DAC_flex_controlInfotech2009

Page 1

Disturbance Accommodating Based Flexible System Control Steve Rogers Penn State – Applied Research Laboratory 814.867.1831 Scr12 @arl.psu.edu

Abstract Flexible systems in aerospace many times experience the negative effects of elastic structural modes within their control systems. Most control systems are based on rigid body models. Adverse effects occur when the slower or primary structural modes are within the control system bandwidth. Many times this condition results in uncontrolled oscillations. Flexible system control is based on estimation and then attenuation of the disturbances. Although this may be an effective approach it does not take advantage of the disturbance energy available to reduce the amount of control effort. In certain aerospace systems it is advantageous to utilize disturbance energy, if possible, to reduce control energy usage. One approach is based on Disturbance Accommodating Control (DAC) and is called Disturbance Utilization Control (DUC) 123. DUC employs optimal control theory to design controllers that make optimal utilization of disturbances. DAC/DUC approaches utilize linear models of the plant and disturbance. Optimal statespace control methods, such as LQR or H∞ are used to generate a control system utilizing the disturbance state estimations along with the plant state estimates. Generally, the fixed system model is known and may be used in an observer design to estimate the disturbance. Effective disturbance estimation in the usage of DAC theory requires an input and an output signal based on the input/output model used. An observer system is designed for estimation. The paper will develop the general concepts of DAC/DUC and show an application to flexible disturbance accommodation/utilization. Keywords: disturbance accommodation control, observer design, flexible system control

Introduction Power, weight, and volume concerns influence markedly aerospace designs. As more and more composite materials are utilized in aerospace structures the flexible modes become lower and lower. In the past the lower flexible modes were ignored in control system design because they were significantly higher than the control system bandwidth. This is now not always the case, especially with long duration mission UAV designs where weight must be minimized. If the rigid body model may be used in the control law design 1 American Institute of Aeronautics and Astronautics AIAA-2009-2049


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
DAC_flex_controlInfotech2009 by Steve Rogers - Issuu