Methodewijzer rekensprongplus

Page 1

De meest succesvolle

wiskundemethode

LEERJA AR 1 TOT EN MET 6

geef meer dan les



Waarom Rekensprong Plus? Rekensprong Plus is niet voor niets de meest succesvolle wiskundemethode in Vlaanderen. De methode bouwt voort op het stevige fundament van de vorige editie, maar is nog sterker afgestemd op de behoeften van leerkrachten en leerlingen. Met Rekensprong Plus kiest u voor haalbaarheid in alle aspecten van de klaspraktijk:

Met Rekensprong Plus haalt u het beste uit al uw leerlingen!

een haalbare organisatie en planning sterke aandacht voor klassikale instructie en automatiseren zorg en differentiatie op maat maximale ondersteuning van de leerkracht praktische integratie van ICT en leren leren

Inhoud • Een haalbare organisatie en planning

2

• Een ijzersterke didactische aanpak

4

• Sterke aandacht voor standaardprocedures, automatiseren en klassikale instructie

4

• Focus op betekenisvol wiskundeonderwijs

6

• Maximale ondersteuning van de leerkracht

8

• Een gebruiksvriendelijke handleiding

8

• Praktische integratie van ICT

10

• Motiverend voor de leerlingen

12

• Werkschrift

12

• Op school en thuis online oefenen op bingel

18

• Zorg en differentiatie op maat

20

• Herhalen, toetsen, remediëren en verrijken

20

• Inoefenen, automatiseren en toepassingen

22

• Online differentiatiemodule

24

• Focus op leren leren

26

• Neuze-neuzeboek

26

• Wandplaten

28

• Materialen per leerjaar

29

• Meer informatie

30

1


Een haalbare organ Rekensprong Plus ondersteunt scholen van alle netten in de realisatie van eindtermen en leerplannen via een zorgvuldige opbouw gebaseerd op 33 doorlopende leerlijnen. Een haalbaar jaarwerkplan maakt de methode heel overzichtelijk.

33 doorlopende leerlijnen

Een haalbaar jaarwerkplan

De 33 leerlijnen van Rekensprong Plus staan garant voor zowel de horizontale samenhang op klasniveau als de verticale doorstroming op schoolniveau, en dat voor alle wiskundedomeinen. Toepassingen worden in samenhang met de domeinen behandeld.

Een leerjaar telt 13 ‘sprongen’ (hoofdstukken) van 13 lessen. In de eerste graad zijn dat 26 kortere lesjes, rekening houdend met de beperkte spanningsboog van die leeftijdsgroep.

In combinatie met de haalbare, logische planning van alle lessen over de zes leerjaren heen maken deze leerlijnen doordacht en motiverend wiskundeonderwijs mogelijk doorheen de volledige lagere school.

Een vaste structuur graad

1

2

3

lesduur (minuten)

25’

50’

50’

aantal sprongen (hoofdstukken)

13

13

13

aantal basislessen per sprong

20

10

10

aantal evaluatielessen per sprong

6

3

3

Elke sprong is opgebouwd volgens een vaste structuur: na de basislessen volgen de evaluatielessen met herhaling, toets, remediëring en verrijking. Met 6 lestijden van 50 minuten per week (12 lestijden van 25 minuten in de eerste graad) neemt elke sprong dus in ideale omstandigheden 2 weken en 1 dag in beslag.

Buffertijd De leerinhouden zijn uitgezet over een periode van 28 lesweken. Dat betekent dat er buffertijd is die elke school of klas in functie van de eigen behoeften kan invullen. Zo is de methode een stevige leidraad, maar geen keurslijf.

i Meer informatie: www.rekensprongplus.be/inhouden

2


nisatie en planning De 33 leerlijnen in Rekensprong Plus getallenkennis 1 2 3 4 5 6 7 8 9

leerjaar

1

2

3

4

5

6 De leerlijn ‘breuken’ wordt al in het eerste leerjaar aangezet.

ontwikkeling getalbegrip breuken kommagetallen percent verhouding (met verwijzingen naar schaal, met verwijzingen naar snelheid) patronen delers en veelvouden afronden en schatten tabellen en grafieken

Aan de leerlijnen ‘kommagetallen’ en ‘percent’ wordt pas vanaf het vierde leerjaar gewerkt.

bewerkingen 10 11 12 13 14 15 16 17 18 19

hoofdrekenen: optellen hoofdrekenen: aftrekken de tafels hoofdrekenen: vermenigvuldigen hoofdrekenen: delen cijferen: optellen cijferen: aftrekken cijferen: vermenigvuldigen cijferen: delen zakrekenmachine

meten en metend rekenen 20 21 22 23 24 25 26 27 28

lengte inhoud gewicht oppervlakte volume afstand en tijd / tijd en snelheid geld temperatuur hoekgrootte

meetkunde 29 vormleer 30 meetkundige relaties (met spiegelingen,

“Het is een plezier om met Rekensprong Plus te werken. De methode fungeert zeer goed als houvast zonder te dicterend te zijn.”

congruentie en gelijkvormigheid) 31 ruimtelijke oriëntatie (met positiebepaling,

beweging en richting, constructies) 32 kijklijnen en schaduwen

Els Van Lysebetten, leerkracht 3e leerjaar, Vrije Basisschool De 5-sprong, Moerzeke

probleemoplossende vaardigheden 33 strategieën en probleem-

oplossende vaardigheden Uit de algemene inleiding van handleiding a

3


Een ijzersterke di In goed wiskundeonderwijs is er aandacht voor het verwerven van inzichten en voor het oefenen van vaardigheden. Rekensprong Plus biedt beide.

Standaardprocedures en automatiseren Rekensprong Plus heeft in de onderbouw veel aandacht voor standaardprocedures en automatiseren bij het opbouwen van basisvaardigheden. In de hogere leerjaren kiezen de leerlingen flexibel de meest geschikte aanpak voor een rekenprobleem. Daarbij kunnen ze altijd terugvallen op hun basisvaardigheden, die doorheen de lagere school onderhouden worden.

Klassikale instructie De methode beschouwt klassikale instructie als een onmisbare, waardevolle schakel in het leerproces. Interactieve instructiemomenten wisselen af met gevarieerde werkvormen waarin de leerlingen individueel, per twee of in groep nieuwe inzichten en vaardigheden oefenen, herhalen en automatiseren.

Standaardprocedures zijn er voor iedereen.

Zo lukt het altijd ...

256 + 137 = ...... 256 + 137 = 256 + 100 + 30 + 7 = 356 + 30 + 7 = 386 + 7

“Belangrijk is dat de basisvaardigheden (hoofdrekenen, cijferen, schatten, toepassingen in de dagelijkse realiteit van rekenvaardigheden, praktijkgericht metend rekenen, ruimtelijke oriëntatie ...) in ruime mate aan bod kunnen komen.” Ontwikkelingsdoelen en eindtermen voor het gewoon basisonderwijs, Vlaams Ministerie van Onderwijs en Vorming, 2010, p. 110

= 393

• Het eerste getal laat ik volledig. • Het tweede getal

Ze helpen de stap naar ‘flexibel rekenen’ te zetten.

Soms kan het makkelijker! 720 + 99 = ...... 720 + 99 = 720 + 100 – 1dicht bij 100. er 100 bij. = 820 – 1 1 te veel. = 819 et er dus weer kken. Uit neuze-neuzeboek 3 (verkleinde weergave)

4


idactische aanpak

Nieuwe vaardigheden krijgen veel inoefentijd in allerlei verschillende aanbiedingsvormen: van concreet over schematisch tot abstract.

concreet

schematisch

abstract Uit werkschrift 2 b (verkleinde weergave)

5


Een ijzersterke di Betekenisvol wiskundeonderwijs Rekensprong Plus speelt in op de leef- en ervaringswereld van de kinderen en maakt gebruik van hun voorkennis. De methode koppelt herkenbare realistische contexten aan inzichtelijke modellen zoals getallenlijnen en verhoudingstabellen. Dat maakt de wiskundeles betekenisvol voor de leerlingen. Zo verwerven ze doorheen de lagere school kennis, inzichten, probleemoplossende vaardigheden, strategieën en attitudes die volledig afgestemd zijn op het functioneren in de maatschappij van vandaag en morgen.

“De lessen zijn heel doordacht en spelen goed in op de leefwereld van de kinderen. Daardoor kunnen ze na de klassikale instructie probleemloos aan de slag.” Hilde Peeters, leerkracht 5e leerjaar, GBS De Kangoeroe, Dessel

6


idactische aanpak Eerst zelf schatten en invullen, daarna samen meten en invullen. Let goed op de maateenheden.

D

B

1 Hoe lang is de gang?

Realiteitsbetrokken opdrachten maken wiskunde ‘zichtbaar’ in het dagelijkse leven van de kinderen.

Meet het met ons touw van 10 m. Ik schat:

We meten:

…… m

…… m

Uit werkschrift 2 d (verkleinde weergave)

7

Een wedstrijdje verspringen Rangschik de resultaten van klein naar groot. ............

<

............

<

............

<

............

Wie wint er? ..........................................

Hoeveel cm was de winnende sprong? .................. cm.

Uit werkschrift 4 c (verkleinde weergave)

De lengte op de tekening, het schaalmodel … berekenen Een auto heeft een lengte van 4 meter. Hoe lang moet je het verkleinde model op schaal 1/50 dan tekenen? De schaal is 1/50. Dat wil zeggen dat 1 cm op de tekening 50 cm in de werkelijkheid is. We gebruiken de verhoudingstabel. x8 tekening

1

1 cm

8 cm

werkelijkheid

50

50 cm || 0,5 m

400 cm || 4m x8

De verhoudingstabel is een sterk denkmodel. Ze ondersteunt het probleemoplossend denken, bv. bij schaalberekening, tijd - afstand - snelheid ...

Het verkleinde model heeft een lengte van 8 cm.

Uit neuze-neuzeboek Ui b k 5 ((verkleinde kl i d weergave))

7


Maximale ondersteun Een gebruiksvriendelijke handleiding Deze letters geven aan waar het in de les vooral om draait: nieuwe leerinhouden (N), inoefenen (I) of automatiseren (A).

Hier ziet u waar de les zich binnen een lessenreeks situeert.

LES 11 MEETKUNDE

De kopbalk situeert de les: lesnummer, domein, lesonderwerp. In elke les staat één domein centraal.

1 A. Situering van de les

duur doelenverwijzing

Het laatste doel heeft betrekking op ‘leren leren’ of sociale vaardigheden.

Een overzicht van het materiaal en/of bordschema dat bij de les nodig is. Veel van die materialen vindt u als extra schermen in het Bordboek Plus.

Met de vorige en de volgende les in de leerlijn weet u precies wat voorafging en wat volgt.

didactisch materiaal

accenten

ict

suggesties

plaats van de les in de leerlijn

31 ruimtelijke oriëntatie 25 minuten eindterm

GO

1 Aan de hand van een plaatsbeschrijving iets of iemand in de ruimte vinden

lesdoelen

OD 3.1

1.3.02

3.5.1

MK3

2 De positie van voorwerpen en personen ten opzichte van elkaar verkennen, bepalen en verwoorden

OD 3.1

1.3.03

3.5.1

MK3

3 De positie van personen en voorwerpen in de ruimte bepalen

OD 3.1

1.3.03

3.1.2 3.5.1

MK1 MK3

4 Eigenschappen bij zichzelf, anderen of voorwerpen verwoorden en gebruiken

OD 2.1

1.3.07

2.1.1 2.2.1.1

5 Objecten vergelijken en classificeren steunend op 1 eigenschap

OD 2.1

1.3.07 1.3.09

2.1.2 2.1.3

6 Geleerde begrippen hanteren in realistische toepassingssituaties in en buiten de klas

leren leren 4

1.4.03

DO1 1.5

8

voorbereiding volgende les

OVSG VVKBaO N

nieuw inoefenen automatiseren

I

A

MR1 MR5

ws ict nnb r&v ts a b c d adm. 11-13 • de klaspop, Lego-figuurtjes of andere popjes, poppen uit de poppenkast … • enkele insteek- en inlegpuzzels, tangram

klas x

We oefenen hier vooral een aantal rekenbegrippen.

Het ict-materiaal bij deze sprong vind je zo: Klik op de sprongtekening en dan op het pictogram Meetkunde. • Betrek ook de leerkracht lichamelijke opvoeding bij ruimtelijke oriëntatie. Die kan in de gymles heel goed starten vanuit lichaamsbeleving en ontdekking van de ruimte. • Als tussendoortje (tussen 2 lessen of als hoekenwerk) kun je de leerlingen enkele insteekof inlegpuzzels laten maken. Je kunt ze ook vrij laten experimenteren met het tangram. vorige les volgende les

les 3 les 16

les 2 van 10 les 4 van 10

i Blader door enkele materialen op: www.rekensprongplus.be/ materiaal

I

PLAATS- EN POSITIEBESCHRIJVING

leerlijn

De lesdoelen zijn concreet en verwijzen meteen naar eindtermen en leerplandoelen. Ze zijn ook digitaal terug te vinden op de doelen-cd-rom bij de handleiding.

3 VAN 10

• een groot blad papier (A3-formaat) • zes touwtjes van 15 tot 20 cm • twaalf blokjes


ing van de leerkracht Elke les is op dezelfde manier gestructureerd. Op twee tegenoverliggende pagina’s vindt u links de situering van de les en rechts een duidelijke lesgang. Zo kunt u elke les snel en efficiënt voorbereiden.

Elke lesgang is op dezelfde manier opgebouwd: beginsituatie - start - kern - verwerking - afronding. LES 11 MEETKUNDE PLAATS- EN POSITIEBESCHRIJVING

1 B. Lesgang

beginsituatie

In vorige lessen hebben we actief gewerkt rond ruimtelijke oriëntatie en een aantal rekenbegrippen. Na deze les kun je aan de hand van het werkblad objectief vaststellen welk kind welke begrippen nog niet beheerst.

start

Herneem een van de activiteiten uit les 3. Je laat een pop (of ander figuurtje) een plaats in de ruimte innemen. De leerlingen verwoorden op verschillende manieren waar ze staat, zit, ligt …

De beginsituatie schetst de voorkennis van de leerlingen. Die houdt ook rekening met kennis en ervaringen die de kinderen buiten de wiskundeles opdoen.

kern tip Laat de kinderen aan elkaar vertellen wat ze zien in het werkschrift (blz. 11). instructie Stel gerichte vragen bij de prenten en foto’s in het werkschrift. 1 Hoeveel kinderen zie je? Wie zie je helemaal links/rechts? Wie zit vooraan links/ rechts? Waar staat de jongen die rechtstaat? Wie staat op de derde plaats? Welk kind is het grootst/kleinst? … 2 Waar staat de uil? Wie staat op de vierde plaats? Wie komt na papa? Wie komt voor de jongen zonder pet? Wie staat tussen papa en de jongen? …

De start beschrijft een situatie of context die het lesonderwerp in de leefwereld van de leerlingen plaatst.

verwerking klassikaal De verwerking gebeurt in het werkschrift (blz. 12-13). Jij leest de opdracht en de leerlingen voeren die uit. zelfstandig werk Opdrachten: 1 Het kind dat het NRUWVW bij de school staat, kleur je bruin. Kleur de ODDWVWH vuilnisbak geel. Kleur het raam OLQNVERYHQ blauw. Kleur de UHFKWHUERRP groen. Het meisje dat helemaal OLQNV staat, mag je ook kleuren. Je mag de kleur zelf kiezen. Bij de kinderen die haasje-over spelen, kleur je het HHUVWH kind rood. 2 Het dier dat YRRU het schaap staat, kleur je blauw. Het kuikentje dat YRRURS loopt, kleur je geel. Het konijntje aan de UHFKWHUNDQW maak je bruin. Maak een kring rond het dier dat DFKWHU het schaap staat. De ERYHQVWH vogel in de boom kleur je groen. Teken een ladder WHJHQ de boom. Teken YHU YDQ de haan een poes. 3 Kleur de 2 HYHQ ODQJH treintjes. Kleur de NOHLQVWH toren. Kleur alle ramen op de EHQHGHQverdieping. Kleur het NRUWVWH potlood. Kleur het glas dat ELMQD OHHJ is. Wat YRRU de peer ligt, kleur je bruin. 4 Teken RS de tafel een glas fruitsap. %RYHQ de kast teken je een klok. 2QGHU de kast zit een muis. 7XVVHQ de kast en de tafel zet je een stoel. verlengde instructie Doe nog enkele oefeningen op links en rechts aan het eigen lichaam, bv. Neem je linkerknie vast. Knijp je rechteroog dicht. Trek aan je rechteroor. Hef je linkervoet op. Enzovoort. afronding

De kern bevat de instructie met duidelijke vragen en antwoorden en met veel aandacht voor interactie met en tussen de leerlingen.

Verlengde instructie Na de instructie volgt de verwerkingsfase. Voor rekenzwakke leerlingen is er verlengde instructie voorzien.

• Besluit met de slagzin die nog vaker zal terugkeren: Van linker- naar rechterkant, zo is ’t plezant! • Hou ook een kort gesprekje: Wat vond je fijn? Wat vond je moeilijk aan de oefeningen? Welke oefeningen heb je het liefst gedaan?

Bij de handleiding horen een administratieve cd-rom en een doelen-cd-rom. Op de doelen-cd-rom staan alle lesdoelen per koepel. De administratieve cd-rom bevat o.a. een digitaal registratieen zorgsysteem voor de 13 sprongtoetsen. Uit handleiding 2 a (verkleinde weergave)

9


Maximale ondersteun Praktische integratie van ICT

Bordboek Plus Met het Bordboek Plus kunt u Rekensprong Plus op een interactieve manier gebruiken op uw digitaal schoolbord. Het omvat: • alle pagina’s voor de leerling (werkschriften, neuze-neuzeboek, toetsschrift, kopieerbladen van de map van Wibbel) en bijbehorende correctiesleutels; • directe links naar fragmenten uit het neuze-neuzeboek; • handige hulpmiddelen zoals kant-en-klare positietabellen en getallenassen; • extra interactieve schermen met bv. digitaal MAB-materiaal, getalbeelden en -kaarten ...

Inhouden die bij elkaar horen zijn handig aan elkaar gelinkt.

Via de navigatietool (het ‘wiel’) kunt u onder meer bladeren, in- of uitzoomen, schrijven, een geodriehoek of meetlat oproepen, van uw bord een ruitjesblad maken ...

Dankzij het Bordboek Plus wint u heel wat tijd en kunt u zich concentreren op de essentie van het leerproces.

i Meer informatie: www.bordboekplus.be

10


ing van de leerkracht

Bingel Elke sprong uit Rekensprong Plus heeft bijpassende online oefeningen op bingel. Het zijn motiverende opdrachten waarmee de leerlingen in de klas of thuis nog eens extra oefenen wat ze in de wiskundeles geleerd hebben. • U kunt de oefeningen op bingel klaarzetten voor de hele klas of voor individuele leerlingen. Bingel kan gebruikt worden voor huiswerk, binnen hoeken- of contractwerk, om vrij te oefenen ... en dat zowel thuis als in de klas. • In één oogopslag ziet u de voortgang van uw leerlingen: wie heeft zijn taken al gemaakt en wat is de score voor elke oefening? De resultaten worden automatisch doorgemaild als u dat wenst. • U kunt bingel gebruiken om een of meerdere leerlingen feedback te geven. U kunt hen een boodschap sturen, een virtuele beloningssticker geven of extra pingping toekennen. Zo beloont u digitaal met één klik de inzet en het gedrag van elke leerling.

i Meer informatie: www.bingel.be Via www.mijnvanin.be > mijn methodes > Rekensprong Plus hebben gebruikers van Rekensprong Plus toegang tot extra downloads en bijkomende gebruikersinformatie. Ook de differentiatiemodule (zie p. 24) is toegankelijk via www.mijnvanin.be.

“Bingel werkt tijdsbesparend. Elke opdracht wordt automatisch verbeterd en alle resultaten worden geregistreerd. Zo kan ik de leerwinst van elke leerling op een eenvoudige manier volgen.” Maartje Hamans, leerkracht 3e leerjaar, Stedelijke basisschool De Spiegel, Antwerpen

11


Motiverend voo Werkschrift LES 212

HET DUBBEL TOT 10 De opdrachten zijn helder en duidelijk. De kinderen begrijpen wat ze moeten doen.

1

Doorheen de hele methode worden dezelfde pictogrammen gebruikt. Ze bieden houvast bij het zelfstandig werken en helpen taalzwakkere of anderstalige leerlingen.

2

Elke sprong opent met een paginagrote tekening. De belangrijkste inhouden uit de sprong kunt u samen met de leerlingen uit de sprongtekening halen.

teken het dubbel ernaast en vul in.

het dubbel van 4 is …

het dubbel van 1 is …

het dubbel van 2 is …

het dubbel van 3 is …

verdubbel en vul in.

het dubbel van 3 het dubbel van 2 het dubbel van 5 het dubbel van 4 is … is … is … is …

3

kleur het dubbel op de tienkaart.

4

vul in.

SPRONG

),

12

het dubbel van 3 is …

het dubbel van 5 is …

het dubbel van 1 is …

het dubbel van 4 is …

het dubbel van 2 is …

het dubbel van 0 is …


or de leerlingen Voor elk leerjaar:

LES 221 1

HET UUR

• werkschrift a: 1e trimester (september - oktober)

waarmee kun je de tijd meten? kleur de vakjes.

• werkschrift b: 1e trimester (november - december) • werkschrift c: 2e trimester • werkschrift d: 3e trimester

2

hoe laat is het?

het is ……. uur.

het is …… uur.

Voor GO!-scholen biedt Rekensprong Plus via www.mijnvanin.be gratis downloadbare bundels aan waarmee u de methode in overeenstemming kunt brengen met de leerlijn kloklezen voor GO!

het is …… uur.

teken de lange wijzer.

het is 6 uur.

het is 2 uur.

het is 11 uur.

het is 5 uur.

teken de korte wijzer.

het is 10 uur.

het is 7 uur.

het is 1 uur.

5

het is …… uur.

4

3

Kloklezen GO!

het is 12 uur.

teken de wijzers.

het is 11 uur.

het is 8 uur.

het is 6 uur.

i

het is 4 uur.

*)

Uit werkschrift 1 c (verkleinde weergave)

Blader door enkele materialen op: www.rekensprongplus.be/ materiaal

13


Motiverend voo Werkschrift LES 87 1

ECHTE BREUKEN

Vul in. – van 15 is … Zo doe ik het: 2 3

Wibbel helpt de leerlingen op weg doorheen de zes leerjaren van de lagere school.

Wat is het geheel? 15 In hoeveel gelijke delen moet je het geheel verdelen? 3 Hoe groot is één deel? 5, want 15 : 3 = 5 Hoeveel delen moet je nemen? 2 Hoeveel is dat samen? 10, want 2 x 5 = 10

2

Omkring telkens wat elk dier krijgt en vul dan in. De ekster krijgt 1 van de eieren. 6 De ekster krijgt dus …… eieren.

De arend krijgt 2 van de eieren. 6 De arend krijgt dus …… eieren.

1 van 12 is …… 6 Aap Oki krijgt 1 van de bananen. 5 Aap Oki krijgt dus …… bananen.

2 van 12 is …… 6 Aap Iko krijgt 4 van de bananen. 5 Aap Iko krijgt dus …… bananen.

1 van 10 is …… 5

3

Vaak en doelgericht oefenen, met veel aandacht voor automatiseren en memoriseren.

20

14

1 van 15 is 3 1 van 30 is 2 1 van 50 is 5 1 van 100 is 10 1 van 27 is 3

4 van 10 is …… 5

Kleur of omkring wat gevraagd wordt en vul aan. Kleur 1 van het geheel. 10

Kleur 4 van het geheel. 10

1 van …… is …… 10

4 van …… is …… 10

want …… : …… = ……

want …… x …… = ……

Omkring 1 van het geheel. 5

Omkring 2 van het geheel. 5

1 van …… is …… 5

2 van …… is …… 5

want …… : …… = ……

want …… x …… = ……

……… ……… ……… ……… ………


or de leerlingen

LES 87

ECHTE BREUKEN 4

Verdeel het lijnstuk.

”De structuur in de werkschriften is erg overzichtelijk. De kinderen kunnen er goed en zelfstandig mee werken en worden niet afgeleid door te veel kleuren of tekeningen.”

Meet het lijnstuk eerst. Duid dan het gevraagde deel aan met een boogje en noteer de breuk erboven. Het lijnstuk meet …… cm. 1 van het lijnstuk 4 Het lijnstuk meet …… cm. 3 van het lijnstuk 4

Brigitte Poesen, leerkracht 1e en 2e leerjaar, VBS De Bron, Membruggen

Het lijnstuk meet …… cm. 1 van het lijnstuk 3 Het lijnstuk meet …… cm. 2 van het lijnstuk 3

5

6

Vul in. Gebruik de figuur als je ze nodig hebt.

1 van 20 is …… 4

1 van 18 is …… 6

3 van 20 is …… 4

4 van 18 is …… 6

1 van 15 is …… 5

1 van 21 is …… 7

2 van 15 is …… 5

5 van 21 is …… 7

Niet elke leerling werkt even snel. Daarom bevatten de basislessen ook oefeningen om tempoverschillen op te vangen. -pictogram geeft Het aan welke oefeningen voor de snelle rekenaars bedoeld zijn (tempodifferentiatie).

Vul aan. Er zijn 40 noten te verdelen. 1 van de noten, De hamster krijgt 10 dus …… noten. 6 De eekhoorn krijgt van de noten, 10 dus …… noten. 3 Ik hou van de noten, dus …… noten, 10 voor mezelf.

Er zijn 36 druiven te verdelen. 1 De mus krijgt van de druiven, 9 dus …… druiven. 3 De vink krijgt van de druiven, 9 dus …… druiven. 5 Ik ben gek op druiven. Ik hou van de druiven, 9 dus …… druiven, voor mezelf.

i 21

Uit werkschrift 3 c (verkleinde weergave)

Blader door enkele materialen op: www.rekensprongplus.be/ materiaal

15


Motiverend voo Werkschrift

Wibbel reikt niet alleen tips aan. Hij laat leerlingen ook nadenken over hun ‘leren leren’ ... en doet dat af en toe met een knipoog.

Het stappenpl

LES 48

an

1

OPPERVLAKTE- EN LANDMATEN

Schat eerst. Bereken dan de juiste oppervlakte. geschatte oppervlakte

werkelijke oppervlakte

Heb je het probleem goed aangepakt? Ja? Mooi zo! Nee? Spoor je fout op en stuur je oplossingsplan bij!

de klasvloer

Wat moet ik do en? • Ik lees de op gave zeer aand achtig. • Ik herhaal de opdracht voor mezelf. • Ik zoek de ke rnwoorden (= sleutelwoorden • Ik schat de ). uitkomst.

1 vloertegel

2

Hectare, are, centiare ... Herleid of reken uit.

IMMOBILIËN: WONINGEN / GRONDEN TE KOOP

Hoe ga ik het doen? • Ik maak een planning. Welke stappen zal ik moeten zetten? • Wat heb ik nodig? • Welke man ier van oplosse n kies ik? • Ik bedenk ee nzelfde problee m. • Ik maak een tekening of ste l het probleem schematisch voor.

EEKLO - bouwgrond met bos

DESTELBERGEN - hoeve

DEINZE-ZEVEREN - villagrond,

1 ha = ……………… a

verdeeld in 3 woningen

grenzend aan natuurdomein

0475 77 69 08

Lot 1: 573 m2 / Lot 2: 193 m2 /

1 716 m2 = ……… a ………… ca

Lot 3: 165 m2

Immo Select

Totaal ……………… m2 GENT - bij meer, ruime

= ……… a …………… ca

BOKRIJK – bij Prov. Domein

landelijke percelen

of ………… m2 minder dan 10 a

Natuur in het hart van Limburg!

1/2 ha = …………………… m2 4/5 ha = …………………… m

Ik doe mijn we rk. • Ik voer mijn plan uit. • Ik voer de jui ste bewerking en uit. • Ik werk rusti g en geconcen treerd. • Verloopt all es volgens pla n? Ja g Ik we rk verder. Nee g Ik ke er op mijn sta ppen terug en stel bij. • Moet ik het anders aanpak ken? • Kan ik het ze lf of moet ik hu lp vragen?

500 ha = ………………… km2 Notaris Wyman 014 34 76 98

2

GENTBRUGGE - bescheiden

EEKLO - bouwgrond HOB

woning met tuin DE PINTE - rustig gelegen

534 m2 = ……… a ………… ca

bouwgrond

45 BCW

5 a 95 ca Bouwgrond 8 a 69 ca 3 a 6 ca = …………… m2

Totaal: ………… a ………… ca

Immo serv.

Kantoor J. Bernard Gent

GENTBRUGGE – perceel 7 1/2 are = ……… a ………… ca www.lutens.be

3 Ben ik klaar? Wat vind ik er van? • Heb ik mijn doel bereikt? • Is mijn oplos sing realistisc h? • Ik vergelijk met de schatti ng. • Ik maak de proef en cont roleer met de zakrekenmac hine. • Ik schrijf m ijn oplossing correct op.

Vlieg erin! Je mag bij het berekenen de tabel of een verhoudingstabel gebruiken.

1 m2 = ………………………………… dm2

4 dm2 = ………………………………… cm2

5 cm2 = ………………………………… dm2

9 dm2 = ………………………………… m2

7,5 km = ………………………………… m 2

14,3 km2 = ………………………………… m2

2

2 m – ………………………………… = 7 cm

3 dm2 + ………………………………… cm2 = 1 dm2 4 67 m2 – ………………………………… cm2 = 800 cm2

5 dm2 – 430 cm2 = ………………………………… cm2

8,30 cm2 + 0,85 cm2 = ………………………………… cm2

12 dm2 + ………………………………… = 1 m2 2

2

20

Het stappenplan kan gebruikt worden bij het oplossen van elk vraagstuk of probleem. Het is ook bruikbaar buiten de lessen wiskunde.

16

Ook in de hogere leerjaren krijgt automatiseren voldoende aandacht.


or de leerlingen Op de flappen staan handige schema’s, referentiekaders en standaardprocedures. Ze helpen de leerlingen bij het zelfstandig werken. De inhoud varieert volgens het werkschrift.

4

tematen en de

oppervlak Tabel van de landmaten

LES 48

OPPERVLAKTE- EN LANDMATEN Wat wordt het: A, B, C, D of E? Omkring de juiste letter.

a Opa wil zijn tuin omspitten. Hij heeft al één vierde van het werk gedaan. Dat is 1 are. Hoeveel moet hij nog doen? A 25 m2

B 30 m2

C 75 m2

D 300 m2

B 72 a 5 ca

C 7 ha 25 ca

D 72 ha 5 a

are

ha

a

10 000 m

E niet gegeven

B 1 000 m bij 17 m E 100 m bij 170 m

ca dm2

m2

2

cm2

n eken berekene

te van veelho

De oppervlak

llogram

thoek, paralle

vierkant, rech

E niet gegeven

c Bij een bosbrand werd 17 ha bos vernietigd. Wat kunnen de afmetingen van dit rechthoekige stuk bos zijn? A 100 m bij 17 m D 1 km bij 17 m

centiare

100 m

2

km2

b Mijn broer heeft een stuk bouwgrond van 725 m2 gekocht. In de koopakte wordt de oppervlakte op een andere manier geschreven. Wat is correct? A 7 a 25 ca

hectare

bxh C 1 000 m bij 170 m

driehoek

5

Lees aandachtig en los op.

a Boer Fons is op pensioenleeftijd gekomen en wil zijn eigendom verkopen. Zijn grond bestaat uit 0,1 km2 weiden, 25 ha vruchtbare akkergrond en 5 000 m2 erf. Wat is de totale oppervlakte van de boerderij? Noteer het in m2 en in landmaten.

(b x h) : 2

..……………………………………………………………………………………………………

ruit

..…………………………………………………………………………………………………… ..……………………………………………………………………………………………………

tot een it verdubbelen Je kunt een ru k. van rechthoe is dan de helft te van de ruit De oppervlak thoek. die van de rech

b Het honderdveld rechts stelt de totale oppervlakte van de boerderij van boer Fons én een bosje van de gemeente voor. Kleur de oppervlakte van de weiden groen, de akkergrond bruin en het erf rood als je weet dat elk hokje 1/2 ha voorstelt.

trapezium

c Hoe groot is het bosje van de gemeente uitgedrukt in landmaten en in m2? …………………………………………………………………………………………………………………………………....……………………

trapezium te akte van een rst Om de oppervl t trapezium ee he je er ucture van je de berekenen, str ar wa k oe elh andere ve om naar een nt berekenen. oppervlakte ku

………………………………………………………………………………………………………………………………....………………………

d Van een weide van 1 ha 50 a wordt een rechthoekig stuk van 75 m bij 50 m verkocht voor de bouw van een sportzaal. Hoeveel weide blijft er over? Noteer het in landmaten. ………………………………………………………………………………………………………………………………....………………………

21

Uit werkschrift 6 b (verkleinde weergave)

i Blader door enkele materialen op: www.rekensprongplus.be/materiaal

17


Motiverend voo Op school en thuis online oefenen op bingel De digitale oefeningen op bingel sluiten naadloos aan op elke sprong uit Rekensprong Plus. Zo kunnen de kinderen op een motiverende manier oefenen. De oefeningen die ze maken worden automatisch verbeterd.

1 Na het inloggen komt de leerling op een zwevend eiland terecht. Elk element op het eiland bevat een link naar een bepaalde methode. Zo zijn de oefeningen bij Rekensprong Plus 3 te vinden in de tovenaarsschool

• Er zijn vele honderden oefenreeksen beschikbaar voor Rekensprong Plus die u kunt inzetten voor huiswerk, contractwerk, vrij oefenen ... en dat zowel thuis als in de klas. • Bingel maakt online oefenen haalbaar en uitdagend door de gevarieerde oefenvormen, de automatische niveau-aanpassing, het verdienen van pingping, de mini-games, de sterk uitgebreide avatarmogelijkheden ...

2 In de tovenaarsschool kan de leerling een sprong kiezen.

• In bingel heeft elk leerjaar een apart eiland met een heel eigen sfeer. • Een motiverend vervolgverhaal per leerjaar zet leerlingen aan om veel en goed te oefenen. • Leerlingen kunnen bingel ook op een tablet gebruiken.

3 Per sprong zijn verschillende oefenreeksen beschikbaar.

4 Tijdens het oefenen schakelt bingel automatisch over naar een hoger of lager niveau, afhankelijk van de tussentijdse resultaten. Als het oefenen nog niet vlot gaat, kan de leerling rekenen op feedback en methodegebonden tips van ‘zijn’ avatar (onlinevriendje).

18


or de leerlingen Voorbeeld uit leerjaar 3

Op het eiland is de grot een centrale plek voor de leerling van het derde leerjaar. Daar kan hij taken zien die de leerkracht heeft klaargezet. Als hij genoeg punten (pingping) heeft verzameld, kan hij ook korte games spelen. Het vervolgverhaal zet leerlingen aan om samen met klasgenoten oefeningen te maken op bingel.

i Meer informatie: www.bingel.be

19


Zorg en differe Herhaling via het werkschrift De herhalingsles kan op verschillende manieren gegeven worden: als zelfstandig werk, met partner, klassikaal, met verlengde instructie, als huiswerk ...

Toets via het

De toetsen zijn zo dat de domeinen g afgenomen kunne

Er zijn vaak grote verschillen tussen de snelheid en het gemak waarmee kinderen wiskunde leren. Om hun motivatie vast te houden, is zorg en differentiatie een noodzaak.

Herhalen, toetsen, remediëren en verrijken Herhalingsles en toets Elke sprong wordt afgerond met een evaluatieluik van 3 lestijden (6 lestijden in de eerste graad). De toets wordt altijd voorafgegaan door een herhalingsles waarin alle toetsdoelen aan bod komen.

Remediëren en verrijken Na de toets voorziet de methode in materiaal voor de remediërings- en verrijkingsles waarin elke leerling op zijn eigen niveau werkt. Voor een kind dat uitvalt op een onderdeel van een toets biedt de methode per toetsvraag remediëring op maat aan die het kind stap voor stap over de moeilijkheden heen helpt. De verrijking blijft binnen de sprongdoelen en stimuleert het zelfstandig werken.

Uit werkschrift 4 b (verkleinde weergave)

Remediëren of verrijken kan via de map van Wibbel (zie p. 21) of via de online differentiatiemodule (zie p. 24). Een sprong bestaat uit 13 lessen les 1-10: basislessen

20

les 11:

herhalingsles

les 12:

toets

les 13:

remediëring en verrijking

“Met de remediëringsbladen uit de map van Wibbel kan ik elke leerling bij moeilijkheden gericht verder helpen. Dat is zeker een van de sterkmakers van Rekensprong Plus!” Ilse Somers, leerkracht 2e leerjaar, BSGO Dr. Jozef Weyns, Beerzel

Uit toetsschrift 4 (verkleinde weergave)


ntiatie op maat

t toetsschrift

Remediëring via de map van Wibbel

georganiseerd gespreid en worden.

Met de map van Wibbel kunt u voor elk kind een remediëringspakket op maat samenstellen waar het gericht en voor een groot deel zelfstandig mee aan de slag kan. Suggesties voor begeleiding door de (zorg)leerkracht staan in de handleiding uitgeschreven.

Toetsvraag en remediëringsblad hebben hetzelfde nummer. Het werkblad concretiseert de stappen van de verlengde instructie in de handleiding en tilt het kind stap voor stap naar het niveau van de toetsvraag waarvoor het uitviel.

SPRONG 6 Naam: ........................................................................................................................... .....................

5

Nr. ...........

VERMENIGVULDIGEN EN DELEN TOT 10 000 VERMENIGVULD

a Denk aan de tafels! tafel Reken uit. 7 x 9 = .......... ................

48 : 8 = ................

560 : 7 = ................

900 x 2 = ................

7 x 90 = .......... ................

480 : 8 = ................

2 800 : 4 = ................

1 200 : 6 = ................

70 x 90 = ................ ..........

4 800 : 8 = ................

40 x 30 = ................

270 : 9 = ................

b Reken uit. 840 : 20 = (840 : 1 10) : 2 = ................ = ................ 4 800 : 200 = (4 800 : 100) : 2 = ................ = ................

Aha, 360 : 40 is net hetzelfde als 36 : 4!

2 800 : 40 = ……………………………………………………………………………………………………………… …………… 3 500 : 700 = ……………………………………………………………………………………………………………… …………… 6 300 : 90 = ……………………………………………………………………………………………………………… …………… 180 : 30 = ……………………………………………………………………………………………………………… …………… 4 200 : 60 = ……………………………………………………………………………………………………………… …………… 8 100 : 900 = ……………………………………………………………………………………………………………… ……………

c Reken uit. 670 : 10 = ................ x ……

670 : 5 = ................

............. 3 800 : 100 = ................ x ……

............. 3 800 : 50 = ................

260 : 10 = ................

3 400 : 10 = ................

260 : 5 = ................

3 400 : 5 = ................

4 200 : 100 = ................

6 300 : 100 = ................

4 200 : 50 = ................

6 300 : 50 = ................

d Reken uit. Schrijf de tussenstappen op zoals in de voorbeelden. 510 : 5 = 51 x 2 = 102

4 100 : 50 = 41 x 2 = 82

Delen door 5 of 50? Dat kan ik snel!

750 : 5 = …………………………………………………………………………….. …………… 1 240 : 5 = …………………………………………………………………………….. …………… 390 : 5 = …………………………………………………………………………….. …………… …………… 2 400 : 50 = …………………………………………………………………………….. 2 640 : 5 = …………………………………………………………………………….. …………… 9 600 : 50 = …………………………………………………………………………….. ……………

Dit kopieerblad hoort bij Rekensprong Plus 4, Map van Wibbel, Sprong 6. © Van In.

Bij elke toetsvraag biedt de map van Wibbel een volledig remediëringsblad aan.

93

Uit map van Wibbel - remediëren en verrijken 4 (verkleinde weergave)

Verrijking via de map van Wibbel SPRONG 6

SPRONG 6

SPRONG 6

SPRONG 6

.......... .......... Naam: ........................................................................................................................... Naam: ........................................................................................................................... Naam: ........................................................................................................................... Nr. ........... Naam: ........................................................................................................................... Nr. ........... Nr. ...........

1

4

Rekenmuurtjes

6

Amber is jarig!

7

Binnenkort is het Kerstmis!

Puzzelen met parallellogrammen

uit. van de 2 stenen waarop hij ligt. Metvoor deze 6 stukken je 2 parallellogrammen maken. ster onderaan. ond Vul de ontbrekende getallen aan. Elke steen Reken is de som Dit is hetkun grondplan van Tijdens het eerste trimester had Tina 6 toetsen 120 mTeken die in het rooster Opgelet: je mag de stukken draaien, egem.maar je moet alle stukken gebruiken! de markt van Sparregem. Op een totaal van 100 punten haalde ze Kijk dan onderaan welke letter overeenkomtwiskunde. met ode Tijdens de kerstperiode je uitkomst en noteer die in de kolom rechts.achtereenvolgens 82, 86, 83, 80, 81 en 80 punten. wordt er op de vier Op het rapport staat enkel het gemiddelde. Zo vind je de namen van de kinderen die Amber 80 m 8 hoeken van de marktt op haar verjaardagsfeestje heeft uitgenodigd.Hoeveel punten staan er op het rapport van Tina bij een grote kerstboom m gezet. rekenen? 1 013 Rondom de markt wordt ordt er nog om de 20 meter een kle kleine kerstboom geplaatst. 2 020 524 Hoeveel kerstbomen staan er e in totaal? 780

1 200 990

199 350

234

93

67

680 x 8 = ………………

… 9 860 : 10 = ……………… Antwoord: ……………………………………………………………… … 727 x 5 = ……………… Jan Sparappel verkocht op 18 december Kies telkens 2 verschillende cijfers uit de hoed6 als en =als noemer voor een breuk. … – 2 099 ……………… ……………… 690teller 560 : 2 = ontving 50 kerstbomen.4Daarvoor hij 900 euro. Welke breuken kun je allemaal maken? Hoeveel kost 1 kerstboom? … 9 086 – 1 586 = ……………… 58 x 50 = ……………… ... , ... , ... , ... , ... , ... ... ... ... ... ... ...

2

2 691 + 620 + 1 280 = ……………… De kleinste breuk is ... ... De grootste breuk is ... ...

3

… Antwoord: ……………………………………………………………… …………… … In de tabel zie je hoeveel Piet eveel kerstbomen ke … Dennennaald elke dag heeft. ag verkocht verk Wat was zijn gemiddelde per dag in die elde verkoop ve periode? …

Welke breuken kun je tevoorschijn toveren? 4 829 + 3 601 = ………………

Tel je mee?

16 december

42 2

17 december 18 … december

5 45 48 8

19 december … december 20

54 4

7 663 – 1 999 = …………… ………………

725 x 4 = ………………

1 500 x 5 = ………………

5 975 – 4 989 = ………………

680 x 3 = ………………

… Antwoord: ……………………………………………………………… ……………

Antwoord: ……………………………………………………………… f g h i j k l

………………………………………………………………………………… …………… m

a

b

2 900

2 120

c

d

e

435

9 876

7 500

Hoeveel parallellogrammen tel je in de onderstaande figuur? …… parallellogrammen. n

o

p

q

r

2 280

3 635

6 789

5 800

6 969

36 6

2 Jan 040 Sparappel 3 452 staat 9 125 in Westende 8 430 5 op 664de hoek 6 500van 5de440 986 en de Ooststraat Zandstraat raat (ò). (ò) Hij moet een kerstboom leveren op een adres in de Olmenstraat (). Teken en beschrijf een weg die hij kan nemen. s t u v w x y z 4 ……………………………………………………………………………………… 591 7 234 1 890 5 467 9 876 1 488 8 876 9 123 ………………………………………………………………………………………

5

Wie ben ik?

………………………………………………………………………………………

……………………………………………………………………………………… Hoeveel driehoeken tel je in deze figuur? ……•driehoeken. …………………… Ik ben het getal dat op de getallenas even ver van 0 ligt als 5, maar aan de andere kant. ……………………………………………………………………………………… …………………… • Ik ben het kleinste even getal dat groter is dan 713. ……………………………………………………………………………………… …………………… • Ik ben een vijfvoud en lig tussen 71 en 81. De som van mijn cijfers is 8. ……………………………………………………………………………………… …………………… en mijn noemer is 8. • Ik ben een stambreuk. De som van mijn teller ……………………………………………………………………………………… …………………… is dan 527. • Ik ben het grootste oneven getal dat kleiner ………………………………………………………………………………………

Nr. ...........

Leerlingen die probleemloos de richtnorm halen, kunnen de verrijkingsopdrachten uit de map van Wibbel aan. Ze blijven binnen de doelen van de sprong en lopen dus niet vooruit op leerinhouden die nog behandeld moeten worden. Van elk remediërings- en verrijkingsblad is een correctiesleutel voorzien waarmee de leerlingen hun antwoorden kunnen nakijken.

…………………… • Ik ben een zevenvoud. Ik ben kleiner dan 90 en groter dan 80. ………………………………………………………………………………………

Dit kopieerblad hoorthoort bij Rekensprong bij Rekensprong PlusPlus 4, Map 4, Map van Wibbel, van Wibbel, Sprong Sprong 6. © 6. Van © In. Van In. 99 100 Dit kopieerblad

Dit kopieerblad hoorthoort bij Rekensprong bij Rekensprong PlusPlus 4, Map 4, Map van Wibbel, va van Wibbel, Sprong Sprong 6. © 6. Van © In. Van In. 101 102 Dit kopieerblad

Uit map van Wibbel - remediëren en verrijken 4

21


Zorg en differe Op maat van elke leerling Rekensprong Plus biedt kant-en-klaar materiaal om op verschillende manieren te differentiëren: naar tempo, naar leerstijl en naar niveau.

Tempodifferentiatie in de werkschriften Niet elke leerling werkt even snel. Daarom bevatten de basislessen oefeningen om tempoverschillen op te vangen. Die kunnen ook als huiswerk worden gemaakt.

Differentiatie naar leerstijl in de werkschriften en de map van Wibbel

Inoefenen en automatiseren via de map van Wibbel Om wiskundige problemen en gevarieerde toepassingen succesvol op te kunnen lossen, moet een kind de basisvaardigheden goed beheersen. Het gedeelte ‘inoefenen en automatiseren’ biedt kant-en-klare oefenkansen voor leerlingen die bepaalde rekenvaardigheden nog niet onder de knie hebben. De kopieerbladen zijn geordend per leerlijn.

55

LENGTE

nnb 75, 76 en 78

Naam: ................................................................................................................

Kinderen leren op diverse manieren. Door het gevarieerde aanbod in Rekensprong Plus – betekenisvolle contexten maar ook zuivere wiskundige oefenreeksen – komen alle leerstijlen aan bod.

1 Vul het juiste maatgetal in.

Niveaudifferentiatie in de lesgang en de map van Wibbel

2 Vul het juiste maatgetal in. Schrijf de breuken eerst als decimale getallen.

4 m = ……………………………. cm

58 cm = ……………………………. m

15 km = ……………………………. m

47 dm = ……………………………. m

38 m = ……………………………. cm

100 m = ……………………………. km

47,5 km = ……………………………. m

69,04 mm = ……………………………. cm

0,785 km = ……………………………. m

483 m = ……………………………. km

127,4 m = ……………………………. dm

10 m = ……………………………. mm

4,2 m = ……………………………. cm 0,635 km = ……………………………. m

Rekenzwakke leerlingen krijgen na de klassikale instructie verlengde instructie. Daarvoor is tijd voorzien binnen de verwerkingsfase. De verlengde instructie is duidelijk en praktisch in de handleiding en de map van Wibbel uitgewerkt.

778 cm = ……………………………. m 25 mm = ……………………………. m 78 m = ……………………………. cm 0,24 km = ……………………………. m 0,001 km = ……………………………. m

1 2 3 4 3 2 1 4 3 4 1 5 2 4

Nr. ...........

km

= ……………………………. km

= ……………………………. m

cm

= ……………………………. cm

= ……………………………. mm

m

= ……………………………. m

= ……………………………. cm

km

= ……………………………. km

= ……………………………. m

dm

= ……………………………. dm

= ……………………………. mm

mm = ……………………………. mm

= ……………………………. cm

km

= ……………………………. m

= ……………………………. km

3 Vul de juiste maateenheid in. Onze school is 10 ……………… hoog. De evenaar is ongeveer 40 000 ……………… lang. De Eiffeltoren is inclusief antenne 324 ……………… hoog. Het wiel van een damesfiets heeft een diameter van 0,8 ……………… Mijn MP3-speler is 50 ……………… lang. Rangschik de maten nu van groot naar klein. ………………………… > ………………………… > ………………………… > ………………………… > ………………………… 4 Vul in. ………………… m = 45 km

7,28 m = 7 ........... + 2 ........... + 8 ...........

4 ………… = 0,004 km

46,3 cm + ………………… cm = 1 m

250 ………… = 25 cm

1 m + ……,………… m = 1 m 4

Dit kopieerblad hoort bij Rekensprong Plus 6, Map van Wibbel. © Van In.

De titelbalk bevat een verwijzing naar het neuzeneuzeboek. Dat zet leerlingen ertoe aan om eerst zelf op zoek te gaan naar hulp en stimuleert het ‘leren leren’.

22

65

Uit map van Wibbel - inoefenen, inoefenen automatiseren en toepassingen 6 (verkleinde weergave)

De kopieerbladen zijn ook uiterst of contractwerk. Van elk kopieerb voorzien waarmee de leerlingen h


ntiatie op maat

Rekensprong Plus, een methode op maat van elke leerling!

Toepassingen via de map van Wibbel In het gedeelte ‘toepassingen’ worden per sprong twee bijkomende pagina’s met ingeklede bewerkingen, vraagstukken of contextopgaven aangeboden. Gemengde toepassingen stimuleren de probleemoplossende vaardigheden van de leerlingen.

?SPRONG ? 9

TOEPASSINGEN nnb

Naam: ................................................................................................................

SPRONG 9

Nr. ...........

HET VERJAARDAGSFEEST VAN GENTIL EN MAURICE a Uitnodigen De broers Gentil (8 jaar) en Maurice (11 jaar) geven een verjaardagsfeestje. In totaal mogen ze 15 vriendjes uitnodigen. Maurice nodigt 3 kinderen meer uit dan Gentil. Hoeveel kinderen nodigen ze elk uit? …………………………………………………………………………………

TOEPASSINGEN

Naam: ................................................................................................................

Nr. ...........

e De cadeautjes Ik werk planmatig: • ik formuleer het probleem met mijn eigen woorden; • ik vraag me af wat er juist wordt gevraagd; • bij moeilijke rekenopgaven verdeel ik het probleem in deelproblemen en werk ik stap voor stap; • ik werk ordelijk.

Terwijl papa en mama een pannenkoek eten, maken de broers hun pakjes open. Welke lichamen (ruimtefiguren) herken jij in deze cadeautjes? • Geef ze de meest passende naam. • Omcirkel alle omwentelingslichamen.

…………………………………………………………………………………

* 1 kg zelfrijzende bloem (€ 1,24) * 3 liter melk (€ 0,94 per liter) * 5 pakjes vanillesuiker (€ 2,87) * 1 kg suiker (prijs onbekend) * 20 eieren (€ 3,48) * 1 pak bakboter (€ 5,35) * 8 liter fruitsap (€ 1,50 per liter) * 4 liter cola (€ 1,47 per liter) * ½ kg snoep (€ 3,74 per kg) * 1 bus slagroom (prijs onbekend) * pakje bloemsuiker (€ 2,07)

b De boodschappen

........................

........................

........................

Mama en de jongens maken samen een boodschappenlijstje. Op internet vinden ze al snel enkele prijzen. Schat hoeveel geld ze moeten meenemen naar de winkel.

........................

........................

f De beklimming De jongens vertrekken op fietstocht. Aan de voet van de Kemmelberg rusten ze even uit, want er volgt een fikse beklimming. Eerst wacht hen een stijgingspercentage van 17 % over een afstand van 400 m. Daarna stijgt de weg zelfs 23 % over een afstand van 50 m. Wat is het hoogteverschil in meter tussen de voet en de top van de Kemmelberg?

……………………………………………………………………………………………… ………………………………………………………………………………………………

≈ ................................... controle

c Het kostenplaatje

........................

……………………………………………………………………………… De jongens willen hun vrienden verrassen met een fietstocht naar de Kemmelberg. Daar willen ze bovendien een bezoekje brengen aan de ondergrondse commandobunker van het Belgische leger. Mama maakt alvast de rekening van het verjaardagsfeest. In totaal komt ze op een bedrag van € 112,88 voor de 17 kinderen. Hoeveel kost dit feestje per feestvierder? Cijfer hiernaast.

g Om het vlugst! Acht sportieve jongens maken er een wedstrijd van om als eerste de top te bereiken. Bereken hoeveel minuten ze er gemiddeld over doen en geef ook de mediaan.

…………………………………………………………………………………

geschikt voor huiswerk, hoekenlad is een correctiesleutel hun antwoorden kunnen nakijken.

d Heerlijke pannenkoeken!

Maurice

Dax

Jim

Pjotr

6 min.

5 min.

8 min.

8 min.

Bas

Kirian

Rachid

Jarne

7 min.

15 min.

11 min.

12 min.

Gemiddelde tijd: .......................................... Mediaan: ..........................................

Voor de 17 kinderen bakt mama 51 pannenkoeken. Dat zijn …… pannenkoeken per kind. Daarvoor heeft ze 1 kg bloem nodig.

h De schoonmaak Het verjaardagsfeest was bijzonder geslaagd! Iedereen vertrekt naar huis, maar er is nog heel wat werk. Papa start met opruimen. Hij schat dat hij ongeveer 1 uur en 30 minuten nodig heeft om die klus alleen te klaren. Gelukkig willen zijn twee zonen een handje toesteken. Hoe lang zal het drietal vermoedelijk werk hebben?

Voor zichzelf en voor papa bakt ze een zelfde aantal pannenkoeken (3 voor elk dus!). Hoeveel extra bloem heeft mama nodig? RE

OE

X ..................................................................................................................................................................................

………………………………………………………………………………………………

Dit kopieerblad hoort bij Rekensprong Plus 6, Map van Wibbel, Sprong 9. © Van In.

97

98

Dit kopieerblad hoort bij Rekensprong Plus 6, Map van Wibbel, Sprong 9. © Van In.

Uit map van Wibbel - inoefenen, automatiseren en toepassingen 6 (verkleinde weergave)

i Blader door de inhoudstafel op: www.rekensprongplus.be/materiaal

23


Zorg en differe Remediëring en verrijking via de differentiatiemodule Via de online differentiatiemodule is een geautomatiseerd methodegebonden leerlingvolgsysteem beschikbaar dat op maat van elk kind een remediëringsvoorstel maakt.

Met één klik na elke toets 1 Wanneer u de resultaten van een toets ingeeft in

de differentiatiemodule, ziet u automatisch welke leerlingen al dan niet de richtnorm behalen. U kunt de richtnorm ook zelf aanpassen. Het totaal, het gemiddelde en de mediaan verschijnen automatisch per leerling en per onderdeel. 2 Met één druk op de knop krijgt u voor de hele klas

een differentiatievoorstel op maat. 3 U kunt dit voorstel op een eenvoudige manier

individueel of voor een groep leerlingen aanpassen. 4 U drukt een gedifferentieerde oefenbundel op

maat van elke leerling af. De oefenbundels zijn kant-en-klaar, met bovenaan de naam en het klasnummer van elke leerling. U kiest zelf of u een correctiesleutel mee afdrukt of niet. 5 U kunt de oefeningen ook digitaal klaarzetten op

bingel.

Op elk moment tijdens het schooljaar Als leerkracht of zorgcoördinator kunt u op elk moment van het schooljaar een hele klas of individuele leerlingen laten oefenen. Inoefenen, remediëren of verrijken? Met één klik bezorgt u elke leerling oefeningen op maat. U kunt de oefeningen digitaal klaarzetten op bingel of elke leerling een kant-en-klare gepersonaliseerde oefenbundel bezorgen, met of zonder correctiesleutel.

24

1


ntiatie op maat i De differentiatiemodule is bereikbaar via www.mijnvanin.be > mijn methodes > Rekensprong Plus

3 2

5

4 KLAS: 4A

7

NAAM: ALAOUI SAMIRA

KLASNUMMER: 1

VERMENIGVULDIGEN EN DELEN TOT 10 000

a Denk aan de tafels! 7 x 3 = ...........

4 x 3 = ...........

6 x 5 = ...........

8 x 4 = ...........

7 x 8 = ...........

6 x 7 = ...........

4 x 9 = ...........

8 x 5 = ........... 27 : 3 = ................

4 x 6 = ................ 4 x 60 = ................

270 : 3 = ................

4 x 600 = ................

2 700 : 3 = ................ 120 : 6 = ................

6 x 70 = ................ 3 x 700 = ................

3 600 : 4 = ................

8 x 1 000 = ................

8 000 : 10 = ................

400 x 8 = ................

2 500 : 5 = ................

600 x 5 = ................

6 400 : 8 = ................

b Los op. Je mag tussenstappen gebruiken. Ik probeer 1 648 te splitsen in twee getallen die ik makkelijk kan delen. Ik weet dat ik 1 600 makkelijk kan delen door 4.

Ik splits 1 020 in 1 000 en 20 en vermenigvuldig elk deel afzonderlijk.

3 x 1 020 / \ 1 000

20

= (3 x 1 000) + (3 x 20) = 3 000 + 60 = 3 060

4 x 2 009 / \ 2 000 9

= ................................................................ = ................................................................

6 x 160 = ................................................................

1 684 : 4 = (1 600 : 4) + (48 : 4) / \ = 400 + 12

1 600

48

= 412 6 024 : 3 = ................................................................ / \ = ................................................................ 6 000 24 8 240 : 2 = ................................................................

= ................................................................

= ................................................................

5 x 650 = ................................................................

3 672 : 6 = ................................................................

= ................................................................

= ................................................................

25


Focus op le Neuze-neuzeboek Aandacht voor ‘leren leren’ zit diep geĂŻntegreerd doorheen heel de methode. Via een gerichte aanpak ondersteunt Rekensprong Plus het leerproces.

METEN EN METEND REKENEN LENGTE

We meten door 2 dingen met elkaar te vergelijken. bv. “Ik ben kleiner dan papa, papa is groter dan mama.� “De lat is korter dan de bank.� “De eerste toren is hoger dan de tweede.�

Het neuze-neuzeboek per leerjaar biedt een duidelijk overzicht van de leerinhouden. Het bevat ook handige referentiekaders.

We kunnen meten met alles wat we bij de hand hebben: onze duim, onze hand, onze voeten, stappen, pennen, cd-doosjes ... bv. “De kast is 15 handen, 8 voeten of 3 stappen breed.�

Het neuze-neuzeboek van het eerste leerjaar is nog op de ouders afgestemd, maar vanaf het tweede leerjaar wordt het ook geregeld in de klas gebruikt.

1 meter

1m

1 meter is de bovenkant of breedte van de deur. 1 meter is de zijvleugel van het bord.

INHOUDSTAFEL GETALLENKENNIS tellen hoeveelheden vergelijken rangorde getallen lezen en schrijven de getalbeelden splitsen de helft en het dubbel

5 6-7 8 9 9-10 11-12 13

BEWERKINGEN rekenverhalen rekenen met concreet materiaal rekenen met rekenmateriaal rekenen zonder materiaal plus en min tot 10 van buiten leren optellen en aftrekken tot 20 zonder brug optellen en aftrekken tot 20 met brug

14 15 16 17 18-19 20 21-22

METEN EN METEND REKENEN lengte gewicht inhoud geld de klok en de kalender temperatuur

23 24 25 26 27 28

TIP

• Geef je kind thuis geregeld kansen om zelf te meten bij bv. karweitjes of knutselwerkjes. Laat verwoorden: “De ... is ... m lang.â€? • Let erop dat bij het meten het meetinstrument gelijk met het begin gelegd wordt.

23

MEETKUNDE ruimtebegrippen patronen driedimensionale situaties (blokkenbouwsels) verschillende gezichtspunten spiegelingen lijnen, punten, hoeken, oppervlakken

4

26

29 30 30 31 32 32

Uit neuze-neuzeboek 1 (verkleinde weergave)


eren leren GETALLENKENNIS 16 EEN BREUK NEMEN VAN EEN GEHEEL OF VAN EEN GETAL Kleur

3 van de rechthoek. 4

stap 1

stap 2

stap 3

het geheel

:4

1 4

stap 4

stap 5 3 4

3 keer nemen

Een breuk nemen van een geheel kan aan de hand van de breukvragen.

stap 1:

Wat is het geheel?

“ de rechthoek

stap 2:

In hoeveel gelijke delen wordt het geheel verdeeld? (de noemer)

“ in 4

stap 3:

Duid één van die gelijke delen aan. (de stambreuk) Hoeveel keer moet je zo één gelijk deel nemen? (de teller)

“ 1 4

stap 4: stap 5:

Hoeveel is

Geef aan hoe groot die delen samen zijn. (de breuk)

De leerlingen leren hun neuze-neuzeboek stap voor stap gebruiken. Zo groeien ze in zelfredzaamheid.

Vanaf de tweede graad wordt het ook een vast onderdeel van de herhalingsles. De leerlingen kunnen het zowel in de klas als thuis raadplegen.

“ 3 keer “ 3 4

3 van 20? 4 Een breuk nemen van een getal kan ook door middel van de breukvragen.

De inhouden worden per leerjaar opgebouwd. De leerlingen kunnen dankzij het neuzeneuzeboek ook steeds teruggrijpen naar hoe ze iets in een voorgaand leerjaar geleerd hebben.

“ 20

stap 1:

Hoe groot is het geheel?

stap 2:

In hoeveel gelijke delen verdeel je dat getal? (de noemer)

“ in 4

stap 3:

Hoe groot is één (elk) deel?

“ 20 : 4 = 5

stap 4:

Hoeveel keer moet je zo één gelijk deel nemen? (de teller)

“ 3 keer

Hoe groot zijn die delen samen?

“ 3 x 5 = 15

stap 5:

De neuze-neuzeboeken bieden een duidelijk overzicht van wat een kind op een bepaald moment moet kennen en kunnen. Ze verduidelijken hoe het kind dat op school leert.

15 Uit neuze-neuzeboek 5 (verkleinde weergave)

27


Focus op leren leren Wandplaten ^[j ][jWb -

Naast het neuzeneuzeboek en de wandplaten stimuleren ook de ‘leren leren’-doelen in de handleiding, de pictogrammen, de stappenplannen en de handige flappen aan de werkschriften het ‘leren leren’ en zelfstandig werken.

De overzichtelijke wandplaten op A2-formaat maken van elke klas een krachtige leeromgeving.

Ze worden aangeboden in een stevige verzamelmap.

YZoZ lVcYeaVVi ]ddgi W^_ gZ`Zchegdc\ eajh &# kVc ^c

bruto – netto – tarra

bruto inhoud + verpakking

Ook de wandplaten ondersteunen het zelfstandig werken.

netto

tarra

inhoud

verpakking

bruto = netto + tarra netto = bruto – tarra

netto tarra bruto

tarra = bruto – netto deze wandplaat hoort bij Rekensprong Plus 5. © Van In

28

Uit wandplaten 1 (verkleinde weergave)

Uit wandplaten 5 (verkleinde weergave)


Materialen per leerjaar Voor de leerling • de werkschriften a, b, c en d met onlineoefeningen op bingel • het neuze-neuzeboek (onthoudboek) • het toetsschrift

Voor de leerkracht • de handleidingen a en b (incl. doelen-cd-rom, administratieve cd-rom en summatieve toetsen)

Voor de klas • de correctiesleutels van de werkschriften a, b, c en d • de correctiesleutel van het toetsschrift • de map van Wibbel: - deel 1: inoefenen, automatiseren en toepassingen (incl. correctiesleutel) - deel 2: remediëren en verrijken (incl. correctiesleutel) • online differentiatiemodule via www.mijnvanin.be: - de toetsen, downloadbaar en aanpasbaar, incl. correctiesleutels - foutenanalyserooster per toets - remediëring en verrijking, zowel digitaal via bingel als afdrukbaar • de wandplaten (A2-formaat) • het Bordboek Plus

Voor de vertelhoek Voor de introductie van de cijfers in het eerste leerjaar schreef jeugdauteur Rien Broere tien korte meeslepende verhalen over Wibbel en de betoverde cijfers. Dertig grote vertelplaten (A2formaat) brengen de avonturen tot leven. Dit ‘draaiboek’ is een aanwinst voor de vertelhoek in elk eerste leerjaar!

29


De meest succesvolle

wiskundemethode Zichtzending

Bestellingen

Vraag vrijblijvend een zichtzending van Rekensprong Plus op uw schooladres aan. U kunt de materialen voor een langere periode inkijken.

Voor meer informatie over prijzen en bestellingen kunt u contact opnemen met uw educatief adviseur of met de klantendienst van uitgeverij VAN IN.

Voorstelling op school

Contactgegevens

Onze educatief adviseurs komen graag bij u op school langs om Rekensprong Plus toe te lichten en uw vragen te beantwoorden. Zo kunt u een zorgvuldig afgewogen beslissing nemen.

Uitgeverij VAN IN Nijverheidsstraat 92/5 2160 Wommelgem Tel. 03 491 94 44 Fax 03 488 56 92 basisonderwijs@vanin.be

Internet Op www.rekensprongplus.be vindt u informatie, voorbeeldpagina’s en nog veel meer.

549470/03


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.