1B47 Introductory Classical Mechanics Course notes (UCL)

Page 1

Classical Mechanics 1

Introduction

Classical mechanics is important as it gives the foundation for most of physics. The theory, based on Newton’s laws of motion, provides essentially an exact description of almost all macroscopic phenomena. The theory requires modi…cation for 1. microscopic systems, e.g. atoms, molecules, nuclei - use quantum mechanics 2. particles travelling at speeds close to the speed of light - use relativistic mechanics These other theories must reduce to classical mechanics in the limit of large bodies travelling at speed much less than the speed of light. The subject is usually divided into 1. statics - systems at rest and in equilibrium, 2. kinematics - systems in motion, often accelerating. Concerned here with general relationships, e.g. F = dp dt , (Newton’s second law, without specifying the details of the force.) 3. dynamics - details of the force law are speci…ed, e.g. gravitational force, force due to a stretched spring.

2

Newton’s laws of motion

These were formulated in his book Principia Mathematica in 1687. They are the basis of all classical mechanics. 1. A body remains at rest or in a state of uniform motion (non-accelerating) unless acted on by an external force. 2. Force = time rate of change of momentum, i.e. F=

dp ; dt

(1)

where p = mv = momentum of body of mass m moving with velocity v. If m is constant then F=m with acceleration, a =

dv = ma; dt

(2)

dv dt .

3. To every force (action) there is an equal but opposite reaction. These laws are only true in an inertial (non-accelerating) frame of reference. We shall discuss later how we can treat motion relative to an accelerating frame of reference. From the second law, if F = 0, then the acceleration a = dv dt = 0, so the velocity, v, is constant. Thus …rst law is special case of the second law. We can also derive the third law from the second law as follows. Apply a force F to body 1. Body 1 pushes on body 2 with force F2 and body 2 pushes back on body 1 with force F1 as shown in …g 1. Applying Newton’s second law, for the combined system, F = (m1 + m2 ) a:

(3)

F + F1 = m1 a;

(4)

For body 1,

1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.