Oilseed Fatty Acids Chemistry, Processing, and Conversion
Terry A. Isbell USDA-ARS Bio-Oils Research Unit National Center for Agricultural Utilization Research
UOP Renewable Jet Fuel Process™ Isomerization/ Product Selective Cracking Separation Reactor
Deoxygenation Reactor
Hydrogen Light Fuels
Acid Gas (to treating)
Feedstocks
Bio-SPK (HRJ)
Water (to treating)
Green Diesel (HRD)
Feedstock flexible Optimized for maximum distillate yield (SPK + Green Diesel) Possible to achieve maximum conversion to SPK Makes valuable hydrocarbon co-products - Green Diesel - Green Naphtha - Green LPG Ability to swing SPK and Green Diesel production to meet market demands Diagram simplified for clarity
Commercial scale, proven technology
Cultivars for Stress Trials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Habit Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Winter Winter Winter Winter Winter Winter
Species B. napus B. napus B. napus B. napus B. carinata B. carinata B. carinata B. carinata B. juncea B. juncea C. sativa B. rapa S. alba S. alba B. napus B. napus B. napus B. napus C. sativa B. rapa
Type Canola Canola Industrial Industrial Industrial Industrial Industrial Industrial Industrial Industrial Industrial Industrial Industrial Industrial Canola Canola Industrial Industrial Industrial Industrial
Cultivar DK3042RR Cara Gem Hero #1 #2 #3 #4 P45J10 Pacific Gold Calena Goldrush Idagold Tilney Wichita Amanda Durola Dwarf Essex Joelle Salut
Source Dekalb UI UI UI Agrisoma Agrisoma Agrisoma Agrisoma Pioneer UI ARS Morris UI UI UI KSU UI UI UI ARS-Morris UI
Cultivar Oil Yield/Hectare 1800 1600
Oil Yield (Kg/Ha)
1400 1200 1000 800 600 400 200 0
Carinata
Juncea
Napus
Canola
Cultivar
Rapa
Camelina Sinapis
Canola Oil Yield/Hectare 1800 1600
DK3042RR Invigor SC28
Oil Yield (Kg/Ha)
1400 1200 1000 800 600 400 200 0
Ames
Mandan
Morris
Moscow
Location
Sidney
Temple
Chemical Diversity for Conversion Cultivar
Oil Yield Location Kg/Ha
Sat
Mono
Poly
18:1
18:2
18:3
Erucic
Carinata
Morris
1432
6.2
56.2
32.2
9.0
16.8
13.4
40.2
Juncea
Morris
1006
6.2
66.5
24.0
61.6
14.3
9.4
1.8
Juncea
Morris
1146
6.6
55.6
34.6
20.7
21.6
11.5
22.4
Napus
Morris
1090
5.8
68.3
22.3
14.7
12.7
8.9
45.6
Canola
Moris
1755
7.1
62.9
27.5
61.7
18.4
8.8
0.1
Camelina
Mandan
409
11.6
29.5
56.6
19.3
20.4
35.2
1.3
Sinapis
Morris
556
5.3
69.0
22.3
28.1
11.4
10.6
30.2
Screw Pressing
French Model 324 Seed Cooker/Conditioner
French Model L-250 Screw Press
Oil Extraction Cultivar
Seed MC (%)
Oil (%, db)
Oil Extraction
Seed Cooking
Oil in Meal (%)
B. carinata AAC A110
5.2
46.0
Scott Tech Screw Press
No
21.7
B. juncea Oasis
5.2
45.6
Scott Tech Screw Press
No
20.0
B. juncea Pacific Gold
9.5
39.9
French Screw Press
Yes
7.6
B. napus Gem
5.6
46.5
French Screw Press
Yes
10.8
B. napus Invigor L130
6.5
47.5
French Screw Press
Yes
14.3
C. sativa Joelle
11.9
36.9
French Screw Press
Yes
4.2
S. alba Tilney
5.4
26.5
Scott Tech & Hexane
No
0.5
T. arvense
9.2
32.0
French Screw Press
Yes
4.9
Oil Extraction Cold pressing leaves significant amount of oil in the cake. Oil yield may be improved by double pressing. Full pressing oilseeds with oil content < 40% can be effectively extracted in one pass with good yields. Oilseeds with oil content > 40% may require a screw press with different screw configuration. Prepressing followed by hexane extraction provided the maximum oil yield. This process is only economically feasible when operated at large capacities.
Vegetable Oil Refining
X X
Steps
Contaminants removed
Degumming
Hydrated phospholipids Sulfur compounds
Chemical refining
Free fatty acids (Soap) Phospholipids Metals Sulfur compounds
Bleaching
Pigments Residual phospholipids Residual soap Metals
Winterization
Waxes Saturated TAGs
Deodorization
Oxidation products Free fatty acid Some tocopherols/sterols Other volatiles
Phosphorus and Sulfur Contents of Processed Oils (ppm) Cultivar
Crude
Degummed
Bleached
P
S
P
S
P
S
B. Carinata (AAC A110)
15.9
16.0
9.3
14.6
< DL
9.9
B. Juncea (Oasis)
-
-
16.2
4.8
< DL
4.1
B. Juncea Pacific Gold)
59.5
53.6
13.8
31.4
< DL
11.2
-
-
10.6
5.6
< DL
3.7
B. Napus Invigor L130)
93.4
10.0
< DL
4.8
< DL
4.3
C. Sativa Joelle)
110.0
19.7
0.4
13.7
< DL
5.6
S. Alba Tilney)
131.9
16.9
0.0
7.6
< DL
5.0
111
107
30
90
< DL
56
B. Napus Gem)
T. arvense
HRJ Product Yield (% of Total Distillate) Oil
Jet
Heavy Diesel
Soybean
60.3
18.0
Invigor
61.2
18.3
Pacific Gold
66.7
13.2
Gem
66.7
13.2
Product Yield (Soybean) Item H2 CO2 CO C1 C2 C3 iC4 nC4 iC5 nC5 C6—180°F 180°F—240°F 240°F—553°F (Jet) 553°F—EBP (Hvy. Diesel) H2O
SOR, vol * 402.6 12.8 0.1 1.5 1.0 31.0 1.52 3.03 4.47 1.53 8.22 7.68 60.30 18.03
SOR, %wt 3.92 2.72 0.01 0.12 0.15 6.61 0.92 1.91 3.02 1.04 5.82 5.70 49.30 15.22 8.27
EOR, vol * 359.2 28.4 0.1 1.9 1.2 31.1 2.23 3.19 4.99 1.64 8.67 8.07 59.08 17.59
EOR, %wt 3.50 6.05 0.01 0.15 0.18 6.63 1.36 2.01 3.37 1.12 6.15 6.00 48.30 14.85 9.03
* vol yields in nm3/m3 for gas products H2,CO2,CO,C1,C2,C3, in % for liquid products C4+
78 vol % total distillate yield, with 60 vol % Renewable Jet
Product Yield (Invigor) Item H2 CO2 CO C1 C2 C3 iC4 nC4 iC5 nC5 C6—180°F 180°F—240°F 240°F—553°F (Jet) 553°F—EBP (Hvy. Diesel) H2O
SOR, vol * 380.0 12.6 0.1 1.5 1.0 30.8 1.54 3.07 4.52 1.54
SOR, %wt 3.70 2.69 0.01 0.12 0.15 6.56 0.94 1.94 3.06 1.06
EOR, vol * 336.6 28.2 0.1 1.9 1.2 30.9 2.22 3.17 4.97 1.64
EOR, %wt 3.28 5.99 0.01 0.15 0.18 6.58 1.36 2.01 3.36 1.12
7.95 7.79 61.16 18.28
5.91 5.79 50.00 15.44 10.05
8.26 8.06 58.98 17.56
6.14 5.99 48.22 14.83 7.35
* vol yields in nm3/m3 for gas products H2,CO2,CO,C1,C2,C3, in % for liquid products C4+
79 vol % total distillate yield, with 61 vol % Renewable Jet
Product Yield (Pacific Gold) Item H2 CO2 CO C1 C2 C3 iC4 nC4 iC5 nC5 C6—180°F 180°F—240°F 240°F—553°F (Jet) 553°F—EBP (Hvy. Diesel) H2O
SOR, vol * 380.3 12.2 0.1 1.5 1.0 27.8 4.60 1.93 4.53 1.54 7.01 8.63 66.65 13.24
SOR, %wt 3.70 2.58 0.01 0.12 0.15 5.91 2.80 1.22 3.06 1.05 5.20 6.40 54.38 11.20 9.62
EOR, vol * 337.9 27.0 0.1 1.9 1.2 27.9 5.25 2.06 4.98 1.64 7.34 8.90 64.42 12.58
EOR, %wt 3.29 5.73 0.01 0.15 0.18 5.94 3.20 1.30 3.36 1.12 5.44 6.60 52.56 10.65 7.04
* vol yields in nm3/m3 for gas products H2,CO2,CO,C1,C2,C3, in % for liquid products C4+
~80
vol % total distillate yield, with 65.65 vol % Renewable
Jet Comparable total distillate yield with shift towards higher jet yield
Product Yield (Gem) Item H2 CO2 CO C1 C2 C3 iC4 nC4 iC5 nC5 C6—180°F 180°F—240°F 240°F—553°F (Jet) 553°F—EBP (Hvy. Diesel) H2O
SOR, vol * 363.9 11.9 0.1 1.6 1.0 27.8 4.60 1.94 4.53 1.55 7.02 8.64 66.70 13.25
SOR, %wt 3.54 2.53 0.01 0.12 0.15 5.91 2.80 1.22 3.06 1.05 5.20 6.40 54.42 11.21 9.45
EOR, vol * 323.6 26.5 0.1 1.9 1.2 27.9 5.26 2.06 4.99 1.64 7.35 8.91 64.49 12.60
EOR, %wt 3.15 5.63 0.01 0.15 0.18 5.94 3.20 1.30 3.37 1.12 5.45 6.61 52.62 10.66 6.91
* vol yields in nm3/m3 for gas products H2,CO2,CO,C1,C2,C3, in % for liquid products C4+
~80 vol % total distillate yield, with 66.7 vol % Renewable Jet Highest production of total distillate with highest jet yield
Summary • UOP Renewable Jet technology commercially proven, providing fuels for regular flights –Current commercial production based on first-generation feedstocks –Use of non-edible oils has been demonstrated in pilot plants • Lab processing of seed oil samples in progress, to be completed by May 2017 • Modeling indicates that oils with more long-chain carbon molecules are advantageous for jet fuel production –Hydrogen consumption dominated by degree of unsaturation
Acknowledgements The brassica HRJ work is funded under NIFA Biomass Research and Development Initiative Award # 2012-10008-19727 (August 1, 2012 â&#x20AC;&#x201C; July 31, 2017).
Brett Allen David Archer Jason Bergtold Rick Brenner Jack Brown David Buland Shawn Conners John Dyer Roque Evangelista Cornelia Flora Elodie Gazave Russ Gesch Michael Gore David Grant Jerry Hatfield Kim Hunter Jay Jarbo Jim Kiniry Dan Long Emily Oblath Lynn Shi David Shonnard Erica Tassone Terry Tomlinson Merle Vigil