RESOLUCIÓN DE PROBLEMAS QUE IMPLICAN EL USO DE ECUACIONES LINEALES, CUADRATICAS O SITEMA DE ECUACIONES. FORMULACIÓN DE PROBLEMAS A PARTIR DE UNA ECUACION DADA
VANESSA GARCÍA LÓPEZ
El lenguaje algebraico En lenguaje algebraico nace en la civilización musulmán en el período de Al– khwarizmi, al cual se le considera el padre del álgebra. El lenguaje algebraico consta principalmente de las letras de alfabeto y algunos vocablos griegos. La principal función de lenguaje algebraico es estructurar un idioma que ayude a generalizar las diferentes operaciones que se desarrollan dentro de la aritmética, por ejemplo: si queremos sumar dos números cualesquiera basta con decir a + b; donde la letra a indique que es un número cualquiera de la numeración que conocemos, b de la misma manera que a significa un número cualquiera de la numeración. También el lenguaje algebraico ayuda mantener relaciones generales para razonamiento de problemas a los que se puede enfrentar cualquier ser humano en la vida cotidiana. Lenguaje Algebraico. Para poder manejar el lenguaje algebraico es necesario comprender lo siguiente: Se usan todas las letras del alfabeto. Las primeras letras del alfabeto se determinan por regla general como constantes, es decir, cualquier número o constante como el vocablo pi. Por lo regular las letras X., Y y Z se utilizan como las incógnitas o variables de la función o expresión álgebraica. Operaciones con Lenguaje Algebraico Aqui se presentan los siguientes ejemplos, son algunas de las situaciones más comunes que involucran los problemas de matemáticas con lenguaje álgebraico; cualquier razonamiento extra o formulación de operaciones con este lenguaje se basa estrictamente en estas definiciones:
un número cualquiera se puede denominar con cualquier letra del alfabeto, por ejemplo: a = un número cualquiera b = un número cualquiera c = un número cualquiera
... y así sucesivamente con todos los datos del alfabeto. la suma de dos números cualesquiera a+b = la suma de dos números cualesquiera x+y = la suma de dos números cualesquiera la resta de dos números cualesquiera a-b = la resta de dos números cualesquiera m-n = la resta de dos números cualesquiera la suma de dos números cualesquiera menos otro número cualquiera a-b+c =la suma de dos números cualesquiera menos otro número cualquiera el producto de dos números cualesquiera ab = el producto de dos números cualesquiera el cociente de dos números cualesquiera (la división de dos números cualesquiera) a/b= el cociente de dos números cualesquiera la semisuma de dos números cualesquiera (a+b)/2= la semisuma de dos números cualesquiera el semiproducto de dos números cualesquiera (ab)/2= el semiproducto de dos números cualesquiera
Ecuación lineal El concepto que nos ocupará a continuación está vinculado al ámbito de las matemáticas, en tanto, para esta ciencia, una ecuación es aquella igualdad en la cual aparece como mínimo una incógnita, dado que pueden ser más, que deberá ser revelada para arribar a su resolución. Ahora bien, la ecuación dispone de elementos como ser: los miembros, que son cada una de las expresiones algebraicas, o sea los valores conocidos, y por otra parte las incógnitas, que son justamente aquellos valores a descubrir. A través de diferentes operaciones matemáticas podremos conocer los datos desconocidos.
Los valores conocidos que se enuncian en una ecuación pueden consistir en números, variables, constantes o coeficientes, mientras que los valores desconocidos o incógnitas serán simbolizados a partir de letras que hacen las veces del valor que más tarde se conocerá. Con un ejemplo lo veremos más claro:
10 + x = 20. En esta ecuación simple los números 10 y 20 son los valores que conocemos y la x el que desconocemos y tenemos que averiguar. La resolución sería de esta manera: x = 20 – 10, entonces x = 10. La incógnita de la ecuación será 10. Existen diversos tipos de ecuaciones, en las ecuaciones algebraicas se ubica el tipo de nos ocupa, que es el de Ecuación de Primer Grado o Ecuación Lineal. Se trata de un tipo de ecuación que solamente involucrará sumas y restas de una variable a la primera potencia. Una de las formas más sencillas de este tipo de ecuación es: y = mx + n (en el sistema cartesiano se representan con rectas), entonces m será la pendiente y n el punto en el cual la recta corta al eje y… 4 x + 3 y = 7. Ecuación cuadrática Esto es una ecuación cuadrática:
(a, b, y c pueden tener cualquier valor, excepto que a no puede ser 0.)
La letra "x" es la variable o incógnita, y las letras a, b y c son los coeficientes Y el nombre cuadrática viene de "cuad" que quiere decir cuadrado, porque el exponente más grande es un cuadrado (en otras palabras x2).
Ejemplos de ecuaciones cuadráticas: En esta a=2, b=5 y c=3
Aquí hay una un poco más complicada:
¿Dónde está a? En realidad a=1, porque normalmente no escribimos "1x2"
b=-3 ¿Y dónde está c? Bueno, c=0, así que no se ve.
¡Ups! Esta no es una ecuación cuadrática, porque le falta el x2 (es decir a=0, y por eso no puede ser cuadrática)
¿Qué tienen de especial? Las ecuaciones cuadráticas se pueden resolver usando una fórmula especial llamada fórmula cuadrática:
El "±" quiere decir que tienes que hacer más Y menos, ¡así que normalmente hay dos soluciones!
La parte azul (b2 - 4ac) se llama discriminante, porque sirve para "discriminar" (decidir) entre los tipos posibles de respuesta:
si es positivo, hay DOS soluciones si es cero sólo hay UNA solución, y si es negativo hay dos soluciones que incluyen números imaginarios .
Solución Para resolverla, sólo pon los valores de a,b y c en la fórmula cuadrática y haz los cálculos. Ejemplo: resuelve 5x² + 6x + 1 = 0 Fórmula cuadrática: x = [ -b ± √(b2-4ac) ] / 2a Los coeficientes son: a = 5, b = 6, c = 1
Sustituye a,b,c: x = [ -6 ± √(62-4×5×1) ] / 2×5 Resuelve: x = [ -6 ± √(36-20) ]/10 = [ -6 ± √(16) ]/10 = ( -6 ± 4 )/10 Respuesta: x = -0.2 and -1 (Comprobación: 5×(-0.2)² + 6×(-0.2) + 1 = 5×(0.04) + 6×(-0.2) + 1 = 0.2 -1.2 + 1 = 0 5×(-1)² + 6×(-1) + 1 = 5×(1) + 6×(-1) + 1 = 5 - 6 + 1 = 0)
SISTEMA DE ECUACIONES DE 2X2 Dos sistemas de ecuaciones son equivalentes cuando tienen la misma solución. Criterios de equivalencia 1º Si a ambos miembros de una ecuación de un sistema se les suma o se les resta una misma expresión, el sistema resultante es equivalente. 2º Si multiplicamos o dividimos ambos miembros de las ecuaciones de un sistema por un número distinto de cero, el sistema resultante es equivalente. 3º Si sumamos o restamos a una ecuación de un sistema otra ecuación del mismo sistema, el sistema resultante es equivalente al dado. 4º Sin en un sistema se sustituye una ecuación por otra que resulte de sumar las dos ecuaciones del sistema previamente multiplicadas o divididas por números no nulos, resulta otro sistema equivalente al primero.
5º Si en un sistema se cambia el orden de las ecuaciones o el orden de las incógnitas, resulta otro sistema equivalente. Método de sustitución
1 Se despeja una incógnita en una de las ecuaciones.
2 Se sustituye la expresión de esta incógnita en la otra ecuación, obteniendo un ecuación con una sola incógnita.
3 Se resuelve la ecuación.
4 El valor obtenido se sustituye en la ecuación en la que aparecía la incógnita despejada.
5 Los dos valores obtenidos constituyen la solución del sistema. Método de igualación
1 Se despeja la misma incógnita en ambas ecuaciones.
2 Se igualan las expresiones, con lo que obtenemos una ecuación con una incógnita.
3 Se resuelve la ecuación.
4 El valor obtenido se sustituye en cualquiera de las dos expresiones en las que aparecía despejada la otra incógnita.
5 Los dos valores obtenidos constituyen la solución del sistema.
Método de reducción
1 Se preparan las dos ecuaciones, multiplicándolas por los números que convenga.
2 La restamos, y desaparece una de las incógnitas.
3 Se resuelve la ecuación resultante.
4 El valor obtenido se sustituye en una de l as ecuaciones iniciales y se resuelve.
5 Los dos valores obteni dos constituyen la solución del s i s t e m a .
Problemas Dos números suman 25 y el doble de uno de ellos es 14. ¿Qué números son? x= primer número y= segundo número Los números suman 25: x + y = 25 El doble de uno de los números es 14: 2x = 14 Tenemos el sistema
Aplicamos substitución
Por tanto, los números son 7 y 18.
El costo total de 5 libros de texto y 4 lapiceros es de $32.00; el costo total de otros 6 libros de texto iguales y 3 lapiceros es de $33.00. Hallar el costo de cada artículo. SOLUCIÓN: Sea x= el costo de un libro en pesos, y y= el costo de un lapicero en pesos. Según el problema obtenemos las dos ecuaciones:
La solución de este sistema es de x=4, y y=3, es decir, el costo de cada libro de texto es $4.00 y el costo de cada lapicero es $3.00. Estos resultados pueden comprobarse fácilmente. Así, el costo de 5 libros de texto y 4 lapiceros es igual a 5(4) +4(3) = $32 y el costo de 6 libros de texto y 3 lapiceros es igual a 6(4) +3(3) = $33. Ejemplo 2 Hallar dos números tales que la suma de sus recíprocos sea 5, y que la diferencia de sus recíprocos sea 1. SOLUCIÓN: Sea x= el número menor y y= el número mayor. La suma y la diferencia de sus recíprocos son, respectivamente,
Este no es un sistema lineal pero puede ser tratado como tal utilizando como incógnitas 1/x y 1/y. Así, sumando las dos ecuaciones tenemos: de donde
y
Restando la segunda ecuación de la primera, obtenemos:
de donde
y
Por tanto, los dos números son 1/3 y ½ . https://www.youtube.com/watch?v=TCfHu1PS0ZI