"!$#&%('*),+-!.'/% 01!32&4-%657%8':9;9=<>%@?A),!B!$#&%82&+-%(9>CD!3#E%(0 9=F G&'/%1HI%1HJGK9= &% L!$M*)>'74$% GE4$%1N +-% L!O),!$M:9= QPR)> &?S!$#&%T5U) VW!39 #X), &?&':%YMZ! M/ W0 9=F G&2E!$M: &[ % E% 4$[>M:% +@\U]^9_5`5a%Y5U), b!^!39 '/9J9=<c),!^!3#&%d%@ef% 01!3+g9,Ch+$2&GK% 4-Gf9>+$M: E[c+$M/F6GE':%T#X)>4-F69> &M:0T9=+-0 M/':'*)i!3M:9> &+ \kjg S%1HE)>F G&':% F M:[=#L!mlf%n)T+-!$4$%1!30O#&%@?c+-!$4$M/ &[o5nM/!$#6)TlK% )>? 9= MZ! P>5n#&M/0O#p5a%n?&4-M/q=%U5nMZ!3# +$9>F6%UCr9=4-F 9>CsF6)>[= &%1!3M:0g0 9=2&GE':M: E[&\ tD#&%Y?&4-M/q;M: &[pCr9=4-0 %@+^F M:[>#b!Ulf%TM/ u9>4D9=2E!^9>CsG&#X)>+-%>PX9>Cv!3#&% +$)>F6%g9=4U?&MZeQ%@4$% L!^)>F G&'/M/!32E?&% +@PE)> E?uF M:[>#b!a%@q>% u#X) q=%Y?&M/ef% 4-% L!UCr4-% wb2&% E0 M:%@+ \yxz% )>+-+$2&F %>Ph!$#&9=2&[=#QP !3#X),!B!3#&%(9>+$0 M/':':),!3M/9= &+d)>4$%c0 9= L!3M/ b2&9=2&+@P7), &?AM: {)S|JHE%@?}GE#X)>+$% 4-% '*)i!3M:9> &+$#&M/Gc!39 9= &%d)> E9>!3#&%@4 \ ~c D - T B R B k & X a k ( = z y & 7 o g n a L o D &¡z¢¤£ ¥_¢;¦¨§ ¢;©sª>«{¬ X¡I¢ X¡zs®°¯²±_§v³v¢ tD#&%g+$2&GK% 4-Gf9=+-M/!$M:9= (9,C´! 5a9p9=+-0 M/':'*)i!3M:9> &+yFc) V lf% !34$% ),!3%@?8M: c!$#&%gGE#X)>+$9>4U4$%@G&4$%@+$% ;N !3),!3M/9= ¨\IxI%u)>4$%W),?&?&M: E[ !$9=[=%1!3#&%@4.! 5a9 q=%@0@!39>4$+ P7lf9,!3#{4$9>!3),!3M/ &[ 5nM/!$#A!3#&%W+3),F6% )> E[=2&'*),4nq>% '/9J0@M/! V=\ tD#b2&+g!3#E%.4$%@+$2&'Z!O)> L!g5nM/':' )>'/+$96lf% 4$9>!3),!3M/ &[65nMZ!3#S!$#X),!o)> &[=2&':)>4 q>% ':9;0 MZ! V=PX),+^+-#&9µ5n ¤M/ W|&[=2&4$%Ytn¶E\Z·=\ ¸ 9= &+-M:?&%@4U|X4$+ !D! 5a9pq>% 0@!$9=4$+D9,Cs%@wb2X)>'´)>F G&'/M/!32E?&%>PJ¹XPE5nM/!$#8G&#X)>+-%T?&M/ef% 4-% &0@%dºvP )>+nM/ (|X[=2&4-%dtn¶J\¼»J\½xI% 2&+-%T!3#&%Y0 9>+$M: E%YCr9>4$F.2&':)B!39 0 ),':0 2E'*),!$%g!3#&%d)>F G&'/M/!32E?&%>¾ ¿ ÀÂÁ ¹ Àmà ¹ ÀyÄ »>¹ À 0 9=+_Å²Æ Ä ºQÇ Á »,¹ À Å · à 0@9=+KºQÇ Á È ¹ À 0@9=+ À Å°ºQÉ=»=Ç ¿ Á »,¹70 9>+µÅʺfÉ=»=ÇÌË j ':+$9EPECr4$9=FÍ!3#&%Y4-M:[=#L!-N )> &[='/% ?(!$4$M*), &[=':%gM: (!3#E%d?EM*)>[=4$)>FuP +$M: nÎ Á ¹7+$¿ M/ º Á »>¹7+-M: »>¹7Å°ºQ0@É=9=»=+µÇEÅ°ºQ0@9=É=+ »>ÅÊÇ ºQÉ>»=Ç Á +$M: ´ÅʺQÉ>»=Ç Î Á ºQÉ=»JË xI%p0 9=2&'/? % wb2X)>'/'/Vu5a%@':'nÅr9=4 P´GK% 4-#X)>G&+@PvF 9=4-%.% )>+-M:'ZV&Ç^2&+$%p!3#E%p0 9=F G&':%ÌH %ÌHEGK9,N &%@ L!3M*),'¨ &9>!3),!3M/9= ¨\ tD#&%d4$%@+$2&'Z!O)> L!^F 9>!3M/9= (M:+ Ïn%TÐ ¿oÑ Ò/ÓÕÔiÖZ×EØLÙrÚ Á Ïn%TÐÛ¹ Ñ ÒÜÔiÖ&à ¹ Ñ Ò:ÓÝÔ,ÖZ×&Þ@ÙßÚ àv¶_NO·
Adding phasors Two phasors, initially φ out of phase, and after rotating through θ = ωt
θ
φ
time=0, θ= 0
PLUS
θ
Later time, phase change = θ
φ
θ
Resultant - unit initial amplitudes
ámM/[=2&4$%gtn¶E\/·>¾kj ?&?&(cosine MZ!3M:9> 89>formula) Cs! 579cGE#X)>+$9>4$+ \ Á Ïn% Ð ¹ Ñ Ò:ÓÝÔiÖZ×&Þ â À Ù ã3Ñ ÒÛÞ@â À Ã}Ñ,äbÒÛÞ@â ÀOå Ú Á »,¹70 9>+µÅʺfÉ=»=Ç Ï^%oÐ Ñ Ò:ÓÕÔiÖZ×&Þ@â À ÙßÚ Ë áX4$9>Fæ!3#&M/+657% M:F F6%@?&M*)i!3% 'ZVzM/?&% L!$M/C²V{!3#&%¤)>F G&':MZ!32&?&%u)>+(»>¹70@9=+µÅ°ºQÉ=»>Ç1PD)> E?ç!3#&% G&#&)>+$%YÎè)>+ ºQÉ>»J\ é X©f«ç ¯ß¡"¯ß®ß &¥ ¯rêK©v &®° xI%60 )> z2E+$%6!$#&% G&#X)>+-9=4BG&M/0@!$2&4$% !39u0 9= E+$M:?E% 4Y5n#X),!d5nM:':'h#&)>G&GK% z5n#&%@ z57%c)>?E? !$9=[=%@!$#&% 4W+-%@q=%@43)>'dM:?E% L!3M/0 )>'o9>+$0 M/':':),!39=4 Vç+-M:[= &)>':+@Po)>+WM: ë|X[>2&4$% tn¶E\Õ¶E\ÍtD#&%ì|&4$+-! GK9=M: L!^!39( E9>!3%.M/+^!$#X),!o5n#E% !3#E% 4$%BM:+g E9(G&#X)>+-%.?&MZeQ%@4$% E0 %.lK%@! 57% %@ ì!$#&% FuPfMZCh5a% )>?E?Aí M:?E% L!3M/0 )>'k+$M/[= X)>'/+d57%c5nM:'/'y9=lE!O),M: ")u!39>!3)>'oî>ïgðKñÛò²óßôEõ;öY5n#&M:0O#AM/+.í !$M:F % + % )>0O#ëM: &?EM/q;M:?&2&)>'^)>F6GE':M/!$2&?&%,\ tD#E%çö1÷Qö1øÊù>úiPU!3#E9=2&[=#¨PD5n#&M/0O#ûM:+6G&4$9>Gf9=4 !3M/9= X)>'D!39 R2
Phase
2( 1
cos ( φ ) )
φ
2
Phasor1.mcd
àv¶_N »
Addition of Phasors
A a Ď&#x2C6;
Ď&#x2020;
a
mĂĄ M/[=2&4$%TtnÂśJ\ŸJžhj ?&?&MZ!3M:9> u9,Cs! 5796GE#X)>+$9>4$+n9>Cs% wb2X)>'v)>F G&':MZ!32&?E%>\ !$#&%Â&#x203A;+$wb2X)>4-%I9>C !3#&%ĂŹ)>F G&'/M/!32E?&%>Pn5nM:'/'o &9Âľ5ĂźlK%IĂ Ă&#x20AC; !$M:F % +(!3#E%ĂŹ9>4$M:[>M: X)>' % &%@4$[>VXĂ˝@\ j +Y!$#&% G&#X)>+-% ?EM/ef% 4$%@ &0 % M: E0 4$% )>+$%@+ PÂ&#x2021;!3#&9>2&[=#¨PÂ&#x2021;!3#&% G&#&)>+$9=4Y?&M:)>[=4$)>FĂž+-#&9Âľ5nM: &[W!3#&% )>?E?&M/!$M:9= (+Â&#x2022;!O)>4Â&#x2022;!3+U!$9 0@2&4$'Q4$9=2& E?u9> uMZ!3+-% '/CÂ?PJ%@q>% L!32X),':'/V6Cr9=4$F M: E[p)p0 ':9>+$% ?W'/9J9=GQPE)> E? !$#&%Y4$% +-2&'/!3)> L!g[>%@!3+n+-#&9=4-!$% 4@\UĂĄX9=4nF69>4$%oq=%@0@!$9=4$+@PQ)>+nM/ u|X[>2&4$%YtnÂśE\ Ă&#x2C6; PX!3#&%Y4-% +$2E'/!O), b! 0 )> 8lf%gw;2EM/!3%g).+$F6)>':'XCr4$)>0@!$M:9= (9,C´!3#&%oF6)iHJM:FB2&FÂ&#x201D;Gf9=+-+$M/l&':%^CĂ&#x;)>0@!$9=4a9>CvĂ !3M:F % +k!3#&% M/ &M/!$M*)>'f)>F G&':MZ!32&?&%,\ Addition of N = 50
vectors with relative phase Ď&#x2020; = 0
Addition of N = 50
deg
vectors with relative phase Ď&#x2020; = 1
50
50
40
40
30
30
20
20
10
50
40
30
Addition of N = 50
50
40
30
20
10
10
0
10
20
30
40
vectors with 10 relative phase Ď&#x2020; = 2
20
50
50
deg Addition of N = 50
vectors with relative phase Ď&#x2020; = 10
50 20
50
40 30
40
30 40
30
20 50
20
10
10
10
deg
0
10
20
30
40
50
50
40
30
20
10
deg
40
30
20
10
0
10
20
30
40
50
10 20 30 40 50
0
10
20
30
40
50
mĂĄ M/[=2&4-%gtnÂśE\Ă&#x2022;ÂśEžhjg?E?&M/!$M:9= 69>CvFc)> LV6G&#X)>+-9=4$+D9,Cs%@wb2X)>'´)>F G&'/M/!32E?&%>žmĂż .G&#X),+$9=4-+U5nM/!3# 4-% '*)i!3M/q>%7GE#X)>+$%a?&M/ef% 4-% &0@% pĂ&#x2026;r!$9=GRĂ&#x2021;Ă&#x152;P&¡a?&%@[=4$%@%>P;Âť ?E% [=4-% % +y), &?(¡ ^?&% [=4-% %@+^Ă&#x2026;Ă&#x;lK9>!$!$9=F(Ă&#x2021;Ă&#x152;\ 10
10
20
20
30
30
40
40
50
50
!#" $ % % && ' ( )* + % , -. % /101 % 2 3 4 5 " 6 +7 ( 4 # 98: % ;8< 2# ; 7 #,' , 7= > : #)?)@ A B C ,D ' 6 63& FEG #" 1 28F ' = & 4 3 :" % ,HB ' "I-. + A ! % % + J ;)@ A ,K)@ L/
Ă vÂś_NÂ?Âś
Addition of N = 500
vectors with relative phase Ď&#x2020; = 10
deg
500 400 300 200 100
500
400
300
200
100
0
100
200
300
400
500
mĂĄ M/[=2&4-%atnÂśE\ Ă&#x2C6; žvjg?&?&MZ!3M/9= .9>CKF6)> LVBG&#&)>+$9=4-+h9>CK% wb2X)>'&)>F6GE':M/!$2&?&%,žvĂż MoG&#X),+$9=4-+ 5nM/!3# 4-% '*)i!3M/q>%TG&#X)>+-%Y?&M/ef% 4-% &0@% ¡C ?E% [=4-% % +@\ 100 200 300 400
ÂŻ y¢;ÂĽ_¢;ŠfÂą ÂŁÂ&#x152;ÂĽ_¢;Œ¨§Â&#x2021;¢;ŠsÂŞLÂŻr¢;Â&#x;.ÂŹRQh¢; JÂą_Â&#x; xI% &9Âľ5 0 9> &+$M/?&% 4T!3#E%6GK9=+$+-M:l&M/':MZ! Vu!$#X),!Y!3#E% +-M:[= &)>':+olK% M/ &[W0 9=FBl&M: &%@?IF6) V #X) q>% ?&MZeQ%@4$%@ b!nCr4-% wb2&% E0 M:%@+ \ Beats 500
N PO
9.9 , 9.8 .. 9.9
t
12
10
sin( t .Ď&#x20AC; )
8
sin( 1.3 .t .Ď&#x20AC; ) sin( t .Ď&#x20AC; )
2
sin( 1.3 .t .Ď&#x20AC; )
2 .cos( 0.15 .t .Ď&#x20AC; ) 2 .cos( 0.15 .t .Ď&#x20AC; )
6
6
6 4 6
2 .sin( 1.15 .t .Ď&#x20AC; ) .cos( 0.15 .t .Ď&#x20AC; )
2
9
0
2 10
5
0
5
10
t
mĂĄ M/[=2&4-%DtnÂśE\Ÿÿ;ž2SJ2&GK% 4-Gf9>+$M/!$M:9= 9>Cf! 5a9 +$M/[= X)>'/+ 5nM/!3# ?&MZeQ%@4$%@ b!kCr4$%@wb2&% &0@M:%@+ P;+$#&9Âľ5nM: E[ !$#&%YG&#&% E9=F6%@ &9= u9>Cslf% ),!3+@\ SJ2&GEGf9=+-% !$#&% +-M:[= &)>':+h#X) q>% !3#E% +$)>F6%^)>F G&'/M/!32E?&%n)> &? G&#X)>+-%>P;Cr9=4y%1HE)>F G&':%D! 579 2& EM/!^)>F G&':MZ!32&?E%g+$M/ &%Y+$M/[= X)>'/+ \ Ă&#x20AC; 2
1.5
sin( t .Ď&#x20AC; )
1
sin( 1.3 .t .Ď&#x20AC; )
cos( 0.3 .t .Ď&#x20AC; )
1
Ă˝ Ă&#x2026;PU-Ă&#x2021; Ă ^Ă? % Ă? Ă&#x2018; Ă&#x2019;:Ă&#x201C;Ă&#x2022; Ă&#x201D; VrĂ&#x2013;*Lä W¾â Ă&#x20AC; Ă&#x2122;*Ă&#x161; ^Ă? %TĂ? Ă&#x2018; Ă&#x2019;:Ă&#x201C;Ă&#x2022;Ă&#x201D; XĂ&#x160;Ă&#x2013;*äLW¾â Ă&#x20AC; Ă&#x2122;*Ă&#x161; T Ă&#x20AC; PĂ&#x2026; U-Ă&#x2021; Ă
0.5
T 0 10
5
0
5
10
t
Two equal-amplitude sinusoids combine to give a resultant which is a product of a carrier and an envelope. The frequencies of these are the half-sum and half-difference of the original frequencies. The beat frequency, the frequency at which the amplitude varies, is the difference between the original frequencies.
Y+Z4 # K K 3 A [ +B\ \ 3 2B + && ^]_8: % `8F = a ' $ J 7b #)F 8F ! '7K5 6 %c[ c 5 d % I 6 +]' )L C ,D 12)e' ' F8: A H 3 F a + , 1 #)^ ; 8F ]' . ' B % f $ '" .D I J )@ L/Fg\ h8: 6 6^7= % % : 3 481a-H #)i 7=5 6 j)@-C , c 5 + ' 1 #)k 3 4 J + + 6M 7K l :63& + 9 h ' /
Ă vÂś_N Ă&#x2C6;
Ă˝ Ă&#x2026; U-Ă&#x2021; Ă&#x192; T Ă&#x20AC; Ă&#x2026;PU-Ă&#x2021; Ă ^Ă? % Ă? Ă&#x2018; äbĂ&#x2019;3W¾â Ă&#x20AC;7ĂŁ3Ă&#x2018; Ă&#x2019;Ă&#x153;Ă&#x201D;MV*Ă&#x2013; Ă&#x192; Ă&#x2018; Ă&#x2019;Ă&#x153;Ă&#x201D; X Ă&#x2013; ĂĽ Ă&#x161; Ă Ă?^% Ă? Ă&#x2018; äbĂ&#x2019;3W¾â Ă&#x20AC;Ă&#x152;Ă&#x2018; Ă&#x2019;:Ă&#x201C;Ă?Ă&#x201D;MV°Ă&#x2014;JĂ&#x201D; X Ă&#x2122; Ă&#x2013;Zâ Ă&#x20AC;aĂŁ3Ă&#x2018; Ă&#x2019;:Ă&#x201C;Ă?Ă&#x201D;MV äLĂ&#x201D; X Ă&#x2122;Ă&#x203A;Ă&#x2013;Zâ Ă&#x20AC;hĂ&#x192; Ă&#x2018; äbĂ&#x2019;:Ă&#x201C;Ă&#x2022;Ă&#x201D; V äLĂ&#x201D; X Ă&#x2122; Ă&#x2013;Zâ Ă&#x20AC; ĂĽ Ă&#x161; Ă Âť 0 9=+ Ă&#x2026; m Ă˝ Ă&#x201E; Âť m Ă&#x20AC; Ă&#x2021; U Ă?^% Ă? Ă&#x2018;,äbĂ&#x2019; W¾â Ă&#x20AC; Ă&#x2018; Ă&#x2019;:Ă&#x201C;Ă?Ă&#x201D;MV°Ă&#x2014;JĂ&#x201D; X Ă&#x2122;Ă&#x203A;Ă&#x2013;Zâ Ă&#x20AC; Ă&#x161; Ă Âť 0 9=+ Ă&#x2026; m Ă˝ Ă&#x201E; Âť m Ă&#x20AC; Ă&#x2021; U +-M: Ă&#x2026; m Ă˝ Ă&#x192; Âť m Ă&#x20AC; Ă&#x2021; U Ă&#x2039; tD#&M/+YM:+o!3#E% GE4$9;?&2&0@!d9>Ck! 579uCr2& E0@!3M/9= &+@PÂ&#x2021;5nMZ!3#ĂŹ#X)>'ZC*N +$2EFÂ?)> &?Â&#x203A;#X),'/C*N ?EM/ef% 4$%@ &0 %.Cr4-%1N wb2&%@ &0 M/% + PR), &?u!$#&%T4$%@+$2&'Z!3M/ &[p?&M:+Â&#x2022;!32&4-lX)> &0@%YM:+U+-#&9Âľ5n ¤M: (|&[=2&4$%TtnÂśJ\ŸÿJ\ytD#&%Y#&M/[=#&%@4Â&#x2022;N Cr4-% wb2&% E0@VĂŹ!3% 4-F M:+Y0 )>'/':%@?ĂŹ!$#&o% n$ĂŽ>øĂ&#x152;øĂ&#x152;òĂ&#x160;Ăś1øoCr4$%@w;2E% &01V=P !3#E%6'/9_57% 4Â?NÂ&#x152;Cr4-% wb2&% E0@VIGX),!$!$% 4- 5n#&M/0O#{F69;?&2&':),!3%@+ !3#E%W)>F6GE':M/!$2&?&%69>Cn!3#&%80 )>4$4-M:% 4BM:+B!$#&%zĂś1iá p>Ăś1rĂą qOĂ°XĂś1\Â&#x203A;tD#&M:+pM/+B!3#&% G&#E% &9=F % E9= S9, C s1Ăś$ĂŽ>PĂł t1\ u 9Âľ5 5nM:':'R57%dGK% 4-0 %@M/q=%T!$#&M:+D%1eQ%@0@#! v¤ Â&#x152;Cv57%T[=% &%@43),!$%T! 5a9 +$9=2E &?&+D5nM/!$#8+$':M/[=#L!3'ZV ?&MZeQ%@4$%@ b!BCr4$% wb2&%@ &0 M/% +@Py!$#&%8% ),4B5nM:'/'k#E% )>4B!$#&%8#&M/[=#A) q=%@43)>[=%(Cr4-% wb2&%@ &0@V"5nMZ!3#"MZ!3+ Beats )>F G&'/M/!32E?&%cq,)>4-V;M/ &[ĂŹ)>0 0@9=4$?&M/ &[ !39 !3#E%S%@ bq>% '/9=Gf%,\}tD#EM:+ )>F G&':MZ!32&?&%6q>),4$M*)i!3M:9> "M:+ 0 )>':'/% w? s1Ăś$ĂŽ>ó°ò²á;Ăš>\ xè#&),!n!3#&%d% )>4D5nM/':'Q?E%@!3%@0@! PR!$#&9=2&[>#¨P&!3#&%d0O#X)> E[=% M/ IĂŽ>ĂŻgĂ°KĂąĂ&#x203A;ò²ó°ôEĂľ;ĂśU9,C !$#&%T+$9=2E &?¨P&5n#&M/0O#uF % ), &+U!3#X)i!D!3#&%TlK% ),!DCr4-% wb2&%@ &0@VWM/+a!3#&%T+-M:F G&'/V !3#E% Ăľ>ò xoĂś1øOĂś1<á nOĂś M/ S!3#E% ! 57982& &?&%@4$'/V;M/ &[6Cr4-% wb2&% E0 M:%@+ \otD#EM:+gM/+ lK% 0 )>2&+-%p)cGK% )><WM: u!3#&%(ĂŽ>ĂŻgĂ°KĂąĂ&#x203A;ò²ó°ôEĂľ;Ăś1P !$#X),!YM:+o!$#&% Gf% )>< M: !$#&%WrĂą qiĂ´&Ăľ>áQ&Ăś t&tg9>Ck!3#&% +$9>2& &?¨Pv9J0@0 2&4-+T! 5nM:0 % M/ ĂŹ%1q=%@4-VĂŹGf%@4$M/9J? )>+-+$9;0 M:),!3%@?(5nM/!3#ĂŹ Ă&#x2026; m Ă&#x201E; m Ă&#x2021;-Ă&#x2030;=ÂťJ\htD#&%T?EM*)>[=4$)>FÂ&#x201D;M: (|X[>2&4$%TtnÂśE \ y.+$#E9_5n+D!$#&%TF69;?&2&'/2&+ 9>Cf!3#&%^+$M/[= X)>?' z &9,!3Ă˝ %n!3#X),Ă&#x20AC; !7M/!k9=+-0 M/':'*)i!3% +y),lf9=2J!a)YF % )> q>),':2&%,PJ), &? !$#&%nCr4$% wb2&%@ &0@V 9>CR!$#&M:+h9=+-0 M/':'*)i!3M:9> ¨Pi!$#&%DlK% ),!hCr4-% wb2&% E0@V=PJM:+ ?E9=2&l&'/%U!3#&%UCr4-% wb2&% E0@V 9>CR!3#&%n%@ bq>% '/9=Gf% 9>Cv!3#E%d+-M:[= &)>'Ă&#x160;\ T
9.9 , 9.8 .. 9.9
t
12
10
sin( t .Ď&#x20AC; )
8
sin( 1.3 .t .Ď&#x20AC; ) sin( t .Ď&#x20AC; )
2
sin( 1.3 .t .Ď&#x20AC; )
2 .cos( 0.15 .t .Ď&#x20AC; )
2 .cos( 0.15 .t .Ď&#x20AC; )
6
6
6
4
6
2 .sin( 1.15 .t .Ď&#x20AC; ) .cos( 0.15 .t .Ď&#x20AC; )
9
2
0
2
10
5
0
5
10
t
2
1.5
sin( t .Ď&#x20AC; ) 1
sin( 1.3 .t .Ď&#x20AC; )
cos( 0.3 .t .Ď&#x20AC; )
1
0.5
0 10
5
0
5
10
mĂĄ M/[=2&4-%.tnÂśE\ yEž[SJ2&GK% 4-Gf9>+$M/!$M:9= 9,Ck! 579u+$M:[> X)>':+ 5nM/!3# ?EM/ef% 4$%@ L!dCr4-% wb2&%@ &0 M/% + PÂ&#x2021;[=MZq;M: &[ lK% ),!$+ \2u^% 4-%^57%g),4$%^G&':9>!-!3M/ &[o!3#&% )>l&+-9=':2J!3%Dq,)>':2&%D9,CQ!3#E% +-M:[= X),'Ă&#x160;\vtD#&%^q,)>4-M*),!$M:9= p9,C !$#&%Y':9=2&?E &% +-+^#&)>+D! 5nM:0 %T!$#&%TCr4$% wb2&%@ &0@Vu9>Cv!3#E%d%@ Lq=% '/9=GK%YCr2E &0@!$M:9= u9>Cv!3#&%Y+$M/[= X)>'°\ t
Two equal-amplitude sinusoids combine to give a resultant which is a product of a carrier and an envelope. The frequencies of these are the half-sum and half-difference of the original frequencies. The beat frequency, the frequency at which the amplitude varies, is the difference between the original frequencies.
Ă vÂś_NÂ&#x2022;Ăż
' T T ( ` 2 æ > y . ^ ` @ h s y X¡z¢S£ ¥_¢J¦Q§v¢;©vª>« ¬ ³v¯POy¢;¥_¢;©f± X¡zs®ß¯r±_§v³ ¢ tD#&%gG&#X)>+-9=4a?&M:)>[=4$)>F M:+k+$#&9µ5n 8M/ 6|X[=2E4$%otn¶E \ J\ j [L)>M/ 657%o2&+$% !3#&% 0 9=+-M: &% 4$2&'/% !39 |X E? à À à »>¹ 0 9>+_ÅßÎ Ä ºf Ç À Á ¹À )> E?¤!O)><,%B!3#E%.43),!$M:9 9>Ch!3#E%BG&4- 9 -% 01!3M:9> &+o9>Ch!$#&%B4-% +$2E'/!O), b!g9= L!39(!$#&% V¤)> &?SH )iHJ% + !$9 |& &?u!$#&%YG&#X)>+-%B), &[=':% à +$M/ DÎ Ë Addition of Phasors Á ¹7¹70@+-9=M: ^+Kºº Unequal Amplitudes !3)>. à 0 9=+XÎ {
|~}
b
b
R φ ψ−
ψ θ
φ
a
má M:[=2E4$%Ttn¶E\ J¾yjg?&?EM/!3M/9= 89>Cv! 5a9 G&#X),+$9=4-+^9,Cm?&MZeQ%@4$%@ b! )>F G&'/M/!32E?&% +@\ hwb2X)>':'ZV=PE57%d0 )> u2&+$%T!$#&%Y0 9=F G&':%ÌH8 &9,!O),!$M:9= ¨PE)> &?u4$%@0 )>'/' Ã À Á ý À Á Å ý À Ã Ã À Ç Å À ý Ã Ã Å M À Ç M Ã M Ç Á ýý À Ã ÀÀ À Ã »>Ïný %LÀÅ ý MÀ ÀÇÌË ý SJ9EPE5nM/!$# ý ÁÁ ¹ 1Ñ Ñ Ò/Ò/ÓÕÓÕÔiÔiÖZÖZ×E×&ØLÞ@ÙÙ À àv¶_N y R
2
a
tan ( θ )
2
b
2
2 . a .b . cos ( π
a . sin ( φ ) a . cos ( φ )
b .sin ( ψ ) b .cos ( ψ )
(ψ
φ))
5n#&%@4$% ¹c)> E? ,) 4$%Y4$% )>'ÊP;5a%Y|X &? à ÀaÁ ¹ Àm à OÀ à »>¹ Ï^% Ð Ñ Ò:ÓÝÔiÖZ×&Þ Ù Ñ äbÒ:ÓÝÔ,ÖZ×EØ=ÙrÚ Ë ý À SJM/F6M/'*)>4-'/V>P=5a%d<b &9µ5 )>4$[KÅ ý à À Ç Á !O)> ä ý( Ï^F %=ÅÅ ý Ãà À ÇÇC ý º à À +$M: nÎ 7 ¹ $ + / M ^ Á !O)> ä (ý ¹70@9=+Kº à 0 9=+RÎ9 Ë ¯ y¢;¥_¢;©f± ³v¯ß¥_¢;ª>±_¯ K©s ~ -2 K®r &¥i¯J L J±_¯J K© tD#&M/ &<bM: &[ lX)>0O<(!$9 !$#&%dF69;?&% '¨57%.),4$%Y2&+$M/ &[ #&% 4-%>PK9>Ch) lf% )>?¤9> ¤)p5nM:4-%>PX!3#&%@4$%dM:+ &9Y4-% )>+-9= 5n#LVp!$#&%D! 5a9d9=+$0@M:'/'*),!$M:9= &+s+$#&9>2&':? lK%^M/ p!3#&%n+3),F6%D?&M/4$%@0@!3M/9= BN 57% 0@9=2&':? ?&4-M/q>% !3#E%BlK% )>?¤5nMZ!3# F6)>[= E%@!3M/0T|X% '/?&+T),! 4$M/[=#L!o)> E[=':%@+ Pf)> &?¤!$#;2E+o?&4$MZq=% M/! 4$9=2& E? )p! 5a9iN ?&M/F6%@ &+$M/9= X)>'´GX)i!3#¨\U Cm!3#&% lf% )>?¤F 9µq=% +^M: S)6+ !34$)>M:[=#L!^':M/ &%>PXMZ!^M:+^)SñÛò²÷Qö$î>øÌñÛú ðiqiñZî>øÌeò iö$~õ q t n1ò²ñ²ñZî> ó qiøÌ\ ¯°© ¢b &L ¥ ªL¯r¥iªL§s®r &L¥ s¢;®ß®°¯r ±_¯°ª= &® 2 f®r &¥i ¯ L E±_ ¯ f© C P;#&9µ5a%1q=%@4 P&57%o?&4$MZq=%^!3#&% lf% )>?c5nM/!$#6!$#&%g+$)>F6%g)>F G&':MZ!32&?&%n), &?cCr4$%@wb2&% &01V8)>'/9= &[ !$#&%gHu)> &?8V()iHJ% + PRl&2J!DÆvÉ=».9=2E!n9>CvG&#&)>+$%,P&5a%Y?&4-M/q=%YMZ!D4$9=2E &?u) 0@M:4-0 ':%^N7),C²!3%@4n)>':'°P !$#&M:+DM/;+ -2&+-!n4-% 0 9> &+-!$4$2&01!3M: E[ !$#&%Y+$M/!$2X),!$M:9= (Cr4-9=F 5n#&M/0O#u57%Y?&% 4-M/q>% ?W!3#&%Y &9>!$M:9= 89,C !$#&%YG&#X)>+-9=4 \7 Cm!3#E%d! 579cF 9>!3M/9= &+D),4$%dM: WG&#X)>+-%>PX57%B?&4-M/q=%YMZ!nM: S) + !343),M:[=#L!n':M/ &%Y),! È ÿc?E% [=4-% % +T!$9W!$#&% )iHJM:+@\B L!3%@4$F % ?&M:),!3%pGE#X)>+$% +-#&M/C²!$+T4$% +-2&'/!oM: q,)>4$M/9=2&+T%@':':M/GE!3M/0 )>' GK9='*),4$M:+$),!3M/9= &+@\ ¯° L I K§s¢ ¡mêK§ ¥_¢J Cs!3#&%TCr4$%@wb2&% &0@M:%@+g?&4-M/q;M: &[p!$#&%oHu)> &?uVW)iHJ% + )>4$%Y?&MZeQ%@4$%@ b! PX5a%d[=%@!n!$#&%Y43)> &[>%d9,C 4$),!3#&%@4D% '/% [L)> L!n|X[=2E4$% +n<b &9µ5n ),+ à´M/+$+3 ) -9=2&+nGX),!-!3% 4- &+ \ é E ± £ ¢;¡z E±_¯ßªL §s @¢J³ë¯ß©} ± £v¯ß B ± Rm¯ßª tD#&% ¸ 9=+$M/ &%U4$2E':%>¾vM/CX¹ )> E? ),4$%a! 579T+$M/?&% + 9,CQ)^!34$M:)> &[='/%h5nM/!3# ), p)> &[='/=% glK%@! 57% %@ !$#&% FuPE!3#E% W!3#&%T!3#EM:4$?W+-M:?& % ¤gM/+D[=M/q>% ulbV à OÀkÄ »>¹ 0@9=+_ Å >Ç1Ë ¤ ÀUÁ ¹ Àm N PO
àv¶_N%
áX9=4D0 9>F6G&'/%1H( ;2EF.lf%@4$+
)> E?
ý Ã À À ÁÁ Å ý À Ã Ã À Ç Å À ý Ã Ã Á ýý À Ã ÀÀ À Ã
ÀÅ Ç Ã Ç »>Ïný %LÀÅ ý MÀ ÀÇÌË ý
)>4$[KÅ ý Ã À Ç Á O! )> ä ý( Ï^F %=ÅÅ ý ÃÃ À ÇÇ ý º Ã À +$M: nÎ 7 ¹ $ + / M ^ Á !O)> ä ý( ¹70@9=+Kº Ã 0 9=+RÎ Ë
àv¶_N ¥