SEQUENTIAL STRUCTURE T E S S E L L AT I O N FOR MARTIAN SCOPE 2030 // XiaoYu Wu // Mohamad Al Chawa // ChunYen Chen
RC3 | Living Architecture 2017-2018 M.Arch Architectural Design UCL, The Bartlett School of Architecture
1 _______
_______ 2
3 _______
RESEARCH CLUSTER 3 /// TYSON HOSMER / OCTAVIAN GHEORGHIU / DAVE REEVES WMC_2030 // StudentName XiaoYu Wu Mohamad Al Chawa ChunYen Chen
_______ 4
/ Introduction / 0_0.0
Redefine adaptive architecture in indeterminate architectural design
/ geometry experiement of voxelized aggregation / 1_0.0
F
- rom 2D patten to 3D Tiling structure - Tiling unit development - connection & aggregation
/ computation algorithms of discrete geometry aggregration / 2_0.0
F
- rom 2D voxelization to 3D voxelization - aggregation rules - criteria analyse - design application
/
S
elf-assembly Robotic Architecture on Mars / 3_0.0
- From point to Tetrahedron - As robots as structure - Self-assembly robotic Fabrication -
The Architecture on Mars 2030
5 _______
_______ 6
/ 0_0.0 /
I
ntroduction __ 0_1.0 // Design research statement __ 0_2.0 // Architectural context __ 0_3.0 // Technical context
7 _______
_______ 0_1.0 // Design research statement
_______ 8
What is a definition of Living Architecture? What are the advantages of Robotic Architecture? How can architecture be adaptive
to not only natural environment but also social activities?
9 _______
_______ 10
//// // /
/ / // // ////
//
/ / ///// // / � Integration � of architecture module and Robotic Manufacturing / / ///// // /
11 _______
_______ 0_2.0 // Architectural context
_______ 12
/ Le Corbusier Dom-Ino House / Giving the freedom for architecture, this concept was generated by architect Le Corbusier. A redefinition of the basic composition of architecture. The more simple this architectural model is the more diverse the generation of this module can achieve. This architecture prototype generally defines the structure as three main parts: “columns”, “plan”, and “corridor”. / The Five Points of a New Architecture / 1. Pilotis / elevating the building off the ground 2. ambiguous boundary of the ground floor 3. Free Facade 4. Horizontal window module 5. Roof garden
13 _______
I
In term of this five perspective, a keyword which Le Corbusier indicating is “ ntegration ”. The integration between 1/ interior and outdoor space 2 / interior pathways and traffic circulation 3/ structure engineering thinking and architectural aesthetics 4/ architectural vertical volume and horizontal space extension 5/ architectural design and landscape architectural design.
_______ 0_2.0 // Architectural context
_______ 14
/ Reconstruction and Redefination / 1. Elements’ functionalization / Each structural element can reconstruct and redefine as the other structure’s function. 2. Elements’ reconnection and living module’s spatial aggregation / Development each elements’ certain aggregating units and reconnect them into a particular behavior. 3. Sequential boundary space making / The architectural boundary is indeterminate. The continuous connection and deformation are two characteristics for this indeterminate boundary.
/ continuous changing architecture boundary / The open-ended boundary enables architecture to reconnect and deform with the new environment and new architectural modules.Imil conlosti, erevit ius, quem in verritilium at, cote cul vir que pectoribunum menitri plia comne poremoe raequos ex su effre consum
15 _______
_______ 0_2.0 // Architectural context
_______ 16
/ Robotic Fabrication in architecture / Robots fabrication’s scale and quality depend on different types of robots and different kinds of manufacture. As for this Project, the high movement freedom and structural load are two major requirements to achieve. As a Robot, this living architecture can aggregating and moving around the Martian landscape. As a structure, when the higher and bigger scale it going to achieve, a certain structural load level will be crucial and essential to it.
17 _______
_______ 0_3.1 // Technical context
_______ 18
M
od
ula
rS M elf-a an ss uf em ac tu ble Ro rin bo g tic M an uf ac tu Ad rin g di tiv eM an uf ac tu rin g
M
at er
Tra
ial
di
tio
na
lM
an
uf
ac
tu
rin
g
Pa v Sc
ilio
ale
n
Sc
ale
/ Modular Self-assembly Manufacturing /
Ar ch
ite
ctu
From traditional manufacturing to robotic manufacturing, the biggest difference is the working character which has been changed form the humans to the robots. Another optimization is that the same material application method can be implemented into larger and various architectural scale. However, a further design stradgy of this project is optimizing manufacture form robotic fabrication to modular self-assembly fabrication in architectural scale. re S
ca
le
19 _______
_______ 20
/ 1_0.0 /
G
eometry experiement of voxelized aggregation
__ 1_1.0 // From 2D patten to 3D Tiling structure __ 1_2.0 // Tiling unit development __ 1_3.0 // Connection & Aggregation
21 _______
_______ 1_1.0 // From 2D patten to 3D Tiling
_______ 22
Geometry Development Version I Rectangular Framework
Tiling Units Development
Unit A
Unit B
Unit C
Tiling Units Material Selection
Unit A
Unit B
Unit C
23 _______
_______ 1_2.0 // Tiling unit development
_______ 24
/ column /
/ spiral /
/ enclosure /
/ reinforced wall /
25 _______
_______ 1_2.2 // Tiling unit development
_______ 26
Geometry Development Version II Triangulate Framework
Tiling Units Development
Tiling Units Aggregation
27 _______
_______ 1_2.1 // Tiling unit development
_______ 28
UNIT BEHAVIOUR DEVELOPMENT II
BEHAVIOUR A
29 _______
BEHAVIOUR B
_______ 1_3.0 // Connection & Aggregation
_______ 30
Type A
Type A
Type B
Type B
31 _______
Type C
Type C
_______ 1_3.1 // Connection & Aggregation
_______ 32
33 _______
_______ 1_3.2 // Connection & Aggregation
_______ 34
35 _______
_______ 36
/ 2_0.0 /
C
omputation algorithms of discrete geometry aggregration
__ 2_1.0 // From 2D voxelization to 3D voxelization __ 2_2.0 // Aggregation rules __ 2_3.0 // Criteria analyse __ 2_4.0 // Design Application
37 _______
_______ 2_1.0 // From 2D voxelization to 3D voxelization
_______ 38
/ Blinker 2D Movement /
/ Glider 2D Movement /
/ Blinker 3D Movement /
/ Glider 3D Movement /
39 _______
_______ 2_1.1 // From 2D voxelization to 3D voxelization
_______ 40
1.2.3.4 // 1.2.3.4 // 40 X 40
3.3.3.6 // 40 X 40 2.2.2.5 // 20 X 20 2.3.2.2 // 40 X 40
1.2.3.4 // 1.2.3.4 // 40 X 40
3.3.3.6 // 40 X 40 2.2.2.5 // 20 X 20 2.3.2.2 // 40 X 40
1.2.3.4 // 1.2.3.4 // 40 X 40
3.3.3.6 // 40 X 40 2.2.2.5 // 20 X 20 2.3.2.2 // 40 X 40
41 _______
_______ 2_1.2 // From 2D voxelization to 3D voxelization
_______ 42
1.4.3.6 // 20 X 20
40 X 40 // 1.3.2.2 3.3.3.8 1.2.3.3
1.2.3.6
1.4.3.6 // 30 X 30
40 X 40 // 2.3.2.2 2.3.3.3 1.2.3.4
1.2.3.7
1.4.3.6 // 40 X 40
40 X 40 // 2.3.1.1 2.2.3.3 1.2.3.5
1.2.3.8
43 _______
_______ 2_1.3 // From 2D voxelization to 3D voxelization
_______ 44
1.2.3.3
1.2.3.6
1.2.3.4
1.2.3.7
1.2.3.5
1.2.3.8
Age=5
Age=10
Age=15
+ // 1.2.3.4
+ // 1.2.3.4
Age= 5
Age= 5 VN= 3
Age=5
Age= 5
Age= 5
+ // 1.2.3.4
+ // 1.2.3.4
Age= 8
Age= 8
Age=10
Age=10
VN < 5
Age=15
Age=15 Age= 8
VN= 3
Age=15
+ // 1.2.3.4
+ // 1.2.3.4
Age= 8
Age=15
Age=15
VN < 5
VN= 3
45 _______
_______ 2_1.4 // From 2D voxelization to 3D voxelization
2.2.3.3 2.3.4.6 1.3.1.1
_______ 46
Age = 5 Age = 10
47 _______
height level > 50% + // 1.3.3.3
height level > 50% + // 1.2.3.3 MO >= 7
height level > 50% + // 2.6.4.5 MO >= 7
height level > 50% + // 2.6.4.5 MO >= 7
height level > 50% + // 2.6.4.5 MO >= 7
height level > 70% + // 1.2.3.4 VN >= 2
height level > 70% + // 2.3.3.3 VN >= 2
height level > 70% + // 1.3.1.1 VN >= 2
_______ 2_2.0 // Aggregation rules
Base level Rule // 1.2.3.4 Generation Ruleâ&#x20AC;&#x2122;s Order
_______ 48
// // // //
Structural Basemet // Repeated Behavior // Heavy Structure // Fractal Structure //
1.2.3.4 3.4.3.4 3.3.3.8 2.3.3.3
/ Perspective /
/ Elevation /
/ Generation Rulesâ&#x20AC;&#x2122; Filter / Age
MO Density
VN Density
Layer Density
49 _______
_______ 2_2.1 // Aggregation rules
Base level Rule // 1.2.3.4 Generation Ruleâ&#x20AC;&#x2122;s Order
_______ 50
// // // //
Structural Basemet // Column // Light Structure // Fractal Structure //
1.2.3.4 2.6.4.5 2.3.4.6 2.3.3.3
/ Perspective /
/ Elevation /
/ Generation Rulesâ&#x20AC;&#x2122; Filter / Age
MO Density
VN Density
Layer Density
51 _______
_______ 2_2.2 // Aggregation rules
_______ 52
53 _______
_______ 2_3.0 // Criteria analyse
/ Seed Imaging /
_______ 54
/ Rules Scenario in Formula /
/ Rules /
/ Certain Behavior In Different Filter Requirements /
1 . 2 . 3 . 3
1 . 2 . 3 . 4
55 _______
1 . 2 . 3 . 5
2 . 3 . 3 . 3
3 . 4 . 3 . 4
_______ 2_3.1 // Criteria analyse
_______ 56
/ Age Zone Diversity /
57 _______
/ VN Number Diversity /
_______ 2_4.0 // Design Application
_______ 58
/ Featured Behavior Collection /
/ Combination of Behavior /
/ Height Level /
100%
/ Scenario A /
/ Scenario B / 100%
/ Scenario C / 100%
80% 70%
60%
40% 20% 0%
0%
30%
0%
70% - 100%
80% - 100%
60% - 100%
40% - 70%
20% - 80%
30% - 60%
0% - 40%
0% - 20%
0% - 30%
59 _______
_______ 60
/ 3_0.0 /
S
elf-assembly Robotic Architecture on Mars __ 3_1.0 // From point to Tetrahedron __ 3_2.0 // As robots as structure __ 3_3.0 // Self-assembly robotic Fabrication __ 3_4.0 // The Architecture on Mars 2030
61 _______
Structure
_______ 3_1.0 // From point to Tetrahedron
r we
to
ng aisi
R
ge
brid
rs
rbe
ck Sho
o Abs
c Prin
ght
Hei
g atin
Rot
ce
pa gS n i t ea
eam
B dge
Ri
le Ang
s Tru
u col
e
ur uct
r
s St
s Tor
Cr
nt Joi ng i d Ad
ure
uct
tr nS
the eng
nts Joi
ion
mn
er
aft
R iple
Str
ure
uct
Str ing d n pa
Ex
_______ 62
Simple Units es Edg r nde
cyli
th
geometry
Dep
s Cue
orm nsf D a r T to 3 2D
m
for
e ngl Tria
esh
M
Tet
on edr rah
A
ng ddi
ex
t Ver
eom
rG
ro Mir Ex
try
me
Geo ng i d ten
try
me
eo gG min
or
Def
Bscic Geometry
y etr
/ a central point of geometry /
Basic Geometry
/ a structure of geometry /
connect by Point
connect by Edge
/ a surface of geometry /
connect by Edge
63 _______
// Point Connection //
_______ 3_1.1 // From point to Tetrahedron
UNITS =1 Duplication = 0
UNITS =4 Duplication =1
UNITS=16 Duplication =2
Formula = 40
Formula = 41
Formula = 42
_______ 64
0 1
0 1 2
0 1 2 3 4
Formula = 44 UNITS =256
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Formula = 48 UNITS =65536
Formula = 416 UNITS=4294967296
// Edge Connection //
Horizontal Extension
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
Vertical Extension
A
B
C
D A
B
C
D
65 _______
Radial Extension
A
B
C
D A
B
C
D
Modular Extension +
A
B
C
D A
B
C
D
_______ 3_1.2 // From point to Tetrahedron
_______ 66
Module A
Module A + Module A" / Aggregation Type A /
// Face Connection //
Module A"
Module A + Module A"
+
Module A + Module A"
/ Aggregation Type B & C /
Module D
Module C
Module B
67 _______
Module B + Module B"
Module C + Module C"
_______ 3_2.0 // As robots as structure
_______ 68
A
B
Elements
C
D
Flexible Joints
E
F
Stable Structure
69 _______
A s
A
S t r u c t u r e
_______ 3_2.1 // As robots as structure
//
Implement the most simple and strong sructure to develpo computational algorithm
Framework
Perspective
Plan
_______ 70
Edges Order
2 1
6 3 4
5
Units Types TOP VIEW
/ Units Connection Scenario /
A1
A2
A3
A 1'
B1
B 1'
B2
B3
C1
C2
Name : A Edges : 1 Joints : 1
Name : B Edges : 2 Joints : 3 C3
Name : C Edges : 3 Joints : 4
71 _______
D D 11
D2
D3
Name : E Edges : 5 Joints :4
E1
E2
E3
Name : F Edges : 6 Joints : 4
F1
Name : D Edges :4 Joints : 4
C3
_______ 3_2.2 // As robots as structure
Structure Aggregration
Units Top View
Units Perspective
_______ 72
Name : A Edges : 1 Joints : 1
Name : B Edges : 2 Joints : 3
units : 3 edges : 9 joints : 9
Name : C Edges : 3 Joints : 4
Units Aggregration
A3
C1
B 1'
units : 2 edges : 2 joints : 2
units : 2 edges : 4 joints : 5
units : 2 edges : 6 joints : 7
Top View
Front View
Left/Rihgt View
Structure Perspective
Structure Top View
73 _______
units : 52 edges : 86 joints : 132
_______ 3_2.3 // As robots as structure
// Deformable Phycial Models Prototype I //
Stage _ 0
_______ 74
Deformable Structural Section
Stable Structural Basement
Stage _ 1
// Deformation Sequence //
Stage _ 2
Stage _ 3
Stage _ 4
Stage _ 5
75 _______
_______ 3_2.4 // As robots as structure
_______ 76
A s
A
R o b o t
Foundation Piles
Autonomous Robot
underground
Flexible & Deconstructable
A
B
Robots'
Moving
C
Unit
D
E
F
77 _______
_______ 3_2.5 // As robots as structure
_______ 78
Scalable Structure Prototype
/ Motor to Trigger Hydronic System /
/ Removeable Joint /
79 _______
_______ 3_2.6 // As robots as structure
_______ 80
// Robotic Structure Prototype I //
Angle( 45
Length
(150 ~ 350 mm )
~ 120 °)
//
St r u c t u r e Ro l l i n g M o v e m e n t S e q u e n c e / /
81 _______
_______ 3_2.7 // As robots as structure
_______ 82
Carrier 90% 10% 0% 30% 10%
Structure Stength Jionts Flexibility Length Flexibility Functional Ability Mobile Ability
Builder 50% 90% 90% 50% 50%
Structure Stength Jionts Flexibility Length Flexibility Functional Ability Mobile Ability
Editor 30% 0% 0% 90% 90%
Structure Stength Jionts Flexibility Length Flexibility Functional Ability Mobile Ability
/
/ Carrier' s Aggragation /
/ Robotic Structure Plan & Elevation /
C a r r i e r
/
/ Builder' s Aggragation /
83 _______
_______ 3_2.8 // As robots as structure
_______ 84
/
E d i t o r
/
// Editorâ&#x20AC;&#x2122;s Movement in the structure
/
B u i l d e r
/
// Modular geometryâ&#x20AC;&#x2122;s deformation
85 _______
_______ 3_2.9 // As robots as structure
Robots'
movement
IN
ON I T A IALIZ
IT
ING
ND A P X E _______ 86
G
IN RAIS
NG I T A ROT
Geometry Deformation
87 _______
rm
Defo
etr y
geom l a in Orig
ax
M ation
_______ 3_2.10 // As robots as structure
_______ 88
/ Robotic movement Sequence /
10 Layers
>>>>>>>>>>>>>>>>>
10 X
Initialization
Expanding
89 _______
Raising
Rotating
_______ 3_3.0 // Self-assembly robotic Fabricaiton
_______ 90
Self-assembly
Robots
Fabrication
K U K A
F a b r i c a t i o n
91 _______
_______ 3_3.1 // Self-assembly robotic Fabricaiton
/ Simply construction experiment : Bridge /
/ Basement Establishment /
_______ 92
/ Connecting to create a Bridge /
/ Construction Finished /
/ Strength Joints' Location /
/ Robotic Fabricationâ&#x20AC;&#x2122;s Sequence /
1+1
Top View
Perspective
93 _______
1+2
Top View
Perspective
_______ 3_3.2 // Self-assembly robotic Fabrication
Top View
_______ 94
Perspective
1+2
+
1+2
/ Vertical Aggregation /
Stage 1 : group connection
Group Connection
Perspective
Elevation
Stage 2 : vertical aggregation Perspective 95 _______
Stable Basement
Raising
Elevation
Achieve certain Height
_______ 3_3.3 // Self-assembly robotic Fabrication
_______ 96
/ KUKA
Fabrication /
97 _______
_______ 3_4.0 // The Architecture on Mars 2030
_______ 98
The Architecture on Mars 2030
99 _______
_______ 3_4.1 // The Architecture on Mars 2030
_______ 100
Marineris Valles
/
Basin
experimental site Selection /
Canyon
Cliff
Hills 101 _______
_______ 3_4.1 // The Architecture on Mars 2030
_______ 102
/
Inhabitation Generation Process /
Basic Robotic Network
Housing Units Construction
Robots' Temporal Factory
Central Area Construction
Adaptive Structure Unit
Inhabitation Unit Spacecraft Mobile Transportation
Robotic Architecture Deformation Simulation
Robotic Behaviour
103 _______
Interior Volume
296 m3
Stage I
740 m3
Stage II
874 m3
Stage III
_______ 3_4.2 // The Architecture on Mars 2030
_______ 104
Prototype I structure reinforce : 92% space expansion : 67% moving flexibility : 73% Prototype II structure reinforce : 43% space expansion : 84% moving flexibility : 80% Prototype III structure reinforce : 76% space expansion : 45% moving flexibility : 55%
105 _______
_______ 3_4.3 // The Architecture on Mars 2030
_______ 106
107 _______
_______ 3_4.4 // The Architecture on Mars 2030
_______ 108
109 _______
_______ 3_4.4 // The Architecture on Mars 2030
_______ 110
111 _______