfabeto formado por 6 vocales y 16 consonantes. ¿Cuántas palabras distintas de seis letras pueden formarse con las letras de A, de modo que la primera y la quinta letra de cada palabra sean vocales distintas y las otras cuatro letras sean consonantes? 15. ¿Cuál ha de ser el tamaño mínimo de una población para que exista al menos un día del año (365 días) donde coincida la fecha de nacimiento de, al menos, 10 personas? 16. ¿De cuántas maneras se pueden formar un equipo de baloncesto de 5 jugadores, si en la plantilla hay 12 jugadores. (No se tiene en cuenta el puesto de cada jugador)? 17. Una organización estudiantil tiene que elegir un delegado y un subdelegado. Hay 7 candidatos. ¿Cuántas elecciones distintas se pueden hacer? 18. 4.

¿Cuántos resultados diferentes se producen al lanzar 5 dados de

distinto color y anotar los resultados de la cara superior? 19. Con las letras de la palabra PELUCA:


Actividades Combinatoria

a) ¿Cuántas ordenaciones distintas se pueden hacer? b) ¿Cuántas empiezan por PEL? 20. Una persona está interesada en contar todos los posibles resultados en el juego de la LOTERÍA PRIMITIVA. ¿Podrías ayudarle? (Tenemos 49 números del 1 al 49, debemos elegir 6 21. Siete amigos hacen cola para el cine. Al llegar sólo quedan 4 entradas. ¿De cuántas formas podrían repartirse estas entradas para ver la película? 22. Con los dígitos: 1, 2, 3, 4 y 5 ¿cuántos números de cinco cifras, sin repetición, se pueden formar? a) ¿Cuántos de esos números empiezan por 1? b) ¿Cuántos terminan en 5? c) ¿Cuántos empiezan por 1 y acaban en 5? d) ¿Cuántos son pares? e) ¿Cuántos son múltiplos de 5? f) ¿Cuántos son mayores que 20.000? 23. Con las letras de la palabra CINEMA a) ¿Cuántas palabras distintas, tengan sentido o no, se pueden formar? b) ¿Cuántas terminan en A? c) ¿Cuántas empiezan con N? d) ¿Cuántas empiezan con C y terminan en I? e) ¿Cuántas empiezan con vocal? f) ¿Cuántas tienen vocal y consonante alternadas?


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.