25
by Hwong Yi Ling Deep beneath the plains of the Franco-Swiss border near Geneva, in a man-made tunnel stretching over 27 km, lies one of humankind’s greatest engineering feats of all time. The Large Hadron Collider (LHC), the flagship accelerator of the European Organisation of Nuclear Research (CERN), is the largest scientific instrument ever built to study the smallest constituents of matter. Scientists are on a quest to dig into the deepest secrets of our universe and to answer questions that have plagued generations of thinkers. At least that’s what the media says. Thanks and no thanks to the massive hype over CERN’s near-mythical state of research, misconceptions abound over what really goes on behind those steel-reinforced (no, they are not), eyeball-scanner-controlled (yes, they exist) doors. Reality can be stranger than fiction, no doubt about that. But more often than not, it is simply misunderstood. Headline-grabbing titles might entice the masses, but they do little to help penetrate the biggest myth of all about science: that it is hard and thus only for the ultra-intelligent. In an effort to bust these pesky little myths, here are the top five most misunderstood facets of CERN. 1. The LHC is built to find the Higgs Boson The Higgs boson—sometimes referred to as ‘The God Particle’, much to the chagrin of Peter Higgs, its eponymous predictor—is a theorised particle that gives mass to all matters in the universe. Two detectors of the LHC, the ATLAS and CMS experiments, successfully detected this particle—thus proving its existence—in the
summer of 2012, and won Peter Higgs a Nobel Prize in Physics the following year. The LHC, however, was not built just to find the Higgs. It was also built to help scientists find the answers to other important questions: what is the nature of dark matter and dark energy (which together make up 95% of our universe)? Why is there more matter than antimatter in the universe (theories say there should be equal amount)? Are there other dimensions besides the four (if we include the dimension of time) that we observe? Finding the answers to these will close a huge gap in our understanding of the universe. 2. It must be really hot in the LHC tunnels! The LHC collides protons. These protons are accelerated to almost the speed of light and collide more than 600 million times per second. Heat (energy) is generated during collisions, thus the LHC must be like a furnace, correct? Wrong. In fact, the magnets that make up the tunnel and are responsible for guiding the particles around the accelerator rings are cooled to -271.3°C – a temperature colder than outer space. This chilling is necessary to cool the electric cables to a superconducting state, so that they can efficiently conduct electricity without resistance or loss of energy. CERN is, quite literally, the coolest place on earth.
I S S U E 10 / A P R I L 2 015