FF3 Analysis Data Item Vol. 2

Page 1

ȏ Ȑ

ʹͲͲ͵ǦʹͲͲͷǡ Sina Golshany 4/21/2005

These are computations I performed between 2003 and 2005 to evaluate an aircraft configuration I had put together when I was a sophomore in high school. My command of the English language wasn’t particularly great at the time I was putting this document together, so the dear reader will excuse occasional grammatical, composition errors and typos as well as technical errors here and there.


F-F.3 Project data unit, Volume II: Designer: Sina Golshany -Center of gravity location calculation -Moment of inertia calculations -Lift and drag calculations and graphs -performance calculations and graphs


Structural component weight tables Based on computer aimed design

185


Frames plates mass:

Plate # : 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total: Percentage:

Mass: 44.3018 Pound 92.9724 Pound 120.0519 Pound 65.6699 Pound 34.8648 Pound 47.2741 Pound 195.2575 Pound 93.1945 Pound 240.5425 Pound 211.4782 Pound 116.1735 Pound 40.1249 Pound 19.9312 Pound 15.0383 Pound 39.7332 Pound 1136.0662 Pound

3.7053%

186


Fuselages frames mass Part name : Frame No 1-1 Frame No 1-2 Frame No 2-1 Frame No 2-2 Frame No 3-1 Frame No 3-2 Frame No 4-1 Frame No 4-2 Frame No 5-1 Frame No 5-2 Frame No 6-1 Frame No 6-2 Frame No 7-1 Frame No 7-2 Frame No 8-1 Frame No 8-2 Frame No 9-1 Frame No 9-2 Frame No 10-1 Frame No 10-2 Frame No 11-1 Frame No 11-2 Frame No 12-1 Frame No 12-2 Frame No 13-1 Frame No 13-2 Frame No 14-1 Frame No 14-2 Frame No 15-1 Frame No 15-2 Frame No 16-1 Frame No 16-2 Frame No 17-1 Frame No 17-2

mass (Pound) : 26.8596 24.8106 21.6546 27.1534 52.1104 63.1574 85.1118 82.2387 84.3507 89.5583 79.6978 79.9081 40.9714 41.7945 58.7052 58.7457 81.4356 81.4359 72.2245 72.2270 38.4003 38.3994 48.9530 48.9538 80.7232 80.6491 173.5542 173.4361 120.1888 121.6050 55.5051 63.1033 57.4828 59.5932 187


Horizontal tail part by part mass:

Part name: Spar # 1 Spar # 2 Main spar Skin Rib # 1 Rib # 2

mass(pound) : 5.8063 2.0263 9.7113 101.1791 5.7962 0.2462

188


Landing gear attachments mass: Part name : Nose landing gear (Dorsal) Nose landing gear (Frontal) Reinforcement beam

Weight ( pound): 18.4114 18.4114 47.3846

Radom mass:

Radom

294.8290

Fuselage skin:

Skin

1315.6205

189


Longeron’s mass:

Longeron name : 12’oclock 10’oclock 9’oclock 7’oclock 7’oclock (Second part) 6’oclock 5’oclock 5’oclock (Second part) 3’oclock 2’oclock

mass: ( pound) 193.6017 245.1980 255.0780 80.8609 80.8609 18.3567 80.30022 80.3002 254.9283 248.6526

190


Wing ribs : Part name : Rib NO 1 Rib NO 2 Rib NO 3 Rib NO 4 Rib NO 5 Rib NO 6 Rib NO 7 Rib NO 8 Rib NO 9

Weight (Pound): 22.1341 10.8398 8.4821 7.4444 6.3613 6.2052 6.3322 6.2158 3.6961

Wing Spars : Part name : Spars Z Section spars

Weight (Pound) : 626.6327 23.4965

Wing skins : Part name : Skin Flaps & Ailerons skin

Weight (Pound) : 359.36275 81.2173

191


Flap and aileron structure : Part # : 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3 5-1 5-2 5-3 6-1 6-2 6-3 7-1 7-2 7-3 8-1 8-2

Weight (Pound) : 1.3708 1.0327 1.3708 0.6526 0.4460 0.6526 0.3030 0.1668 0.3030 0.3396 0.2169 0.3396 0.5332 0.3934 0.5332 0.6587 0.4994 0.6587 0.7774 0.6108

192


Center of gravity location calculations

193


Center of gravity calculation: T-O, Operational weight &condition

X

i  n Wi

CG



i 1 WT

d

I 1: Wi 1 Wradome W11 W1 2 Wi 1  294.8290 26.8596 24.8106 Wi 1 346.4992Pound di 1  4.8828 ft X CG 

346.4994 4.882855.2610 3 30616.34

I  2: Wi  2 WRADARantena  1 WRADAR WILS  1 W Landing gear structure 2 2  1 WNose Landing gear  1 WHTS W2 1 W2  2 W plate#2 3 2

194


Wi  2  20.5 121.6 10.2  0.5(42.10235)  1 (61.7614)  1 50 3 2  21.6546  27.1534  44.3018  374.2735 di  2  8.6368 ft X CG 

374.2735  8.6368  105.581810 3 30616.34

I  3: Wi  3  1 W RADAR  WRA( RADAR  Altimetere)  1 W HTS  W31  W3 2 2 2  W Plate#3 Wi  3  377.07 Pound di  3  10.02 ft X CG 

377.07 10.02  0.1234 ft 30616.34

195


I  4: Wi  4  WHUD  Winstpanel  W fwdAvionics  W4 1  W4  2  W Plate#4  2 W 3 Nose landing gear Wi  4  831.2192Pound di  4  12.9058 ft X CG 

831.2191 12.9058  0.3503 ft 30616.34

I  5: Wi  5  W5 1  W5  2  W Plate#5  1 W firewall 3 Wi  5  84.3507  89.5583  65.6699  33.3 Wi  5  272.8789 di  5  15.45 ft X CG 

272.8789 15.45  0.1377 ft 30616.34

I  6: Wi  6  W6 1  W6  2  WPlate#6 Wi  6  79.6978  79.9081 34.8448 196


X CG 

194.4507 16.6358  0.1056 ft 30616.34

I 7: Wi  7  WPlate#7  WLongeron6'oclock  W7 1  W7  2  W EectionSeat Wi  7  47.274118.3567  40.9714  41.7945 147 Wi  7  295.3967 Pound di  7  18.0610 ft X CG 

295.3967 18.0610  0.1742 ft 30616.3

I  8: Wi 8  W8 1  W8 2  W Plate8  W DorsalAvibox  Wapi  WOXY Wi 8  58.7052  58.4757 195.2575  250 109 16.9 Wi 8  688.6084Pound di 8  20.4022 ft X CG 

688.6084  20.4022  0.4588 ft 30616.34

I 9: Wi  9  1 Wintake  W plate#9  W9 1  W9  2  WLongron9o'clock 4 197


 WLongron3o'clock  WLongron7o'clock"I"  WLongeron5o'clock"I" Wi  9  1 180.2 93.1945  81.4356  81.4359  255.0780 4  254.9283 Wi  9  927.23342Pound di  9  22.2775 ft X CG 

927.23342  22.2775  0.67468 ft 30616.34

I 10 : Wi 10  W10 1  W10  2  W Plate10  1 WAir induction  1 Winternal fuel 4 2 Wi 10  72.2245  42.2270  240.5425  1 5544.5 2 Wi 10  3157.244Pound di 10  24.5652 ft X CG 

3157.244  24.5652  0.1031 ft 30616.34

I 11: Wi 11  W111  W11 2  W Plate#11  1 WFuel  WWing  W EW  W Longerons 2 Wi 11  72.2270  38.3994  211 1 5544.5 2336.8805 2 198


Wi 11  5431.2355  8500 1376.6497 Pound Wi 11  15307.8852Pound di 11  27.2696 ft X CG 

15307.8852  27.2696  13.6348 ft 30616.32

I 12 : Wi 12  W12 1  W12  2  W plate#12  Wmain landing gear Wi 12  48.9530  48.9538 116.1735  998.9 Wi 12  1212.9803Pound d12  30.7667 ft X CG 

1212.9803  30.7667  13.6348 ft 30616.32

I 13 : Wi 13  W131  W13 2  WPlate#13 d13  34.2860 ft Wi 13  80.7232  80.6491 40.1249  1 WVt  WSkin 5 Wi 13  1658.1008Pound

199


X CG 

1658.1008  34.2860  1.8568 ft 30616.34

I 15 : Wi 15  W15 1  W15  2  W Plate15  2 WVt 5 Wi 15  120.1888 121.6050 15.0383 120.668 Wi 15  377.5001Pound di 15  40.6519 ft X CG 

377.5001  40.6519  0.5012 ft 30616.34

I 16 : Wi 16  W16 1  W16  2  W Plate#16  W Ht Wi 16  55.5051 63.1033  39.7332  249.6504 Wi 16  407.9920Pound X CG 

407.9920  41.6587  0.5551 ft 30616.32

I 17 : Wi 17  W17 1  W17  2  WPlate17 Wi 17  57.4828  59.5932  0 200


Wi 17  117.076Pound di 17  45.7814 ft X CG  X CG 

117.076  45.7814  0.1750 ft 30616.32

i  n Wi  i 1WT

d i



X CG   X CG  55.2610 3  105.5818103

 0.1234 0.3503 0.1377 0.1056

0.1742 0.4588 0.67468 4.8375 1.2189 1.8568  5.46918  0.5012  0.551 0.1750 X CG  30.2549 ft

201


Moment of inertia calculations

202


Moment of inertia calculation, Maximum weight: X-body axe :

I XX

b 2 mRX 2  4

RX  0.23 L  49.22 ft m  30616.34Pound  951.5735Slug b  32.1768 ft I XX 

52117.5165  13029.3791Slug 2 ft 4

Y-body axe:

IYY

b 2 mRX 2  4

RY  0.38 L  49.22 ft m  951.5735Slug IYY  83220.9673 Slug

ft 2

203


Z-body axe :

I ZZ

 b L    2  

2

 mRZ 2     4   

RZ  0.52 b  32.1768 ft m  951.5735Slug L  49.22 ft I ZZ

 32.1768 49.22    2  

I ZZ  106547.6086 Slug

2

 951.57350.522      4  

ft 2

204


Lift and drag calculations Base on Dr. J. Roskam method

205


Class II Drag Calculations Based on Dr. J-Roskam method

206


Conditions : I,II,III,IV n i  C D0  n 1

CD0 CD0 ...1,2 Airplanes Part 

-Wing drag coefficient : Condition I, Subsonic regime :

C

 

t t   R R  1  L   100 D0 Wf Ls c c W 

RN

  C f 4  W   Lan   

fus

 f RN fus , M

C

 S f b Wet Tur   W

C

S f Wet Turb W

SW

  t t RLS ( Lifting Surface Corection Factor )  f   C ,  ,  , M   4W  c W  r W  r r  

 c

L  1.6  t

Max

at X t  0.3 C

     t 0.5  t    t      C   C  r  C t  

CDLW 

Cl

W

2

ARW e

 2CLW  tW   4 2 tW 2

207

     


  CL  W e  1.1 R 1 R    ARW  ARW   CL

W

R  Leading edge suction parameter of wing   l R  f  ARW ,W , C , ler  , M 1 Source : Airplane Design PartVI, Fig4 - 7 C W 4W   

  Induced drag factor due to inear twist   f  ARW ,W , C 

 l , ler  , M 1  Source : Airplane Design Part VI, Fig 4 - 9 C W 4W  

 : Zero lift drag Entered parameters :

CL : Must Calculate in 2 Step W

Calculations of air foil section parameter:

Cl

Max

 f Re , t , Airfoil Type c

Re r 

VS Cr 

Re 

VS Ct 

t

208


 WTO VS    0.5CL MaxClean 

   

0.5

Entered parameters :

Alt  35000 ft Cr  22.06 ft w

Ct  10.37 ft w

SW  340.32 ft 2

t c 

 6%

t c 

 4%

Wr

Wt

WTO  30616Pound Root Airfoil  NACA 6 Digit Cambered Tip Airfoil  NACA 6 Digit Cambered Cl

Max Clean

 1.092

209


Result of calculations :

Cl

Max r

Cl

Max t

 1.085  0.505

Re r  25 6882 106 Ret  12.0848106 VS 35000 ft   280.05Kts Calculating C

L MaxW

:

Clean

CL

MaxW

 fCoupleCL

Max

l  f Couple  f  h  C  l  f Couple 1.10 h 3.0  C 

CL

MaxW Unsweeped

CL

maxW Sweeped

Cos C

4W

210


CL CL

CL

MaxW Unsweeped

MaxW Sweeped

Cos C

4W

 Cos C  Cl Cl  Maxt  4  Max r  K 2

MaxW

K  :Taper ratio factor K   0.117W  0.997 CL

MaxW Clean

f Couple

C L

MaxClean

 0.05

CLMax

Clean

Or : CL

MaxW Clean

f Couple CL

Max X

 CL

MaxClean

  1.05 CL C L Max Max X Clean  

K   1.0 0.08Cos 2  C 4W  K

Cl

Cos 3 4   C  4W

Max

Cl

211


Entered parameters :

Cl Cl

Max r

Max t

C

 1.085  0.505  40

4W

Cr  22.06 W

Ct  10.38 W

f Couple  1.10 Result of calculations :

W  0.47 K   0.942 W

CL

MaxW Clean

 0.752

212


Entered parameters to wing drag equation:

Alt  3000 ft 

U1  200 Kts Df

Max

 5.06 ft

K  0.5 10 3  l Ler   20%  C   W L fuselage  44 .6 ft LW  1.5  X lam   30 %  C   W Cl

W M

 6.55 Rad 1

f gap  1

t

 0 Deg

W

213


Result of calculation for Condition 2-2 IV:

M 1  0.308 CL

W

 3.1777 Rad 1

SWet  546.91 ft 2 W

CD0  0.0055 W

CD

LW

 0.0610

Result of calculation for condition 2-1  11 :

M 1  0.229 CL

W

 3.1551Rad 1

SWet  546.91 ft 2 W

CD0  0.0053 W

CD

LW

 0.0645

214


-Condition 1-1, Transonic :

C D0  C D0 W

WM  0.6

 CD

WWave

cD

 t  t    f  ARW , M , M DD( Dragdivergence) ,  ,  ,    c Wr  c Wt  

CD

WW

LW

CD CL

L 2

CL

2

W

The induce drag parameter:

CD CL

L 2

 t  t   f  ARW ,W , M , C ,  ,   Source  Air plane design VI , fig 4.13  4W  c W  c W  r t  

Result of calculations for condition 1-1:

M 1  0.763 SWet  546.91 ft 2 W

CD0  0.00601 W

CD

LW

 0.0501

215


Condition 1-2 ,Supersonic : Entered parameters :

V  1300Kts Alt  42000 ft

  25 WTO  30616 ft Cr  6.31 ft h

Cr  2.74 ft t

t     4%  c  hr

Root airfoil : NACA 6Digit Cambered

t     4%  c  ht

Tip airfoil : NACA 6Digit Cambered

CL

Max Clean

 0.752

216


Output for horizontal tail drag coefficient Condition1-1:

Cl Cl

Maxhr

Max ht

 0.461  0.421

Re h  7.5960 106 r

Re h  3.2984 106 t

h 0.43 K h 0.946 C

 40 4h

bht 15.37 ft Z h 0 ft Df

Avr

5.1430 ft

 lLer   20%  C  h  CL

MaxhClean  0.320

217


S Ht  20.08 ft 2 ARh  11.14 Ch  4.76 ft YMGC  10.95 ft nMGCH  9.575 ft  LE  41.2 h

TE  36.2 h

Output parameter , Condition 1-2 (Horizontal tail drag):

M 1  2.266mach SWet  397.26 ft 2 h

CD0  0.001689 h

CD

Lh

 0.0409

Lh  1.5 C L

h| M  0

6.45Rad 1

218


f gap  1 M 1  2.266 CD0  0.1689 h

CD

Lh

 0.0409

Output parameter, Condition 2-1:

M 1  0.308 Cl

h

 4.4690Rad 1

SWet  397.26 ft h

CD0  0.0055 CD

Lh

 0.0023

Output parameter , Condition 2-2 :

M 1  0.229 CL

h

 4.4181Rad 1

SWet  397.26 ft 2

CD

Lh

 0.0046

h

CD0  0.0046 h

219


Vertical tail , Drag coefficient condition 1-1 : Entered parameters:

CY  1 V

SV  58.45 ft 2 Vertical tail geometry :

Cr  18.20 ft V

Ct  2.91 ft V

C

 40 4V

SV  221.32 ft 2 ARV  1.99

V  0.16 Z MGC  7.95 ft (aboveCL) V

nMGC  8.123 V

TE  16.3 V

 LE  45.6 V

220




CYV 180 C L V 

Output parameter ,Condition1-1,Vertical tail drag : Transonic regime :

M 1  0.785 SWet  369.90 ft V

CD0  0.0045 V

CD

LV

 0.0994

Result of calculation ,condition1-2,Vertical tail drag:

M 1  2.266 SWet  396.90 ft 2 V

CD0  0.1188 V

CD

LV

 0.3931

Result of calculation, condition 2-1,Vertical tail drag:

221


M 1  0.308 CL

V

 2.2327 Rad 1

SWet  369.90 ft 2 V

CD0  0.0043 V

CD

LV

 0.1224

Result of calculation, condition 2-2 (Vertical tail drag) :

M 1  0.308 CL

V

 2.2327 Rad 1

SWet  369.90 ft 2 V

CD0  0.0043 V

CD

LV

 0.1124

-Fuselage drag coefficient theory : Transonic regime : Theory of transonic fuselage drag coefficient calculation:

C D0

fus

 Rwf  CD f CDP fus fus 

Sf C  C  Db DWave fus fus SW 

222


Wing fuselage interference factor:

RWf  f RN RN

fus

fus

,M

U1 L f

Fuselage skin drag coefficient in the entire transonic range :

Cf

fus

CD

 f RN

P fus

 CD

fus

,M1

P fus | M  0.6

( For 0.6  M  1)

Fuselage pressure drag coefficient, in transonic range:

CD

CD

P fus | M  0.6

b fus

CD

  Lf  60 Cf  0.0025  3 fus M  0.6 df   L f   d   f 

,db ,d f , M 1   f  CD b fus | M  0.6  

Wave fus

 f l f ,d f , M 1 

223

   SWet   SW  


CD

L fus

 2

Sb

f

SW

Entered parameter for condition 1-1:

  0

K  0.5103 Sb  0 ft 2 f

SWet  556.21 ft 2 f

L fus  46.6 ft S f  19.99 X Lam  30%  0.3 Lf SWet

f Lam

 55.4 ft

S Plf  190.58 ft 2 f

D f  5.31 ft

224


Result of fuselage drag calculations for condition 1-1 :

M 1  0.78 CD0  0.0058 f

CD

Lf

0

Drag calculation for condition 1-2 : Theory of super sonic fuselage drag calculation :

C D0

f

 C f f SWet f  CD N 2 CD A( NC ) CDb  f Sf 

S  f  SW 

-The turbulent flat plate skin friction coefficient:

Subsonic fuselage zero-lift drag coefficient:

C f  f RN ,M 1  f

-The drag coefficient of the fuselage nose:

CD

N2

 f a N ,l N , S f ,  

Source : Air plane design VI Fig 4.25 by J.Roskam

-Wave drag coefficient of the fuselage after body:

CD  f a A ,l A ,d f ,  

Source : Airplane design VI Fig 4.25 by J.Roskam

A

225


-Interference drag coefficient:

CD

A NC 

- CD

bf

 f L f ,l N ,l A ,d f , Sbf   f M 1 

source : Airplane design VI Fig 4.26 by J.Roskam

Source : Airplane design VI Fig 4.28 by J.Roskam

Entered parameters for fuselage drag calculations , Cond. 1-2 :

a N  3.7595 ft

ShapeN  1.00 ShapeA  1.00 a  4.00 ft b  4.00 ft

226


drag calculation ,Condition 2-1 : Subsonic theory of fuselage drags calculations:

C D0

fus

 CD0

fus  base

 CD

b fus

   Lf 60  0.0025 CD0 fus base  Rwf 1 3 df   Lf       df 

   X    

  S   C C C S   f f Wet f Wet  FusTurb  fus Lam Fus Lam fusTurb fus   X    S W    

227


Wing fuselage interference factor:

RWf  f RN

CD

b fus

Source : Air plane design Vol VI Fig 4.1 , J - Roskam

   

 S  C D0 fusbase Sf 

Sf    

1

2

SW

 Sf

 2 2

L fus

3

Sb f

d f  2.0



,M

d 0.029 b df 

db  2.0

CD

fus

Sb

f

SW

Cdc 3

S Plf SW

C L C L 1

0

CL

  f L f ,d f  Cdc  f M 1, 

228

f


Result of fuselage drag coefficient calculations, Condition 2-1:

M  0.308 CD0  .053 f

CD

 0.00

Lf

Result of fuselage drag coefficient calculation, Condition 2-2:

M 1  0.229 CD0  0.051 f

CD

 0.00

Lf

Trailing edge flap drag calculation: Theory:

CD

flap

 CD

prof flap

 CD

i flap

 CD

int flap

The flap profiles drag increment:

CD

prof flap

 Cd

P C

Cos C 4W

229

SW 4W

f

SW


-Wing chord at station x :

CD

i flap

 K 2 CL

2Cos

f

C

4W

-Induced drag factor :

K  f ARW ,i ,o f

f

Source : Airplane design VI 4.52 & 4.53

-Interference drag increment due to flap:

CD

int flap

 K int CD

prof flap

K int  0.10 Result of flap drag coefficient calculation for condition 2-1:

M 1  0.308

 0  11 W

0

W

 7.78 f

CL

W

 3.1785Rad 1

CL

0W 

CL

f

 0.1788 f

 0.1788

230


SW

f

SW CD

 0.260

 0.0143

flap

Result of flap drag coefficient calculations for condition 2-2 :

M 1  0.229

 0  11 W

0

 7.17

CL

 3.1551Rad 1

W

W

 3.1551Rad 1

CL

W f

CL

 0.2109

0 W

f

CL

 0.2109

f

SW

f

SW CD

flap

 0.260

 0.0210

231


Gear drag coefficient calculations , Condition 2-2 :

CD

rectact gear

1.55   C   C 1 L L  1 0W S Wf f  S    CDbasic  Locationi1.00.4  i l uci  i    

The basic under carriage drag coefficient :

CD

basic

1.5S f  0.75S r ti

ti

SW

Gear 1, 2, 3, entered parameters:

S f  0.9106 ft 2 Nose , 1.8570 ft 2 Main t

S r  1.0397 ft 2 Nose&main t

lUC  3.119 ft Nose , 3.42 ft Main SW

f

SW

 0.26

Location parameter :

0  Nose (1) 1  Main 2&3 232


Canopy drag coefficient:

CD

Canopy

 CD

SCanopy

Canopy

CD

Canopy

SW

L L    f  M 1 , 1 , 3 , Shape f , Shapea  R R  

Source : Airplane design VI Fig 4.62 - Fig 4.67

Entered parameter:

Scanopy( frontal )  3.462 ft 2 L1  4.9 R L3 6 R Shape f  1 Shapea  1 Result of canopy drag coefficient calculations, Condition 2-1:

M 1  0.308 CD

Canopy

 0.00050128 233


Result of canopy drag coefficient calculation, Condition 2-2 :

M 1  0.22 CD

Canopy

 0.0050128

Trim drag coefficient calculations:

Theory:

234


CL  CL

 CL

f

Wf

S Sh  C L C C C SW SW

 CL h h

Cm  Cm  C1 CLWf  CL 0 f  X CG  X AC

C1 

CW

h

C

C C C C  2 Lh 3 LC 

SC SW

 

C4  C L

C CL h0

C5 

CL

h

CLC CLh

 C 

m0

C1CLWf C3C4

C2 C3C5

235


  Sh S C5C C  C1 h SW SW S CL C4C C  Cm C3C4   1 0  C2 C3C5 SW     S S  C1 h h C5C C  SW SW  1  C2 C3C5

CL

Wf

CL

h

      

   Cm0 C1CLW  f    C2

CL

Wf

CL

Wf

CD

1

C2 C1

1

0

SC C SW

SC C SW

 CD

prof flap

0

Sh h SW

Sh h SW

CL C3 Cm C2 C1

Trim

CD

C L C2  C m

Trim Lift

 Cd

 CD

Trim prof

p

Cos C C

4W

236

Sef S h  Cd PC 4 S h SW

4

0

Cos C

4W


SCf SC SC SW Cd

Sef

P

C  0 4

f i ,o e

  C  f  Control , Control   CSurface  

e

Source : Airplain designVI Fig 4.44

Source : Airplane design VI Fig 4.72

Entered parameters to equations: Condition 1-1:

237


CL  6.45Rad 1 1

Cm

0Wf

 0.0182

X CG  30.2549 ft X AC  36.77 ft CW  11.06 ft CL

0W 

 0.1788

D f  5.31 ft

h  0.3144 h  1.0 X

AC

 50.34 ft h

  0% i e

O 100% e

Result for condition 1-1:

238


CL  5.5920Rad 1 W

CL

Wf

 5.5858Rad 1

CL

 0.178

f

CL  62.4731 h

CD

Trim

 0.0229

-10% miscellaneous would be add at the end of drag Calculations -Pylon drags :

Calculate as a wing drag coefficient ,

Entered parameters :

LP  1.6 for all of the pylons 

ARP  2.7  for all of the pylons  S P  4.8878 ft 2  for all of pylons  C

 60  for all of pylons  4W P

P  0.8654 for all of pylons 239


Result of pylon drag coefficient calculations for condition 1-1:

M 1  0.780 CD  0.0010 P

Result of pylon drag coefficient calculations for condition 1-2:

M 1  2.266 CD  0.0014 P

Result of pylon drag coefficient calculations for calculation 2-1:

M 1  0.308 CD  0.0009341 P

Result of pylon drag coefficient calculations for condition 2-2 :

M 1  0.229 CD  0.009340 P

-Wind milling drag coefficient: The incremental drag coefficient:

240


CD

Wm

 VNoz  dinl 2 2.0 S Noz X  0.0785      SW 1.0 0.16M 12  U1 Core SW

 VNoz    VNoz      X  1    B.P.R1 U  U 1 Core 1 by pass     VNoz  0.42 U1 Entered parameters:

SW  340 ft 2 AC  7.19 ft 2 S Noz  3.4562 ft 2 B.P.R  0.44 N Out  1 Result of wind milling drag coefficient calculations for condition 1-1:

CD

Wm

 0.006527

Result of wind milling drag coefficient calculations for condition 1-2: 241


CD

Wm

 0.0048

Result of wind milling drag coefficient calculations for condition 2-1:

CD

Wm

 0.006993

Result of wind milling drag coefficient calculations for condition 2-2:

CD

Wm

 0.0070

Total drag coefficients: Wing drag coefficients: Condition 1-1:

CD0  0.00601 W

CD

LW

 0.0501

Condition 1-2:

CD0  0.2232 W

CD

LW

 0.3543 

Condition 2-1, 0 : 242


C D0 CD

W 

LW

 0.0055

 0.0610

Condition 2-2, 11 :

CD0  0.0053 W

CD

LW

 0.0645

Horizontal tail drag coefficients: Condition 1-1:

CD0  0.001689 h

CD

Lh

 0.0409

Condition 2-1:

CD0  0.0055 h

CD

Lh

 0.0023

Condition 2-2:

CD0  0.0055 h

CD

Lh

 0.0023

Vertical tails drag coefficients: 243


Condition 1-1:

CD0  0.0045 V

CD

LV

 0.0994

Condition 1-2:

CD0  0.1188 V

CD

LV

 0.3931

Condition 2-1:

CD0  0.0043 V

CD

LV

 0.1114

Condition 2-2:

CD0  0.0043 V

CD

LV

 0.1124

244


Fuselages drag coefficients: Condition 1-1:

CD0  0.0058 f

CD

Lf

 0.0

Condition 1-2:

CD0  0.0152 f

CD

Lf

 0.0

Condition 2-1:

CD0  0.0053 f

CD

Lf

 0.0

Condition 2-2:

CD0  0.0051 f

CD

Lf

 0. 0

245


Flaps drag coefficients: Condition 2-1:

CD

flap

 0.0143

Condition 2-2:

CD

flap

 0.02110

Gears drag coefficients:

Condition 2-2:

CD

rect

 0.0197

Canopy’s drag coefficients:

Condition 2-1:

CD

Canopy

 0.00050128

Condition 2-2:

CD

Canopy

 0.00050128

Trims drag coefficient:

CD

Trim

 0.0229 246


Pylons drag coefficients: Condition 1-1:

CD  0.0010 P

Condition 1-2:

CD  0.0014 P

Condition 2-1:

CD  0.0009341 P

Condition 2-2:

CD  0.0009340 P

Wind millings drag coefficients: Condition 1-1:

CD

Wm

 0.006527

Condition 1-2:

CD

Wm

 0.0048

Condition 2-1:

CD

Wm

 0.006993

Condition 2-2: 247


CD

Wm

 0.0070

Drag coefficients

Cond. 1-1 0.00601

Cond. 1-2 0.2232

Cond. 2-1 0.0055

Cond. 2-2 0.0053

0.0501

0.3543

0.0610

0.0645

0.0055

0.001686

0.0055

0.0055

0.0023

0.0409

0.0023

0.0046

C D0

0.0045

0.1188

0.043

0.0043

CD

0.0994

0.3931

0.1114

0.1114

C D0

CD

LW

C D0

CD

w

h

Lh V

LV

C D0

CD

------------- ------------- ------------- ------------C

LC

C D0 CD

------------- ------------- ------------- ------------0.0058

0.0152

0.0053

0.0051

0.0000

0.0000

0.0000

0.0000

0.0009

0.0009

0.0009

0.0009

f

Lf

CD

P

CD

A

CD

flap

CD

Slat

CD

Kf

CD

fixed

CD

rect

------------- ------------- ------------- ------------------------- ------------- 0.0143

0.0210

------------- ------------- ------------- ------------------------- ------------- ------------- ------------------------- ------------- ------------- ------------------------- ------------- ------------- 0.0197

CD

0.000501

CD

------------- ------------- ------------- -------------

0.000501

0.000501

0.000501

Canopy

WS

CD

Stores

7.9330  10  3 7.9330  10  3 7.9330  10  3 7.9330  10  3

248


CD

0.0229

0.0229

0.0229

0.0229

0.0010

0.0014

0.0009341 0.0009341

0.006527

0.0048

0.006993

Trim

CD

sp

CD

misc

CD

0.0070

Wm

CD

------------- ------------- ------------- ------------prop

CD

0.2277

1.18662

0.2497

0.2825

CD0(T )

0.031144

0.37212

0.031334

0.029534

CD0(Misc)

1.5572  10 3

0.018606

1.5667  10 3

1.4767  10 3

C D0

0.023211

0.364184

0.02976

0.021601

T

WithoutEW 

249


Drag diagrams Based on Dr. J. Roskam methods

250


Fuselage drag diagrams

251


1.500

1

12345

Mach Number, M 1.250 1.000

0.750

252 C

0.0125

Drag Coefficient

D

0.0100

0.0075

0.0050

0.0025

0.500 -0.0000

Fuselage CD  M , C L Constant  Diagram

Condition 1-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.2500

1 L

3: C = 0.5000

1 L

4: C = 0.7500

1 L

5: C = 1.0000

1 L

S = 340.00 ft2


3.000

1

1

2

3

5678910 4

Mach Number, M 2.500 2.000

1.500

253 C

800000.0000

900000.0000

Drag Coefficient

D

700000.0000

600000.0000

500000.0000

400000.0000

300000.0000

200000.0000

100000.0000

1.000 0.0000

Fuselage CD  M , C L Constant  Diagram

Condition 1-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.350

1

1

2

345

Mach Number, M 0.300

0.250

0.200

0.150

254 4.0000

Drag Coefficient

C

D

3.0000

2.0000

1.0000

0.0000

0.100 -1.0000

Fuselage CD  M , C L Constant  Diagram

Condition 2-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.2500

1 L

3: C = 0.5000

1 L

4: C = 0.7500

1 L

5: C = 1.0000

1 L

S = 340.00 ft2


0.350

1

255

1

2

3

4

867910 5

Mach Number, M 0.300 0.250

0.200

0.150

4.0000

Drag Coefficient

C

D

3.0000

2.0000

1.0000

0.0000

0.100 -1.0000

Fuselage CD  M , C L Constant  Diagram

Condition 2-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.0090

0.0080

5

D

4

3

Drag Coefficient, C 0.0070 0.0060

21

0.0050

0.0040

0.0030

0.0020

256 1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

1.2500

Lift Coefficient

1 L

C

0.0010

Fuselage CL  CD , M Constant  Diagram

Condition 1-1

5: M= 1.0000 4: M= 0.9000 3: M= 0.8000 2: M= 0.7000 1: M= 0.6000 Mach Number

S = 340.00 ft2


D

257 1.2500

Lift Coefficient

1 L

C

1.00001234567890

0.7500

0.5000

0.2500

Drag Coefficient, C 900000.0000 800000.0000 700000.0000 600000.0000 500000.0000 400000.0000 300000.0000 200000.0000 100000.0000 0.0000 0.0000

Fuselage CL  CD , M Constant  Diagram

Condition 1-2

10: M= 2.6000 9: M= 2.4444 8: M= 2.2889 7: M= 2.1333 6: M= 1.9778 5: M= 1.8222 4: M= 1.6667 3: M= 1.5111 2: M= 1.3556 1: M= 1.2000 Mach Number

S = 340.00 ft2


4.0000

D

Drag Coefficient, C 3.0000 2.0000

1.0000

12345

0.0000

258 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

-1.0000 0.0000

Fuselage CL  CD , M Constant  Diagram

Condition 2-1

5: M= 0.3000 4: M= 0.2500 3: M= 0.2000 2: M= 0.1500 1: M= 0.1000 Mach Number

S = 340.00 ft2


4.0000

D

Drag Coefficient, C 3.0000 2.0000

1.0000

12345

0.0000

259 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

-1.0000 0.0000

Fuselage CL  CD , M Constant  Diagram

Condition 2-2

5: M= 0.3000 4: M= 0.2500 3: M= 0.2000 2: M= 0.1500 1: M= 0.1000 Mach Number

S = 340.00 ft2


Wing drag diagrams

260


1.500

1

2134 56 87 9 10

Mach Number, M 1.250 1.000

0.750

261 0.0700

0.0750

Drag Coefficient

D

C

0.0650

0.0600

0.0550

0.0500

0.0450

0.0400

0.0350

0.0300

0.0250

0.0200

0.0150

0.0100

0.0050

0.500 -0.0000

Wing CD  M ,(CL  Cons tan t ) Diagram

w L

1: C = 0.0000 Lift Coefficient

2: C = 0.0839

w L

3: C = 0.1678

w L

4: C = 0.2517

w L

w L

5: C = 0.3356

6: C = 0.4194

w L

7: C = 0.5033

w L

8: C = 0.5872

w L

9: C = 0.6711

w L

10: C = 0.7550

w L

S = 340.00 ft2


D

262

12345 0.8000

0.9000

Lift Coefficient

C

w L

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

Drag Coefficient, C 0.0750 0.0700 0.0650 0.0600 0.0550 0.0500 0.0450 0.0400 0.0350 0.0300 0.0250 0.0200 0.0150 0.0100 0.0050 -0.0000 0.1000

Wing CL  CD , ( f  Cons tan t ) Diagram

Condition 2-1

1:  = 0.0 deg Flap Angle

f

2:  = 8.8 deg

f

3:  = 17.5 deg

f

f

4:  = 26.3 deg

5:  = 35.0 deg

f

M= 0.3077

S = 340.00 ft2


D

263

12345 0.8000

0.9000

Lift Coefficient

C

w L

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

Drag Coefficient, C 0.0750 0.0700 0.0650 0.0600 0.0550 0.0500 0.0450 0.0400 0.0350 0.0300 0.0250 0.0200 0.0150 0.0100 0.0050 -0.0000 0.1000

Wing CL  CD , ( f  Cons tan t ) Diagram

Condition 2-2

1:  = 0.0 deg Flap Angle

f

2:  = 11.3 deg

f

3:  = 22.5 deg

f

f

4:  = 33.8 deg

5:  = 45.0 deg

f

M= 0.2291

S = 340.00 ft2


2.5000

D

1

Drag Coefficient, C 2.0000

3 2 46

1.5000

5

1.0000

0.5000

264 C

w L

4.0000

4.5000

Lift Coefficient

7

3.5000

3.0000

2.5000

2.0000

1.5000

1.0000

0.5000

0.0000 0.0000

Wing CL  CD  M Diagram

Condition 1-1

7: M= 1.2000 6: M= 1.1000 5: M= 1.0000 4: M= 0.9000 3: M= 0.8000 2: M= 0.7000 1: M= 0.6000 Mach Number

S = 340.00 ft2


1

2.5000

D

Drag Coefficient, C 2.0000 1.5000

1.0000

0.5000

265 4.0000

4.5000

Lift Coefficient

w L

C

3.5000

3.0000

2.5000

2.0000

1.5000

1.0000

0.5000

0.0000 0.0000

Wing CL  CD  M Diagram

Condition 1-2

7: M= 2.6000 6: M= 2.3667 5: M= 2.1333 4: M= 1.9000 3: M= 1.6667 2: M= 1.4333 1: M= 1.2000 Mach Number

S = 340.00 ft2


2.5000

D

1234567

Drag Coefficient, C 2.0000

1.5000

1.0000

0.5000

266 C

4.0000

4.5000

Lift Coefficient

w L

3.5000

3.0000

2.5000

2.0000

1.5000

1.0000

0.5000

0.0000 0.0000

Wing CL  CD  M Diagram

Condition 2-1

7: M= 0.4000 6: M= 0.3350 5: M= 0.2700 4: M= 0.2050 3: M= 0.1400 2: M= 0.0750 1: M= 0.0100 Mach Number

S = 340.00 ft2


2.5000

D

1234567

Drag Coefficient, C 2.0000 1.5000

1.0000

0.5000

267 C

2.6667

3.0000

Lift Coefficient

w L

2.3333

2.0000

1.6667

1.3333

1.0000

0.6667

0.3333

0.0000 0.0000

Wing CL  CD  M Diagram

Condition 2-2

7: M= 0.4000 6: M= 0.3350 5: M= 0.2700 4: M= 0.2050 3: M= 0.1400 2: M= 0.0750 1: M= 0.0100 Mach Number

S = 340.00 ft2


Horizontal tail drag diagrams

268


1.250

1.125

1

Mach Number, M

234156789 10

1.000

0.875

0.750

269 C

D

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.500 -0.0000

0.0008

Drag Coefficient

0.625

Horizontal tail CD  M , C D Constant  Diagram

Condition 1-1

h L

1: C = 0.0000 Lift Coefficient

2: C = 0.0444

h L

3: C = 0.0889

h L

4: C = 0.1333

h L

5: C = 0.1778

h L

6: C = 0.2222

h L

7: C = 0.2667

h L

8: C = 0.3111

h L

9: C = 0.3556

h L

10: C = 0.4000

h L

S = 340.00 ft2


3.000

1

Mach Number, M 2.500

270

10

9

8

7

12 3 4 5 6

2.000

1.500

C

0.0250

Drag Coefficient

D

0.0200

0.0150

0.0100

0.0050

1.000 -0.0000

Horizontal tail CD  M , C D Constant  Diagram

Condition 1-2

h L

1: C = 0.0000 Lift Coefficient

2: C = 0.0444

h L

3: C = 0.0889

h L

4: C = 0.1333

h L

h L

5: C = 0.1778

h L

6: C = 0.2222

7: C = 0.2667

h L

8: C = 0.3111

h L

9: C = 0.3556

h L

10: C = 0.4000

h L

S = 340.00 ft2


0.450

271

10

9

8

7

6

5

12 3 4

0.400

1

Mach Number, M 0.350 0.300

0.250

0.200

D

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.100 -0.0000

0.0009

Drag Coefficient

C

0.150

Horizontal tail CD  M , C D Constant  Diagram

Condition 2-1

h L

1: C = 0.0000 Lift Coefficient

2: C = 0.0444

h L

3: C = 0.0889

h L

4: C = 0.1333

h L

5: C = 0.1778

h L

6: C = 0.2222

h L

7: C = 0.2667

h L

8: C = 0.3111

h L

9: C = 0.3556

h L

10: C = 0.4000

h L

S = 340.00 ft2


0.450

272

10

9

8

7

6

5

12 3 4

0.400

1

Mach Number, M 0.350

0.300

0.250

0.200

D

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.100 -0.0000

0.0009

Drag Coefficient

C

0.150

Horizontal tail CD  M , C D Constant  Diagram

Condition 2-2

h L

1: C = 0.0000 Lift Coefficient

2: C = 0.0444

h L

3: C = 0.0889

h L

4: C = 0.1333

h L

5: C = 0.1778

h L

6: C = 0.2222

h L

7: C = 0.2667

h L

8: C = 0.3111

h L

9: C = 0.3556

h L

10: C = 0.4000

h L

S = 340.00 ft2


9

0.0015

8

D

Drag Coefficient, C 0.0013 0.0010

10

1

0.0008

7

2

3 4 56

0.0005

273 C

h L

0.4000

0.3500

0.3000

0.2500

0.2000

0.1500

0.1000

0.0500

0.0000 0.0000

0.4500

Lift Coefficient

0.0003

Horizontal tail CL  CD , M Constant  Diagram

Condition 1-1

10: M= 1.2000 9: M= 1.1333 8: M= 1.0667 7: M= 1.0000 6: M= 0.9333 5: M= 0.8667 4: M= 0.8000 3: M= 0.7333 2: M= 0.6667 1: M= 0.6000 Mach Number

S = 340.00 ft2


0.0250

D

10 9 8

7

6

Drag Coefficient, C 0.0200

5

4

0.0150

3

2

1

0.0100

0.0050

274 C

0.4000

0.4500

Lift Coefficient

h L

0.3500

0.3000

0.2500

0.2000

0.1500

0.1000

0.0500

-0.0000 0.0000

Horizontal tail CL  CD , M Constant  Diagram

Condition 1-2

10: M= 2.6000 9: M= 2.4444 8: M= 2.2889 7: M= 2.1333 6: M= 1.9778 5: M= 1.8222 4: M= 1.6667 3: M= 1.5111 2: M= 1.3556 1: M= 1.2000 Mach Number

S = 340.00 ft2


0.0009

0.0008

D

1 2345678910

Drag Coefficient, C 0.0007 0.0006

0.0005

0.0004

0.0003

0.0002

275 C

0.4000

0.3500

0.3000

0.2500

0.2000

0.1500

0.1000

0.0500

0.0000 0.0000

0.4500

Lift Coefficient

h L

0.0001

Horizontal tail CL  CD , M Constant  Diagram

Condition 2-1

10: M= 0.4000 9: M= 0.3667 8: M= 0.3333 7: M= 0.3000 6: M= 0.2667 5: M= 0.2333 4: M= 0.2000 3: M= 0.1667 2: M= 0.1333 1: M= 0.1000 Mach Number

S = 340.00 ft2


0.0009

0.0008

D

1 2345678910

Drag Coefficient, C 0.0007 0.0006 0.0005

0.0004

0.0003

0.0002

276 0.4000

0.3500

0.3000

0.2500

0.2000

0.1500

0.1000

0.0500

0.0000 0.0000

0.4500

Lift Coefficient

h L

C

0.0001

Horizontal tail CL  CD , M Constant  Diagram

Condition 2-2

10: M= 0.4000 9: M= 0.3667 8: M= 0.3333 7: M= 0.3000 6: M= 0.2667 5: M= 0.2333 4: M= 0.2000 3: M= 0.1667 2: M= 0.1333 1: M= 0.1000 Mach Number

S = 340.00 ft2


Vertical tail drag diagrams

277


1.250

1.125

1

Mach Number, M

1234567890

1.000

0.875

0.750

278 C

D

0.0300

0.0200

0.0100

0.500 0.0000

0.0400

Drag Coefficient

0.625

Vertical tail CD  M , C L  Constant  Diagram Condition 1-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


3.000

1

Mach Number, M 2.500

1234567890

2.000

1.500

279 C

0.2000

Drag Coefficient

D

0.1500

0.1000

0.0500

1.000 0.0000

Vertical tail CD  M , C L  Constant  Diagram Condition 1-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


3.000

1

Mach Number, M 2.500

1234567890

2.000

1.500

280 0.2000

Drag Coefficient

C

D

0.1500

0.1000

0.0500

1.000 0.0000

Vertical tail CD  M , C L  Constant  Diagram Condition 2-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.350

1

12345

Mach Number, M 0.300 0.250

0.200

0.150

281 0.0400

Drag Coefficient

C

D

0.0300

0.0200

0.0100

0.100 0.0000

Vertical tail CD  M , C L  Constant  Diagram Condition 2-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.2500

1 L

3: C = 0.5000

1 L

4: C = 0.7500

1 L

5: C = 1.0000

1 L

S = 340.00 ft2


0.0400

1

D

2 3 4 5 10 6 789

Drag Coefficient, C 0.0300 0.0200

0.0100

282 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

Vertical tail CL  CD , M  Constant  Diagram

Condition 1-1

10: M= 1.1000 9: M= 1.0444 8: M= 0.9889 7: M= 0.9333 6: M= 0.8778 5: M= 0.8222 4: M= 0.7667 3: M= 0.7111 2: M= 0.6556 1: M= 0.6000 Mach Number

S = 340.00 ft2


0.2000

D

10

9

8

Drag Coefficient, C 0.1500

7

6

5

4

0.1000

3

2

1

0.0500

283 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

Vertical tail CL  CD , M  Constant  Diagram

Condition 1-2

10: M= 2.6000 9: M= 2.4444 8: M= 2.2889 7: M= 2.1333 6: M= 1.9778 5: M= 1.8222 4: M= 1.6667 3: M= 1.5111 2: M= 1.3556 1: M= 1.2000 Mach Number

S = 340.00 ft2


0.0400

12345678910

D

Drag Coefficient, C 0.0300 0.0200

0.0100

284 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

Vertical tail CL  CD , M  Constant  Diagram

Condition 2-1

10: M= 0.4000 9: M= 0.3667 8: M= 0.3333 7: M= 0.3000 6: M= 0.2667 5: M= 0.2333 4: M= 0.2000 3: M= 0.1667 2: M= 0.1333 1: M= 0.1000 Mach Number

S = 340.00 ft2


0.0400

12345678910

D

Drag Coefficient, C 0.0300 0.0200

0.0100

285 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

Vertical tail CL  CD , M  Constant  Diagram

Condition 2-2

10: M= 0.3000 9: M= 0.2778 8: M= 0.2556 7: M= 0.2333 6: M= 0.2111 5: M= 0.1889 4: M= 0.1667 3: M= 0.1444 2: M= 0.1222 1: M= 0.1000 Mach Number

S = 340.00 ft2


Canopy drag diagrams

286


0.350

1

287

10

9

8

7

6

5

4

3

2

1

Mach Number, M 0.300

0.250

0.200

0.150

C

0.0010

Drag Coefficient

D

0.0005

0.0000

-0.0005

-0.0010

-0.0015

0.100 -0.0020

Canopy CD  M , C L  Constant  Diagram

Condition 2-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

1 L

3: C = 0.2222

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

1 L

8: C = 0.7778

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.350

1

288

10

9

8

7

6

5

4

3

2

1

Mach Number, M 0.300 0.250

0.200

0.150

C

0.0010

Drag Coefficient

D

0.0005

0.0000

-0.0005

-0.0010

-0.0015

0.100 -0.0020

Canopy CD  M , C L  Constant  Diagram

Condition 2-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

1 L

3: C = 0.2222

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

1 L

8: C = 0.7778

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.0010

D

12345

Drag Coefficient, C 0.0005 0.0000 -0.0005

-0.0010

289 1 L

C

1.0000

0.7500

0.5000

0.2500

-0.0020 0.0000

1.2500

Lift Coefficient

-0.0015

Canopy CL  CD , M  Constant  Diagram

Condition 2-1

5: M= 0.3000 4: M= 0.2500 3: M= 0.2000 2: M= 0.1500 1: M= 0.1000 Mach Number

S = 340.00 ft2


0.0010

D

1234567890

Drag Coefficient, C 0.0005 0.0000 -0.0005

-0.0010

290 1 L

C

1.0000

0.7500

0.5000

0.2500

-0.0020 0.0000

1.2500

Lift Coefficient

-0.0015

Canopy CL  CD , M  Constant  Diagram

Condition 2-2

10: M= 0.3000 9: M= 0.2778 8: M= 0.2556 7: M= 0.2333 6: M= 0.2111 5: M= 0.1889 4: M= 0.1667 3: M= 0.1444 2: M= 0.1222 1: M= 0.1000 Mach Number

S = 340.00 ft2


Trailing edge flap drag diagrams

291


0.350

1

1234567890

Mach Number, M 0.300 0.250

0.200

0.150

292 C

0.0250

Drag Coefficient

D

0.0200

0.0150

0.0100

0.0050

0.100 -0.0000

Trailing edge flap CD  M , C L  Constant  Diagram

Condition 2-1

w L

1: C = 0.1000 Lift Coefficient

2: C = 0.1728

w L

3: C = 0.2456

w L

4: C = 0.3183

w L

5: C = 0.3911

w L

6: C = 0.4639

w L

7: C = 0.5367

w L

8: C = 0.6094

w L

9: C = 0.6822

w L

10: C = 0.7550

w L

S = 340.00 ft2


0.350

1

1234567890

Mach Number, M 0.300

0.250

0.200

0.150

293 0.0250

Drag Coefficient

C

D

0.0200

0.0150

0.0100

0.0050

0.100 -0.0000

Trailing edge flap CD  M , C L  Constant  Diagram

Condition 2-2

w L

1: C = 0.1000 Lift Coefficient

2: C = 0.1728

w L

3: C = 0.2456

w L

4: C = 0.3183

w L

5: C = 0.3911

w L

6: C = 0.4639

w L

7: C = 0.5367

w L

8: C = 0.6094

w L

9: C = 0.6822

w L

10: C = 0.7550

w L

S = 340.00 ft2


0.0250

5

D

Drag Coefficient, C 0.0200 0.0150

4

0.0100

3

0.0050

294 C

w L

1 0.8000

0.9000

Lift Coefficient

2

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

-0.0000 0.1000

Trailing edge flap CL  CD ,  f Constant  Diagram

Condition 2-1

1:  = 0.0 deg Flap Angle

f

2:  = 11.3 deg

f

3:  = 22.5 deg

f

f

4:  = 33.8 deg

5:  = 45.0 deg

f

M= 0.3077

S = 340.00 ft2


0.0250

5

D

Drag Coefficient, C 0.0200 0.0150

4

0.0100

3

0.0050

295 w L

C

1 0.8000

0.9000

Lift Coefficient

2

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

-0.0000 0.1000

Trailing edge flap CL  CD ,  f Constant  Diagram

Condition 2-2

1:  = 0.0 deg Flap Angle

f

2:  = 11.3 deg

f

3:  = 22.5 deg

f

f

4:  = 33.8 deg

5:  = 45.0 deg

f

M= 0.2291

S = 340.00 ft2


0.0250

12345

D

Drag Coefficient, C 0.0200 0.0150

0.0100

0.0050

296 0.9000

Lift Coefficient

w L

C

0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

-0.0000 0.1000

Trailing edge flap CL  CD ,M Constant  Diagram

Condition 2-1

5: M= 0.3000 4: M= 0.2500 3: M= 0.2000 2: M= 0.1500 1: M= 0.1000 Mach Number

S = 340.00 ft2


0.0250

12345

D

Drag Coefficient, C 0.0200

0.0150

0.0100

0.0050

297 0.9000

Lift Coefficient

w L

C

0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

-0.0000 0.1000

Trailing edge flap CL  CD ,M Constant  Diagram

Condition 2-2

5: M= 0.3000 4: M= 0.2500 3: M= 0.2000 2: M= 0.1500 1: M= 0.1000 Mach Number

S = 340.00 ft2


Landing Gears drag diagram

298


0.0300

D

12345

Drag Coefficient, C 0.0250 0.0200 0.0150

0.0100

299 1 L

C

1.0000

0.7500

0.5000

0.2500

-0.0000 0.0000

1.2500

Lift Coefficient

0.0050

Landing gears CL  CD , M  Constant  Diagram

Condition 2-2

5: M= 0.3000 4: M= 0.2500 3: M= 0.2000 2: M= 0.1500 1: M= 0.1000 Mach Number

S = 340.00 ft2


Pylons drag diagrams

300


1.500

1

1234567890

Mach Number, M 1.250 1.000

0.750

301 C

0.0013

Drag Coefficient

D

0.0010

0.0008

0.0005

0.0003

0.500 0.0000

Pylons CD  M , C L  Constant  Diagram

Condition1-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


3.000

1

1234567890

Mach Number, M 2.500 2.000

1.500

302 C

0.0020

Drag Coefficient

D

0.0015

0.0010

0.0005

1.000 0.0000

Pylons CD  M , C L  Constant  Diagram

Condition1-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.350

1

1234567890

Mach Number, M 0.300 0.250

0.200

0.150

303 0.0013

Drag Coefficient

C

D

0.0010

0.0008

0.0005

0.0003

0.100 0.0000

Pylons CD  M , C L  Constant  Diagram

Condition2-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.350

1

1234567890

Mach Number, M 0.300 0.250

0.200

0.150

304 C

0.0013

Drag Coefficient

D

0.0010

0.0008

0.0005

0.0003

0.100 0.0000

Pylons CD  M , C L  Constant  Diagram

Condition2-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

3: C = 0.2222

1 L

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.0013

D

1234567890

Drag Coefficient, C 0.0010

0.0008

0.0005

0.0003

305 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

Pylons CL  CD , M Constant  Diagram

Condition1-1

10: M= 1.2000 9: M= 1.1333 8: M= 1.0667 7: M= 1.0000 6: M= 0.9333 5: M= 0.8667 4: M= 0.8000 3: M= 0.7333 2: M= 0.6667 1: M= 0.6000 Mach Number

S = 340.00 ft2


0.0020

D

6547382 9 10

Drag Coefficient, C 0.0015

1

0.0010

0.0005

306 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

Pylons CL  CD , M Constant  Diagram

Condition1-2

10: M= 2.6000 9: M= 2.4444 8: M= 2.2889 7: M= 2.1333 6: M= 1.9778 5: M= 1.8222 4: M= 1.6667 3: M= 1.5111 2: M= 1.3556 1: M= 1.2000 Mach Number

S = 340.00 ft2


0.0013

D

12341985760

Drag Coefficient, C 0.0010 0.0008

0.0005

0.0003

307 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

Pylons CL  CD , M Constant  Diagram

Condition2-1

10: M= 0.4000 9: M= 0.3667 8: M= 0.3333 7: M= 0.3000 6: M= 0.2667 5: M= 0.2333 4: M= 0.2000 3: M= 0.1667 2: M= 0.1333 1: M= 0.1000 Mach Number

S = 340.00 ft2


0.0013

D

12341985760

Drag Coefficient, C 0.0010 0.0008

0.0005

0.0003

308 1.2500

Lift Coefficient

1 L

C

1.0000

0.7500

0.5000

0.2500

0.0000 0.0000

Pylons CL  CD , M Constant  Diagram

Condition2-2

10: M= 0.4000 9: M= 0.3667 8: M= 0.3333 7: M= 0.3000 6: M= 0.2667 5: M= 0.2333 4: M= 0.2000 3: M= 0.1667 2: M= 0.1333 1: M= 0.1000 Mach Number

S = 340.00 ft2


Trim drag diagrams

309


0.700

1234567890

0.600

1

Mach Number, M

0.500

0.400

0.300

310 C

D

0.0125

0.0100

0.0075

0.0050

0.0025

0.100 -0.0000

0.0150

Drag Coefficient

0.200

Trim CD  M , C L Constant  Diagram

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.1111

1 L

1 L

3: C = 0.2222

4: C = 0.3333

1 L

5: C = 0.4444

1 L

6: C = 0.5556

1 L

7: C = 0.6667

1 L

8: C = 0.7778

1 L

9: C = 0.8889

1 L

10: C = 1.0000

1 L

S = 340.00 ft2


0.0150

D

1234567890

Drag Coefficient, C 0.0125 0.0100 0.0075

0.0050

311 1 L

C

1.0000

0.7500

0.5000

0.2500

-0.0000 0.0000

1.2500

Lift Coefficient

0.0025

Trim CL  CD , M  Constant  Diagram

10: M= 0.6000 9: M= 0.5444 8: M= 0.4889 7: M= 0.4333 6: M= 0.3778 5: M= 0.3222 4: M= 0.2667 3: M= 0.2111 2: M= 0.1556 1: M= 0.1000 Mach Number

S = 340.00 ft2


Wind milling drag diagrams

312


1.500

1

1234567890

Mach Number, M 1.250 1.000

0.750

313 0.0080

Drag Coefficient

C

D

0.0070

0.0060

0.0050

0.0040

0.0030

0.0020

0.0010

0.500 0.0000

Wind milling CD  M , C L  Constant  Diagram

Condition1-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.7222

1 L

3: C = 1.4444

1 L

4: C = 2.1667

1 L

5: C = 2.8889

1 L

6: C = 3.6111

1 L

7: C = 4.3333

1 L

8: C = 5.0556

1 L

9: C = 5.7778

1 L

10: C = 6.5000

1 L

S = 340.00 ft2


3.000

1

1234567890

Mach Number, M 2.500 2.000

1.500

314 0.0070

Drag Coefficient

C

D

0.0060

0.0050

0.0040

0.0030

0.0020

0.0010

1.000 0.0000

Wind milling CD  M , C L  Constant  Diagram

Condition1-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.7222

1 L

3: C = 1.4444

1 L

4: C = 2.1667

1 L

5: C = 2.8889

1 L

6: C = 3.6111

1 L

7: C = 4.3333

1 L

8: C = 5.0556

1 L

9: C = 5.7778

1 L

10: C = 6.5000

1 L

S = 340.00 ft2


0.700

1234567890

0.600

1

Mach Number, M

0.500

0.400

0.300

315 C

D

0.0070

0.0060

0.0050

0.0040

0.0030

0.0020

0.0010

0.100 0.0000

0.0080

Drag Coefficient

0.200

Wind milling CD  M , C L  Constant  Diagram

Condition2-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.7222

1 L

3: C = 1.4444

1 L

4: C = 2.1667

1 L

5: C = 2.8889

1 L

6: C = 3.6111

1 L

7: C = 4.3333

1 L

8: C = 5.0556

1 L

9: C = 5.7778

1 L

10: C = 6.5000

1 L

S = 340.00 ft2


0.700

1234567890

0.600

1

Mach Number, M

0.500

0.400

0.300

316 C

D

0.0070

0.0060

0.0050

0.0040

0.0030

0.0020

0.0010

0.100 0.0000

0.0080

Drag Coefficient

0.200

Wind milling CD  M , C L  Constant  Diagram

Condition2-2

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.7222

1 L

3: C = 1.4444

1 L

4: C = 2.1667

1 L

5: C = 2.8889

1 L

6: C = 3.6111

1 L

7: C = 4.3333

1 L

8: C = 5.0556

1 L

9: C = 5.7778

1 L

10: C = 6.5000

1 L

S = 340.00 ft2


0.0080

D

Drag Coefficient, C 0.0060

12345678910

0.0070

0.0050

0.0040

0.0030

0.0020

317 7.0000

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 0.0000

8.0000

Lift Coefficient

C

1 L

0.0010

Wind milling CL  CD , M Constant  Diagram

Condition1-1

10: M= 1.2000 9: M= 1.1333 8: M= 1.0667 7: M= 1.0000 6: M= 0.9333 5: M= 0.8667 4: M= 0.8000 3: M= 0.7333 2: M= 0.6667 1: M= 0.6000 Mach Number

S = 340.00 ft2


0.0070

D

Drag Coefficient, C 0.0050

1 2 3 4 5 6 7 8 9 10

0.0060

0.0040

0.0030

0.0020

318 C

1 L

7.0000

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 0.0000

8.0000

Lift Coefficient

0.0010

Wind milling CL  CD , M Constant  Diagram

Condition1-2

10: M= 2.6000 9: M= 2.4444 8: M= 2.2889 7: M= 2.1333 6: M= 1.9778 5: M= 1.8222 4: M= 1.6667 3: M= 1.5111 2: M= 1.3556 1: M= 1.2000 Mach Number

S = 340.00 ft2


0.0070

D

Drag Coefficient, C 0.0050

1 2 3 4 5 6 7 8 9 10

0.0060

0.0040

0.0030

0.0020

319 C

1 L

7.0000

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 0.0000

8.0000

Lift Coefficient

0.0010

Wind milling CL  CD , M Constant  Diagram

Condition2-1

10: M= 2.6000 9: M= 2.4444 8: M= 2.2889 7: M= 2.1333 6: M= 1.9778 5: M= 1.8222 4: M= 1.6667 3: M= 1.5111 2: M= 1.3556 1: M= 1.2000 Mach Number

S = 340.00 ft2


0.0080

12345678910

0.0070

D

Drag Coefficient, C 0.0060

0.0050

0.0040

0.0030

0.0020

320 7.0000

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 0.0000

8.0000

Lift Coefficient

C

1 L

0.0010

Wind milling CL  CD , M Constant  Diagram

Condition2-2

10: M= 0.6000 9: M= 0.5444 8: M= 0.4889 7: M= 0.4333 6: M= 0.3778 5: M= 0.3222 4: M= 0.2667 3: M= 0.2111 2: M= 0.1556 1: M= 0.1000 Mach Number

S = 340.00 ft2


All in one drag diagrams

321


125.0000

345672

D

Drag Coefficient, C 100.0000 75.0000

50.0000

25.0000

322 C

7.0000

8.0000

Lift Coefficient

1 L

1

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 0.0000

Drag build up CD  CL Diagram

Condition1-1

M= 0.7805 7: Windmilling 6: Pylon 5: Trim 4: Fuselage 3: Vertical Tail 2: Horizontal Tail 1: Wing Drag Build-Up

S = 340.00 ft2


5000000.0000

D

123

Drag Coefficient, C 0.0000 -5000000.0000

-10000000.0000

323 C

7.0000

8.0000

Lift Coefficient

1 L

4567

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

-15000000.0000 0.0000

Drag build up CD  CL Diagram

Condition1-2

M= 2.2665 7: Windmilling 6: Pylon 5: Trim 4: Fuselage 3: Vertical Tail 2: Horizontal Tail 1: Wing Drag Build-Up

S = 340.00 ft2


23

50.0000

D

1

Drag Coefficient, C 0.0000 -50.0000

-100.0000

324 7.0000

8.0000

Lift Coefficient

C

1 L

45678910

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

-150.0000 0.0000

Drag build up CD  CL Diagram

Condition2-1

M= 0.3077 10: Windmilling 9: Pylon 8: Trim 7: Canopy 6: Retractable Gear 5: Flap 4: Fuselage 3: Vertical Tail 2: Horizontal Tail 1: Wing Drag Build-Up

S = 340.00 ft2


23

70.0000

91456780

60.0000

D

Drag Coefficient, C 50.0000 40.0000

30.0000

20.0000

1 L

325 7.0000

1

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 0.0000

8.0000

Lift Coefficient

C

10.0000

Drag build up CD  CL Diagram

Condition2-2

M= 0.2291 10: Canopy 9: Windmilling 8: Pylon 7: Trim 6: Retractable Gear 5: Flap 4: Fuselage 3: Vertical Tail 2: Horizontal Tail 1: Wing Drag Build-Up

S = 340.00 ft2


1.500

1

326

10

9

8

7

6

5

4

3

1 2

Mach Number, M 1.250 1.000

0.750

600.0000

Drag Coefficient

C

D

500.0000

400.0000

300.0000

200.0000

100.0000

0.500 0.0000

Total drag CD  M C L  Constant  Diagram

Condition1-1

1 L

1: C = 0.0000 Lift Coefficient

2: C = 0.7222

1 L

1 L

3: C = 1.4444

1 L

4: C = 2.1667

5: C = 2.8889

1 L

6: C = 3.6111

1 L

1 L

7: C = 4.3333

8: C = 5.0556

1 L

9: C = 5.7778

1 L

10: C = 6.5000

1 L

S = 340.00 ft2


3.000

1

2.000

1.500

1.000 -40000000.0000

1 L

S = 340.00 ft2

1 L

10: C = 6.5000

1 L

9: C = 5.7778

1 L

8: C = 5.0556

1 L

7: C = 4.3333

1 L

6: C = 3.6111

1 L

5: C = 2.8889

1 L

4: C = 2.1667

1 L

3: C = 1.4444

1 L

2: C = 0.7222

1: C = 0.0000 Lift Coefficient

327

Mach Number, M 2.500

-35000000.0000

-30000000.0000

-25000000.0000

-20000000.0000

-15000000.0000

-10000000.0000

-5000000.0000

0.0000

Condition1-2

10

8

7 6 5 4 3 2 1

D

C

5000000.0000

Drag Coefficient

Total drag CD  M C L  Constant  Diagram


0.700

0.600

1

Mach Number, M 0.500

0.400

0.300

0.200

0.100 -5000.0000

1 L

S = 340.00 ft2

1 L

10: C = 6.5000

1 L

9: C = 5.7778

1 L

8: C = 5.0556

1 L

7: C = 4.3333

1 L

6: C = 3.6111

1 L

5: C = 2.8889

1 L

4: C = 2.1667

1 L

3: C = 1.4444

1 L

2: C = 0.7222

1: C = 0.0000 Lift Coefficient

328

-4000.0000

-3000.0000

-2000.0000

-1000.0000

0.0000

Condition2-1

10

8

6712345

D

C

1000.0000

Drag Coefficient

Total drag CD  M C L  Constant  Diagram


0.700

0.600

1

Mach Number, M 0.500

0.400

0.300

0.200

0.100 -5000.0000

S = 340.00 ft2

1 L

1 L

10: C = 6.5000

1 L

9: C = 5.7778

1 L

8: C = 5.0556

1 L

7: C = 4.3333

1 L

6: C = 3.6111

1 L

5: C = 2.8889

1 L

4: C = 2.1667

1 L

3: C = 1.4444

1 L

2: C = 0.7222

1: C = 0.0000 Lift Coefficient

329

-4000.0000

-3000.0000

-2000.0000

-1000.0000

0.0000

Condition2-2

10

8

5671234

D

C

1000.0000

Drag Coefficient

Total drag CD  M C L  Constant  Diagram


50.0000

D

Drag Coefficient, C 0.0000 -50.0000

-100.0000

330 7.0000

8.0000

Lift Coefficient

C

1 L

12345

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

-150.0000 0.0000

Total drag CL  CD  f Constant  Diagram

Condition2-1

1:  = 0.0 deg Flap Angle

f

2:  = 11.3 deg

f

3:  = 22.5 deg

f

4:  = 33.8 deg

f

5:  = 45.0 deg

f

M= 0.3077

S = 340.00 ft2


70.0000

12345

60.0000

D

Drag Coefficient, C 50.0000

40.0000

30.0000

20.0000

1 L

331 7.0000

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 0.0000

8.0000

Lift Coefficient

C

10.0000

Total drag CL  CD  f Constant  Diagram

Condition2-2

1:  = 0.0 deg Flap Angle

f

2:  = 11.3 deg

f

3:  = 22.5 deg

f

4:  = 33.8 deg

f

5:  = 45.0 deg

f

M= 0.2291

S = 340.00 ft2


600.0000

D

10

Drag Coefficient, C 500.0000 400.0000

9

8

300.0000

7

6

200.0000

2 5 31 4

332 C

1 L

7.0000

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 0.0000

8.0000

Lift Coefficient

100.0000

Total drag CL  CD M  Constant  Diagram

Condition1-1

10: M= 1.2000 9: M= 1.1333 8: M= 1.0667 7: M= 1.0000 6: M= 0.9333 5: M= 0.8667 4: M= 0.8000 3: M= 0.7333 2: M= 0.6667 1: M= 0.6000 Mach Number

S = 340.00 ft2


5000000.0000

123 4

0.0000

5

D

333

6

7

8

9 7.0000

8.0000

Lift Coefficient

C

1 L

10

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

Drag Coefficient, C -5000000.0000 -10000000.0000-15000000.0000-20000000.0000-25000000.0000-30000000.0000-35000000.0000-40000000.0000 0.0000

Total drag CL  CD M  Constant  Diagram

Condition1-2

10: M= 2.6000 9: M= 2.4444 8: M= 2.2889 7: M= 2.1333 6: M= 1.9778 5: M= 1.8222 4: M= 1.6667 3: M= 1.5111 2: M= 1.3556 1: M= 1.2000 Mach Number

S = 340.00 ft2


200.0000

1 2 3

4

D

5

6

Drag Coefficient, C 100.0000

7

8

0.0000

9

10

-100.0000

334 7.0000

8.0000

Lift Coefficient

C

1 L

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

-200.0000 0.0000

Total drag CL  CD M  Constant  Diagram

Condition2-1

10: M= 0.3000 9: M= 0.2778 8: M= 0.2556 7: M= 0.2333 6: M= 0.2111 5: M= 0.1889 4: M= 0.1667 3: M= 0.1444 2: M= 0.1222 1: M= 0.1000 Mach Number

S = 340.00 ft2


200.0000

1 2 3

4

D

5

6

Drag Coefficient, C 100.0000

7

8

0.0000

9

10

-100.0000

335 7.0000

8.0000

Lift Coefficient

C

1 L

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

-200.0000 0.0000

Total drag CL  CD M  Constant  Diagram

Condition2-2

10: M= 0.3000 9: M= 0.2778 8: M= 0.2556 7: M= 0.2333 6: M= 0.2111 5: M= 0.1889 4: M= 0.1667 3: M= 0.1444 2: M= 0.1222 1: M= 0.1000 Mach Number

S = 340.00 ft2


Performance calculations Based on airplane performance theory By Dr. J. Roskam

336


Velocity-Thrust diagrams calculations:

Tav  f AThrustV 2  BThrustV CThrust

2 1  2  2K mg   1 T   CD0 S V    2  S 2    V

Entered parameters for Condition 1-1:

  0.382 Kg

m3

S  31.58m 2 m  10992Kg V  450Knot  231.48 m K

Sec

1 AR e



e  4.6110.045 AR 0.68  Cos 0.15  3.1 AR  3.04    40 W

e  1.41 K  0.0738 Result of calculations for condition 1-1: 337


T11  12719.53N Entered parameters for condition 1-2:

m  9160Kg g  9.81m

Sec 2

  0.260 Kg

m3

V  1300Knot  668.72 m

Sec

Result of calculations for condition 1-2:

T1 2  57493.8684 N Entered parameters for Condition 2-1:

m  10992Kg V  200Knot  102.88 m

  1.038 Kg

Sec

m3

Result of calculations for condition 2-1:

T2 1  10109.2652 N

338


339

1500.00

Velocity,V kts 1250.00

1000.00

750.00

500.00

T

av

lb

0

0.00

12500

10000

7500

5000

2500

15000

Available Thrust

250.00

T-V Diagram:


Result of thrust characteristics:

AThrust  0.009 lb

Kts 2

BThrust  3.263 lb

Kts

CThrust  2580.059lb Performance characteristics: 1-Take-off distance;

A  1   STO  FTO hob   LOF B   V3 A  VS  TO

   

2

1     W    T           1.414    SW TO   W TO   

11.414 B   hob  g CL LOF  MaxTO   hob  50 ft f TO  1 T  0.75TSet

5 B.P.R 4 B.P.R

    g  0.72

C D0

TO _ Down

CL

MaxTO 340


T   W  

 LOF  0.9

0.3 ARW

TO

B.F .L  C

655

 C  D E

0.863 1 2.3  2  2

min

W    S  W TO D 0.694 gCL

 hob

MaxTO

E

1  2.7 T      W TO

T  2    W TO

OEI

TTO

OEI

STO

G

 L        D TOOEI 

1

 N 1   TSet   N  

VLOF 2 2g  T      W TO

341


V LOF  1.1VS

TO

L L 1      KCD0  D  Max  D OEI L    10.39  D  Max Entered parameters to equation:

SW  340 ft 2 ARW  3.09 hTO  2000 ft TTO  10 F WTO  31616Pound CL

Max

 1.092

C D0

TO _ Down

L D

OEI

 V3  V  STO

 0.0320

 10.39

   1.05  

342


G  0.0200 a  0.90 g TSet  40'000Pound B.P.R  0.44 FTO  1 T  60 CL

 6.55Rad 1

CL

 3.7500

VS

 81.26Knot

 TO

0TO

TO

V LOF  89.38 ( Lift  Off ) STO  1399 ft STO  316 ft G

-Stall speed : -Clean stall speed :

VS 

2WCurrent TSet Sin Current  T  SW CL Max

343




CLMax CL0 CL

Condition 1-1:

VS  163.76 Knot Condition 1-2:

VS  63.24 Knot Condition 2-1:

VS  75.79Knot Condition 2-2:

VS  76 Knot -Maximum rate of climb:

ROCMax  VMax

V ROC

Max

ROC

2qROC

Sin  ROC Max

Max

0.5

qROC

Max

    3 T (1 1 )  2 6CD0 S  T    L D Max  m.g   

 

344


qROC

Max

qROC

Max

V ROC

    3 150000  1 1  2 60.03114431.58   150'000     10 . 39     10992 9 . 81       25418.711.072  52667.54

Max

252667.54  343.64 m Sec 0.892

  10'000 ft  0.862 Kg CD

Climbe

m3

 CD0  K CL 2

CD0  0.031144 K  0.0738 CL

 0.752

CD

 0.031144  0.07380.7522

Climb

Climb

CD Climbe  0.0866 DROC

1  CD  S VROC Max Cond . 2

2

1 2 D   0.0866  0.892  31.58343.64 2 345


DROC  144036.41N

1 LROC  CL S VROC Max 2

2

LROC  0.5 0.892  31.58343.642 LROC  1250754.994 N 1250754.994  109929.81Cos ROC Cos

 ROC

ROC Max

0

107831.52  0.0862 1250754.994

 85.05

Max

Sin ROC

Max

Max

 0.996

ROCMax(WE )  V ROC  Sin ROCMax

 343.64  0.996  342.36 m

ROCMax

 67393.7 ft

WE  WE 

Min

346

Sec


-Absolute Ceiling:

   1 2 SC T11'000   C   0V E Dmin min D D  11'000  2 VE

min d

2m g 0 SCL

min D

0  1.184 Kg

m3

T  10 F CL

C D0 K

CL

0.037212  0.710 0.0738

VE

2109929.81 1.18431.580.710

min D

min D

VE

min D

min D

CD CD

min D

min D

 90.13 m

Sec

 CD0  K  CLmin  D  

2

 0.037212  0.07380.71002

347


CL

CL CL

min D

min D

min D

CD

min D

C D0 K

0.037212 0.0738

 0.7100  0.074424

T11'000  150KN  0.740.9 FCruse  0.4 TStedy  state  45.756KN    1 45.756 103  C   1.184  90.132  31.58 0.07442  1.184  2    45.756 103  C   11302.18  1.184 

C 0.327

 0.247

C  0.08077   20400m  66'926.6 ft hMax  66'926.6 ft

348


Pull-up maneuver; Method:

nPull up 

Treq Sin  T  0.5VMax 2CL WMan

VMax 2 SW CD Treq  2Cos  T 

CD  CD0  K CL

2

Max

SW  31.58m 2

  0  g  Q1   nPull Up 1 V  Max  Maneuver condition 1:

 Start  0 SW  340.32 ft 2 hm  0 ft VMan( A)  450Knot WMan  22'000Pound

349

S Max W


CD0Manuver   0.02277 Result of calculations for maneuver condition:

Treq  17'447 Pound T Av  40'000Pound   83.16 Turn rate  0.3531Rad

Sec

RTurn  2151.28 ft nTurn  8.39 g Maneuver condition 2:

  0 SW  340.2 ft 2 hm  0 ft VMax  550Knot CD0( Est.)  0.02277

350


Result of calculations for maneuver condition 2:

Treq  29'465Pound  85.52 Turn Rate 0.4426 Rad

Sec

RTurn  2098 ft nTurn 12.81g -Glide characteristics:

 CD   C  L

  tan 1 

CL  CL  CL 

C D  C D0

0

Clean| M

 BDP

Clean

CL 2

 WCurent  2  CD 2    3 Cos 3 R.D  60     SW    CL 

tGL 

Altitude R.D

RGL 

 Altitude tan  351


tGL

Max 

Altitude

 WCurent  2  CD 2    3  Cos GLMax 60    S  C  W   L  Max

 16BDPClean  CD 2      CL3   3   Max 

 GL

Max

CL 

 CD0Clean| M  0 BDPClean   3 

 C   tan 1  D   CL  3CD0Clean| M BDP

Clean

3 CD

 CD  CL  3   CL  Max RGL

Max

2

1  Altitude    2   CD0Clean| M BDPClean

Glide condition:

Alt  22'000 ft W  20'000Pound

352

3


  2 CL  6.4500Rad 1 

CL  0.7550 0

 Low  15  high  30 Result for general glide condition:

  5.4 R.D  1791.922 ft tGL

min

tGL

Max

 15.47 min  21.34 min

RGL

min

RGL

min

Max

 48.46n.m  138.32n.m

Starting a glide from 1-2 condition: Entered parameters:

h  42'000 ft WCur  20'000Pound 353


CD0  0.0232 Result of calculations for condition 1-2:

  5.5 R.D  2713.47 ft tGL

min

tGL

Max

 15.4783 min  15.4778 min  71.99n.m

RGL

min

RGL

min

Max

 83.50n.m

Result of calculations for start gliding from condition 2-1:

  5.9546 R.D  1859.29 ft tGL

min

tGL

Max

 2.6891min  2.7131min

RGL

min

RGL

min

Max

 7.8895n.m  8.5563n.m

354


Result of calculations for start gliding from condition 2-2:

  5.85 R.D  1746.74 ft

min

tmin  1.1449 min tmax  1.1589 min RGL min  3.2123n.m RGL

Max

 3.5252n.m

-Maximum cruise speed : 3  2  C D0   2 S V W W Cruise Max   Cruise BDPClean   Clean | M  Treq  2    S V  2Cos  T  W Cruis Cos  T      

CL

Max Cruise

CD 

VCruise

Max

RTAlt

TreqCos  T  0.5VCruise 2 SW

M Cruise

Max

VCruise

Max

RTAlt

355


Result of calculations for condition 1-1:

Treq  5731Pound CL CL

CD

 4.14

MaxCruise

 0.1346

  5.69 VCruise

Max

M Cruise

 670.67 Kts

Max

 1.163

Result of calculations for condition 1-2:

Treq  11864.470079lb T Av  11864.470009lb CL CL

CD

 1.4036

MaxCruise

 0.0382

  6.54 VCruise

Max

M Cruise

 1243.23Kts

Max

 2.167

356


Result of calculations for condition 2-1:

Treq  7350lb CL CL

CD

 4.12

MaxCruise

 0.1346

  5.69 VCruise

Max

M Cruise

 454.63Kts

Max

 0.699

Result of calculation for condition 2-2:

Treq  5317lb CL CL

CD

 5.87

Max Cr

 0.1346

  5.69 VCruise

Max

M Cruise

 441.18Kts

Max

 0.672

-Range, Constant speed: 357


2  C D0  2WCruise 2 BDP   S U W 1    Clean| M Clean  Treq      S U 2Cos         2 Cos  T   W 1 T    

C D  C D0

Clean| M

 BDP

Clean

CL 2

 U1  CL1   WCruise RV    Ln   C C  J  D   WCruise W f Cr

   

W    CCruise  f Cr Treq Sin  T   2   CL  1 0.5U12 SW Entered parameter, General maximum range condition:

Alt  35000 ft U1  Vmr  190.04 m

Sec

 369.44Knot

CD0  0.0216 C  0.3

Result of calculations for general maximum range condition:

358


Treq  2415lb T Av  2553lb

  3.61 CL  0.3682 1

RV  Const.  3080.9 n.m Result of calculations for condition 1-1:

Entered parameters:

C J  0.4

lb lb.h

Treq  2498lb T Av  2859lb

  3.61 CL  0.3682 1

RV  Const.  2709.5 n.m

359


Result of calculations for Condition 1-2;

C J  0.5

lb lb.h

Treq  11115lb T Av  12925lb

  6.41 CL  0.0536 1

RV  Const.  1171.1 n.m

calculations for condition 2-1: Entered parameters:

Alt  5'000 ft U  200Kts CD0  0.02976 C J  0.3

lb lb.h

Result of calculations for condition 2-1: 360


  0.96 CL  0.6670 1

RV  Const.  1419.3 n.m Calculations for condition 2-2: Entered parameters:

Alt  3000 ft U  150Kts CD0  0.0216

Result of calculations for condition 2-2:

  0.96 CL  0.667 1

RV  Const  1419.3 n.m -Range with constant altitude: Method:

361


1.677  1  Rh  Const.  Alt  35000 ft C J  SW CD 0  0.0216 C J  0 .3 CL

Range

CL

optimum R

C D0

3BDP

Clean

 0.65

T  25 W  26'000lb

WF  2WCruise  Cr 2 U1   CLRange SW

Maximum Range general condition:

Alt  35000 ft C D0  0.0216 C J  0.3 CL

Range

Clean| M

lb lb.h

 0.65

T  25 W  26'000lb

362

   

  CLRange    CD 

   WCruise  WCruis  


Result of calculations for general maximum range condition:

Treq  1991lb Tav  2540lb

  1.11 U1  365.34Knot CL

Opt R

 0.3123

Rh Const  3652.8 n.m Result of calculations for condition 1-1:      Alt 35'000 ft          C D 0  0.03114        lb   C J 0.4  lb.h  

Treq  2336lb T Av  2397lb

  1.11 U1  309.66Knot 363


CL

Opt

 0.3750

Rh Const.  1942.8 n.m Result of calculations for condition 1-2:

Treq  1477lb T Av  2408lb

  1.11 U1  314.63Knot CL

Opt R

 0.3124

Rh  Const.  2548.2 n.m Result of calculations for condition 2-1:

Treq  2741lb

  1.11 U1  203.63Knot CL

Op R

 0.3666

Rh  Const.  1474.2 n.m 364


Result of calculations for condition 2-2:

Treq  2472lb

  1.11 U1  203.63Knot CL

Op R

 0.3124

Rh Const.  1626.9 n.m

-Endurance, Constant velocity:

Method:

 1 C   W   L Cruise    ln EV  Const.  60   WCruise WF  C C J D    1    WF   2WCruise  1 Treq Sin  T  2  CL   2 U1 SW C D  C D0

Clean| M

 BDP

Clean

CL 2

365


Result of calculations for general maximum range condition:

Treq  2358lb T Av  2859lb

  3.60 EV  Const.  44.03Min Result of calculations for condition 1-1:

Treq  2252lb T Av  2859lb

  3.83 EV  Const.  46.0Min Result for condition 1-2:

Treq  10041lb T Av  12925lb

  6.19 EV  Const.  5.5Min

366


Result of calculations for condition 2-1:

Treq  3035lb

  0.19 EV  Const.  34.8Min Result of calculations for condition 2-2:

Treq  3442lb

  3.68 EV  Const.  31.317Min -Endurance, Constant altitude:

 1  CL   WCruise   . Endur   ln Eh Const.  60   W   C C W J D Cruise F    1    CL

Opt E

CD0Clean| M BDPClean| M

WF   2WCruise  1 Treq Sin  T  2  U1   SW CLEndur 367


U12 SW CD Treq  2Cos  T  Result of calculations for general maximum range condition:

Treq  2214lb T Av  2433lb

  0.87 U1  325.75Kts CL

Opt E

 0.5410

Eh  Const.  47.8Min Result of calculations for condition 1-1:

Treq  2214lb T Av  2433lb

  0.87 U1  325.74Kts CL

Opt E

 0.5410

Eh  Const.  35.8Min 368


Result of calculation for condition 1-2:

Treq  1698lb T Av  2457lb

  0.87 U1  335.52Kts CL

Opt E

 0.5410

Eh  Const.  46.7Min Result of calculations for condition 2-1:

Treq  2611lb

  0.87 U1  212.36Kts CL

Opt E

 0.5410

Eh  Const.  40.5Min

369


Perform a nce diagrams Based on Dr. J. Roskam methods

370


Gliding perform a nces

371


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

372 R

GL

n.m.

200

150

100

50

-20.00 0

Glide range   RGL Gliding condition


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

373 t

GL

min

25

20

15

10

5

-20.00 0

Glide time   tGL

Gliding condition


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

374 R.D.

ft

min

40000.00

30000.00

20000.00

10000.00

-20.00 0.00

R.D  Gliding condition


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

375 R

GL

n.m.

80

70

60

50

40

30

20

-20.00 10

Glide range   RGL

Condition1-1


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

376 R

GL

n.m.

100

90

80

70

60

50

40

30

20

-20.00 10

Glide range   RGL

Condition1-2


30.00

Angle of Attack,  deg 20.00

10.00

0.00

-10.00

377 R

GL

n.m.

10

9

8

7

6

5

4

3

2

-20.00 1

Glide range   RGL

Condition2-1


30.00

Angle of Attack,  deg 20.00

10.00

0.00

-10.00

378 R

GL

n.m.

4

3

2

1

-20.00 0

Glide range   RGL

Condition2-2


30.00

Angle of Attack,  deg 20.00

10.00

0.00

-10.00

379 t

GL

min

15

13

10

8

5

3

-20.00 0

Glide time   tGL

Condition1-1


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

380 t

GL

min

20

15

10

5

-20.00 0

Glide time   tGL Condition1-2


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

381 t

GL

min

3

3

2

2

1

1

-20.00 0

Glide time   tGL

Condition2-1


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

382 t

GL

min

2

1

1

1

1

0

-20.00 0

Glide time   tGL

Condition2-2


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

383 R.D.

ft

min

11000.00

10000.00

9000.00

8000.00

7000.00

6000.00

5000.00

4000.00

3000.00

2000.00

-20.00 1000.00

R.D  Condition1-1


30.00

Angle of Attack,  deg 20.00

10.00

0.00

-10.00

384 R.D.

ft

70000.00

min 60000.00

50000.00

40000.00

30000.00

20000.00

10000.00

-20.00 0.00

R.D  Condition1-2


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

385 R.D.

ft

min

50000.00

40000.00

30000.00

20000.00

10000.00

-20.00 0.00

R.D  Condition2-1


30.00

Angle of Attack,  deg 20.00 10.00

0.00

-10.00

386 R.D.

ft

min

45000.00

40000.00

35000.00

30000.00

25000.00

20000.00

15000.00

10000.00

5000.00

-20.00 0.00

R.D  Condition2-2


Maximu m cruise speed diagr a ms Based on Dr. J. Roskam methods

387


2500.00

Velocity,V kts 2000.00 1500.00

1000.00

500.00

388

T

req

70000.0

Thrust

T

av

60000.0

T

lb

50000.0

40000.0

30000.0

20000.0

10000.0

0.00 0.0

Maximum cruise speed Condition1-1


3000.00

Velocity,V kts 2500.00

2000.00

1500.00

1000.00

500.00

389

req

T

Thrust 60000.0

av

T

T

lb

50000.0

40000.0

30000.0

20000.0

10000.0

0.00 0.0

Maximum cruise speed Condition1-2


2000.00

Velocity,V kts 1500.00 1000.00

500.00

390

req

T

Thrust 90000.0

av

T

T

lb 80000.0

70000.0

60000.0

50000.0

40000.0

30000.0

20000.0

10000.0

0.00 0.0

Maximum cruise speed Condition2-1


2000.00

Velocity,V kts 1500.00 1000.00

500.00

391

req

T

Thrust 90000.0

av

T

T

lb 80000.0

70000.0

60000.0

50000.0

40000.0

30000.0

20000.0

10000.0

0.00 0.0

Maximum cruise speed Condition2-2


Payload ranges Based on Dr. J. Roskam methods

392


2500.0

h=const

R n.m. 2000.0

1500.0

Payload Weight

1000.0

500.0

393 lb Weight

35000.0

W

TO

30000.0

A

25000.0

20000.0

0.0 15000.0

Maximum payload range Max. range condition Altitude=constant


3000.0

V=Const

R 2500.0

n.m. 2000.0

Payload Weight

1500.0

1000.0

500.0

394 lb Weight

35000.0

W

TO

30000.0

A

25000.0

20000.0

0.0 15000.0

Maximum payload range Max. range condition Velocity=constant


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.