Quick Math Review Sample

Page 1


The Quick Math Review

2 4 = 5 a 10 2

x

2

2

3(11) - 5 (4)

6 4

Diana Gafford Texas State Technical College Harlingen

Dr. Mike Hosseinpour Texas State Technical College Harlingen


Š 2007 Diana Gafford & Dr. Mike Hosseinpour ISBN 978-1-934302-06-4 All rights reserved, including the right to reproduce this book or any portion thereof in any form. Requests for such permissions should be addressed to: TSTC Publishing Texas State Technical College Waco 3801 Campus Drive Waco, TX 76705 http://publishing.tstc.edu/ Publisher: Mark Long Graphics specialist: Grace Arsiaga Editor: Todd Glasscock Printing production: Bill Evridge Cover design: Stacie Buterbaugh Graphics intern: Joe Miller

Manufactured in the United States of America First edition


Table of Contents Chapter 1: Introduction

I. Number Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 III. Order of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 IV. Properties of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2: Fractions

I. Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 II. Converting Improper Fractions to Mixed Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 III. Converting Mixed Numbers to Improper Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 IV. Equivalent Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V. Multiplying Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VI. Multiplying Mixed Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VII. Reciprocals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 VIII. Dividing Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 IX. Adding and Subtracting Fractions with Like Denominators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 X. Finding the Least Common Denominator (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 XI. Adding or Subtracting Fractions with Unlike Denominators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 XII. Adding Mixed Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 XIII. Subtracting Mixed Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3: Decimals

I. Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 II. Adding Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 III. Subtracting Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 IV. Multiplying Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 V. Dividing Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 VI. Converting Fractions to Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VII. Common Decimal Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 VIII. Converting Mixed Numbers to Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 IX. Converting Decimals to Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

I. Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 II. Using Proportions to Solve Word Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 4: Proportions

Chapter 5: Percent

I. Percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 II. Changing a Percent to a Decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 III. Changing a Decimal or a Fraction to a Percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 IV. Identifying Base, Rate, and Amount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46


Chapter 6: Real Numbers

I. Real Numbers, Applications, and the Negative of a Number . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 II. Addition and Subtraction of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 III. Multiplication and Division of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 7: Exponents and Scientific Notation

I. Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 II. Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 III. Expanded Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 IV. Multiplying and Dividing in Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

I. Evaluating Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 II. Numerical Coefficients and Like Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 III. Adding and Subtracting Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 IV. Multiplying Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 V. Multiplying Two Binomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 VI. Multiplying Two Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 VII. Dividing Monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 VIII. Dividing a Polynomial by a Monomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 IX. Dividing a Polynomial by Another Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 8: Polynomials

Chapter 9: Equations and Inequalities

I. Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 II. Addition Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 III. Multiplication Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 IV. Multiplication and Addition Properties Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 V. Solving Strategy for Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 VI. Algebraic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 VII. Application Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 VIII. Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 IX. Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 X. Graphing Linear Equations: Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 XI. Graph Using Slope-Intercept Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 XII. Graph Using Intercept Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 10: Factoring

I. Greatest Common Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 II. Factor by Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 III. Factoring Trinomials of the Form x2 + bx + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 IV. Factoring Trinomials of the Form x2 + bx + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 V. Factoring Trinomials of the Form ax2 + bx + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 VI. Special Factoring: Perfect Square Trinomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 VII. Special Factoring: Difference of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 VIII. General Approach to Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 IX. Solving Quadratic Equations by Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116


Chapter 11: Rational Expressions and Equations

I. Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 II. Reducing Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 III. Simplifying Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 IV. Multiplying Fractional Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 V. Dividing Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 VI. Adding or Subtracting Rational Expressions: Like Denominators . . . . . . . . . . . . . . . . . . . . . . 124 VII. Adding or Subracting with Unlike Denominators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 VIII. Complex Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 IX. Rational Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 12 Radical Expressions

I. Square Root and Common Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 II. Positive and Negative Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 III. Converting a Radical to a Fractional Exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 IV. Radical Properties and Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 V. Multiplying and Simplifying Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 VI. Adding and Subtracting Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 VII. Radical Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 VIII. Radical Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 IX. Simplified Form for Radicals and Rationalizing Denominators . . . . . . . . . . . . . . . . . . . . . . . . 155 X. Simplifying Radical Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 XI. Rationalizing Denominators When the Index is ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 XII. Rationalizing Denominators with Two Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 XIII. Solving Radical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Chapter 13: Systems of Equations

I. The Graphing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 II. The Substitution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 III. The Elimination Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Chapter 14: Quadratic Equations and Graphs

I. Standard Form of a Quadratic Equation: ax2 + bx + c = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 II. Discriminant: b2 – 4ac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 III. Graphing Quadratic Equations—Parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 IV. Quadratic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Chapter 15: Functions

I. Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 II. Vertical Line Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 III. Function Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Answer Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197-216 About TSTC Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217


Introduction

Chapter 1: Introduction I. Number Sets • Natural Numbers or Counting Numbers o 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … • Whole Numbers o 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … • Integers o …, -3, -2, -1, 0, 1, 2, 3, … • Rational Numbers o Any number is rational that can be written and q ≠ 0 . Examples:

p in which p and q are integers q

−5 1 , 7 5

o Whole numbers are rational numbers that can be written with a denominator of one.

0 7 -13 , -13 or , 0 or 1 1 1 o Repeating or terminating decimals are rational numbers that can be written in the Examples: 7 or

form

p . q

Examples: 0 .3333... =

1 3 or 0.75 = 3 4

• Irrational Numbers o Any number found on a number line that is not rational is irrational. Examples:

2, �


Introduction

• Prime Numbers o Any number that can be divided evenly only by itself and one is a prime number. Examples: 2, 3, 5, 13, 37 • Composite Numbers o Numbers that are not prime are composite numbers. Examples: 4, 9, 12 • The number 1 is considered to be neither prime nor composite.

II. Absolute Value • The distance from zero on a number line is the absolute value.

Example 1

-4

-3 3 = 3

-2

-1

0

1

2

3

4

-1

0

1

2

3 units from zero

Example 2

-6

-5

-4

-3

− 5 = 5 5 units from zero

-2


Introduction

Example 3

-6 -6

-5 − 1.5 = 1.5

-4

-3

-2

-1

units from zero

Examples of Absolute Value 1 1 = 2 2

− 4 = −4

-0.37 = 0.37

− − 6 = −6

2−9 = −7 = 7

Exercises Find the absolute values and simplify. 1.

14

2.

− 7.3

3.

−3

4.

7 − −4

5.

11 - 6

6.

−2 3

7.

6 -11

8.

-15 + -7

0

1

2


Introduction

III. Order of Operations • First, do all operations inside a set of grouping symbols: ( ) , [ ] , or { }. o If more than one set of grouping symbols is present, work from the innermost set to the outermost set. • Second, evaluate exponents and roots. • Third, perform multiplication and division as either occurs from left to right. • Fourth, perform addition and subtraction as either occurs from left to right. • Note: Simplify numerator and denominator separately if fractions are present.

Example 4 2

Example 5 2

3(4 + 7) - 5 (7 - 3)

2

2

3(11) - 5 (4)

Example 6

9 - 4 (7 - 2 · 5)

62 + 5 (8 - 3) 2 · 7 -5

9 - 4 (7 -10)

62 + 5 (5) 14 - 5

3(121) - 5 (16)

9 - 4 (-3)

36 + 5(5) 9

363 – 80

9 + 12

36 + 25 9

283

21

61 9


Introduction

Exercises Simplify. 1.

32 - 5 · 4

2.

8 (-2) ¸ (-8)2

3.

(3 + 7)

4.

32 + 7 2

5.

243 ¸ 81 ¸ 3

6.

243 ¸ (81 ¸ 3)

7.

49 - 5 · 23

8.

7 + 4 (2 · 5 -1)

9.

3 + (14 - 5) + 62 3+ 7 ·3

10.

4 · 12 - (7 + 8) ¸ 5 - (7 - 4)

11.

61- 2 {3 éë 12 - (13 - 4) ¸ 3ùû

12.

6 éë 2 (3 + 7) - 5ùû

2

}


Introduction

IV. Properties of Real Numbers • Commutative Property o Addition Order in which two numbers are added does not affect the sum:

a+b =b+a

o Multiplication Order in which two numbers are multiplied does not affect the product:

a•b = b•a

• Associative Property o Addition

Order in which a group of numbers are added does not affect the sum: (a + b) + c = a + (b + c)

o Multiplication Order in which a group of numbers are multiplied does not affect the product:

(ab) c = a (bc)

• Distributive Property of Multiplication over Addition o Either add first and then multiply or multiply first and then add.

a (b + c ) = ab + ac

• Identity Property o Addition

a + 0 = a or 0 + a = a

o Multiplication

a · 1 = a or 1 · a = a


Introduction

• Multiplication Property of Zero o Multiplication of any whole number by 0 = 0 (product).

a · 0 = 0 or 0 · a = 0

• Division with Zero and One o For any whole number a, a ≠ 0

a = 1 a

a ¸ a = 1 or

0 ¸ a = 0 or

0 =0 a

o For any whole number a

a ¸ 1 = a or

a =a 1

o For any whole number a, a ¸ 0 or • Note: Division by zero is not allowed.

Examples Commutative Property of Addition

a +b = b+a 8+ 7 = 7 +8

10 + 3 = 3 + 10

15 = 15

13 = 13

Associative Property of Addition

(a + b) + c = a + (b + c) (7 + 3) + 5 = 7 + (3 + 5) 10 + 5

=

7+8

15

=

15

a is undefined. 0


Introduction

Commutative Property of Multiplication

a·b = b·a 4•5

=

5• 4

20

=

20

Associative Property of Multiplication

(ab)c = a (bc) (2 · 3) · 5 = 2 · (3 · 5) 6•5

=

30 =

2 · 15

30

Distributive Property of Multiplication over Addition

a (b + c) = ab + ac 5 · (6 + 3) =

5•6 + 5•3

5•9

=

30 + 15

45

=

45

Multiplication Property of Zero a • 0 = 0 or 0 • a = 0

3• 0 = 0

0•7 = 0


Introduction

Division with Zero and One

a ¸ a = 1 or

8 ÷ 8 = 1,

a =1 a

−5 =1 −5

0 ¸ 3 = 0 or

a ¸ 1 = a or

a =a 1

6 ¸ 1 = 6 or

-7 = -7 1

a ¸ 0 Undefined

7 ¸ 0 Undefined

-13 Undefined 0

0 ¸ a = 0 or

0 =0 -7

0 =0 a


TSTC Publishing Established in 2004, TSTC Publishing is a provider of high-end technical instructional materials and related information to institutions of higher education and private industry. “High end� refers simultaneously to the information delivered, the various delivery formats of that information, and the marketing of materials produced. More information about the products and services offered by TSTC Publishing may be found at its Web site: http://publishing.tstc.edu/.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.