Stem career guide for schools 2017

Page 1

STEM Career GUIDE (for schools)

2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

STEM Career GUIDE (for schools)

-1-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

Methodical book STEM Career GUIDE (for schools) is funded by Erasmus+ Programme of the European Union. This GUIDE is main result of project Innovative Student-Teacher Student Evolution Model (InSTEM) -2-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

CONTENT INTRODUCTION ....................................................................................................... 5 Methodological justification of the STEM Careers MODEL ................................... 6 1. STEM Careers MODEL ......................................................................................... 8 1.1. Methodology ...................................................................................................... 8 1.2. Principals ............................................................................................................ 9 1.3. Description of activities in STEM Career Center ............................................ 11 1.4. How worked MODEL Implementation scheme in Project .............................. 12 1.5. HackLab clubs in STEM .................................................................................. 14 2. Selected methods in STEM during T&L ............................................................ 15 2.1. Experimental Research ..................................................................................... 15 2.2. Biotechnologies and CLIL (in Italian) .............................................................. 20 2.3. Teaching and learning in Green Fields ............................................................ 30 2.4. Peer learning and how we use it in Borgarholtsskóli ....................................... 40 2.5. Driven to discover methodology ...................................................................... 48 3. Selected Fields of STEM in our project .............................................................. 54 3.1. About surveys and statistics ............................................................................. 54 3.2. Biotechnology in Italy ...................................................................................... 59 3.3. GIS mapping at school: get started with ArcGIS Online ................................. 63 3.4. Green energy: why its important ....................................................................... 75 3.5. Simulations through ICT .................................................................................. 83 4. HackLab clubs in STEM by schools .................................................................... 88 4.1. Lycée classique de Diekirch, Luxembourg ............................................................................ 88 4.2. Liceo Scientifico Tito Livio, Martina Franca, Italy .............................................................. 131 4.3. Vilniaus Pilaitės gimnazija, Vilnius, Lithuania .................................................................... 137 4.4. Borgarholtsskóli, Reykjavík, Iceland ................................................................................... 184 4.5. NamıkKaramancı Fen Lisesi, Manavgat, Turkey ................................................................. 194 -3-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 5. FINAL Project’ Conference in Vilnius (23-24.04.2017) .................................. 198 5.1. Seminar „Innovative Student-Teacher Evolution Model“ ............................................. 198 5.1.1. Jūratė Norkūnienė. Millennials workplace ......................................................................... 199 5.1.2. Vilma Jočienė. Learning in Green Fields and innovation of methods ............................... 204 5.1.3. Irena Medelinskaitė. Education of Responsible Consumers during project activities ....... 218 5.1.4. Jóhanna Eggertsdóttir. Peer learning and how I use it in Borgarholtsskóli ....................... 221 5.1.5. Geneviève Harles. Experiments in STEM subjects............................................................ 225 5.1.6. Luana Fogli. From school to STEM .................................................................................. 230 5.1.7. Hasan Biber. Simple and effective: experiential education and method Driven to Discover ....................................................................................................................... 234 5.1.8. Giovanna Malegoti, Simonetta Zamboni. Europe 2100. Lectora platform for learning .................................................................................................................... 236 5.2. Final Conference of Young Researchers ........................................................................... 244 5.2.1. Anne Eyschen, Tim Heymans, Sven Kerger, Tessy Kohl. STUDY of the ENZYME ACTIVITY using the EXAMPLE of HEPATIC CATALASE.................................................... 245 5.2.2. Anne Eyschen, Tim Heymans, Sven Kerger, Tessy Kohl. Study of movements using SPARKVUE ................................................................................................................................. 252 5.2.3. Matteo Pentassuglia, Giovanni Chiarelli, Anduena Barjami,Elena Lucarelli. Education to creative complexity ...................................................................................................................... 260 5.2.4. Kipras Stankevičius, Šarūnas Geglis. Fruit and vegetable electricity .............................. 266 5.2.5. Tomas Kubaitis, Dovydas Diržius. Internet platform for mathematics learning .............. 268 5.2.6. Emre Akbaş, Ali Ekin Aktaş, Elif Göksu Çelik. Wireless electricity via tesla coil .......... 278 5.3. POSTERS of Conference of Young Researchers ............................................................ 283

6. Selected illustrations of project activities .......................................................... 291

-4-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

INTRODUCTION Two years ago, schools from five different countries came together to create and test one of the career models at school. In project participated: Lycée classique de Diekirch from Diekirch, Luxembourg; Borgarholtsskóli from Reykjavík, Iceland; Namık Karamancı Fen Lisesi from Manavgat, Turkey; Liceo Scientifico Tito Livio from Martina Franca, Italy; Vilniaus Pilaitės gimnazija from Vilnius, Lithuania. We would like to joint to community, which is trying REDUCE BRAIN DRAIN from Europe and would achieve the goal of Europe 2020 improving young people’s STEM skills. In order to pursue this goal it is necessary to propose and proceed the following: efficient means, which later would help to involve students into science-based areas of higher education; innovative methods of formal and informal teaching (learning); successful and attractive career, preparation of STEM specialists, spread of labor market and social welfare (including job satisfaction, salary, safety) opportunities as a MOTIVATION SYSTEM. In the preparatory stage of the project, we studied a lot of career schemes having been applied in the partner countries in Europe, but we found no evidence to exist alike MODEL. Also, we found no indication that the models would be applied purposefully, involving a lot of students in STEM careers, which can be applied in any school. In some countries there are localized and specialized STEM career opportunities, only for specific schools (large and special equipment to STEM, highlevel laboratories (their maintenance is disproportionately expensive), student target selection (only the most talented to specialized schools). There is one operational model in Lithuania, where the higher education institution has a specialized school which selects students with high achievements and prepares for institution. However, the EU ideology forms another purpose for education systems and secondary schools: to ATTRACT MORE RESPONSSIBLE students to the relevant STEM professions. That means Europe schools need for a SIMPLE but -5-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model INNOVATIVE, adaptable in any school and attractive STEM Careers MODEL for Z and next GENERATIONS. Our proposed MODEL characterized by the fact that it does not require large financial investments and is based on the principles of community and volunteering. At the same time, it provides students with great freedom of expression, but also facilitates the SOLUTION of some problems: students choose to study programs of STEM less compared with other directions, such as social sciences; low achievement in basic and transversal skills, incl. STEM; increasing early school leaving, especially from secondary schools or unsuccessfully choosen studies. Methodological justification of the STEM Careers MODEL We proposed career planning MODEL (vortex model) for the students and there are centripetal and centrifugal “forces”. Students are involved into STEM space by project' teams and social communication opportunities making it available to the maximum. At the same time there is elimination of the career opportunities’ obstacles: poor awareness, absence of successful and attractive career proof, spread of negative stereotypes (e.g. you will be unemployed even with the STEM bachelor’s degree), etc. Starting with the STEM Career Center at school, students are further involved into the circle of vocational, high schools, scientific centers, progressive companies based on STEM sciences, which provide examples of successful scientific career every day, allow “trying” the professions or at least becoming acquainted with the real social and personal achievements of young scientists. Eventually, students identify themselves with the career in STEM choosing that in the country, region or the EU. Here starts the effect of the model centrifugal “force”. It evidences itself through individual career choice, independence, ability to critically evaluate personal potential in choosing a specialty, though not expelling -6-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model from STEM space, but directing students into one possible path of a specialist, choosing the EU opportunities and preventing emigration from the EU space. Innovativeness evidences itself by the fact that students get proof about a successful young researcher’s career through personal experience. This allows guaranteeing welfare and safety of personal future, at the same time constantly being among the leaders of innovations and to identify themselves with national and European interests in science, research and creation of innovations. Being in the STEM space (or hive) students become an example to other young people, and attract contemporaries through social communication channels. This way the hive of STEM increases, and more and more young scientists share successful career in the LABOR MARKET. Friendly approach to STEM specialties will become of high importance as well as students will be able to choose their favorite professions in the native country and in Europe.

-7-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

1. STEM Careers MODEL 1.1. METHODOLOGY We proposed career planning MODEL (vortex model) for the students and there are centripetal and centrifugal “forces”. Students are involved into STEM space by project' teams and social communication opportunities making it available to the maximum. At the same time there is elimination of the career opportunities’ obstacles: poor awareness, absence of successful and attractive career proof, spread of negative stereotypes (e.g. you will be unemployed even with the STEM bachelor’s degree), etc. Starting with the STEM Career Center at school (Fig.1), students are further involved into the circle of vocational, high schools, scientific centers, progressive companies based on STEM sciences, which provide examples of successful scientific career every day, allow “trying” the professions or at least becoming acquainted with the real social and personal achievements of young scientists. Eventually, students identify themselves with the career in STEM choosing that in the country, region or the EU. Here starts the effect of the model centrifugal “force”. It evidences itself through individual career choice, independence, ability to critically evaluate personal potential in choosing a specialty, though not expelling from STEM space, but directing students into one possible path of a specialist, choosing the EU opportunities and preventing emigration from the EU space. Innovativeness evidences itself by the fact that students get proof about a successful young researcher’s career through personal experience. This allows guaranteeing welfare and safety of personal future, at the same time constantly being among the leaders of innovations and to identify themselves with national and European interests in science, research and creation of innovations. Being in the STEM space -8-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model (or hive) students become an example to other young people, and attract contemporaries through social communication channels. This way the hive of STEM increases, and more and more young scientists share successful career in the LABOR MARKET.

Fig. 1. School STEM Career Center. 1.2. PRINCIPALS 1. Institutional and scientific cooperation between project partners; 2. Horizontal (linear): youth career seeking principle (step-by-step to STEM Career); 3. Vertical study-oriented education and profession fields of cross-disciplinary and science integration (synergy); 4. Mechanism operating from research to pupil involvement is formed. It involves young people into STEM through vortex principle; 5. Career information system is based on arguments, data are publicly available, and through the consultancy principle the youth is taught to use publicly sources; -9-


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Fig. 2. Principal scheme of involving to STEM career. 6. Innovative or effective teaching/learning methods are applied; 7. Activity based in modern ICT means, which allow planning time of studies and communication; 8. Gender equality principle is applied, attracting both girls and boys into a STEM area; 9. Social and problematic STEM content is revealed; 10. STEM Career Center can be: realistic, reasonable on infrastructure and virtual, which operates through other infrastructures. - 10 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

3. DESCRIPTION of Activities in STEM Career Center (Fig. 2) CONSULTING: training of student consultants (M1); methodical consultations for teachers (M1); methodical consultations for students (M1); consultation on individual STEM career modeling template (M1, M2). INFORMING / dissemination: informing about STEM career, activities of STEMcc (M1, M2), creating and administration of school webpage (or part of official school website) for STEMcc (M2); create or support project “INSTEM� on TwinSpace in eTwinning area (M1, M2); create or support project website (M1, M2); use Scientix Portal like dissemination channel (M1); use School Education Gateway (funded by Erasmus+) and EDMODO Platform like disseminations channels (M1). Research/SURVEY (M1, M2, M3): research on labor market needs and recent changes (according to statistics of EU, our states and others materials); social content research in the areas of STEM specialists and delivery of information; social study (school level) in how much young people are informed about scientific research and innovation processes, choice opportunities, benefit, etc., and to orient teaching content on the basis of it. INDIVIDUAL activities in STEMcc (M2, M3, individual students): individual search for information about STEM; modeling of individual STEM career, using template; preparing of students scientific works. METHODOLOGICAL activities: building of STEM teams in accordance with choice of career or other interests (M1, M2); organizing of STEM teams round tables supervision (M1); creating of STEM videotheque, story and methods (M1, M2, M3); collection of virtual and real library for STEM career (M1, M2, M3). Organization and TRAINING activities: preparation of young researches students during informal sessions (M1); lessons of young researcher (M1, M2, M3); organize Erasmus+ Project Days (M1, M2, M3); organize Erasmus+ Project Info - 11 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Days (M1, M2); visits to research centers and companies (excursions and practical trainings) (M1, M2); organizing of STEM scientific conference at school (M1, M2, M3); participation in other STEM activities, organized by other institutions (M1, M2, M3). 4. How worked MODEL Implementation scheme in Project Before we start Model implementation stage, we understood, that each school encounter with at least one problem, the solution of which is directed to the project.

Fig. 3. MODEL Implementation scheme in Project “Innovative Student-Teacher Evolution Model (InSTEM).

- 12 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Countries. Lithuania: a high quality partner, working together with the universities. Also experienced in international projects like Comenius and KA1. Teachers use teaching methods in green fields, organized activities for students from the interesting/simple to the scientific/specific, have experience to use ArcGis Online program and mapping. Luxembourg: is very reliable and had many high quality International projects. They have impressive facility equipment, including multimedia and technology Labs. Students and staff are highly competent and get to deal with local and national companies during their lessons, incl. EXPERIMENTS. Mathematics teacher manipulates with research and statistical tools. Iceland: has particularly extensive experience in the elaboration of STEM fields, have access to very good computer facilities equipped with the new technology. Their school participates in national contests in math and science. Teachers are ready to share with experience in PEER-to-PEER education and attracted the attention of exclusive green energy technologies. Turkey: it is a science school with lots of science lessons in the curriculum, teachers are ready to share with DRIVEN TO DISVOVER method and to create HackLab club. Italy: staff in charge for careers guidance organizes important meetings and many activities in order to inform students about professional opportunities and University studies. The key of innovative method CLIL and the main part of STEM at school is new. The tasks and responsibilities are distributed among the partners according to their key competencies, skills and experience. Each country is RESPONSIBLE for one of the most important component part of the project.

- 13 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Distribution of responsibilities between countries. Each country was responsible specific method and different STEM subject. LITHUANIA was responsible for methods using in GREEN FIELDS and mapping on GIS. LUXEMBOURG was responsible for methods for EXPERIMENTS at school Labs, SURVEYS, social statistics as an applied field of Math in STEM. ICELAND was responsible for PEER-TO-PEER learning method and GREEN Energy. TURKEY was responsible for DRIVEN TO DISCOVER method and Modeling through ICT. ITALY was responsible for CLIL method and new technologies (Biotechnology). 1.5. HackLab clubs in STEM HackLab CLUBS at schools was act as a community-operated workspace where students and other people with COMMON INTERESTS can meet, socialize and collaborate (stay at schools). Students receive adults‘ help and advice and can work with other students-teachers, friends, parents or external specialist (who will be invited foremost), in order to have a greater impact than schools' teachers can provide. Clubs are based on the volunteering and friendly relations principles and work as NON-FORMAL education. It will encourage students to RETURN TO SCHOOL, even they left,

as creative workshops will help them to express

themselves. During the project, we divided the students into five groups based on interests. Created HackLab clubs joined Teams of the project. On a voluntary basis, the clubs invited parents, mostly of STEM professions. Later, a growing number of the school community was joined the clubs. Clubs worked within the MODEL. We invited external experts, to carry out various research activities. - 14 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

2. Selected methods in STEM during T&L 2.1. Experimental Research By Geneviève Harles, LycÊe classique de Diekirch, Luxembourg Introduction Experimental research is commonly used in sciences such as physics, chemistry, biology and medicine etc. It is a collection of research designs which use manipulation and controlled testing to understand causal processes. Generally, one or more variables are manipulated to determine their effect on a dependent variable. At school, teaching of science should not be a mere presentation of knowledge and mechanisms (passive approach).Knowledge is best understood when founded by an experimental approach (active approach).The 2 approaches must be complementary: observations during experiments are difficult to interpret if one has no theoretical knowledge. Experimental scientific approach must be learned. Aims of Experimental Research Experiments are often conducted to be able to predict phenomena. Typically, an experiment is constructed to be able to explain some kind of causation. Constructing the Experiment There are various aspects to remember when constructing an experiment. Planning ahead ensures that the experiment is carried out properly and that the results reflect the real world, in the best possible way. Conducting the Experiment An experiment is typically carried out by manipulating a variable, called the independent variable, affecting the experimental group. The effect that the researcher is interested in, the dependent variable(s), is measured.

- 15 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Identifying and controlling non-experimental factors which the researcher does not want to influence the effects, is crucial to drawing a valid conclusion. Researchers only want to measure the effect of the independent variable(s) when conducting an experiment, allowing them to conclude that this was the reason for the effect Analysis and Conclusions. In quantitative research, the amount of data measured can be enormous. Data not prepared to be analyzed is called "raw data". A cell of the output data is, for example, an average of an effect in many trials for a subject. The output data is used for statistical analysis, e.g. significance tests, to see if there is really an effect. The aim of an analysis is to draw a conclusion, together with other observations. The researcher mightgeneralize the results to a wider phenomenon, if there is no indication of confounding variables "polluting" the results. The Experimental Method It can be defined as the use of controlled observations and measurements to test hypotheses. Here are the important steps: 1. Make observations. 2. Form a hypothesis. 3. Make a prediction. 4. Perform an experiment. 5. Analyze the results of the experiment. 6. Draw a conclusion 7. Report your results. Avantagesand Disadvantages of Experimental Research Advantages

Disadvantages

gain insight into methods of instruction

subject to human error

intuitive practice shaped by research

personal bias of researcher may intrude

- 16 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model teachers have bias but can be reflective

sample may not be representative

researcher can have control over variables

can produce artificial results

humans perform experiments anyway

results may only apply to one situation and may be difficult to replicate

can be combined with other research

groups may not be comparable

methods for rigor use to determine what is best for population human response can be difficult to measure provides for greater transferability than

political pressure may skew results

anecdotal research

How the Experimental Method is used in our school Experiments in chemistry and physics take place for 2 hours every second week and are compulsory during the last 3 years for every student in a scientific section. Furthermore, experiments in biology for 2 hours every second week are compulsory for those who are studying natural sciences. Students work in pairs in specially equipped labs (2 for chemistry, 2 for physics and 2 for biology; 3 technical assistants are responsible to guarantee a good management and maintenance of the equipment of those labs). A written reportof every pair of students must be returned to the teacher after each session. The reports are graded and count as a part of the annual grades for each of them. By that way, student experiments also provide powerful opportunities for intense student cooperation.

- 17 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Scienteens Lab Moreover, those students take part in the Scienteens Lab workshops at Luxembourg University at least once a year. This lab is an extracurricular learning center of the University of Luxembourg for High School students. The workshops are designed to spark students’ interest in science and supports students in their career choice. Hands-on experiments, supervised by experienced scientists and teachers from various disciplines show the latest trends and technologies in research and provide the students an insight into scientific research and the day-to-day work in the lab. Dr. Claudine Hein, biology teacher at the Lycée Classique de Diekirch and active participant of this Erasmus Plus project, is one of the collaborating teachers of the Scienteens Lab team. The workshops address relevant topics in biology, mathematics and physics, for example: • Biology:“DNA on the tanning bed” exploring the effect of UV light on the DNA of the bacterium Escherichia coli • Mathematics:“Keep a secret? - Thanks to Number Theory!” learning how number theory is applied to secure communications • Physics:“Mayonnaise, a culinary star on the test bench - a liquid or a solid?”analyzing the behavior of a specific material in all its forms and learn to establish a relation between its structure and its flow behavior • Biology and mathematics: “Parkinson’s disease and the PD map”getting to know and use the Parkinson interactive map on which the various cellular and molecular processes involved in disease development are integrated and illustrated. Conclusion The experiments play a truly significant role in science instruction. However variants of experiments where the term “cookbook experiment” is well taken often predominate and students do not always know what they do and what the - 18 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model purpose of the experiment is. In order to avoid this and to take full benefit out of making experiments, opportunities for students to plan experiments, carry them out and process the results themselves should be given more frequently, because handson needs to include minds-on. That means, diligently and beautifully designed experiments do not necessarily result into the outcomes expected – they need to be staged adequately in such a way that hands and minds onactually may occur. References Duit, R., &Tesch, M. (2010). Eigenständiges Experimentieren im natur wissenschaftlichen Unterricht – Theorie, empirische Forschungsergebnisse, Unterrichtspraxis. Zeitschrift für Didaktik der Naturwissenschaften. Experimental Research (2016). Explorable: https://explorable.com/experimentalresearch. Fraenkel, J. R., Wallen, N. E., &Hyun, H. H. (1993). How to design and evaluate research in education (Vol. 7). New York: McGraw-Hill. Schoonmaker, W. E. (1984). Improving classroom instruction: A model for experimental research. The Technology Teacher, 44, 24-25. Scienteens Lab (2016). University of Luxembourg: http://wwwen.uni.lu/lcsb/scienteens_lab Smith, N. L. (1980). The feasibility and desirability of experimental methods in evaluation. Evaluation and Program Planning:An International Journal, 251-55.

- 19 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

2.2. Biotechnologies and CLIL (in Italian) By Prof.ssa Luana Fogli, Liceo Scientifico Tito Livio, Martina Franca, Italy Introduzione Le biotecnologie sono state l’argomento affidato al partner italiano all’interno del Progetto Instem/Erasmus Plus e su questo argomento ci siamo focalizzati soprattutto durante la visita degli altri partecipanti al progetto. Questo tipo di argomento normalmente affascina i nostri studenti in quanto ambito in cui le scoperte di grande risonanza diventano oggetto di discussioni speculative anche molto accese ed articolate. Cio a causa dell’impatto che alcune di queste metodiche potrebbero avere sulla vita su questo pianeta. Purtroppo per il nostro tipo di Liceo, limitate sono le possibilita di sperimentazione diretta, per cui siamo dovuti ricorrere al supporto dell’Universita del Salento, dove successivamente alla lezione abbiamo potuto fare osservazioni dirette e approfondire alcuni aspetti sia tecnici che teorici.

- 20 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Di seguito il Lesson Plan

- 21 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 22 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 23 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 24 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 25 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 26 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 27 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 28 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 29 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

2.3. Teaching and learning in Green Fields By Vilma Jočienė, Vilniaus Pilaitės gimnazija, Vilnius, Lithuania Introduction Nature is diverse learning environment for schools. Teaching and learning in Green fields is experimental, experience-based, hands-on learning in authentic learning environments. This learning gives also healthy physical exercise. The joy of learning is created through a wide range of outdoor practices. Social skills are also strengthened outdoors. A good relationship with nature created in nature awareness it is a first step toward sustainable way of life. Outdoor classroom is a healthy learning environment in which pupils learn the new curriculum multidisciplinary. Participating teachers offered many “Teaching and learning in Green fields” workshops, tools, materials and examples. Education in Green fields connects us to the world around us, teaching us about both natural and built environments.

Education in Green fields raises

awareness of issues impacting the environment upon which we all depend, as well as actions we can take to improve and sustain it. Whether we bring nature into the classroom, take students outside to learn, or find impromptu teachable moments on a nature walk with our families, Education in Green fields has many benefits for youth, educators, schools, and communities. Good education is not only confined to the classroom. Teaching and learning in Green fields aims to make learning and the acquisition of positive life skills a holistic building experience set upon firm foundations of trust, self-worth and confidence. By establishing solid foundations we can overcome many of the difficulties that inhibit educational success, and are able to commence measurable - 30 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model academic input. To achieve these aims, we only employ dedicated teaching professionals who are experienced in delivering an innovative programme specifically tailored to the needs and understanding of each young person. Learning in Green Fields: Benefits and Philosophy of Benefits Environmental education provides important opportunities for students to become engaged in real world issues that transcend classroom walls. Benefits:  Imagination and enthusiasm are heightened: Learning in Green Fields is hands-on, interactive learning that sparks the imagination and unlocks creativity. When Learning in Green Fields is integrated into the curriculum, students are more enthusiastic and engaged in learning, which raises student achievement in core academic areas.  Learning transcends the classroom: not only does Learning in Green Fields offer opportunities for experiential learning outside of the classroom, it enables students to make connections and apply their learning in the real world. Learning in Green Fields helps learners see the interconnectedness of social, ecological, economic, cultural, and political issues.  Critical and creative thinking skills are enhanced: Learning in Green Fields encourages students to research, investigate how and why things happen, and make their own decisions about complex environmental issues. By developing and enhancing critical and creative thinking skills, Learning in Green Fields helps foster a new generation of informed consumers, workers, as well as policy or decision makers.  Tolerance and understanding are supported: Learning in Green Fields encourages students to investigate varying sides of issues to

- 31 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model understand the full picture. It promotes tolerance of different points of view and different cultures.  State and national learning standards are met for multiple subjects: by incorporating Learning in Green Fields practices into the curriculum, teachers can integrate science, math, language arts, history, and more into one rich lesson or activity, and still satisfy numerous state and national academic standards in all subject areas. Taking a class outside or bringing nature indoors provides an excellent backdrop or context for interdisciplinary learning.  Biophobia and nature deficit disorder decline: by exposing students to nature and allowing them to learn and play outside, Learning in Green Fields

fosters

sensitivity,

appreciation,

and

respect

for

the

environment. It combats “nature deficit disorder” … and it’s FUN!  Healthy lifestyles are encouraged: Learning in Green Fields gets students outside and active, and helps address some of the health issues we are seeing in children today, such as obesity, attention deficit disorders, and depression. Good nutrition is often emphasized through Learning in Green Fields and stress is reduced due to increased time spent in nature.  Communities are strengthened: Learning in Green Fields promotes a sense of place and connection through community involvement. When students decide to learn more or take action to improve their environment, they reach out to community experts, donors, volunteers, and local facilities to help bring the community together to understand and address environmental issues impacting their neighborhood.  Responsible action is taken to better the environment: Learning in Green Fields helps students understand how their decisions and actions - 32 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model affect the environment, builds knowledge and skills necessary to address complex environmental issues, as well as ways we can take action to keep our environment healthy and sustainable for the future.  Students and teachers are empowered: Learning in Green Fields promotes active learning, citizenship, and student leadership. It empowers youth to share their voice and make a difference at their school and in their communities. Learning in Green Fields helps teachers build their own environmental knowledge and teaching skills. I hope these “top ten” benefits will give you the confidence and commitment to incorporate Learning in Green Fields into your curriculum! Students during Learning in Green Fields: 1. Improving Academic Achievement. world that can be applied to all subject areas and grades. 2. Breaking the Indoor Habit. 3. Improving Student Health. 4. Supporting STEM. Learning in Green Fields offers an engaging platform for gaining and applying knowledge and skills in science, technology, engineering, and mathematics (STEM). 5. Meeting 21st Century Needs. Learning in Green Fields emphasizes skills essential for succeeding in tomorrow’s world, such as questioning, investigating, defining problems, analyzing, interpreting, reasoning, developing conclusions, and solving problems. 6. Cultivating Leadership Qualities. 7. Improving Focus and Cognition.

- 33 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Schools, using Learning in Green Fields: 

Creating

Enthusiastic

Students.

Learning

in

Green

Fields

offers

opportunities for rich, hands-on, real world and authentic learning across the curriculum. This relevance to students’ lives engages and inspires them more than traditional pedagogy. 

Fostering Innovative Teacher-Leaders. Learning in Green Fields gives educators the confidence to take students outdoor and to design more dynamic, interactive learning experiences that spark students’ engagement.

Addressing Academic Standards. Learning in Green Fields offers an engaging way to meet the content and skills identified in Common Core State Standards in English Language Arts and mathematics, as well Next Generation Science Standards and for Social Studies.

Saving Schools Money. When students investigate and take action to improve the environmental performance of their school buildings and grounds, they often cut costs in electricity, water, waste management, and more. SOME METHODS FIELD VISIT: Visit to places of environmental concerns provides best

opportunities to the learners as a means of observing and experiencing the real environment. It has enough scope for building environmental awareness, stimulating participation and developing investigative skills in learners. The technique can also be used successfully to focus on different components. For instance, a field visit arranged to a factory may help the students to understand the nature and source of raw materials used in production,. processes of production, working conditions and safety of its employees, disposal of wastes and loca- tion of factory in relation to natural and social environment. The follow-up activities can be planned to recognise the interrelation- ships, environmental consequences and suggestive actions. The - 34 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model tech- nique, however, requires meticulous planning, painstaking Organisation and cooperation of all. GROUP DISCUSSION: Group discussion is a frequently used strategy which can be tried to make the students express their opinions and ideas, on a particular theme or environmental issue. The teacher may help, guide, moderate and orient student thinking and facilitate the exchange of ideas. The activity may be organised involving the whole class or- groups of suitable size. It provides the students an opportunity to freely express their opinions and reasons for holding them. The technique facilitates the exploration of values, clarifies values and develops the notion of individual choice and responsibility. The technique, however, demands careful choice of the topic which must be of vital interest to all those who participate in it. Time limit and agreed goals must also need to be decided in advance. SITUATION ANALYSIS: This is another effective technique which enables the students to identify significant variables such as values, opinions and objects, which are interacting to create a situation. It is a useful strategy to create awareness and develop understanding and is particularly effective in acquisition of skills in analysing, comparing, prioritising, predicting and evaluating. ROLE PLAYING: The technique provides contrived experiences to students which are simplified versions of real situations and are necessary when the reality is too obscured. The students are given specific roles to play, to dramatize a specific real life situation and it offers a good opportunity to them for personalising the actions in the given set up. The technique helps the learners to understand the given role in the social context and develop communication skills. One understands the interrelationship between the expectations of others and the identification of the self in a social system. It further helps the students to understand that conflicts are inevitable but could be solved by mutual understanding. The approach sensitises the learners to the needs of society as well as social and ethical issues. - 35 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ENVIRONMENTAL GAMES: Most students like to play games. This tech- nique can be used effectively to arouse interest and developmental skills in students. Word puzzles. crosswords, quizes, Chinese cheq- uers and many other games related to concepts on environment can be created and used for improving awarness and developing understanding. FIELD SURVEY: Field survey is another effective technique to gather baseline information which can be utilised further for providing direction to desired actions, A check list, a questionnaire or direct interview are the tools which can be used to determine people's awareness, understanding or interest in environmental issues and problems. A small survey of the locality may be undertaken to study people's attitude towards population growth of the town or development projects being started in the surrounding area. PROJECT WORK: Individuals or small groups may undertake projects to either collect useful information or investigate surroundings for specific environmental problems. Some of the suggestive project works could be collection of data from resource books. investigating patterns of different agricultual practices in a rural community. preparation of a scrap book on birds. preparation of a model on water pollution. etc. Teachers may have to provide guidance to the students in selecting, planning, executing and evaluating the project in order to make it a purposeful and meaningful activity. DEBATES AND PANEL DISCUSSIONS: Debates and panel discussions can serve to clarify matters of controversy and disputes. These can be effectively organised to help the students to express their opinion on environmental issues and concerns. Teachers or student representatives may act as judges for presenting their views on the subject.

- 36 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model AN EXAMPLE OF AN ACTIVITY Digital Decomposition. Special Considerations: Alert the rangers and staff at KPT Non-Hunting area that you will be conducting this activity so that they will not dismantle your study plots for the duration of your study (5 days up to 1 month). The students will be learning how a forest changes over time and will make multiple observations of their study plots during multiple trips to the area. Skills/Subject Areas: science, data collecting and recording, observation skills, art and technology.

This activity can also be used as an excellent

communication tool for ESL students when they discuss their results or share their data. Eco-Concepts: Cycles - nature works in cycles; the building materials for life must be used over and over again Change- everything is in the process of becoming something else. Required Materials: sample worksheet included in this packet, yarn/string, sharpened sticks (satay sticks), digital camera and computer, datarecording sheet, clipboards and colored pencils. Goals: accurately sketch the living and non-living factors in the study plots Observe how a forest changes over time Effectively communicate the observations made during the activity Hypothesize why the changes are taking place Realize that the rainforest is dynamic and constantly changing. Description: Students have a natural curiosity and LOVE to go outdoors and explore; they also love computers and digital cameras. This activity allows them to enjoy both while providing a study focus for exploration and an excuse to go outside often! Set up: For younger students, the teacher will need to set up and number study plots prior to taking the students outside. However, if the students are old - 37 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model enough it is optimal for them to choose a random location and set-up their own study plot. The teacher can determine the size of the study plot prior to the activity. A 1m X 1m area is suggested. In the classroom the teacher discusses the activity, places students into groups of 3-4, assigns the groups a study plot and passes out the data sheets to each student. While students are outside they observe, draw and record what they see inside their study plot. Students also take digital photographs of the study plot for later comparison to the drawings. The outdoor observation is repeated several times (at least 35) during the course of a few weeks with new data sheets and photos each time. The end result is a series of photos and drawings that document the change that has taken place during the observation period. Multiple observations, recording and photographing the study plots allows the students to realize how dynamic Nature is, nothing remains constant. Hopefully, during the course of the activity new things will grow, ants will build homes, fungus will appear, the leaf litter will decompose or a twig may disappear to a bird building a nest, or a mushroom to a squirrel. Witnessing this first hand and recording it with both drawings and digital photos will allow students to make direct connections to their environment. Discussions in the classroom will help students realize that they are part of an ever changing, highly dynamic living world. Conducting the lesson in the field: teacher helps the students choose a random location for their study plot and set up their quadrat. Teacher asks Why is this a good area to study? What do you think you will observe during this experiment? Can you predict what might change? - 38 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Can you guess why things change? Follow up discussion. Things change in nature for many reasons. Often weather (rain or wind) move things around through erosion. Sometimes animals move things around. For example, ants are often seen transporting soil and leaves to build their homes and provide food for their colony. These changes are natural and necessary for the processes of Nature to occur. A healthy ecosystem is constantly changing but we rarely see it unless we visit a place very often or conduct an activity like Digital Decomposition! How do humans impact this change? When we develop an area for human use we often disrupt these natural processes. This can disrupt the delicate balance in Nature. For example, sometimes we speed up erosion by removing plants that hold the soil in place. This can pollute nearby streams with a lot of soil and mud, which affects the life in nearby streams. Or sometimes we prevent natural erosion by building walls, concrete surfaces or dams, which prevents necessary nutrients from reaching the places where it is needed. Through wise use and planning we can minimize this impact and keep Nature healthy! CONCLUSION Learning in Green Fields is the teaching of individuals, and communities, in transitioning to a society that is knowledgeable of the environment and its associated problems, aware of the solutions to these problems, and motivated to solve them. Learning in Green Fields refers to organized efforts to teach how natural environments function, and particularly, how human beings can manage behavior and ecosystems to live sustainably. It is a multi-disciplinary field integrating disciplines such as biology, chemistry, physics, ecology, earth science, atmospheric science, mathematics and geography. - 39 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

2.4. Peer learning and how we use it in Borgarholtsskóli By Johanna Eggertsdottir, Borgarholtsskóli, Reykjavík, Iceland INTRODUCTION Peer learning essentially refers to students learning with and from each other as fellow learners without any implied authority to any individual, based on the tenet that “Students learn a great deal by explaining their ideas to others and by participating in activities in which they can learn from their peers” (Boud, 2001). Today, information technology (e.g. computer programs/databases, Internet facilities) has provided “students with excellent opportunities to learn without requiring a teacher to transmit the available information” (Bohuijs, 1998), thereby necessitating a shift in paradigm from the highly teacher-centred to learnercentred education (e.g. peer learning) in which students are expected to take greater initiative and responsibility to manage more of their own learning and educational/personal development. In peer learning, students will construct their own meaning and understanding of what they need to learn. Essentially, students will be involved in searching for, collecting, analysing, evaluating, integrating and applying information to complete an assignment or solve a problem. Thus, students will engage themselves intellectually, emotionally and socially in “constructive conversation” and learn by talking and questioning each other’s views and reaching consensus or dissent (Boud, 2001). Peer learning is optimised when incorporated as an integral component of a curriculum, paying special attention to: 

Creating a conducive learning environment: Students must build mutual respect for and trust and confidence in one another, so that they “feel free to express opinions, test ideas, and ask for, or offer help when it is needed” - 40 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model (Smith, 1983). Peer learning can be further enhanced if the “environment of mutual help…continues over time and beyond the classroom” (Boud, 2001). Thus, students are individually and collectively accountable for optimising their own learning and achievements. 

Learning in small collaborative groups: Many of the key elements for effective peer learning are often incorporated in the design of small collaborative learning groups, and “research shows that students who engage in collaborative learning and group study perform better academically, persist longer, feel better about the educational experience, and have enhanced selfesteem” (Landis, 2000). Furthermore, “the peer support…is a powerful psychological ballast to critical thinking efforts” (Brookfield, 1987). HOW WORK In peer learning, students construct and negotiate their own meaning and

understanding of content and concepts. Essentially, students will be involved in searching for collecting, analysing, evaluating, integrating and applying information to complete an assignment or solve a problem. Students engage in intellectually, emotionally and socially constructive conversation” and learn by talking and questioning each other’s views and reaching consensus or dissent (Boud, 2001). To optimise peer learning, it is important to create a conducive learning environment where there is mutual respect and trust. Typically students work best in small group formats in flat floor spaces, but peer learning activities such as peer instrcution can aslo work well in a tiered lecture teaching space as shown with peer instruction. FOCUS ON Peer learning is a student-centred approach that transcends knowledge acquisition and helps nurture graduate attributes of collaboration, problem solving - 41 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model and teamwork. Examples of peer learning includes student-led workshops, study groups, team projects, student-to-student learning partnerships and peer feedback sessions in class. Students act as both teachers and learners. We define peer learning in its broadest sense, then, as 'students learning from and with each other in both formal and informal ways'. The emphasis is on the learning process, including the emotional support that learners offer each other, as much as the learning task itself. Peer learning values cooperation over competition. Reciprocal peer learning emphasizes students simultaneously learning and contributing to other students' learning. Such communication is based on mutual experience and so they are better able to make equal contributions. Research indicates that peer learning activities typically yield the following results for both tutor and tutee: team-building spirit and more supportive relationships; greater psychological well-being, social competence, communication skills and selfesteem; and higher achievement and greater productivity in terms of enhanced learning outcomes. Peer learning is an instructional strategy, one approach among many available to teachers. No one is advocating that peer learning replaces the teacher. Students still need teachers, and teachers still need to teach. As with all instructional strategies, peer learning works when it’s selected purposefully, when its use is planned carefully, and when the learning it promotes is evaluated. How teachers design assignments, how they structure the activities in which students work together, and how they use the criteria to assess peer learning all create the context in which peer learning occurs. Peer learning should be mutually beneficial and involve the sharing of knowledge, ideas and experience between the participants. Students learn a great deal by explaining their ideas to others and by participating in activities in which they can learn from their peers. They develop skills in organizing and planning learning activities, working collaboratively with - 42 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model others, giving and receiving feedback and evaluating their own learning. Much peer learning occurs informally without staff involvement. It offer’s students the opportunity to learn from each other. It gives them considerably more practice than traditional teaching and learning methods in taking responsibility for their own learning and, more generally, learning how to learn. It is not a substitute for teaching and activities designed and conducted by staff members, but an important addition to the repertoire of teaching and learning activities that can enhance the quality of education. It is important to consider who are the 'peers' in peer learning. Generally, peers are other people in a comparable situation to each other who do not have a role in that situation as teacher or expert practitioner. They may have considerable experience and expertise or they may have relatively little. They share the status as fellow learners and they are accepted as such. Most importantly, they do not have power over each other by their position or responsibilities. There are variety of reasons for a focus on peer learning. They include: 1.

Peer learning necessary involves students working together and developing

skills of collaboration. This gives them practice in planning and teamwork and involves them as part of a learning community. 2.

There are increased possibilities for students to engage in reflection and

exploration of ideas when the teacher is not present. 3.

Students gain more practice in communicating in the subject. They are able to

articulate their understanding. 4.

Peer learning involves a group of students taking collective responsibility for

identifying their own learning needs and planning how these might be addressed.

- 43 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model The benefits of peer learning Learning by teaching. Studies have shown that the cognitive process of explaining solutions, and dealing with questions and misunderstandings will help to embed knowledge further into your memory and enhance your own understanding of the subject. This process can result in ‘deep learning’, which is retained by your long term memory, rather than ‘surface learning’, where information can dissipate from your memory shortly after class. If you are fortunate enough to study in a classroom, your tutor will understand the benefits of peer work and may well integrate peer related tasks into your learning process. You may find yourself delivering presentations, marking and feeding back the strengths and weaknesses of a classmate’s work, producing quiz questions or even interacting in team debates. These student centred activities have been linked to more effective learning because you need to actively engage with the material in order to participate. This engagement is missing in ‘passive learning’ where you are reading, listening or taking notes, either alone or in a lecture based class. Inclusion of activity based learning makes for a more varied and interesting experience, which can also boost motivation levels, encourage group cohesion and ultimately result in a better comprehension of the topic. Retaining key informatikon. Not everyone welcomes the chance to participate in peer related tasks. You may feel it is your tutor’s job to provide knowledge, and that is the reason you attend classes. However the process of listening to a classmate’s interpretation of a subject, hearing it spoken in a familiar voice and expressed in a different manner can actually enable that information to be internalised more readily. - 44 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Some of you may worry whether you can trust the opinions or views of your peers. Is their feedback based on their relationship with you and therefore subjective? If this is the case, opt for tasks that provide a level of anonymity, by blind marking one another’s written work, or by using online interactive platforms. Increase your employability. Working with others – in classroom based activities, by online study group participation, or as part of ‘live online’ type study options – will not only offer you a supportive environment in which to learn, but can also help you develop business and interpersonal skills which will add to your employability. Peer work develops communication skills and confidence, and instils the use of effective language. These are traits that employers are actively seeking alongside exam results. Benefits of peer assessment. If you get the opportunity to extend your peer interaction into the area of assessment, you can learn a lot. Marking one another's work can provide a fantastic insight into how exam candidates can miss marks - through easily correctable errors in exam technique, for example. As you provide feedback on your classmate’s work, you will begin to generate ideas and see from a different perspective how you might improve your own grades. With practice, you can start to view your own exam script through the eyes of the marker. Your tutor may often stress the importance of allocating the correct amount of time to questions based on marks available, but nothing proves it like seeing a classmate fail to complete a paper or lose marks because they haven’t answered enough questions or spent too long on some. - 45 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Providing honest feedback on a classmate’s efforts and delivering it in a sensitive way can develop business skills you may need in future - for example, if you appraise staff or have to communicate sensitive issues in a boardroom. Finding a way to criticise results without offending is a delicate balance that requires strong interpersonal skills. Receiving constructive feedback from a peer assessment will help you develop the ability to respond positively to criticism and utilise comments to improve. Furthermore, you will develop the key quality of resilience, which is important to support the continuous cycle of self-improvement that underpins professional and academic success. So next time you are stuck needing help, don't hesitate to ask a nearby classmate if they will talk through the method. They are likely to be happy to help and you will be benefitting their learning and your own. How I use teem learning in my classes 1. After teaching students some method in mathematic I encourage students to give and receive feedback and evaluate each other’s learning. Peer teachers reinforce their own learning by instructing others. Students feel more comfortable and open when interacting with a peer. 2. I divide the class into smaller groups of 4–5 students to solve a problem. After about 10 - 15 minutes of discussion, one member of the group must do the problem on the whiteboard and present the solution to the whole class. Everyone in the group should be prepared to present it, they don’t know with one is going to be asked to do it. 3. Encourage students to meet after school and help each other to practise for exams. They can meet in school and have a classroom for them self and use the whiteboard to teach one another. Sometimes they are in small groups, 3 – 5 students and sometime larger groups up to 10 students. - 46 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 4. On my trip here, I have my classes do a 4 days’ project in school. They should work together. If someone needs help, he can ask around and other students are obliged to help. Everyone must turn in their assignment. References Andrews M. Manning N. (2016). A Guide to Peer-to-Peer Learning. Effective Institutions Platform. Bohuijs, P.A.J. (1998). The Teacher and Self-Directed Learners. Medical Education in the Millennium. Oxford: Oxford University Press, 192–198. Boud, D. (2001). Introduction: Making the Move to Peer Learning. Peer Learning in Higher Education: Learning From & With Each Other. London: Kogan Page Ltd, 1–17. Bould D., Cohen R. Sampson J. (1999). Peer Learning and Assesment. University of Technology, Sydney, Australia. Brookfield, S.D. (1987). Developing Critical Thinkers. Jossey-Bass, San Franciso. https://pes.concordia.ca/docs/peer_learning_and_assessment.pdf http://www.opencolleges.edu.au/informed/features/peer-teaching/ https://www.effectiveinstitutions.org/media/The_EIP_P_to_P_Learning_Guide.pdf https://web.stanford.edu/dept/CTL/Tomprof/postings/418.html

- 47 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

2.5. Driven to discover methodology By Hasan Biber, NamÄąkKaramancÄą Fen Lisesi, Manavgat, Turkey INTRODUCTION Driven to discover is a technique of inquiry-based learning and is considered a constructivist based approach to education. It is also referred to as problem-based learning, experiential learning and 21st century learning. Although this form of instruction has great popularity, there is some debate in the literature concerning its efficacy. The label of discovery learning can cover a variety of instructional techniques. The Driven to discover learning task can range from implicit pattern detection, to the elicitation of explanations and working through manuals to conducting simulations. Driven to discover learning can occur whenever the student is not provided with an exact answer but rather the materials in order to find the answer themselves. Driven to discover learning takes place in problem solving situations where the learner draws on his own experience and prior knowledge and is a method of instruction through which students interact with their environment by exploring and manipulating objects, wrestling with questions and controversies, or performing experiments. METHODOLOGY Discovery-based learning is typically characterized by having minimal teacher guidance, fewer teacher explanations, solving problems with multiple solutions, use of hand-on materials, minimal repetition and memorization. There are multiple essential components that are required for successful discovery-based learning which include the following: - 48 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model  Teacher guidance where the emphasis is on building upon students’ reasoning and connecting to their experiences;  Classroom culture where there is a shared sense of purpose between teacher and students, where open-mindedness and dialogue are encouraged;  Students are encouraged to ask questions, inquire through exploration and collaborate with teacher and peers. Driven to discover methodology is based on human intelligence. Human intelligence – in the human species, the mental capacities to learn, understand, and reason, including the capacities to comprehend ideas, plan, problem solve, and use language to communicate. What processes are included? o Abstract thought o Critical thinking o Creativity o Emotional and spiritual intelligence o Knowledge and learning o Memory o Problem solving o Reasoning o Social and communication intelligence o Spatial thinking o Visual and other information processing, understanding Teacher's role. It has been suggested that effective teaching using discovery techniques requires teachers to do one or more of the following: 1) Provide guided tasks leveraging a variety of instructional techniques 2) Students should explain their own - 49 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ideas and teachers should assess the accuracy of the idea and provide feedback 3) Teachers should provide examples of how to complete the tasks. A critical success factor to discovery learning is that it must be teacher assisted. Driven to discover learning can also result in students becoming confused and frustrated. In summary, the teachers’ role in discovery learning is critical to the success of learning outcomes. Students must build foundational knowledge through examples, practice and feedback. This can provide a foundation for students to integrate additional information and build upon problem solving and critical thinking skills. Benefits. Early research demonstrated that directed discovery had positive effects on retention of information at six weeks after instruction versus that of traditional direct instruction. It is believed that the outcome of discovery based learning is the development of inquiring minds and the potential for life-long leaning. Driven to discover learning promotes student exploration and collaboration with teachers and peers to solve problems. Children are also able to direct their own inquiry and be actively involved in the learning process which helps with student motivation. Models and Technology of Driven to discover learning The main models are: o Collaborative discovery learning o Discovery learning with microworlds o Experiental learning (to some extent) o Guided discovery learning o Incidental learning - 50 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model o Learning by exploring (exploratory learning) o Simulation-based learning o Case-based learning o Problem-based learning o Inquiry-based learning Simple Technology included: cognitive tools, simulations, hypertext, microworlds, simple combination of webpages (read/write) and forums or alternatively... Planning a Driven to discover learning Experience 

select an activity. To begin pick an activity that is relatively short so that follow-up attempts are easier to predict and plan for. Select a subject with which you are personally familiar and comfortable. Also in the beginning it is often best to choose an activity that does not have just one correct answer. Role-playing, creating sculptures, observing characteristics of objects, or searching for or classifying similar items all work well.

gather materials. Remember to have enough materials for each learner to repeat the activity at least once.

stay focused. Avoid learning tangents that may be interesting but will keep the learner from finishing the project, unless they are truly of great curiosity and value. Instead take notes concerning the new interest to follow-up on once the initial activity is completed.

use caution. While the idea of discovery learning is for the instructor to step back and observe allowing the child to work independently, be sure that safety is observed. Activities such as cooking and cutting should always be supervised by an adult and experimenting with magnets is nice unless an important video or cassette tape is ruined. - 51 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 

plan extra time. Understand that children working on their own will most likely take longer than they would with an adult moving them from step to step. Also be sure to plan time for repeated activities in case there is a failure or other reason to repeat the activity.

record process and results. Include in the activity a requirement for older children to record their procedure and results. For young children guide, assist, or model record keeping.

discuss and review. After and activity is completed and before it is repeated a second time (if needed), discuss the activity and its outcome with the child. Use the records which were kept to assist during this step. Once the activity has been analyzed, record any observations or mistakes.

try again. Have the child repeat the activity if necessary. Encourage her to take into account what was done and the discussion that occurred. Allow her to use any records that were kept to assist her in successfully completing the activity. Give assistance and guidance as necessary.

plan for more discovery learning activities. Think over how this activity worked for the child. As you plan more discovery activities take the answers to these questions into consideration. What went well? What could have gone better? How can any problem areas be corrected or alleviated? Advantages and disavantages of Driven to discover learning Advantages

Supports active engagement of the learner in the learning process

Fosters curiosity

Disadvantages 

- 52 -

(Sometimes huge) cognitive overload, potential to confuse the learner if no initial framework is available, etc. Measurable performance (compared to hard-core instructional designs) is worse for most learning situations.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 

Enables the development of life long learning skills

Personalizes the learning experience

Creations of misconceptions ("knowing less after instruction") Weak students have a tendency to "fly under the radar" (Aleven et al. 2003) and teacher's fail to detect situations needing strong remediation or scaffolding.

Highly motivating as it allows individuals  Some studies admit that strong the opportunity to experiment and students can benefit from weak discover something for themselves treatments and others conclude that there is no difference, but more importantly they also conclude that weak students benefit strongly from strong treatments. Builds on learner's prior knowledge and understanding

Develops a sense of independence and autonomy Make them responsible for their own mistakes and results Learning as most adults learn on the job and in real life situations A reason to record their procedure and discoveries - such as not repeating mistakes, a way to analyze what happened, and a way to record a victorious discovery Develops problem solving and creative skills Finds new and interesting avenues of information and learning - such as gravy made with too much cornstarch can become a molding medium

Development of meta cognitive skills

Motivation

- 53 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

3. Selected Fields of STEM in our project 3.1. About surveys and statistics By Geneviève Harles, Lycée classique de Diekirch, Luxembourg “The sexy job in the next ten years will be statisticians. Because now we really do have essentially free and ubiquitous data. So the complimentary factor is the ability to understand that data and extract value from it.” Hal Varian Chief Economist Google January, 2009 What is a survey? A survey is an investigation about the characteristics of a given population by means of collecting data from a sample of that population and estimating their characteristics through the systematic use of statistical methodology. It may focus on factual information about individuals, or it might aim to collect the opinions of the survey takers. Surveys have a variety of purposes and can be conducted in many ways. They may be conducted to gather information through a printed questionnaire, over the telephone, by mail, in person or on the web. This information is collected through use of standardized procedures to ensure that it has reliability and validity. Standardization is also important so that the results can be generalized to the larger population. Sampling The sample is chosen from the sampling frame, which consists of a list of all members of the population of interest. The goal of survey research is not to describe the sample, but the larger population. This generalizing ability is dependent - 54 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model on the representativeness of the sample. One common error that results is selection bias. Selection bias results when the procedures used to select a sample result in over representation or under representation of some significant aspect of the population. For instance, if the population of interest consists of 75% females, and 25% males, and the sample consists of 40% females and 60% males, females are underrepresented while males are overrepresented. One of the most famous examples of a poorly conceived survey is the 1948 poll that predicted Harry Truman would lose the presidential election to Thomas Dewey. The survey's main flaw was its sample, which failed to fairly represent all segments of the American electorate-particularly those who eventually voted for Truman. Questionnaires The questions should be strategically planned and structured in the best way possible in order to receive the most accurate data. When structuring survey questions, you must consider the main goal of the survey. Questions can be for matted for open-ended or close-ended responses. For example: “How many cups of coffee did you drink yesterday?� Open-ended Response(specify number) ______ (enter answer) Close-ended Response(circle one) None 1 2 3 4 5 6 or more Close-ended response choices must exhaust the entire range of answers. These choices must be mutually exclusive so that a single answer cannot fall into more than one category. Results The value of collected data completely depends upon how truthful respondents are in their answers on questionnaires. In general, survey researchers accept respondents’ answers as true. - 55 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Statistics Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of data.Statistics can be said to have begun in ancient civilization, going back to the 5th century BC, but it was not until the 18th century that it started to draw more heavily from calculus and probability theory. How we used it in the project First, students had to decide about the subjects they wanted to use in order to make a survey (extracurricular activities in music and sports were selected) Then they learned how to formulate questions in order to collect accurate answers and how to formulate close-ended responses. We were using the statistical methodthat is used in data analysis (descriptive statistics), which summarizes data from a sample using indexes such as the mean or standard deviation and which represents data with bar charts or histograms. After having acquired the theoretical knowledge, students collected data among their fellow students. During the L/T/T meeting in Luxembourg, the students formed 3 mixed groups to analyze the collected data and to draw conclusions. The results have been published in the twin space of our eTwinning project site. Conclusion The 4 main reasons why researchers and scientists should conduct surveys are the following: -

Uncover the answers. In a non-intimidating survey environment, you will learn about what motivates survey respondents and what is important to them, and gather meaningful opinions, comments, and feedback.

-

Evoke discussion. Communicating with the respondents about a survey topic - 56 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model allows to dig deeper into that survey, and can incite topics related to the survey within a broader perspective. -

Base decisions on objective information. Conducting surveys is an unbiased approach to decision-making allowing to collect unbiased survey data and develop sensible decisions based on analyzed results. By analyzing results, you can immediately address topics of importance, rather than waste time and valuable resources on areas of no concern.

-

Compare results. Surveys results provide a snapshot of the attitudes and about the target survey population. Statistics lies at the heart of the type of quantitative reasoning necessary

for making important advances in the sciences, such as medicine and genetics, and for making important decisions in business and public policy.From medical studies to research experiments, from satellites continuously orbiting the globe to ubiquitous social network sites like Facebook or LinkedIn, from polling organizations to United Nations observers, data are being collected everywhere and all the time. Knowledge in statistics provides you with the necessary tools and conceptual foundations in quantitative reasoning to extract information intelligently from this sea of data.The students involved in the project and having acquired that knowledge will obviously have a better chance for job opportunities. References Survey Research (2000) (pp. 223-252)., Penny S. VISSBR, Jon A. KROSNICK, Paul J. LAVRAWS, New York, NY, US: Cambridge University Press https://stats.oecd.org/glossary/detail.asp?ID=2620 https://www.snapsurveys.com/blog/4-main-reasons-conduct-surveys

- 57 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Annexe Questionnaire about activities in music and sports. inSTEM Erasmus Plus Project We would like to ask students of the 5 partner schools from Lithuania, Iceland, Turkey, Italy and Luxembourg about their activities in music and sports. We will compare and tell you the results. 1. How many hours per day do you listen to music? □ 0-1

□1-2

□2-4

□4-6

□more 2. How many instruments do you play regularly (on a weekly basis)? …………… 3. How many songs do you have on your mobile device? ………….. 4. How do you download them? (more answers possible) □ iTunes

□ Amazon □ Spotify

□ illegally

□ other

5. How often have you attended during the year 2015  a rock/pop concert? …………………………….  a musical/ classical concert? ……………………  a music festival? …………………………………. 6. How many times a week do you do physical activity? (lasting at least 30 mins) ……………………………. 7. How many hours a week do you do physical activity? …………………………… 8. How many hours a week do you watch sport on tv/computer? □ 0-1

□1-2

□2-4

□more 9. How often have you attended live sports events as audience in 2015? (games, competition, ...) …………… 10. How about as a participant? …………………….. Thank you for participating in the survey! Dėkojame - Þakkaþérfyrir- Teşekkürederiz - Grazie - Merci! The team from Lycéeclassique de Diekirch, Luxembourg - 58 -

□4-6


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

3.2. Biotechnology in Italy (presentation) By Prof.ssa Luana Fogli, Fogli Liceo Scientifico Tito Livio, Martina Franca, Italy

- 59 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

BIOGAS PRODUCTION

HYDROPONIC CULTURES

- 60 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

different types of hydroponic culture Drip Sistem

Aeroponic The N.F.T. system

Water Culture

Aquaponics

HYDROPONIC SYSTEMS Hydroponics is a subset of hydroculture, the method of growing plants without soil, using mineral nutrient solutions in a water solvent.

- 61 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

ADVANTAGES OF HYDROPONIC ● Water saving ● Controlled production ● No herbicides ● Lower maintenance costs ● You can automate the systems

- 62 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

3.3. GIS mapping at school: get started with ArcGIS Online By Darius Česnavičius, Vilniaus Pilaitės gimnazija, Vilnius, Lithuania INTRODUCTION A Geographic Information System (GIS Software) is designed to store, retrieve, manage, display, and analyze all types of geographic and spatial data. GIS software lets you produce maps and other graphic displays of geographic information for analysis and presentation. GIS software lets you produce maps and other graphic displays of geographic information for analysis and presentation. With these capabilities a GIS is a valuable tool to visualize spatial data or to build decision support systems for use in your organization. A GIS stores data on geographical features and their characteristics. The features are typically classified as points, lines, or areas, or as raster images. On a map city data could be stored as points, road data could be stored as lines, and boundaries could be stored as areas, while aerial photos or scanned maps could be stored as raster images. Geographic Information Systems store information using spatial indices that make it possible to identify the features located in any arbitrary region of a map. For example, a GIS can quickly identify and map all of the locations within a specified radius of a point, or all of the streets that run through a territory. In addition to the above capabilities, Maptitude implements a professional-strength relational database, a feature critical for GIS software. Attribute data may be freely joined to and detached from geographic layers and tables. Relational data manipulation is integrated with robust and powerful geoprocessing for spatial queries, polygon overlay, and other location-based analyzes. This is

- 63 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model supported seamlessly so that data are moved easily to and from relational tables and geographic databases. Geographic Information System Software ArcGIS is one of the most popular GIS software packages, and has extensive functionality. A list of typical GIS capabilities is presented below, and these are available in ArcGIS. Maps and Layers.  The Create-a-Map Wizard allows users to easily create presentation-ready maps using their own data or the default maps  The Display Manager allows a map to be customized on-the-fly  User-defined preferences for map units, left/right side-of-road routing, file permissions, geocoding parameters, and many other settings  Toolbox and mouse-based map navigation is supported and includes panning, zooming, and magnifying  Map bookmark management allows the retrieval of custom map views  Multi-layer map feature query tools allow direct interrogation of spatial locations  A map librarian/manager allows the organization of various saved maps and comes with a library of pre-styled demographic maps  Geographic database layering controls allow customization of layer visibility and drawing order  Multiple maps can be open simultaneously, and can be duplicated, combined, synchronized, tiled, cascaded, and minimized/maximized  There is explicit map scale control including undo  Layer autoscaling allows customization of the scale at which layers are visible

- 64 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model  An interactive map overview window provides perspective as you work and the ability to zoom anywhere in the study region Visualization.  Extensive layer style control includes font/style/opacity settings for points/lines/areas/labels/legends/drawings; point and area styles can use most image formats and their resolution can be controlled via scaling  Thematic visualizations include color, pattern/icon, dot-density, chart, scaledsymbol, and 3D prism themes  A drawing toolbox is provided, the drawing items are customizable, and there is a selection of north-oriented arrows  Each map has an editable legend that automatically lists displayed features and has a live scale bar  Stand-alone charting capabilities include pie, bar, line, area, scatter, and function charts  Advanced text label placement and management tools include live label manipulation

en-masse

or

individually,

automated

positioning,

callouts/rotation, font control, multi-line, framing, hiding, styling, prioritizing, stretching, spacing, autoscaling, and additional text manipulation settings  Maps and graphics can be copy/pasted or saved as pictures/bitmaps (with optional quality/resolution settings) for insertion into MS Office and other external applications  Printing to any printer/paper size is supported, with a wide variety of spatial print options including using fixed scale, with actual point sizes, and as prerendered images  Report/layout creation can utilize settings for snap grids, rulers, paper size/orientation, dimensions, margins, alignment, print options, automated district printing, and a variety of other graphics software oriented options - 65 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model  Map interaction can be recorded to video  Layer style/label/autoscale override is provided through the Feature Display tool  Cartographic coloring uses Brelaz's Dsatur algorithm to assign colors that ensure that no two adjacent regions have the same color Geocoding.  The tabular and geographic find tool can identify locations anywhere on earth  Robust and flexible pin-mapping tools support geocoding by address, postal code, city/town, join, coordinate, longitude/latitude, by any populated place in the world (village, town, city), and also manually  Custom geocodable indexes can be created to pin-map based on external datasets  Geotagged images from smart phones, tablets, or GPS-enabled devices can be mapped GIS Mapping Tools and Geographic Analysis. Geographic analysis tools are the most valuable component of GIS software because they let you analyze the geographic components of your data Imagery. Image

layer

and

aerial

photo

tools

include

registration,

a

manager/librarian, contrast control, smoothing and interpolation (nearest neighbor, bilinear, high quality bilinear, bicubic, high quality bicubic). The image servers supported are Google Earth and OGC Web Map Services (WMS) Database.  The ArcGIS program has a powerful proprietary relational database  Support is provided for over 50 file types and more than 100 GIS and CAD formats, some natively including Excel, MS Access, ODBC, dBase, CSV,

- 66 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ASCII, ArcGIS platform formats (Esri Shapefile and Personal Geodatabase), MapInfo TAB, Oracle Spatial, and SQL Server Spatial  Support is provided for exporting to many formats including Excel, dBase, CSV, ASCII, Lotus, Google KML, Maptitude, MapInfo MIF, Oracle Spatial, SQL Server Spatial and AutoCAD DXF  Table tools include the ability to transpose, group/aggregate, identify duplicates, calculate statistics, convert longitude/latitude to XY coordinates, print mailing labels, copy/paste values, and perform undo/redo of edits  Regression and binary logit models can be estimated on any map layer or table  Table field tools include the ability to hide, show, filter, lock, format, multifield sort, create live expression/formula fields, and perform multi-cell fills  Database modify tools include the ability to add/delete records/fields, delete filtered records, set aggregation rules, apply look-up table coding, and define field header balloon pop-up text  Database joins can be aggregate/non-aggregate and as one-to-one, one-tomany, or many-to-one joins  Multiple filters per layer or database can be created using SQL type queries, spatial queries (coincident, adjacent, within, and many more), and data classification methods  Topological/non-topological spatial databases can be created for points, lines, areas, or grids  Topological/non-topological layer (line/point/area) editing tools include the ability to use digitizers, create one-way streets, copy and paste lines, merge/split features/attributes, add/delete/move features, line/area conversion, point-to-line conversion, merging layers, clipping/masking geography by region/area, and undo/redo of edits

- 67 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model  There is comprehensive projection, datum, and coordinate system support both natively and via import/export, and this operates in conjunction with tools such as vector rubbersheeting and on-the-fly raster layer reprojection  Any record can be linked to multiple files including photos, documents, web pages, and slide-shows Development Platform. Processing. ArcGIS Online for schools The GIS for Schools Program includes: 1. Learning Materials. Ready-to-go Curriculum-linked learning materials support teachers in delivering engaging activities using GIS. This includes detailed instructor materials, and live web maps on a range of topics - including biomes, plate tectonics, megacities, urban sprawl, resource consumption, and global health. 2. Professional development for teachers. To support teachers, Esri has developed a range of online resources and user guides. We also host professional development events, to ensure teachers are skilled and confident in delivering engaging lessons using GIS technology. 3. ArcGIS Online Instructional Materials. These activities provide a beginner or an intermediate learner an opportunity to explore how to visualize data with simple functions, do basic analysis, and gain some introductory self-help videos and lessons. Started lessons:  Help you easily to understand how to start using ArcGIS Online.  Create ArcGIS Online Account [PDF]  Manage ArcGIS Online Account [PDF] - 68 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model  ArcGIS Online Five by Five [PDF]  Get started with Story Maps [PDF]  Online Data and Maps Resources [PDF]  ArcGIS Maps for Office [PDF]  Invitation to New Users Template  Open-Source Geo-Spatial Data from DATA.GOV.HK [PDF] Videos.  Quick tutorial demo videos to learn about using specific capabilities of ArcGIS Online.  Get Started with ArcGIS Online  Create maps  Create apps  Share maps’ materials  Get started with 3D Scenes  Administer your School Account  Group users and maps  Allocate your service credit Lessons.  Step-by-step instructed lesson will help you explore more capabilities of ArcGIS Online.  Explore a map  Create a map  Add a layer from a CSV file  Configure pop-ups  Make an app Exercises.  For you to practice the applications and functions of ArcGIS Online. - 69 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model  Air Pollution [PDF]  Create a Nature Trail in Your School [PDF]  Create a Nature Trail in Your School by Snap2map [PDF]  Earthquake [PDF]  Globalization [PDF]  Global Warming [PDF]  Heat Island Effect [PDF]  Tsunami [PDF] CONCLUSION ArcGIS is a geographic information system (GIS) for working with maps and geographic information. It is used for creating and using maps, compiling geographic data, analyzing mapped information, sharing and discovering geographic information, using maps and geographic information in a range of applications, and managing geographic information in a database. The system provides an infrastructure for making maps and geographic information available throughout an organization, across a community, and openly on the Web. References Mozgeris G., Dumbrauskas A., Jonikavičius D. (2015). Geografinių informacinių sistemų pagrindai – studijų knyga (antras leidimas). Aleksandro Stulginskio universitetas, Kaunas. Geografinės informacijos mokymų medžiaga http://www.geoportal.lt/geoportal/web/geografines-informacijos-mokymu-medziaga/ Darbas su ArcGIS 10 http://www.hnit-baltic.lt/mokymai/literatura/

- 70 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ArcGIS for Desktop 10 tutorials http://help.arcgis.com/EN/arcgisdesktop/10.0/help/index.html#//00v20000000t00000 0.htm ArcGIS 10.2.2 for Desktop Free Trial Help http://resources.arcgis.com/en/help/main/10.2/ ArcGIS Online pradžiamokslis http://gismokykla.maps.arcgis.com/apps/PublicGallery/index.html?appid=e06ec422d 58948eeac45f82bedd073d5 ArcGIS Online instrukcijos pažengusiems http://gismokykla.maps.arcgis.com/apps/PublicGallery/index.html?appid=190a1436c 8b5458d92171b5255cb3209&group=2de8bd09a4d9457b89afcde38572d79c ArcGIS Online Help http://doc.arcgis.com/en/arcgis-online/ Old but good ArcGIS for Desktop tutorial: http://webfacstaff.sas.upenn.edu/~dromano/classes/gis/files/Getting_Started_with_ArcGIS.pdf ArcGIS 10.2.2 for Desktop Free Trial Help http://resources.arcgis.com/en/help/main/10.2/ ArcGIS for Desktop 10 tutorials http://help.arcgis.com/EN/arcgisdesktop/10.0/help/index.html#//00v20000000t00000 0.htm Geospatial Analysis Book online - web version http://www.spatialanalysisonline.com/HTML/index.html ArcGIS Online help http://doc.arcgis.com/en/arcgis-online/ Living Atlas of the World http://doc.arcgis.com/en/living-atlas/ http://www.arcgis.com/features/maps/ ArcGIS Online gallery - 71 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model http://www.arcgis.com/home/gallery.html Why is Geo-literacy Important? https://www.youtube.com/watch?v=sTUG13RCz9A What is Geo Literacy https://www.youtube.com/watch?v=OxQ0696Uy2o The 3 i's of Geoliteracy, with Ties to GIS https://www.youtube.com/watch?v=qdjS4tSIOmQ Jack Dangermond: GIS for Our Future https://www.youtube.com/watch?v=ijETWosBbu0

- 72 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Table. List of video tutorials in GIS mapping via ArcGIS Online.

Video Title ArcGIS Online Overview Sharing and Collaborating within an Organization Joining an Organization Sharing your Content Managing the Resources of an Organization Configuring the ArcGIS Online Website for an Organization Inviting Members to Join an Organization Publishing Hosted Tiled Map Services Publishing Hosted Feature Services Using an ArcGIS Online Public Account Embedding a Group in your Website Using Custom Gallery Application Templates Joining a Group Inviting Others to Join Your Group Content Published by Esri Making a Map Adding Features from a File Displaying Pop-up Windows on a Map Editing Feature Layers on a Map Embedding a Map in your Website Using Custom Web Application Templates Creating Time-enabled Maps Signing Up for an ArcGIS Online Public Account Create a new map in an organization Configuring effective pop-up windows CityEngine Web Scenes Esri Maps for Office with ArcGIS

URL http://video.arcgis.com/watch/916/arcgis-online-overview http://video.arcgis.com/watch/1341/sharing-and-collaboratingwithin-an-organization http://video.arcgis.com/watch/1338/joining-an-organization http://video.arcgis.com/watch/258/sharing-your-content http://video.arcgis.com/watch/1340/managing-the-resources-of-anorganization http://video.arcgis.com/watch/1339/configuring-the-arcgis-onlinewebsite-for-an-organization http://video.arcgis.com/watch/1337/inviting-members-to-join-anorganization http://video.arcgis.com/watch/1343/publishing-hosted-tiled-mapservices http://video.arcgis.com/watch/1342/publishing-hosted-featureservices http://video.arcgis.com/watch/262/using-an-arcgis-online-personalaccount http://video.arcgis.com/watch/1554/embedding-a-group-in-yourwebsite http://video.arcgis.com/watch/1555/using-custom-galleryapplication-templates http://video.arcgis.com/watch/252/joining-a-group http://video.arcgis.com/watch/251/inviting-others-to-join-your-group http://video.arcgis.com/watch/247/content-published-by-esri http://video.arcgis.com/watch/253/making-a-map http://video.arcgis.com/watch/433/adding-features-from-a-file http://video.arcgis.com/watch/245/displaying-pop_dash_upwindows-on-a-map http://video.arcgis.com/watch/248/editing-feature-layers-on-a-map http://video.arcgis.com/watch/249/embedding-a-map-in-yourwebsite http://video.arcgis.com/watch/254/using-custom-web-applicationtemplates http://video.arcgis.com/watch/246/creating-time_dash_enabledmaps http://video.arcgis.com/watch/255/signing-up-for-an-arcgis-onlinepersonal-account http://video.arcgis.com/watch/1694/create-a-new-map-in-anorganization http://video.arcgis.com/watch/1695/configuring-effectivepop_dash_up-windows http://video.arcgis.com/watch/1747/cityengine-web-scenes http://video.arcgis.com/watch/1597/esri-maps-for-office-with-arcgis-

- 73 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Online Subscriptions Publish a map as a web application A Workflow for Creating and Sharing Maps Converting Your Trial Subscription to Personal Accounts Managing Feature Templates Publish a text file as a feature service Creating New Empty Hosted Feature Services Using ArcGIS Online With Your Mobile Device Working with Tables and Filters in a Web Map Authentication in ArcGIS Extend ArcPad to ArcGIS Online Publish Excel Spreadsheet with ESRI Maps for Office Publish a hosted feature service from ArcGIS for Desktop Publish a hosted map service from ArcGIS for Desktop Publish a text file as a feature service Map Your Excel Data Analyze Your Excel Data on a Map Enrich Your Excel Data Share Your Maps from Excel Data Enrichment Pop-up Infographics Find Nearby Spatially enable your CRM data Design and use a map chart Publish Excel Spreadsheet with ESRI Maps for Office Data Enrichment Pop-up Infographics Find Nearby

online-subscriptions http://video.arcgis.com/watch/1879/publish-a-map-as-a-webapplication http://video.arcgis.com/watch/2033/a-workflow-for-creating-andsharing-maps http://video.arcgis.com/watch/2042/converting-your-trialsubscription-to-personal-accounts http://video.arcgis.com/watch/2053/managing-feature-templates http://video.arcgis.com/watch/2423/publish-a-text-file-as-a-featureservice http://video.arcgis.com/watch/2066/creating-new-empty-hostedfeature-services http://video.arcgis.com/watch/2102/using-arcgis-online-with-yourmobile-device http://video.arcgis.com/watch/2114/working-with-tables-and-filtersin-a-web-map http://video.arcgis.com/watch/2197/authentication-in-arcgis http://video.arcgis.com/watch/2247/extend-arcpad-to-arcgis-online http://video.arcgis.com/watch/2420/publish-excel-spreadsheet-withesri-maps-for-office http://video.arcgis.com/watch/2421/publish-a-hosted-featureservice-from-arcgis-for-desktop http://video.arcgis.com/watch/2422/publish-a-hosted-map-servicefrom-arcgis-for-desktop http://video.arcgis.com/watch/2423/publish-a-text-file-as-a-featureservice http://video.arcgis.com/watch/2457/map-your-excel-data http://video.arcgis.com/watch/2467/analyze-your-excel-data-on-amap http://video.arcgis.com/watch/2468/enrich-your-excel-data http://video.arcgis.com/watch/2469/share-your-maps-from-excel http://video.arcgis.com/watch/2306/data-enrichment http://video.arcgis.com/watch/2307/pop_dash_up-infographics http://video.arcgis.com/watch/2308/find-nearby http://video.arcgis.com/watch/2882/spatially-enable-your-crm-data http://video.arcgis.com/watch/2911/design-and-use-a-map-chart http://video.arcgis.com/watch/2420/publish-excel-spreadsheet-withesri-maps-for-office http://video.arcgis.com/watch/2306/data-enrichment http://video.arcgis.com/watch/2307/pop_dash_up-infographics http://video.arcgis.com/watch/2308/find-nearby

- 74 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

3.4. Green energy: why its important By Johanna Eggertsdottir, BorgarholtsskĂłli, ReykjavĂ­k, Iceland What is green energy? Green energy comes from natural sources such as sunlight, wind, rain, tides, plants, algae and geothermal heat. These energy resources are renewable, meaning they're naturally replenished. In contrast, fossil fuels are a finite resource that take millions of years to develop and will continue to diminish with use.Renewable energy sources also have a much smaller impact on the environment than fossil fuels.

Gaining access to fossil fuels typically requires either mining or drilling deep into the earth. Green energy, however, utilizes energy sources that are readily available all over the world. Most common types of green energy are: Solar Power - The most prevalent type of renewable energy, solar power is typically produced using photovoltaic cells, which capture sunlight and turn it into electricity. Solar energy is also used to heat buildings and water, provide natural

- 75 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model lighting and cook food. Solar technologies have become inexpensive enough to power everything from small hand-held hand gadgets to entire neighborhoods. ighborhoods.

Wind Power - Air flow on the earth's surface can be used to push turbines, with stronger winds producing more energy. High-altitude High altitude sites tend to provide the best conditions for capturing the strongest winds. Hydropower - Also called hydroelectric hydroelectric power, hydropower is generated by the Earth's water cycle, including evaporation, rainfall, tides and the force of water running through a dam. Hydropower depends on high precipitation levels to produce significant amounts of energy.

- 76 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Geothermal Energy - Just under the earth's crust are massive amounts of thermal energy, which originates from both the original formation of the planet and the radioactive decay of minerals. Geothermal energy in the form of hot springs has been used by humans for millennia for bathing, and now it's being used to generate electricity. Biomass - Recently-living natural materials like wood waste, sawdust and combustible agricultural wastes can be converted into energy with far fewer greenhouse gas emissions than petroleum-based fuel sources. That's because these materials, known as biomass, contain stored energy from the sun. Biofuels - Rather than burning biomass to produce energy, sometimes these renewable organic materials are transformed into fuel. Notable examples include ethanol and biodiesel. Geothermal power Geothermal

power

is

power

generated

by geothermal

energy.

Technologies in use include dry steam power stations, flash steam power stations and binary cycle power stations. Geothermal electricity generation is currently used in 24 countries, while geothermal heating is in use in 70 countries. As of 2017, worldwide geothermal power capacity amounts to 14.8 gigawatts (GW), of which 28 percent are installed in the United States. International markets grew at an average annual rate of 5 percent over the last three years. Countries generating more than 15 percent of their electricity from geothermal sources include El Salvador, Kenya, the Philippines, Iceland and Costa Rica. The Earth’s heat content is about 103131 joules. This heat naturally flows to the surface by conduction at a rate of 44.2 terawatts and is replenished by radioactive decay at a rate of 30 TW. These power rates are more than double humanity’s current energy consumption from primary sources, but most of this power is too diffuse to be recoverable. The Earth's crust effectively acts as a thick insulating - 77 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model blanket which must be pierced by fluid conduits (of magma, water or other) to release the heat underneath.

- 78 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Electricity generation requires high-temperature resources that can only come from deep underground. The heat must be carried to the surface by fluid circulation, either through magma conduits, hot springs, hydrothermal circulation, oil wells, drilled water wells, or a combination of these. This circulation sometimes exists naturally where the crust is thin: magma conduits bring heat close to the surface, and hot springs bring the heat to the surface. If no hot spring is available, a well must be drilled into a hot aquifer. Worldwide production The International Geothermal Association (IGA) has reported that 10,715 megawatts (MW) of geothermal power in 24 countries is online, which is expected to generate 67,246 GWh of electricity in 2010. This represents a 20% increase in geothermal power online capacity since 2005. IGA projected this would grow to 18,500 MW by 2015, due to the large number of projects that were under consideration, often in areas previously assumed to have little exploitable resource. In 2010, the United States led the world in geothermal electricity production with 3,086 MW of installed capacity from 77 power stations; the largest group of geothermal power plants in the world is located at The Geysers, a geothermal field in California. The Philippines follows the US as the second highest producer of geothermal power in the world, with 1,904 MW of capacity online; geothermal power makes up approximately 27% of the country's electricity generation. Geothermal power in Iceland Due to the geological location of Iceland (over a rift in continental plates), the high concentration of volcanoes in the area is often an advantage in the generation of geothermal energy, the heating and making of electricity. During winter, pavements near these areas (such as Reykjavik and Akureyri) are heated up. Five major geothermal power plants exist in Iceland, which produce approximately 26.2% of the nation's electricity. In addition, geothermal heating meets - 79 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model the heating and hot water requirements of approximately 87% of all buildings in Iceland. Apart from geothermal energy, 73.8% of the nation’s electricity is generated by hydro power,[3] and 0.1% from fossil fuels. Table. Installed geothermal electric capacity. Country USA

Capacity (MW)

Capacity (MW)

Share of national

2007

2015

generation (%)

2687

Philippines

3450

1969.7

1870

0.3 27.0

Indonesia

992

1340

3.7

Mexico

953

1017

3.0

New Zealand

471.6

1005

14.5

Italy

810.5

916

1.5

Iceland

421.2

665

30.0

Kenya

128.8

594

51.0

Japan

535.2

519

0.1

38

397

0.3

Turkey

Geothermal energy also provides tourist attractions such as the Blue Lagoon.the geothermal water originates 2,000 metres below the surface, where freshwater and seawater combine at extreme temperatures. It is then harnessed via drilling holes at a nearby geothermal power plant, Svartsengi, to create electricity and hot water for nearby communities. This Blue Lagoon is based upon an amazing gift of nature driven by a respect from the natural environment and 100% powered by clean geothermal energy.

- 80 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

CONCLUSION Geothermal power is also considered to be sustainable thanks to its power to sustain the Earth’s intricate ecosystems. By using geothermal sources of energy present generations of humans will not endanger the capability of future generations to use their own resources to the same amount that those energy sources are presently used. Further, due to its low emissions geothermal energy is considered to have excellent potential for mitigation of global warming. Even though geothermal power is globally sustainable, extraction must still be monitored to avoid local depletion. Over the course of decades, individual wells draw down local temperatures and water levels until a new equilibrium is reached with natural flows. The three oldest sites, at Larderello, Wairakei, and the Geysers have experienced reduced output because of local depletion. Heat and water, in uncertain proportions, were extracted faster than they were replenished. If - 81 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model production is reduced and water is reinjected, these wells could theoretically recover their full potential. Such mitigation strategies have already been implemented at some sites. Direct geothermal heating systems contain pumps and compressors, which may consume energy from a polluting source. This parasitic load is normally a fraction of the heat output, so it is always less polluting than electric heating. However, if the electricity is produced by burning fossil fuels, then the net emissions of geothermal heating may be comparable to directly burning the fuel for heat. For example, a geothermal heat pump powered by electricity from a combined cycle natural gas plant would produce about as much pollution as a natural gas condensing furnace of the same size. Therefore, the environmental value of direct geothermal heating applications is highly dependent on the emissions intensity of the neighboring electric grid. The

Hellisheiรฐi

Power Station is the third-largest geothermal

power

station in the world. The

facility

is

located in Hengill, southwest 11

km

Iceland, from

the

Nesjavellir Geothermal

Power

Station. The plant has a capacity of 303 MW of electricity and 133 MW of hot water for Reykjavik's district heating. - 82 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

3.5. Simulations through ICT By Hasan Biber, NamıkKaramancı Fen Lisesi, Manavgat, Turkey INTRODUCTION Computer simulations can represent real or imaginary situations. They allow users to study or try things that would be difficult or impossible to do in real life. Simulations are particularly useful when a real-life process:  is too dangerous,  takes to long,  is too quick to study,  is too expensive to create. In their book Simulation in the Classroom (Penguin, 1972), John Taylor and Rex Walford argued that an educational simulation has three main components: 1) Students take roles which are representative of the real world and involve them making decisions in response to their assessment of the situation that they have been placed in. 2) Students experience simulated consequences which relate to their decisions and their general performance in the simulation. 3) Students monitor the results of their actions and are encouraged to reflect upon the relationship between their own decisions and the resulting consequences of their actions. An essential part of a simulation involves the student playing a role of a character in the past. One of the major objectives of the creator of the simulation is to help the student understand the situation of that person. In other words, helping the student develop a sense of empathy. - 83 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Other arguments in favour of simulations include:  They are usually problem-based and are therefore helpful in the development of long-term learning.  The normally involve the use of social skills which are directly relevant to the world outside the classroom.  Simulations deal with situations that change and therefore demand flexibility in thinking. Learning from Simulations. Children should use simulations to make and explore predictions and to identify patterns and relationships. Questions to think about when using a simulation program:  Was the simulation program realistic?  Does the simulation represent a real life or fantasy situation?  How realistic is it?  Did the same things always happen - was there a pattern?  What are the variables, can you think of any others which might make the simulation more accurate?  Was there more than one solution to the problem?  What were the good points/bad points?  What did you find out? DIDACTIC THEORY ICTs provide teaching tools that are found to be very effective in the learning process based on virtual platforms. In e-learning, virtual laboratories are particularly useful because of the aid they can provide students when they are carrying out practical activities. According to the UNESCO, a virtual laboratory is defined as a workspace for remote collaboration and experimentation aimed at doing research or similar activities, and at reporting and disseminating the results by means - 84 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model of ICTs. Some people said, that virtual laboratories are virtual learning environments that take advantage of the capabilities offered by ICTs to create a teaching environment that is free from the constraints of time and space in presential education, capable of ensuring ongoing virtual communication between students and teachers. Virtual laboratories are based on the simulation of real phenomena. They provide learning environments in which students can construct their own meaningful knowledge that is transferable to other phenomena having the same underlying physical principle. In this sense, simulation is a powerful computer tool of widespread use in all sectors of society, and its definition will naturally depend on the field in which it is applied. In our case, we are interested in the field of education, in which such simulation can be defined as a computer program that reproduces a real phenomenon, but in a simplified form designed to provide specific learning situations. Computer simulations that allow interaction on the part of the student can constitute effective virtual laboratories in their process of learning. This is principally because the students can study the actual system and investigate its behaviour in response to changes in some of its parameters by making measurements, etc. In this way, students will not be using the simulation mechanically, but will be immersed in a process oriented to producing meaningful learning through the use of virtual laboratories. In physics teaching specifically, many authors have highlighted the nature of computer simulations as cognitive tools, since their use is highly beneficial for conceptual development and change, and for understanding many physical phenomena in various areas of study, for example, in mechanics. However, the integration of simulations into the curriculum requires their effectiveness to be evaluated. Specifically, over the course of the last two decades the positive impact of computer simulations has been documented in different stages of the teaching and learning process. - 85 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model The potential educational value of computer simulations in virtual laboratories lies in their ability to reproduce phenomena with varying degrees of complexity, so that they can be adapted to the students' cognitive level, or to attaining some given educational objective. The ability to interact with the software allows students to modify the conditions of the processes involved, and to analyze the changes they observe. This makes simulation an extremely useful tool in experimental work. Indeed, its possibilities of application seem limitless. Schematic

simulation,

for

example,

is

a

dynamic,

simplified

representation of the behavior of a system. It allows students to manipulate data and examine the consequences, avoiding the confusion and insecurity that would be involved in a complex environment. It can enrich the constructivist approach to learning by enabling students to anchor their cognitive understanding in what they observed through their actions in a given situation. While some authors have argued for the benefits of idealization as against the concrete for the acquisition of underlying abstract physical principles, the main objective of our simulations is to fill the gap the student has in realistic situations when faced with observing a real phenomenon after having studied it in a schematic simulation. In this regard, we must distinguish between simulations which "simulate the result", and those which "simulate the experience". Thus, schematic simulations in Java are useful to simulate results. For example, if we remove all the details, and focus schematically on the underlying foundation of the physical phenomenon, one can effectively transfer abstract phenomenon to other scientific fields. In this regard, we consider that it would be very effective for our students' learning if they could also "simulate the performance of the experience", i.e., if we added to the simulation of the system a realistic visual output of the phenomenon being simulated. In the particular field of our area of education, Optics, the objective of our simulations is to "simulate the experience" – to show students what the abstract phenomenon - 86 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model simulated schematically in Java looks like in reality, creating a hyper-realistic simulation of the phenomenon in its entirety, i.e., the simulated experience. To summarize the above, interactive simulations facilitate deeper learning of concepts, since it is the students themselves who observe the physical phenomenon and can interact with the model to create mental structures from which to construct their own conceptual models of the phenomenon.

- 87 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

4. HackLab clubs in STEM by schools 4.1. LycĂŠe classique de Diekirch, Luxembourg ACTIVITY 1.

Determination of the copper percentage in an 18 cent coin by colorimetry

- 88 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 89 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 90 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ACTIVITY 2.

Physics lab: Projectile motion

- 91 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 92 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

ACTIVITY 3.

How to extraxt DNA from a kiwi fruit

- 93 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 94 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ACTIVITY 4.

Music and Sport survey

- 95 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ANALYSIS

- 96 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 97 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 98 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 99 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model LEARNING / teaching path

- 100 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 101 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 102 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 103 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 104 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 105 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 106 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 107 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 108 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 109 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 110 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 111 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 112 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 113 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 114 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 115 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 116 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 117 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 118 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 119 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 120 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 121 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 122 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 123 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 124 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 125 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 126 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 127 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 128 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 129 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 130 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

4.2. Liceo Scientifico Tito Livio, Martina Franca, Italy ACTIVITY 1.

Discovering Bioinformatics by Instem Italy

- 131 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 132 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 133 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 134 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

- 135 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ACTIVITY 2.

Italian Instem Group join the HOUR of CODE

- 136 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

4.3. Vilniaus Pilaitės Pilait gimnazija, Vilnius, Lithuania ACTIVITY 1-2.

Young Researchers in the YR LABORATORIES JAUNIEJI TYRĖJAI JAI JT LABORATORIJOJE Aistė Jatkelytė, ė, Sniežana Juckevič Juckevi Mums teko galimybė galimyb sudalyvauti „Mokinių jaunųjų ų ų tyr tyrėjų atskleidimo ir ugdymo sistemos sukūrimas rimas – II etapas“ projekte. Šiuo projektu siekiama sukurti veiksmingą neformaliojo gamtamokslinio ir technologinio švietimo bei lavinimo sistemą, kuri aprėptų visas šalies mokyklas, padėtų pad formuoti mokslin mokslinę pasaulėžiūrą, plėtoti kūrybines rybines mokinių galias, galias, atskleisti ir ugdyti talentus. Kartu padeda mokytojams kelti kvalifikaciją, kvalifikacij reikalingą vadovauti mokiniųų mokslinei tiriamajai veiklai. Vykdant šį projektą kiekviena šalies mokykla turėss galimyb galimybę įsitraukti į jaunųjų tyrėjų paiešką ir ugdym ugdymą, bus populiarinami iarinami gamtos mokslai ir technologijos. Tai padės spręsti aktualiąą jaunimo laisvalaikio problemą, problem , suteiks daugiau saviraiškos galimybių gabiems vaikams bei skatins rinktis tyrėjo tyr profesiją. Projekto tikslai ir veiklos kryptys 1. Plėtoti jaunųjų tyrėjų ir jų vadovų vadov informavimo ir konsultavimo sistemą: sistem plėsti metodikų ir jaunųjųų tyrėjų tyrė mokslinių darbų informacinę bazę; palaikyti jaunųjų tyrėjųų konsultavimo centrą, centr teiksiantį mokslininkų mokslinink pagalbą mokslinio darbo klausimais; populiarinti mokslą ir technologija technologijas bei tyrėjo profesiją. 2. Jaunųjų tyrėjų vadovams sudaryti sąlygas s lygas dirbti su jaunaisiais tyrėjais tyr ir tobulinti mokslinio darbo įgūdžius. 3. Suburti jaunuosius tyrėjus: ėjus: organizuoti Lietuvos Jaunųjų ųjų tyrėjų klubo narių mokslinę veiklą; - 137 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model suteikti mokiniams žinių ir gebėjimų, būtinų moksliniams tyrimams atlikti. Organizuoti jaunųjų tyrėjų ir jų vadovų darbą specialiai jiems įkurtose mokslinėse laboratorijose. Mokinių iš visos Lietuvos užsiėmimai organizuojami 2 kartus po tris dienas. Pirmojo susitikimo metu mums teko galimybė atlikti tiriamuosius darbus iš biofizikos, biochemijos, mikrobiologijos sričių, taip pat susipažinti su įvairiais laboratoriniais prietaisais ir jų pritaikymo galimybėmis. Biochemija. Laboratorinis darbas „Glikogeno išskyrimas iš kepenų“. Tikslas. Išskirti glikogeną iš kepenų ir pasižiūrėti kaip jis reaguoja su kitomis medžiagomis. Darbo priemonės: 1 g šviežių kepenų, grūstuvė, vanduo, elektrinė viryklė, spiritinė lemputė, mėgintuvėliai, filtrinis popierius, 1% acto rūgštis, etanolis, 1 % jodo tirpalas, seilės. Darbo eiga: I. Glikogeno išskyrimas: 1. 1 g šviežių kepenų susmulkinama ir sutrinama grūstuvėje. ( 1 pav.)

A

B

1 pav. Kepenų paruošimas: A- susmulkinimas, B- sutrinimas grūstuvėje. 2. Sutrinta kepenų masė užpilama 4 ml verdančio vandens. 3. Grūstuvės turinys perpilamas į platų stiklinį mėgintuvėlį ir virinamas 2-3 min. Taip nusodinamos baltymų nuosėdos.

- 138 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 4. Mėgintuvėlio turinys perpilamas į grūstuvę ir trinamas iki vienalytės masės. (2pav.)

2 pav. Turinio trinamas iki vienalytės masės. 5. Gauta masė skiedžiama į grūstuvę pripilant 5 ml vandens. 6. Grūstuvės turinys perpilamas į platų stiklinį mėgintuvėlį, parūgštinamas 5 lašais 1% acto rūgšties tirpalo ir 20 min. virinamas. 7. Stebima, kad neišdžiūtų mėgintuvėlio turinys. Išdžiūvimo išvengiama lašinant vandenį. Virimo metu glikogenas pereina į tirpalą. 8. Baltymo nuosėdos pašalinamos filtruojant. Glikogenas lieka filtrate. II. Filtratas, kuriame yra glikogeno, padalinamas į tris dalis ir atliekamos reakcijos: 1. Glikogenas nusodinamas etanoliu: į mėgintuvėlį lašinami 5 lašai filtrato ir 5 lašai etanolio . Stebima kas vyksta reakcijos metu ir kodėl. 2. Glikogeno reakcija su jodu: imami du mėgintuvėliai. Į pirmąjį mėgintuvėlį lašinama 5 lašai vandens, į antrąjį – 5 lašai filtrato. Po to į abu lašinama po du lašus 1 % jodo tirpalo. Stebima kas vyksta reakcijos metu ir kodėl. 3. Glikogeno hidrolizė seilių- amilaze: į mėgintuvėlį įlašinami 5 lašai filtrato ir 1 lašas 10 kartų praskiestų seilių. Mėgintuvėlio turinys sumaišomas ir po 5 min. į mėgintuvėlį įlašinama 1 lašas 1 % jodo tirpalo. Stebima kokią spalvą įgauna tirpalas ir kodėl? Rezultatai I. Glikogeno išskyrimas: - 139 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Atliekant glikogeno išskyrimą, tirpalą parūgštinus 5 lašais 1% acto rūgšties tirpalo ir 20 min. pavirinus, susidaro nuosėdos. (3 pav.)

3 pav. Tirplo su acto rūgštimi kaitinimas. Virimo metu glikogenas pereina į tirpalą. (4 pav.)

4 pav. Glikogenas pereina į tirpalą. Baltymo nuosėdos pašalinamos filtruojant. Glikogenas lieka filtrate. (5 pav.)

5 pav. Glikogenas filtrate. - 140 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model II. Filtratas, kuriame yra glikogeno, padalinamas į tris dalis ir atliekamos reakcijos: 1. Iš tirpalų glikogenas gali būti nusodinamas etanoliu. Glikogeno dalelės netenka vandens apvalkalėlio, todėl nusėda glikogeno nuosėdos. Reaguodamas su jodu jis nusidažo raudona spalva. ( 6pav. )

6 pav. Glikogeno nusodinamas etanoliu: glikogeno nuosėdos. 2. Atliekant glikogeno reakciją su jodu, mėgintuvėlių turinys nusidažė skirtingai: pirmame mėgintuvėlyje su vandeniu,

tirpalas įgauna geltoną spalvą, antrame

mėgintuvėlyje su filtratu, tirpalas nusidažo raudona spalva, nes koloidinės glikogeno dalelės adsorbuoja jodą. ( 7pav. )

7 pav. Glikogeno reakciją su vandeniu ir jodu. 3. Atliekant glikogeno hidrolizę seilių- amilaze ir įlašinus 1 % jodo, tirpalas įgauna geltoną spalvą, nes seilėse esanti amilazė suskaidė glikogeną.

- 141 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

8 pav. Tirpalas su glikogenu, seilių- amilaze ir jodu. Išvados. Išskirus glikogeną iš kepenų, pastebėjome kaip jis reaguoja su kitomis medžiagomis, keisdamas spalvą. Iš tirpalų nusodinus glikogeną etanoliu ir stebint reakciją su jodu, jis nusidažo raudona spalva. Atliekant glikogeno hidrolizę seilių- amilaze ir stebint reakciją su jodu, tirpalas įgauna geltoną spalvą.

NANOTECHNOLOGY Nanotechnologijos Aistė Jatkelytė, Sniežana Juckevič

Tikslas. Susipažinti su nanodalelėmis, bei jų pritaikymu technologijose. XXI

amžiuje

ima

vis

sparčiau

kurtis

įvairios

technologijos.

Nanotechnologijos - tai žodis, kurį šiandien dažnai girdime. Tačiau kas už jo slypi – menkai teišmanome. Nanotechnologijos – tarpdisciplininė taikomojo mokslo ir technologijų šaka, apimanti darbą su mažomis medžiagų dalelėmis - nanodalelėmis, bei jų pritaikymą technologijose. Eksperimentas pradedamas tuomet, kai į vandens stiklinę įberia įprastinio smėlio, kur šis vandens paviršiuje suformuoja ploną, plaukiojantį sluoksnį. Tuomet įkišame pirštą į vandenį ir šis kiaurai smėlio nepereina, o smėlio grūdeliai suformuoja apsauginį jo odos sluoksnį, tad pirštas lieka visiškai sausas. Eksperimentas keistesnis pasidaro tuomet, kai į stiklinę įberiama krūvelė smėlio, o jį palietus pirštu - 142 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model susiformuoja struktūra, kuri nusėda stiklinės apačioje. Tačiau kai šią struktūrą norima išimti su šaukšteliu, ji vėl virsta sausu smėliu. Tai hidrofobinis smėlis. Jis sudarytas iš paprasto paplūdimio smėlio, sumaišyto su mažomis silicio dalelėmis. Tuomet šis junginys yra paveikiamas trimetilsilanolio garais, kuris suriša silicio daleles. Hidrofobiniu skysčiu padengtas smėlis darys viską, kad tik išvengtų kontakto su vandeniu – netgi formuos keistas sudėtis. (1 pav.)

1 pav. Hidrofobinis smėlis Nanotechnologai labai vertina auksą. Žinoma, tai puikus metalas – nerūdyja, lengva apdoroti, gražiai blizga. Tačiau atskiri aukso atomai neblizga – taip atsitinka tik tada, kai jie susirenka į krūveles, į atitinkamo dydžio kristalėlius. Kai aukso atomų krūvelės sumažėja iki 60 nanometrų, jų vandens suspensija nusidažo mėlynai, o sumažinus iki 30 nanometrų – raudonai. (2 pav.)

2 pav. Auksas sumažintas iki 30 nanometrų Dar visiškai neseniai puslaidininkiniai nanokristalai, vadinami kvantiniais taškais, buvo tiriami tik kaip potencialūs optoelektronikos prietaisų, atminties - 143 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model elementų ar kvantinių taškų lazerių komponentai. Tačiau nuo 1998 metų, kai kvantiniai taškai pirmą kartą buvo panaudoti ląstelių vaizdinimui, kilo didžiulis įvairių sričių mokslininkų susidomėjimas šiomis ryškiai fluorescuojančiomis dalelėmis.

Ląsteles tyrinėjantys biologai ir medikai susiduria su vaizdinimui

naudojamų įprastų organinių fluoroforų nestabilumu. Kvantiniai taškai švyti maždaug 20 kartų ryškiau negu įprasti fluoroforai ir yra daug stabilesni už juos. Švitinami jie neblykšta net keletą valandų, todėl yra labai tinkami viduląstelinių vyksmų tyrimams. Didžiulis kvantinių taškų pranašumas tas, kad stebint fluorescenciniu mikroskopu vienu metu galima matyti įvairias spalvas. Neseniai kvantiniai taškai imti tirti ir kaip potencialūs fluorescenciniai žymenys navikų diagnostikai. Numatoma, kad jie padės ne tik aptikti naviką, bet ir labai tiksliai jį vaizdinti, nustatyti naviko rūšį. Šiuolaikinė mokslo pažanga leidžia tikėtis, kad kvantiniai taškai greitai bus taikomi vienu metu ir vėžio diagnostikai, ir gydymui. Kvantinių taškų taikymo galimybės neapsiriboja vien onkologija, prognozuojama, kad jie bus taikomi imunoterapijai ir padės įveikti kitas ligas, o pirmiausia - ląstelių ir audinių vaizdinimui. (3pav.)

3 pav. Kvantiniai taškai Tai pat šio metu mokslas daug dėmesio skiria ir magnetinėms medžiagoms bei dalelėms. Jau žinome, kad magnetai tampa mūsų gyvenimo dalimi. Jie jau labai stipriai paplitę bei yra plačiai naudojami ir taikomi technikoje ir mūsų kasdieniniame gyvenime. Tokie metalai kaip geležis, nikelis ir kobaltas, yra patys geriausi

nuolatiniai

magnetai.

Kobalto

nanodalelės

naudojamos

duomenų

informacijos išsaugojimui kaip paprastas magnetinis diskas. Nanomagnetinės dalelės - 144 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model taippat naudojamos medicinoje, kovoti prieš „vėžį“. Visa tai įrodo, kad tyrimai šioje mokslo srityje yra labai reikalingi ir naudingi. Magnetinės kristalų savybės, tai yra jų sąveika su magnetiniu lauku, priklauso nuo jos sudarančių atomų magnetinių savybių ir nuo kristalų sandaros nuo atomų išsidėstymo ir tarpusavio sąveikos. Iš esmės visų mineralų kristalai yra magnetikai – jie magnetiniame lauke įsimagnetina. (4 pav.)

4 pav. Nano kristalai Nanotechnologijos

viską keičia, tarytum ištrina ribas tarp atskirų

pažinimo pasaulių ir jų dalių. Nanotechnologijos ima jungti, atrodytų, visiškai skirtingas mokslo sritis – chemiją, fiziką, biologiją, mediciną. Nyksta tradicinė riba tarp mokslo ir technologijų. Nežinome, kas bus po dešimties-dvidešimties metų. Bet galime būti tikri – tų laikų žmonės stebėsis, kaip mes galėjome gyventi be vienokių ar kitokių paprasčiausių ateities dalykų? Lygiai taip, kaip šiandien mes jauni žmonės įsitikinę, jog internetas ar mobilusis telefonas – senų senovės dalykai. Juk be jų gyventi neįmanoma.

- 145 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ACTIVITY 3.

PAPER PRODUCTION FROM NATURAL RAW MATERIALS POPIERIAUS GAMYBA IŠ GAMTINĖS ŽALIAVOS Mantas Gaigalas, Simona Butkevičiūtė Popierius – plona, plokščia medžiaga, gaminama presuojant pluoštą. Paprastai naudojamas natūralus pluoštas celiuliozė spagrindu, dažniausiai gaminamas iš medienos masės. Europoje buvo bandoma popierių gaminti iš įvairių augalų, Lietuvoje - kanapių, dilgėlių, linų, kartais net samanų, šiaudų. Renkantis popierių svarbu, kokia jo medienos kilmė, ar koks medienos kiekis išsaugotas, pasirinkus perdirbtą popierių. Prieš kelis dešimtmečius išpopuliarėjo teiginys, kad 1 tona makulatūrosi šsaugo 17 medžių, kurie būtų nukirsti tam, kad būtų pagamintas reikiamas kiekis celiuliozės. Vis dėlto popieriaus gaminiai yra skirtingi, todėl ir jiems reikalingas skirtingas žaliavos kiekis. Skaičiuojama kad vienai tonai biuro popieriaus pagaminti sunaudojami maždaug 24 medžiai, tuo tarpu laikraštiniam popieriui pagaminti užtenka 8-12 medžių. Antrinės žaliavos labiausiai tinka prastesnės kokybės popieriui gaminti, nes perdirbtam baltam biuro popieriui pagaminti paprastai reikalinga daugiau vandens ir cheminių medžiagų. Taip yra dėl to, kad iš makulatūros turi būti pašalinti dažai, o po to jis turi būti iš naujo išbalintas. Taigi išties svarbu gebėti gaminti popierių iš gamtinės žaliavos. O ir toks paprastas popierėlis yra labai mielas. Darbo tikslas – išmokti pasigaminti popierių iš gamtinių žaliavų. Darbo uždaviniai: •

Susipažinti su gamtinių medžiagų, tinkamų popieriaus gamybai įvairove,

sudėtimi ir jų savybėmis. Panaudoti gamtines žaliavas praktiškai, gaminant popierių.

- 146 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Darbo eiga. Darbe naudotos priemonės: smulkus tinklelis (1x1 mm akelėmis), rėmelis tinkleliui ištempti, vonelė, kurioje turi tilpti rėmelis, grūstuvė, žirklės, siūliniai žalieji dumbliai, plūdenos, maurės, bananų žievės, šukos bananų plaušus iššukuoti, puodas su vandeniu virimui. Darbo eiga: Tinklelis pritvirtinamas prie rėmo. Siūliniai žalieji dumbliai sutrinami grūstuvės pagalba ir ant tinklelio plokštumos užpilama masė ir paskirstoma po visą tinklelio paviršių, vis paspaudžiant. (1 pav.)Vandeniui nutekėjus, paslegiama ir paliekama džiūti. Gaminant dviejų sluoksnių popierių,tinklelis panardinamas į paruoštą masę ir, laikant horizontaliai, iškeliamas iš jos. Taip masė lieka ant tinklelio, o vanduo nuteka. Ant gautos masės sudedami smulkūs augalų lapai, žiedai ir pan. Tam, kad suteikti popieriui kvapą dedamas kvapniųjų medžiagų priedas (cinamonas, sutrintos mėtos, eteriniai aliejai). Leidžiama vandeniui nutekėti. Išdžiovinama (kad būtų greičiau, galima džiovinti džiovintuvu). Gautas popieriaus lakštas atskiriamas nuo tinklelio. Popierių sėkmingai galima gamintis ir iš bananų žievės. Tinklelis pritvirtinamas prie rėmo. Bananų žievės sudedamos į puodą ir ši žaliava yra verdama 30min-1h. Tada plaušus reikia iššukuoti šukomis, kurie yra sudedami kryžmai vienas ant kito ir suslegiami. Masė yra dedama ant tinklelio ir džiovinama.

A

B

C

1 pav. Popieriaus gamyba: A- tinklelis popieriaus gamybai, B- popieriaus masės ruošimas džiovinimui, C- bananų žievės paruošimas popieriaus gamybai. - 147 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Gaminant popierių galima naudoti ir makulatūrą. Ją reikia mikseriu susmulkinti. Tuomet pasiruošti negilią vonelę su trupučiu vandens – tiek, kad sumaišius vandenį ir sumalto popieriaus masę, išgautum manų košės tirštumo ruošinį. Kad popierius būtų patvaresnis, galima įmaišyti tapetų arba PVA klijų. Rezultatai, Perdirbtaspopieriuskurkasbrangesnis, neipaprastas.Jei norime ypatingo popieriaus, galime daryti jį dvisluoksnį– pirmąkart ištraukę tinklelį, merkiame jį darkart, o į vidų dedame įvairių šakelių ar kitokių gėlyčių – taip išgauname reljefą, o šakelės ar gėlės tarp dviejų sluoksnių dar ir matosi. (2 pav.)

A

B

2 pav. Popieriaus gamyba: A- dvisluoksnio popieriaus gamyba, B- pagaminto dvisluoksnio popieriaus fragmentai.

A

B

3pav. Popieriaus gamyba: A- kvepiančio popieriaus gamyba, B- pagaminto kvepiančio popieriaus fragmentas.

- 148 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Jei norime ypatingo popieriaus, ne tik malonaus akims, bet ir nosiai, suteikiame popieriui kvapą, įdėdami cinamono. (3 pav.) Popierių taip pat sėkmingai galime gamintis iš bananų žievės. Tik virti jas reikia ilgai, vėliau iššukuoti plaušus šukomis. Banano žievės plaušai turi klijų taigi puikiai suriša popieriaus masę. Gaminant tokį popierių, reikia ilgai ruoštis ir turėti daug kantrybės. ( 4pav. )

4 pav. Pagaminto popieriaus iš bananų žievės fragmentas. Popierius gamybos metu džiovinamas keletą kartų, nes džiovintas popierius yra žymiai tvirtesnis. Neapdirbto popieriaus paviršius yra šiurkštus, jis yra labai absorbuojantis ir nėra tinkamas rašymui ar spausdinimui, todėl reikalingas papildomas apdirbimas. Namuose pasigamintas popierius yra labai mielas, jį norisi liesti, tikrinti jo storumą, jausti faktūrą. Kiekvienas mėgsta kitokį: vienam patinka rupus, kitam plonas ar vos permatomas popierėlis. Šiandien nemažai menininkų studijose gamina popierių rankiniu būdu, iš popieriaus masės modeliuoja įvairios apimties kūrinius.Iš nulupto nuo medžiagos dar drėgno popieriaus galima formuoti įvairiausius objektus : aplikuoti puoduką, obuolį, balioną, kriauklę ir t.t. Iš rankomis pagaminto popieriaus galima pasidaryti žibintą, knygelės viršelį, atviruką, voką ir t.t. - 149 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Išvados Popieriaus gamybai galima panaudoti įvairias gamtines žaliavas (siūlinius žaliuosius dumblius, plūdenas, maures, bananų žieves ir kitus krakmolą kaupiančius augalus). Tai yra puiki alternatyva ir nuostabus būdas sustabdyti masišką medžių kirtimą. Informaciniai šaltiniai  Popieriaus

gamyba

namuose.

[Interaktyvus].

Prieiga

per

internetą:

http://rusiuojam.lt/naujienos/pasigaminkite-rank%C5%B3-darbopopieri%C5%B3-savo-namuose.  Popieriaus

gamyba

namuose.

[Interaktyvus].

Prieiga

per

internetą:

http://rusiuojam.lt/naujienos/pasigaminkite-rank%C5%B3-darbopopieri%C5%B3-savo-namuose.  Motiejūnaitė O., Makarskaitė – Petkevičienė R. (2013). Mokomės gamtoje ir iš gamtos 2 dalis. LEU: AB Titnagas.

- 150 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ACTIVITY 4.

AIR POLLUTION BY TYPE OF BIOINDICATIVE PROPERTIES IN VILNIUS PILAITĖS GYMNASIUM AREA PILAITĖS GIMNAZIJOS ORO UŽTERŠTUMAS PAGAL MEDŽIŲ BIOINDIKACINES SAVYBES Agnė Beresnevičiūtė ir Justina Janutėnaitė Tyrimų tikslas: nustatyti Pilaitės gimnazijos aplinkos užterštumą, ištyrus medžių bioindikacines savybes. Hipotezė: Skirtingose vietose tos pačios medžių bioindikacinės savybės skiriasi. Bioindikatoriai – tai organizmai, pagal kuriuos galima spręsti apie oro kokybę / oro užterštumą. I. Oro kokybės vertinimas pagal spygliuočių bioindikacines savybes. Eglės, pušys ir kiti spygliuočiai yra jautrūs oro taršai. Atidžiai stebint šiuos medžius galima nustatyti aplinkos oro taršos laipsnį. Mes nutarėme tirti aplinką prie mokyklos ir vertinome pušis prie stadiono. Darbo eiga. 1. Spyglių netekimo vertinimas. Kiekvieną pasirinktą pušį palyginome su medžiais piešinyje (1 pav.) ir priskyrėme atitinkamai kategorijai. 2. Spyglių amžių nustatėme taip: nulenkėme pušies šaką ir suskaičiavome, kiek kartų ji šakojasi į tris atžalas. Kiekvienais metais pušies šaka paauga tam tikrą ilgį, o kitais metais pumpuro vietoje vėl šakojasi į tris ūglius. 3. Pažeista spyglių vaško danga. Pro padidinamąjį stiklą ištyrėme 20 spyglių, augančių šakos gale. Atkreipėme dėmesį į pažeistą spyglių vaško dangą. Įsižiūrėjome, ar ant spyglių yra dėmių ir įvertinome jų skaičių balais. 4. Žalieji dumbliai. Perbraukėme nagu per spyglį, kad išsiaiškintumėme, ar jis padengtas dumbliais. Įvertinome balais. - 151 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 5. Pavojaus šakelės. Ant tiriamų pušų ieškojome pavojaus šakelių. Apžiūrėjome 20 atsitiktinai pasirinktų pušų šakų. Pavojaus šakelės auga ant pušies stačiu kampu į viršų. Palenkus medžio šaką žemyn, jos nepriglunda prie šakos pagrindo. Įvertinome balais. 1 lentelė. I tyrimo rezultatai. Vertinimas pateikiamas balais, nuo 1iki 3. Eil.

Medžio nr.

1 2 3 4 5 6 7 8 9 10 Vid.

Spyglių

1 1 1 1 1 2 1 1 1 1

1,1

2.

Spyglių amžius 1 1 3 2 1 3 1 2 2 1

1,8

3.

Pažeista spyglių 2 1 2 2 1 2 1 2 1 1

1,5

nr. 1.

netekimas

vaško danga 4.

Žalieji dumbliai 1 1 2 2 1 2 1 1 1 1

1,3

5.

Pavojaus

1,1

1 1 1 1 1 2 1 1 1 1

šakelės Oras mokyklos stadiono teritorijoje – vidutiniškai užterštas, nes: 1. Įvertinus spyglių netekimą, paaiškėjo, kad 9 iš 10 medžių netekę iki 40% spyglių ir tik 1 netekęs daugiau. 2. Pažeista spyglių vaško danga rasta ant 5 eglių iš 10, tai – atsitiktinės dėmės. 3. Atsitiktiniai

žalieji

dumbliai rasti ant 3 pušų spyglių paviršiaus. 4. Pavojaus šakelių rasta tik ant vieno medžio. - 152 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model II. Oro užterštumo įvertinimas pagal spyglių dulkėtumą. Vertinome ir lyginome oro užterštumą (dulkėtumą) miške ir prie judrios sankryžos. Darbo eiga. 1. Nukirpome pušų, augančių skirtingose vietose – prie gatvės ir miške – spyglius. 2. Suskaičiavome po 50 spyglių ir sudėjome į atskirus indus. Užpylėme karštu vandeniu ir laikėme vieną valandą. 3. Vandenį nupylėme per marlę į stiklainį. 4. Palyginome ant marlės nusėdusius nešvarumus. Atlikto darbo rezultatai: Pagal nusėdusių dulkių ir nešvarumų kiekį matome, kad miške oras yra mažiau užterštas negu gatvėje. 2 lentelė. II tyrimo rezultatai. Spygliai iš miško

Spygliai iš pievelės šalia judrios Priegliaus gatvės

Nešvarumų nusėdo mažai

Nešvarumų ir dulkių nusėdo daug

III. Oro užterštumo tyrimas klevo lapo juodulių testu. Tai testas su grybu Rhytima acerinum, turinčiu savybę reaguoti į SO2. Grybas sukelia paprastojo klevo lapų ligą. Ant pažeistų lapų atsiranda geltonų dėmių, jose plečiasi smulkios juodos dėmelės. - 153 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Tyrimo esmė yra aplinkoje esantis SO2. Šis sieros junginys stabdo grybo vystymąsi, todėl ten, kur gausu sieros junginių, dėmių ant lapų nėra. Darbo eiga: 1. Pilaitės mikrorajone ties judria gatve ir miške surinkome tiek klevo lapų, kad užtektų iškloti dviem 1m2 ploto popieriaus lapams. 2. Iš skirtingų vietų surinktus lapus sudėliojome atskirai. Suskaičiavome juodulius ant lapų. 3. Pagal formulę (dėmių skaič./100) suskaičiavome LDR – lapų dėmėtumo rodiklį. 3 lentelė. III tyrimo rezultatai. Dėmių skaičius Lapų dėmėtumo rodiklis Prie

4

0,04

15

0,15

gatvės Miške

LDR(miške)=0,15 LDR(prie gatvės)=0,4 Lapų dėmėtumo rodiklis aukštesnis miške, nes ten mažiau sieros junginių. Taigi, oras gatvėje yra labiau užterštas nei miške. Išvados 1. Įvertinus spygliuočių ir jų spyglių būklę bei remiantis lapų dėmėtumo rodikliu, galima teigti, jog aplinkos užterštumas Pilaitėje yra vidutinis. 2. Aplinkos tarša gatvėje ir šalia gatvių yra kur kas didesnė nei miške. Literatūros sąrašas Bartkevičius E., Juodvalkis A., Kairiūkštis L. ir kt. (2008). Miško ekologija, Vilnius, Enciklopedija. Juknys R. (2005). Aplinkotyra, Kaunas, VDU leidykla. - 154 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Stravinskienė V. (2009). Aplinkos bioindikacija. Kaunas, VDU leidykla. Ozolinčius R. (1998). Lietuvos spygliuočiai: morfologinės struktūros transformacijos bei jas indukuojantys veiksniai. Kaunas, Lututė. Varnagirytė – Kabašinskienė I. (2011). Kaip susijusi spyglio masė ir medžio sveikata? Vilnius.

Klevo lapų dėmėtligės pavyzdžiai ACTIVITY 5.

BIOPLASTIC PRODUCTION AND INVESTIGATION OF ITS PROPERTIES BIOPLASTIKO GAMINIMAS IR JO SAVYBIŲ TYRIMAS Mantas Gaigalas, Simona Butkevičiūtė, Mindaugas Masaitis Šiuo metu vis daugiau dėmesio skiriama ne tik jau susidariusių atliekų tvarkymui, bet ir galimybėms mažinti pačių atliekų susidarymą. Vienas iš sprendimų - iš organinių medžiagų pagamintų plastikų (bioplastikų) pakuotės. Bioplastikas - tai toks plastikas, kuris yra gaunamas iš atsinaujinančių biomasės šaltinių, pavyzdžiui, celiuliozės (medžio, medvilnės), krakmolo (bulvių, kukurūzų, ryžių ir kt.). Ši polimerinė medžiaga yra dažnai naudojama maistui, gėrimams saugoti ir pakuoti, pvz., vienkartiniai maišeliai, indai ir stalo įrankiai, dėžutės, pakavimo plėvelė ir t.t. Daugumai plastmasių pagaminti vis dar naudojama nafta arba anglis, tačiau augalinių - 155 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model elementų pagrindu sukurti bioplastikai tampa vis labiau įprasti, nes jie lengviau suyra. Bet nereiškia, kad bioplastiko pakuotes galima bet kur išmesti, jei jos greičiau suyra. Specialistų nuomone, geriausia išeitis - bioplastikus kompostuoti, o tam reikia, jog ši polimerinė medžiaga būtų lengvai atpažįstama. Kompostuoti bioplastikus galima ne tik pramoniniuose įrenginiuose, bet ir namų ūkyje - sode ar kaimo sodyboje. Tyrimo tikslas. Namų sąlygomis pagaminti bioplastiką ir ištirti kai kurias jo savybes. Tyrimo uždaviniai. 1. Namų sąlygomis pagaminti bioplastiką. 2. Ištirti bioplastiko tirpumą skirtinguose tirpaluose. 3. Ištirti bioplastiko irimo procesą dirvoje. Tyrimo metodika. Dauguma plastikų yra gaminami iš naftos ar jos produktų, kurie yra neatsinaujinantys gamtos ištekliai. Nors plastikas yra lengvas, tačiau dėl didelio tūrio susidaro dideli atliekų kiekiai, plastikiniais buteliais ir pakuotėmis užverčiami sąvartynai. Be to, plastikas nesuyra 80-400 metų ar net ilgiau! Atliekos iš šios medžiagos kelia problemų ne tik dėl nesustabdomai kylančių „Alpių” sąvartynuose, bet ir jas deginant specialiose krosnyse. Taigi mes bandėme pagaminti bioplastiką, ištirti jo irimą dirvoje bei ištirti tirpumą skirtinguose tirpaluose. Darbo priemonės: Želatina;

9% acto rūgštis; piltuvėlis; distiliuotas vanduo; cheminė stiklinė, atspari

karščiui; metalinis padėklas; matavimo cilindras; vandens vonelė kaitinimui; žirklės, liniuotė, laikmatis; svarstyklės; termometras (100°C ir daugiau); viela, svareliai; glicerolis; plastikinis sietelis. Iš pradžių bandėme pagaminti bioplastiką, nes jis yra mažiausiai kenksminga plastikų rūšis, gaminama iš atsinaujinančių gamtos resursų. Jį pasigaminti gali kiekvienas net namų sąlygomis. Gaminimo eiga. Pirmiausiai reikia užkaisti vandens vonelę su vandeniu ir užkaitinti iki 95 °C temperatūros. Tuomet atsverti 8,75 g želatinos, suberti į 250 ml talpos karščiui atsparią cheminę stiklinę. Matavimu cilindru pamatuoti 100 ml - 156 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model distiliuoto vandens ir jį supilti į cheminę stiklinę su želatina. Nuolat maišant perkelti cheminę stiklinę į 95 °C vandens vonelę. Kuomet tirpalas sušils iki 95 °C į jį pipete supilto 3 g glicerolio. Gerai išmaišyti ir pakaitinti dar 5 min 95 °C temperatūroje. Tirpalą plonu lygiu sluoksniu išpilti ant švaraus padėklo ir palikti išdžiūti, išdžiūvus atsargiai nukelti nuo padėklo. Ir taip jau rankose turite greitai suyrantį bioplastiką (1 pav.). Kad nebūtų painiavos, ką vadinti biodegraduojančiu plastiku, Europoje buvo priimtas EN 13432 standartas. Pagal šį standartą, medžiagą galima laikyti biodegraduojančia tuomet, kai veikiant mikroorganizmams bent 90% jos masės bus pavesta CO2, per mažiau nei 6 mėnesius.

1 pav. Pagamintas bioplastikas Šiame tyrime vertinsime bioplastiko būklę po 7 dienų dirvožemyje. Bandymo eiga. Atkirpome pasirinkto dydžio bioplastiko mėginį, pasvėrėme jį ir užkasėme 10cm gylyje (2 pav.). Užkasimo vietą pasižymėjome. Visą savaitę kasdien žymėjome oro sąlygas bei matavome dirvožemio temperatūrą užkasimo vietoje. Bandymo rezultatai šioje lentelėje: Diena: Krituliai: Dirvožemio to:

Penktadienis Šeštadienis Sekmadienis Pirmadienis Antradienis Trečiadienis Ketvirtadienis

-

-

lietus

lietus

-

lietus

-

10°C

11°C

8°C

7°C

9°C

8°C

10°C

- 157 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Po 7 dienų atkasus mėginį pastebėjome, kad bioplastikas jau dalinai suiro bei jo svoris, užimamas plotas sumažėjo trigubai (3 pav.).

2 pav. Užkasamas bioplastikas

3 pav. Bioplastikas tirpimo procese Taip pat atlikome pagaminto bioplastiko tirpumo vandenyje tyrimą. Atsvėrėme 3 vienodus bioplastiko gabalėlius. Paėmėme 3 chemines stiklines: į pirmąją įpylėme šalto vandens, į antrąją įpylėme šalto vandens ir sulašinome 10 lašų 9% acto rūgšties tirpalo ir išmaišėme, į trečiąją įpylėme karšto vandens.

- 158 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

4 pav. Temperatūros ros matavimas stiklin stiklinėse: kairėje – stiklinė su šaltu vandeniu ir 9% acto rūgšties gšties tirpalu; dešinėje dešin – stiklinė su karštu vandeniu Visų stiklinių vandens temperatūrą temperat išmatavome. Ją matome šioje lentelėje: lentel Stiklin su šaltu Stiklinė

Stiklinė su šaltu

Stiklin su karštu Stiklinė

vandeniu

vandeniu ir acto

vandeniu

rūgšties tirpalu Temperatūra

19°C

19°C

77°C

Vienu metu įmetėme me bioplastiko gabal gabalėlius į paruoštas stiklines, laikmačiu laikma fiksavome tirpimo laiką (4 pav.). Atlikę Atlik šį bandymą pastebėjome, jome, kad greičiausiai grei ištirpo bioplastikas stiklinėje je su karštu vandeniu, tuomet su šaltu vandeniu ir acto rūgšties r tirpalu, o tik galiausiai stiklinėje stiklinė su šaltu vandeniu. Išvados 1. Bioplastiką pasigaminti galime naudojant buityje aptinkamas priemones bei medžiagas. 2. Bioplastikas dalinai suyra jau prabėgus prab gus savaitei nuo užkasimo. 3. Bioplastikas greičiausiai iausiai suyra karštame vandenyje. 4. Bioplastikas puiki medžiaga saugojant gamtą gamt nuo ilgo atliekųų irimo. - 159 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Informaciniai šaltiniai Bioplastikas – nauja pakavimo alternatyva. [Interaktyvus], [žiūrėta 2014 m. balandžio 10 d.]. Prieiga per internetą: <http://www.vartotojai.lt/index.php?id=7986>. Bioplastikas. [Interaktyvus], [žiūrėta 2014 m. balandžio 10 d.]. Prieiga per internetą: < http://en.wikipedia.org/wiki/Bioplastic>. ACTIVITY 6.

THE USE OF THE FERMENT PECTINASE FOR INCREASE OF JUICE EXPANSION FERMENTO PEKTINAZĖS PANAUDOJIMAS SULČIŲ IŠEIGOS PADIDINIMUI Viktorija Ratiukaitė

Įvadas. Pektinas yra natūralus rūgštinis polisacharidas, vandenyje tirpios skaidulos, esančios obuoliuose ir kituose vaisiuose, beveik visose uogose, taip pat sultingose daržovėse, pvz. morkose, ridikėliuose, burokėliuose. Ypač daug pektino yra serbentuose, obuoliuose, abrikosuose, slyvose, svarainiuose, apelsinuose. Jis aptinkamas sausumos augalų ląstelių pirminėse sienelėse ir tarpuląsčiuose, ypač nesumedėjusiose augalo dalyse. Jis sujungia ląsteles tarpusavyje ir suteikia audiniams standumo (struktūra – drebučių pavidalo). Pektino kiekis, struktūra priklauso nuo augalo rūšies, amžiaus, ir skiriasi tarp atskirų augalo dalių. Nokstant vaisiams, tarpuląsčiuose esantis pektinas suskaidomas, ląstelės atsiskiria ir vaisius suminkštėja. Pektinazė yra fermentas, kuris ardo centrinę augalų ląstelių sienelių dalį, panaudojamas spaudžiant vaisių sultis ir vyno gamybos pramonėje. Taip pat šis fermentas spartina virškinimo procesą, taigi naudojamas kaip maisto papildas - 160 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model žmonėms, pridedamas prie gyvulių pašaro. Nokstant vaisiams, tarpuląsčiuose esantis pektinas suskaidomas, ląstelės atsiskiria ir vaisius suminkštėja. Pektinazės ir pektino panaudojimas. Pektinas gaminamas pramoniniu būdu kaip balti ar rusvi milteliai, ir naudojamas kaip tirštiklis uogienėse, želė. Taip pat naudojamas kaip užpildas medikamentuose, saldainiuose, kaip sulčių ir pieno gėrimų stabilizatorius, ir yra maistinių skaidulų šaltinis. Pektinas taip pat naudojamas žaizdų gydomųjų preparatų ir specialiųjų medicininių klijų gamybai. Maisto papildų su pektinu vartojama virškinimo funkcijoms ir cholesterolio reguliacijai. Pektinai didindami žarnyno turinio klampumą ir apimtį mažina vidurių užkietėjimą, skatina tuštinimąsi, bet nesukelia viduriavimo. Pektinai žarnyne absorbuoja toksinus ir padeda juos pašalinti iš organizmo. Pektinas apsunkina sulčių skaidrėjimą, todėl pektino fermento pagalba reikia pektiną suardyti. Tyrimo problema. Sultyse, be ištirpusių cukrų, rūgščių ir kitų medžiagų, yra įvairaus didumo mechaninių (daržovių audinių) ir koloidinių dalelių, kurias sudaro stambiamolekuliniai junginiai (pektinas, baltymai, dažančiosios, rauginės medžiagos, polisacharidai). Sultys su koloidinėmis medžiagomis būna neskaidrios, klampios. Be to, koloidinės medžiagos trukdo nusėsti mechaninėms dalelėms. Norint gauti skaidrias sultis, dalį koloidinių medžiagų reikia pašalinti. Turinčios daug pektinų sultys labai lėtai skaidrėja: jos yra tankios ir todėl smulkios dalelės lėtai nusėda. Naudojant pektino fermentą, apie 10-15% padidėja sulčių išsiskyrimas, žymiai palengvinamas mielių darbas bei pagreitinamas vėlesnis vyno skaidrėjimo procesas. Tyrimo tikslas. Ištirti fermento pektinazės įtaką sulčių išeigos padidinimui. Hipotezė. Naudojant pektino fermentą padidės sulčių išsiskyrimas. Tyrimui reikalingos medžiagos ir priemonės: Obuoliai (100 g), pektinazė (0,2 g), vanduo (50 ml), 2 matavimo cilindrai (po 100 ml), 2 piltuvėliai, peilis smulkinimui, matavimo kolba (50 ml), 2 lazdelės maišymui, vandens termometras, vandens vonelė stiklinėms, 2 filtrai, 2 stikliniai indai (100 ml). - 161 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Tyrimo eiga. Atliekant tyrimą buvo laikytasi rekomenduojamo veiksmų eiliškumo ir normų. 1. Obuoliai susmulkinami, paverčiami tyrele. 2. Į indus A ir B įdedama po 50 g obuolių masės. 3. Pasveriama 0,2 g fermento pektinazės. Supilama į matavimo kolbą su 50 ml vandens ir maišant ištirpinama. 4. Į indą A pilamas tirpalas su fermentu pektinaze, o į indą B – 50 ml vanduo. 5. Abu indus su mišiniais įstatomi į 40° vandens vonelę ir palaikoma apie 30 min. 6. Išėmus iš vonelės abu mišiniai išmaišomi, supilami į piltuvėlius su filtrais, įstatytus į matavimo cilindrus. 7. Stebima filtravimosi eiga 50 min., kas 10 min. užfiksuojant A ir B mėgintuvėlių sulčių tūrį.

1 pav. Stebėjimo rezultatai po 30 min.

- 162 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model Tyrimo rezultatai. Stebint abiejų mėgintuvė gintuvėlių sulčių tūrio pokyčius, ius, jau po 10 min. pastebėtas pasteb nedidelis skirtumas tarp A ir B mėgintuvėlių. m Po 30 min. A mėgintuv ėgintuvėlyje buvo 32 ml, o B mėgintuvėlyje - 26 ml (1 pav.). Tyrimo pabaigoje A mėgintuvėlyje m mė sulčių kiekis (62 ml) buvo akivaizdžiai didesnis (2 pav.) negu mėgintuvėlyje m ėlyje B (52 ml).

2 pav. Stebėjimo jimo rezultatai po 50 min. Išvada A mėgintuvėlyje, lyje, kur buvo pilamas tirpalas su pektinaz pektinazėss fermentu, sul sulčių tūris buvo 16,1% didesnis nei B mėgintuvėlyje. m Jis padidėjo dėl ėl fermento pektinazės pektinaz veiklos. Literat Literatūra ir internetiniai šaltiniai Bagdonienė L., Bendikien Bendikienė V., Kadziauskas J. ir kt. (2006). Biochemijos laboratoriniai darbai. VU leidykla. More juice for apples. [Interaktyvus], [žiūrėta [ži ta 2013 m. spalio 20 dd.]. Prieiga per internetą: <http://www.ncbe.reading.ac.uk/NCBE/PROTOCOLS/INAJAM/PDF/JAM03.pdf>. - 163 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model Pectin. [Interaktyvus], [žiūrėta [žiū ta 2014 m. sausio 28 d.]. Prieiga per internet internetą: <http://en.wikipedia.org/w/index.php?title=Pectin&oldid=61390030>. Pektinas. [Interaktyvus], [žiūrėta [ži ta 2014 m. sausio 26 d.]. Prieiga per internetą: internet <http://lt.wikipedia.org/wiki/Pektinas>.

3,4 pav. Tyrimo procesas biologijos klasėje klas - 164 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ACTIVITY 7.

SOCIO-CULTURAL STEREOTYPES OF GREEK AND LITHUANIAN: VISUAL INVESTIGATION GRAIKŲ IR LIETUVIŲ SOCIOKULTŪRINIAI STEREOTIPAI: VIZUALUSIS TYRIMAS Justinas Pekarskas, Aleksas Kiminas Tyrimo tikslas. Įvertinti graikų ir lietuvių sociokultūrinius stereotipus remiantis asmenine patirtimi vizualaus tyrimo Lietuvoje ir Graikijoje metu. Hipotezė: ilgainiui susiformavę šalių gyventojų stereotipai dažniausiai atitinka realybę. Tyrimo uždaviniai: 1. Atskleisti kai kuriuos graikų ir lietuvių sociokultūrinius stereotipus, jų panašumus ir skirtumus naudojantis informaciniais šaltiniais. 2. Atlikti pasirinktų sociokultūrinių stereotipų tyrimą Lietuvoje ir Graikijoje vizualios stebėsenos metodu. 3. Įvertinti graikų ir lietuvių sociokultūrinių stereotipų atitikmenis realiuoju laiku pagal turimus išankstinius (informacinius šaltinius) bei vizualaus tyrimo Lietuvoje ir Graikijoje duomenis. Tyrimo metodika. Buvo atliktas pasirinktų sociokultūrinių stereotipų tyrimas Lietuvoje ir Graikijoje. Buvo išanalizuoti graikų ir lietuvių sociokultūrinių stereotipų pagal

turimus

išankstinius (informacinius šaltinius) bei vizualaus tyrimo Lietuvoje ir Graikijoje, duomenys: taikyta palyginamoji analizė. Pagrindinis empirinių duomenų rinkimui taikytas metodas - vizualioji stebėsena: ką realiai buvo galima pastebėti pas mus – lietuvių, o Graikijoje – graikų elgsenoje ir kituose numatytuose tirti sociokultūriniuose dalykuose. - 165 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Tyrimo rezultatai. Atlikus tyrimą, gauti sekantys rezultatai. Sociokultūriniai graikų ir lietuvių panašumai. 1. Humoro jausmas. Niekam ne paslaptis, kad lietuviai pasižymi geru humoro jausmu. Graikai yra pietiečiai, jie į gyvenimą žiūri paprasčiau, dažniausiai niekur neskuba. Tokio įpročių žmonės taip pat pasižymi geru humoro jausmu. Graikų žodyne žodžio ,,liūdesys“ nėra. 2. Svetingumas. Lietuviai svečią iš užsienio neretai pasitinka dainomis, šokiais ir be abejo – tradiciniais valgiais. Galbūt užsieniečiui cepelinų skonis neįprastas, tačiau kai kuriems patinka, ir net labai. Graikai svečius iš užsienio taip pat mėgsta pasitikti šokiais, mielai pavaišina ir graikiškomis salotomis, kurios, beje, Graikijoje yra ypač skanios! 3. Liaudies šokių puoselėjimas. Lietuviai įnirtingai rengia įvairius liaudies šokių festivalius, o ir jaunimui, panašu, kad patinka. Tuo tarpu graikai, svečius pasitinka liaudies šokiais, o ir visumoje tai yra puoselėjamas dalykas. 4. Draugiškumas. Galbūt ir atsirastų nesutinkančių, kad lietuviai yra nedraugiška tauta, tačiau visokių yra, visokių reikia, kaip ir visur. Graikai yra itin draugiška ir komunikabili tauta, o ir lietuviams nei vieno, nei kito tikrai netrūksta. 5. Linksmybės.

Bent kiek pasidomėjusiam Graikijos naktiniu gyvenimu nekiltų

klausimų, ar Lietuvoje, ar Graikijoje jis energingesnis. Gal lietuviai linksminasi ir kitokiais būdais (šeimose, draugų ratuose, kartais klubuose, TV projektuose) tačiau tiek graikai, tiek lietuviai mėgsta atsipalaiduoti po darbų ir pasilinksminti. 6. Religija. Religijos klausimu esminis skirtumas yra tas, kad dauguma graikų – ortodoksai, tuo tarpu dauguma lietuvių – krikščionys. Visgi, skirtumai tarp religijų nėra kardinalūs, o ir lietuviai, ir graikai nepaisant vieno kito ateizmo atvejo, yra tikintys. 7. Gimtosios kalbos mokymasis. Vidurinėse mokyklose ir gimnazijose Lietuvoje bene didžiausias dėmesys yra skiriamas gimtosios kalbos mokymuisi. Graikai, kaip ir lietuviai, yra ,,priversti‘‘ daug mokytis gimtosios kalbos, taip pat ir senosios graikų - 166 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model kalbos. Taigi, abi tautos daug dėmesio skiria gimtosios kalbos mokymuisi, automatiškai – jos puoselėjimui. 8. Gimtąja kalba atliekamos dainos. Abi tautos itin mėgsta užsienio autorių dainas, tačiau jos taip pat itin klausosi ir savo tautiečių dainų (graikai ypač, tačiau lietuvių tarpe lietuviškos dainos taip pat sparčiai populiarėja). Galbūt ir džiugu, nes pakankamai intensyvus gimtosios kalbos mokymasis bei tautiečių dainų klausymas ugdo patriotišką abiejų tautų visuomenę. 9. Sportas. Stambaus graiko sutikti neteko. Ypatingai jaunimo tarpe populiaru užsiiminėti aktyvia fizine veikla. Galbūt graikai labiau mėgsta plaukimą, futbolą, lietuviai labiau krepšinį, tačiau faktas, kad abi tautos mėgsta sportuoti ir tai yra tikrai sveikintina. 10. Šypsenos. Turime valdžia darbe nepatenkintus suaugusius, su mokytojais ne itin sutariančius paauglius, - galbūt tai yra viso pasaulio yda. Graikai iš pažiūros yra laimingesni žmonės. Tačiau čia įsiterpia pirmasis tautų panašumas – humoro jausmas, todėl net jei ir nesijaučiame tokie laimingi, tačiau juokiamės daug. Sociokultūriniai graikų ir lietuvių panašumai. 1. Nacionalinis sportas. Graikijoje daug populiaresnis yra futbolas, nes kai buvome Graikijoje kavinėse visi žiūrėdavo tik futbolo varžybas. O visiems ne paslaptis kad Lietuvoje yra antroji religija – krepšinis. 2. Religija. Graikijoje vyrauja graikų ortodoksų religija, o Lietuvoje – katalikybė. 3. Politika. Graikijoje yra dvi pagrindinės politinės partijos: socialistai (PASOK) ir demokratai (Naujosios demokratijos partija). Jos abi įsikūrė 1974 m., kai sugriuvo Graikijos karinė diktatūra. Tuo tarpu Lietuvoje šios dvi partijos: konservatoriai (Tėvynės sąjunga) ir Lietuvos socialdemokratai. 4. Tarnyba. Graikų vyrai privalo atlikti 12-18 mėnesių trukmės karinę tarnybą. Tuo tarpu Lietuvoje vyrai neprivalo atlikti karinės tarnybos.

- 167 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 5. Šeima. Šeima graikams labai svarbi, tačiau jos supratimas nepanašus į lietuviškąjį. Jos nariai nesusitinka tik prie šventinio stalo ir bendrauja ne tik tuomet, kai kažko reikia vieniems iš kitų. Graikijoje šeima reiškia nuolatinį bendravimą. 6. Pensijos. Graikijoje vidutinė pensija siekia net 5500 lt, o Lietuvoje vidutinė pensija yra 856 lt. Žiūrint į Graikijos ir Lietuvos duomenis viskas pakankamai panašu ekonomiškai, bet graikai gauna geresnes pensijas. 7. Virtuvė. Graikų ir lietuvių virtuvė skiriasi kaip diena ir naktis. Graikų virtuvėje kiek žalumynų, kiek žuvies, o tas fetos sūris... Lietuvių virtuvėje vyrauja grūdinė kultūra, tai yra mūsų skanioji juodoji duona, pieno produktai, pavyzdžiui baltasis sūris. 8. Taisyklių nepaisymas. Kai buvome Graikijoje matėme kaip graikai rūko vietose kur draudžiama rūkyti, laužydavo eismo taisykles, važiuodavo kaip norėdavo. Lietuviai daug drausmingiau žiūri į draudimus. Lietuvių ir graikų stereotipų pasitvirtinimo palyginimas. lietuviai

graikai

Užsispyrę

+

Draugiški

+

Svetingi

+

Atsipalaidavę

+

Mėgstantys pasiimti tai, kas +

Tinginiai

d

nemokama

d

Daug valgantys

+

Lietuviams patinka krepšinis

+

Rūkantys

+

Lietuviai nėra labai kalbūs Dauguma stereotipų atitinka, tik kai kuriuos reikėtų pakoreguoti, pvz., lietuviams ne tik patinka krepšinis, bet jis yra kaip antroji šalyje religija; graikų veiklos ypatumai sukuria tinginių stereotipą, tačiau dauguma jų dirba daug, o apie tinginystę šalies pakraščių regionuose nėra nei kalbos... - 168 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Išvados 1.

Graikų ir lietuvių sociokultūriniai stereotipai iš dalies panašūs, tačiau

skirtumų yra šiek tiek daugiau. 2.

Dauguma graikų ir lietuvių sociokultūrinių stereotipų pasitvirtino

vizualaus tyrimo Lietuvoje ir Graikijoje metu. Informaciniai šaltiniai Graikija.[Interaktyvus], [žiūrėta 2014 m. balandžio 23d.]. Prieiga per internetą: <http://www.makalius.lt/diskusijos/topic/405-graikija/>. Graikija. [Interaktyvus], [žiūrėta 2014 m. balandžio 23d.].Prieiga per internetą: <http://www.delfi.lt/gyvenimas/laisvalaikis/idomus-faktai-apiegraikija.d?id=40769287>. Vizualusis lietuvių stebėjimas 2014-02-04 – 2014-03-29. Patirtis iš kelionės į Graikiją 2014-03-30 – 2014-04-06.

Graikės ir viena lietuvė stereotipų paneigimui skirtoje nuotraukoje

- 169 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Graikų ir lietuvių jaunimas Graikijoje: kas yra kas? ACTIVITY 8.

DETERMINATION OF BLOOD GROUP BY STANDARD SERUM ASSISTANCE KRAUJO GRUPIŲ NUSTATYMAS STANDARTINIŲ SERUMŲ PAGALBA Greta Liubertaitė, Kamilė Karpenko Jau žiloje senovėje žinota, kad kraujas - gyvybės šaltinis. Kitados buvo manoma, jog šviežiu krauju galima ne tik išgydyti, bet ir atnaujinti žmogų, todėl senovės gydytojai rekomenduodavo sunkiems ligoniams gerti sveikų žmonių kraują. Tačiau tai dažniausiai baigdavosi sunkiomis komplikacijomis ir netgi mirtimis, ir tik vos keletui žmonių tai padėjo pasveikti. Gydytojai, mokslininkai, profesoriai taip ir nesuvokė, kodėl taip yra. Tik 1900 m. Karlas Landšteineris atrado, jog žmonių kraujas nevienodas, ir suskirstė jį į grupes. Todėl tirti kraujo grupes yra labai svarbu, nes nuo to priklauso, ar kraujo perpylimas žmogui pagelbės, ar pablogins padėtį. - 170 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Pirmosios žinios apie kraujo perpylimą Lietuvoje aptinkamos 1875 m. Vilniaus medicinos draugijos protokoluose. Pirmuosius kraujo perpylimus tarpukario Lietuvoje chirurginėje klinikoje, Kaune, atliko prof. V. Kuzma, o 1926 m. ir prof. P. Mažylis akušerijos klinikoje. Laikui bėgant, reikalavimai kraujo perpylimui (transfuzijai) sugriežtėjo. Sveikatos apsaugos ministerija yra išleidusi reikalavimus, kuriais turi vadovautis kiekvienas transfuziją atliekantis gydytojas. Prieš atlikdamas kraujo perpylimą, gydytojas turi išsiaiškinti buvusius paciento kraujo ir jo komponentų perpylimus, reakcijas, komplikacijas bei atlikti paciento kraujo imunohematologinį tyrimą. Donoras parenkamas vadovaujantis ligonio kraujo imunohematologinio tyrimo rezultatais. Tyrimo tikslas – nustatyti kraujo grupę naudojantis pažangia kraujo grupės nustatymo metodika. Tyrimo uždaviniai: 1. Susipažinti su kraujo grupės nustatymo metodika, naudojama Vilniaus Universitetinėje Antakalnio ligoninėje. 2. Nustatyti pasirinktų asmenų kraujo grupes. 3. Išsiaiškinti, ar sutapus kraujo agliutinogenams ir agliutininams įvyks agliutinacija. 4. Atskleisti kraujo grupės nustatymo praktinę reikšmę. Tyrimo metodika. Tyrime naudotos darbo priemonės: reagentai kraujo grupių tyrimui ( monokloninis antiserumas Anti-A, monokloninis antiserumas AntiB, monokloninis antiserumas Anti-AB), dviejų žmonių grupių kraujo mėginiai, 0,9% NaCl tirpalas, balta plokštelė, pipetės, vakuuminis mėgintuvėlis, sterilus vatos tamponas, sterili adata, vienkartinės pirštinės, chalatai, spiritas. Tyrimo sąlygos: 1. Kambario temperatūros aplinka (20°C). 2. Laikytis švaros, nenaudoti antrą kartą tų pačių pipečių ir stiklinių lazdelių. - 171 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 3. Bandymą atlikti atsargiai, kad skirtingų reakcijų reagentai

nesusimaišytų

tarpusavyje. Tyrimas

buvo

atliktas

Vilnius

Universitetinėje

Antakalnio

ligoninės

laboratorijoje. Tam tikslui buvo paimtas dviejų žmonių kraujas. Darbo metu būtina dėvėti chalatus bei mūvėti vienkartines pirštines! Įvertinome patalpos, kur bus atliekamas kraujo grupių nustatymas, temperatūrą. Tyrimas turi būti atliekamas 15 – 25°C temperatūroje, nes žemesnėje nei 10°C temperatūroje gali įvykti pseudo agliutinacija (netikroji agliutinacija), o aukštoje temperatūroje (apie 50° C) agliutinacija nevyksta. Paciento imunohematologiniai tyrimai atliekami dviem etapais. Pradžioje nustatoma paciento kraujo grupė pagal AB0 sistemą. Šis tyrimas (dar kitaip vadinamas kryžminiu), atliekamas dalyvaujant tiriamajam (stacionare – „prie ligonio lovos“, poliklinikų laboratorijose - matant pacientui). Tyrimui tinka tiek kapiliarinis, tiek veninis kraujas, tačiau imant kraują iš venos gaunami tikslesni rezultatai (kraujyje, paimtame iš piršto, kai kurie rodikliai nėra tikslūs dėl pačios ėmimo technikos ir anatominių žmogaus savybių). Tikslesnis būdas - kraujo grupės nustatymas pagal AB0 sistemos antigenus, atliekamas laboratorijoje iš veninio kraujo mėginio. Šiam kraujo tyrimui mes naudojome kraują, paimtą iš venos. Patogiai pasodinome tiriamąjį asmenį. Ranką žasto srityje suveržėme timpa. Odą nuvalėme steriliu, spiritu sudrėkintu vatos tamponu ir pradūrėme sterilia adata. Pasirodžius kraujui, timpą atleidome. Kraujas buvo imamas į vakuuminį mėgintuvėlį apie 2 minutes. Vėliau įlašinome po lašą kraujo į tris lentelės skyrius, kur buvo užlašinti skirtingi kraujo serumai. Kraujo lašas turi būti 10 kartų mažesnis už standartinio serumo. Skirtingomis stiklinėmis lazdelėmis kraują sumaišėme su atitinkamais kraujo serumais. Po to, siekiant, kad kraujas visiškai susimaišytų su serumu, švelniai pasukinėjome plokštelę, kol kraujo ir serumo mišinys tapo vienodos spalvos. Po 2- 172 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 3min. įlašinome po lašą NaCl tirpalo ir vėl judinome lentelę. Po 5 min. buvo įvertinti tyrimo rezultatai. Antru etapu atliekamas paciento kraujo imunohematologinis tyrimas. Siekiant nustatyti paciento kraujo grupę pagal AB0 sistemos antigenus, imamas veninis kraujas, kuris surenkamas į du sausus, švarius mėgintuvėlius arba į vakuuminius mėgintuvėlius be antikoagulianto, arba su juo. Kai tyrimas pasiekia jį atliekantį laboratorijos gydytoją, medicinos biologą arba klinikos laborantą, jie privalo gauti pagal AB0 sistemos antigenus pirmuoju tyrimu (prie ligonio lovos) kraujo grupės nustatymo rezultatus. Pagal Lietuvos Respublikos sveikatos apsaugos ministro įsakymą (2000-10-25 Nr. 576, Vilnius) perpilti kraują galima tik griežtai suderinus recipiento ir donoro kraujo AB0 grupes ir Rh(D) grupes. Jeigu perpilamas nesuderintas kraujas, jis recipiento organizme greitai suardomas. Irstant perpiltam kraujui gali atsirasti sunkios, neretai letalinės komplikacijos. Jeigu pirmo pasirinkimo galimybės nėra (griežtas AB0 recipiento ir donoro grupių atitikimas), tuomet kartais leidžiama naudotis Ottenberg schema. Ja galima naudotis tik išimtiniais atvejais, nes labai padidėja potransfuzinių komplikacijų rizika. Pagal Ottenberg schemą 0 grupės recipientui tinka tik 0 grupės kraujas, A grupėms recipientams tinka A ir 0 grupės kraujas, B grupės recipientams tinka B ir 0 grupės kraujas, AB grupės recipientams tinka bet kurios kitos grupės kraujas. Tapatumo mėginys leidžia preliminariai įvertinti, ar perpilant kraują donoro ir recipiento kraujo antigenai yra suderinami. Vien kraujo grupių AB0 ir Rh(D) tapatumo gali nepakakti saugiam kraujo perpylimui atlikti. Šio tyrimo metu recipiento serumas sumaišomas su donoro krauju (paprastai donoro kraujo yra mažiau, nei recipiento serumo). Agliutinacija parodo, ar recipiento ir donoro kraujas yra nesuderinami. Tokio donoro kraujo perpilti neleidžiama. Antrame

etape

(kitaip

jis

vadinamas

stulpeliniu

mikromėgintuvėliai, užpildyti specialiu geliu, bei centrifugos. - 173 -

metodu),

naudojami


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Mikromėgintuvėliai ir centrifuga Išcentrifugavus mėgintuvėlius, atliekamas vizualinis kiekvieno mėgintuvėlio tyrimų rezultatų vertinimas pagal agliutinaciją. Neigiama reakcija (nuosėdos mėgintuvėlio dugne) žymima “–“, teigiama reakcija vertinama indeksu nuo 1 iki 4. Ryškiai teigiama reakcija (agliutinacija gelio paviršiuje) vertinama indeksu 4. Teigiama, vidutiniškai teigiama ir silpnai teigiama reakcijos vertinamos indeksais nuo 3 iki 1. Esant silpnai teigiamai reakcijai, dalis agliutinacijos susidaro gelio paviršiuje, kita dalis išplinta pačiame gelyje.

Vizualinis agliutinacijos vertinimas

Tyrimo rezultatai. Jei, atlikus pirmąjį testą, per 1-2 min. atsiranda paprasta akimi įžiūrimų grūdelių iš sulipusių eritrocitų kurie vėliau susiklijuoja į stambius dribsnius (skystis lieka beveik skaidrus), tai agliutinacijos reakcija yra teigiama. Jei lašai būna raudonos spalvos, be jokių grūdelių, tai reakcija neigiama. Pirmajame bandyme agliutinacija buvo neigiama tarp visų 3 serumų - kraujo grupė yra 0(I). Antrajame bandyme agliutinacija įvyko tose lentelės skiltyse, kur buvo A ir AB serumai; kraujo grupė yra A(II). - 174 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Jei tiriamojo kraujas yra 0(I) grupės, agliutinacija nevyksta nei su vienu antiserumu, nes jame nėra nei A, nei B antigenų. Jei agliutinacija įvyko su anti-A ir anti-AB serumais, o su anti-B – neįvyko, tiriamojo kraujas yra A(II) grupės, nes jis turi A antigenų. Jei agliutinacija įvyko su anti-B ir anti-AB serumais, o su anti-A – neįvyko, tiriamojo kraujas yra B (III) grupės, nes jis turi B antigenų. Jei agliutinacija įvyko su visais antiserumais, tiriamojo kraujas yra AB grupės, nes jame yra ir A ir B antigenų. Kraujo grupių AB0 nustatymas naudojant agliutinacijos reakciją. Jeigu ligonio kraujo grupė yra 0 (I), agliutinacija (teigiama reakcija, agliutinatas mėgintuvėlio viršuje) neįvyks nei viename mikromėgintuvėlyje. Jeigu ligonio kraujo grupė yra A, agliutinacija įvyks tuose mikromėgintuvėliuose, kuriuose yra antigeno A

(A ir AB), bet neįvyks mikromėgintuvėlyje B. Jeigu ligonio kraujo grupė B, agliutinacija įvyks tuose mikromėgintuvėliuose, kuriuose nustatomas B antigenas (B ir AB), ir agliutinacija neįvyks tame mikromėgintuvėlyje, kuriama vien tik A - 175 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model antigenas. Jeigu ligonio kraujo grupė AB,

teigiama agliutinacijos reakcija bus

matoma visuose (A, B ir AB) mikromėgin-tuvėliuose. Antrajame teste matyti, kad pirmojo paciento kraujo grupė yra 0(I), nes agliutinacija neįvyko nei viename mėgintuvėlyje.

Antrojo paciento kraujo grupė yra A(II), nes agliutinacija įvyko tuose mėgintuvėliuose, kuriuose nustatytas A antigenas. Esant kraujo perpylimo būtinybei, būtina nustatyti kraujo grupę pagal AB0 ir Rh(D). Radus antikūnų, atliekamas antikūnų patikrinimas pagal kitas kraujo grupių eritrocitinių antigenų sistemas ir, esant teigiamiems šio tyrimo rezultatams, antikūnų

identifikavimas.

Donoras

parenkamas

remiantis

ligonio

kraujo

imunohematologinio tyrimo rezultatais. Recipientams, kuriems patikrinimo metu antikūnų nenustatyta, kraujas perpylimui parenkamas pagal AB0 ir Rh(D) sistemas. Recipientams, kuriems patikrinimo metu buvo nustatyti ir identifikuoti antikūnai, transfuzinė terpė parenkama atsižvelgiant į nustatytus eritrocitinius antikūnus (donorinė transfuzinė terpė negali turėti šių antigenų). Turi būti atliekami recipiento ir donoro kraujo suderinamumo mėginiai. Išvados Kad recipientas galėtų gauti iš donoro kraujo, recipiento (gavėjo) kraujo plazmoje neturi būti antikūno, priverčiančio donoro ląsteles agliutinuoti (sukibti). Dėl šios priežasties labai svarbu nustatyti kiekvieno asmens kraujo grupę. - 176 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Informaciniai šaltiniai Anusevičienė O. V. ir kt. (2002). Žmogaus anatomija ir fiziologija. Kaunas: Linos pasaulis. Civinskienė G. ir kt. (2003). Fiziologijos praktikos darbai. Kaunas: KMU. Jurgelionienė S., Šergalienė O. (1995). Klinikinių laboratorinių tyrimų metodai. Vilnius: Mokslo ir enciklopedijų leidykla. Kėvelaitis E. ir kt. (2003). Žmogaus fiziologija. Kaunas: KMU. Lašas Vl. ir kt. (1967). Fiziologijos pratybos. Vilnius: Mintis. Mader Sylvia S. (1999). Biologija. 2 kn. Vilnius: Alma litera. Molienė L., Molis S. (1999). Žmogaus biologija ir sveikata. Kaunas: Šviesa. Tamašauskas K. A. ir Stropus R. (2003). Žmogaus anatomija. Kaunas: KMU. Voroneckienė V. (2001). Kraujo grupės (pagal eritrocitų antigenų sistemas). Vilnius: UAB Grafinės mašinos. ACTIVITY 9.

THE INFLUENCE OF GEOGRAPHICAL SITUATION IN CUMBRIDIA (ENGLAND) AND LITHUANIAN NATURE GEOGRAFINĖS PADĖTIES ĮTAKA KUMBRIJOS (ANGLIJA) IR LIETUVOS GAMTAI Mindaugas Masaitis ir Aleksas Kiminas Tyrimo tikslas. Įvertinti geografinės padėties įtaką Kumbrijos (Anglija) ir Lietuvos gamtai. Tyrimo uždaviniai: 4. Atskleisti teritorijų geografinės padėties panašumus ir skirtumus. 5. Apibūdinti teritorijų reljefą, klimatą, augaliją. 6. Išskirti geografinės padėties skirtumų įtaką Kumbrijai ir Lietuvai. - 177 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Tyrimo metodika. Buvo išanalizuoti informaciniai šaltiniai apie Lietuvos ir Kumbrijos geografinės padėties ir gamtos ypatumus. Comenius projekto metu vykome į Kumbriją, Cockermouth‘o miestelį, turintį 5000 gyventojų. Keliavome po Kumbrijos apylinkes (automobiliu, autobusu, pėsčiomis), darėme nuotraukas, filmavome, žymėjomės gamtos ypatumus. Surinktus duomenis apibendrinome. Tyrimo rezultatai. Geografinė padėtis. Kumbrijos ir Lietuvos platuminė geografinė Kumbrija

Lietuva

padėtis

labai

panaši

(lent.).

Kumbrija išsidėsčiusi kompaktiškiau ir jos

Šiaurinė riba 55° Šiaurinė riba 56°

plotas (6768 km2) devynis kartus mažesnis už

š. pl.

Lietuvą. Kumbrija yra

š. pl.

labiausiai į šiaurę

Pietinė riba 54 ° š. Pietinė riba 53° š.

nutolusi

pl.

vakaruose skalauja jūros. Nors abi atrodytų

pl.

Anglijos

dalis.

Abu

kraštus

yra vidinės, tačiau skirtingai nei Baltijos jūra, Kumbriją skalaujanti Airijos jūra yra tarpsalinė iš abejų pusių susisiekianti su Atlanto vandenynu. Lietuva yra Europos žemyne, nuo Atlanto atskirta Skandinavijos pusiasaliu. Kumbrija yra Didžiosios Britanijos saloje (Britų salyne), nuo žemyno nutolusi apie 650 km. Kumbrija

Lietuva

Paviršius. Lietuvos reljefas performuotas ledynų. Jis gana lygus, išskyrus kalvotas lygumas rytuose ir vakaruose, nesiekiančias iki 300 m virš jūros lygio (aukščiausia vieta – Aukštojo kalnas (Aukštojas) – 293,8 m ). - 178 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Britų salos yra viena iš seniausių sausumos sričių Europoje, kalnai iškilo maždaug prieš 420 mln. metų. Per milijonus metų salų paviršius kilo, leidosi, jį smarkiai (kaip ir Lietuvą) pakeitė ledynai. Tai nulėmė geografinė teritorijos padėtis. Kumbrijos kalnai (nuardyti, maži) išsidėstę regiono centrinėje dalyje. Aukščiausia vieta – Scafell Pike (978 m) –aukščiausia Anglijos vieta. Abejose šalyse gausu ledyninės kilmės ežerų. Klimatas. Klimato savybes lemia teritorijos geografinė padėtis. Klimato bruožai priklauso nuo žemynų, vandenynų ir jūrų pasiskirstymo, reljefo absoliutinio aukščio, dirvožemio savybių ir augalijos dangos. Lietuvos klimatas jūrinis pereinantis į žemyninį, o svarbiausią įtaką jam turi Šiaurės Atlanto šiltoji srovė, Baltijos jūros artumas. Kumbrijos klimatą taip pat lemia šiltoji Šiaurės Atlanto srovė ir vyraujantys vakarų vėjai. Vietovė nėra nutolusi nuo jūros, todėl visur yra jūrinis klimatas. Jo įvairovę lemia ne tik vakarų pernaša, bet ir savitas paviršius – pakrantinės lygumos, kalnai, slėniai. Žiemos palyginti šiltos, iškritęs sniegas ilgiau užsilaiko tik kalnuose. Vasarą nuo jūros pučia šaltokas vėjas, todėl orai vėsoki. Kumbrijos orus galima nusakyti taip: labai nepastovūs visais metų laikais, vėjuoti, vėsūs, itin drėgni. Minėta šiltoji srovė didžiausia įtaką turi šaltuoju metų laiku, kuomet orai būna sąlyginai šiltesni. Kritulių daugiau vakariniuose kalnų šlaituose. Tokį orų nepastovumą teko patirti mums patiems būnant Kumbrijoje kovo mėnesį: pravažiavus 20-25 mylias orai valandos bėgyje pasikeičia 4-5 kartus (nuo saulėtos dienos iki lietingos ar net sniegingos pūgos). Augalija. Lietuvoje vyrauja mišrieji miškai, kurie užima trečdalį teritorijos. Kumbrijos miškingumas dėl žmonių ūkinės veiklos ir gamtos sąlygų ženkliai mažesnis, sudaro tik kiek daugiau 11 proc. Bemiškės viršūnės, pakrantė, lygumose. Miškai išsidėstę tik kalnų šlaituose ir slėniuose siauromis juostomis.

- 179 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Išvados 1. Lietuvos ir Kumbrijos geografinė padėtis panaši, tačiau skiriasi žemyno ir vandenyno atžvilgiu, klimatą formuojančių veiksnių požiūriu. 2. Kumbrijos reljefo bei jo formų kilmė geologiniu laikotarpiu skyrėsi nuo Lietuvos, tačiau abi teritorijas perkūrė ledynai, o Kumbrijoje išliko kalnai. 3. Klimatas abejose teritorijose panašus, tačiau Kumbrijoje jis visiškai jūrinis ir labai nepastovus, kintantis ne tik metų laikais, bet ir paros laikotarpiu. Informaciniai šaltiniai The Great Britain Guide (2010). London: AA Publishing. Lietuvos geografija (2013). [Interaktyvus], [žiūrėta 2013 m. kovo 20 d.]. Prieiga per internetą:<http://lt.wikipedia.org/wiki/Lietuvos_geografija>. 30

ACTIVITY 10.

TERRITORIAL DISTRIBUTION OF GRAFFITI OBJECTS IN VILNIUS (by GIS mapping) TERITORINĖ GRAFFITI OBJEKTŲ SKLAIDA VILNIUJE Milda Vilčinskaitė, Adelė Grigūnaitė Graffiti - tai piešiniai, užrašai, įrėžti ar nupiešti ant sienos, keramikos dirbinių, medžio, akmens. Žinomi nuo priešistorinių laikų (olų piešiniai). Vėliau, pasaulio didmiesčiuose (Niujorke, Los Andžele, Berlyne, Paryžiuje) paplito anarchistiniai, vandališki užrašai, piešiniai įvairiose miesto vietose – ant gyvenamųjų pastatų, traukinių, metro vagonų, reklamos skydų ir pan. Ypač paplito JAV nuo 1970 metų. Graffiti skirstomi į legalius ir nelegalius. Pasaulio visuomenė vis labiau pasiduoda jaunimo madų spaudimui, ir graffiti – ne išimtis. Todėl pasaulyje,

- 180 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model dažniausiai ekonomiškai pajėgiose šalyse, atsiranda vis daugiau legalių, tarp jų ir labai stambių, šio meno kūrinių. Galima teigti, kad tai atskira kultūra, vienijanti milijonus žmonių visame pasaulyje. Graffiti beveik be išimčių atspindi tai, prieš ką yra nusiteikusi visuomenė. „Jei visuomenė nepripažįsta tokios žmonių saviraiškos formos – čia jos bėda, nes kūryba negali būti stabdoma ar draudžiama. Kuo labiau drausi, tuo smarkiau ji vešės“. Tai garsiausio Lietuvoje pogrindinio graffiti meistro, žinomo kaip Solomon, interviu vienam iš žurnalistų. Be to, jis teigia, kad „nereikia, kad nustotų policija graffiti piešėjų gaudyti, nes tada šis menas praras tą žavesį, kuris atsiranda slapčia piešiant ir bėgant. Tai jaudina ir suteikia be proto daug adrenalino“. Tokia yra nelegalaus meistro nuomonė, iš kurios galima spęsti, kad graffiti daugumai šio žanro atstovų yra vandalizmo forma. Legalus šio stiliaus menas suprantamas daug plačiau ir kultūros sluoksniuose jau vertinamas, jam suteikiamas popkultūros statusas. Tam padeda komercinis požiūris. Žinomi Amerikos graffiti meistrai jau prieš porą dešimtmečių atidarė parduotuves, kuriose prekiavo savo apipavidalintais rūbais, avalyne, žinomų kompanijų logotipais. Šis žanras plačiai naudojamas kuriant kompiuterinius žaidimus. Pasaulyje yra žinomi legalūs šio meno meistrai iš Prancūzijos, Rusijos, Lotynų Amerikos šalių, Japonijos, Kinijos. Graffiti stiliai evoliucionavo, tačiau išliko šie pagrindiniai: tag‘ai, throwup‘ai,

stencil‘ai,

lipdukai

(stickers),

laukinis

stilius

(wildstyle),

piece‘ai,

blockbuster‘iai, dangaus. Tyrimo tikslas. Kartografuoti ir palyginti graffiti sklaidą Vilniuje. Tyrimo uždaviniai: 1.

Etaloninėse vietovėse surinkti empirinius duomenis apie graffiti

paplitimą. 2.

Kartografuoti graffiti paplitimą etalonų schemose.

3.

Palyginti graffiti paplitimą miesto centre ir periferiniame miesto rajone . - 181 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Tyrimo metodika. Susipažinome su graffiti istorine praeitimi ir šiuolaikiniu šio meno žanro vertinimu, padėsiančiu suprasti paplitimo mieste priežastis. Pasirinkome dvi etalonines lyginamas vietoves – Gedimino pr. miesto centre ir aplink jį esančias gatveles bei Pilaitės mikrorajoną, kuriame gyvename. Empirinius duomenis rinkome apeidamos minėtas teritorijas, fiksuodamos graffiti „adresus“ užrašuose, darydamos nuotraukas. Duomenis perkėlėme į kartografines schemas, suklasifikavome objektus pagal jų apimtį. Palyginusios gautus vaizdus, išskyrėme skirtumus.

Graffiti paplitimas Vilniaus miesto Gedimino prospekte ir aplink jį esančiose gatvelėse Tyrimo rezultatai. Atlikus visas užduotis, graffiti objektus suskirstėme į didelius ir mažus. Pagal šį kriterijų sudarėme kartografines schemas abiems pasirinktiems etalonams. Graffiti paplitimas centrinėje miesto dalyje pasižymi tuo, kad objektų tankumas nėra didelis, tačiau pačių darbų dydis yra įvairus. Tankiau objektai yra išsidėstę vidiniuose kiemuose dviejuose kvartaluose tarp Vasario 16-osios ir Vilniaus - 182 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model gatvių, prie Gedimino prospekto. Stambesni objektai išsidėstę retai, daugelyje gretimų gatvelių (neužsukant į uždarus kiemus), viešai pastebimų graffiti darbų visai nėra. Pastebėta, kad keletas graffiti darbų yra gerai matomose turistams Katedros prieigose, jie nėra meniški, tad jų pašalinimas nuo sienų turėtų rūpėti miesto savivaldybei, plėtojančiai turistams patrauklaus miesto įvaizdį. Pilaitės mikrorajone graffiti tankumas ženkliai didesnis, o ir jų įvairovė platesnė. Pastebėjome, kad vieta nei objektų tankumui, nei dydžiui įtakos neturi.

Graffiti paplitimas Vilniaus Pilaitės mikrorajone Išvados 1. Periferiniuose rajonuose (etalone – Pilaitė) graffiti paplitimas yra didesnis nei Vilniaus centre (etalone – Gedimino pr.). pagrindinės to priežastys: centrinė dalis labiau stebima, mažiau galimybių nepastebėtiems menininkams nelegaliai atlikti savo darbą, o ir viešų erdvių, kuriose galima būtų tai padaryti – mažiau. 2. Dažniausiai graffiti būna ne pagrindinėse miesto gatvėse, o mažuose kiemeliuose

centrinėje

miesto

dalyje.

nepastebėjome. - 183 -

Periferijoje

tokios

tendencijos


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

4.4. BorgarholtsskĂłli, ReykjavĂ­k, Iceland ACTIVITY 1.

SUSTAINABILITY Ecological footprint of clothing It is important to think about how our clothes we wear are made. The fabrics are produced in various ways; some are grown (e.g. cotton) and other are chemically developed

(e.g. fleece). Those methods of production affect our

environment differently. Let us find some answers on the internet to the questions posed here below. Look at the clothes you are wearing. Read Read the labels on them. Try to answer nswer the following questions. 1) Where were your clothing items produced and who produced them? 2) Which materials/chemicals were used in the production? How was it produced? 3) What kind of pollution generally occurs as a result of clothing production? 4)

Each group member should answer the following questions with: never, seldom

or frequently. a.

Do you buy used clothes?

Student 1: ____________ Student 2: ______________ Student 3:_______________ b.

Do you donate or recycle your clothes:

Student 1: ____________ Student 2: ______________ Student 3:_______________ c.

Do you think about who makes your clothes?

Student 1: ____________ Student 2: ______________ Student 3:_______________

- 184 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 5)

Do you understand the label on your clothes? Read a label on a clothing item

and write down the symbols and their meaning. Useful websites (try to find more): http://www.salon.com/2015/03/22/the_slave_labor_behind_your_favorite_clothing_b rands_gap_hm_and_more_exposed_partner/ http://www.pressan.is/Veroldin/LesaGrein/1400-litrar-af-vatni-eru-notadir-vidframleidslu-a-einum-bomullarbol-myndband?pressandate=20140114 http://www.greenchoices.org/green-living/clothes/environmental-impacts

ACTIVITY 2.

SUSTAINABILITY FOOD WASTE The world’s wealth is not divided equally amongst its inhabitants. While 3 million children die every year from malnourishment, one of the greatest health threats in the western countries is the opposite; obesity, and a great number of people are permanently disabled due to it. While you work on this assignment 300 children around the world are dying from starvation. Numbers show that the Icelandic people are the second fattest in the world. Does that mean that malnutrition does not occur in Iceland? While people are starving all over the world we throw away a great portion of the food we buy. Some we throw away as leftovers after a meal while other food items never reach the dining room and ‘expire’ in our kitchen cabinets or fridges. Try to answer the following questions without assistance. 1 ) Malnutrition is when the body does not get enough energy, protein or other nutrients to sustain normal weight and body function. Do you belive that malnutrition - 185 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model exists in Iceland? If your answer is yes, then how many percentages do you believe are malnourished? _______ 2) In your home, what is the percentage of the food goes to waste? ______ 3) How frequently does your household have leftovers from previous meals for dinner? ____ never ____ often ____ very often 4) Do you sort the organic waste in your home? _____ Yes

_____No.

Search the internet for answers to the following questions: 1) What is the percentage of malnourished people : a) in Iceland and b)on Haiti (see e.g. http://globalis.is/)? a) ____ b) _____ 2) What is the percentage of food waste in the western countries? Try to find numbers on Iceland. ACTIVITY 3-7.

ENERGY IN RIVERS (project) PART 1 Introduction Energy is of paramount importance in modern society. It’s most often generated in large installations using coal, oil, gas or nuclear power. Environmental concerns and specifically focus on renewable energy has shifted focus to preferring hydro power plants and harvesting wind or solar power.In Iceland we can’trely on solar power and although it’s often times windy in Iceland, it’s not steady enough to - 186 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model count on except in specific areas. Fortunately hydropower is pretty steady and plentiful since Iceland has plenty of high ground which experiences allot of rain and snow. Before most of Iceland was connected by a electrical grid there were 530 small local electrical stations (1950) that had been set up in rural areas. Its worked wonders with gettingremote areas electricity, but as more of the country got connected the number of stationsdecreased until by 1982 there were only 158 small local hydro plants left. With the advent of new technology the number of small micro hydro powerplants has increased again and continues to increase. Even the smallest of streams can now be harvested for energy. Rural areas, summer houses, and all kind of tourist attractions have installed small generators.

It’s increasingly popular to show that people and

companies are thinking bout the environment and being as self-sufficient as possible. People tend to like the idea of doing something a little bit renewable when it comes to energy usage. All powerplants that are below 30kwh are considered renewable and good for the environment in Iceland. That is small enough to keep a farm supplied. Many of the small micro hydroplants are even producing more energy than the farm needs so they can sell excess energy to the main grid. The purpose of this project is to explore the steps that have to be taken, when farmers or anyone else needs to determine if setting up an small powerplant is viable or not. As a test subject we will consider a small river, called Korpa, that runs to the sea close to BorgarholtsskĂłli. We want to check and see if it can generate enough power to run the school if it could be possible to harvest that energy. We are also going to think determine and decide on if we would want to, if we could. Students will do measurements to try to assess the amount of water that flows to the sea and if the water has enough energy to power BorgarholtsskĂłli. - 187 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Physics. Power is a measure of energy (E) used over time (t). =

The maximum power (P) we can get from a river is based on the potential energy (E) of a certain volume (V), of water which has the specific weight () of 1000 kg/m3 and is at a certain elevation above sea level (h). =

=

∙ℎ

=

∙ℎ

Volume of water is the Area of a cross section (A) of the river times the length it runs (x) in the time measured. ∙

=

∙ℎ

The area of the water flowing down stream is just the with (W) of the river times the depth (D) =

∙ℎ

We need to measure the width of the river, depth of the river, flow rate of the river as well as the elevation of the highest point on the river to calculate the Power in Watts. The total production over the course of a year is =

60 1

60 1ℎ

24 ℎ 365 1# ∙ 1 1 ! " 1000

= 3,15 ∙ 10% ∙

[# ]

Household bills are normally sold/given in kWh. Which means the amount of watts used per hour of usage. - 188 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model ()*++,

=

# 8760 ℎ-." ∙ = 8,76 ∙ 101 ∙ 1ℎ-." 1 ! "

23,,

[# ]

Measurements 1. Go to location (A, B, C, D), measure width of river, depth of river and the running speed of the water 2. Find the elevation of Hafravatn above sea level. Use Google earth, a topographical map or something similar to find out the elevation of Hafravatn 3. Find out how much Borgarholtsskóli uses of electricity each year.Talk to someone in the administration, the manager of the buildings for example 4. Calculate the amount of electricity that the Korpariver can produce per year in the units MW 5. Discuss the environmental factors we would like to take into consideration if we make a damn and start harvesting the river. Product 6. Slideshow (6. slides, no more, no less) 1. Background (Introduction, background story, “pitch”) 2. Purpose (why we are doing the measurements) 3. How we reach a conclusion (How we do the measurements, get the info needed) 4. Results (How much energy can we produce and is it enough?) 5. Viability/conclusion (Should we use this river in this way? Environmental concerns?) 6. Picture of the group at location (bridge) 7. Presentation Present the findings to other studentsand teachers.

- 189 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

ATH: Borgarholtsskóli kaupir 2,3x106 kWh á ári. ()*++,

2,3 104 # = 1ℎ-."

8760 ℎ-." = 2,0 ∙ 1056 [# ] 1 ! "

Nemendurfengu 2016 Hópur Ragnar 1000 ∙ 12 ∙ 0,33 ∙ 0,57 ∙ 9,81 ∙ 76 = 1,68 1 60 60 24 ℎ 365 1# 104 ∙ ∙ ∙ ∙ 1 1ℎ 1 1 ! " 1000

= = 1,68

104 = 5,3 ∙ 1056 [# ]

HópurBryndís 1000 ∙ 6,2 ∙ 0,373 ∙ 5 ∙ 9,81 ∙ 79 = 9,7 108 9,2 60 60 24 ℎ 365 1# = 9,7 108 ∙ ∙ ∙ ∙ = 3,1 ∙ 1056 [# ] 1 1ℎ 1 1 ! " 1000 =

Hópur Tanja 1000 ∙ 12,3 ∙ 0,238 ∙ 5,14 ∙ 9,81 ∙ 79 = 1,0 104 11,28 60 60 24 ℎ 365 1# = 1,0 104 ∙ ∙ ∙ ∙ = 3,3 ∙ 1056 [# ] 1 1ℎ 1 1 ! " 1000 =

- 190 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

ENERGY IN RIVERS PART2 (presentation) NATURAL ENERGY

ANNE, JULIE, MARIA, TANJA, SIGURBJORG, ELEONORA

BACKGROUND

RESULTS

WE WENT TO KORPA RIVER TO MEASURE THE WIDTH OF THE RIVER, THE DEPTH AND THE RUNNING SPEED OF THE WATER.

IN ICELAND WE CAN USE WATER TO PROVIDE ENERGY. HYDROPOWER IS THE MOST USED RENEWABLE ENERGY IN ICELAND. ENERGY IS OF PARAMOUNT IMPORTANCE IN MODERN SOCIETY, SO WE ARE ALWAYS FINDING NEW AND BETTER WAYS TO PROVIDE ENERGY. WAYS THAT DON´T RUIN THE EARTH!

CONCLUSION PURPOSE BORGARHOLTSSKOLI NEEDS 2,3 MIO. KW OF ENERGY PER YEAR, SO THE RIVER PROVIDES ENOUGH ENERGY TO FULFILL THE SCHOOL´S NEEDS. THE REASON WHY, IS TO FIND OUT HOW MUCH ELECTRICITY KORPA RIVER CAN PRODUCE EACH YEAR IN THE UNITS MW.

THE RIVER IS A GOOD RENEWABLE ENERGY PROVIDER THAT IS ECO-FRIENDLY. THAT‘S WHY IT IS INTELLIGENT TO USE IT.

MAYBE IF THE ENVIRONMENTAL FACTORS ARE GOOD, WE COULD MAKE A DAMN IN KORPA RIVER AND START HARVESTING THE RIVER.

WE DID MEASUREMENTS TO CALCUTE THE POWER OF THE WATER

MEASUREMENTS

FIRST WE USED A LONG STICK TO MEASURE THE DEPTH OF THE RIVER. THEN WE USED A LONG STRING TO MEASURE THE WIDTH OF THE RIVER. WE HAD TO MEASURE THE TIME THAT IT TOOK FOR A LITTLE BALL TO TRAVEL IN THE WATER, SO FIRST WE MEASURED THE DISTANCE THAT THE BALL HAD TO TRAVEL. THEN WE PUT THE BALL IN THE WATER, AND MEASURED THE TIME IT TOOK TO TRAVEL THE DISTANCE.

- 191 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

ENERGY IN RIVERS PART3 (presentation)

Korpa river project Brynjar, Bryndís, Arminas, Su

Background

Results

• In Iceland we can‘t rely on solar power and although it‘s often times windy in Iceland, it‘s not steady enough to count on except specific areas • Hydropower is steady and plentiful since Iceland has plenty of high ground which experiences a lot of rain. • Iceland mostly uses hydro power • All the power plants that are below 30 kwh are considered renewable and good for the environmentin Iceland

Purpose • The purpose of this project is to explore the steps needed to determine if setting up a small power plant is viable or not • We measure width, depth and running speed of the river • From this information we can find out the amount of electricity the Korpa river produces • Then we can find out how much electricity it produces per year

Viability/conclusion • Borgó uses 2.300.000kW per year • The river producec 30.682.401.750kW per year • So we could use the river to power around 13.000 schools

How we reach a conclusion • We stood on a bridge over Korpa river • For the depth, we used a long stick to measure in 3 places and calculated the average • For the width, we measured the width • For the running speed, we measured 5 meters in the river and measured how many seconds a floating ball took to move 5 meters. • We found out the elevation of Hafravatn on the internet

- 192 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

ENERGY IN RIVERS PART4 (presentation)

River Power Helena, Bahar, Berglind, Justina, Ragnar and Leo

Introduction

Results

• Energy is of paramount importance in modern society. • Environmental concern and specifically focus on renewable energy. • Fortunately hydropower is pretty steady and plentiful since Iceland has plenty of high ground which experiences allot of rain and snow. • We were over there to calculate the energy of the river in an small interval of time using the section of it.

Measurements

Results / averages

Width

11.79 m

Depth

0.33 m

Speed

0.57 m/s

Answers to the questions

2. Hafravatn is a small lake on the eastern outskirts of Reykjavík, Iceland. Located at 76 m above sea level. 3. There is 2.3 million k/w per year that Borgarholtsskoli use. 4. 11.431.800.000

Why we are doing the measurements

Should we use the river in this way ? • No it has not enough power to power Borgarholtsskóli.

• We consider a small river, called Korpa , that runs to the sea close to Borgarholtsskoli. • We are doing measurements to try to assess the amount of water that flows to the sea and if the water has enough energy to power Borgarholtsskoli.

How we did the measurements • We put the stick in the bottom of the river to measure the depth. • We measure the width with rope. • We let down a ball in the river to calculate the speed of the river.

- 193 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

4.5. Namık Karamancı Fen Lisesi, Manavgat, Turkey ACTIVITIES (presentation)

- 194 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

- 195 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

- 196 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 2017 Innovative Student-Teacher Teacher Evolution Model

- 197 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

5. FINAL Project Conference in Vilnius (23-24.04.2017)

5.1. Seminar „Innovative Student-Teacher Evolution Model“

- 198 -


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Teacher Evolution Model

Jūratė Norkūnienė. Millennials workplace (Lithuania, Vilniaus Pilaitės gimnazija, in English)


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Vilma Jočienė. Learning in Green Fields and innovation of methods (Lithuania, Vilniaus Pilaitės gimnazija, in English and Lithuanian) That is why students do not like the traditional lessons because such way of teaching is always the same and too boring.

In modern, rapidly changing living conditions, it is very important to prepare students how to apply the acquired knowledge and skills, develop confidence; teach how to find and sort the required information, to submit it to others and also teach how to work together.

Till these days a lot of teachers are trying to give as much information to their students as possible.

During the Natural Science Education lesson it is necessary to use a wide range of teaching methods in order to provide more benefits.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Students often state that the most effective learning methods are those which encourage the activeness (while debating, when the learning materials is discussed with others, when it is practically tested by your own, when it is experimented and observed while teaching others).

Students also state that effective (non-traditional) teaching methods help to improve their learning skills, closer relationships are formed between the teacher and the student and among all the students. However, it is difficult to point out the best method.

We will mention some of the methods which are applied in Natural Science Education in our school.

It is important that the natural sciences have more opportunities to conduct the lessons not only in the classrooms, but also in very different environment (such as nature, museums, laboratories, etc.)

1. The lessons outside the school (in nature)


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model In order to interest students in natural science subjects we need to encourage their curiosity, the desire to explore. What is more, we need to teach them to understand the connection between the changes of the animate and inanimate nature.

Most modern children grow in the cities, in the courtyards made of stone. Flowering meadows, evergreen forests, creeks are replaced by yards full of cars. They become children's home. Children‘s knowledge about the biodiversity is extremely low.

2. The lessons outside the school (educational trips to different places in Lithuania)


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Educational trips enhance the science education. Students love intrigues and unexpectedness.

3. Lessons outside the school (in the various laboratories and companies)

Our school teachers enable students to visit various laboratories, businesses, hospitals and other places. They do not only have the opportunity to perform a wide range of laboratory work, but also to broaden their outlook and to get acquainted with professions connected with natural sciences.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 4. Practice work ( at school )

Practice works

When we want to convert the acquired students’ knowledge into skills we are used to apply practical methods. Laboratorial and practical tasks develop the independence, perception, cognitive activeness, inventiveness, accuracy, and also they teach how to work in a team.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Most of the students state that the creative tasks and the production of the models help them to understand the educational material better, to reveal their creativity, and to develop the ability working in groups.

Students state that practical works promote pupils' activeness, independence and creativity. Also, by carrying them out, the will is developed and emotions are aroused.

5. Production models of the learning process


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model “The researchers' night”, “The spaces hip Earth“ The researchers invite scientists to participate in experiments, simulations, interactive workshops, lectures, round table discussions and debates, exhibitions, tours and competitions. All these you can do in the science centers and laboratories which are located in each town.

Working in groups students create the models from different materials, compare their structure and demonstrate their work to others. Also, the students evaluate the work of other groups according to the given criteria, and make the self-evaluation of their emotional well-being in the classroom.

6. Participation in different scientific events


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model And also, the students have the opportunity to get acquainted with the opportunities of studying the natural sciences in order to make the right choice for their future profession.

7. Participation in the conferences.

While studying the natural science students should not only use the textbooks, but also a variety of information sources, including the computer. Students should be taught the basics of searching the information.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Students from our school carry out the long-term research projects, prepare and present the reports on annual nature sciences conferences in school: “On the threshold of Natural sciences�. What is more, they attend other schools or organizations which organize the conferences.

8. Cooperation with other gymnasiums

Changing the learning environment, various competitions and quizzes especially encourage the activeness, the desire to improve your knowledge and to share the experience.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

QUIZZES

9. Drama methods to simulate different situations

Students simulate a variety of different situations by using the theatrical elements. Students can discuss and solve their problems through the suggested situation. By playing students learn how to develop their ideas freely, to develop the feelings, to express their opinion, to listen; also they experience the difficulties and joys of the creativity.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

The students feel free while playing a role and it also improves the psychological climate of the lesson. Students have the opportunity to reveal themselves. Games, the role play can involve students in the learning process, to focus their attention like no other teaching method can do.

10. Learning by teaching others

It is also a very effective method for the pupils to explain others a thing which you have learnt. This method is considered to be one of the best ways to assimilate the information. In this way, students who learn quicker can teach other who learn slower or the older teach the younger ones. It also gives students more self-confidence.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Italy – Martina Franca

France - Paris

Iceland - Reykjavik

Turkey Manavgat

Italy - Garda


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Modern teacher = Happy students It is only possible to say what the best training method is when you accurately measure student’s characteristics and learning objectives. The teaching methods are not equally valuable. Some methods can help to teach some students better, the other methods are suitable for the other ones. One method is suitable for one purpose; the other is for the different one.

Modern teacher


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Irena Medelinskaitė. Education of Responsible Consumers during project activities (Lithuania, Vilniaus Pilaitės gimnazija, in English and Lithuanian)

Elektros ir vandens taupymas

Kaip sumažinti elektros energijos naudojimą?

Question

Vartojimo mažinimas

Žalioji olimpiada Projektinė veikla

Kaip sumažinti elektros energijos naudojimą?

Eksperimentai

Atsakingo

vartotojo

ugdymas

projektinėje

veikloje

Elektros energija

Duomenų apdorojimas

Analizė, įdėjų ieškojimas

Susipažinimas su gamybos procesu

Palyginimas ir sprendimų priėmimas

Vanduo

20

ATLIEKOS MENO INSTALIACIJOSE

ŽALIOJI GIMNAZIJA

ŽALIOJI GIMNAZIJA

Atliekos

ATLIEKŲ ANTRINIS PRITAIKYMAS

ATLIEKOS MENO INSTALIACIJOSE

ATLIEKŲ RŪŠIAVIMAS

IDEAS IDEAS

IDEAS

Answer

Tinkamas atliekų tvarkymas ir netgi perdirbimas, paverčiant funkcionaliais, mokyklos gyvenime daiktais

 Turn off the light when you leave the room. Turn off the TV when no one is watching it.  Use low power light bulbs.  Try not to leave gadgets on standby mode.  When cooking, turn off the heat 5 minutes before the time ends, so that the gained heat would finish cooking itslef.  When using washing machine decrease the water temperature and shorten the washing programme.


Answer

Question

Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model APPLIANCE (ex computer, TV…)

Kaip sumažinti vandens naudojimą?

121

Laptop Printer

31 10 162

Total Expenses APPLIANCE (ex computer, TV…)

Exchanger Exchanger Exchanger Exchanger

1 1 1 1

Total Expenses

4 901,00

Printe rs Comp 0% uters 33%

Question

Answer

Per parą ištekės iki 500 litrų vandens, jeigu iš čiaupo nepertraukiama srovele teka degtuko skerspjūvio dydžio vandens srovelė. Jei vanduo tik lašės, per tą patį laiką jo prarasime 60-180 litrų, o per mėnesį – apie penkias tonas. Jei nesandarus tualeto bakelis, per parą galima netekti net iki 1500 litrų vandens. Visą straipsnį galite rasti

Question

vartotojas

(ex A, A+, B)

Computer

4

20

Electric kettle

1

10

Fridge

Washing machine

Heating and Cooling 11%

A+ Category1 2 15question for 10 points 1

15 A+

TV

2

20 A

Desk lamp

4

12

Oven and hob

1

30

light bulbs

Kitchen 40%

Lighting 19%

21

20

Electrical heater

1

3

Microwave oven

1

8

Toaster oven

1

3

Laundry 11%

TOT CONSUMPTIO N KWxH

MONTH

SEPTEMBER OCTOBER NOVEMBER

38,642 73,392 73,67 C02 EMISSIONS

MONTHLY CONSUMPTION IN EUROS 0

5

10

15

20

CO2 EMISSIONS

COST

139 264 265 25

30 31,8

35

73,67 1

73,392 38,642

31,68 16,68 0

20

40

60

80

Answer

Answer

Tekant karštam vandeniui iš vieno čiaupo srovele, ne storesne už degtuką, per metus išeikvojama tiek šilumos, kurios užtektų vienam butui apšildyti du mėnesius.

(ex computer, TV…)

8,8 3785,6

ng 59%

(ex A, A+, B) B C A B

Lighting number Ceiling lamp, power 2x35W 880 Ceiling lamp, power 1x35W 500 Lamp, power 2x18W 72 Lamp, power 1x26W 73 Lamp, power 4x14W 28 Lamp, 1x18W 112 Total Expenses 1665

power total power w/h w/h 70 61600 35 17500 36 2592 26 1898 56 1568 8 896 231 86054

TOT CONSUMPTION KWxH

COST

h 80 80 80 80 80 80 480

USE kWh\month 4928 1400 207,36 151,84 125,44 71,68 6884,32 CO2 EMISSIONS

Computers

3776,8

1049,95

Lighting

6884,32

1913,84

Exchange

901

250,48

Printers

8,8

2,45

6000

14000

5000

12000 10000

4000

8000 6000

3000 2000

4000 2000

1000

0 SEPTEMBER

Apie 21% nepanaudoto geriamo vandens nuteka į kanalizaciją.

Entertainnm ent 19%

3274,56 502,24

0

Žmonių vartojimui pritaikyta tik 0,3% viso pasaulio vandens.

EU ENERGY LABEL

140 350 149 262

Excha ngers 8% Lighti

http://www.tv3.lt/naujiena/383435/idomus-faktai-apie-vandeni

NUMBER USE

USE kWh\month

USE NUMBER kWh\month

25 % pasaulio populiacijos neturi švaraus geriamojo vandens.

APPLIANCE

NUMBER

Computer

OCTOBER Cost

NOVEMBER CO2 emissions


Answer

Question

Question

Answer

Question

Answer

Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

,,Vartok atsakingai, rūšiuok išmintingai“

Category 4 answer for 10 points


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Jóhanna Eggertsdóttir. Peer learning and how I use it in Borgarholtsskóli (Iceland, Reykjavík, Borgarholtsskóli, in English)

PEER LEARNING and how we use it in Borgarholtsskóli

Peer learning ■ Peer learning is a student-centred approach that encourage collaboration, problem solving and teamwork. ■ We define peer learning as 'students learning from and with each other in both formal and informal ways'. ■ The emphasis is on the learning process, including the emotional support that learners offer each other, as much as the learning task itself. ■ Peer learning values cooperation over competition. ■ Peer learning emphasizes students simultaneously learning and contributing to other students' learning. Such communication is based on mutual experience and so they are better able to make equal contributions.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Peer learning ■ Research indicates that peer learning activities typically yield the following results for both tutor and tutee: team-building spirit and more supportive relationships; greater psychological well-being, social competence, communication skills and selfesteem; and higher achievement and greater productivity in terms of enhanced learning outcomes. ■ Peer learning is an instructional strategy, one approach among many available to teachers. No one is advocating that peer learning replaces the teacher. Students still need teachers, and teachers still need to teach. As with all instructional strategies, peer learning works when it’s selected purposefully, when its use is planned carefully, and when the learning it promotes is evaluated.

Peer learning ■ Peer learning should be mutually beneficial and involve the sharing of knowledge, ideas and experience between the participants. ■ Students learn a great deal by explaining their ideas to others and by participating in activities in which they can learn from their peers. They develop skills in organizing and planning learning activities, working collaboratively with others, giving and receiving feedback and evaluating their own learning. Much peer learning occurs informally without staff involvement.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Peer learning ■ It offer’s students the opportunity to learn from each other. It gives them considerably more practice than traditional teaching and learning methods in taking responsibility for their own learning and, more generally, learning how to learn. It is not a substitute for teaching and activities designed and conducted by staff members, but an important addition to the repertoire of teaching and learning activities that can enhance the quality of education. ■ It is important to consider who are the 'peers' in peer learning. Generally, peers are other people in a comparable situation to each other who do not have a role in that situation as teacher or expert practitioner. They may have considerable experience and expertise or they may have relatively little. They share the status as fellow learners and they are accepted as such. Most importantly, they do not have power over each other by their position or responsibilities.

Peer learning ■ There are variety of reasons for a focus on peer learning. They include: 1.

Peer learning necessary involves students working together and developing skills of collaboration. This gives them practice in planning and teamwork and involves them as part of a learning community.

2. There are increased possibilities for students to engage in reflection and exploration of ideas when the teacher is not present. 3. Students gain more practice in communicating in the subject. They are able to articulate their understanding. 4. Peer learning involves a group of students taking collective responsibility for identifying their own learning needs and planning how these might be addressed.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

How I use teem learning in my classes ■ After teaching students some method in mathematic I encourage students to give and receive feedback and evaluate each other’s learning. Peer teachers reinforce their own learning by instructing others. Students feel more comfortable and open when interacting with a peer. ■ I divide the class into smaller groups of 4–5 students to solve a problem. After about 10 - 15 minutes of discussion, one member of the group must do the problem on the whiteboard and present the solution to the whole class. Everyone in the group should be prepared to present it, they don’t know with one is going to be asked to do it.

How I use teem learning in my classes ■ After teaching students some method in mathematic I encourage students to give and receive feedback and evaluate each other’s learning. Peer teachers reinforce their own learning by instructing others. Students feel more comfortable and open when interacting with a peer. ■ I divide the class into smaller groups of 4–5 students to solve a problem. After about 10 - 15 minutes of discussion, one member of the group must do the problem on the whiteboard and present the solution to the whole class. Everyone in the group should be prepared to present it, they don’t know with one is going to be asked to do it.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Geneviève Harles. Experiments in STEM subjects (Luxembourg, Diekirch, Lycée classique de Diekirch in English)

Erasmus + Project InSTEM LCD (Luxembourg)

STEM career center

2015-2017 Contact : Geneviève Harles

Summary  STEM career center

Hacklab clubs Meeting once a week during lunch break

 Subjects:  Hacklab clubs  Social statistics  Green Energy  Biotechnology  GIS mapping  Methods:  Driven to discover  Peer to peer  CLIL  Experiments

STEM career center  All year long: SPOS  Once a year: meeting with former LCD students who

are still studying at university and professionals from different sectors: medecine, architecture, ICT, engineering, research

Hacklab clubs Meeting once a week during lunch break


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Social statistics  Statistics workshops about our school population

Green energy Visit of some wind parks

 Visit of STATEC (Institut national de la statistique et des études économiques du Grand-Duché de Luxembourg)  Exhibition of „Luxembourg 2017“ (in June 2017) 14 posters about geography, multicultural population, history of the Grand Duchy, linguistic situation, national symbols, culture and traditions, politics and institutions, economy, labor market, mobility, quality of life, all expressed in statistics

Social statistics

Green energy Visit of SEO in Vianden

Exhibition sample of „Luxembourg 2017“: multicultural population

Green energy  Creation of GIS map of all the wind parks in

Luxembourg (http://arcg.is/1GTTaO)  Visit of some wind parks  Visit of SEO in Vianden (Pumped-Storage Hydroelectric Power Station, currently one of the largest in Europe)

Green energy Visit of SEO at L/T/T meeting in April 2016


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Green energy

Driven to discover

Visit of SEO at L/T/T meeting in April 2016

Visits of museums, exhibitions, cities

Biotechnology

Peer to peer

Scienteens Lab workshops at Luxembourg university “DNA on the tanning bed”

GIS mapping  Introduction to GIS mapping (after Transnational

Meeting in Vilnius)  Creation of GIS map of all the wind parks in

Luxembourg (http://arcg.is/1GTTaO)  Visit of the national land registry office

LCD Science Days Science fair with 15-20 interactive scientific workshops managed by the students of the LCD, who explain scientific content to their younger schoolmates


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Experiments The scientific method:  Make an observation  Form a hypothesis  Perform the experiment  Analyze the data  Report your findings

CLIL

 In Luxembourg, CLIL has a long history  Introduced in 1844  Starts in German and Franch at the age of 8  Is the rule, not the exception

Experiments  Teaching of science should not be a mere

presentation of knowledge an mechanisms (passive approach).  Knowledge is best understood when founded by an experimental approach (active approach).  The 2 approaches must be complementary : observations during experiments are difficult to interpret if one has no theoretical knowledge.  Experimental scientific approach must be learned.

Experiments At our school:  Experiments in chemistry and physics for 2 hours every second week: compulsory during the last 3 years in a scientific section  Furthermore, experiments in biology for 2 hours every second week: compulsory for those who are studying natural sciences

Experiments  Students work in pairs  Specially equipped labs  Written report to be returned to the teacher after

each session  Both names of the students on the report  Reports are graded


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Experiments Scienteens Lab workshops at Luxembourg University:  extracurricular learning center of the University of

Luxembourg for High School students  workshops designed to spark students’ interest in science,  show the latest trends and technologies in research  supports students in their career choice  hands-on experiments, supervised by experienced scientists

and teachers from various disciplines  provide the students an insight into scientific research and

the day-to-day work in the lab

Experiments Relevant topics in biotechnology, mathematics and physics: • Biotechnology: “DNA on the tanning bed” exploring the

effect of UV light on the DNA of the bacterium Escherichia coli • Mathematics: “Keep a secret? - Thanks to Number Theory!”, allow students to learn how number theory is applied to secure communications • Physics: “Mayonnaise, a culinary star on the test bench - a liquid or a solid?”. During this physics workshop, students get the opportunity to analyze the behavior of a specific material in all its forms and learn to establish a relation between its structure and its flow behavior

Experiments Biology


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Luana Fogli. From school to STEM (Italy, Martina Franca, Liceo Scientifico Tito Livio, in English)

Main Choices

FROM SCHOOL TO STEM InStem experience in Italy Prof.ssa Luana Fogli Liceo Tito Livio Martina Franca

Some data from MIUR

(Education and Research Ministery)

Academic year 2015/2016

Choices and gender

• University enrolments in Italy were increasing by +2%, 6.000 extra units; • +3% if focused on 19-year-old students; • Total number :271.119 • Females are the majority with a 55.2%

Trend of enrolments

PROJECT ORGANISATION • 30 HOURS /YEAR OF HACKLAB TRAINIG • 30 STUDENTS FROM 5 DIFFERENT CLASSES • TUTORS : TEACHERS AND PROFESSIONALS


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

CONFERENCE:

ACTIVITIES

The Project Manager of ExoMars Express mission described the recent achievements of ESA.

1. MEETINGS RESEARCHERS/PROFESSIONALS 2. VISITING LABS, ORGANISATIONS, COMPANIES… 3. EXPERIENCING NEW TOPICS (BIOINFORMATICS AND ROBOTICS)

ASTRONOMY AND ENGINEERING

MEETING SCIENTISTs AND PROFESSIONALS A

BIOLOGIST TALKED

ABOUT REASEARCHERS’ CAREER, AND ANSWERED STUDENTS’ QUESTIONS

BIOLOGY

ABOUT RECENT SCIENTIFIC ISSUES

CONFERENCE Our school former students who became Space Aircraft Engineers spoke about their experiences .

ASTRONOMY AND ENGINEERING

VISIT TO ASI GEODETIC CENTER

BIOLOGY


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

BIOINFORMATICS

VISIT TO BIOFUELS POWER PLANT

NEW TOPICS • BIOINFORMATICS • PROGRAMMING

BIOINFORMATICS EXERCISES

=Content

=Language

=Integrated

• ROBOTICS =Learning

A method to learn non-linguistic contents, through strategies commonly used in L2 teaching: Games, role-playing, listening and comprehension…In this way students activate more neuronal areas than usual, making learning more effective.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

PROGRAMMING THROUGH SCRATCH

VIDEO

Having some students well talented for Informatics I made them teach to others, after a bit of training. We participated to a global event called: THE HOUR OF CODE.

POSITIVE EFFECTS IN ORDER TO: • • • • • •

MAKE STUDENTS BETTER UNDERSTAND THEIR TALENTS INHANCE SELF-AWARENESS EXPLORE NEW TOPICS AND METHODS EXPLORE LOCAL RESOURCES FOR BETTER TEACHING COME UP WITH NEW IDEAS TO WORK ON UNDERSTAND OTHER CULTURES

NEGATIVE EFFECTS: • NONE

VIDEO : THE HOUR OF CODE

DISSEMINATION ACTIVITY: •

ROBOTICS THROUGH ARDUINO

• • • • • •

Articles on the School website http://www.titoliviomartinafranca.gov.it/index.php?option=com_con tent&view=article&id=169:progetto-instem-erasmusplus&catid=80:erasmus&Itemid=101 Materials on twinspace (video,exercises, reports, pictures…) Communication to school staff Communication to parents during the Open Days Poster Multiplier event (next) http://instemprojectmarti.wixsite.com/erasmus (work in progress)


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Hasan Biber. Simple and effective: experiential education and method Driven to Discover (Turkey, Manavgat, Namık Karamancı Fen Lisesi, in English)

Magic of Everyday Moments: DRIVEN TO DISCOVER METHODOLOGY InSTEM: INNOVATIVE STUDENTTEACHER EVOLUTION MODEL ERASMUS+ KA2 PROJECT

Have you ever noticed a child watch a truck driving by or pick up a ladybug? That is jus a very simple example of how a child develops thinking skills. Young children develop thinking skills—such as understanding cause and effect and developing the ability to reason—by exploring and learning how things fit together. They use their senses to learn, and they also need the support of a caring adult to describe and encourage their exploration and curiosity.

NAMIK KARAMANCI FEN LİSESİ MANAVGAT-TURKEY

EU KEY COMPETENCES

As you talk to a child, you are also supporting the child’s ability to learn other languages later in life. Through loving, nurturing relationships, children feel comfortable exploring their environments, deepening their understanding of how the world works.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Consider the following strategies to support curiosity and encourage discoveries:

* Encourage imaginary play

* Promote curiosity and exploration by allowing to discover

* Stimulate experimentation using items found around

* Facilitate the development of problem-solving skills and persistence


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Giovanna Malegoti, Simonetta Zamboni. Europe 2100. Lectora platform for learning (Italy, Desenzano del Garda, Liceo di Stato „G.Bagatta“, in English)

The project EUROPE 2100 A Sustainable Future for European Youth

The theme IPCC Alarm

2015-1-NL01-KA219-008877_4

Liceo Statale G.Bagatta Desenzano del Garda, Italy

Reduction of Greenhouse gases emission to 0% by 2100

No action on Greenhouse gases emission

Kennemer College Beverwijk, the Netherlands

Lycée Alfred Mezieres Longwy, France

http://europe2100.eu

Vilniaus Pilaites Gimnazija Vilnius, Lithuania

Change in average surface temperature (1986-2005 to 2081-2100) Vilnius, 15/12/2017

Vilnius, 15/12/2017

Project aims and methods

The theme IPCC Alarm

Climate changes

Aims to increase the motivation of students

Methods the topic of climate change is more urgent than ever innovative teaching methods • the English language as a lingua franca • peer-to-peer-education (students become the teachers) • e-learning through the Learning Portal  CLIL teaching • collaboration with universities, research centers and organizations from different countries.

Change in global surface temperature 1901-2012 Vilnius, 15/12/2017

The students are in charge of their own learning process and develop more responsibility and motivation. Vilnius, 15/12/2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

The programme 1. BEVERWIJK, NL November 2015 Climate Change – Energy Transition 4 CONFERENCES at University level

2 DESENZANO, IT March 2016 Sustainable Food Production and Transport

Communication tools LEARNING PORTAL

PEER-TO-PEER LEARNING STUDENT PRESENTATIONS

3 VILNIUS, LT October 2016 Energy Efficiency for a Sustainable Future

ERASMUS TALKS

4 LONGWY, FR March 2017 A Sustainable Future in the European Union

FINAL MULTIPLIER EVENT

5 TEXEL, NL May 2017 Texel aims to become non-carbon by 2020

Vilnius, 15/12/2017

PROJECT WEBPAGE http://europe2100.eu TwinSpace

https://twinspace.etwinning.net/4932/home

Vilnius, 15/12/2017

Erasmus days

PEER-TO-PEER LEARNING

BEVERWIJK, NL November 2015

Student presentations in each school

Climate Change – Energy Transition

Vilnius, 15/12/2017

Vilnius, 15/12/2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Erasmus Talks

The Learning Portal UNITS

Climate Change Wind Power Solar Energy Geothermal Power Sustainable Transport Sustainable buildings COMING SOON Nuclear Power Zero waste Sustainable food European Union stance on sustainable development

Coming soon ‌

Vilnius, 15/12/2017

Vilnius, 15/12/2017

The Learning portal The software

The Learning Portal CASE STUDY

Farmers Market Brescia sustainable transports Texel 2030 COMING SOON Ingalina decomissioning Maxival waste-sorting centre

Trivantis

Lectora Publisher 16

Vilnius, 15/12/2017

Vilnius, 15/12/2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

CLIL Unit WIND MILLS

CLIL Unit CLIMATE CHANGE

LEARNING OBJECT

FINAL TEST

Listening

http://it.europe2100.eu/climatechange/ Vilnius, 15/12/2017

Reading Writing Interpreting data

http://it.europe2100.eu/windpower/chapter_1_4_how_do_wind_turbines_work_.html Vilnius, 15/12/2017

CLIL Unit CLIMATE CHANGE

Cambridge IELTS Exam Cambridge First Certificate (B2 level)

CLIL Unit WIND MILLS

Listening

Reading Writing Interpreting data

http://it.europe2100.eu/windpower/chapter_1_5_inside_the_nacelle.html Vilnius, 15/12/2017

Vilnius, 15/12/2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Unit SOLAR ENERGY

Unit SOLAR ENERGY

http://li.europe2100.eu/solarenergy/test_1_page_0.html Vilnius, 15/12/2017

Vilnius, 15/12/2017

Unit SOLAR ENERGY

Vilnius, 15/12/2017

Unit SOLAR ENERGY

Vilnius, 15/12/2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Case study FARMERS MARKET

http://it.europe2100.eu/farmersmarket/ Vilnius, 15/12/2017

Vilnius, 15/12/2017

http://it.europe2100.eu/farmersmarket/chapter_1_desenzano_page_1.html Vilnius, 15/12/2017

Vilnius, 15/12/2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Vilnius, 15/12/2017

Vilnius, 15/12/2017

Vilnius, 15/12/2017

Vilnius, 15/12/2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Vilnius, 15/12/2017

Vilnius, 15/12/2017

Vilnius, 15/12/2017

Vilnius, 15/12/2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

5.2. Final Conference of Young Researchers


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

STUDY of the ENZYME ACTIVITY using the EXAMPLE of HEPATIC CATALASE Anne Eyschen, Tim Heymans, Sven Kerger, Tessy Kohl Lycée classique de Diekirch, Diekirch, Luxembourg


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

STUDY OF MOVEMENTS USING SPARKVUE Anne Eyschen, Tim Heymans, Sven Kerger, Tessy Kohl Lycée classique de Diekirch, Diekirch, Luxembourg


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

EDUCATION TO CREATIVE COMPLEXITY Matteo Pentassuglia, Giovanni Chiarelli, Anduena Barjami,Elena Lucarelli Liceo Scientifico Tito Livio, Martina Franca


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Teacher Evolution Model

FRUIT AND VEGETABLE ELECTRICITY VAISIUOSE IR DARŽOVĖSE DARŽOV SE ESANTI ELEKTRA Kipras Stankevičius, Stankevi Šarūnas Geglis Vilniaus Pilaitės Pilait s gimnazija, Vilnius, Lithuania Baterija elementas, galintis kaupti energiją. energij Be to jąą galima nešiotis su savimi. Baterija yra sudaryta iš sidabrinių/varinių sidabrini diskų, cinko diskų ir medžiagos, kuri išmirkyta sūriame vandenyje arba rūgštyse. gštyse. Tyrimo tikslas. Pagaminti galvaninį galvanin elementą, naudojant įvairius vairius vaisius bei daržoves. Uždaviniai. Pagaminus galvaninius elementus, palyginti jų j išskiriamas išskiria įtampas ir pažiūrėti kiek tam tikrų vaisių ar daržovių gali įžiebti 1 LED lemputę. Tyrimo metodika. Paimame pasirinktą pasirinkt vaisius ar daržoves (bulves, svogūnus, svog kivius, citrinas, obuolius, apelsinus), į juos įsmeigiame varinę monetą ir cinkuot cinkuotą vinį. Sujungiame juos su voltmetru ir išmatuojame įtampą. Pažiūrime kiek tam tikrųų vaisių/daržovių vaisi reikės tam, kad įžiebti 1 LED lemputę. Tyrimo rezultatai. Darbe buvo naudojami 4 rūšių r vaisiai (citrina, kivis, obuolys ir apelsinas) ir 2 rūšių daržovės ės (bulvė, (bulv svogūnas).


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Sužinojome, kad sugeneruoti pakankamai įtampos tam, kad įžiebtume 1 LED lemputę, mums reikėjo skirtingų kiekių vaisių ar daržovių. Kad įžiebtume 1 LED lemputę buvo reikalingos:

2 bulvės

3 citrinos

2 kiviai

Pastebėjome, kad dažniausiai užtenka 2 vaisių/daržovių, retesniais atvejais reikėjo 3. Visi mūsų išbandyti vaisiai vidutiniškai išskyrė 0.95 voltų

2 obuoliai

3 apelsinai

3 svogūnai

Išvados 1. Įmanoma sugeneruoti pakankamai energijos ir įžiebti LED lemputę, naudojant visus mūsų pasirinktus vaisius ar daržoves. 2. Citrinos ir svogūnai išskiria mažiausiai voltų, nepaisant to, kad yra rūgštūs, o bulvė ir apelsinas išskiria daugiausiai voltų Informaciniai šaltiniai http://threegadgets.com/gadgets/baterija/ http://baterijos.lt/baterijos-galvaniniai-elementai


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model Summary The battery is a very convenient way to accumulate power and carry it with you. A cell battery is made up of silver/copper disks, zinc discs and material soaked in salt water or acid. We wondered if we could do the same just with copper coins and zinc covered nails and various fruits and vegetables. We used potatoes, lemons, kiwis, onions, apples and oranges. we impaled them with zinc covered nails and put in our copper coins to see if it can light an LED, if so how much of the fruit/vegetable would it take. It usually takes 2 of them with some exeptions like the onions and lemons which took 3 of them, on avarage 1 fruit/vegetable produced a 0.95 volt current.

INTERNET PLATFORM FOR MATHEMATICS LEARNING INTERNETO PLATFORMA, SKIRTA PATOGIAI MOKYTIS MATEMATIKOS Tomas Kubaitis, Dovydas Diržius Vilniaus Mykolo Biržiškos gimnazija, Vilnius, Lithuania

ĮVADAS Viena didžiausių šių laikų moksleivių sveikatos problemų yra stuburo iškrypimai dėl sunkių knygų nešiojimo kuprinėse. Kadangi vienas daugiausiai per savaitę turinčių pamokų mokomasis dalykas yra matematika ir matematikos dalyko knygas yra būtina nešiotis kiekvieną dieną namo norint paruošti namų darbus ar tiesiog pasimokyti, todėl buvo sukurta interneto platforma, leidžianti mokiniams nebesinešioti namo knygų, kad mokinių kuprinės palengvėtų bei vis mažiau mokinių susidurtų su stuburo skausmais bei jo iškrypimu. Kita temos problema yra ta, jog susirgę mokiniai sunkiai geba mokytis matematikos savarankiškai. Kadangi aukštesnėse klasėse matematiką mokytis tampa sunkiau ir praleidus net ir vieną pamoką mokinys gali nebesuprasti temos ar viso skyriaus, todėl naudodami šią platformą,


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model mokiniai gali neišeidami iš namų mokytis matematikos bei gilinti savo žinias savarankiškai, taip pat, konsultuotis su klasės draugais ar mokytoju. TYRIMO TIKSLAS Sukurti internetinę platformą, kuri mokiniams padėtų mokytis matematikos. TYRIMO METODIKA Platformos struktūros, dizaino ir logotipo kūrimas. Iš pradžių, kaip ir daroma daugelyje skaitmeninių projektų, buvo nutarta sugalvoti platformos pavadinimą. Norėta sugalvoti pavadinimą, kuris būtų lengvai atsimenamas bei turėtų prasmę, taip pat nebūtų sunku sukurti logotipą šiam pavadinimui. Po ilgų svarstymų bei galvojimų nutarta, jog platformos pavadinimas bus „Mathbook“ (liet. „Matematikos knyga“). Pasirinktas pavadinimas anglų kalba, nes šiais laikais anglų kalba sukurti skaitmeniniai objektai turi didesnę išliekamąją vertę bei šis pavadinimas anglų kalba skamba geriau negu lietuviškai. Taip pat manyta, kad pavadinimas anglų kalba labiau pritrauks platformos naudotojus kuo dažniau naudoti platformą bei aktyviai dalyvauti platformoje vykstančiose diskusijose. Platformai talpinti reikėta pasirinkti interneto serverių tiekėją bei pasinaudoti jų paslaugomis – įsigyti interneto serverį platformai talpinti. Po nedidelių ieškojimų bei patarimų iš UAB IT City direktoriaus Šarūno Belicko nutarta pasinaudoti UAB „Interneto Vizija“ paslaugomis ir įsigyti interneto serverį metams iš šio tiekėjo už 44€ 20ct. Buvo pasirinktas šis interneto serverių tiekėjas, nes tai yra viena pirmaujančių įmonių Lietuvoje, teikiančių tokias paslaugas; taip pat, „Interneto Vizijos“ klientų sistema yra viena patogiausių naudojimui bei neatsiliekanti nuo pasaulyje geriausių interneto paslaugų tiekėjų. Platformos dizainas buvo kurtas su Adobe Photoshop programos nemokama versija (kuria galima naudotis trisdešimt dienų). Šia programa naudojasi viso pasaulio profesionalūs grafikos dizaineriai bei fotografai. Adobe Photoshop pasirinkta dėl savo itin plataus spektro funkcijų bei kokybės, taip pat

norėta kuo geriau įvaldyti šios programos veikimą bei

pagrindinius principus. Buvo nuspręsta naudoti tokias pagrindines spalvas: tamsesnę raudoną (#b22548 ■), šviesiai mėlyną (#29a3cc ■) bei šviesiai pilką (#f3f3f3 ■). Pasirinktos tokios nuotaiką


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model keliančios spalvos, nes mokantis matematikos ne vienam moksleiviui pasidaro nuobodu, todėl manyta, kad šios spalvos atneš daugiau noro mokytis bei geresnius rezultatus pamokų bei kontrolinių metu. Taip pat šios spalvos puikiai dera, yra kontrastingos, nerėžia akies skaitant, nuo jų nepavargstama, nesunkiai buvo galima derinti prie juodos, baltos. Tituliniame puslapyje matoma pagrindinė – pradinė informacija. Viršutinėje puslapio dalyje (angl. header), kaip ir visuose kituose platformos puslapiuose, kairėje yra atvaizduotas platformos logotipas, o dešinėje - prisijungusio žmogaus vardas ir pavardė bei atsijungimo mygtukas. Toliau – vidurinėje dalyje (angl. body) yra pateiktas skyrių ir temų sąrašas. Ir galiausiai apatinėje puslapio dalyje (angl. footer) dešinėje yra pateikta informacija, kas parengė platformą. Temos teorijos puslapyje viršutinė ir apatinė puslapio dalys tokios pačios, skiriasi tik vidurinė dalis. Kairėje pusėje yra pateiktas temos pavadinimas, data, kada tema pradėta nagrinėti, bei pati teorija, o dešinėje „Temos šauktukai“ (teiginiai, kuriuos reikia ypač gerai įsidėmėti iš tos temos), taip pat po „Temos šauktukais“ yra mygtukas į tos temos forumą. Platformos logotipas sukurtas naudojant Adobe Illustrator grafinio piešimo programos nemokamą versiją (kuria galima naudotis trisdešimt dienų). Ši programa pasirinkta, nes ją taip pat naudoja profesionalūs grafikos dizaineriai iš viso pasaulio, ja naudotis buvo lengva išmokti bei ji puikiai tinka naudoti kartu su Adobe Photoshop, kadangi šių programų kūrėjai yra viena ir ta pati kompanija. Kai buvo kuriamas logotipas, atsižvelgta į šiuos dalykus: įsimintinumas, šiuolaikiškumas, kontrastingumas bei lengvas naudojimas skaitmeninėje erdvėje. Logotipas kurtas visai neilgai, nes jau po poros bandymų prieita prie versijos, kuri tenkino abu projektinio darbo autorius. Programavimo būdo pasirinkimas. Pasirinkti programavimo būdą nebuvo lengva, nes tai buvo naujas dalykas, su kuriuo buvo susidurta. Kai buvo išnagrinėti šaltiniai, prieita prie dviejų programavimo būdų – naudoti turinio valdymo sistemą ar viską daryti nuo nulio nepasitelkiant jokių pagalbinių įrankių. Šioje situacijoje Šarūnas Belickas (UAB IT City direktorius) pasiūlė naudoti turinio valdymo sistemą, nes ji užtikrintų greitesnį darbą, platformos valdymas projekto pabaigoje


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model taptų lengvesnis bei turinio įkėlimas į platformą taptų vos keleto paspaudimų darbas. Taigi pasirinktas programavimo būdas su turinio valdymo sistema. Kadangi turinio valdymo sistemų yra ne viena, todėl buvo nagrinėta, kuri yra geriausia ir populiariausia. Išnagrinėjus paaiškėjo, kad turinio valdymo sistema „Wordpress“ yra būtent tai, ko reikia, ir kad išmokti ja naudotis bus paprasčiausia ir patogiausia, kadangi tai yra populiariausia turinio valdymo sistema (ji yra naudojama net 27% viso pasaulio interneto svetainių) bei yra sukurta daug mokomosios medžiagos norintiems išmokti ja naudotis. Platformos programavimas. Platformos programavimas buvo pradėtas nuo vaizdo pamokų www.youtube.com bei www.wordpress.com esančių žinynų nagrinėjimo. Kadangi pati „Wordpress“ turinio valdymo sistema nėra sunkiai įdiegiama ir valdoma, tai buvo nesunku suprasti, kaip ji veikia, kaip ją valdyti. Pirmas žingsnis kuriant šią platformą buvo instaliuoti „Wordpress“ į interneto serverį, kuris buvo įsigytas iš „Interneto vizija“ internetinių serverių tiekėjo. Tai padaryti buvo ypač lengva, nes „Interneto vizijos“ serverių klientų sistemoje yra integruotas greitas „Wordpress“ instaliavimo būdas. Taigi kelių mygtukų paspaudimu – slapyvardžių bei slaptažodžių sukūrimu platformos administratoriams, kelių nustatymų nustatymu – „Wordpress“ turinio valdymo sistema buvo sėkmingai instaliuota į interneto serverį ir paruošta tolimesniam kūrimui. Dizaino programavimas užtruko ilgiausiai. Tačiau žiūrint vaizdo medžiagą bei gilinantis į „Wordpress“ programavimo ypatybes buvo suprasta, kad tai nėra labai sunku, tereikėta įsiminti bei panaudoti „Wordpress“ turinio valdymo sistemoje naudojamos php programavimo kalbos keletą kodo fragmentų bei susieti juos su html ir css programavimo kalbomis, kurios yra skirtos dizainui kurti. Pradėta nuo platformos titulinio puslapio. Jo pagrindinėje dalyje yra atvaizduoti visų matematikos temų pavadinimai, kurias projekto pabaigoje sukėlėme į turinio valdymo. Šių pavadinimų grupė yra pateikta kaip teorijos temų meniu, todėl programavimo metu šis meniu buvo atvaizduotas su „Wordpress“ funkcija „wp_nav_menu();“. Toliau buvo programuotas temų teorijos puslapis. Temos pavadinimas išvestas į ekraną naudojant „the_title();“. Visas pagrindinis tekstas – teorija – yra išvestas į ekraną naudojant


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model „the_content();“ funkciją. „Temos šauktukai“ – informacija, kurią mokinys privalo ypač gerai įsidėmėti – yra išvesta naudojant „the_secondary_content();“ funkciją, kurią reikėta sukurti patiems, nes „Wordpress“ turinio valdymo sistema pradžioje suteikia tik vieno turinio galimybę. Tai padarėme instaliuodami į „Wordpress“ įskiepį (angl. plugin), kurio pagrindinė funkcija buvo būtent tai, ko reikėta. Žemiau „Temos šauktukai“ skilties yra pateiktas mygtukas į būtent tos temos forumą, kad mokinys ar mokytojas, atsidaręs temos teorijos puslapį, galėtų greitai patekti į tos temos forumą ir rasti sau tinkamą informaciją. Kai temos teorijos puslapis buvo suprogramuotas, pereita prie forumo. Atrasta, kad šiai galimybei pridėti geriausiai tiks „Wordpress“ įskiepis „Forum - wpForo“, kurio paskirtis yra būtent forumo sukūrimas bei paruošimas naudojimui. Šis forumas yra lengvai valdomas per turinio valdymo sistemą, suteikia pakankamai galimybių tiek platformos administratoriams – galima nesunkiai sukurti ar ištrinti naują forumo temą ar skiltį, lengvai ištrinti ar paslėpti komentarus, užblokuoti tam tikrus žmones nuo komentarų rašymo -, tiek ir patiems vartotojams – galima nesunkiai į komentarą įterpti failus, vaizdo medžiagą ar nuotraukas. Kai šis įskiepis buvo instaliuotas, beliko pritaikyti jį platformai – apipavidalinti, kad tiktų prie bendro platformos dizaino. Pabaigus darbus su forumo puslapiu galvota, koks turėtų būti platformos prisijungimas. Visgi norėta, kad tai būtų gan saugus bei patogus prisijungimas platformos lankytojams. Sugalvota, kad prisijungimo puslapyje turėtų būti prisijungimas su „Facebook“, kadangi 100% bendraamžių bei 80% mokytojų turi šio socialinio tinklo paskyras bei yra aktyvūs vartotojai. Toks prisijungimo tipas neturėtų sudaryti didesnių keblumų prisijungiant prie platformos, o tai yra didelė priežastis, kodėl daugelis žmonių net negali prisijungti prie panašaus tipo platformų, nes nenori ar neturi laiko susikurti naują paskyrą - tai gali užtrukti daugiau laiko arba būti per daug sudėtinga. Tačiau sukūrus „Facebook“ prisijungimą, kuris buvo taip pat pridėtas instaliuojant įskiepį, pastebėta, kad jo neužteks saugiam prisijungimui, nes tuomet prie platformos galėtų prisijungti bet kuris vartotojas turintis „Facebook“ paskyrą, todėl sugalvota, kad reikia padaryti papildomą kodo įvedimą, kuris būtų kuriamas ir duodamas platformos administratorių. Buvo ieškota internete, kaip tai padaryti ir nesunkiai surasta, kaip php programavimo kalbos pagalba sukurti tokį laukelį kodui. Taigi po šių pakeitimų, kad


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model patektum į platformą, reikia suvesti administratorių duotą kodą ir tik tuomet yra leidžiama prisijungti su „Facebook“ paskyra. Prisijungimo puslapį norėta padaryti gražų – fone įterpti kokią nors nuotrauką ar vaizdo įrašą iš matematikos pamokų. Būtent taip ir padaryta – buvo surasta ir fone atvaizduota nuotrauka, kuri siejasi su matematika. Šis gražus prisijungimas turėtų sudominti vartotojus ir sukelti gerus prisijungimo prie platformos pojūčius. Šiais laikais vis daugiau žmonių, o ypač moksleivių, naudojasi išmaniosiomis technologijomis ir naršo internetą tiesiai iš savo išmaniojo telefono ar planšetės. Todėl, neatsiliekant nuo pasaulyje vyraujančios tendencijos, platforma taip pat pritaikyta įvairių dydžių ekranams. Pritaikyti buvo nesunku – buvo koreguojamas bei papildomas css programavimo kalbos failo kodas, nustatant, kaip turėtų atrodyti vaizdas tam tikrų dydžių ekranuose. Tokiu būdu platforma tapo dar labiau prieinama, nes mokinys ar mokytojas net ir pamokų ar pertraukų metu, iš kišenės išsitraukęs savo išmanųjį telefoną, gali nevaržomai prisijungti prie platformos bei skaityti joje esančią informaciją ar dalyvauti virtualioje diskusijoje. Galiausiai buvo sukurtas nesudėtingas žaidimas, kuris yra prie kiekvienos temos, su javascript kalba ir integruota grafikų braižyklė. Matematikos teorijos ir uždavinių įkėlimas į turinio valdymo sistemą. Temų teorijos ir uždavinių įkėlimas pradėtas nuo pasitarimo su matematikos mokytoja, kadangi tai yra svarbiausias šios platformos elementas, kuris turi būti itin gerai bei kruopščiai sudarytas, kad nekeltų keblumų platformos naudotojams. Nuspręsta, kad į platformą bus sukeltos visos trečios (vienuoliktos) klasės matematikos temos bei keletas su jomis susijusių uždavinių. Teorijos įkėlimas į platformą truko nemažai laiko, kadangi tai buvo visų šių mokslo metų matematikos teorija, kurią buvo gana sunku susisteminti bei paruošti. Tam tikrų temų teorijos puslapių forumuose sukurtos skiltys, kuriose mokinys gali rasti įvairių uždavinių, kuriuos galėtų spręsti savarankiškai prisijungęs prie platformos, taip pat konsultuotis su savo klasiokais ar mokytoju.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Teacher Evolution Model TYRIMO REZULTATAI Sukurta pilnai funkcionuojanti svetainė svetain su 11 klasėss pirmo pusmečio pusme matematikos teorija. Tinklapio adresas: www.mathbook.lt Prisijungimo kodas: MBG9862

1 pav. „Mathbook“ platformos titulinio puslapio dizainas.

2 pav. „Mathbook“ platformos temos puslapio dizainas.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

3 pav. „Mathbook“ platformos titulinis ir temos puslapis, prisitaikęs prie telefono ekrano. IŠVADOS 1. Projektinio darbo tikslas – sukurti interneto platformą, kuri padėtų mokytis

matematikos – sėkmingai įvykdytas. 2. Tinkamai pasirinktas platformos programavimo būdas, kuris leido sklandžiai ir be

didelių sunkumų programuoti platformą. 3. Platforma

sėkmingai suprogramuota. Programavimo žinios įsisavintos ir bus

naudojamos kituose interneto projektuose ateityje. 4. Matematikos temų teorija sėkmingai patalpinta į turinio valdymo sistemą ir paruošta

naudojimui.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model 5. Platformos kūrimo metu padidintos grafikos dizaino žinios bei įgūdžiai, sėkmingai

sukurtas gražus platformos dizainas bei logotipas, išmokta dirbti su profesionaliomis dizaino programomis, kurias naudoja viso pasaulio profesionalūs grafikos dizaineriai ir fotografai. 6. Nupirktas interneto serveris iš UAB „Interneto vizija“ interneto serverių tiekėjo puikiai

tiko platformai talpinti – platforma veikia greitai bei sklandžiai. 7. Platforma duota išbandyti klasiokams, kurie, remiantis apklausos rezultatais, liko

patenkinti platformos veikimu bei jos nauda. 8. Projektinio darbo autoriai išmoko ieškoti internete reikiamos informacijos, išmoko

dirbti su „Wordpress“ turinio valdymo sistema, taip pat padidino php, html, css ir javascript programavimo kalbų žinias ir išmoko jas pritaikyti praktikoje. INFORMACINIAI ŠALTINIAI 1. Adobe Illustrator [Žiūrėta 2016-10-03]

http://www.adobe.com/lt/products/illustrator.html 2. Adobe Photoshop [Žiūrėta 2016-10-03]

http://www.adobe.com/lt/products/photoshop.html 3. Interneto serverių tiekėjas [Žiūrėta 2016-09-26] https://www.serveriai.lt 4. Matematikos teorija [Žiūrėta viso darbo metu] – Matematikos išplėstinio kurso

vadovėlis gimnazijos III klasei „Matematika“, I ir II dalys 5. Prisijungimo puslapio nuotrauka [Žiūrėta 2017-01-14]

https://www.pexels.com/photo/calculations-mathematics-university-learning-7462/ 6. Turinio valdymo sistemų analizė [Žiūrėta 2016-10-30]

http://www.makeuseof.com/tag/10-popular-content-management-systems-online/ 7. Wordpress vaizdo pamokų grojaraštis [Žiūrėta viso darbo metu]

https://www.youtube.com/watch?v=8OBfr46Y0cQ&list=PLpcSpRrAaOaqMA4RdhSn nNcaqOVpX7qi5 8. Wordpress žinynai bet žmonių pagalba forumuose [Žiūrėta viso darbo metu]

https://wordpress.org/support/


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model SUMMARY Tomas Kubaitis and Dovydas Diržius from Mykolo Biržiškos gymnasium created an Internet platform for better math learning which was designed for students in schools. It is a place, where every student can come and learn math, including Lithuanian course of math, integrated graph drawer and even chatting with classmates to solve problems. Thus, this platform has been created considering latest trends and that every person nowadays uses smart phones, responsive design was applied. So, not only this platform will help in math, but also have result in students' bags weight, which could help getting less students to get their spine pain and its diseases.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

WIRELESS ELECTRICITY VIA TESLA COIL TESLA BOBİNİ İLE KABLOSUZ ELEKTRİK Emre Akbaş, Ali Ekin Aktaş, Elif Göksu Çelik Namık Karamancı Fen Lisesi, Manavgat, Turkey INTRODUCTION The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. Tesla tried to use this coil to transfer electrical energy without any wires. Tesla coils can produce output voltages from 50 kilovolts to several million volts for large coils. The alternating current output is in the low radio frequency range, usually between 50 kHz and 1 MHz. Tesla employed the Tesla coil in his efforts to achieve wireless power transmission, his lifelong dream. In the period 1891 to 1900 he used it to perform some of the first experiments in wireless power. At 1893 Columbian Exposition in Chicago he lit light bulbs from a cross a room. Tesla went on to develop a wireless power distribution system that he hoped would be capable of transmit power long distance directly into homes and factories. Tesla attempted to construct a large high-voltage wireless powerstation in 1991, now called the Wardenclyffe Tower, at Shoreham, New York. By 1904 investment dried up and the facility was never completed.

Fig. 1. The Wardenclyffe Tower

Fig. 2. Tesla demonstrating wireless transmission by "electrostatic induction" during an 1891 lecture at Columbia College.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model RESEARCH OBJECTIVES Through this project we tried to prove that the electrical energy can be transferred without wires and can be made in our daily life with low cost. METHODS OF RESEARCH 1.Planning and Learning First of all we learned how to make a Tesla Coil and how it works. We bought all necessary compenents such as copperwire, a transformator ( from a scrapmicrowave), a PVC pipe and other things. 2. Assembling. We started with wrapping the copper wire around the PVC pipe (275 wraps). Than we wrapped our thicker wire around the pipe (3 wraps). We build our circuit as in figure 3 with help from electricians. Than we put a table tenis ball ( with aluminium foil wrapped around it) at the top of the coiland secured it in place using hot glue. At last we plugged it to the main energyline ( city current) and we put a Fluorescent light bulb near to Coil. In this project we used ionization of gases and magnetic field energy.

Fig. 3. Tesla Coil schematics

Fig. 4. A Fluorescent bulb near a Tesla Coil

RESULTS & CONCLUSIONS When we put the light bulb near the coil we saw that the bulb started to light up. We saw that wireless electricity is easy to use and can be made in our daily life.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

BIBLIOGRAPHY 1. https://en.wikipedia.org/wiki/Tesla_coil 2. http://www.elektrikport.com/teknik-kutuphane/tesla-bobinininincelenmesi/4411#ad-image-0 3. http://www.instructables.com/id/How-to-build-a-Tesla-Coil/ 4. http://www.livescience.com/46745-how-tesla-coil-works.html 5. https://en.wikipedia.org/wiki/Wireless_power_transfer


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

5.3. POSTERS of Conference of Young Researchers

Algimantas Masaitis, Vilniaus Pilaitės gimnazija, Vilnius, Lietuva. „Turgo Turbine“.

Turgo turbina Algimantas Masaitis Vilniaus Pilaitės gimnazija (Vilnius, Lietuva). Darbo vadovas – Darius Česnavičius Įžanga

Darbo eiga

 Turbinos spausdinimas 3D spausdintuvu.

Turbinos modelio gamybai naudotas 3D spausdintuvas Zortrax M200.

 Informacijos apie turbinų tipus apžvalga.

Vakar dienos technikos naujovės šiandien privalo rasti kelią ir į mokyklos bendruomenę: tai turime įvaldyti mes – moksleiviai, tai turi priimti kaip nūdienos neišvengiamybę bei to nebijoti ir mokytojai. Tuomet galima galvoti apie atsiveriančių galimybių pritaikymą mokymo procese, užklasinėse veiklose, kūryboje.

Tikslas 1. Susipažinti su turbinų tipų įvairove. 2. Išmokti naudotis 3D modeliavimo programine įranga. 3. Sukurti Turgo turbinos modelį. 4. Susipažinti su 3D spausdintuvais ir spausdinimo technologijomis. 5. Sukurto Turgo turbinos modelio spausdinimas 3D spausdintuvu 6. Supažindinti mokyklos bendruomenę su trimačių objektų modeliavimu bei su trimačių spausdintuvų teikiamomis galimybėmis. Paaiškinimai po paveikslėliais turėtų būti rašomi Times arba Times New Roman šriftu, Italic. Jų dydis gali svyruoti nuo 16 iki 24 punktų. Lygiavimas turi būti orientuotas į paveikslėlio pusę. Jeigu tekstas po paveikslėliu – lygiavimas turi būti į kairę pusę.

Pabaigos žodis

 Turbinos kūrimas su 3D modeliavimo programa.

Vykdant Turgo turbinos kūrimo darbus susipažinau su įvairiais turbinų tipais; Išmokau dirbti 3D modeliavimo programa; Susipažinau su 3D spausdintuvais ir jų teikiamomis galimybėmis.

Informaciniai šaltiniai

http://www.turbinesinfo.com/turgo-turbines/ http://energyeducation.ca/encyclopedia/Turgo_turbine https://www.blender.org/ https://zortrax.com/ http://greenbugenergy.com/


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Anne Eyschen, Tim Heymans, Sven Kerger, Tessy Kohl, Lycée classique de Diekirch, Diekirch, Luxembourg. „Study of the enzyme activity using the example of hepatic catalase“.

STUDY of the ENZYME ACTIVITY using the EXAMPLE of HEPATIC CATALASE Anne Eyschen, Tim Heymans, Sven Kerger, Tessy Kohl Lycée classique de Diekirch, Diekirch, Luxembourg, Claudine Hein, Geneviève Harles Introduction

Methods

The chapter about enzymes is part of our biochemistry course.

First experiment : Tube 1: 10mL H2O2 + sand Tube 2: 10mL H2O2 + MnO2 Tube 3: 10mL H2O2 + piece of calf liver

Enzymes are proteins that accelerate the chemical reactions of an organism, capable of catalysing the reactions in the cells (biological catalysts). The enzyme that we focus on is the hepatic catalase which is present in the liver of mammals whose function is to degrade hydrogen peroxide (H2O2), a highly reactive molecule formed during cellular respiration.

Aims We want to illustrate the different properties of enzymes by a series of experiments to show that they function as biological catalysts, that their activity depends on the conditions of the environment (pH, temperature) and that the enzymes are found intact after having transformed their substrate. .

Second experiment : Tube 1: 5mL content of tube 3 from previous experiment + half a piece of liver previously used + fresh piece of liver Tube 2: 5mL content of tube 3 from previous experiment + half a piece of liver previously used + 5mL H2O2 Third experiment : Tube 1: 10mL H2O2 + piece of calf liver Tube 2: 10mL H2O2 + grinded calf liver + sand Fourth experiment : Tube 1:10mL H2O2 + piece of calf liver at 0°C Tube 2:10mL H2O2 + piece of calf liver at 37°C Tube 3:10mL H2O2 + piece of calf liver at 59°C Fifth experiment : Tube 1: 5mL H2O2 + 5mL HCL + grinded calf liver Tube 2: 5mL H2O2 + 5mL NaOH + grinded calf liver Tube 3: 5mL H2O2 + 5mL distilled water + grinded calf liver

Results

Molecular structure of a calf liver catalase

First experiment : Tube 1: no reaction Tube 2: very intense gas development + heat Tube 3: intense gas development + heat

•gas formed: O2 •MnO2 : catalyses the degradation of H2O2 into H2O and O2 •piece of calf liver contains a similar substance, however biological •H2O2 : toxic waste product degraded by hepatic catalase

Fifth experiment : Tube 1: no reaction is observed; ; pH paper turns pink (pH of 1 → acid) Tube 2: no reaction is observed; pH paper turns blue (pH of 10-12 → base) Tube 3: very strong reaction; pH paper turns green (pH of 6-7 → neutral)

Second experiment : Tube 1: no significant reaction, no H2O2 left to decompose, only water in the tube Tube 2: intense gas and heat development, fizzing

•reaction only takes place at a pH of 6-7 -> neutral environment •human body: neutral environment

•Enzymes not modified during a reaction, enzymes still intact Third experiment : Tube 1: mixture climbs up and fizzes Tube 2: reaction much stronger and faster than in the first tube •grinding destroys the cell plasma membranes •hepatic catalase is liberated •faster degradation Fourth experiment : Tube 1: a bit of foam appears Tube 2: a lot of foam climbs up in the tube (strong gas release) Tube 3: reaction is weaker than in the second tube ( weak gas release) •strongest reaction at 37°C: body temperature •~0°C: reaction slows down; weak thermal agitation •>70°C: enzyme is denaturized, does not present its tridimensional form; not functional

Conclusions We were able to demonstrate that the addition of hepatic catalase to a solution of H2O2 results in the release of O2, released following cleavage of the molecule of H2O2. The activity of the peroxidase requires a neutral pH and a temperature of around 37 °C. Any deviation from this ideal temperature/ideal pH slows down the catalysis reaction or makes it impossible.

Bibliography J. Pelmont 1995. Les enzymes, catalyseurs du monde vivant. EDP Sciences


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Berglind Benediksdóttir, Helena Ósk Kristjánsdóttir, Borgarholtsskóli, Borgarholtsskóli, Mosavegur, Reykjavík, Iceland. „Electrical energy from river korpa“.

ELECRTICAL ENERGY FROM RIVER KORPA Berglind Benediksdóttir and Helena Ósk Kristjánsdóttir Borgarholtsskóli, Reykjavík, Iceland, Magnús Hlynur Haraldsson Introduction Energy is of paramount importance in modern society. It’s most often generated in large installations using coal, oil, gas or nuclear power. Environmental concerns and specifically focus on renewable energy. In Iceland, we can’t rely on solar power and although it’s often windy in Iceland, it’s not steady enough to count on except in specific areas. Fortunately, hydropower is steady and plentiful since Iceland has plenty of high ground which experiences allot of rain and snow. With the advent of modern technology, the number of small micro hydro power plants has increased again and continues to increase. Even the smallest of streams can now be harvested for energy.

Aims All power plants that are below 30 kwh are considered renewable and good for the environment in Iceland. That is small enough to keep a farm supplied. Many of the small micro hydro plants are even producing more energy than the farm needs so they can sell excess energy to the main grid. The purpose of this project is to explore the steps that have to be taken, when farmers or anyone else needs to determine if setting up a small power plant is viable or not. As a test subject, we will consider a small river, called Korpa, that runs to the sea close to Borgarholtsskóli. We want to check and see if it can generate enough power to run the school if it could be possible to harvest that energy. We are also going to think determine and decide on if we would want to, if we could. Students will do measurements to try to assess the amount of water that flows to the sea and if the water has enough energy to power Borgarholtsskóli.

Methods Students go to location (A, B, C, D), measure width of river, depth of river and the running speed of the water

Measurements 1. Go to location (A, B, C, D), measure width of river, depth of river and the running speed of the water 2. Find the elevation of Hafravatn above sea level. Use Google earth, a topographical map or something similar to find out the elevation of Hafravatn 3. Find out how much Borgarholtsskóli uses of electricity each year. Talk to someone in the administration, the manager of the buildings for example 4. Calculate the amount of electricity that the Korpa river can produce per year in the units MW . 5. Discuss the environmental factors we would like to take into consideration if we make a damn and start harvesting the river. The maximum power (P) we can get from a river is based on the potential energy (E) of a certain volume (V), of water which has the specific weight () of 1000 kg/m 3 and is at a certain elevation above sea level (h).

Conclusions River produces enough energy to run the school Students messuring the depth of river Korpa with messuring tools.

Students measuring the time it takes a ball to run from point A to B, that is the length of the measuring stick.

Bibliography Magnús Hlynur Haraldsson Physic teacher Borgarholtsskóli, Reykjavík, Iceland


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Emre Akbaş, Ali Ekin Aktaş, Elif Göksu Çelik, Namık Karamancı Fen Lisesi, Manavgat, Turkey. „Wireless electricity via tesla coil“.

WIRELESS ELECTRICITY VIA TESLA COIL Emre Akbaş, Ali Ekin Aktaş, Elif Göksu Çelik Namık Karamancı Fen Lisesi, Manavgat, Turkey, Durdu Sarı Ertekin Introduction The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. Tesla tried to use this coil to transfer electrical energy without any wires. Tesla coils can produce output voltages from 50 kilovolts to several million volts for large coils. The alternating current output is in the low radio frequency range, usually between 50 kHz and 1 MHz.

Aims Through this project we wanted to see if the electricity can be transferred without wires and we tried to prove that. Also we wanted to experience the difficulties that Tesla had while he was making this coil and we wanted to get people know about Nikola Tesla more.

Methods 1.Planning and Learning First of all we learned how to make a Tesla Coil and how it works. We bought all necessary components such as copper wire, a transformator ( from a scrap microwave), a PVC pipe and other things. 2. Assembling We started with wrapping the copper wire around the PVC pipe (275 wraps). Then we wrapped our thicker wire around the pipe (3 wraps). We built our circuit with the help of electricians. Then we put a table tennis ball ( with aluminum foil wrapped around it) at the top of the coil and secured it in place using hot glue. At last we plugged it to the main energy line ( city current). In this project we used ionization of gases and magnetic field energy.

We think that if we make our devices wireless, our lives will be much more easier and less complicated and we wanted to show this.

Our students working on the soldering of circuit

Results We made a presentation to our students at our school about a short summary of Nikola Tesla’s life and his projects. After we finished assembling our Tesla Coil, we tried to lit a normal bulb from a short distance. We saw that the normal bulb can not be lit using Tesla Coil because the normal bulb does not contain the gasses that can ionize. Later, we tried to lit a fluorescent bulb from a short distance. We observed that the gasses in the bulb ionized because of the magnetic field that Coil creates and because of that the bulb illuminated. Our completed Tesla Coil. The copper wires create a magnetic field and transform energy. And the ball at the top is used for distribution of energry.

A fluorescent lightbulb near a Tesla Coil. As you can see it does illuminate because of the magnetic fields and the ionization of gasses.

Conclusions The electricity can be transferred without wires and everyone can make that easily at their homes with low cost.

A normal light bulb near a Tesla Coil. As you can see it does not illumunate but it turns to a plasma ball.

Bibliography http://www.instructables.com/id/How-tobuild-a-Tesla-Coil/ http://www.livescience.com/46745-howtesla-coil-works.html


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Anne Eyschen, Tim Heymans, Sven Kerger, Tessy Kohl, Lycée classique de Diekirch, Diekirch, Luxembourg. „Study of movements using SPARKVUE“.

STUDY OF MOVEMENTS USING SPARKVUE Anne Eyschen, Tim Heymans, Sven Kerger, Tessy Kohl Lycée classique de Diekirch, Diekirch, Luxembourg, Marco Goffinet, Geneviève Harles Introduction

Methods

In order to study some practical examples of phenomena learned in theory, we’re analyzing 2 motions using wireless sensors: the motion of a body on a rail with air cushion on an inclined plane and the motion of an elastic pendulum.

First experiment: We use the PASPORT Motion Sensor. It consists of an electrostatic transducer in the face of the Motion Sensor that transmits a burst of 16 ultrasonic pulses. Those reflect off a target (in our case a black flag placed on the body performing the uniformly accelerated linear motion) and return to the face of the sensor. The sensor measures the time between the trigger rising edge and the echo rising edge. It uses this time and the speed of sound to calculate the distance to the object. In order to determine velocity, it uses consecutive position measurements and calculates the rate of change of position. By using those consecutive velocity measurements, it also determines acceleration.

The measurement is taken by using measuring devices produced by Pasco Scientific, connected to iPads by the SPARKvue app. The app displays the curves corresponding to the performed movements simultaneously with the measurements.

Aims For many years, our school has supported the integration of new technologies in its teaching with the aim of being a place pedagogical innovation. Since 2015, the students have been able to enroll in so-called electronic classes, in which, alongside traditional tools, electronic tablets are used as a learning tool. As some of us are part of such an iPad class, we have set ourselves the goal of using our iPads to carry out this study of movements. The measurement charts are automatically created by the SPARKvue app.

The body on the rail with air cushion is being catapulted.

Second experiment: We use the Wireless Force Acceleration Sensor. This small device is capable of measuring force, acceleration and rotation simultaneously. We attach the sensor (0,099kg)to a spring and connect it to an iPad. The actual experiment consists in pulling the sensor slightly downwards and recording the temporal evolution of the different magnitudes as it oscillates. .

Bibliography The sensor is attached to a spring and connected it to an iPad..

Avanzi P., Kespy A., Pfistner D., Moraz C., PerretGentil J. 2007. Physique 2 Mécanique (p.2-33). Edition Loisirs et pédagogie, Lausanne.


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Šarūnas Geglis, Kipras Stankevičius, Vilniaus Pilaitės gimnazija, Vilnius, Lietuva. „The electricity in Fruits and Vegetables“.

Vaisiuose ir daržovėse esanti elektra Kipras Stankevičius, Šarūnas Geglis Vilniaus Pilaitės gimnazija, Lietuva, darbo vadovas - Vilma Jočienė Įžanga

Metodas

Baterija elementas, galintis kaupti energiją. Be to ją galima nešiotis su savimi. Bagdado baterija arba Partų baterija - neįprastas Partų ar Sasanidų laikotarpio archeologinis radinys, rastas 1936 m. Radinį sudaro terakotinis 130 mm aukščio asotis, kurio viduje yra varinis cilindras, į jį įtaisytas geležinis strypas, o kaklelis užlietas bitumu . Elementų baterija yra sudaryta iš sidabrinių diskų, cinko diskų ir medžiaga kuri išmirkyta sūriame vandenyje arba rūgštyse.

▪ Paimame vaisius bei daržoves (svogūnus, bulves, kivius, citrinas, obuolius, apelsinus).

Tikslas Pagaminti galvaninį elementą, įvairius vaisius bei daržoves.

naudojant

▪ Į pasirinktus vaisius ar daržoves įsmeigiame varinę monetą ir cinkuotą vinį. ▪ Su voltmetru pamatuojame daržovių išskiriamą įtampą.

vaisių

ir

▪ Pasižiūrime kiek tam tikrų vaisių daržovių gali įžiebti 1 LED lemputę.

ar

2 Obuoliai

3 Citrinos

Reikiamas Vaisių/daržovių kiekis įžiebti vienai LED lemputei

Rezultatai Projekte buvo naudojami 4 rūšių vaisiai (citrina, kivis, obuolys ir apelsinas) ir 2 rūšių daržovės (bulvė, svogūnas). Sužinojome, kad sugeneruoti pakankamai įtampos tam, kad įžiebtume 1 LED lemputę mums reikėjo skirtingų kiekių vaisių ar daržovių. Kad įžiebtume 1 LED buvo reikalingos:

2 Kiviai

2 Apelsinai

Pastebėjome, kad dažniausiai užtenka 2 vaisių/daržovių, retesniais atvejais reikėjo 3. Visi mūsų išbandyti vaisiai/daržovės vidutiniškai išskyrė 0.95 Voltų.

Uždaviniai Pagaminus galvaninius elementus, palyginti jų išskiriamas įtampas ir pažiūrėti kiek tam tikrų vaisių ar daržovių gali įžiebti 1 LED lemputę..

2 Bulvės

Išvados 1. Įmanoma sugeneruoti pakankamai energijos ir įžiebti LED lemputę, naudojant visus mūsų pasirinktus vaisius ar daržoves. 2. Citrinos ir svogūnai išskiria mažiausiai voltų, nepaisant to, kad yra rūgštūs, o bulvė ir apelsinas išskiria daugiausiai voltų

3 Svogūnai

Informaciniai šaltiniai http://threegadgets.com/gadgets/baterija/ http://baterijos.lt/baterijos-galvaniniaielementai Vaisių ir daržovių išskiriama įtampa .


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Matteo Pentassuglia, Giovanni Chiarelli, Anduena Barjami,Elena Lucarelli, Liceo Scientifico Tito Livio, Martina Franca, Italy. „Education to creative complexity“.

EDUCATION TO CREATIVE COMPLEXITY Prof. Luana Fogli,Matteo Pentassuglia, Giovanni Chiarelli, Anduena Barjami,Elena Lucarelli, Liceo Scientifico Tito Livio, Martina Franca (IT)-Tutors: Graziana Buonfrate(Maths), Susanna Carbotti, Prof.Gianfranco Infante Introduction Italian Education System is divided into three different kinds of courses: General (Umanities, Scientific, Linguistic, Social Studies, Artistic, Music and Choir), Technical and Vocational School. General Studies (called Licei) provide students with a wide theoretical knowledge and Technical schools add some technical concepts and practices to general background which bring students closer to work. Although students coming from General Courses show a complete and wide development of their theoretical skills, generally they claim a lack of engagement into activities related to work.

Results

1. Becoming familiar with Arduino, making easy projects;

This is our project: a small robot, able to follow a dark line on the floor.

2. Basics of programming language through Scratch (the Hour of Code)

Name: LIVIARDINO

3. Physical project and realization 4. Programming 5. Shell project and 3D print

Students’ groups , realizing easy projects with Arduino

Aims Through this project we tried to introduce subjects, such as Robotics and Electronics, into our school in order to widen usually poorly developed skills in General Education Courses. We chose to develop a project using a programmable board called Arduino, which is easy to find, cheap and with an open source software to download. There are a large variety of objects programmed by Arduino, from sanitary tools to home-automation controllers, from Twitter displays to DNA analysis kit. Our choice fell on a Robot able to follow a dark line independently.

ooooo

Methods

The Robot completed with its case Our «naked» Robot

Conclusions General Education School usually suffers with the lack of practical experiences. We tried to introduce Robotics, helped by professionals from outside and inside the school. The main result is a Robot, able to follow a dark line on the floor without any remote control. Students enjoyed the project and it helped them to develope practical skills, to better understand their own inclinations and what kind of studies would represent their best option for the future.

In order to learn the basics of language programming, a student of ours gave a lesson about Scratch during The Hour of Code..

. The two parts which the case is made of. We used a 3D printer

Students welding the circuit parts. .

Bibliography • • •

Il Sistema educativo italiano, Indire, MIUR.2013 Valutare le competenze linguistiche, A.A.V.V., Franco Angeli https://www.arduino.cc/


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

Sniežana Juckevič, Aistė Jatkelytė, Vilniaus Pilaitės gimnazija, Vilnius, Lietuva. „Chromatography of Plants“.

Augalų chromatografija Aistė Jatkelytė, Sniežana Juckevič Pilaitės gimnazija, Vilnius, Lietuva, darbo vadovė – Vilma Jočienė Įžanga Chromatografija – laboratorinis metodas, kuriuo iš mišinių išskiriamos medžiagos ir analizuojamos. Chromatografijos pradininkas - rusų botanikas M. Tsvetas. Šis mokslininkas XX a. pradžioje sėkmingai išskyrė augalų pigmentus: chlorofilą bei karotenoidus. Šie tyrimai paskatino autorių sukurti adsorbcijos metodą, kurį pavadino chromatografija.

Metodas

Rezultatai Visų pirma pasirinkome augalus, kuriuos norėjome ištirti (ugniažolių, palergonijų, kiaulpienių, baltažiedžių notrelių, kaštono žiedų, paprastųjų veronikų, klevo lapų). Kiekvieną augalą atskirai sutrynėme grūstuvėlėje. Atlikus chromatografiją, augalai išskyrė ant filtrinio popieriaus: ugniažolė – geltoną spalvą , palergonijos – rožinę ir gelsvą spalvą, kiaulpienės – geltoną spalvą, baltažiedės notrelės – šviesiai geltoną spalvą, kaštono žiedai – geltoną spalvą, paprastosios veronikos – geltoną, šviesiai ir tamsiai žalią spalvą , klevo lapai –geltoną, tamsiai ir šviesiai žalią spalvą.

Tikslai 1.Pasidaryti augalų chromatografiją; 2.Pagal gautus rezultatus nustatyti, kokių medžiagų yra augaluose.

Į sutrintus augalus įpylėme acetono (kiekį žiūrėjome pagal tirštumą). Tada visus gautus . produktus perpylėme į stiklines.

Po to ant lazdelių pritvirtinome filtrinius popierius (vienodo ilgio) ir juos pamerkėme į stiklines. Tada maždaug apie 1 valandą stebėjome, kaip keitėsi spalvos ant filtrinio popieriaus. Gautas spalvas susirašėme ir internete pasižiūrėjome kokią spalvą kokia medžiaga atitinka.

Gautus rezultatus surašėme į lentelę ir palyginome.

Išvados Atlikus chromatografiją mūsų visuose ištirtuose augaluose buvo geltonos spalvos – ksantofilų. Buvo ir kitokių medžiagų: palergonijose - antocianinų , paprastosiose veronikose - chlorofilo a ir b, klevo lapuose – chlorofilo a ir b. Na, o likusiuose augaluose – ugniažolėse, kiaulpienėse, baltažiedėse notrelėse ir kaštono žieduose buvo tik ksantofilų.

1-ugniažolė, 2-palergonija, 3-kiaulpienė, 4baltažiedė notrelė, 5-kaštono žiedai, 6paprastoji veronika, 7-klevo lapas

Informaciniai šaltiniai http://zurnalas.llmd.lt/lt/straipsnis/chromatografijos-metodai-irj%C5%B3-taikymas http://www.mdpi.com/1422-0067/14/7/13763/htm http://www.baltvita.lt/lt/maisto_priedai_dazikliai/antocianinas


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

6. Selected illustrations of project activities BIOTECHNOLOGY: Scienteens lab


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

EXPERIMENTS BIOLOGY at LCD


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

EXPERIMENTS CHEMISTRY at LCD


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model EXPERIMENTS PHYSICS at LCD


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model STEM CAREER CENTER LUXEMBOURG

STATISTICS WORKSHOP at LCD


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

EXHIBITION "EPPUR SI MUOVE"


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model

PARTICIPATION IN NATIONAL SCIENCE FESTIVAL


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model PREPARATION FOR CONFERENCE IN VILNIUS 2017


Methodical book. STEM Career GUIDE (for schools). Erasmus+ Project 2015-2017 Innovative Student-Teacher Evolution Model MATH COMPETITION FOR SUBURBAN SCHOOLS IN REYKJAVIK


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.