Research Paper
Mathematics
E-ISSN No : 2454-9916 | Volume : 2 | Issue : 11 | Nov 2016
INTEGRAL SOLUTION OF THE TERNARY CUBIC EQUATION đ?&#x;“(đ?’™đ?&#x;? + đ?’™đ?’šđ?&#x;? ) − đ?&#x;—đ?’™đ?’š + đ?’™ + đ?’š + đ?&#x;? = đ?&#x;?đ?&#x;–đ?’›đ?&#x;‘
R. Anbuselvi 1 S. A. Shanmugavadivu 2 1 2
Associate Professor of Mathematics, ADM College for women (Autonomous), Nagapattinam, Tamilnadu, India. Assistant Professor of Mathematics, Thiru.Vi.Ka. Govt. Arts College, Thiruvarur, Tamilnadu, India.
ABSTRACT The Ternary cubic equation 5(đ?‘Ľ 2 + đ?‘Ś 2 ) − 9đ?‘Ľđ?‘Ś + đ?‘Ľ + đ?‘Ś + 1 = 28đ?‘§ 3 is considered for determining its non-zero distinct integral solutions. Employing the linear transformation đ?‘Ľ = đ?‘˘ + đ?‘Ł, đ?‘Ś = đ?‘˘ − đ?‘Ł, and employing the method of factorization in complex conjugates, different patterns of integral solution to the ternary cubic equation under consideration are obtained in each pattern, interesting relations among the solutions and some special polygonal numbers like pyramidal, central pyramidal numbers are exhibited. KEY WORDS: Ternary Cubic, Integral Solutions, Polygonal Number, Pyramidal number. 1. INTRODUCTION Diophantine equations are numerously rich because of its variety. The determination of integral solutions for Cubic (homogeneous or nonhomogeneous) diophantineequations with three variables has been an interest to mathematicians. Since antiquity as can be seen from [1-3]. In this context one may refer [4-24]. In this communication, the non-homogeneous ternary cubic diophantine equation represented by 5(đ?‘Ľ 2 + đ?‘Ś 2 ) − 9xy + x + y + 1 = 28đ?‘§ 3 is considered for its non-zero distinct integral solution. A few interesting relations between special polygonal numbers and Pyramidal numbers are exhibited. NOTATIONS USED 1. đ?‘ƒđ?‘&#x;đ?‘› 2. đ?‘†đ?‘› 3. đ?‘†đ?‘œđ?‘› 4. đ?‘‚đ??ťđ?‘› 5. đ??şđ?‘›đ?‘œđ?‘› 6. đ?‘‚đ?‘?đ?‘™đ?‘› 7. đ?‘ƒđ?‘ƒđ?‘› 8. đ??śđ?‘ƒđ?‘›6 9. đ??śđ?‘ƒđ?‘›3 10. đ?‘‚đ?‘› 11. 4đ??ˇđ??šđ?‘› 12. đ?‘‡đ?‘š,đ?‘› -
Pronic number of rank n Star number of rank n Stella octangularnumber of rank n Octangular number of rank n Gnomic number of rank n Oblong number of rank n Pentagonal Pyramidal number of rank n Centred hexagonal pyramidal number Centred hexagonal pyramidal number Octahedral number of rank n Four dimensional figurate number Polygonal number of rank n with size m
2. Methods of Analysis
Equating real and imaginary parts of (6) on both sides, we get đ?‘˘ + 1 = 3đ?‘Ž3 − 57đ?‘Ž2 đ?‘? − 171đ?‘Žđ?‘?2 + 361đ?‘?3 đ?‘Ł = đ?‘Ž3 + 9đ?‘Ž2 đ?‘? − 57đ?‘Žđ?‘?2 − 57đ?‘?3 Substituting the values of đ?‘˘, đ?‘Ł in (2), the non-zero distinct integralsolutions to (1) are given by đ?‘Ľ = 4đ?‘Ž3 − 48đ?‘Ž2 đ?‘? − 228đ?‘Žđ?‘?2 + 304đ?‘?3 − 1 đ?‘Ś = 2đ?‘Ž3 − 66đ?‘Ž2 đ?‘? − 114đ?‘Žđ?‘?2 + 418đ?‘?3 − 1 đ?‘§ = đ?‘Ž2 − 19đ?‘?2 PROPERTIES 1. đ?‘Ľ(đ?‘Ž, 1) − đ?‘Ś(đ?‘Ž, 1) − đ?‘†đ?‘œđ?‘› − 2đ?‘Ą4,3đ?‘Ž â‰Ą 114 (đ?‘šđ?‘œđ?‘‘ 113) 2. đ?‘Ľ(đ?‘Ž, 1) − 4đ??śđ?‘ƒ6,đ?‘Ž + 48đ?‘Ą4,đ?‘Ž âˆ’ 303 ≥ 0 (đ?‘šđ?‘œđ?‘‘ 228) 3. đ?‘Ś (đ?‘Ž, 1) − đ?‘Ľ (đ?‘Ž, 1) + 4đ??śđ?‘ƒđ?‘Ž3 + 36đ?‘Ą2,đ?‘Ž â‰Ą 114 (đ?‘šđ?‘œđ?‘‘ 134) 4. đ?‘Ľ (đ?‘Ž, 1) + đ?‘§ (đ?‘Ž, 1) − 4đ??śđ?‘˘đ?‘?đ?‘› − đ?‘†đ?‘› + 53đ?‘Ą4,đ?‘Ž â‰Ą 93 (đ?‘šđ?‘œđ?‘‘ 16) 5. đ?‘§ (đ?‘Ž, đ?‘Ž(đ?‘Ž + 1)) − 228đ??šđ?‘ đ?‘›4 + 38đ??śđ?‘ƒđ?‘›6 – 39 đ?‘Ą4,đ?‘Ž = 0 6. đ?‘Ľ (đ?‘Ž, đ?‘Ž + 1) − 16 đ?‘†đ?‘œđ?‘› − 408đ?‘ƒđ?‘&#x;đ?‘Ž â‰Ą 303 (đ?‘šđ?‘œđ?‘‘ 292) 7. đ?‘§ (đ?‘Ž, đ?‘Ž + 1) − 5đ?‘Ą4,2đ?‘Ž â‰Ą 19 (đ?‘šđ?‘œđ?‘‘ 38) Note: Re-writing (5) as 28 = (−3 + đ?‘–√19)(−3 − đ?‘–√19)
The Ternary Cubic Diophantine equation under consideration is 5(đ?‘Ľ 2 + đ?‘Ś 2 ) − 9đ?‘Ľđ?‘Ś + đ?‘Ľ + đ?‘Ś + 1 = 28đ?‘§ 3
(1)
Introduction of the transformations x = u + v, y = u − v In (1) leads to
(2)
(� + 1)2 + 19� 2 = 28� 3
(3)
Equation (3) is solved through different methods and thus,we obtain different patterns of Solutions to (1).
đ?‘Ľ = −2đ?‘Ž3 − 66đ?‘Ž2 đ?‘? + 114đ?‘Žđ?‘?2 + 418đ?‘?3 − 1 đ?‘Ś = −4đ?‘Ž3 − 48đ?‘Ž2 đ?‘? + 228đ?‘Žđ?‘?2 + 304đ?‘?3 − 1 đ?‘§ = đ?‘Ž2 + 19đ?‘?2 2.2 Method 2 Equation (3) can be written as (đ?‘˘ + 1)2 + 19 = 28đ?‘§ 3 ∗ 1
2.1 Method 1 Take đ?‘§ = đ?‘Ž2 + 19đ?‘?2
(4)
Write28 = (3 + đ?‘–√19)(3 − đ?‘–√19)
(5)
Using (4) and (5) in (3) and employing the method of factorization, define (đ?‘˘ + 1) + đ?‘–√19đ?‘Ł = (3 + đ?‘–√19)(đ?‘Ž + đ?‘–√19đ?‘?)3
And proceeding as in method 1, the non-zero distinct integralsolutions to (1) are given by
Write ‘1’ as 1=
(9 + đ?‘– √19)(9 − đ?‘–√19) 102
Define (6) (đ?‘˘ + 1 + đ?‘–√19 đ?‘Ł) =
(3 + đ?‘– √19)(9 + đ?‘–√19 đ?‘?)3 (9 + đ?‘– √19) (7) 10
CopyrightŠ 2016, IERJ. This open-access article is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material) under the Attribution-NonCommercial terms.
International Educational Scientific Research Journal [IESRJ]
8