FF3 Analysis Data Item Vol. 4

Page 1

ȏ Ȑ

ʹͲͲ͵ǦʹͲͲͷǡ Sina Golshany 4/21/2005

These are computations I performed between 2003 and 2005 to evaluate an aircraft configuration I had put together when I was a sophomore in high school. My command of the English language wasn’t particularly great at the time I was putting this document together, so the dear reader will excuse occasional grammatical, composition errors and typos as well as technical errors here and there.


F-F.3 Project data unit ,Volume IV: Designer: Sina golshany -Longitudinal flying qualities calculations and diagrams -Lateral-directional flight dynamic calculations -Lateral-directional Flying qualities -Stabilizer trim diagrams -Roll coupling calculations and diagrams -V-n diagrams (MIL-A-8861) -Lift distribution diagrams on lift producer surface -Cost estimation -Project references


Longitudinal flying qualities Calculation Based on Dr. J. Roskam method

554


n

 T2

 Z g

Plong

T1

ln2  P

long

 2P long

n P

long

ln2

 Plong n P

long

calculations, according to MIL-F-8785C Papers: Result of calculations Condition 1-1, Air to air combat condition:

n

 9.806 g

Rad

T2  10.191Sec P

LevelP Unstable Level  SP  III Level n SP  I

555


Result of calculations Condition 2-1, Landing condition:

n

 4.487

g Rad

T2  7.716Sec P

T1

 Undefined 2P

LevelP  Unstable Level n

SP

Leveln

SP

 III I

Result of calculations Condition 2-1, Take off condition:

n

 2.789

g Rad

T2  9.637Sec P

T1

 Undefined 2P

LevelP  Unstable Level SP  III Leveln

SP

I

556


Longitudinal flying qualities Diagrams

557


102

ď Ą rad n g

Design Point

101

Level 2

558 10 1

10 0

Level 3

ď ˇ

SP n

rad

s

10 2

Level 2, Class II-L, III

Level 2, Class I, II-C, IV

Level 1, Class II-L, III

Level 1, Class I, II-C, IV

always be greater than 0.6 rad/s for Level 3 Note : For Class I,II-C, and IV airplanes, frequency shall

100 10 -1

Long. flying qualities Condition1-1


102

ď Ą rad n g

101

Design Point

Level 2

559 10 1

10 0

Level 3

ď ˇ

SP n

rad

s

10 2

Level 2, Class II-L, III

Level 2, Class I, II-C, IV

Level 1, Class II-L, III

Level 1, Class I, II-C, IV

always be greater than 0.6 rad/s for Level 3 Note : For Class I,II-C, and IV airplanes, frequency shall

100 10 -1

Long. flying qualities Condition2-1


102

ď Ą rad n g

101

560 Level 2 10 1

10 0

Level 3

ď ˇ

SP n

rad

s

10 2

Level 2, Class II-L, III

Level 2, Class I, II-C, IV

Level 1, Class II-L, III

Level 1, Class I, II-C, IV

Design Point

always be greater than 0.6 rad/s for Level 3 Note : For Class I,II-C, and IV airplanes, frequency shall

100 10 -1

Long. flying qualities Condition2-2


Lateral-directional flight dynamic calculations Based on Dr. J. Roskam Method

561


1 q  U12 2 A1 

B1 

I XZ S I XX

S

I XZ

S

I ZZ

S

D2  s A2 s 4  B2 s 3 C2 s 2  D2 s  E2

A2  U1 1 A1B1

  

B2  Y 1 A1B1 U1 LP  N r  A1 N P  B1Lr

C2  U1LP N r  LP N r  Y LP  N r  A1 N P  B1Lr 

 Y L B  N

 

YP L  N  A1  NT A1  U1 L B1  N   NT  r

 1

 NT

  A

D2  Y LP N r  Lr N P  YP L N r  N  Lr  NT Lr

 gCos1 L  N  A1  NT

1

562


 

 U1 L N P  N  LP  NT LP  Yr L N P  N  LP  NT LP 

E2  gCos1 L N r  N  Lr  NT Lr

 s 

 C.S (s)

N D2

N   s A s 3  B s 2 C s  D A  Y

 Yr L

1 1

C.S

C.S

C  Y

N  L

P  A1 N P  B1Lr

r

B1  N

C.S

U L 1

C.S

 Y L P

B1  N

C.S

C.S

 N

C.S

C.S

LP N r  N P Lr  YP N C.S Lr  L C.S N r 

C.S

gCos1 L

 N

D  gCos1 N

 s 

1 A B 

C.S

B  Y

C.S

C.S

LP

Lr  L

C.S

Nr

N

 C.S s  D2

563

A1


N  s A s 2  B s C

A  U1 L

 N

C.S

B  U1 N

C.S

C.S

Lr  L

A1

C.S

 

N r  Y L

L  N A  N A  U Y N L  N L

Y

C.S

1

 1

T

  C.S

r

C.S

 N

C.S

1

T

 C.S

 L N C.S

 s  N   C.S s  D2 N  A s 3  B s 2  C s  D

C.S

B1

C.S

N P  N

A  U1 L B  U1 L

 C.S

LP

YP N  L C.S  NT L C.S  L N C.S  Y

C.S

L  N P  N  LP 

D  gCos1 N  L C.S  NT L C.S  L N C.S

564




For a complex pair of roots:

S1,2   1,21,2  J1,2 1 1,2 For real roots:

TC  

1 s

Lateral – directional rudder related transfer functions: Result of calculations for condition1-1,   15 :

I XX  10216Slug  ft 2 B

I ZZ  85802Slug  ft 2 B

I XZ  0 B

-Polynomial form I:

 s  15.7073s 4 1602.8272s 3  4499.9389s 2 637.8296s   r s  759.5145s 5  2288.5747s 4 8669.8865s 3  54742.8693s 2 182.7981s

565


-Factored form I:

 s  15.7073ss 0.1352s 99.1497s 3.0288   r s  759.5145ss 0.0033s  4.0881 s 2  7.1047s 17.6399

K gain  3.489258 -Polynomial form II:

 s  4219.4056s 3 9623.1644s 2 535570.7913s   r s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2 

182.7981s

-Factored form II:

 s  4219.4056s 3 6923.1644s 2 535570.7913s   r s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2 182.7981s

566


-Polynomial form III:

1556.7293s 3  4572.2705s 2 1058.1714s  21713.1387  s    r s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2 182.7981s

-Factored form III :

 

 s  1556.7293s 1.6681 s 2  4.6052s 8.3616   r s  759.5145ss 0.0033 s 2  7.1047s 17.6399

M 1  0.780 q1  212.92 lb

ft 2

W     70.40 lb 2 ft  S TO I XX  10216Slug  ft 2 S

I ZZ  85802Slug  ft 2 S

I XZ  0Slug  ft 2 S

Y  29.3646 ft

Sec 2 567


YP  0 ft

Sec 2

Yr  0.3046 ft

Sec 2

L  380.2819s  2 LP  2.6054s 1 Lr  11.1241s 1 N   13.1552s  2 NT  0.0000s  2 

N P  0.0592s 1 N r  0.3692s 1

n  4.1999 Rad D

Sec

 D  0.8458 n P

Plong

lateral

 Undefined  Undefined

TS  299.630S 568


TR  0.245S TClateral  Undefined 1

TClateral  Undefined 2

TClateral  Undefined 3

TClateral  Undefined 4

Y  15.7073 ft r

s2

L  5.5554s  2 r

N  2.0496s  2 r

Result of calculations for aileron related transfer functions: Condition1-1: -Polynomial form I :

3203.1378s 3 8345.3320s 2 1442.7049s  s    a s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2

182.7981s

569


-Factored form I :

3203.1378ss 0.1627s  2.7681  s    a s  759.5145ss 0.0033s  4.0881 s 2  7.1047s 17.6399

K gain  7.892343 -Polynomial form II:

35646.3811s 2 1216717.0963s  s    a s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2

182.7981s -Factored form II :

 s  35646.3811ss 34.4330   a s  759.5145ss 0.0033s  4.0881 s 2  7.1047s 17.6399

K gain  6656.072379 -Polynomial form III:

 s  3204.4229s 3 8472.5705706s 2 322.7795s  49319.3709   a s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2 

182.7981s

570


-Factored form III:

3204.4229s 1.8412 s 2  4.4853s 8.3591  s    a s  759.5145ss 0.033s  4.0881 s 2  7.1047s 17.6399 K gain  296.802490

I XX  10216Slug  ft 2 I ZZ  85802Slug  ft 2 s

I XZ  0Slug  ft 2 s

Y  29.3646 ft YP  0 ft

Sec 2

Sec 2

Yr  0.3046 ft

S

L  380.2819s  2 LP  2.6054s 1 Lr  11.1241s 1 N   13.1552s  2 571


NT  0.0000s  2 

N P  0.0592s 1 N r  0.3692s 1

n  4.2000 Rad D

Sec

 D  0.8458 n

Plateral

P

lateral

 Undefined

 Undefined

TS  299.630s TR  0.245s TClateral  Undefined 1

TClateral  Undefined 2

TClateral  Undefined 3

TClateral  Undefined 4

Y  0.0000 ft a

s2 572


L  0.0000s  2 a

N  4.2190s  2 a

573


Lateral-directional flight dynamic calculations Based on Dr. J. Roskam Method

574


1 q  U12 2 A1 

B1 

I XZ S I XX

S

I XZ

S

I ZZ

S

D2  s A2 s 4  B2 s 3 C2 s 2  D2 s  E2

A2  U1 1 A1B1

  

B2  Y 1 A1B1 U1 LP  N r  A1 N P  B1Lr

C2  U1LP N r  LP N r  Y LP  N r  A1 N P  B1Lr 

 Y L B  N

 

YP L  N  A1  NT A1  U1 L B1  N   NT  r

 1

 NT

  A

D2  Y LP N r  Lr N P  YP L N r  N  Lr  NT Lr

 gCos1 L  N  A1  NT

1

575


 

 U1 L N P  N  LP  NT LP  Yr L N P  N  LP  NT LP 

E2  gCos1 L N r  N  Lr  NT Lr

 s 

 C.S (s)

N D2

N   s A s 3  B s 2 C s  D A  Y

 Yr L

1 1

C.S

C.S

C  Y

N  L

P  A1 N P  B1Lr

r

B1  N

C.S

U L 1

C.S

 Y L P

B1  N

C.S

C.S

 N

C.S

C.S

LP N r  N P Lr  YP N C.S Lr  L C.S N r 

C.S

gCos1 L

 N

D  gCos1 N

 s 

1 A B 

C.S

B  Y

C.S

C.S

LP

Lr  L

C.S

Nr

N

 C.S s  D2

576

A1


N  s A s 2  B s C

A  U1 L

 N

C.S

B  U1 N

C.S

C.S

Lr  L

A1

C.S

 

N r  Y L

L  N A  N A  U Y N L  N L

Y

C.S

1

 1

T

  C.S

r

C.S

 N

C.S

1

T

 C.S

 L N C.S

 s  N   C.S s  D2 N  A s 3  B s 2  C s  D

C.S

B1

C.S

N P  N

A  U1 L B  U1 L

 C.S

LP

YP N  L C.S  NT L C.S  L N C.S  Y

C.S

L  N P  N  LP 

D  gCos1 N  L C.S  NT L C.S  L N C.S

577




For a complex pair of roots:

S1,2   1,21,2  J1,2 1 1,2 For real roots:

TC  

1 s

Lateral – directional rudder related transfer functions: Result of calculations for condition1-1,   15 :

I XX  10216Slug  ft 2 B

I ZZ  85802Slug  ft 2 B

I XZ  0 B

-Polynomial form I:

 s  15.7073s 4 1602.8272s 3  4499.9389s 2 637.8296s   r s  759.5145s 5  2288.5747s 4 8669.8865s 3  54742.8693s 2 182.7981s

578


-Factored form I:

 s  15.7073ss 0.1352s 99.1497s 3.0288   r s  759.5145ss 0.0033s  4.0881 s 2  7.1047s 17.6399

K gain  3.489258 -Polynomial form II:

 s  4219.4056s 3 9623.1644s 2 535570.7913s   r s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2 

182.7981s

-Factored form II:

 s  4219.4056s 3 6923.1644s 2 535570.7913s   r s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2 182.7981s

579


-Polynomial form III:

1556.7293s 3  4572.2705s 2 1058.1714s  21713.1387  s    r s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2 182.7981s

-Factored form III :

 

 s  1556.7293s 1.6681 s 2  4.6052s 8.3616   r s  759.5145ss 0.0033 s 2  7.1047s 17.6399

M 1  0.780 q1  212.92 lb

ft 2

W     70.40 lb 2 ft  S TO I XX  10216Slug  ft 2 S

I ZZ  85802Slug  ft 2 S

I XZ  0Slug  ft 2 S

Y  29.3646 ft

Sec 2 580


YP  0 ft

Sec 2

Yr  0.3046 ft

Sec 2

L  380.2819s  2 LP  2.6054s 1 Lr  11.1241s 1 N   13.1552s  2 NT  0.0000s  2 

N P  0.0592s 1 N r  0.3692s 1

n  4.1999 Rad D

Sec

 D  0.8458 n P

Plong

lateral

 Undefined  Undefined

TS  299.630S 581


TR  0.245S TClateral  Undefined 1

TClateral  Undefined 2

TClateral  Undefined 3

TClateral  Undefined 4

Y  15.7073 ft r

s2

L  5.5554s  2 r

N  2.0496s  2 r

Result of calculations for aileron related transfer functions: Condition1-1: -Polynomial form I :

3203.1378s 3 8345.3320s 2 1442.7049s  s    a s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2

182.7981s

582


-Factored form I :

3203.1378ss 0.1627s  2.7681  s    a s  759.5145ss 0.0033s  4.0881 s 2  7.1047s 17.6399

K gain  7.892343 -Polynomial form II:

35646.3811s 2 1216717.0963s  s    a s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2

182.7981s -Factored form II :

 s  35646.3811ss 34.4330   a s  759.5145ss 0.0033s  4.0881 s 2  7.1047s 17.6399

K gain  6656.072379 -Polynomial form III:

 s  3204.4229s 3 8472.5705706s 2 322.7795s  49319.3709   a s  759.5145s 5  2288.5747s 4 8669.8865s 3 54742.8693s 2 

182.7981s

583


-Factored form III:

3204.4229s 1.8412 s 2  4.4853s 8.3591  s    a s  759.5145ss 0.033s  4.0881 s 2  7.1047s 17.6399 K gain  296.802490

I XX  10216Slug  ft 2 I ZZ  85802Slug  ft 2 s

I XZ  0Slug  ft 2 s

Y  29.3646 ft YP  0 ft

Sec 2

Sec 2

Yr  0.3046 ft

S

L  380.2819s  2 LP  2.6054s 1 Lr  11.1241s 1 N   13.1552s  2 584


NT  0.0000s  2 

N P  0.0592s 1 N r  0.3692s 1

n  4.2000 Rad D

Sec

 D  0.8458 n

Plateral

P

lateral

 Undefined

 Undefined

TS  299.630s TR  0.245s TClateral  Undefined 1

TClateral  Undefined 2

TClateral  Undefined 3

TClateral  Undefined 4

Y  0.0000 ft a

s2 585


L  0.0000s  2 a

N  4.2190s  2 a

586


Lateral-directional flying qualities, Based on Dr. J. Roskam method

587


 

 Magiude of D

 s  solved for dutch roll roots :  s 

  s sN  N  s    s  s  L s s A  sL  s B  N s  s  sN   s 2 A1  sLr

L

2

r

2

2

1

P

2

2

1

A1 

B1 

r

P

r

I XZ S I XX S I XZ S I ZZ S

s   Dn  jn D

D

1 D2

  s      re j   s   D

 

r D

  s   Magnitude of solved for the spiral root . S  s 

588


S

1 TCS

  s   Magnitude of solved for the roll root R  s  S

1 TC R

These mode cheaked against MIL  F 8785C Spiral and Dutch roll mode checking:

 

 40.7907 D

T2  207.688s S

T1

 Undefined 2S

LevelS  I Level  I D

Leveln  I D

Leveln   D  III

589


Roll mode performance :

Level TR  I Levelt  III Lateral directional transfer function for condition 2-1: Ruder related:

Polynomial form I:

9.1534s 4 525.0226s 3 1544.5327s 2  423.9859s  s    r s  337.5620s 5 1062.3210s 4 1204.1802s 3 3978.6915s 2 3759.1131s

Factored form I:

9.1534ss 0.2527s 54.2311s 3.3799  s    r s  337.5620ss  4.4262s  0.7148 s 2 1.9940s 3.5198

K gain  0.112789

590


Polynomial form II:

 s  1102.0609s 3 5913.1117s 2 88365.8752s   r s  337.5620s 5 1062.3210s 4 1204.1802s 3 3978.6915s 2 3759.1131s

Factored form II:

1102.0609ss 12.0305s  6.6650  s    r s  337.5620ss  4.4262s  0.7148 s 2 1.9940s 3.5198

K gain  23.507107

Polynomial form III:

 s   497.0213s 3 1492.3205s 2 85.5424s 8300.3101   r s  337.5620s 5 1062.3210s 4 1204.1802s 3 3978.6915s 2

3759.1131s

591


Factored form III:

 497.0213ss  4.0022 s 2 0.9996s  4.1728  s    r s  337.5620ss  4.4262s  0.7148 s 2 1.9940s 3.5198 K gain  2.208050 M 1  0.308 q1  116.69 lb

W S 

TO

I XX I ZZ I XZ

S

S

S

ft 2

 89.81lb

ft 2

 13029Slug  ft 2  106547Slug  ft 2  0Slug  ft 2

Y   11.9374 ft Y P  0.0000 ft

s2

Y r  0.3267 ft

s

s2

592


L  163.5178s  2 LP  2.7206s 1 Lr  9.8312s 1 N   5.3987s  2 NT  0.0000s  2 

N P  0.0663s 1 N r  0.3911s 1

n  1.8761Rad D

Sec

 D  0.5317 n P

Plateral

lateral

 Undefined

 Undefined

Ts  1.399s TR  0.226s TClateral  Undefined 1

TClateral  Undefined 2

593


TClateral  Undefined 3

TClateral  Undefined 4

P

lateral

 Undefined

Y  9.1534 ft r

s2

L  3.2648s  2 r

N  1.4724s  2 r

Aileron related calculations:

-Polynomial form I:

 s  700.7559s 3  2413.0620s 2 539.755s   a s  337.5620s 5 1062.3210s 4 1204.1802s 3 3978.6915s 2

3759.1131s

594


-Factored form I:

 s  700.7559ss 0.2107s 3.6542   a s  337.5620ss  4.4262s  0.7148

s 1.9940s 3.5198 2

K gain  0.143511

-Polynomial form II:

3137.6719s 3 5557.9759s 2 131709.6604s  s    a s  337.5620s 5 1062.3210s 4 1204.1802s 3 3978.6915s 2 3759.1131s

-Factored form II:

 s  3137.6719ss 7.4249s 5.6535   a s  337.5620ss  4.4262s  0.7148 s 2 1.9940s 3.5198

K gain  35.037429

595


-Polynomial form III:

 s  701.4347s 3  2141.3239s 2 74.8475s 12526.9943   a s  337.5020s 5 1062.3210s 4 1204.1802s 3 3978.6915s 2

3759.1131s -Factored form III:

 s  701.4347s  4.0328 s 2 1.0401s  4.3635   a s  337.5620ss  4.4262s  0.7148s  0.7148

s 1.9940s 3.5198 2

K gain  3.332433 M 1  0.308 q1  116.69 lb

W S 

TO

ft 2

 89.81lb

ft 2

I XX  13029Slug  ft 2 S

I ZZ  106547Slug  ft 2 S

596


I XZ  0Slug  ft 2 S

Y  11.9374 ft YP  0.0000 ft

s2

Sec

L  163.5178s  2 LP  2.7206s 1 Lr  9.8312s 1 N   5.3987s  2 NT  0.0000s  2 

N P  0.0663s 1 N r  0.3911s 1

n  1.8761Rad D

Sec

 D  0.5314 n P

Plateral

lateral

 Undefined

 Undefined

597


TS  1.399s TR  0.226s TClateral  Undefined 1

TClateral  Undefined 2

TClateral  Undefined 3

TClateral  Undefined 4

Y  0.0000 ft a

s2

L  9.2951s  2 a

N  2.077s  2 a

Roll performance checking:

LevelTR  I Levelt  I  actual  78.52 deg

598


-Spiral and Dutch roll mode checking:

 

 23.2607 D

T2  Undefined S

T 1  0.970s 2S

LevelS  Stable Level  LevelIII D

Level Level

nD

I

nD  D

 III

599


Lateral-Directional Transfer functions, Condition 2-2, take off: Ruder related: -Polynomial form I:

 s  5.7182s 4  245.9683s 3  618.5336s 2  227.6471s   r s  253.1715s 5  608.1508s 4 612.0035s 3  2810.0206s 2 1263.0411s -Factored form I:

5.7182ss 0.3256s  40.3065s 3.0337  s    r s  253.1715ss 3.7444s  0.4025 s 2 1.7447s 3.3106

K gain  0.180237 -Polynomial form II:

 s  516.4410s 3  2353.2514s 2  25340.3872s   r s  253.1715s 5  608.1508s 4 612.0035s 3  2810.0206s 2 1263.0411s

600


-Factored form II:

516.4410ss 9.6443s 5.0877  s    r s  253.1715ss 3.7444s  0.4025 s 2 1.7447s 3.3106

K gain  20.062994 -Polynomial form III:

 s   232.6424s 3 574.4826s 2  25.6681s 3186.5750   r s  253.1715s 5  608.1508s 4 612.0035s 3  2810.0206s 2 1263.0411s -Factored form III:

 s   232.6424ss 3.5346 s 2 1.0652s 3.8753   r s  253.1715ss 3.7444s  0.4025 s 2 1.7447s 3.3106 K gain  2.522938 M 1  0.228 q1  71.82 lb

ft 2

W     89.81lb 2 ft  S TO

601


I XX  13029Slug  ft 2 S

I ZZ  106548Slug  ft 2 S

I XZ  0Slug  ft 2 S

Y  7.3201 ft

Sec 2

YP  0.0000 ft

Sec

Yr  0.2663 ft

Sec

L  100.6856s  2 LP  2.2395s 1 Lr  8.0015s 1 N   3.1271s  2 NT  0.0000s  2 

N P  0.0548s 1 N r  0.1337s 1

602


n  1.8195 Rad D

Sec

 D  0.4794 n

Plateral

P

lateral

 Undefined

 Undefined

TS  2.485Sec TR  0.267Sec TClateral  Undefined 1

TClateral  Undefined 2

TClateral  Undefined 3

TClateral  Undefined 4

Y  5.7182 ft r

s2

L  2.0399s  2 r

N  0.9189s  2 r

603


Aileron related flying qualities:

-Polynomial form I:

 s  323.0384s 4 986.3558s 2 304.0615s   a s  253.1715s 5  608.1508s 4 612.0035s 3  2810.0206s 2 1263.0411s -Factored form I:

323.0384ss 0.2822s 3.3356  s    a s  253.1715ss 3.7444s  0.4025 s 2 1.7447s 3.3106

K gain  0.240738

-Polynomial form II:

1446.6572s 3  2352.2805s 2 37258.1160s  s    a s  253.1715s 5  608.1508s 4 612.0035s 3 1810.0206s 2 1263.0411s

604


-Factored form II:

1446.6572ss 5.9526s  4.3266  s    a s  253.1715ss 3.7444s  0.4025 s 2  2.7447s 3.3106

K gain  29.498735

-Polynomial form III:

323.3786s 3 812.8197s 2  23.2311s  s    a s  253.1715s 5  608.1508s 4 612.0035s 3  2810.0206s 2 1263.0411s

-Factored form III:

323.3786s 3.6134 s 2 1.0999s  4.0463  s    a s  253.1715ss 3.7444s  0.4025 s 2 1.7447s 3.3106 K gain  3.743437

605


M 1  0.228 q1  71.82 lb

W S 

TO

ft 2

 89.91lb

ft 2

I XX  13029Slug  ft 2 S

I ZZ  106548Slug  ft 2 S

I XZ  0Slug  ft 2 S

Y  7.3201 ft YP  0.0000 ft

s

Yr  0.2663 ft

s

s2

L  100.6856s  2 LP  2.2395s 1 Lr  8.0015s 1 N   3.2271s  2

606


N T  0.0000s  2 

N P  0.0548s 1 N r  0.1337s 1

 n  1.8195 Rad D

Sec

 D  0.4794 n

Plateral

P

lateral

 Undefined

 Undefined

TS  2.485s T R  0.267s TClateral  Undefined 1

TClateral  Undefined 2

TClateral  Undefined 3

TClateral  Undefined 4

Y  0.0000 ft a

s2 607


L  5.7141s  2 a

N  1.2773s  2 a

Flying qualities for condition 2-2, (Take off): -Roll mode performance checking:

LevelTR  I Levelt  I  actual  38.34 deg -Spiral Dutch roll mode checking:

 

 16 D

T2  Undefined S

T1

 1.722s 2S

LevelS  Stable Level D  LevelIII

608


Leveln  I D

Leveln  D  III D

609


Lateral directional flying qualities diagram

610


0.00

-1.00

n 1/s

-2.00

-3.00

Design Point

-4.00

-5.00

-6.00

611 j

rad/s

7.00

6.00

5.00

 = 6.35

4.00

3.00

2.00

1.00

-7.00 0.00

Lateral-directional spiral Dutch roll mode flying qualities Condition1-1


Stabilizer trim diagrams Based on Dr. J. Roskam method’s

612


-3.0000 -21.1

1 m

C

45.0 43.9 42.8 41.7 40.6 39.4 38.3 37.2 36.1 35.0

-2.0000 -11.7 -2.2

-1.0000

613 1 L

C

3.0000

2.5000

2.0000

1.5000

1.0000

0.5000

7.2

X = 1.75

cg

26.1

 = 45.0deg

e

43.9

42.8

41.7

40.6 cg X = 1.33

45.0

39.4

38.3 35.6

37.2

36.1

35.0

16.7

 deg -40.00-30.00-20.00-10.000.00 0.0000 10.00 20.0030.00 40.00 50.00 0.0000

Stabilizer trim diagram Condition1-1 cg

 [deg] [deg]

e

Current Config.

Hor. Tail (-) Hor. Tail (+) Stall Lines

1 m

C at X = 1.61 w c h i = 0.00 deg


-3.0000

-21.1

1 m

C

45.0 43.9 42.8 41.7 40.6 39.4 38.3 37.2 36.1 35.0

-2.0000 -11.7

-1.0000 -2.2

614 1 L

C

3.0000

2.5000

2.0000

1.5000

1.0000

0.5000

cg

X = 1.75

7.2

45.0

e

 = 45.0deg

43.9

42.8

41.7

X = 1.33 40.6

cg

39.4

38.3 35.6

26.1

16.7

37.2

36.1

35.0

 deg -40.00-30.00-20.00-10.000.00 0.0000 10.00 20.0030.00 40.00 50.00 0.0000

Stabilizer trim diagram Condition2-1 cg

 [deg] [deg]

e

Current Config.

Hor. Tail (-) Hor. Tail (+) Stall Lines

1 m

C at X = 1.33 w c h i = 0.00 deg


-4.0000 -30.6

1 m

45.0 43.9 42.8 41.7 40.6 39.4 38.3 37.2 36.1 35.0

C -3.0000 -21.1 -11.7

-2.0000

615 1 L

C

3.0000

2.5000

2.0000

1.5000

1.0000

0.5000

cg

X = 1.75

26.1

16.7

 = 45.0deg

e

43.9

42.8

41.7

cg 40.6 X = 1.33

39.4 45.0

38.335.6

37.2

36.1

35.0

 deg -1.0000 -40.00-30.00-20.00-10.000.00 0.0000 10.00 20.0030.00 40.00 50.00 0.0000 -2.2 7.2

Stabilizer trim diagram Condition2-2 cg

 [deg] [deg]

e

Current Config.

Hor. Tail (-) Hor. Tail (+) Stall Lines

1 m

C at X = 1.33 w c h i = 0.00 deg


Roll coupling Based on Dr. J. Roskam theory’s

616


If :

     R1  Q1  0 I XZ  0 The angel of attack differential equation:

  P1  C1P1 P1    M    M q  M    M q P1  0 C1 

I XX  I ZZ S

S

IYY

S

Side slip deferential equation:

   P1  D1P1  P1  N    N r  N    N r P1  0 D1 

IYY  I XX S

S

I ZZ S

617


Differential equations are written for case of none rolling airplane:

  M q  M    M    0   N r  N    N    0 n   M  

n  N  

   

 M q  M 

2 M

 N r  N 

Transfer system: As 4  Bs 3  Cs 2  Ds  E  0

E|E 0



E  c1P12 n 2 n 2  D1P12  4  n   n P12  0

618


P1 

 L  a a

LP

Result of calculations for condition 1-1:

n  2.5959 Rad 

Sec

   0.0706 n  3.6270 Rad 

Sec

   0.0509 P1  0.00 Rad

Sec

P1  0.40 Rad A

Sec

P1  Undefined B

619


1.0000

0.9000

 n 1

 /P 0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

 n 1

 /P

0.1000

620 1.0000

0.9000

0.8000

0.7000

0.6000

0.5000 YawDivergence

0.4000

0.3000

0.2000

0.1000

0.0000 0.0000

Roll coupling Diagram

Condition1-1

Roll Rate = 0.40 rad/s Roll Rate = 0.00 rad/s Current Configuration


Result of calculations for condition 2-1:

n  1.7239 Rad 

Sec

   0.0636 n  3.6270 Rad 

Sec

   0.0539 P1  0.89 Rad

Sec

P1  1.63 Rad

Sec

P1  4.45 Rad

Sec

A

B

621


1.0000

0.9000

 n 1

 /P 0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

 n 1

 /P

0.1000

622 1.0000

0.9000 YawDivergence

0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

0.1000

0.0000 0.0000

Roll coupling Diagram

Condition2-1

Roll Rate = 4.45 rad/s Roll Rate = 1.63 rad/s Roll Rate = 0.89 rad/s Current Configuration


Result of calculations for condition 2-2:

n  2.3645 Rad 

Sec

   0.0380 n  3.6270 Rad 

Sec

   0.0184 P1  0.67 P1  2.23 Rad

Sec

P1  4.46 Rad

Sec

A

B

623


1.0000

0.9000

 n 1

 /P 0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

 n 1

 /P

0.1000

624 1.0000

0.9000 YawDivergence

0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

0.1000

0.0000 0.0000

Roll coupling Diagram

Condition2-2

Roll Rate = 4.46 rad/s Roll Rate = 2.23 rad/s Roll Rate = 0.67 rad/s Current Configuration


V-n diagrams Based on MIL-A-8861

625


+1g stall speed:

 Wgross  2.0 SW VS    C N Max   CN

Max

     

0.5

   CL2 CD2 |C Max L Clean Max  

 Wgross  2.0 SW VS      C N Max  

     

0.5

0.5

   CL2Max CD2 |C L CN  Max      Max  V D  1.25V H n  K gU deCL SW V 498Wgross

  g 1.03 Kg  6.95  g 1.03

626

0.5


g 

2.0Wgross SW CW CL

Derived gust velocity for design cruise speed : U de  50.0Up to 20Kft ,Then  66.67  0.000833 Altitude U de  25.0 Above50Kft Derived gust velocity for design dive speed : U de  25.0 Up to 20Kft ,Then  33.34  0.000417Altitude U de  12.5 Above50Kft Derived gust velocity for the design maximume gust intensity speed : U de  66.0Up to 20Kft , Then  84.67  0.000933Altitude U de  38.0 Above 50Kft

Result of calculations for condition1-1,W=24000lb,Alt=35000ft:

627


CN CN

Max

 0.806

Max 

 0.848

VS  160.50Keas VS    156.46Keas VD  1500Keas VB  294.48  n    0.0080Keas 1   V VB  n     0.0058Keas 1  V VC  n     0.0029Keas 1  V VD  n   0.0091Keas 1    V VB S

 n   0.0065Keas 1    V VC S

628


 n     V  V D

 0.0033Keas 1 S

629


2000.00

eas

Speed,V keas 1500.00 1000.00

500.00

630 8.00

10.00

Load Factor

n

g

6.00

4.00

2.00

0.00

-2.00

-4.00

-6.00

-8.00

0.00 -10.00

V-n Diagram, Condition 1-1: Alt  35000 ft W  24000lb


Result of calculations for condition 1-2:

 0.806

CN

Max

CN

Max 

 0.848

VS  146.51Keas VS    142.83Keas V D  1500Keas V B  163.85Keas  n     0.0085Keas 1  V VB  n     0.0059Keas 1  V VC  n     0.0030Keas 1  V VD  n   0.0096Keas 1    V VB S

 n   0.0067 Keas 1    V VC S

631


 n   0.0033Keas 1    V VD S

632


2000.00

eas

Speed, V keas 1500.00 1000.00

500.00

633 8.00

10.00

Load Factor

n

g

6.00

4.00

2.00

0.00

-2.00

-4.00

-6.00

-8.00

0.00 -10.00

V-n Diagram, Condition 1-2: Alt  42000 ft

W  20000lb


Result of calculations for condition 2-1:

CN CN

Max

 0.806

Max 

 0.848

VS  181.27 Keas VS

 

 176.71Keas

V D  1500Keas V B  341.31Keas  n     0.0075Keas 1  V VB  n     0.0056Keas 1  V VC  n    0.0028Keas 1   V VD  n   0.0083Keas 1    V VB S

 n   0.0063Keas 1    V VC S

634


 n   0.0031Keas 1    V VD S

635


2000.00

eas

Speed, V keas 1500.00 1000.00

500.00

636 8.00

10.00

Load Factor

n

g

6.00

4.00

2.00

0.00

-2.00

-4.00

-6.00

-8.00

0.00 -10.00

V-n Diagram, Condition 2-1: Alt  5000 ft

W  30616lb


Result of calculations for condition 2-2:

 0.806

CN

Max

CN

Max 

 0.848

VS  181.27 Keas VS    176.71Keas V D  1500Keas V B  339.10Keas  n     0.0074Keas 1  V VB  n    0.0056Keas 1   V VC  n     0.0028Keas 1  V VD  n   0.0082Keas 1    V VB S

 n   0.0062Keas 1    V VC S

637


 n   0.0031Keas 1    V VD S

638


2000.00

eas

Speed,V keas 1500.00 1000.00

500.00

639 8.00

10.00

Load Factor

n

g

6.00

4.00

2.00

0.00

-2.00

-4.00

-6.00

-8.00

0.00 -10.00

V-n Diagram, Condition 2-2: Alt  2000 ft

W  30616lb


Lift distribution on lift producing surfaces Based on Dr. J. Roskam methods

640


100.00

90.00

Spanwise Station,  % 80.00 70.00 60.00

50.00

40.00

30.00

20.00

641 1.00

0.75

0.50

0.25

0.00 0.00

1.25

Lift Coefficient

l

c

10.00

Wing lift distribution w L

C = 0.5067 Max. Airfoil Lift Total Lift Basic Lift Additional Lift

c

= 6.5500 rad-1

= 40.0 deg w|M=0  l

w C/4

AR = 3.04

w

S = 340.00 ft2

w

 = 0.0 deg

w t

 = 0.46

w

1

M = 0.229


100.00

90.00

Spanwise Station,  % 80.00 70.00

60.00

50.00

40.00

30.00

20.00

642 6.00

5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00 0.00

6.50

Lift Coefficient

l

c

10.00

Horizontal tail lift distribution

h L

= 6.4500 rad-1 C = 4.8000 Max. Airfoil Lift Total Lift Basic Lift Additional Lift

c

h|M=0  l

 = 40.0 deg

h C/4

AR = 11.14

h

S = 20.08 ft2

h

h t

 = 0.0 deg

 = 0.31

h

1

M = 0.229


100.00

90.00

Spanwise Station, % 80.00 70.00 60.00

50.00

40.00

30.00

20.00

643 1.25

1.00

0.75

0.50

0.25

0.00 0.00

1.50

Lift Coefficient

l

c

10.00

Vertical tail lift distribution

1

v Y

= 2.2327 rad-1 C = 1.0000 Max. Airfoil Lift Total Lift Basic Lift Additional Lift

c

v|M=0  l

 = 40.0 deg

v C/4

AR = 1.99

v

S = 57.15 ft2

v

 = 0.0 deg

v t

 = 0.16

v

M = 0.229


Cost estimation Based on Dr. J. Roskam method’s

644


 W AMPR : Alternate AMPR Weight : W AMPR  log 10.1936  0.8645 log WTO  W AMPR  11795 .1lb W AMPR 

i 11  Wi i 1

W AMPR  W wheels  W ess  WCool  W fuelCell  W els  Wiae  W Arm  W api  W apu  Wtfo W whees  1268 .8lb W ess  107 .5lb WCool  0lb W fuelCell  512lb W els  452 .6lb Wiae  601lb W arm  350lb W api  254 .6lb

645


Wapu  155.6lb Wtfo  50lb W AMPR  9895.6lb Corection to alternate estimation  1899.2lb

RTDE Cost: Airframe engineering and design cost:

Caed  MHRaed  Re r

r

r

MHRaed  0.0396W AMPR 0.791VMax1.526 N RDTE 0.183 Fdiff FCAD r

Re r  Re r 1989

CEF2005 CEF1989

Entered parameters:

W AMPR  9895.9lb VH

eas

 1200Keas

N RDTE  4

646


Fdiff  1.0 FCAD  1.0 Year  2005 Re r

1989

 20

US $ hr

Result of calculations:

MHRaed  3690692.7hr r

Re r  32.77

US $ hr

CEF  5.23 Caed  120.946 106US $ r

647


-Development, Support and Testing cost:

C DST  0.008325W AMPR 0.873V Max 1.89 N rdte 0.346 F diff CEF r

Entered parameters:

W AMPR  9895.9lb VH

eas

 1200Keas

N RDTE  4 Fdiff  1.0 Year  2005 Results of calculations:

CEF  5.22748 CDST  142.782 106US $ r

648


-Market price of airplane:

AMP1989  Log 12.33421.0586LogWTO  Result of calculation:

AMP  19.833106US $ -Engine price:

EP1989  Log 12.3044 0.8858Log TTO  Result of calculation:

EP  4160927.7US $ -Flight test airplane cost:

C ft

 Ce  a   Cman  Cmat  Ctool  Cqc r

ar

r

Ce  a   Ce N e CP N P r

r

Cman  MHRman Rm r

r

r

r

r

649

r


MHRman  28.984W AMPR 0.740VMax 0.543 N RDTE 0.792 Fmat CEF : r

Cmat  37.632W AMPR 0.689VMax 0.624 N RDTE 0.792 Fmat CEF r

Ctool  MHRtool Rt r

r

r

MHRtool  4.0127W AMPR 0.764VMax 0.899 N RDTE 0.178 N r r

r

2005  r 1889 CEF CEF

Rt  Rt r

1989

Cqc  0.13Cman r

r

Entered parameters:

Ce  4.161 r

CP  0 r

NP  0 K Avion  1 r

AMP  19.833106US $

650

0.066 F diff


N st  1 Year  2005 Rm Rt

r1989

r1989

 10

US $ hr

US $  13 hr

RDTEPhase N r  1 Result of calculations:

C man Manufacturing cost of flight test plane : r

41.757 10 6 US $ C mat Cost of material to manufacturing the flight test plane : r

27.859 10 6 US $ CEF  5.23 MHRtool Rt

r

r

 3398718.2hr

 21.30

US $ hr

651


C fta Cost of flight test airplane: r

219.420 106US $ MHRman  2548414.7hr r

C Avion  19.833106US $ r

Ctool tooling cost for manufacturing the flight test plane: r

72.396 106US $ Rm  16.39 r

Rt  21.30 r

US $ hr

US $ hr

Cqc Quality control cost for manufacturing flight test airplane: r

5.428106US $ Ce & a Cost of engines and avionics equipments: 71.981106US $

652


Flight test operations cost estimation:

C fto  0.001244W AMPR1.160VMax1.371N RDTE  N st 1.281CEF  Fdiff r

 Fobs

Entered parameter:

Fobs  1.1 Result of calculations:

C fto  20.989 106US $ r

-Total RDTE Cost:

CRDTE  Caed  Cd r

strr

 C fta  Ctsf  C pro  C fin r

r

Ctsf  Ftsf CRDTE r

C pro  F pro CRDTE r

r

C fin  F fin CRDTE r

r

653

r

r


Entered parameters:

Ftsf  1.00 F pro  0.000 r

F fin  0.0001 r

Result of calculations:

Ctsf  504.137 106US $ r

C pro  0$ r

C fin  0$ r

CRDTE  504.137 106US $ -Acquisition cost:

-Engineering. & Design Cost:

Caed  MHRaed m

pro

Re m  Caed

r

654


Re m  Re m 1989 MHRaed

prog

CEF2005 CEF1989

 0.0396W AMPR 0.791V Max1.526 N prg 0.183  Fdiff  f CAD

Entered parameters:

Re m

1989

 18

US $ hr

Result:

MHRaed

prog

Re m  29.49

 12749564.8hr US $ hr

CEF  5.23 Caed  Airframe engineering and design cost of program: m

255.084 106US $

655


-Airplane product program:

C apc

 C e  a 

m

m

 C int

m

C int

 Fint N Pax N m

C man

m

prog

 Rm

m

 C mat

m

 MHR man

MHR man Rm

m

m

 C tool

 N m C e m N e  C P N P  K Avion AMP

C e  a 

m

 C man

m

prog

Rm

 C man

r

m 1989

CEF2005 CEF1989

prog

 C mat

r

C mat

m

 C mat

prog

 C mat

r

m

m

 28.984W AMPR 0.740V Max 0.543 N prog 0.524 F diff

 C mat

C tool

CEF1990

m

prog

 C qc

CEF2005

C mat

C mat

m

m

 37.632W AMPR 0.689V Max 0.624 N prog 0.792 F mat CEF

 MHRtool

prog

Rt

m

 C tool

656

r

m


 

Rt  Rt m

m

CEF2005 1989 CEF 1989

Cqc  0.13Cman m

m

Entered parameters:

Rm Rt

 10

m1989

m1989

 12

N r  16 m

US $ hr

US $ hr

plane month

N Pax  1 Fint  1'000'000

US $ Plane

Result of calculations:

Cman Labor cost in manufacturing N m airplane: m

Cman 1411.480 106US $ m

MHRman

prog

 88691564hr

657


Cmat  Cost of materials while manufacturingN m plane: m

Cmat  5929.165US $ m

C Avion  19.833106US $ m

CEF  5.23 Tooling cost for manufacturing N-m Airplanes:

195.582 106US $ MHRtool

prog

Rm  16.39 m

Rt  19.66 m

 13629016.3hr US $ hr

US $ hr

Cqc quality control cost for manufacturing N  m airplaines  m

Cqc  183.492 106US $ m

Cint Cost of airplane interior : m

658


Capc Cost of airplane program production cost : m

Capc  7745.353106US $ m

-Test operation cost:

Cf

tom

 N mCOps t pft F ftoh hr

-Need to calculating operating cost: -Program cost of fuel, oil and lubricants:

C pol  FOLW f

Used

FP N mission N serv N yr FD

Entered parameters:

tmis  0.75hr U ann

flt

 104hr

FP  18

US $ gallon

FD  7.21

lb gallon

659


FOL  1.005 N yr  1 Nm 1 N RDTE  4 LR  0.10 105 hr 1 Result of calculations:

N missions  139

1 Year

N Serv  1 N res  0.1 N loss  0 N acq  1 CPOL Fuel and oil costs   1.722 106US $

660


Program cost of direct personnel:

CPERSDIR  CCrewpt  Cmpersidir CCrewpr  N Ser N Crew RCr PayCrewOHRCrew N yr Cmpersoder  N Serv N yrU annflt MHR flthr Rm CEF2005  Rm    Rm   m L  2005  ml 1989 CEF1989 Entered option and estimations:

U ann

flt

 104.0hrs

N crew  15 RCr  1 Paycrew  70'000 Ccrew

Ccrew

pr

pr

US $ Year

Program cost of aircraft :  2.835106US $

661

mL


Cmpersdir Program cost of direct maintenece personnel : Cmpersdir  0.00158725106US $ CPERSIDIR Program cost of direct personnel : CPERSIDIR  2.836 106US $ Rm

ml

US $  73.73 hr

-Consumable material cost:

CCONMAT  N Serv N yrU ann MHR fthr RConmat flt

-Entered parameters:

U ann

flt

 104hrs

N yr  1 N serv  1 MHR flhr  0.5h RCommat  6.50

US $ hr

662


CEF  5.22748 Result of calculations:

RConmat  10.65

US $ hr

CCONMAT Progra cost of consumable materials : CCONMAT  10.65

US $ hr

-Total operation cost:

CPERSIND Program cost of indirest personnel cot : CPERSIND  0$ CSPARES Program cost of spare: CSPARES  0$ CDEPOT Program cost of depot : CDEPOT  0$ CMISC Cost of misalliances items : CMISC  0$ 663


COPS  4.561106US $ COPS US $  877.100 hr hr Result of test cost calculations:

t pft  50hr F ftoh  1 C fto  0.044 106US $ m

-Total manufacturing and acquisition cost:

F pro  0.1 m

F fin  0.1 m

CRDTE  504.137 106US $ N m  3000

664


Results of calculations:

C pro Manufacturing profit cost : C pro  888.942 106US $ C fin Cost to finance the manufacturing : m

C fin  8.008106US $ m

CMAN Total manufacturing cost : CMAN  8008.489 106US $ C ACQ Acquisition Cost : C ACQ  8809.338106US $ AEPAirplane estimated price per airplane: AEP  3.104 106US $ -Life cycle and disposal cost:

LCC  CRDTE  C ACQ  COPS  CDISP CDISP  FDISP LCC

665


Result of calculations:

CDISP Disposal cost : CDISP  9.327 106US $ LCC  327.363106US $

666


Cost estimations, -RTDE Costs:

Caed : r

120.946 million US$

Cost of airframe engineering and design in research phase

Cdst : r

142.782 million US$

Cost of development, support and testing in research phase

AMP : 19.833 million US$ Aircraft market price EP : 4.160 million US$ Engine price Cman : r

41.757 million US$

Manufacturing cost of flight test airplanes Cmat : r

27.859 million US$

Cost of materials to manufacturing flight test planes

MHRtool : r

3398718.2 hr

Tooling man-hours for research phase Rt : r

21.30 Tooling rate for research phase C ft : ar

US$ hr

219.420 million US$

Flight test airplanes cost

667


MHRman : r

2548414.7 hr

Manufacturing man-hours for Research phase C Avion : r

19.833 million US$

Cost of avionics system in research phase Ctool : r

Tooling cost for manufacturing The flight test airplanes Rm :

72.396 million US$

r

Manufacturing rate for research phase Rt :

16.39

US$ hr

21.30

US$ hr

r

Tooling rate for research phase

Cqc

r

Quality control cost for manufacturing flight test planes

Ce & a 

r

Cost of engines and avionics Equipment in research phase CRTDE :

5.428 million US$

71.981 million US$

504.137 million US$

Total RDTE cost

668


-Acquisition costs:

MHRaed

prog

:

Man-hour of airframe engineering and design cost of program Re :

12749564.8 hr

Rate of engineering for manufacturing phase Caed :

29.49

m

m

Cost of engineering and design For manufacturing phase Cmat : m

Cost of material While manufacturing N m plane

Cman : m

Labor cost in manufacturing N m airplane

C Avion : m

Cost of avionics systems for manufacturing phase Ctool : m

Tooling cost or manufacturing N m airplane

MHRtool

prog

US$ hr

255.084 million US$

5929.165 million US$

1411.480 million US$

19.833 million US$

195.582 million US$

:

Tooling man-hour for manufacturing phase

13629016.3 hr

669


Rm : m

Rate of manufacturing in Manufacturing phase Rt :

16.39

US$ hr

Rate of tooling in manufacturing phase Cqc :

19.66

US$ hr

m

m

Quality control cost for manufacturing N m Plane

Cint : m

Cost of airplane interior Capc : m

Airplane program production cost

183.492 million US$

1.639 million US$

7745.353 million US$

670


Operating costs:

C pol :

1.722 million US$

Fuel and oil price CPERSDIR :

2.836 million US$

Program cost of direct personnel

CCrew

pr

2.835 million US$

Program cost of airplanes crew Cm : persdir

Program cost of direct maintenance personnel Rm : ml

CCONMAT

0.00158725 million US$

73.73

US$ hr

Program cost of consumable materials

49841 US$

COPS COPS hr

4.561 million US$

C fto

877.100

US$ hr

m

Cost of flight test operations during the manufacturing phase

0.044 million US$

671


Program cost:

CRDTE CPRO

504.137 million US$ 888.942 million US$

Manufacturing profit

C fin

m

Cost to finance the manufacturing

CMAN

8.008 million US$

8008.489 million US$

Total manufacturing cost

C ACQ

8809.338 million US$

Acquisition Cost

Life Cycle Cost and disposal cost:

CDISP

9.327 million US$

Disposal cost

LCC 9327.363 million US$ Life Cycle Cost

672


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.