4 minute read
w atmosferze potencjalnie wybuchowej
Tab. 1: Współczynnik kBatt
Cykle ładowania / rozładowania Współczynnik kBatt Zależnie od cyklu i czasu rozładowania
Advertisement
Kilka razy dziennie 0,7 0,7 0,6 0,6 - - -
Zastosowanie w np.
Magazyn energii instalacji PV
Raz dziennie 1 0,85 0,85 0,7 0,7 0,6 0,6 Magazyn energii
Raz na tydzień 1 1 0,85 0,85 0,7 0,7 0,6
Raz na miesiąc lub rzadziej 1 1 1 0,85 0,85 0,7 0,7
Czas rozładowania 10 min 30 min 60 min 3 h 5 h 10 h 20 h UPS
UPS
Rys. 1. Uwzględnienie temperatury otoczenia
Krok 1: Określenie napięcia znamionowego bezpiecznika
Napięcie znamionowe prądu stałego bezpiecznika nie powinno być mniejsze od najwyższego napięcia występującego w obwodzie prądu stałego, tzn. napięcia ładowania akumulatora Uł
Unb ≥ Uł W kartach katalogowych określa się czy bezpieczniki posiadają zdolność wyłączania prądu przemiennego czy stałego. W przypadku kiedy określono wyłącznie napięcie znamionowe prądu przemiennego, bezpieczniki tylko w wyjątkowych okolicznościach nadają się do stosowania w obwodach prądu stałego. Należy skonsultować się z producentem aby potwierdzić, czy powszechnie znany fakt „znamionowe napięcie prądu stałego = 0,7 znamionowego napięcia przemiennego”, ma w tym przypadku zastosowanie. Producent
Rys. 2. Kategorie użytkowania i charakterystyki czasowo-prądowe
powinien wypowiedzieć się również na temat dopuszczalnej stałej czasowej zwartego obwodu. Jednak w większości przypadków nie jest to konieczne, ponieważ w obwodach z akumulatorami można spodziewać się stosunkowo małych stałych czasowych (często krótszych niż 2 ms).
Krok 2: Określenie najmniejszego prądu znamionowego bezpiecznika
Odpowiednią wartością do określenia najmniejszego prądu znamionowego bezpiecznika In min jest największa wartość prądu występująca w obwodzie rozładowania akumulatora, tzn. prąd rozładowania akumulatora Ie występujący w końcowej fazie procesu rozładowania. Można ją obliczyć korzystając z mocy wejściowej falownika Sn [VA] oraz napięcia w końcowej fazie rozładowania Ue, uwzględniając przy tym współczynnik mocy (np. 0,8) oraz sprawność η (0,85 – 0,97).
Ie = S n cos ф /Ue η
In min ≥ I e
Krok 3: Uwzględnienie dodatkowych czynników
Przewidywane zastosowanie magazynu energii może mieć taki sam wpływ na wybór prądu znamionowego bezpiecznika jak warunki otoczenia występujące w miejscu umieszczania bezpieczników w obudowach lub szafach sterowniczych. Jak powszechnie wiadomo nie ma JEDNEGO czasu rozładowania, JEDNEGO prądu rozładowania ani JEDNEJ częstości ładowania/rozładowania. Uwzględnia się różne zastosowania opierając się na współczynniku kBatt odnoszącym się do minimalnego prądu znamionowego. Mimo wszystko 30-to minutowy czas rozładowania połączony z pojedynczym cyklem ładowania/rozładowania raz na miesiąc powinien być traktowany zupełnie inaczej, niż sytuacja jaka ma miejsce w magazynie energii instalacji fotowoltaicznej, gdzie takich cykli jest kilka w ciągu dnia. W tabeli 1 podano współczynniki kBatt dla zastosowań w różnych urządzeniach z akumulatorami. Przy stosowaniu tych współczynników, dopuszcza się pewną wymaganą przeciążalność.
In ≥ In min / kBatt
Temperatura otoczenia znacznie odbiegająca od 30oC również może mieć wpływ na wybór prądu znamionowego. W tym przypadku można posłużyć się standardowym wykresem obniżenia parametrów znamionowych dla wkładek topikowych.
In ≥ In min / kBatt kth
Jak pokazano na rysunku 1, temperatura otoczenia wynosząca np. 70oC w szafie sterującej, może spowodować konieczność obniżenia prądu znamionowego ze 100 A do 70 A.
Krok 4: Wybór kategorii użytkowania
W obwodach ładowania prądu stałego stosowane są bezpieczniki następujących kategorii użytkowania: aR - Wkładki o niepełnozakresowej zdolności wyłączania do zabezpieczania półprzewodników („niepełnozakresowe, ultraszybkie”) gS (gRL) - Wkładki o pełnozakresowej zdolności wyłączania do zabezpieczania półprzewodników i przewodów („pełnozakresowe, szybkie”) gG - Wkładki o pełnozakresowej zdolności wyłączania ogólnego przeznaczenia („pełnozakresowe, zwłoczne”) Wyboru kategorii użytkowania możemy dokonać w oparciu o najdłuższy czas przedłukowy dopuszczalny w przypadku zwarcia. Aby to zrobić, trzeba najpierw obliczyć maksymalny prąd zwarciowy IzB w pełni naładowanego akumulatora, korzystając z napięcia jałowego UB oraz rezystancji wewnętrznej akumulatora RB:
IzB = 0,95UB /RB
Wartość tę należy nanieść w postaci pionowej linii na charakterystykę czasowo-prądową bezpieczników, powstanie w ten sposób punkt przecięcia z wybranym prądem znamionowym (rysunek 2). Prowadząc linię poziomą z punktu przecięcia naniesionej linii pionowej z charakterystyką czasowo-prądową bezpiecznika na wybrany prąd znamionowy, możemy na osi pionowej odczytać czas przedłukowy. W podobny sposób postępujemy gdy chcemy znać czas przedłukowy dla mniejszych prądów przetężeniowych. W przypadku prądów przetężeniowych przekraczających prąd znamionowy bezpiecznika sześć do dziesięciu razy, można zastosować bezpieczniki niepełnozakresowe; dla prądów przetężeniowych o krotności poniżej tej wartości niezbędne są bezpieczniki pełnozakresowe. Jeżeli prąd przetężeniowy znajduje się w obrębie linii przerywanej na krzywej charakterystyki czasowo-prądowej bezpiecznika niepełnozakresowego, rozwiązanie takie jest niedozwolone. Zatem wybór kategorii użytkowania (gG, aR, gS (gRL)) decyduje o tym jak szybko zostanie wyłączony prąd zwarciowy IzB.
Informację o aktualnej ofercie bezpieczników prądu stałego produkcji firmy SIBA do zabezpieczania akumulatorów można uzyskać kontaktując się z oddziałem producenta w Polsce.
SIBA Polska Sp. z o.o. Adres strony: www.siba-bezpieczniki.pl Adres e-mail: siba@siba-bezpieczniki.pl
Pomimo tego, że w niniejszym artykule opisujemy metodę czteroetapowego doboru odpowiedniego zabezpieczenia obwodów z akumulatorami, to zależności między złożonymi systemami magazynowania energii nie zawsze są łatwe do zrozumienia, a wprowadzane do obliczeń wartości nie zawsze łatwe do określenia. Nasz profesjonalny zespół doradczy odpowie na Państwa pytania. Zachęcamy do skontaktowania się z zespołem SIBY w przypadku jakichkolwiek wątpliwości odnośnie obliczeń.
Siba n