Cálculo la derivada

Page 1










DU DC Y - Y0 m= X - X0 m=


m( X - X 0 ) = Y - Y0 3 8 39 b= 8

m( X - X 0 + Y0 = Y

m=

3 ( X - 3) + 6 = Y 8 3 9 X - +6 =Y 8 8 3 39 X+ =Y 8 8

Y=

3 39 X+ 8 8


m( X - X 0 ) = Y - Y0 m( X - X 0 + Y0 = Y - 4( X - (-5)) + 8 = Y - 4 X - 20 + 8 = Y - 4 X - 12 = Y

x –12 -4X – 12 = Y


DU DC Y - Y0 m= X - X0 m=

-1- 4 -3- 2 m =1 m=

m( X - X 0 ) = Y - Y0 m( X - X 0 + Y0 = Y 1( X - 2) + 4 = Y X -2+4 =Y X +2 =Y


æ3 7ö Pç , ÷ è2 5ø æ-6 9ö P2 ç , ÷ è 5 7ø

æ3 9ö ç ,- ÷ è2 5ø

æ 8 7ö ç - ,- ÷ è 3 2ø æ 10 3 ö ç ,- ÷ è 9 7ø

-

15 7

-

5 8


y

y 6

6 5

5 4

4

3

3

2

2

1

1

x

x -5

-4

-3

-2

-1

1

2

3

4

5

6

-2

-1

1 -1

-2

-3

-3

-4

-4

3

2

1 x -2

-3

-2

y

-3

-4

-1

4

-4

-5

-1

1 -1

-2

-3

-4

2

3

4

5

2

3

4

5

6


CĂĄlculo, La Derivada

f (x) lim xÂŽa

y = f ( x) = 2 x - 1

15

f (x)


lim g ( x) = 17

g ( x) = 5 x - 3

lx ® 4

(5 x - 3) - 17 <

x-4 <

(5 x - 3) - 17 <

5x - 20 <

5( x - 4) < x-4 <

x-4 <

Î 5

Î 5

Î 5

Î ¶

x

g(x)

X

3.90

16.50

4.1

17.5

3.95

16.75

4.05

17.25

3.98

16.90

4.02

17.10

3.99

16.95

4.01

17.05

17

lim g ( x)

17

lim g ( x) x®4

g(x)

x®4

Î= 17 - 16.50 = 0.50

Î= 17.5 - 17 = 0.50

¶ = 4 - 3.90 = 0.10

¶ = 4.1 - 4 = 0.10

Î 0.50 = =5 ¶ 0.10

Î 0.50 = =5 ¶ 0.10

Î= 17 - 16.75 = 0.25

Î= 17.25 - 17 = 0.25

¶ = 4 - 3.95 = 0.05

¶ = 4.05 - 4 = 0.05

Î 0.25 = =5 ¶ 0.05

Î 0.25 = =5 ¶ 0.05


0 ¥ k ¥ - ¥;0 x¥; ; ; ;0 0 ; (+¥) 0 ;1± ¥ 0 ¥ 0

¥

lim f ( x) = lim K = K x®a

x®a

lim 25a = 25a x®2


lim x®a

[f ( x)] = éê ë n

lim x®a

ù f ( x)ú û

f ( x) = (4 x + 5)3

n

3

lim (4 x + 5)

3

x ® -2

é ù 3 (4 x + 5ú = [4(-2) + 5] = (-3)3 = -27 ê ë x®-2 û

lim

lim Kf ( x) = K lim f ( x) x®a

x®a

lim 6 x = 6 lim x = 6(-4) = -24 x ® -4

x ® -4

lim [f ( x) ± g ( x)]= lim f ( x) ± lim g ( x) x®a

lim ( x x®2

x®a

2

+ 5 x - 4) =

x®a

2

lim x + lim 5x - lim 4 = (2) x®2

x®2

lim [f ( x).g ( x)]= lim f ( x).lim g ( x) x®a

x®a

x®a

x®2

2

+ 5(2) - 4 = 10


lim ( x + 2)(3x - 4) = lim ( x + 2).lim (3x - 4) = (1 + 2)(3(1) - 4) = -3 x ®1

lim x®a

x ®1

é f ( x) ù ê ú= ë g ( x) û

x ®1

lim f ( x) lim g ( x) x®a

x®a

lim x®2

é 4x + 3ù ê 2x -1 ú = ë û

lim (4 x + 3) 4(2) + 3 11 = = lim (2 x - 1) 2(2) - 1 3 x®2

x®2

lim

n

f ( x) = n

x®a

lim

3

lim f ( x) x®a

(3 x + 5) = 3

x ®1

lim [f ( x)]

é =ê ë

lim x®a

ù lim x ®a f ( x)ú û

(3(1) + 5) = 3 8 = 2

g ( x)

é ù 3x lim [4 x - 2] = êlim (4 x - 2)ú x®2

3

x ®1

g ( x)

x®a

lim (3x + 5) =

ë

x®2

û

3x lim x ®2

= [4(2) - 2]

3( 2 )

= 6 6 = 46656


lim log

b

x®a

é f ( x) = log b ê ë

ù

lim f ( x)úû x®a

é

ù

lim log ( x + 1) = log êëlim ( x + 1)úû = log (26 + 1) = log (27) = 3 3

3

x ® 26

3

3

x ® 26

lim f ( x) = P

lim f ( x) = lim f ( x) = P x®a -

x®a

x®a

x®a +

x ® a+

-

lim ( x x®2

2

+ 1) =

lim ( x x®2

2

-

+ 1) =

lim ( x x®2

2

+ 1) = 5

+

g (x ) g (x )

f (x )

x

f (x )

x


lim x ® -2

( x 2 - 4) x+2

0 0

lim x ® -2

( x - 2)( x + 2) = x+2

lim ( x - 2) = -4 x ® -2

lim x ®1

x -1 x -1

0 0

lim x ®1

x -1 = x -1

lim x ®1

( x - 1)( x + 1) = x -1

1 x

x ® ¥+

x ® ¥-

x -1

lim ( x - 1)( x ®1

x + 1)

=

lim x ®1

1 x +1

=

1 2


¥- ¬ x ® 0 0 ¬ x ® ¥+

x®¥ 1

lim x = 0 x ®¥ +

x ® ¥+

-

1

lim x = 0 x ®¥ -

1

lim x = -¥ x ®0

-

1

lim x = +¥ x ®0

+

0 ¥ k ¥ - ¥;0 x¥; ; ; ;0 0 ; (+¥) 0 ;1± ¥ 0 ¥ 0


lim (4 x

3

+ 5 x - 8)

x®2

3

lim

3x + 2

5

2x - 4

lim

8 x 3 - 27 2x - 3

x ® -1

3 2

lim h ®3

lim h ® -1

lim t ®1

lim x ®0

h+6 h-6 2h 2 - h - 3 h +1

1- t 5 - t2 - 2 1 1 x+2 2 x

lim x ®0

x+5 - 5 x 4

lim f ( x) = 3 x®d

2

lim g ( x) = - 7 x®d

lim [6 g ( x)] x® d

lim [2 f ( x) + 3g ( x)] x®d

lim x® d

lim x®d

7 f ( x) 2 g ( x) 3 f ( x) + 14 g ( x)


lim Dx ®0

(h + Dh) 2 - h 2 Dh 4x2 -1

lim 2 x + 1 x®-

1 2

lim x ®¥

lim

2 x 3 - x 2 + 3x + 1 3x 3 + 2 x 2 - x - 1

ln k

x-2

x®2

x-2

lim

x2 -1 5 + 4x2

x ®¥

t- 5 2 -5

lim t t® 5

m-h - h+m h

lim h ®0

lim x ® -5

æ 8 x 3 + 125 ö ç ÷ ç x+5 ÷ è ø x-c

lim ac - x(c + a) + x

2

x ®c

2

é1 - n ù

lim êë n + 1 úû

n 2 +3 -2 n 2 -1

n ® -1

lim x®

é

1 3

30 x 2 + 8 x - 6 2(3 x - 1)

lim êë1 + n úû x ®¥

lim

n

x ®0

=e

ex -1 x


Dx,

dy , y ' , f ' ( x) dx

T Q(x,y)

f(x) = y

f(x0) = y0 θ

m=

P

(x0,y0 )

α x0

y - y 0 f ( x ) - f ( x0 ) = x - x0 x - x0

m = tan gq =

f ( x ) - f ( x0 ) x - x0

lim θ = α Q→p


lim tanθ = tanα Q→p f ' ( x) =

lim DC ®0

f ( x + Dx) - f ( x) DC

f ( x) =

f ' ( x) =

f ' ( x) =

lim DC ®0

f ( x + Dx) - f ( x) Dx

lim

1 1 x + Dx x = Dx

DC ®0

- Dx

= lim xDx( x + Dx) DC ®0

lim DC ®0

=

x - ( x + Dx) x( x + Dx) Dx

=

-1

lim x( x + Dx) DC ®0

1 (2, ) 2 1 1 = - (2) + b 2 4

1 y = - x +1 4

lim DC ®0

1 x

x - x - Dx x( x + Dx) Dx

DC = 0 = -

1 x2


y 4

3

2

1 x 1

mN =

-1 mT

y

2

3

4

5

( mT .m N = -1 ) Normal tangente

y0

X X0

mT =

lim X ®0

mT =

f ( x + Dx) - f ( x) = Dx

3 x - 3 x - 3Dx

lim xDx( x + Dx) X ®0

mT (3) = -

lim

= lim X ®0

X ®0

3 3 x + Dx x = Dx

3Dx = xDx( x + Dx)

1 3

m T ( 3) = -

lim X ®0

3 x - 3( x + Dx) xDx( x + Dx) 3

lim x( x + Dx) X ®0

-

1 3

m N (3) =

1 3

1 3


y = mx + b 1 y =- x+b 3

1 y=- x+2 3

y = -mx + b 1 y = x+b 3

1 y= x 3 y

Recta tangente

YT =

1 X+2 3

Recta normal

YN =

1 X 3

1

F(x) = 3

6

x

3 X


f ( x) = 5 x - 3

f ( x) = 2 x 2 - 3x + 5 g (t ) =

2 t

1 2

y= x

z=

x2 + 1 x +1

y=

1 x2

f (q ) =

1

q f ( z ) = ( z + 1) 3

f (t ) = (t + 1)(t - 1)

M = ( z 2 - 4 z + 3)


DK = 0 d K =0 dx

Lectura: La derivada de una constante es igual a cero

f ( x) = 10

y =3 y' = 0

y=

f ' ( x) = 0

1 3

y=z dy =0 dx

dy =0 dx

DX = 1 d x =1 dx

y=x y '= 1

Lectura: La derivada de X con respecto a X es igual a uno

y=z dy =1 dz

f (t ) = t f ' (t ) = 1


dy ยบ y ' ยบ D ยบ f ' ( x) dx Lectura La derivada de una constante por una variable o funciรณn es igual a la constante multiplicada por la derivada de la variable o funciรณn.

t 10 1 f ' (t ) = Dt 10 1 f ' (t ) = (1) 10 1 f ' (t ) = 10 f (t ) =

y = 3x y ' = 3Dx y ' = 3(1) y' = 3


y = 3x y ' = 3Dx + xD3 y ' = 3(1) + x(0) y' = 3

D

u vDu - uDv = v v2

4 t tD 4 - 4 Dt y' = t2 t (0) - 4(1) y' = t2 4 y' = - 2 t y=

Du n = n(u ) n -1 Du


y = x4 y ' = 4( x) 4-1 Dx y ' = 4( x) 3 (1) y' = 4 x3

v Du v = u v [ Du + Ln(u ) Dv] u

y = x Lnx Lnx Dx + Lná xñ Dx] x Lnx y ' = x Lnx [ (1) + Lnx (1)] x Lnx y ' = x Lnx [ + Lnx ] x y ' = x Lnx -1 Lnx (1 + x) y ' = x Lnx [


D(u ± v) = Du ± Dv

y = 3x + x 3 - 6 y ' = D(3 x) + Dx 3 - D6 y ' = 3Dx + 3( x) 3-1 Dx - 0 y ' = 3(1) + 3 x 2 (1) y ' = 3(1 + x 2 )


f ( x) =

f ' ( x) =

x2 + 2x x3 - 5 x 3 - 5 D( x 2 + 2 x) - ( x 2 + 2 x) D x 3 - 5 ( x3 - 5 )2

1

x 3 - 5 ยบ ( x 3 - 5) 2 1

f ' ( x) =

x 3 - 5[ Dx 2 + D 2 x] - ( x 2 + 2 x) D( x 3 - 5) 2 ( x3 - 5 )2 1

f ' ( x) = f ' ( x) =

1 x 3 - 5 (2 x + 2) - ( x 2 + 2 x) ( x 3 - 5) 2 D( x 3 - 5) 2 ( x 3 - 5)

2(2 x + 2)( x 3 - 5) - ( x 2 + 2 x)3 x 2 3

2( x 3 - 5) 2 f ' ( x) =

4( x + 1)( x 3 - 5) - 3 x 3 ( x + 2) 3

2( x 3 - 5) 2

1 y = 5x 4 - x3 + 8x 2 - 9 3 1 x -2 y = 9t -3 - t - 4 + 5 4

z = x 3 + 85 x

f (t ) = 3 8t -

3 x3

f ( x) = x 4 ( x 3 + 5)


g ( x) = x -3 ( x 2 - 8) 4 y=

8x 2 3x - 4

z=

3t -2 + 5t 3 6x3 + 2x

g ( x) =

x2 - 5 6 - x3

x = t2

x = t2 d (x) dt

x' = 2(t ) 2-1.Dt x' = 2t (1) x' = 2t

x' = 2(1) Þ x' = 2

x = 4t 2 + 3t y = t 3 + 2t

y=

4t 3 - 5t 2t - 1


y = x3 + 2x 2 + 3

y = x3 + 2x 2 + 3 y ' = 3x 2 + 4 x y' ' = 6 x + 4 y' ' ' = 6

y ' , f ' ( x),

dy d , [ f ( x)], Dx ( y ) dx dx

y ' ' , f ' ' ( x),

d2y d2 , 2 [ f ( x)], D 2 x ( y ) 2 dx dx

y ' ' ' , f ' ' ' ( x),

d3y d3 , [ f ( x)], D 3 x ( y ) dx 3 dx 3

y ( n ) , f ( n ) ( x),

d (n) y d (n) , [ f ( x)], D ( n ) x ( y ) dx ( n ) dx ( n )

y ( 5)


f ( x) = x 2 f (t ) = 2 -

2 t

f ( z) = z

V (t ) =

20t t +1


dy dy du = dx du dx

dy =1 du

du = 3u 2 dx

dy dy du = dx du dx

dy = 1(3u 2 ) dx dy = 3( x + 1) 2 dx


du dx 1

y = (5 x 2 - 3) 2

y=

y=

5 3

3

x +2

1 (x 2

y=-

- 3) 5

4 ( x + 5) 3

dy du

dy dy du = dx du dx


y=

6 x2

dy , y ' , f ' ( x), Dx ( y ) dx dy dx dy dx dy dx dy dx

dy d = (3 y 2 + 5 y - x 3 ) = (3) dx dx dy dy 2 dx 3(2 y + 5 - 3 x =0 dx dx dx dy dy 6 y + 5 - 3x 2 = 0 dx dx

dy dx 6y

dy dy + 5 = 3x 2 dx dx


dy dx dy [6 y + 5] = 3 x 2 dx

dy 3x 2 = dx 6 y + 5

dy dx

Y

-1

X -2


x2 + 9 y2 = 9

( 6, -

1 3

)

3( x 2 + y 2 ) 2 = 100 xy dy dx

x 2 + y 2 = 36 9 x 2 + 16 y 2 = 144 4 y2 - x2 = 4

4 x - y 3 + 12 y = 0


1

f ( x) = x 2

y = x2

h( x) = x -2

f ( x) = 4 x

f ( x) = K x f ' ( x) = K x .Ln K

d x dx

DK u = K u .Ln K .u '

d u du K = K u .Ln K dx dx

Lectura

d u du e = e u .Ln e dx dx Lectura

De u = e u .u '.


v Du v = u v [ u '+ ln u v' ] u Lectura

y = x Lnx Lnx Dx + Lná xñ Dx] x Lnx y ' = x Lnx [ (1) + Lnx (1)] x Lnx y ' = x Lnx [ + Lnx ] x y ' = x Lnx -1 Lnx (1 + x) y ' = x Lnx [

Ln x = b Ln x

eb = x

Ln x. y = Ln x + Ln y Ln

x = Ln x - Ln y y

Ln x y = yLn x


Ln e x = x e

Ln x

=x

y = Log b x by = x y = Log e x º y = Ln x

Log b u =

Ln u Ln b

Log 315 =

Ln 15 Ln 3

=

2.70805 » 2.46498 1.09861


Cรกlculo, La Derivada

Log 5 53 Log 41 Log10 x 3 y 1 x3 x Log 5 ( 2 ) y

Log 3

e Lnt = 5

Ln z = 0

e3 x+ 2 = 6 Ln x 3 = 27

5(3t ) = 10

f ( x) = Log b u d 1 dU ( Log bU ) = . dx U .Ln b dx D( Log bU ) =

U' ULn U


f ( x) = Ln u d 1 dU ( Ln U ) = . dx U dx U' D( Ln U ) = U Lectura


dy dx x2 + 2 ) x -1 x+2 y = Ln( Ln( )) x-2 y = xx

Ln( x 3 + 3) y= x3 3 y = Ln(e Log 2 ( x - 2 x ) )

y = Lob3 (

3

y = 6 x .8 LnX y = Ln x

x

y = ( x 3 + 2)

LnX

x2

y = x 3 + Lnx 3 (10 Log 4e ) 1

y = Lnx 2


lim sen(u + Du ) - senu d ( senu ) = Du ® 0 dx Du =

= =

lim

senu cos Du + cos u.senDu - senu Du ® 0 Du lim

senu (cos Du - 1) - cos usenDu Du ® 0 Du lim Du ® 0

senu (

Lim cos Du senDu )+ cos u D u ® 0 Du Du

= senu (0) + cos u (1)

= cos u

Lim senx =1 x®0 x Lim 1 - cos x =0 x®0 x


y = sen( x 2 ) dy d = cos( x 2 ). ( x 2 ) dx dx dy = cos( x 2 ).2 x dx dy = 2 x cos( x 2 ) dx


3

dy dx

y = sen( x 2 ) 3

dy dx

y = sec(e 2 ) y = Ln cos( x y =5

y=

2

1 + 3) 2

tan g ( t 3 + Lnt )

sen( x 2 + 3) - tan gx cos( x 3 )

dy dt

dy dx

dy dx


d u' (arc.senu ) = dx 1- u2 d u' = (arc. cos u ) = dx 1- u2 d u' (arc.Tangu ) = dx 1+ u2 d u' (arc.ctngu ) = dx 1+ u2 d u' (arc. sec u ) = dx u u2 -1

d u' (arc. csc u ) = dx u u2 -1

e3 x

D(arc.sen(e 3 x ) =

D (e 3 x ) 1- e

=

6x

3(e 3 x ) 1 - e6 x

e3 x


x x

2

h(t ) = arc.sen(e ( x 3+ ln x ) )

y = x arc .cos( x

3 2

)

z = arc. tan g ( x x ) y = arc.sen(

x3 + 5x - 3 1 3x 3

)



U V


f ( z) =

z +1 z

4 t2 y = t +1

M=

y = 6x3 - 2x - 6

y = x 3e x

h( x ) =

( x + 3) 2 x -1

f (q ) = sen(q + 3). cos 3 (4q )

f (t ) = (t 3 - 4t )5t

r -1

y=

r +1

2

f (u ) =

e (u +1) u 3 + 5e cos u

y = arc.Tang (u 3 + 5u ). cos(u 2 + 2) y = ( x 3 + 3) e

f (t ) = t +

y = ex

1 t

6 x +3

x3 + 5x - 2 6x + 1

y=3 y=

y=

arc.sen(t + 1) arc. cos(t + 1)

sen(t + 2) (t + 1) (t

y = x2 - x y= x

2

-1)

3


y = (4 x 3 + 5) 2

y = senx

y = arc. sec(u 3 )

y=

t 3 + 5t - 2 t -1

1

y = (6 x 3 + 5) 2 f ( x) = e

x3 +3

5x3 y 2 + 2 y 3 = 6x sen( xy ) + cos x 2 - tan g ( y 3 ) = 6 y 5x 2 + 2 y 3 xy

= 8 xy

Ln( x 2t ) + 5 xt = 8 xt

y=

1 3

2

t +1 1 3 Q( x) = cos( x + 5) 3


A = 2pr 2 + 2prs

V = pr 2s

s=

V pr 2

dA =0 dr

dV cm 3 = 50 dt s

10 pr 2 10 10 2 A = 2pr + 2pr[ 2 ] A = 2p (r 2 + ) pr pr dA 10 = 2p (2r - 2 ) dr pr s=

dr = 10cm dt


V =

4 pr 3 3 dV dV dr dV = . = 4pr 2 dt dr dt dt dr 1 dV = dt 4pr 2 dt dr 1 = (50 ) dt 4p (10 ) 2 1 cm 8p s

dr dt dr 1 = dt 8p

x

h x

A = x 2 + 4 xh x 2 + 4 xh

300 - x 2 4x 300 - x 2 V = x2 ( ) 4x dV x3 =0 V = 75 x dx 4 x = Âą10 x = 100 h=

h = 20t 2 + 10

0 = 75 -

3x 2 4

dr dt


r h

5000 pies

Por relación de Pitágoras tenemos que r 2 = (5000)2 + h2 calculando la velocidad de la nave por medio de la derivada de la ecuación dada, la dh cual nos da como resultado = 40t, como nuestra incógnita está en dt dr cuando t = 20 segundos y vemos que r y h se relacionan según dt la función r 2 = (5000) 2 + h 2 ,ahora bien derivando implícitamente respecto a t, tenemos: dr dh Despejando dr 2r = 2h dt dt dt dr h dh dh dr h Reemplazando = = 40t , no queda = (40t ) cuando dt r dt dt dt r t = 20 segundos en la función h = 20t 2 + 10 , da como resultado h = 20(20) 2 + 10 por lo tanto h = 8010 pies, luego r = (5000)2 + (8010)2 donde r = 9442.46 pies. Finalmente dr pies =678.64 dt s

dr 8010 = (40)(20) , entonces dt 9442.46


22 x 8 tan gl = x

22 ) x 8 l = arc. tan g ( ) x 22 8 q = ar. tan g ( ) - arc. tan g ( ) x x tan gd =

14

δ ϴ

8

λ

d = arc. tan g (

x

22 8 - 2 2 dq x x = 2 2 dx æ 22 ö æ8ö 1+ ç ÷ 1+ ç ÷ è x ø è xø -

22 8 2 2 = 2 x + 2x x + 484 x + 64 x2 x2 -

8 22 = 2 x + 64 x + 484 2

7 2 x = 420 4 x = 240

dq =0 dx

x 2 + 484 =

11 2 x + 64 4

(

)


dy dt

dx =4 dt 1 V = pr 2 h 3


C

dC : dx dR : dx dG : dx

C( x) = a + bx + ex 2 + kx3


C ( x) = 300 + 0.06 X + 2 x10 -4 X 2

C ( x) = 300 + 0.06 X + 2 x10 -4 X 2 300 + 0.06 X + 2 x10 -4 X 2 x C ' ( x) = 0.06 + 0.0004 x

C ( x) =

Unidades

Costo

Costo medio

Costo marginal

X

C(x)

c(x)

C’(x)

400

356

0.89

0.22

1200

660

0.55

0.54

4000

3740

0.935

1.66

C ( x) = 300 + 0.06(400) + 2 x10 -4 (400) 2 C ( x) = 356 C ( x) 356 C ( x) = = x 400 C ( x) = 0.89 C ' ( x) = 0.06 + 4 x10 -4 (400) C ' ( x) = 0.22 C ' ( x) = c( x)


C ' ( x) = c( x)

0.06 + 0.0004 x =

C ( x) despejando x

x(0.06 + 0.0004 x) = 300 + 0.06 x + 0.0002 x 2 0.06 x + 0.0004 x 2 = 300 + 0.06 x + 0.0002 x 2 0.0002 x 2 = 300 300 0.0002 x = 1225unidades x=

300 + 0.06(1225) + 2 x10 -4 (1225) 2 1225 C ( x) = 0.55 C ( x) =

C ( x) =

C ' ( x) = c( x) x2 - 20 x 30 x C ' ( x) = - 20 15 C ( x) =

C ' ( x) = c( x) x - 20 = 0 15 x = 300

x2 - 20 x 30


R( x) = XP( x)

3x + D 2 = 21000

D = 21000 - 3 x 0 ยฃ x < 7000 21000

D' =

-3 2 21000 - 3 x

D (pesos)

Grรกfica de la funciรณn demanda 100

50

5000

7000

x unidades


R( x) = x 21000 - 3x

R' ( x) =

x=

42000 - 9 x 2 21000 - 3 x

42000 @ 4667 9 0 £ x < 4667 4667 < x < 7000

P ( 4667 ) = 21000 - 3( 4667 ) @ $83.66

U ( p ) = 0.6 p 2 + 20

p (t ) = 5.1 + 0.2t 2


dU dt 1 1 dU 1 = 0.6 p 2 + 20 2 [1.2 p ] = 0.6 p 0.6 p 2 + 20 2 dt 2

(

)

(

)

dp = 0.4t dt

1 dU dU dp dU 0.24 pt = . Þ = 0.6 p 0.6 p 2 + 20 2 .(0.4t ) = dt dp dt dt 0.6 p 2 + 20

(

2

p (4) = 5.1 + 0.2(4 ) = 8.3 dU 0.24 pt 0.24(8.3)(4) = = 2 dt 0.6 p + 20 0.6(8.3) 2 + 20

dU 7.968 = = 1.017 dt 61.334

)


1 x 2

1 x2

2000

350 x

-1

p (t ) = 30 - 6(t + 2 )

A(t ) = 0.4 p 2 + p + 70


x 10 x -1

x -1


S = 40t - t 2

1 2 gt 2


S ( p) =

6.45 p2

p (t ) = 0.03t 2 + 0.2t + 8

C ( x) = 5 x 2 + x + 60


.

4 5

4 5

2 5 2 10


lim x ®0

x+5 - 5 x

5 2 1 5 1

lim x - 8 - x x ®8

2

72 - 64

1 8 1 16 1 4

h( x) =

lim f ( x) = a x ®¥

4 + x2 16 - x 2

lim f ( x) = a x ® -¥



lim f (x )= f (c ) x ®c

f (c )

lim f (x )¹ f (c ) x ®c

p(x )= 3500 +

1200 x +1


(h + Dh) - h Dh 速0 Dh f (h + Dh) - h lim Dh 速0 Dh f (h + Dh) - f (h) lim Dh 速0 Dh lim


lim h 速0

f (h + Dh) - f (h) Dh


3m 2 s 3m 2 s 2m 3 s 2m 3 s

1 P( x) = 900 X 3


P (t ) = -t 3 + 9t 2 + 12t


op. hip. ady. cosq = hip. op. tan gq = Opuesto ady.

ady. op. hip. secq = ady. hip. tan gq = op.

senq =

Hipotenusa

q

c tan gq =

Adyacente

RELACIÓN POLAR

RELACIÓN RADIAN

(GRADOS)

RELACIÓN RECTANGULAR

0

0

30

p 6

45

p 4

60

p 3

1 2 ( , ) 2 2

90

p 2

(0,1)

1 2 (- , ) 2 2

2p 3

(1,0)

( (

3 1 , ) 2 2 2 2 , ) 2 2


y

r b ?

a x

x

tan gq = r= a2 + b2

1 csc x 1 cos x = sec x senx tan gx = cos x senx =

cos x senx 1 sec x = cos x 1 csc x = senx c tan gx =

sen 2 x + cos 2 x = 1 sec 2 x - tan g 2 x = 1 csc 2 x - c tan g 2 x = 1

1 - cos 2u 2 1 + cos 2u cos 2 u = 2 1 - cos 2u tan g 2u = 1 + cos 2u sen 2u =

b r a cosq = r senq =

(a,b)

c tan gq = r a r cscq = b

secq =

b a

a b


sen(2u ) = 2 senu cos u cos(2u ) = cos 2 u - sen 2u = 2 cos 2 u - 1 = 1 - 2 sen 2u tan g (2u ) =

2 tan gu 1 - tan g 2u

sen(u Âą v) = senu. cos v Âą cos u.senv cos(u Âą v) = cos u.senu m senu.senv tan g (u Âą v) =

tan gu Âą tan gv 1 m tan u. tan gv

u+v u -v ). cos( ) 2 2 u+v u -v senu - senv = 2 cos( ).sen( ) 2 2 u+v u -v cos u + cos v = 2 cos( ). cos( ) 2 2 u+v u -v cos u - cos v = -2 sen( ).sen( ) 2 2 senu + senv = 2 sen(

1 senu.senv = [cos(u - v) - cos(u + v)] 2 1 cos u cos v = [cos(u - v) + cos(u + v)] 2 1 senu cos v = [ sen(u + v) - sen(u - v)] 2 1 cos u.senv = [ sen(u + v) - sen(u - v)] 2




Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.