Bartlett RC3_LivingArchitecture__WMC_2030

Page 1

SEQUENTIAL STRUCTURE T E S S E L L AT I O N FOR MARTIAN SCOPE 2030 // XiaoYu Wu // Mohamad Al Chawa // ChunYen Chen

RC3 | Living Architecture 2017-2018 M.Arch Architectural Design UCL, The Bartlett School of Architecture

1 _______


_______ 2


3 _______

RESEARCH CLUSTER 3 /// TYSON HOSMER / OCTAVIAN GHEORGHIU / DAVE REEVES WMC_2030 // StudentName XiaoYu Wu Mohamad Al Chawa ChunYen Chen


_______ 4


/ Introduction / 0_0.0

Redefine adaptive architecture in indeterminate architectural design

/ geometry experiement of voxelized aggregation / 1_0.0

F

- rom 2D patten to 3D Tiling structure - Tiling unit development - connection & aggregation

/ computation algorithms of discrete geometry aggregration / 2_0.0

F

- rom 2D voxelization to 3D voxelization - aggregation rules - criteria analyse - design application

/

S

elf-assembly Robotic Architecture on Mars / 3_0.0

- From point to Tetrahedron - As robots as structure - Self-assembly robotic Fabrication -

The Architecture on Mars 2030

5 _______


_______ 6


/ 0_0.0 /

I

ntroduction __ 0_1.0 // Design research statement __ 0_2.0 // Architectural context __ 0_3.0 // Technical context

7 _______


_______ 0_1.0 // Design research statement

_______ 8


What is a definition of Living Architecture? What are the advantages of Robotic Architecture? How can architecture be adaptive

to not only natural environment but also social activities?

9 _______


_______ 10

//// // /

/ / // // ////

//


/ / ///// // / � Integration � of architecture module and Robotic Manufacturing / / ///// // /

11 _______


_______ 0_2.0 // Architectural context

_______ 12


/ Le Corbusier Dom-Ino House / Giving the freedom for architecture, this concept was generated by architect Le Corbusier. A redefinition of the basic composition of architecture. The more simple this architectural model is the more diverse the generation of this module can achieve. This architecture prototype generally defines the structure as three main parts: “columns”, “plan”, and “corridor”. / The Five Points of a New Architecture / 1. Pilotis / elevating the building off the ground 2. ambiguous boundary of the ground floor 3. Free Facade 4. Horizontal window module 5. Roof garden

13 _______

I

In term of this five perspective, a keyword which Le Corbusier indicating is “ ntegration ”. The integration between 1/ interior and outdoor space 2 / interior pathways and traffic circulation 3/ structure engineering thinking and architectural aesthetics 4/ architectural vertical volume and horizontal space extension 5/ architectural design and landscape architectural design.


_______ 0_2.0 // Architectural context

_______ 14


/ Reconstruction and Redefination / 1. Elements’ functionalization / Each structural element can reconstruct and redefine as the other structure’s function. 2. Elements’ reconnection and living module’s spatial aggregation / Development each elements’ certain aggregating units and reconnect them into a particular behavior. 3. Sequential boundary space making / The architectural boundary is indeterminate. The continuous connection and deformation are two characteristics for this indeterminate boundary.

/ continuous changing architecture boundary / The open-ended boundary enables architecture to reconnect and deform with the new environment and new architectural modules.Imil conlosti, erevit ius, quem in verritilium at, cote cul vir que pectoribunum menitri plia comne poremoe raequos ex su effre consum

15 _______


_______ 0_2.0 // Architectural context

_______ 16


/ Robotic Fabrication in architecture / Robots fabrication’s scale and quality depend on different types of robots and different kinds of manufacture. As for this Project, the high movement freedom and structural load are two major requirements to achieve. As a Robot, this living architecture can aggregating and moving around the Martian landscape. As a structure, when the higher and bigger scale it going to achieve, a certain structural load level will be crucial and essential to it.

17 _______


_______ 0_3.1 // Technical context

_______ 18

M

od

ula

rS M elf-a an ss uf em ac tu ble Ro rin bo g tic M an uf ac tu Ad rin g di tiv eM an uf ac tu rin g

M

at er

Tra

ial

di

tio

na

lM

an

uf

ac

tu

rin

g

Pa v Sc

ilio

ale

n

Sc

ale


/ Modular Self-assembly Manufacturing /

Ar ch

ite

ctu

From traditional manufacturing to robotic manufacturing, the biggest difference is the working character which has been changed form the humans to the robots. Another optimization is that the same material application method can be implemented into larger and various architectural scale. However, a further design stradgy of this project is optimizing manufacture form robotic fabrication to modular self-assembly fabrication in architectural scale. re S

ca

le

19 _______


_______ 20


/ 1_0.0 /

G

eometry experiement of voxelized aggregation

__ 1_1.0 // From 2D patten to 3D Tiling structure __ 1_2.0 // Tiling unit development __ 1_3.0 // Connection & Aggregation

21 _______


_______ 1_1.0 // From 2D patten to 3D Tiling

_______ 22

Geometry Development Version I Rectangular Framework

Tiling Units Development

Unit A

Unit B

Unit C


Tiling Units Material Selection

Unit A

Unit B

Unit C

23 _______


_______ 1_2.0 // Tiling unit development

_______ 24


/ column /

/ spiral /

/ enclosure /

/ reinforced wall /

25 _______


_______ 1_2.2 // Tiling unit development

_______ 26

Geometry Development Version II Triangulate Framework

Tiling Units Development


Tiling Units Aggregation

27 _______


_______ 1_2.1 // Tiling unit development

_______ 28

UNIT BEHAVIOUR DEVELOPMENT II


BEHAVIOUR A

29 _______

BEHAVIOUR B


_______ 1_3.0 // Connection & Aggregation

_______ 30

Type A

Type A


Type B

Type B

31 _______

Type C

Type C


_______ 1_3.1 // Connection & Aggregation

_______ 32


33 _______


_______ 1_3.2 // Connection & Aggregation

_______ 34


35 _______


_______ 36


/ 2_0.0 /

C

omputation algorithms of discrete geometry aggregration

__ 2_1.0 // From 2D voxelization to 3D voxelization __ 2_2.0 // Aggregation rules __ 2_3.0 // Criteria analyse __ 2_4.0 // Design Application

37 _______


_______ 2_1.0 // From 2D voxelization to 3D voxelization

_______ 38

/ Blinker 2D Movement /

/ Glider 2D Movement /


/ Blinker 3D Movement /

/ Glider 3D Movement /

39 _______


_______ 2_1.1 // From 2D voxelization to 3D voxelization

_______ 40

1.2.3.4 // 1.2.3.4 // 40 X 40

3.3.3.6 // 40 X 40 2.2.2.5 // 20 X 20 2.3.2.2 // 40 X 40

1.2.3.4 // 1.2.3.4 // 40 X 40

3.3.3.6 // 40 X 40 2.2.2.5 // 20 X 20 2.3.2.2 // 40 X 40

1.2.3.4 // 1.2.3.4 // 40 X 40

3.3.3.6 // 40 X 40 2.2.2.5 // 20 X 20 2.3.2.2 // 40 X 40


41 _______


_______ 2_1.2 // From 2D voxelization to 3D voxelization

_______ 42

1.4.3.6 // 20 X 20

40 X 40 // 1.3.2.2 3.3.3.8 1.2.3.3

1.2.3.6

1.4.3.6 // 30 X 30

40 X 40 // 2.3.2.2 2.3.3.3 1.2.3.4

1.2.3.7

1.4.3.6 // 40 X 40

40 X 40 // 2.3.1.1 2.2.3.3 1.2.3.5

1.2.3.8


43 _______


_______ 2_1.3 // From 2D voxelization to 3D voxelization

_______ 44

1.2.3.3

1.2.3.6

1.2.3.4

1.2.3.7

1.2.3.5

1.2.3.8


Age=5

Age=10

Age=15

+ // 1.2.3.4

+ // 1.2.3.4

Age= 5

Age= 5 VN= 3

Age=5

Age= 5

Age= 5

+ // 1.2.3.4

+ // 1.2.3.4

Age= 8

Age= 8

Age=10

Age=10

VN < 5

Age=15

Age=15 Age= 8

VN= 3

Age=15

+ // 1.2.3.4

+ // 1.2.3.4

Age= 8

Age=15

Age=15

VN < 5

VN= 3

45 _______


_______ 2_1.4 // From 2D voxelization to 3D voxelization

2.2.3.3 2.3.4.6 1.3.1.1

_______ 46

Age = 5 Age = 10


47 _______

height level > 50% + // 1.3.3.3

height level > 50% + // 1.2.3.3 MO >= 7

height level > 50% + // 2.6.4.5 MO >= 7

height level > 50% + // 2.6.4.5 MO >= 7

height level > 50% + // 2.6.4.5 MO >= 7

height level > 70% + // 1.2.3.4 VN >= 2

height level > 70% + // 2.3.3.3 VN >= 2

height level > 70% + // 1.3.1.1 VN >= 2


_______ 2_2.0 // Aggregation rules

Base level Rule // 1.2.3.4 Generation Rule’s Order

_______ 48

// // // //

Structural Basemet // Repeated Behavior // Heavy Structure // Fractal Structure //

1.2.3.4 3.4.3.4 3.3.3.8 2.3.3.3


/ Perspective /

/ Elevation /

/ Generation Rules’ Filter / Age

MO Density

VN Density

Layer Density

49 _______


_______ 2_2.1 // Aggregation rules

Base level Rule // 1.2.3.4 Generation Rule’s Order

_______ 50

// // // //

Structural Basemet // Column // Light Structure // Fractal Structure //

1.2.3.4 2.6.4.5 2.3.4.6 2.3.3.3


/ Perspective /

/ Elevation /

/ Generation Rules’ Filter / Age

MO Density

VN Density

Layer Density

51 _______


_______ 2_2.2 // Aggregation rules

_______ 52


53 _______


_______ 2_3.0 // Criteria analyse

/ Seed Imaging /

_______ 54

/ Rules Scenario in Formula /


/ Rules /

/ Certain Behavior In Different Filter Requirements /

1 . 2 . 3 . 3

1 . 2 . 3 . 4

55 _______

1 . 2 . 3 . 5

2 . 3 . 3 . 3

3 . 4 . 3 . 4


_______ 2_3.1 // Criteria analyse

_______ 56

/ Age Zone Diversity /


57 _______

/ VN Number Diversity /


_______ 2_4.0 // Design Application

_______ 58

/ Featured Behavior Collection /


/ Combination of Behavior /

/ Height Level /

100%

/ Scenario A /

/ Scenario B / 100%

/ Scenario C / 100%

80% 70%

60%

40% 20% 0%

0%

30%

0%

70% - 100%

80% - 100%

60% - 100%

40% - 70%

20% - 80%

30% - 60%

0% - 40%

0% - 20%

0% - 30%

59 _______


_______ 60


/ 3_0.0 /

S

elf-assembly Robotic Architecture on Mars __ 3_1.0 // From point to Tetrahedron __ 3_2.0 // As robots as structure __ 3_3.0 // Self-assembly robotic Fabrication __ 3_4.0 // The Architecture on Mars 2030

61 _______


Structure

_______ 3_1.0 // From point to Tetrahedron

r we

to

ng aisi

R

ge

brid

rs

rbe

ck Sho

o Abs

c Prin

ght

Hei

g atin

Rot

ce

pa gS n i t ea

eam

B dge

Ri

le Ang

s Tru

u col

e

ur uct

r

s St

s Tor

Cr

nt Joi ng i d Ad

ure

uct

tr nS

the eng

nts Joi

ion

mn

er

aft

R iple

Str

ure

uct

Str ing d n pa

Ex

_______ 62

Simple Units es Edg r nde

cyli

th

geometry

Dep

s Cue

orm nsf D a r T to 3 2D

m

for

e ngl Tria

esh

M

Tet

on edr rah

A

ng ddi

ex

t Ver

eom

rG

ro Mir Ex

try

me

Geo ng i d ten

try

me

eo gG min

or

Def

Bscic Geometry

y etr


/ a central point of geometry /

Basic Geometry

/ a structure of geometry /

connect by Point

connect by Edge

/ a surface of geometry /

connect by Edge

63 _______


// Point Connection //

_______ 3_1.1 // From point to Tetrahedron

UNITS =1 Duplication = 0

UNITS =4 Duplication =1

UNITS=16 Duplication =2

Formula = 40

Formula = 41

Formula = 42

_______ 64

0 1

0 1 2

0 1 2 3 4

Formula = 44 UNITS =256

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Formula = 48 UNITS =65536

Formula = 416 UNITS=4294967296


// Edge Connection //

Horizontal Extension

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Vertical Extension

A

B

C

D A

B

C

D

65 _______

Radial Extension

A

B

C

D A

B

C

D

Modular Extension +

A

B

C

D A

B

C

D


_______ 3_1.2 // From point to Tetrahedron

_______ 66

Module A

Module A + Module A" / Aggregation Type A /

// Face Connection //

Module A"

Module A + Module A"

+

Module A + Module A"


/ Aggregation Type B & C /

Module D

Module C

Module B

67 _______

Module B + Module B"

Module C + Module C"


_______ 3_2.0 // As robots as structure

_______ 68

A

B

Elements

C

D

Flexible Joints

E

F

Stable Structure


69 _______

A s

A

S t r u c t u r e


_______ 3_2.1 // As robots as structure

//

Implement the most simple and strong sructure to develpo computational algorithm

Framework

Perspective

Plan

_______ 70

Edges Order

2 1

6 3 4

5


Units Types TOP VIEW

/ Units Connection Scenario /

A1

A2

A3

A 1'

B1

B 1'

B2

B3

C1

C2

Name : A Edges : 1 Joints : 1

Name : B Edges : 2 Joints : 3 C3

Name : C Edges : 3 Joints : 4

71 _______

D D 11

D2

D3

Name : E Edges : 5 Joints :4

E1

E2

E3

Name : F Edges : 6 Joints : 4

F1

Name : D Edges :4 Joints : 4

C3


_______ 3_2.2 // As robots as structure

Structure Aggregration

Units Top View

Units Perspective

_______ 72

Name : A Edges : 1 Joints : 1

Name : B Edges : 2 Joints : 3

units : 3 edges : 9 joints : 9

Name : C Edges : 3 Joints : 4

Units Aggregration

A3

C1

B 1'

units : 2 edges : 2 joints : 2

units : 2 edges : 4 joints : 5

units : 2 edges : 6 joints : 7

Top View

Front View

Left/Rihgt View


Structure Perspective

Structure Top View

73 _______

units : 52 edges : 86 joints : 132


_______ 3_2.3 // As robots as structure

// Deformable Phycial Models Prototype I //

Stage _ 0

_______ 74

Deformable Structural Section

Stable Structural Basement

Stage _ 1


// Deformation Sequence //

Stage _ 2

Stage _ 3

Stage _ 4

Stage _ 5

75 _______


_______ 3_2.4 // As robots as structure

_______ 76

A s

A

R o b o t


Foundation Piles

Autonomous Robot

underground

Flexible & Deconstructable

A

B

Robots'

Moving

C

Unit

D

E

F

77 _______


_______ 3_2.5 // As robots as structure

_______ 78

Scalable Structure Prototype


/ Motor to Trigger Hydronic System /

/ Removeable Joint /

79 _______


_______ 3_2.6 // As robots as structure

_______ 80

// Robotic Structure Prototype I //

Angle( 45

Length

(150 ~ 350 mm )

~ 120 °)


//

St r u c t u r e Ro l l i n g M o v e m e n t S e q u e n c e / /

81 _______


_______ 3_2.7 // As robots as structure

_______ 82

Carrier 90% 10% 0% 30% 10%

Structure Stength Jionts Flexibility Length Flexibility Functional Ability Mobile Ability

Builder 50% 90% 90% 50% 50%

Structure Stength Jionts Flexibility Length Flexibility Functional Ability Mobile Ability

Editor 30% 0% 0% 90% 90%

Structure Stength Jionts Flexibility Length Flexibility Functional Ability Mobile Ability


/

/ Carrier' s Aggragation /

/ Robotic Structure Plan & Elevation /

C a r r i e r

/

/ Builder' s Aggragation /

83 _______


_______ 3_2.8 // As robots as structure

_______ 84

/

E d i t o r

/

// Editor’s Movement in the structure


/

B u i l d e r

/

// Modular geometry’s deformation

85 _______


_______ 3_2.9 // As robots as structure

Robots'

movement

IN

ON I T A IALIZ

IT

ING

ND A P X E _______ 86

G

IN RAIS

NG I T A ROT


Geometry Deformation

87 _______

rm

Defo

etr y

geom l a in Orig

ax

M ation


_______ 3_2.10 // As robots as structure

_______ 88

/ Robotic movement Sequence /


10 Layers

>>>>>>>>>>>>>>>>>

10 X

Initialization

Expanding

89 _______

Raising

Rotating


_______ 3_3.0 // Self-assembly robotic Fabricaiton

_______ 90

Self-assembly

Robots

Fabrication


K U K A

F a b r i c a t i o n

91 _______


_______ 3_3.1 // Self-assembly robotic Fabricaiton

/ Simply construction experiment : Bridge /

/ Basement Establishment /

_______ 92

/ Connecting to create a Bridge /

/ Construction Finished /

/ Strength Joints' Location /


/ Robotic Fabrication’s Sequence /

1+1

Top View

Perspective

93 _______

1+2

Top View

Perspective


_______ 3_3.2 // Self-assembly robotic Fabrication

Top View

_______ 94

Perspective

1+2

+

1+2


/ Vertical Aggregation /

Stage 1 : group connection

Group Connection

Perspective

Elevation

Stage 2 : vertical aggregation Perspective 95 _______

Stable Basement

Raising

Elevation

Achieve certain Height


_______ 3_3.3 // Self-assembly robotic Fabrication

_______ 96


/ KUKA

Fabrication /

97 _______


_______ 3_4.0 // The Architecture on Mars 2030

_______ 98


The Architecture on Mars 2030

99 _______


_______ 3_4.1 // The Architecture on Mars 2030

_______ 100

Marineris Valles


/

Basin

experimental site Selection /

Canyon

Cliff

Hills 101 _______


_______ 3_4.1 // The Architecture on Mars 2030

_______ 102

/

Inhabitation Generation Process /

Basic Robotic Network

Housing Units Construction

Robots' Temporal Factory

Central Area Construction


Adaptive Structure Unit

Inhabitation Unit Spacecraft Mobile Transportation

Robotic Architecture Deformation Simulation

Robotic Behaviour

103 _______

Interior Volume

296 m3

Stage I

740 m3

Stage II

874 m3

Stage III


_______ 3_4.2 // The Architecture on Mars 2030

_______ 104

Prototype I structure reinforce : 92% space expansion : 67% moving flexibility : 73% Prototype II structure reinforce : 43% space expansion : 84% moving flexibility : 80% Prototype III structure reinforce : 76% space expansion : 45% moving flexibility : 55%


105 _______


_______ 3_4.3 // The Architecture on Mars 2030

_______ 106


107 _______


_______ 3_4.4 // The Architecture on Mars 2030

_______ 108


109 _______


_______ 3_4.4 // The Architecture on Mars 2030

_______ 110


111 _______


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.