FF3 Analysis Data Item Vol. 1

Page 1

[TYPE THE COMPANY NAME]

Swept Forward Multi Role Fighter Airplane 2003‐2005, My First Experiment With Aircraft Design Sina Golshany 4/21/2005

These are computations I performed between 2003 and 2005 to evaluate an aircraft configuration I had put together when I was a sophomore in high school. My command of the English language wasn’t particularly great at the time I was putting this document together, so the dear reader will excuse occasional grammatical, composition errors and typos as well as technical errors here and there.


F-F.3 Project data unit, Volume I: Designer: Sina Golshany -Project information and mission data -Weight estimation calculations -Part by part mass and mechanical properties


program: Program main target is design Multi role, high maneuverable(in HAA formations) single seat, light weight fighter, main mission is air superiority, expendable to air to ground attacks and high altitude low range patrolling including internal electronic counter master systems, laser weapon guidance and computerized stabilization. Designed airplane must be able to taking off from sea-level standard runways and carrying payload weight at least 8’000 pound for about 1500n.m. also it must be able to achieve average ROC more than 50’000 feet per minute and must be able to climb to 60Kft altitude. Maximum cruise speed of airplane must be about 1.5 mach.

Systems: Accommodation: Pressurized and ventilate cabin environment expected, also oxygen system must be available. Ejection seat must be able to work properly in all of the flight conditions. Canopy must providing best visibility-anti reflection characteristics, and also bullet proof material must be used. Noise proof panels stiffeners must not fit to internal metal panels stiffeners. Some of the maintenance access holes can be planted inside the cabin but external maintenance door (especially in electronic compartments) preferred.

Armor panels and firewalls systems: Cabin and avionics compartment must protect against AAA bullets also heat shocks product by missile explosions by firewall panels. These panels must design to providing light weight, fail safe characteristics.

Fuel Cells and systems: Fuel rubber cells must fixed inside the fuselage structure to avoiding leakage incase of bullet. Also it must be able to refueled in the cruising condition. If fuel cells covered with light weight Kevlar cloth, it would be the best. 1


Weapon systems: Weapon system must support using external gun pod also it must support using wide range of free-fall dumb bombs ,rail lunched air to air missiles and rail launched air to ground missiles.

Electrical systems: Incase of patrol missions electric distribution system must product enough power to using many external system. Flight controlling system must operate by using fly-by-wire technology.

Hydraulic systems: Hydraulic system must providing high hydraulic fluid flow to make control surfaces more sensitive. These systems must be very reliable, to working proper in battle condition.

Landing gear systems: Tricycle landing gear required. Nose and main landing gear shock absorbers must operating good enough to provide high speed landing conditions. Gear retraction for main landing gear must retract main gears in to the fuselage structures. All of the retraction systems must act hydraulically. Both spring and hydraulic absorbing is acceptable for nose landing gear, but spring is preferred. For main landing gears, absorbing system must be hydraulic incase of heavy load distribution on the main compartment. All of the breaking systems must provide minimum requirement as same as advanced military papers. Main wheels axle and retraction systems pins is preferred to made out of 41XX steel alloys because of good mechanical and thermo dynamical properties. Tire sizes must support high landing speeds. Position of gears must provide good handling on the ground movements and also, take-off and landing 2


operations. All of the structural parts must analyze to being stable incase of full weight emergency landings.

Structure: Fuselage: Fuselages Main structure’s element expect to made out of light weight, advance thermoplastic-fiberglass based composite , aluminum 20XX , 70XX alloys. The safety factor in design of the important fuselage parts would be 1.15.Fuslage skins must make out of aluminum plates and reinforced with stringers. Fuselage panels would connect to the frame structures directly. Fuselage cut out and maintenance doors, also landing gears doors ,are preferred to be made of thermoplastic or light weight composites. Else the aluminum doors would be acceptable ,if they didn’t deny the weight characteristics of fuselage.

Wing: Because of high maneuvering requirements, sweep forward wing configuration must use. These condition make a very hard structural situation so must of the wing box structural design advisement became unusable. Special care must take! Certainly the Aerodynamic center of the wing would not fitted to the shear points and wing structural connections to the fuselage, so special fail-safe spar design needed. Advance high strain composite is preferred to any other material for wing boxes and spars. Skin material can be 20XX or 70XX plate without stringer. Control surface can be made of light weight high strain aluminum or titanium honeycombs. Because of weight problem it’s preferred to use plain flaps as a trailing edge high lift device.

Horizontal tail: To achieving high maneuver performance its preferred to use Tailerson operation and all movable horizontal tail. In structure point of view single spar ,reinforced and honeycomb based configuration preferred. 3


Vertical tail: Same structures as wing box structures required but because of low load distribution light structural reinforcement .Composite preferred for main spars, aluminum 70XX alloys preferred for skins and ribs.

Flight conditions: In all of the analyses ,these 4 conditions were used: I-Condition 1-1: Transonic,

V  V A  450Kts Alt.  35000 ft

: Very large range of angel of attack used in this condition , But normally 0Deg, in case of maneuver 11 or 8 or 35 deg Used.

4


W  24000 Pound No flap deflected  T  10  F T  Maximum I XX  5541 . 41 Slug  ft 2 I YY  1346 . 42 Slug  ft 2 I ZZ  68477 . 17 Slug  ft 2 II-Condition 1-2: Supersonic,

V  1300Kts Alt  42000 ft

  0Deg W  20000Pound No flap deflected T  10 F T  57493.8684 N III-Condition 2-1: Subsonic, 5


V  200Kts Alt  5000 ft W  WMax  30616Pound

 f  35 T  10 F Gear Up

  5 VI-Condition 2-2:

V  150Kts Alt  3000 ft

  11 In some cases other values used. W  WMax  30616Pound

 f  45 I XX  13029.37Slug  ft 2 IYY  83220.9673Slug  ft 2 I ZZ  106542.6Slug  ft 2

6


Weight class II estimation: Toorenbeek method :     b W   W  0.0017W WTornb MZF  Cos  C w  2     b S W W X  n 0.55  Ult t W Cos C W  Wr MZF 2  W

MZF

W TO

W est

     

0.75

0.30

F

b  CTE W

 t   2SW  tW      r    b 1 c  W   Wr  W WTO

est

 38889Pound

bw  9.8075m  32.1768 ft SW  340.2172 ft ARW  3.04 W F  5544.49Pound WMZF  33344.51Pound

7

  6.3Cos  C w     2 X 1     b  W      


Entered parameter to equation:

C

4w

()

 40

nUlt  9.46 g KW  1( fix wings) t

c W (root )

 6.0%

  0.46 Result of calculations for wing weight estimations : WW  3270.2Pound According to GD method GD

Horizontal tail weight estimation : GD method :

Wh

GD

  0.0034 WToest nUlt 

0.813

 t   2S X  t Xr         c b 1  x    Xr  X

8

b  S h 0.584  h   tr 

0.033

C   lh

  

0.28 0.915

  


4 S X 1  X   X 2 CX  3 ARX 1  X 2

Torenbeek method :

Wh

torenbeek

    S h 0.2VD   0 . 287  K h S h 3.81   0.5     1000 Cos C    4h  

K H 1 Entered parameters : S h  57.2457 ft 2 bX 2 ARh  S bX  15.16 ft ARh  4.0196

h  0.3144 lh  5.9495m  19.51 ft t     4%  0.04  c h

9


X AC

(Wing )

X AC

( h)

 22.8136 ft First estimation

 42.3236 ft First estimation

Result of calculations for wing weight estimations :

Wh

GDmethod

 400.7 Pound

Wh

Torenb method

 1014.5Pound

Wh  707.6Pound Vertical tail structure weight estimations : Entered parameters :

SV  5.31m 2  57.1561 ft 2 ARV 

b C

Cr  14.7841 ft V

Ct  2.913385 ft V

b  7.6955 ft CV  10.18 ft ARV  0.87

10


Cr  14.7841 ft V

Ct  2.913385 ft V

b  7.6955 ft CV  10.18 ft ARV  0.87

WV

GD

 Z 0.5  0.191 h  WTO nUlt est  bV 

 0.363 1.089 0.601  0.726  SV MH lV X 

a  1.014  0.484  Sr  0.363   0 . 337 X  1 0.217 ARV 1V   CosC 4  S V   V  

 Sr X   1  or ir  2 V or ir  SV 1001 V  100  Entered parameters :

X AC  39.9323 ft V

b  10.1548 ft

ir  90%

11

a


or  85% Cr  0.1749 C Df

h( Avr )

 5.3110 ft

Result of calculations:

WV GD  615.7 Pound

Fuselage weight estimation:

Entered parameters : L fuselage  44.6 hMax  9.80 ft Alt Max  54000 ft K inl  1.25 WF

GD

WF

q   10.43K inl1.23  D   100 

GD(USN )

0.283

 WToest   1000 

q   10.43K inl1.42  D   100 

12

0.283

   

0.95

 WToest   1000 

 LFus    h Max      

0.95

0.71

 L fus     hMax   

0.71


 5298.4Pound

WF

GD

Tail boom weight estimation:

Wtboom

Tor

SWet

tb

 VD X ACh  X ACW  0.021N tb   Dtb  Dtb Max Min 

 DtbMax  DtbMin   2 

Dtb

Max

Dtb

Min

 l  tb 

 0.56 ft  0.0119m  0.0390 ft

Ltb  10.9301 ft X AC  42.32 ft h

X AC  22.81 ft W

V D 1900Kts Wtboom

Tor

 256.8843Pound

13

 S  

Wettb

1.20


Nose landing gear weight estimations: Torenbeek method:

W gear

Torenb

 K gr Ag  Bg WTO

est

K gr  1.04 Z f  8.1679 ft ZW  0 Agnose

Torenb

 12

Bgnose

 0.06

C gnose

0

Torenb

Torenb

Dgnose

0

Wg

 185.2843Pound

Torenb

noseTorenb

14

0.75

C gWTo  Dg (WTo )1.5 est

est


Main gear weight estimation : Entered parameters :

AgmainTorenb  33 BgmainTorenb  0.04 C gmainTorenb  0.021 DgmainTorenb  0.00

W gearTorenb  K gr Ag  Bg WToest W gmain

Tor

 998.9Pound

Total gear weight estimation: GD method :

W   129.1 Toest   1000 

Wg

GD

Wg

GD

Wg

Torenb

0.66

 1355.5Pound  1184.14Pound

W gear  1269.8Pound

15

0.75

C gWToest  Dg WTOest

 1.5


Total structure weight estimation:

WT

str

WT

str

 WWing  WVert.tail  Wtboom

Tor

 W gear  Whtail  W fuse

 11419.7 Pound

Power plant Weight estimation :

WEngine  3022.5Pound

Fuel system weight estimation : Entered parameter :

W f  5544.49Pound K fsp  7.21Pound

Gall

( ForJP  5)

K refuel  10 K Fueldump  10  W f         K fsp   Wrefuel  13.64  100      

0.393

 W f         K fsp   W fueldump  7.3  100      

0.458

16


N sft  3 Wrefuel  30.40Pound W fueldump  18.49Pound W fuelSys.GD  525.2Pound W fuelSys.

Torenb

 525.2Pound

Air induction weight estimation : Entered parameter :

Altitude  54000 ft V D  1900Kts

This unreal dive speed entered just because

of special structural requirement due to sweep forward design .

N inlet  2 AC  7.19 ft 2 lmc  8.61 ft K spike  12.53

17


LV

ramp

 0 ft

Wai GD  Wduct &sup ort  Wramp  Wspike WDucu &suport  0.32 N inlet lmc AC 0.65 P2 0.6 

1.735 N inl lmc AC 0.5 P2 K duct K m

0.7331

WRamp  4.079 LVarRamp N inlet AC 0.5 K r Kr 

1.201

M D 2 ( for M D  3.0) 5

WSpike  K Spike N inlet AC K Spike  12.53(half round spike) Torenbeek method : Wai

Torenb

 Wduct & Support  WRamp  WSpike

WaiTorenb  11.45 N inlet lmc AC 0.5 P2 K duct K d  1.0 Wai

GD

Wai

 180.2Pound

Torenb

 180.2

18

0.7331


Propulsion System Weight : Entered parameter :

SW  340.22 ft ARW  3.04 L fus  44.60

Wengine  3022.5Pound WWaterinjection  0Pound mf

 4.16 Pound

To

Sec.

K ec  1.08( After burner ) K eng WP

ins

GD

 0.5

 WengControl  Wess  WOilSys.  WinjectSys.

Engine control system weight , G-D method :

Weng Control : K es L fus N e 

0.792

Engine starting system weight , G-D method :

Wess

GD

W   38.93 engine   1000   

0.918

19


Propulsion weight estimations by using Torenbeek method:

WPTorenb  36 N e m f

TO

Water injuction weight estimation according to Torenbeek method:

WinjectSys.  8.586

WwaterInj. 8.35

 1.02826WWaterInj.

Oil system and oil cooler weight estimation: *In torenbeek method , weight of the oil and oil cooling system estimate as a part of jet engine weight . Results:

WengControl  21.9Pound WOilSys.  0Pound WPropulsion  149.8Pound Wess  107.5Pound WinjectSys.  20.6Pound WP

Torenb

 149.8Pound

WP  149.8Pound

20


Total power plant weight estimation :

Weng  W fuelSys.  Wai  WPropulsion  WPP WPP  3022.5  525.2 180.2 149.8  3877.7 Pound Fixed equipment weight estimation : 1- Flight control system weight estimation :

WFC

GD

 WTOest  K fcf   1000 

   

0.581

K fcf  138Plain with a horizental tail WCG

Control

W    0.01 f   K CG Control  K fsp  

0.442

K CG  0 W fc

GD

 1206.9Pound

WCG

Control

 0.00Pound

2-Hydraulic and pneumatic system weight estimation:

WTo

est

 38889.0Pound

WHyd WTO

 0.005

21


WHyd  194.4Pound 3-Instrument,Avionicsand electric weight estimation:

W iae

0.032WTO est    n C1  n C 2  n C 3  15   1000 

GD

 0.006WTo N e 5   1000  W iae

W E  W TO W TO

est

 0.15WTO est   0.012W TO  est 1000 

 0.575W E 0.556 Range MAX 0.25

Torenb

est

W P W P

Expand

 38889Pound

W P  8500Pound WP

expand

   

 8500Pound

W F  5544.5Pound W tfo  150Pound Range (Max)est.  1000n.m n C1  1 nC2  0

22

W f W tfo


nC 3  0 Wiae

GD

Wiea

 494Pound

Torenb

 708.1Pound

4-Electrical System weight estimation :

Wels

GD

W  W  426 fuelSys. iae    1000  

0.51

Wiea  601Pound W fuelSys.  525.2Pound Wels

GD

 452.6Pound

5-Air conditioning , Pressurization , Anti ice & De-icing System weight estimation :

Wapi

GD

 W  200 N Crew   202 ice  1000  

K api  109 Wapi  154.4 Altitude  54000 ft

23

0.735


U1  800Kts N Crew  1 K api  212 Wapi

GD

 171.6Pound

6-Oxygen system :

WOX

GD

 16.9 N Crew1.494

N Crew  1 WOX

GD

 16.9Pound

7-Auxilary power unit weigh estimation:

Wapu  FW FW

apu

apu

WTO

est

 0.000

Wapu  0 8-Furnishing weight estimation:

W fur  147 Pound (M .K 16)

24


9-Armement weight estimation :

Warm  W fireSys.  Wbaydoor  WWeopenEj  W fireCount  W Armorplates  WOthers W fireSys.  200Pound Wbaydoor  0Pound WWeopenEj  0Pound W fireCount  50Pound Warmorplt  100Pound Wothers  0Pound Warm  350Pound

9-Guns, launchers and weapon provision weight estimation :

WWeapon Prov  W gun  WLaunch  WOth..... W gun  0.0Pound (Air born gun for this airplane is a part of external payload weights) WWeop  0.00Pound

25


10-Paint weight:

WPa int  155.6Pound Total fixed items weight :

W fix  W fc  Whydr  Wels  Wias  Wapi  WOX  WWeapprov  Wiae  W fti  W Aux  Wballast  W Pa int  Wetc  W fix 3122 pound Total weight estimated by class II estimations :

3122.6 11419.7  3877.7  8500  5544.5 150  41114.5Pound Part by part weight calculation after 3-D modeling : Total weight =30616.34 Pound

26


Part by part Mass and mechanical properties calculations After computer aided design


Frame Mass and mechanical properties Calculations Based on computer aimed design

28


Part by part mass properties results Part name: Frame 1-1 Mass :

26.8596 lbm

Volume :

285.9505 in 3

Surface area :

1415.2323 in 2 X Y Z

Centroid :

Mass moment of inertia : Lx =

8112.5062 lbm.in 2

Ly 

4065.8856 lbm.in 2

Lz 

4065.6460 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

-0.1132 lbm.in 2

Radii of gyration : X

17.3791 in

Y

12.3035 in

Z

12.3031 in

Principal mass moments : X

8112.5062 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0000 in

X

4065.9306 lbm.in 2 0.0000 in

Y

0.9292 in

Z

0.3696 in

X

4065.6010 lbm.in 2 -0.0000 in

Y

-0.3696 in

Z

0.9292 in

I=

J=

K=

Material :

Aluminum 7075 T-6

29

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 1-2 Mass :

24.8106 lbm

Volume :

264.1367 in 3

Surface area :

1407.4615 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

7605.3645 lbm.in 2

Ly 

3811.1798 lbm.in 2

Lz 

3810.9605 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.1054 lbm.in 2

Radii of gyration : X

17.5082 in

Y

12.3940 in

Z

12.3936 in

Principal mass moments : X

7605.3645 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0000 in

X

3811.2223 lbm.in 2 -0.0000 in

Y

0.9276 in

Z

0.3735 in

X

3810.9180 lbm.in 2 0.0000 in

Y

-0.3735 in

Z

0.9276 in

I=

J=

K=

Material :

Aluminum 7075 T-6

30

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame NO 2-1 Mass :

21.6546 lbm

Volume :

230.5375 in 3

Surface area :

1501.8380 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

6890.6992 lbm.in 2

Ly 

3468.2944 lbm.in 2

Lz 

3436.7549 lbm.in 2

Mass product of inertia :

XY

0.0050 lbm.in 2

XZ

-0.1015 lbm.in 2

YZ Radii of gyration :

0.1802 lbm.in 2

X

17.8384 in

Y

12.6556 in

Z

12.5979 in

Principal mass moments : X

6890.6992 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0000 in

X

3468.2954 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0057 in

X

3436.7539 lbm.in 2 -0.0000 in

Y

0.0057 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075 T-6

31

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame NO 2-2 Mass :

27.1534 lbm

Volume :

289.0782 in 3

Surface area :

1573.1941 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

8616.2102 lbm.in 2

Ly 

4337.6523 lbm.in 2

Lz 

4297.3711 lbm.in 2

Mass product of inertia :

XY

-0.0068 lbm.in 2

XZ

0.1314 lbm.in 2

YZ Radii of gyration :

0.2268 lbm.in 2

X

17.8134 in

Y

12.6391 in

Z

12.5803 in

Principal mass moments : X

8616.2102 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0000 in

X

4337.6535 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

-0.0056 in

X

4297.3699 lbm.in 2 0.0000 in

Y

0.0056 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminum 7075-T6

32

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame NO 3-1 Mass :

52.1104 lbm

Volume :

554.7732 in 3

Surface aria :

2362.9663 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

20245.9989 lbm.in 2

Ly 

8887.5027 lbm.in 2

Lz 

11446.5383 lbm.in 2

Mass product of inertia :

XY

0.0009 lbm.in 2

XZ

4.8756 lbm.in 2

YZ Radii of gyration :

-0.0262 lbm.in 2

X

19.7109 in

Y

19.7109 in

Z

14.8209 in

Principal mass moments : X

20246.0016 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

-0.0006 in

X

8887.5027 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

11446.5356 lbm.in 2 0.0006 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminum 7075-T6

33

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 3-2 Mass :

63.1574 lbm

Volume :

672.3809 in 3

Surface area :

2481.6894 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

25658.2510 lbm.in 2

Ly 

11219.5954 lbm.in 2

Lz 

14550.1704 lbm.in 2

Mass product of inertia :

XY

0.0058 lbm.in 2

XZ

-6.4021 lbm.in 2

YZ Radii of gyration :

-0.1066 lbm.in 2

X

20.1559 in

Y

13.3284 in

Z

15.1783 in

Principal mass moments : X

25658.2547 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0006 in

X

11219.5954 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

14550.1667 lbm.in 2 -0.0006 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminum 7075-T6

34

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 4-1 Mass :

85.1118 lbm

Volume :

906.1104 in 3

Surface area :

3278.9747 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

38650.9828 lbm.in 2

Ly 

16667.1010 lbm.in 2

Lz 

22229.8496 lbm.in 2

Mass product of inertia :

XY

0.0001 lbm.in 2

XZ

6.8364 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

21.310 in

Y

13.9938 in

Z

16.1612 in

Principal mass moments : X

38650.9856 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

-0.0004 in

X

16667.1010 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

22229.8467 lbm.in 2 0.0004 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075

35

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 4-2 Mass :

82.2387 lbm

Volume :

875.5230 in 3

Surface area :

3268.8645 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

37348.2802 lbm.in 2

Ly 

16099.9592 lbm.in 2

Lz 

21482.1255 lbm.in 2

Mass product of inertia :

XY

0.0080 lbm.in 2

XZ

-6.4365 lbm.in 2

YZ Radii of gyration :

0.0258 lbm.in 2

X

21.3107 in

Y

13.9918 in

Z

16.1622 in

Principal mass moments : X

37348.2828 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0004 in

X

16099.9592 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

21482.1229 lbm.in 2 -0.0004 in

Y

-0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminum 7075-T6

36

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 5-1 Mass :

84.3507 lbm

Volume :

898.0079 in 3

Surface area :

3336.8517 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

52409.1344 lbm.in 2

Ly 

21810.5756 lbm.in 2

Lz 

30855.6585 lbm.in 2

Mass product of inertia :

XY

-1.4511 lbm.in 2

XZ

-8.7495 lbm.in 2

YZ Radii of gyration :

-30.1745 lbm.in 2

X

24.9264 in

Y

16.0801 in

Z

19.1259 in

Principal mass moments : X

52409.1380 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0004 in

X

21810.4748 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

-0.0033 in

X

30855.7556 lbm.in 2 -0.0004 in

Y

0.0033 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminum 7075-T6

37

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 5-2 Mass :

89.5583 lbm

Volume :

953.4479 in 3

Surface area :

3471.7891 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

58222.0958 lbm.in 2

Ly 

23995.2233 lbm.in 2

Lz 

34488.2208 lbm.in 2

Mass product of inertia :

XY

-0.0012 lbm.in 2

XZ

12.9809 lbm.in 2

YZ Radii of gyration :

0.2159 lbm.in 2

X

25.4971 in

Y

16.3685 in

Z

19.6238 in

Principal mass moments : X

58222.1029 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0005 in

X

23995.2233 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0000 in

X

34488.2137 lbm.in 2 0.0005 in

Y

-0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminum 7075-T6

38

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 6-1 Mass :

79.6978 lbm

Volume :

848.4722 in 3

Surface area :

3213.8852 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

48782.2189 lbm.in 2

Ly 

14228.2236 lbm.in 2

Lz 

34781.7990 lbm.in 2

Mass product of inertia :

XY

-0.0123 lbm.in 2

XZ

-21.2072 lbm.in 2

YZ Radii of gyration :

-0.3080 lbm.in 2

X

24.7404 in

Y

13.3614 in

Z

20.8907 in

Principal mass moments : X

48782.2510 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0015 in

X

14228.2236 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

34781.7669 lbm.in 2 -0.0015 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminum 7075-T6

39

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 6-2 Mass :

79.9081 lbm

Volume :

850.7114 in 3

Surface area :

3221.5883 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

48833.9096 lbm.in 2

Ly 

14238.6731 lbm.in 2

Lz 

34823.3939 lbm.in 2

Mass product of inertia :

XY

0.0137 lbm.in 2

XZ

22.0607 lbm.in 2

YZ Radii of gyration :

-0.2704 lbm.in 2

X

24.7210 in

Y

13.3487 in

Z

20.8757 in

Principal mass moments : X

48833.9443 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

-0.0016 in

X

14238.6731 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

34823.3591 lbm.in 2 0.0016 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminum 7075-T6

40

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 7-1 Mass :

40.9714 lbm

Volume :

945.0714 in 3

Surface area :

3612.1388 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

27425.8820 lbm.in 2

Ly 

9568.8635 lbm.in 2

Lz 

17975.1573 lbm.in 2

Mass product of inertia :

XY

2.1017 lbm.in 2

XZ

-7.2193 lbm.in 2

YZ Radii of gyration :

41.1725 lbm.in 2

X

25.8726 in

Y

15.2823 in

Z

20.9457 in

Principal mass moments : X

27425.8878 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0008 in

X

9568.6616 lbm.in 2 0.0001 in

Y

1.0000 in

Z

0.0049 in

X

17975.3535 lbm.in 2 -0.0008 in

Y

-0.0049 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

41

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 7-2 Mass :

41.7945 lbm

Volume :

964.0555 in 3

Surface area :

3636.2709 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

28087.1331 lbm.in 2

Ly 

9849.6803 lbm.in 2

Lz 

18358.4240 lbm.in 2

Mass product of inertia :

XY

0.0087 lbm.in 2

XZ

7.5517 lbm.in 2

YZ Radii of gyration :

-0.0777 lbm.in 2

X

25.9235 in

Y

15.3515 in

Z

20.9584 in

Principal mass moments : X

28087.1390 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

-0.0008 in

X

9849.6803 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

18358.4182 lbm.in 2 0.0008 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

42

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 8-1 Mass :

58.7052 lbm

Volume :

1354.1276 in 3

Surface area :

4820.5848 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

34709.6721 lbm.in 2

Ly 

12384.0201 lbm.in 2

Lz 

22722.6439 lbm.in 2

Mass product of inertia :

XY

0.0166 lbm.in 2

XZ

-2.9961 lbm.in 2

YZ Radii of gyration :

-0.0273 lbm.in 2

X

24.3157 in

Y

14.5242 in

Z

19.6739 in

Principal mass moments : X

34709.6728 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

-0.0002 in

X

12384.0201 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

22722.6431 lbm.in 2 -0.0002 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

43

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 8-2 Mass :

58.7457 lbm

Volume :

1355.0633 in 3

Surface area :

4823.6966 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

34784.5629 lbm.in 2

Ly 

12408.1641 lbm.in 2

Lz 

22773.6850 lbm.in 2

Mass product of inertia :

XY

-0.0365 lbm.in 2

XZ

2.6863 lbm.in 2

YZ Radii of gyration :

-0.0847 lbm.in 2

X

24.3335 in

Y

14.5333 in

Z

19.6892 in

Principal mass moments : X

34784.5635 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0002 in

X

12408.1641 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

22773.6844 lbm.in 2 0.0002 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

44

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 9-1 Mass :

81.4356 lbm

Volume :

1878.4410 in 3

Surface area :

6563.4212 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

51042.5669 lbm.in 2

Ly 

25723.7026 lbm.in 2

Lz 

25867.5136 lbm.in 2

Mass product of inertia :

XY

-4.1013 lbm.in 2

XZ

26.3175 lbm.in 2

YZ Radii of gyration :

20.3058 lbm.in 2

X

25.0357 in

Y

17.7730 in

Z

17.8226 in

Principal mass moments : X

51042.5950 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0010 in

X

25720.8904 lbm.in 2 -0.0000 in

Y

0.9905 in

Z

0.1372 in

X

25870.2976 lbm.in 2 0.0011 in

Y

-0.1372 in

Z

0.9905 in

I=

J=

K=

Material :

Aramid Composite

45

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 9-2 Mass :

81.4359 lbm

Volume :

1878.4473 in 3

Surface area :

6563.4431 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

51043.0576 lbm.in 2

Ly 

25723.9491 lbm.in 2

Lz 

25867. 7598 lbm.in 2

Mass product of inertia :

XY

-4.1013 lbm.in 2

XZ

26.3175 lbm.in 2

YZ Radii of gyration :

20.3058 lbm.in 2

X

25.0357 in

Y

17.7730 in

Z

17.8226 in

Principal mass moments : X

51042.5950 lbm.in 2 1.0000 in

Y

-0.0002 in

Z

0.0010 in

X

25721.1369 lbm.in 2 0.0000 in

Y

0.9905 in

Z

0.1372 in

X

25870.5438 lbm.in 2 -0.0011 in

Y

-0.1372 in

Z

0.9905 in

I=

J=

K=

Material :

Aramid Composite

46

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 10-1 Mass :

72.2245 lbm

Volume :

1665.9723 in 3

Surface area :

5896.8175 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

45203.8896 lbm.in 2

Ly 

24898.6105 lbm.in 2

Lz 

20789.0490 lbm.in 2

Mass product of inertia :

XY

0.0014 lbm.in 2

XZ

64.7734 lbm.in 2

YZ Radii of gyration :

0.0696 lbm.in 2

X

25.0176 in

Y

18.5672 in

Z

16.9658 in

Principal mass moments : X

45204.0614 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

-0.0027 in

X

24898.6105 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

20788.8772 lbm.in 2 0.0027 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

47

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 10-2 Mass :

72.2270 lbm

Volume :

1666.0301 in 3

Surface area :

5896.8522 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

45205.0331 lbm.in 2

Ly 

24899.1838 lbm.in 2

Lz 

20789.6066 lbm.in 2

Mass product of inertia :

XY

-0.0011 lbm.in 2

XZ

-64.7702 lbm.in 2

YZ Radii of gyration :

0.0681 lbm.in 2

X

25.0175 in

Y

18.5670 in

Z

16.9658 in

Principal mass moments : X

45205.2049 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0027 in

X

24899.1838 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

20789.4348 lbm.in 2 -0.0027 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

48

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 11-1 Mass :

38.4003 lbm

Volume :

885.7638 in 3

Surface area :

3281.8488 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

21688.4892 lbm.in 2

Ly 

11257.2260 lbm.in 2

Lz 

10684.3154 lbm.in 2

Mass product of inertia :

XY

1.7804 lbm.in 2

XZ

43.5044 lbm.in 2

YZ Radii of gyration :

16.4979 lbm.in 2

X

23.7655 in

Y

17.1218 in

Z

16.6804 in

Principal mass moments : X

21688.6615 lbm.in 2 1.0000 in

Y

-0.0002 in

Z

-0.0040 in

X

11257.7006 lbm.in 2 0.0001 in

Y

0.9996 in

Z

-0.0288 in

X

10683.6684 lbm.in 2 0.0040 in

Y

0.0288 in

Z

0.9996 in

I=

J=

K=

Material :

Aramid Composite

49

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 11-2 Mass :

38.3994 lbm

Volume :

885.7430 in 3

Surface area :

3281.8429 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

21688.2787 lbm.in 2

Ly 

11257.0801 lbm.in 2

Lz 

10684.2496 lbm.in 2

Mass product of inertia :

XY

-1.7733 lbm.in 2

XZ

-43.5107 lbm.in 2

YZ Radii of gyration :

16.4605 lbm.in 2

X

23.7657 in

Y

17.1219 in

Z

16.6805 in

Principal mass moments : X

21688.4510 lbm.in 2 1.0000 in

Y

0.0002 in

Z

0.0040 in

X

11257.5527 lbm.in 2 -0.0001 in

Y

0.9996 in

Z

-0.0287 in

X

10683.6047 lbm.in 2 -0.0040 in

Y

0.0287 in

Z

0.9996 in

I=

J=

K=

Material :

Aramid Composite

50

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 12-1 Mass :

80.7232 lbm

Volume :

1862.0092 in 3

Surface area :

6584.6950 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

53155.6206 lbm.in 2

Ly 

27048.9559 lbm.in 2

Lz 

26657.6840 lbm.in 2

Mass product of inertia :

XY

-4.5654 lbm.in 2

XZ

-9.0634 lbm.in 2

YZ Radii of gyration :

54.8163 lbm.in 2

X

25.6611 in

Y

18.3053 in

Z

18.1724 in

Principal mass moments : X

53155.6245 lbm.in 2 1.0000 in

Y

0.0002 in

Z

0.0003 in

X

27056.4901 lbm.in 2 -0.0001 in

Y

0.9907 in

Z

-0.1362 in

X

26650.1460 lbm.in 2 -0.0004 in

Y

0.1362 in

Z

0.9907 in

I=

J=

K=

Material :

Aramid Composite

51

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 12-2 Mass :

48.9538 lbm

Volume :

1129.1981 in 3

Surface area :

4037.7103 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

27150.6012 lbm.in 2

Ly 

10404.9759 lbm.in 2

Lz 

17076.8911 lbm.in 2

Mass product of inertia :

XY

-0.0043 lbm.in 2

XZ

-13.8995 lbm.in 2

YZ

3.0487 lbm.in 2

Radii of gyration : X

23.5503 in

Y

14.5790 in

Z

18.6772 in

Principal mass moments : X

27150.6204 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0014 in

X

10404.9745 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0005 in

X

17076.8733 lbm.in 2 -0.0014 in

Y

-0.0005 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

52

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 13-1 Mass :

80.7232 lbm

Volume :

1862.0092 in 3

Surface area :

6584.6950 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

53155.6206 lbm.in 2

Ly 

27048.9559 lbm.in 2

Lz 

26657.6840 lbm.in 2

Mass product of inertia :

XY

-4.5654 lbm.in 2

XZ

-9.0634 lbm.in 2

YZ

54.8163 lbm.in 2

Radii of gyration : X

25.6611 in

Y

18.3053 in

Z

18.1724 in

Principal mass moments : X

53155.6245 lbm.in 2 1.0000 in

Y

0.0002 in

Z

0.0003 in

X

27056.4901 lbm.in 2 -0.0001 in

Y

0.9907 in

Z

-0.1362 in

X

26650.1460 lbm.in 2 -0.0004 in

Y

0.1362 in

Z

0.9907 in

I=

J=

K=

Material :

Aramid Composite

53

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 13-2 Mass :

80.6491 lbm

Volume :

1860.3004 in 3

Surface area :

6571.5655 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

53193.8130 lbm.in 2

Ly 

27068.8386 lbm.in 2

Lz 

26672.9499 lbm.in 2

Mass product of inertia :

XY

3.8570 lbm.in 2

XZ

8.9179 lbm.in 2

YZ Radii of gyration :

58.1913 lbm.in 2

X

25.6821 in

Y

18.3204 in

Z

18.1859 in

Principal mass moments : X

53193.8165 lbm.in 2 1.0000 in

Y

-0.0001 in

Z

-0.0003 in

X

27077.2146 lbm.in 2 0.0001 in

Y

0.9898 in

Z

-0.1425 in

X

26664.5703 lbm.in 2 0.0004 in

Y

0.1425 in

Z

0.9898 in

I=

J=

K=

Material :

Aramid Composite

54

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 14-1 Mass :

173.5542 lbm

Volume :

1847.6788 in 3

Surface area :

6534.2693 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

113803.0568 lbm.in 2

Ly 

57834.7418 lbm.in 2

Lz 

57149.7186 lbm.in 2

Mass product of inertia :

XY

-0.0177 lbm.in 2

XZ

1.1279 lbm.in 2

YZ Radii of gyration :

-0.1429 lbm.in 2

X

25.6070 in

Y

18.2548 in

Z

18.1464 in

Principal mass moments : X

113803.0569 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0000 in

X

57834.7419 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0002 in

X

57149.7185 lbm.in 2 0.0000 in

Y

-0.0002 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

55

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 14-2 Mass :

173.4361 lbm

Volume :

1846.4208 in 3

Surface area :

6529.4687 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

113572.0203 lbm.in 2

Ly 

57718.8811 lbm.in 2

Lz 

57033.7929 lbm.in 2

Mass product of inertia :

XY

0.0185 lbm.in 2

XZ

-1.1281 lbm.in 2

YZ

-0.1429 lbm.in 2

Radii of gyration : X

25.5897 in

Y

18.2427 in

Z

18.1341 in

Principal mass moments : X

113572.0203 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0000 in

X

57718.8811 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0002 in

X

57033.7929 lbm.in 2 -0.0000 in

Y

-0.0002 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid Composite

56

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 15-1 Mass :

120.1888 lbm

Volume :

1279.5439 in 3

Surface area :

4672.1911 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

85808.0990 lbm.in 2

Ly 

43250.3966 lbm.in 2

Lz 

42903.4337 lbm.in 2

Mass product of inertia :

XY

0.1858 lbm.in 2

XZ

0.0020 lbm.in 2

YZ

-0.0275 lbm.in 2

Radii of gyration : X

26.7197 in

Y

18.9698 in

Z

18.8936 in

Principal mass moments : X

85808.0990 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

-0.0000 in

X

43250.3966 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0001 in

X

42903.4337 lbm.in 2 0.0000 in

Y

-0.0001 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075

57

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 15-2 Mass :

121.6057 lbm

Volume :

1294.6285 in 3

Surface area :

4672.5041 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

86910.5648 lbm.in 2

Ly 

43807.8754 lbm.in 2

Lz 

43451.9320 lbm.in 2

Mass product of inertia :

XY

-0.0056 lbm.in 2

XZ

-0.0010 lbm.in 2

YZ Radii of gyration :

-0.0581 lbm.in 2

X

26.7337 in

Y

18.9801 in

Z

18.9029 in

Principal mass moments : X

86910.5648 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

43807.8754 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0002 in

X

42903.4337 lbm.in 2 -0.0000 in

Y

-0.0002 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075

58

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 16-1 Mass :

55.5051 lbm

Volume :

1280.3134 in 3

Surface area :

4675.1653 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

39535.7398 lbm.in 2

Ly 

19792.9953 lbm.in 2

Lz 

19901.4917 lbm.in 2

Mass product of inertia :

XY

-0.0005 lbm.in 2

XZ

9.1150 lbm.in 2

YZ Radii of gyration :

0.0263 lbm.in 2

X

26.6888 in

Y

18.8838 in

Z

18.9355 in

Principal mass moments : X

39535.7440 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0005 in

X

19792.9953 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0002 in

X

19901.4875 lbm.in 2 0.0005 in

Y

-0.0002 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

59

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 16-2 Mass :

63.1033 lbm

Volume :

1455.5772 in 3

Surface area :

4681.5409 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

45102.1167 lbm.in 2

Ly 

22578.2043 lbm.in 2

Lz 

22700.8516 lbm.in 2

Mass product of inertia :

XY

0.0010 lbm.in 2

XZ

-10.4002 lbm.in 2

YZ Radii of gyration :

0.0155 lbm.in 2

X

26.7345 in

Y

18.9155 in

Z

18.9668 in

Principal mass moments : X

45102.1216 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0005 in

X

22578.2043 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0001 in

X

22700.8468 lbm.in 2 -0.0005 in

Y

-0.0001 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

60

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 17-1 Mass :

57.4828 lbm

Volume :

1325.9330 in 3

Surface area :

4660.7929 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

40941.1185 lbm.in 2

Ly 

20579.4089 lbm.in 2

Lz 

20526.8012 lbm.in 2

Mass product of inertia :

XY

0.0007 lbm.in 2

XZ

0.0015 lbm.in 2

YZ Radii of gyration :

-0.0403 lbm.in 2

X

26.6877 in

Y

18.9211 in

Z

18.8969 in

Principal mass moments : X

40941.1185 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

-0.0000 in

X

20579.4090 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0008 in

X

20526.8012 lbm.in 2 0.0000 in

Y

-0.0008 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

61

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Frame 17-2 Mass :

56.5932 lbm

Volume :

1305.4112 in 3

Surface area :

4646.1582 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

40302.5357 lbm.in 2

Ly 

20150.4545 lbm.in 2

Lz 

20315.2163 lbm.in 2

Mass product of inertia :

XY

0.0028 lbm.in 2

XZ

-0.0027 lbm.in 2

YZ Radii of gyration :

0.0161 lbm.in 2

X

26.6860 in

Y

18.8695 in

Z

18.9465 in

Principal mass moments : X

40302.5357 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0000 in

X

20150.4545 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0008 in

X

20315.2163 lbm.in 2 -0.0000 in

Y

-0.0001 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

62

0.0000 in 0.0000 in 0.0000 in


Fuselage plates Mass and mechanical properties Calculation Based on computer aided design

63


Part by part mass properties results Part name: Plate NO2 Mass :

44.3018 lbm

Volume :

471.6424 in 3

Surface area :

2518.0148 in 2 X Y Z

Centroid :

Mass moment of inertia : Lx =

8740.6334 lbm.in 2

Ly 

4392.0043 lbm.in 2

Lz 

4349.7735 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

0.2307 lbm.in 2

X

14.0463 in

Y

9.9568 in

Z

9.9088 in

Principal mass moments : X

8740.6334 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

4392.0056 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0055 in

X

4349.7723 lbm.in 2 0.0000 in

Y

0.0055 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T6

64

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO3 Mass :

92.9724 lbm

Volume :

989.7953 in 3

Surface area :

2814.7478 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

23234.9335 lbm.in 2

Ly 

9861.3138 lbm.in 2

Lz 

13383.2268 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ Radii of gyration :

16.9258 lbm.in 2

X

15.8086 in

Y

10.2989 in

Z

11.9978 in

Principal mass moments : X

23234.9335 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

9861.2324 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0048 in

X

13383.3082 lbm.in 2 0.0000 in

Y

-0.0048 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T6

65

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO5 Mass :

65.6699 lbm

Volume :

670.7511 in 3

Surface area :

3719.6669 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

26508.8235 lbm.in 2

Ly 

13437.8096 lbm.in 2

Lz 

13072.7587 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-26.6988 lbm.in 2

Radii of gyration : X

20.0915 in

Y

14.3048 in

Z

14.1091 in

Principal mass moments : X

26508.8235 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

13439.7519 lbm.in 2 0.0000 in

Y

0.9974 in

Z

0.0726 in

X

13070.8164 lbm.in 2 0.0000 in

Y

-0.0726 in

Z

0.9974 in

I=

J=

K=

Material :

Aluminume7075-T6

66

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO5 Mass :

34.8648 lbm

Volume :

371.1745 in 3

Surface area :

2047.6392 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

18089.7470 lbm.in 2

Ly 

5276.7633 lbm.in 2

Lz 

12813.8844 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

14.2826 lbm.in 2

Radii of gyration : X

22.7784 in

Y

12.3024 in

Z

19.1711 in

Principal mass moments : X

18089.7470 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

5276.7362 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0019 in

X

12813.9115 lbm.in 2 0.0000 in

Y

-0.0019 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T6

67

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO7 Mass :

47.2741 lbm

Volume :

503.2852 in 3

Surface area :

2816.9038 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

24972.1270 lbm.in 2

Ly 

8824.0913 lbm.in 2

Lz 

16149.2570 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

42.7683 lbm.in 2

Radii of gyration : X

22.9835 in

Y

13.6623 in

Z

18.4827 in

Principal mass moments : X

24972.1270 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

8823.8416 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0058 in

X

16149.5067 lbm.in 2 0.0000 in

Y

-0.0058 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T6

68

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO8 Mass :

195.2575 lbm

Volume :

4503.9231 in 3

Surface area :

5861.7618 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

142261.4261 lbm.in 2

Ly 

59500.7070 lbm.in 2

Lz 

82942.3086 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

11.5784 lbm.in 2

X

26.9923 in

Y

17.4565 in

Z

20.6103 in

Principal mass moments : X

142261.4261 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

59500.7013 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0005 in

X

82942.3144 lbm.in 2 0.0000 in

Y

-0.0005 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

69

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO9 Mass :

93.1945 lbm

Volume :

2149.6797 in 3

Surface area :

4648.5660 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

67303.0557 lbm.in 2

Ly 

27542.1820 lbm.in 2

Lz 

39782.5414 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

256.4756 lbm.in 2

X

26.8734 in

Y

17.1911 in

Z

20.6610 in

Principal mass moments : X

67303.0557 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

27536.8104 lbm.in 2 0.0000 in

Y

0.9998 in

Z

0.0209 in

X

39787.9131 lbm.in 2 0.0000 in

Y

-0.0209 in

Z

0.9998 in

I=

J=

K=

Material :

Aramid composite

70

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO10 Mass :

240.5425 lbm

Volume :

5548.4936 in 3

Surface area :

5982.9525 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

136467.0868 lbm.in 2

Ly 

36686.8273 lbm.in 2

Lz 

100084.7463 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ Radii of gyration :

6.3783 lbm.in 2

X

23.8187 in

Y

12.3498 in

Z

20.3980 in

Principal mass moments : X

136467.0868 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

36686.8267 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0001 in

X

100084.7469 lbm.in 2 0.0000 in

Y

-0.0001 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

71

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO11 Mass :

211.4782 lbm

Volume :

4878.0802 in 3

Surface area :

5524.4661 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

108150.2813 lbm.in 2

Ly 

35636.9482 lbm.in 2

Lz 

72862.9773 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ Radii of gyration :

0.8636 lbm.in 2

X

22.6142 in

Y

12.9813 in

Z

18.5618 in

Principal mass moments : X

108150.2813 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

35636.9481 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

72862.9773 lbm.in 2 0.0000 in

Y

-0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

72

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO12 Mass :

116.1735 lbm

Volume :

1236.7968 in 3

Surface area :

3727.7062 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

72740.0166 lbm.in 2

Ly 

37941.8317 lbm.in 2

Lz 

34810.1895 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

170.2636 lbm.in 2

X

25.0226 in

Y

18.0720 in

Z

17.3101 in

Principal mass moments : X

72740.0166 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

37951.0615 lbm.in 2 0.0000 in

Y

0.9985 in

Z

-0.0541 in

X

34800.9597 lbm.in 2 0.0000 in

Y

0.0541 in

Z

0.9985 in

I=

J=

K=

Material :

Aluminume7075

73

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO13 Mass :

40.1249 lbm

Volume :

925.5444 in 3

Surface area :

3593.2432 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

25556.8143 lbm.in 2

Ly 

13210.1305 lbm.in 2

Lz 

12349.0161 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

-0.0623 lbm.in 2

X

25.2375 in

Y

18.1446 in

Z

17.5432 in

Principal mass moments : X

25556.8143 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

13210.1305 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0001 in

X

12349.0161 lbm.in 2 0.0000 in

Y

-0.0001 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

74

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO14 Mass :

19.9312 lbm

Volume :

459.7456 in 3

Surface area :

2593.1661 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

14043.0232 lbm.in 2

Ly 

7078.3581 lbm.in 2

Lz 

6965.1800 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

-0.0176 lbm.in 2

X

26.5438 in

Y

18.8451 in

Z

18.6939 in

Principal mass moments : X

14043.0232 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

7078.3581 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0002 in

X

6965.1800 lbm.in 2 0.0000 in

Y

-0.0002 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

75

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO15 Mass :

15.0383 lbm

Volume :

346.8817 in 3

Surface area :

2547.0813 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

10614.2827 lbm.in 2

Ly 

5385.0779 lbm.in 2

Lz 

5229.4233 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

0.4952 lbm.in 2

X

26.5672 in

Y

18.9233 in

Z

18.6478 in

Principal mass moments : X

10614.2827 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

5385.0795 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0032 in

X

5229.4217 lbm.in 2 0.0000 in

Y

0.0032 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

76

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Plate NO16 Mass :

39.7332 lbm

Volume :

916.5083 in 3

Surface area :

2843.5349 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

27945.0563 lbm.in 2

Ly 

14088.7464 lbm.in 2

Lz 

13860.4157 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.3602 lbm.in 2

Radii of gyration : X

26.5201 in

Y

18.8304 in

Z

18.6772 in

Principal mass moments : X

27945.0563 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

14088.7469 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0016 in

X

13860.4152 lbm.in 2 0.0000 in

Y

-0.0016 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

77

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Radome Mass :

294.8290 lbm

Volume :

10881.1195 in 3

Surface area :

8779.0934 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

51108.8257 lbm.in 2

Ly 

99110.9361 lbm.in 2

Lz 

99110.9361 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

13.1663 in

Y

18.3348 in

Z

18.3348 in

Principal mass moments : X

51108.8257 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

99110.9361 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

99110.9361 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

78

0.0000 in 0.0000 in 0.0000 in


Longeron Mass and mechanical properties Calculations After computer aided design

79


Part by part mass properties results Part name: 2 O’clock Longeron Mass : 248.6526 lbm Volume :

5735.5666 in 3

Surface area :

11616.1001 in 2 X Y Z

Centroid :

Mass moment of inertia : Lx =

3419.3926 lbm.in 2

Ly 

2829167.8445 lbm.in 2

Lz 

2829099.4408 lbm.in 2

Mass product of inertia :

XY

15455.3168 lbm.in 2

XZ

41002.1837 lbm.in 2

YZ Radii of gyration :

36.5546 lbm.in 2

X

3.7083 in

Y

106.6677 in

Z

106.6664 in

Principal mass moments : X

2740.0535 lbm.in 2 0.9999 in

Y

0.0055 in

Z

0.0145 in

X

2829183.4228 lbm.in 2 -0.0001 in

Y

0.9387 in

Z

-0.3448 in

X

2829763.2016 lbm.in 2 -0.0155 in

Y

0.3448 in

Z

0.9386 in

I=

J=

K=

Material :

Aramid composite

80

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 3 O’clock Longeron Mass : 254.9283 lbm Volume :

5880.3261 in 3

Surface area :

12097.2570 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

2557.6913 lbm.in 2

Ly 

3198297.0128 lbm.in 2

Lz 

3199688.8000 lbm.in 2

Mass product of inertia :

XY

-22572.6737 lbm.in 2

XZ

-385.3195 lbm.in 2

YZ Radii of gyration :

38.4587 lbm.in 2

X

3.1675 in

Y

112.0083 in

Z

112.0327 in

Principal mass moments : X

2398.2137 lbm.in 2 1.0000 in

Y

-0.0071 in

Z

-0.0001 in

X

3198455.4085 lbm.in 2 0.0071 in

Y

0.9996 in

Z

0.0290 in

X

3199689.8819 lbm.in 2 -0.0001 in

Y

-0.0290 in

Z

0.9996 in

I=

J=

K=

Material :

Aramid composite

81

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 3 O’clock Longeron Mass : 95.2148 lbm Volume :

2196.2797 in 3

Surface area :

4931.4250 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1368.6569 lbm.in 2

Ly 

313269.9537 lbm.in 2

Lz 

312985.0126 lbm.in 2

Mass product of inertia :

XY

-5494.3006 lbm.in 2

XZ

-10977.9376 lbm.in 2

YZ

339.1311 lbm.in 2

Radii of gyration : X

3.7914 in

Y

57.3597 in

Z

57.3337 in

Principal mass moments : X

885.4584 lbm.in 2 0.9992 in

Y

-0.0176 in

Z

-0.0352 in

X

313223.3668 lbm.in 2 0.0372 in

Y

0.7123 in

Z

0.7009 in

X

313514.7981 lbm.in 2 0.0127 in

Y

-0.7017 in

Z

0.7124 in

I=

J=

K=

Material :

Aramid composite

82

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 5 O’clock Longeron (Second part) Mass : 80.3002 lbm Volume :

1852.2526 in 3

Surface area :

3948.8558 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

746.1557 lbm.in 2

Ly 

137905.8711 lbm.in 2

Lz 

137853.5589 lbm.in 2

Mass product of inertia :

XY

93.8253 lbm.in 2

XZ

-3879.0845 lbm.in 2

YZ Radii of gyration :

92.3112 lbm.in 2

X

3.0483 in

Y

41.4413 in

Z

41.4334 in

Principal mass moments : X

636.4346 lbm.in 2 0.9996 in

Y

0.0007 in

Z

-0.0283 in

X

137835.4224 lbm.in 2 0.0163 in

Y

0.7123 in

Z

0.5961 in

X

138033.7287 lbm.in 2 0.0231 in

Y

-0.5963 in

Z

0.8024 in

I=

J=

K=

Material :

Aramid composite

83

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 6 O’clock Longeron Mass : 218.3567 lbm Volume :

5036.7431 in 3

Surface area :

9641.7878 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1823.7429 lbm.in 2

Ly 

1722017.6931 lbm.in 2

Lz 

1721148.8912 lbm.in 2

Mass product of inertia :

XY

-116.7617 lbm.in 2

XZ

1.9123 lbm.in 2

YZ Radii of gyration :

-1.4928 lbm.in 2

X

2.8900 in

Y

88.8046 in

Z

88.7822 in

Principal mass moments : X

1823.7350 lbm.in 2 1.0000 in

Y

-0.0001 in

Z

0.0000 in

X

1722017.7036 lbm.in 2 0.0001 in

Y

1.0000 in

Z

0.0017 in

X

1721148.8886 lbm.in 2 -0.0000 in

Y

-0.0017 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

84

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 7 O’clock Longeron Mass : 95.1842 lbm Volume :

2195.5740 in 3

Surface area :

4913.4419 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1367.5386 lbm.in 2

Ly 

313517.0878 lbm.in 2

Lz 

313223.9364 lbm.in 2

Mass product of inertia :

XY

5497.8910 lbm.in 2

XZ

-11007.8066 lbm.in 2

YZ

-340.3487 lbm.in 2

Radii of gyration : X

3.7904 in

Y

57.3916 in

Z

57.3648 in

Principal mass moments : X

882.4854 lbm.in 2 0.9992 in

Y

0.0176 in

Z

-0.0352 in

X

1722017.7036 lbm.in 2 0.0123 in

Y

0.7095 in

Z

0.7046 in

X

313466.6216 lbm.in 2 0.0374 in

Y

-0.7045 in

Z

0.7087 in

I=

J=

K=

Material :

Aramid composite

85

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 7 O’clock Longeron (Second part) Mass : 80.8609 lbm Volume :

1865.1851 in 3

Surface area :

3978.1772 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

752.3456 lbm.in 2

Ly 

141229.0194 lbm.in 2

Lz 

141178.2884 lbm.in 2

Mass product of inertia :

XY

25.5759 lbm.in 2

XZ

-3928.7067 lbm.in 2

YZ Radii of gyration :

-95.6486 lbm.in 2

X

3.0503 in

Y

41.7920 in

Z

41.7844 in

Principal mass moments : X

642.5121 lbm.in 2 0.9996 in

Y

0.0002 in

Z

-0.0279 in

X

141159.1811 lbm.in 2 -0.0167 in

Y

0.8054 in

Z

-0.5925 in

X

141357.9603 lbm.in 2 0.0224 in

Y

0.5928 in

Z

0.8051 in

I=

J=

K=

Material :

Aramid composite

86

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 9 O’clock Longeron Mass : 255.0780 lbm Volume :

5883.7796 in 3

Surface area :

12098.6044 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

2562.0434 lbm.in 2

Ly 

3199108.1320 lbm.in 2

Lz 

3200504.0106 lbm.in 2

Mass product of inertia :

XY

22386.4124 lbm.in 2

XZ

-372.6075 lbm.in 2

YZ Radii of gyration :

-38.5310 lbm.in 2

X

3.1693 in

Y

111.9897 in

Z

112.0141 in

Principal mass moments : X

642.5121 lbm.in 2 1.0000 in

Y

0.0070 in

Z

-0.0001 in

X

3199263.8630 lbm.in 2 -0.0070 in

Y

-0.0290 in

Z

-0.0290 in

X

3200505.0945 lbm.in 2 -0.0001 in

Y

0.0290 in

Z

0.9996 in

I=

J=

K=

Material :

Aramid composite

87

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 10 O’clock Longeron Mass : 245.1980 lbm Volume :

5655.8799 in 3

Surface area :

11625.1235 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

3391.0205 lbm.in 2

Ly 

2796049.3438 lbm.in 2

Lz 

2795985.6973 lbm.in 2

Mass product of inertia :

XY

-15256.2099 lbm.in 2

XZ

40664.1143 lbm.in 2

YZ

-39.6365 lbm.in 2

Radii of gyration : X

3.7188 in

Y

106.7859 in

Z

106.7847 in

Principal mass moments : X

2715.7064 lbm.in 2 0.9999 in

Y

-0.0055 in

Z

0.0146 in

X

2796067.4237 lbm.in 2 0.0002 in

Y

0.9416 in

Z

0.3367 in

X

2796642.9314 lbm.in 2 -0.0155 in

Y

-0.3367 in

Z

0.9415 in

I=

J=

K=

Material :

Aramid composite

88

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: 12 O’clock Longeron Mass : 193.6017 lbm Volume :

4465.7307 in 3

Surface area :

8536.3084 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1598.5805 lbm.in 2

Ly 

1185513.0121 lbm.in 2

Lz 

1184743.3013 lbm.in 2

Mass product of inertia :

XY

-35.1570 lbm.in 2

XZ

1854.8249 lbm.in 2

YZ Radii of gyration :

1.0358 lbm.in 2

X

2.8735 in

Y

78.2526 in

Z

78.2272 in

Principal mass moments : X

1595.6716 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0016 in

X

1185513.0147 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0014 in

X

1184746.2075 lbm.in 2 -0.0016 in

Y

0.0014 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

89

0.0000 in 0.0000 in 0.0000 in


Landing gear components Mass and mechanical properties calculations After computer aided design

90


Part by part mass properties results Part name: Frontal base part of landing gear Mass : 18.4114 lbm Volume :

196.0097 in 3

Surface area :

1064.0127 in 2 X Y Z

Centroid :

Mass moment of inertia : Lx =

1280.4157 lbm.in 2

Ly 

551.1279 lbm.in 2

Lz 

1137.4204 lbm.in 2

Mass product of inertia :

XY

0.0188 lbm.in 2

XZ

33.3884 lbm.in 2

YZ Radii of gyration :

-0.0987 lbm.in 2

X

8.3394 in

Y

5.4712 in

Z

7.8599 in

Principal mass moments : X

1287.8275 lbm.in 2 0.9762 in

Y

-0.0001 in

Z

-0.2167 in

X

551.1279 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0002 in

X

1130.0086 lbm.in 2 0.2167 in

Y

0.0002 in

Z

0.9762 in

I=

J=

K=

Material :

Aluminume7075-T6

91

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Landing gear reinforcement Mass : 47.3846 lbm Volume :

504.4623 in 3

Surface area :

1831.2351 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

2383.3145 lbm.in 2

Ly 

16114.5291 lbm.in 2

Lz 

18384.5733 lbm.in 2

Mass product of inertia :

XY

-0.3071 lbm.in 2

XZ

34.1562 lbm.in 2

YZ Radii of gyration :

-0.0023 lbm.in 2

X

7.0921 in

Y

18.4412 in

Z

19.6974 in

Principal mass moments : X

2383.2416 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0021 in

X

16114.5291 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

18384.6462 lbm.in 2 -0.0021 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T6

92

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Dorsal base part of landing gear Mass : 18.4114 lbm Volume :

196.0097 in 3

Surface area :

1064.0127 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1280.4157 lbm.in 2

Ly 

551.1279 lbm.in 2

Lz 

1137.4204 lbm.in 2

Mass product of inertia :

XY

-0.0188 lbm.in 2

XZ

-33.3884 lbm.in 2

YZ

-0.0987 lbm.in 2

Radii of gyration : X

8.3394 in

Y

5.4712 in

Z

7.8599 in

Principal mass moments : X

1287.8275 lbm.in 2 0.9762 in

Y

0.0001 in

Z

0.2167 in

X

551.1279 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

-0.0002 in

X

1130.0086 lbm.in 2 -0.2167 in

Y

0.0002 in

Z

0.9762 in

I=

J=

K=

Material :

Aluminume7075-T6

93

0.0000 in 0.0000 in 0.0000 in


Wing part by part mass and mechanical properties Calculations Based on computer aided design

94


Wing ribs mass and mechanical properties Calculations Based on computer aided design

95


Part by part mass properties results Part name: Rib # 1 Mass :

22.1341 lbm

Volume :

510.5582 in 3

Surface area :

2865.6160 in 2 X Y Z

Centroid :

Mass moment of inertia : Lx =

179.2956 lbm.in 2

Ly 

46802.9368 lbm.in 2

Lz 

46624.2130 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-34.4756 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

2.8461 in

Y

45.9839 in

Z

45.8960 in

Principal mass moments : X

179.2700 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0007 in

X

46802.9368 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

46624.2386 lbm.in 2 0.0007 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

96

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib # 2 Mass :

10.8398 lbm

Volume :

250.0372 in 3

Surface area :

1482.9115 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

51.6801 lbm.in 2

Ly 

9636.6046 lbm.in 2

Lz 

9585.2045 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

61.0024 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

2.1835 in

Y

29.8161 in

Z

29.7365 in

Principal mass moments : X

51.2898 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0064 in

X

9636.6046 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

9585.5948 lbm.in 2 -0.0064 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

97

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib # 3 Mass :

8.4821 lbm

Volume :

195.6525 in 3

Surface area :

1189.2862 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

29.5055 lbm.in 2

Ly 

6526.0836 lbm.in 2

Lz 

6496.7972 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

17.9284 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

1.8651 in

Y

27.7380 in

Z

27.6757 in

Principal mass moments : X

29.4558 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0028 in

X

6526.0836 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

6496.8469 lbm.in 2 -0.0028 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

98

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib # 4 Mass :

7.4444 lbm

Volume :

171.7163 in 3

Surface area :

1036.5926 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

21.6403 lbm.in 2

Ly 

5361.0631 lbm.in 2

Lz 

5339.6152 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

1.0070 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

1.7050 in

Y

26.8356 in

Z

26.7819 in

Principal mass moments : X

21.6401 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0002 in

X

5361.0631 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

5339.6153 lbm.in 2 -0.0002 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

99

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib # 5 Mass :

6.3613 lbm

Volume :

146.7345 in 3

Surface area :

895.7309 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

12.9807 lbm.in 2

Ly 

4288.4035 lbm.in 2

Lz 

4275.5872 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

7.8936 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

1.4285 in

Y

25.9641 in

Z

25.9253 in

Principal mass moments : X

12.9661 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0019 in

X

4288.4035 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

4275.6018 lbm.in 2 -0.0019 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

100

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib # 6 Mass :

6.3322 lbm

Volume :

146.0634 in 3

Surface area :

879.7496 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

13.9007 lbm.in 2

Ly 

3834.7390 lbm.in 2

Lz 

3821.0018 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

19.0699 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

1.4816 in

Y

25.9641 in

Z

25.9253 in

Principal mass moments : X

13.8052 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0050 in

X

3834.7390 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

3821.0974 lbm.in 2 -0.0050 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

101

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib # 7 Mass :

6.3322 lbm

Volume :

146.0634 in 3

Surface area :

879.7496 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

13.9007 lbm.in 2

Ly 

3834.7390 lbm.in 2

Lz 

3821.0018 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

19.0699 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

1.4816 in

Y

24.6087 in

Z

24.5646 in

Principal mass moments : X

13.8052 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0050 in

X

3834.7390 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

3821.0974 lbm.in 2 -0.0050 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

102

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib # 8 Mass :

6.2158 lbm

Volume :

143.3781 in 3

Surface area :

143.3781 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

13.7680 lbm.in 2

Ly 

3600.7272 lbm.in 2

Lz 

3587.1198 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

21.4189 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

1.4883 in

Y

24.0683 in

Z

24.0228 in

Principal mass moments : X

13.6396 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0060 in

X

3600.7272 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

3587.2482 lbm.in 2 -0.0060 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

103

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib # 9 Mass :

3.6961 lbm

Volume :

85.2572 in 3

Surface area :

928.6040 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

7.8783 lbm.in 2

Ly 

2623.2049 lbm.in 2

Lz 

2615.3505 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0020 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

1.4600 in

Y

26.6405 in

Z

26.6006 in

Principal mass moments : X

7.8783 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0000 in

X

2623.2049 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

2615.3505 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramide composite

104

0.0000 in 0.0000 in 0.0000 in


Wing spar mass and mechanical properties Calculations Based on Computer aided design

105


Part by part mass properties results Part name: Spar Complex of wing Mass : 626.6327 lbm Volume :

14454.2781 in 3

Surface area :

24379.7283 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1363833.5932 lbm.in 2

Ly 

948083.9685 lbm.in 2

Lz 

2303231.8649 lbm.in 2

Mass product of inertia :

XY

-937780.9637 lbm.in 2

XZ

18193.7682 lbm.in 2

YZ Radii of gyration :

-22392.2566 lbm.in 2

X

46.6524 in

Y

38.8971 in

Z

60.6265 in

Principal mass moments : X

2116502.7761 lbm.in 2 0.7799 in

Y

0.6259 in

Z

0.0009 in

X

195019.7907 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

18384.6462 lbm.in 2 -0.6259 in

Y

0.7798 in

Z

-0.0137 in

I=

J=

K=

Material :

Aramide composite

106

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Spar “Z” of wing Mass : 23.4965 lbm Volume :

541.9835 in 3

Surface area :

2689.3878 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

42822.7636 lbm.in 2

Ly 

32139.5789 lbm.in 2

Lz 

74897.9721 lbm.in 2

Mass product of inertia :

XY

-36765.1813 lbm.in 2

XZ

316.9252 lbm.in 2

YZ Radii of gyration :

-392.5974 lbm.in 2

X

42.6910 in

Y

36.9844 in

Z

56.4591 in

Principal mass moments : X

74631.2685 lbm.in 2 0.7550 in

Y

0.6527 in

Z

-0.0636 in

X

326.5681 lbm.in 2 -0.6543 in

Y

0.7562 in

Z

-0.0068 in

X

74902.4781 lbm.in 2 0.0437 in

Y

0.0467 in

Z

0.9980 in

I=

J=

K=

Material :

Aramide composite

107

0.0000 in 0.0000 in 0.0000 in


Elevator and flaps ribs and hinge systems mass and Mechanical properties calculations Based on computer aided design

108


Part by part mass properties results Part name: Aileron structure on rib # 2-1 Mass : 1.3708 lbm Volume :

31.6194 in 3

Surface area :

192.4713 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1.6388 lbm.in 2

Ly 

93.3128 lbm.in 2

Lz 

91.7094 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-5.0005 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

1.0934 in

Y

8.2506 in

Z

8.1794 in

Principal mass moments : X

1.3620 lbm.in 2 0.9985 in

Y

0.0000 in

Z

-0.0553 in

X

93.3128 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

91.9862 lbm.in 2 0.0553 in

Y

0.0000 in

Z

0.9985 in

I=

J=

K=

Material :

Aramide composite

109

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 2-2 Mass : 1.0327 lbm Volume :

23.8210 in 3

Surface area :

150.0758 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.9859 lbm.in 2

Ly 

56.3603 lbm.in 2

Lz 

55.4011 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-2.9440 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

0.9771 in

Y

7.3875 in

Z

7.3244 in

Principal mass moments : X

0.8271 lbm.in 2 0.9985 in

Y

0.0000 in

Z

-0.0539 in

X

56.3603 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

55.5599 lbm.in 2 0.0539 in

Y

0.0000 in

Z

0.9985 in

I=

J=

K=

Material :

Aramide composite

110

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 2-3 Mass : 1.3708 lbm Volume :

31.6194 in 3

Surface area :

192.4713 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1.6388 lbm.in 2

Ly 

93.3128 lbm.in 2

Lz 

91.7094 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-5.0005 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

1.0934 in

Y

8.2506 in

Z

8.1794 in

Principal mass moments : X

1.3620 lbm.in 2 0.9985 in

Y

0.0000 in

Z

-0.0553 in

X

93.3128 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

91.9862 lbm.in 2 0.0553 in

Y

0.0000 in

Z

0.9985 in

I=

J=

K=

Material :

Aramide composite

111

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 3-1 Mass : 0.6526 lbm Volume :

15.0540 in 3

Surface area :

96.7907 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.3581 lbm.in 2

Ly 

19.8643 lbm.in 2

Lz 

19.5230 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-1.0786 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.7408 in

Y

5.5170 in

Z

5.4694 in

Principal mass moments : X

0.2976 lbm.in 2 0.9984 in

Y

0.0000 in

Z

-0.0560 in

X

19.8643 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

19.5836 lbm.in 2 0.0560 in

Y

0.0000 in

Z

0.9984 in

I=

J=

K=

Material :

Aramide composite

112

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 3-2 Mass : 0.4460 lbm Volume :

10.2888 in 3

Surface area :

68.4668 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.1754 lbm.in 2

Ly 

8.9978 lbm.in 2

Lz 

8.8339 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.4937 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.6270 in

Y

4.4913 in

Z

4.4503 in

Principal mass moments : X

0.1473 lbm.in 2 0.9984 in

Y

0.0000 in

Z

-0.0567 in

X

8.9978 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

8.8620 lbm.in 2 0.0567 in

Y

0.0000 in

Z

0.9984 in

I=

J=

K=

Material :

Aramide composite

113

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 3-3 Mass : 0.6526 lbm Volume :

15.0540 in 3

Surface area :

96.7907 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.3581 lbm.in 2

Ly 

19.8643 lbm.in 2

Lz 

19.5230 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-1.0786 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.7408 in

Y

5.5170 in

Z

5.4694 in

Principal mass moments : X

0.2976 lbm.in 2 0.9984 in

Y

0.0000 in

Z

-0.0560 in

X

19.8643 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

19.5836 lbm.in 2 0.0560 in

Y

0.0000 in

Z

0.9984 in

I=

J=

K=

Material :

Aramide composite

114

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 4-1 Mass : 0.3030 lbm Volume :

6.9902 in 3

Surface area :

49.7329 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0851 lbm.in 2

Ly 

4.2942 lbm.in 2

Lz 

4.2169 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.2425 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

0.5300 in

Y

3.7643 in

Z

3.7303 in

Principal mass moments : X

0.0709 lbm.in 2 0.9983 in

Y

0.0000 in

Z

-0.0584 in

X

4.2942 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

4.2311 lbm.in 2 0.0584 in

Y

0.0000 in

Z

0.9983 in

I=

J=

K=

Material :

Aramide composite

115

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 4-2 Mass : 0.1668 lbm Volume :

3.8472 in 3

Surface area :

29.2837 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0271 lbm.in 2

Ly 

1.2249 lbm.in 2

Lz 

1.2021 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0735 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.4032 in

Y

2.7100 in

Z

2.6846 in

Principal mass moments : X

0.0225 lbm.in 2 0.9981 in

Y

0.0000 in

Z

-0.0622 in

X

1.2249 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

1.2066 lbm.in 2 0.0622 in

Y

0.0000 in

Z

0.9981 in

I=

J=

K=

Material :

Aramide composite

116

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 4-3 Mass : 0.3030 lbm Volume :

6.9902 in 3

Surface area :

49.7329 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0851 lbm.in 2

Ly 

4.2942 lbm.in 2

Lz 

4.2169 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.2425 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.5300 in

Y

3.7643 in

Z

3.7303 in

Principal mass moments : X

0.0709 lbm.in 2 0.9983 in

Y

0.0000 in

Z

-0.0584 in

X

4.2942 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

4.2311 lbm.in 2 0.0584 in

Y

0.0000 in

Z

0.9983 in

I=

J=

K=

Material :

Aramide composite

117

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 5-1 Mass : 0.3396 lbm Volume :

7.8340 in 3

Surface area :

54.7655 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.1104 lbm.in 2

Ly 

4.9513 lbm.in 2

Lz 

4.8496 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.2649 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.5701 in

Y

3.8182 in

Z

3.7788 in

Principal mass moments : X

0.0956 lbm.in 2 0.9985 in

Y

0.0000 in

Z

-0.0556 in

X

4.9513 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

4.8644 lbm.in 2 0.0556 in

Y

0.0000 in

Z

0.9985 in

I=

J=

K=

Material :

Aramide composite

118

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 5-2 Mass : 0.2169 lbm Volume :

5.0041 in 3

Surface area :

36.8302 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0475 lbm.in 2

Ly 

1.9318 lbm.in 2

Lz 

1.8899 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.1020 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

0.4677 in

Y

2.9841 in

Z

2.9516 in

Principal mass moments : X

0.0418 lbm.in 2 0.9985 in

Y

0.0000 in

Z

-0.0551 in

X

1.9318 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

1.8956 lbm.in 2 0.0551 in

Y

0.0000 in

Z

0.9985 in

I=

J=

K=

Material :

Aramide composite

119

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 5-3 Mass : 0.3396 lbm Volume :

7.8340 in 3

Surface area :

54.7655 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.1104 lbm.in 2

Ly 

4.9513 lbm.in 2

Lz 

4.8496 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.2649 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

0.5701 in

Y

3.8182 in

Z

3.7788 in

Principal mass moments : X

0.0956 lbm.in 2 0.9985 in

Y

0.0000 in

Z

-0.0556 in

X

4.9513 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

4.8644 lbm.in 2 0.0556 in

Y

0.0000 in

Z

0.9985 in

I=

J=

K=

Material :

Aramide composite

120

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 6-1 Mass : 0.5332 lbm Volume :

12.2984 in 3

Surface area :

80.1831 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.2452 lbm.in 2

Ly 

12.1197 lbm.in 2

Lz 

11.8883 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.5978 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.6782 in

Y

4.7677 in

Z

4.7220 in

Principal mass moments : X

0.2146 lbm.in 2 0.9987 in

Y

0.0000 in

Z

-0.0511 in

X

12.1197 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

11.9189 lbm.in 2 0.0511 in

Y

0.0000 in

Z

0.9987 in

I=

J=

K=

Material :

Aramide composite

121

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 6-2 Mass : 0.3934 lbm Volume :

9.0741 in 3

Surface area :

60.8958 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.1426 lbm.in 2

Ly 

6.3901 lbm.in 2

Lz 

6.2577 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.3159 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

0.6020 in

Y

4.0304 in

Z

3.9884 in

Principal mass moments : X

0.1263 lbm.in 2 0.9987 in

Y

0.0000 in

Z

-0.0514 in

X

6.3901 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

6.2739 lbm.in 2 0.0514 in

Y

0.0000 in

Z

0.9987 in

I=

J=

K=

Material :

Aramide composite

122

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 6-3 Mass : 0.5332 lbm Volume :

12.2984 in 3

Surface area :

80.1831 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.2452 lbm.in 2

Ly 

12.1197 lbm.in 2

Lz 

11.8883 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.5978 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.6782 in

Y

4.7677 in

Z

4.7220 in

Principal mass moments : X

0.2146 lbm.in 2 0.9987 in

Y

0.0000 in

Z

-0.0511 in

X

12.1197 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

11.9189 lbm.in 2 0.0511 in

Y

0.0000 in

Z

0.9987 in

I=

J=

K=

Material :

Aramide composite

123

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 7-1 Mass : 0.6587 lbm Volume :

15.1939 in 3

Surface area :

96.8160 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.3614 lbm.in 2

Ly 

18.7341 lbm.in 2

Lz 

18.3897 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.8951 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.7407 in

Y

5.3330 in

Z

5.2838 in

Principal mass moments : X

0.3171 lbm.in 2 0.9988 in

Y

0.0000 in

Z

-0.0495 in

X

18.7341 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

18.4341 lbm.in 2 0.0495 in

Y

0.0000 in

Z

0.9988 in

I=

J=

K=

Material :

Aramide composite

124

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 7-2 Mass : 0.4994 lbm Volume :

11.5199 in 3

Surface area :

75.2814 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.2254 lbm.in 2

Ly 

10.4490 lbm.in 2

Lz 

10.2366 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.5281 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.6718 in

Y

4.5741 in

Z

4.5274 in

Principal mass moments : X

0.1976 lbm.in 2 0.9986 in

Y

0.0000 in

Z

-0.0525 in

X

10.4490 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

10.2643 lbm.in 2 0.0525 in

Y

0.0000 in

Z

0.9986 in

I=

J=

K=

Material :

Aramide composite

125

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 7-3 Mass : 0.6587 lbm Volume :

15.1939 in 3

Surface area :

96.8160 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.3614 lbm.in 2

Ly 

18.7341 lbm.in 2

Lz 

18.3897 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.8951 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

0.7407 in

Y

5.3330 in

Z

5.2838 in

Principal mass moments : X

0.3171 lbm.in 2 0.9988 in

Y

0.0000 in

Z

-0.0495 in

X

18.7341 lbm.in 2 0.9988 in

Y

1.0000 in

Z

0.0000 in

X

18.4341 lbm.in 2 0.0495 in

Y

0.0000 in

Z

0.9988 in

I=

J=

K=

Material :

Aramide composite

126

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 8-1 Mass : 0.7774 lbm Volume :

17.9325 in 3

Surface area :

112.3956 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.4865 lbm.in 2

Ly 

26.3971 lbm.in 2

Lz 

25.9307 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-1.2209 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

0.7910 in

Y

5.8271 in

Z

5.7754 in

Principal mass moments : X

0.4280 lbm.in 2 0.9989 in

Y

0.0000 in

Z

-0.0478 in

X

26.3971 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

25.9891 lbm.in 2 0.0478 in

Y

0.0000 in

Z

0.9989 in

I=

J=

K=

Material :

Aramide composite

127

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Aileron structure on rib # 8-2 Mass : 0.6108 lbm Volume :

14.0889 in 3

Surface area :

90.3433 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.3299 lbm.in 2

Ly 

15.8577 lbm.in 2

Lz 

15.5436 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.7893 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

0.7350 in

Y

5.0954 in

Z

5.0446 in

Principal mass moments : X

0.2891 lbm.in 2 0.9987 in

Y

0.0000 in

Z

-0.0517 in

X

15.8577 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

15.5844 lbm.in 2 0.0517 in

Y

0.0000 in

Z

0.9987 in

I=

J=

K=

Material :

Aramide composite

128

0.0000 in 0.0000 in 0.0000 in


Wing and control surfaces skin mass and mechanical properties calculations Based on computer aided design

129


Part by part mass properties results Part name: Skin of flap and aileron Mass : 81.2173 lbm Volume :

1873.4064 in 3

Surface area :

9714.0024 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

76307.4903 lbm.in 2

Ly 

87487.1957 lbm.in 2

Lz 

163584.1845 lbm.in 2

Mass product of inertia :

XY

-79337.5067 lbm.in 2

XZ

135.9709 lbm.in 2

YZ Radii of gyration :

-342.9281 lbm.in 2

X

30.6520 in

Y

32.8207 in

Z

44.8793 in

Principal mass moments : X

2362.4700 lbm.in 2 0.7315 in

Y

-0.6818 in

Z

0.0021 in

X

161419.9728 lbm.in 2 0.6801 in

Y

0.7295 in

Z

-0.0729 in

X

163596.4277 lbm.in 2 0.0482 in

Y

0.0547 in

Z

0.9973 in

I=

J=

K=

Material :

Aramide composite

130

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Skin of wing Mass :

359.36275 lbm

Volume :

8289.2725 in 3

Surface area :

84580.9859 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1886968.8678 lbm.in 2

Ly 

2873306.2271 lbm.in 2

Lz 

303231.8649 lbm.in 2

Mass product of inertia :

XY

1547550.9026 lbm.in 2

XZ

22006.8281 lbm.in 2

YZ Radii of gyration :

31292.6621 lbm.in 2

X

51.2390 in

Y

63.2280 in

Z

81.2078 in

Principal mass moments : X

755576.1885 lbm.in 2 0.8073 in

Y

0.5901 in

Z

0.0091 in

X

4004164.5749 lbm.in 2 -0.5901 in

Y

0.8071 in

Z

0.0167 in

X

4740318.5216 lbm.in 2 0.0025 in

Y

-0.0188 in

Z

0.9998 in

I=

J=

K=

Material :

Aramide composite

131

0.0000 in 0.0000 in 0.0000 in


Horizontal tail mass and mechanical properties Calculations Based on computer aided design

132


Horizontal tail ribs mass and mechanical properties Calculations Based on computer aided designs

133


Part by part mass properties results Part name: Horizontal tail Rib #1 Mass :

5.7962 lbm

Volume :

133.6983 in 3

Surface area :

460.2106 in 2 X Y Z

Centroid :

Mass moment of inertia : Lx =

4.9464 lbm.in 2

Ly 

1470.8382 lbm.in 2

Lz 

1466.4908 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.1429 lbm.in 2

YZ

0.1429 lbm.in 2

Radii of gyration : X

0.9238 in

Y

15.9298 in

Z

15.9063 in

Principal mass moments : X

4.9464 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0001 in

X

1470.8382 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

1466.4908 lbm.in 2 -0.0001 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

134

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Horizontal tail Rib #2 Mass :

0.2462 lbm

Volume :

5.6792 in 3

Surface area :

54.8230 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0233 lbm.in 2

Ly 

6.5189 lbm.in 2

Lz 

6.5020 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0013 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.3074 in

Y

5.1456 in

Z

5.1389 in

Principal mass moments : X

0.0233 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.0002 in

X

6.5189 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

6.5020 lbm.in 2 0.0002 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

135

0.0000 in 0.0000 in 0.0000 in


Horizontal tail spars mass and mechanical properties Calculations Based on computer aimed designs

136


Part by part mass properties results Part name: Horizontal tail main spar Mass :

9.7113 lbm

Volume :

224.0065 in 3

Surface area :

1428.9673 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

2259.2558 lbm.in 2

Ly 

476.7812 lbm.in 2

Lz 

2715.3350 lbm.in 2

Mass product of inertia :

XY

1000.0849 lbm.in 2

XZ

-13.4654 lbm.in 2

YZ Radii of gyration :

-30.2799 lbm.in 2

X

15.2526 in

Y

7.0068 in

Z

16.7214 in

Principal mass moments : X

2707.5970 lbm.in 2 0.9125 in

Y

-0.4089 in

Z

0.0122 in

X

28.0302 lbm.in 2 0.4090 in

Y

0.9124 in

Z

-0.0123 in

X

2715.7448 lbm.in 2 -0.0061 in

Y

0.0163 in

Z

0.9998 in

I=

J=

K=

Material :

Aramid composite

Part by part mass properties results 137

0.0000 in 0.0000 in 0.0000 in


Part name: Horizontal tail Leading edge spar Mass :

2.0263 lbm

Volume :

46.7410 in 3

Surface area :

293.8186 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

635.3566 lbm.in 2

Ly 

422.0171 lbm.in 2

Lz 

1057.3218 lbm.in 2

Mass product of inertia :

XY

517.3967 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

0.0000 lbm.in 2

X

17.7073 in

Y

14.4314 in

Z

22.8427 in

Principal mass moments : X

1056.9650 lbm.in 2 0.7752 in

Y

-0.6317 in

Z

0.0000 in

X

0.4087 lbm.in 2 0.6317 in

Y

0.7752 in

Z

0.0000 in

X

1057.3218 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

138

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Horizontal tail trailing edge spar Mass :

5.8063 lbm

Volume :

61.8149 in 3

Surface area :

323.5355 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1820.5984 lbm.in 2

Ly 

3.9456 lbm.in 2

Lz 

1824.3210 lbm.in 2

Mass product of inertia :

XY

51.1224 lbm.in 2

XZ

-0.1377 lbm.in 2

YZ Radii of gyration :

-4.9024 lbm.in 2

X

17.7075 in

Y

0.8243 in

Z

17.7255 in

Principal mass moments : X

1822.0359 lbm.in 2 0.9996 in

Y

-0.0281 in

Z

0.0001 in

X

2.4949 lbm.in 2 0.0281 in

Y

0.9996 in

Z

-0.0027 in

X

1824.3343 lbm.in 2 -0.0000 in

Y

0.0027 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

139

0.0000 in 0.0000 in 0.0000 in


Horizontal tail skin mass and mechanical properties Calculations Based on computer aimed designs

140


Part by part mass properties results Part name: Horizontal tail Rib #2 Mass :

101.1791 lbm

Volume :

2333.8556 in 3

Surface area :

12195.4136 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

29279.3919 lbm.in 2

Ly 

28184.8666 lbm.in 2

Lz 

57171.3477 lbm.in 2

Mass product of inertia :

XY

11161.4582 lbm.in 2

XZ

-245.7212 lbm.in 2

YZ Radii of gyration :

-280.8247 lbm.in 2

X

17.0112 in

Y

16.6902 in

Z

23.7708 in

Principal mass moments : X

39906.9817 lbm.in 2 0.7242 in

Y

-0.6896 in

Z

0.0009 in

X

17553.7542 lbm.in 2 0.6895 in

Y

0.7242 in

Z

-0.0094 in

X

57174.8704 lbm.in 2 0.0058 in

Y

0.0074 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

141

0.0000 in 0.0000 in 0.0000 in


Vertical tail mass and mechanical properties Calculations Based on computer aimed design

142


Vertical tail ribs mass and mechanical properties Calculations Based on computer aimed design

Part by part mass properties results 143


Part name: Rib #1 of Vertical tail Mass :

14.7159 lbm

Volume :

339.4462 in 3

Surface area :

1092.9904 in 2 X Y Z

Centroid :

Mass moment of inertia : Lx =

28.1445 lbm.in 2

Ly 

10322.3406 lbm.in 2

Lz 

10348.9644 lbm.in 2

Mass product of inertia :

XY

0.0003 lbm.in 2

XZ

0.0000 lbm.in 2

YZ Radii of gyration :

-0.0000 lbm.in 2

X

1.3829 in

Y

26.4847 in

Z

26.5188 in

Principal mass moments : X

28.1445 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

10322.3406 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0000 in

X

10348.9644 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

144

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib #2 of Vertical tail Mass :

11.7229 lbm

Volume :

270.4083 in 3

Surface area :

893.9132 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

17.9869 lbm.in 2

Ly 

6788.4329 lbm.in 2

Lz 

6805.2084 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

1.2387 in

Y

24.0639 in

Z

24.0936 in

Principal mass moments : X

17.9869 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

6788.4329 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

6805.2084 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

145

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib #3 of Vertical tail Mass :

6.3556 lbm

Volume :

146.6010 in 3

Surface area :

525.7969 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

5.4869 lbm.in 2

Ly 

1979.0440 lbm.in 2

Lz 

1983.8742 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

0.9292 in

Y

17.6462 in

Z

17.6677 in

Principal mass moments : X

5.4869 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

1979.0440 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0000 in

X

1983.8742 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

146

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib #4 of Vertical tail Mass :

2.2540 lbm

Volume :

51.9924 in 3

Surface area :

219.1726 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.7876 lbm.in 2

Ly 

240.3941 lbm.in 2

Lz 

240.9488 lbm.in 2

Mass product of inertia :

XY

-0.2221 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.5911 in

Y

10.3272 in

Z

10.3391 in

Principal mass moments : X

0.7874 lbm.in 2 1.0000 in

Y

-0.0009 in

Z

0.0000 in

X

240.3943 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

240.9488 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

147

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Rib #5 of Vertical tail Mass :

0.4503 lbm

Volume :

10.3868 in 3

Surface area :

86.8772 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0471 lbm.in 2

Ly 

26.1960 lbm.in 2

Lz 

26.2315 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

0.3235 in

Y

7.6273 in

Z

7.6324 in

Principal mass moments : X

0.0471 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

26.1960 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

26.1960 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

148

0.0000 in 0.0000 in 0.0000 in


Vertical tail spars mass and mechanical properties Calculations Based on computer aimed design

149


Part by part mass properties results Part name: Vertical tail spars (all to gether) Mass :

53.5214 lbm

Volume :

1234.5558 in 3

Surface area :

5387.1284 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

28029.3653 lbm.in 2

Ly 

99095.4949 lbm.in 2

Lz 

71258.3158 lbm.in 2

Mass product of inertia :

XY

7.1721 lbm.in 2

XZ

33231.4424 lbm.in 2

YZ

8.0948 lbm.in 2

Radii of gyration : X

22.8846 in

Y

43.0292 in

Z

36.4883 in

Principal mass moments : X

10001.5097 lbm.in 2 0.8790 in

Y

0.0001 in

Z

0.4768 in

X

99095.4975 lbm.in 2 0.0001 in

Y

1.0000 in

Z

-0.0004 in

X

89286.1688 lbm.in 2 -0.4768 in

Y

0.0004 in

Z

0.8790 in

I=

J=

K=

Material :

Aramid composite

150

0.0000 in 0.0000 in 0.0000 in


Vertical tail skin mass and mechanical properties Calculations Based on computer aimed design

151


Part by part mass properties results Part name: Vertical tail skin Mass :

248.15255 lbm

Volume :

5724.03245 in 3

Surface area :

31952.3747 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

325456.5212 lbm.in 2

Ly 

1118341.6817 lbm.in 2

Lz 

797822.3041 lbm.in 2

Mass product of inertia :

XY

-20.9592 lbm.in 2

XZ

337748.2228 lbm.in 2

YZ

-2.7245 lbm.in 2

Radii of gyration : X

25.6078 in

Y

47.4693 in

Z

40.0939 in

Principal mass moments : X

149503.2451 lbm.in 2 0.8869 in

Y

-0.0000 in

Z

0.4620 in

X

1118341.6825 lbm.in 2 0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

973775.5793 lbm.in 2 -0.4620 in

Y

0.0001 in

Z

0.8869 in

I=

J=

K=

Material :

Aramid composite

152

0.0000 in 0.0000 in 0.0000 in


Vertical tail ruder ribs mass and mechanical properties Calculations Based on computer aimed design

153


Part by part mass properties results Part name: Ruder structure on rib NO 1-1 Mass :

2.0553 lbm

Volume :

40.6361 in 3

Surface area :

155.1310 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1.0507 lbm.in 2

Ly 

104.5974 lbm.in 2

Lz 

105.4357 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

0.7150 in

Y

7.1338 in

Z

7.1624 in

Principal mass moments : X

1.0507 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

104.5974 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

105.4357 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

154

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 1-2 Mass :

1.9231 lbm

Volume :

44.3596 in 3

Surface area :

173.7091 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

3.2607 lbm.in 2

Ly 

72.8642 lbm.in 2

Lz 

75.9262 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

1.3021 in

Y

6.1554 in

Z

6.2834 in

Principal mass moments : X

3.2607 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

72.8642 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

75.9262 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

155

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 1-3 Mass :

1.7617 lbm

Volume :

40.6361 in 3

Surface area :

155.1310 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.9006 lbm.in 2

Ly 

89.6549 lbm.in 2

Lz 

90.3735 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

0.7150 in

Y

7.1338 in

Z

7.1624 in

Principal mass moments : X

0.9006 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

89.6549 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

90.3735 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

156

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 2-1 Mass :

1.4534 lbm

Volume :

33.5253 in 3

Surface area :

130.9526 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.6661 lbm.in 2

Ly 

56.7419 lbm.in 2

Lz 

57.2579 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.6770 in

Y

6.2482 in

Z

6.2766 in

Principal mass moments : X

0.6661 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

56.7419 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

57.2579 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

157

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 2-2 Mass :

1.2152 lbm

Volume :

28.0294 in 3

Surface area :

110.6792 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.4887 lbm.in 2

Ly 

38.6461 lbm.in 2

Lz 

39.0092 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

0.6342 in

Y

5.6395 in

Z

5.6659 in

Principal mass moments : X

0.4887 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

38.6461 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

39.0092 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

158

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 2-3 Mass :

1.4534 lbm

Volume :

33.5253 in 3

Surface area :

130.9526 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.6661 lbm.in 2

Ly 

56.7419 lbm.in 2

Lz 

57.2579 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.6770 in

Y

6.2482 in

Z

6.2766 in

Principal mass moments : X

0.6661 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

56.7419 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

57.2579 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

159

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 3-1 Mass :

0.7723 lbm

Volume :

17.8151 in 3

Surface area :

80.2654 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.2037 lbm.in 2

Ly 

16.8695 lbm.in 2

Lz 

16.9933 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

0.5135 in

Y

4.6736 in

Z

4.6907 in

Principal mass moments : X

0.2037 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

16.8695 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0000 in

X

16.9933 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

160

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 3-2 Mass :

0.6622 lbm

Volume :

15.2743 in 3

Surface area :

68.5762 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.1549 lbm.in 2

Ly 

12.0547 lbm.in 2

Lz 

12.1412 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.4836 in

Y

4.2667 in

Z

4.2819 in

Principal mass moments : X

0.1549 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

12.0547 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

12.1412 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

161

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 3-3 Mass :

0.7723 lbm

Volume :

17.8151 in 3

Surface area :

80.2654 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.2037 lbm.in 2

Ly 

16.8695 lbm.in 2

Lz 

16.9933 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.5135 in

Y

4.6736 in

Z

4.6907 in

Principal mass moments : X

0.2037 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

16.8695 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0000 in

X

16.9933 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

162

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 4-1 Mass :

0.2640 lbm

Volume :

6.0890 in 3

Surface area :

33.8333 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0336 lbm.in 2

Ly 

1.8331 lbm.in 2

Lz 

1.8394 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.3569 in

Y

2.6352 in

Z

2.6397 in

Principal mass moments : X

0.0336 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

1.8331 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

1.8394 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

163

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 4-2 Mass :

0.2640 lbm

Volume :

6.0890 in 3

Surface area :

33.8333 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0336 lbm.in 2

Ly 

1.8331 lbm.in 2

Lz 

1.8394 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.3569 in

Y

2.6352 in

Z

2.6397 in

Principal mass moments : X

0.0336 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

1.8331 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

1.8394 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

164

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Ruder structure on rib NO 4-2 Mass :

0.1565 lbm

Volume :

3.6097 in 3

Surface area :

29.0533 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.0157 lbm.in 2

Ly 

1.3189 lbm.in 2

Lz 

1.3306 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.3172 in

Y

2.9031 in

Z

2.9160 in

Principal mass moments : X

0.0157 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

1.3189 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

0.0000 in

X

1.3306 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aramid composite

165

0.0000 in 0.0000 in 0.0000 in


Nose landing gears parts mass and mechanical properties Calculations Based on Computer aimed design

166


Part by part mass properties results Part name: Actuator to nose landing gear column Mass :

2.8993 lbm

Volume :

66.8761 in 3

Surface aria :

260.2205 in 2 X Y Z

Centroid :

Mass moment of inertia : Lx =

28.9718 lbm.in 2

Ly 

61.0977 lbm.in 2

Lz 

42.6398 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-24.7050 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

3.1611 in

Y

4.5906 in

Z

3.8350 in

Principal mass moments : X

10.1730 lbm.in 2 0.7958 in

Y

0.0000 in

Z

-0.6056 in

X

61.0977 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

61.4386 lbm.in 2 0.6056 in

Y

0.0000 in

Z

0.7958 in

I=

J=

K=

Material :

Aramid composite

167

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Bearing part of nose landing gear: Mass :

25.3077 lbm

Volume :

269.4292 in 3

Surface aria :

310.9651 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

218.8552 lbm.in 2

Ly 

369.7831 lbm.in 2

Lz 

216.5236 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-5.3538 lbm.in 2

Radii of gyration : X

2.9407 in

Y

3.8225 in

Z

2.9250 in

Principal mass moments : X

218.8552 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

369.9699 lbm.in 2 0.0000 in

Y

0.9994 in

Z

0.0349 in

X

216.3368 lbm.in 2 0.0000 in

Y

-0.0349 in

Z

0.9994 in

I=

J=

K=

Material :

Aluminume7075-T76

168

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear Fuselage axel Mass :

3.0493 lbm

Volume :

32.4631 in 3

Surface aria :

88.9393 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

81.0533 lbm.in 2

Ly 

0.8808 lbm.in 2

Lz 

81.0533 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

5.1557 in

Y

0.5375 in

Z

5.1557 in

Principal mass moments : X

81.0533 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

0.8808 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

81.0533 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T76

169

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear Hydraulic flange Mass :

3.3858 lbm

Volume :

11.9237 in 3

Surface aria :

55.7480 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

4.2224 lbm.in 2

Ly 

5.8294 lbm.in 2

Lz 

4.5966 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.2968 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.8756 in

Y

1.3121 in

Z

1.1652 in

Principal mass moments : X

4.0587 lbm.in 2 1.0000 in

Y

0.0000 in

Z

-0.4830 in

X

5.8294 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0349 in

X

4.7603 lbm.in 2 0.4830 in

Y

0.0000 in

Z

0.8756 in

I=

J=

K=

Material :

4130-T36 Steel

170

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear Tire ring Mass :

5.5696 lbm

Volume :

59.2941 in 3

Surface aria :

272.2526 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

79.2669 lbm.in 2

Ly 

326.9004 lbm.in 2

Lz 

251.5363 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-136.6114 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

3.7726 in

Y

7.6612 in

Z

6.7203 in

Principal mass moments : X

3.9028 lbm.in 2 0.8756 in

Y

0.0000 in

Z

-0.4830 in

X

326.9004 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

326.9004 lbm.in 2 0.4830 in

Y

0.0000 in

Z

0.8756 in

I=

J=

K=

Material :

Aluminume7075-T76

171

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Hydraulic actuator third deflectable part Mass :

7.8457 lbm

Volume :

83.5264 in 3

Surface aria :

449.7662 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

130.0076 lbm.in 2

Ly 

514.4866 lbm.in 2

Lz 

397.4754 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-212.1046 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

4.0707 in

Y

8.0979 in

Z

7.1177 in

Principal mass moments : X

12.9963 lbm.in 2 0.8756 in

Y

0.0000 in

Z

-0.4830 in

X

514.4866 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

514.4866 lbm.in 2 0.4830 in

Y

0.0000 in

Z

0.8756 in

I=

J=

K=

Material :

Aluminume7075-T76

172

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Hydraulic actuator third deflectable part Mass :

1.6605 lbm

Volume :

17.6774 in 3

Surface aria :

71.1967 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

12.4455 lbm.in 2

Ly 

50.6833 lbm.in 2

Lz 

38.5533 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-21.5420 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

2.7378 in

Y

5.5248 in

Z

4.8186 in

Principal mass moments : X

0.3109 lbm.in 2 0.8713 in

Y

0.0000 in

Z

0.0000 in

X

50.6833 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

50.6880 lbm.in 2 0.4908 in

Y

0.0000 in

Z

0.8713 in

I=

J=

K=

Material :

Aluminume7075-T76

173

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing Tire Mass :

18.2933 lbm

Volume :

194.7530 in 3

Surface aria :

319.1425 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

292.4827 lbm.in 2

Ly 

108.0065 lbm.in 2

Lz 

292.2577 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

6.4421 lbm.in 2

Radii of gyration : X

3.9986 in

Y

2.4298 in

Z

3.9970 in

Principal mass moments : X

292.4827 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

107.7815 lbm.in 2 0.0000 in

Y

0.9994 in

Z

0.0349 in

X

292.4827 lbm.in 2 0.0000 in

Y

-0.0349 in

Z

0.9994 in

I=

J=

K=

Material :

Aluminume7075-T76

174

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear main column Mass :

15.1953 lbm

Volume :

161.7707 in 3

Surface aria :

230.8890 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

221.0836 lbm.in 2

Ly 

221.0836 lbm.in 2

Lz 

40.5950 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-0.0000 lbm.in 2

Radii of gyration : X

3.8144 in

Y

3.8144 in

Z

1.6345 in

Principal mass moments : X

221.0836 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

221.0836 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

40.5950 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T76

175

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear axle nut Mass :

2.6622 lbm

Volume :

28.3425 in 3

Surface aria :

85.9044 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

8.9280 lbm.in 2

Ly 

17.0712 lbm.in 2

Lz 

8.9379 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

-0.2844 lbm.in 2

Radii of gyration : X

1.8313 in

Y

2.5323 in

Z

1.8323 in

Principal mass moments : X

8.9280 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

17.0811 lbm.in 2 0.0000 in

Y

0.9994 in

Z

0.0349 in

X

8.9280 lbm.in 2 0.0000 in

Y

-0.0349 in

Z

0.9994 in

I=

J=

K=

Material :

Aluminume7075-T76

176

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear coverage nut Mass :

16.7384 lbm

Volume :

178.1988 in 3

Surface aria :

331.0575 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

155.2687 lbm.in 2

Ly 

155.2687 lbm.in 2

Lz 

294.1012 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

3.0457 in

Y

3.0457 in

Z

4.1917 in

Principal mass moments : X

155.2687 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

155.2687 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

294.1012 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T76

177

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear Roller bearing Mass :

0.8487 lbm

Volume :

2.9889 in 3

Surface area :

38.4853 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

0.5234 lbm.in 2

Ly 

0.9818 lbm.in 2

Lz 

0.5234 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

0.0000 lbm.in 2

Radii of gyration : X

0.7853 in

Y

1.0756 in

Z

0.7853 in

Principal mass moments : X

0.5234 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0000 in

X

0.9818 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

0.5234 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

4130-T36 Steel

178

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear spring coverage Mass :

136.8170 lbm

Volume :

1456.5698 in 3

Surface area :

1450.7615 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

7441.0122 lbm.in 2

Ly 

7423.1682 lbm.in 2

Lz 

2444.0384 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

-0.0007 lbm.in 2

YZ

0.1913 lbm.in 2

Radii of gyration : X

7.3747 in

Y

7.3659 in

Z

4.2265 in

Principal mass moments : X

7441.0122 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

7423.1682 lbm.in 2 -0.0000 in

Y

1.0000 in

Z

-0.0000 in

X

2444.0384 lbm.in 2 -0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Aluminume7075-T76

179

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear Roller bearing coverage Mass :

0.2639 lbm

Volume :

2.8099 in 3

Surface area :

39.1408 in 2 X Y Z

Centroid :

0.0000 in 0.0000 in 0.0000 in

Mass moment of inertia :

Lx =

0.3113 lbm.in 2

Ly 

0.5813 lbm.in 2

Lz 

0.3113 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

11.4465 lbm.in 2

YZ

0.0421 lbm.in 2

Radii of gyration : X

5.2055 in

Y

5.2070 in

Z

2.7884 in

Principal mass moments : X

1094.6583 lbm.in 2 1.0000 in

Y

-0.0000 in

Z

0.0000 in

X

0.5813 lbm.in 2 0.0000 in

Y

1.0000 in

Z

0.0000 in

X

0.3113 lbm.in 2 0.0000 in

Y

0.0000 in

Z

1.0000 in

I=

J=

K=

Material :

Advanced high tempered steel alloy

180


Part by part mass properties results Part name: Secondary Nose landing Column Mass :

16.1190 lbm

Volume :

171.6047 in 3

Surface aria :

204.8867 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

295.9983 lbm.in 2

Ly 

281.8014 lbm.in 2

Lz 

45.4780 lbm.in 2

Mass product of inertia :

XY

-0.0000 lbm.in 2

XZ

0.0000 lbm.in 2

YZ

-49.3426 lbm.in 2

Radii of gyration : X

4.2852 in

Y

4.1812 in

Z

1.6797 in

Principal mass moments : X

295.9983 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

291.6900 lbm.in 2 0.0000 in

Y

0.9805 in

Z

0.1965 in

X

35.5894 lbm.in 2 0.0000 in

Y

-0.1965 in

Z

0.9805 in

I=

J=

K=

Material :

Aluminume7075-T76

181

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing gear spring COMPRESSION SPRING - 0.034700 X 0.138800 X 0.382648 Mass :

40.3908 lbm

Volume :

142.2410 in 3

Surface area :

436.8208 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

1094.4907 lbm.in 2

Ly 

1095.1006 lbm.in 2

Lz 

314.0456 lbm.in 2

Mass product of inertia :

XY

0.0122 lbm.in 2

XZ

11.4465 lbm.in 2

YZ

0.0421 lbm.in 2

Radii of gyration : X

5.2055 in

Y

5.2070 in

Z

2.7884 in

Principal mass moments : X

1094.6583 lbm.in 2 0.9996 in

Y

0.0262 in

Z

-0.0147 in

X

1095.1009 lbm.in 2 -0.0262 in

Y

0.9997 in

Z

0.0003 in

X

313.8778 lbm.in 2 0.0147 in

Y

0.0001 in

Z

0.9999 in

I=

J=

K=

Material :

ASTM A-316 Steel

182

0.0000 in 0.0000 in 0.0000 in


Part by part mass properties results Part name: Nose landing Tire Mass :

21.1475 lbm

Volume :

487.8018 in 3

Surface aria :

1908.0009 in 2 X Y Z

Centroid :

0.0000 in 0.0000 in 0.0000 in

Mass moment of inertia :

Lx =

912.6324 lbm.in 2

Ly 

1671.4183 lbm.in 2

Lz 

913.5566 lbm.in 2

Mass product of inertia :

XY

0.0161 lbm.in 2

XZ

0.0006 lbm.in 2

YZ

-26.4812 lbm.in 2

Radii of gyration : X

6.5693 in

Y

8.8902 in

Z

6.5726 in

Principal mass moments : X

912.6324 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

1672.3425 lbm.in 2 -0.0000 in

Y

0.9994 in

Z

0.0349 in

X

169.1636 lbm.in 2 0.0000 in

Y

-0.0349 in

Z

0.9994 in

I=

J=

K=

Material :

Advance Metal-plastic composite

183


Part by part mass properties results Part name: Nose landing gear Tire ring Mass :

13.4127 lbm

Volume :

142.7934 in 3

Surface aria :

674.7968 in 2 X Y Z

Centroid :

Mass moment of inertia :

Lx =

169.1636 lbm.in 2

Ly 

287.3928 lbm.in 2

Lz 

169.3078 lbm.in 2

Mass product of inertia :

XY

0.0000 lbm.in 2

XZ

-0.0000 lbm.in 2

YZ

-4.1287 lbm.in 2

Radii of gyration : X

3.5514 in

Y

4.6289 in

Z

3.5529 in

Principal mass moments : X

169.1636 lbm.in 2 1.0000 in

Y

0.0000 in

Z

0.0000 in

X

287.5370 lbm.in 2 0.0000 in

Y

0.9994 in

Z

0.0349 in

X

169.1636 lbm.in 2 0.0000 in

Y

-0.0349 in

Z

0.9994 in

I=

J=

K=

Material :

Aluminume7075-T76

184

0.0000 in 0.0000 in 0.0000 in


Structural component weight tables Based on computer aimed design

185


Frames plates mass:

Plate # : 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total: Percentage:

Mass: 44.3018 Pound 92.9724 Pound 120.0519 Pound 65.6699 Pound 34.8648 Pound 47.2741 Pound 195.2575 Pound 93.1945 Pound 240.5425 Pound 211.4782 Pound 116.1735 Pound 40.1249 Pound 19.9312 Pound 15.0383 Pound 39.7332 Pound 1136.0662 Pound

3.7053%

186


Fuselages frames mass Part name : Frame No 1-1 Frame No 1-2 Frame No 2-1 Frame No 2-2 Frame No 3-1 Frame No 3-2 Frame No 4-1 Frame No 4-2 Frame No 5-1 Frame No 5-2 Frame No 6-1 Frame No 6-2 Frame No 7-1 Frame No 7-2 Frame No 8-1 Frame No 8-2 Frame No 9-1 Frame No 9-2 Frame No 10-1 Frame No 10-2 Frame No 11-1 Frame No 11-2 Frame No 12-1 Frame No 12-2 Frame No 13-1 Frame No 13-2 Frame No 14-1 Frame No 14-2 Frame No 15-1 Frame No 15-2 Frame No 16-1 Frame No 16-2 Frame No 17-1 Frame No 17-2

mass (Pound) : 26.8596 24.8106 21.6546 27.1534 52.1104 63.1574 85.1118 82.2387 84.3507 89.5583 79.6978 79.9081 40.9714 41.7945 58.7052 58.7457 81.4356 81.4359 72.2245 72.2270 38.4003 38.3994 48.9530 48.9538 80.7232 80.6491 173.5542 173.4361 120.1888 121.6050 55.5051 63.1033 57.4828 59.5932 187


Horizontal tail part by part mass:

Part name: Spar # 1 Spar # 2 Main spar Skin Rib # 1 Rib # 2

mass(pound) : 5.8063 2.0263 9.7113 101.1791 5.7962 0.2462

188


Landing gear attachments mass: Part name : Nose landing gear (Dorsal) Nose landing gear (Frontal) Reinforcement beam

Weight ( pound): 18.4114 18.4114 47.3846

Radom mass:

Radom

294.8290

Fuselage skin:

Skin

1315.6205

189


Longeron’s mass:

Longeron name : 12’oclock 10’oclock 9’oclock 7’oclock 7’oclock (Second part) 6’oclock 5’oclock 5’oclock (Second part) 3’oclock 2’oclock

mass: ( pound) 193.6017 245.1980 255.0780 80.8609 80.8609 18.3567 80.30022 80.3002 254.9283 248.6526

190


Wing ribs : Part name : Rib NO 1 Rib NO 2 Rib NO 3 Rib NO 4 Rib NO 5 Rib NO 6 Rib NO 7 Rib NO 8 Rib NO 9

Weight (Pound): 22.1341 10.8398 8.4821 7.4444 6.3613 6.2052 6.3322 6.2158 3.6961

Wing Spars : Part name : Spars Z Section spars

Weight (Pound) : 626.6327 23.4965

Wing skins : Part name : Skin Flaps & Ailerons skin

Weight (Pound) : 359.36275 81.2173

191


Flap and aileron structure : Part # : 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3 5-1 5-2 5-3 6-1 6-2 6-3 7-1 7-2 7-3 8-1 8-2

Weight (Pound) : 1.3708 1.0327 1.3708 0.6526 0.4460 0.6526 0.3030 0.1668 0.3030 0.3396 0.2169 0.3396 0.5332 0.3934 0.5332 0.6587 0.4994 0.6587 0.7774 0.6108

192


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.