Irrigation – Pressurized Methods: Water Use Efficiency & Economical Potential AMRAM HAZAN
Irrigation Technology Extension Service Ministry of Agriculture, ISRAEL
Irrigation – Pressurized Methods: Water Use Efficiency & Economical Potential Орошение – Методы подачи воды под давлением: Эффективное использование воды и экономический потенциал AMRAM HAZAN
Irrigation Technology Extension Service Ministry of Agriculture, ISRAEL
AGRICULTURE: LARGEST CONSUMER OF WATER About 70% of available water goes to agriculture Only 17% of all cultivated areas are irrigated, yet provide 40% of global food production 79% of irrigated areas use flooding Mechani Sprinklers zed (2%)
Domesti c
Industri al
20 %
Agricult ure
10 % 70 %
15 4 % %
Flooding 79%
Saving 15% in agricultural use will more than double available water for domestic use
Source: ICID - CIID
Drip Irrigation
AGRICULTURE: LARGEST CONSUMER OF WATER Сельское хозяйство: главный потребитель воды Около 70% доступной воды используется в сельском хозяйстве Только 17% площадей с с/х орошаются, но дают 40% мирового производства продуктов питания 79% орошаемых площадей используют затопление Механи Дождевание Капельное зирован (2%) орошение ное
Домашн ее
Промы шленно сть
20 %
10 %
С/х
70 %
Saving 15% in agricultural use will more than double available water for domestic use Source: ICID - CIID
15 4 % %
Затоплен ие 79%
15% экономия воды для с/х нужд позволит увеличить объем воды для домашнего использования более чем в 2 раза
FLOOD & FURROW IRRIGATION Water source depletion and contamination, excessive use of chemicals Contamination of aquifers and ground water from chemical/fertilizer seepage
5
Waste of expensive nutrients/manures that feed soil and aquifers but not the plant
FLOOD & FURROW IRRIGATION Затопление и орошение по бороздам Water source depletion and contamination, excessive use of chemicals Истощение и загрязнение водных источников Contamination of aquifers and ground water from chemical/fertilizer seepage Загрязнение водоносных слоев и грунтовых вод от просачивания химикатов/удобрений Waste of expensive nutrients/manures that feed soil and aquifers but not the plant Трата дорогих питательных веществ / навоза, которые питают почву и водоносные горизонты, но не растения
6
Wheat – Basin Irrigation 100% Coverage
Irrigation / Rain-Fed • Irrigation: Artificial Application of Water for Supplying the Plants Need, in the Right Quantity, at the Right Time (Interval). • Rain-Fed: Water Applied When Rain Falls, not According to Plants Need.
Irrigation / Rain-Fed Орошение / Осадки • Irrigation: Artificial Application of Water for Supplying the Plants Need, in the Right Quantity, at the Right Time (Interval). • Орошение: искусственное внесение воды для удовлетворения потребности растений, в нужном количестве, в правильное время (промежуток) • Rain-Fed: Water Applied When Rain Falls, not According to Plants Need. • Осадки: вода поступает, когда выпадает дождь, а не когда это нужно растению
Modern Irrigation Should Give Answers to 3 Questions How Much Water to Apply? (Quantity) How Often to Apply? (Interval) How to Apply? (Irrigation Method)
Modern Irrigation Should Give Answers to 3 Questions Современное орошение должно отвечать на 3 вопроса How Much Water to Apply? (Quantity) =Сколько внести воды? (Количество) How Often to Apply? (Interval) = Как часто подавать воду? (Интервал) How to Apply? (Irrigation Method) = Как подавать воду? (Способ орошения)
How Much Water to Apply? (Quantity) Depend On: • Soil Character
• Root System Depth • Irrigation Method
• Allowable Depletion
How Much Water to Apply? (Quantity) Сколько внести воды? (Количество)
Depend On: (Зависит от): • Soil Character = Типа почвы • Root System Depth = Глубины залегания корневой системы • Irrigation Method = Способа полива • Allowable Depletion = Допустимого истощения
How Often to Apply? (Interval) Depend On: Plant Character Water Consumption of the Crop (at Peak Demand Period) Soil Character Quantity of Water stored in the Soil Profile
How Often to Apply? (Interval) Как часто вносить воду? (Интервал) Depend On: Зависит от: Plant Character - Water Consumption of the Crop (at Peak Demand Period) Тип растения – потребление воды (в период максимальной потребности) Soil Character - Quantity of Water stored in the Soil Profile Тип почвы – количество запасов влаги в профиле почвы
How to Apply? (Irrigation Method) o Flood Irrigation (Basin) – 100% coverage o Sprinkler Irrigation (Rain Imitation) – 100% Coverage o Drip Irrigation – Less than 100% Coverage
How to Apply? (Irrigation Method) Как вносить воду? (Способ полива) o Flood Irrigation (Basin) –100% coverage
o Sprinkler Irrigation (Rain Imitation) – 100% Coverage o Drip Irrigation –Less than 100% Coverage
o Орошение затоплением (водоем) –100% покрытие площади o Дождевание (Имитация осадков) – 100% покрытие площади o Капельное орошение – покрытие менее 100% площади
Flood Versus Pressurized -45 Minutes -Minimum Quantity of Water to Get Uniformity -Potential Efficiency – 50%
-The Field is Irrigated Simultaneously -Water Quantity flexible -Potential Effi’ Spri’ – 75%
-Potential Effi’ Drip – 95%
4
Flood Versus Pressurized Орошение затоплением и орошение под давлением -45 минут -Больший расход воды для равномерности
-Потенциальная эфф. – 50%
-Одновременный полив всего поля -Регулируемый расход воды -Пот. эфф. дождевания – 75%
- Пот. эфф. капельного орош.– 95%
4
Pressurized Irrigation • Water is Delivered to a Field Unit Simultaneously by Discharge & Pressure Through Pipes. • Pressure is Created by Pump. • The Water Spreads Out From the Pipes to the Field Through Emitters (Water Outlets).
• The Emitter Discharge & the Spreading Way is Characterize by the Irrigation Method.
Pressurized Irrigation Орошение под давлением • Water is Delivered to a Field Unit Simultaneously by Discharge & Pressure Through Pipes. • Вода подается на разные участки поля одновременно под давлением по трубам
• Pressure is Created by Pump. • Давление создается насосом • The Water Spreads Out From the Pipes to the Field Through Emitters (Water Outlets). • Вода выливается из труб на поле через эмиттеры (водовыпуски)
• The Emitter Discharge & the Spreading Way is Characterize by the Irrigation Method. • Вылив воды эмиттером и распыление определяются способом полива
Pressurized Irrigation System, Pipes in Installation
Pressurized Irrigation, Layout of Sequential Operation
Sprinkle Irrigation
Kinds sprinklers
Cross-section Through a Rotating Impact Sprinkler
Rotating Impact Sprinkler
Sprinklers Discharge Range
• Micro Jet/Spr.: 20 l/h – 120 l/h (Localize) • Small Spr.: 250 l/h – 600 l/h • Field Spr.: 900 l/h – 3 m3/h • Big Spr.: 5 m3/h – 10 m3/h • Giant/Gun: 10 m3/h – 50 m3/h
Sprinklers Discharge Range Пропускная способность • • • • •
Микро: 20 л/час – 120 л/час (локально) Маленький.: 250 л/час – 600 л/час Полевой: 900 л/час – 3 м3/час Большой: 5 м3/час – 10 м3/час Гиганский/пушка: 10 м3/час – 50 м3/час
Dispatch Angle Under the Canopy: 4o - 7o
Field Crops: 30o
Good Distribution Performance Using full & Part Circle Spri.
APPLICATION RATE (AR) Quantity of water applied to a given area in a given time Units: mm/h, m3/du/h, 10m3/he/h Sprinkler Discharge ( Li / h ) AR = -------------------------------Sprinkler Spacing ( m * m )
EXAMPLE: Sprinkler Discharge: 1,560 Li/h Sprinkler Spacing: 18 X 12 m
1,560 Application Rate: ------------ =7.2 mm/h 18X12
AR=?
Скорость вылива (AR) Количество воды, внесенную на единицу площади за единицу времени Единицы измерения: мм/час, 10м3/га/час Вылив спринклера (л/час ) AR = ----------------------------------------------------------Расположение спринклеров (м* м)
ПРИМЕР: Вылив спринклера : 1,560 л/час Расположение спринклеров : 18 X 12 м
1,560 Скорость вылива: ------------ =7.2 мм/час 18X12
AR=?
The Same Application Rate & Different Application Intensity Sprinkler Type
254
323
Spacing: m’ x m’
24 x 24
12 x 12
Nozzles: Size mm
7.0 & 4.2
4.0 & 2.5
Pressure: atm’
4.5
2.5
Discharge: m3/h
4.8
1.2
Application Rate: mm/h
8.2
8.3
The Same Application Rate & Different Application Intensity Одинаковая скорость вылива при разной интенсивности вылива Тип спринклера
254
323
24 x 24
12 x 12
7.0 & 4.2
4.0 & 2.5
Давление: атм
4.5
2.5
Вылив: м3/час
4.8
1.2
Скорость вылива: мм/час
8.2
8.3
Расположение: м x м Форсунки: Размер мм
Rain
Rain Falls Evenly & Soil Wetted Profile Creation
Sprinkler =
Rain Imitation
Portable Pressure Gauge & Pressure Point
Distribution Pattern in Too High Pressure
Distribution Pattern in Too Low Pressure
Wind Direction
Needed Depth
Wet Front Profile of Single Lateral Operated in Wind Conditions
WIND A. Application profile of single lateral operated in windless conditions.
WIND DIRECTION
B .Application profile of single lateral operated in windy conditions.
Wind Velocity Ranges Nil Wind: 0.0 – 1.0 m’/sec
Light Wind: 1.0 – 2.5 m’/sec
Strong Wind: 2.5 – 4.0 m’/sec
EFFECT OF WIND ON WATER DISTRIBUTION
Modern Sprinkler for Vegetables
Sprinkler Irrigation, 100% Coverage a. Solid-Set
b. Moveable a
b
Sprinklers Set in Tomato Field Water Application Rate mm/h
Soil Infiltration Rate mm/h
Rule: WAR < SIR
Cotton Field is Irrigated with Set of Sprinklers Laterals
Objectives of sprinkler irrigation • To apply water as uniformly as possible • At the required amount of water [ the irrigation "depth" ], • At the proper time, • At an adequate rate, [ without run-off ].
Objectives of sprinkler irrigation Цели дождевания • To apply water as uniformly as possible • Внести воду максимально равномерно • At the required amount of water [ the irrigation
• • • • •
"depth" ], С правильным количеством воды («глубина») At the proper time, В правильные сроки At an adequate rate, [ without run-off ]. С правильной скоростью (без выключения)
Precipitation Intensity The Force of Water Drops Exerted on the Soil Surface During Application The Intensity Depends On: » Drops Size Distribution » Dropping Velocity » The Impact Angle at Which They Hit the Soil Surface
Precipitation Intensity Интенсивность полива The Force of Water Drops Exerted on the Soil Surface During Application
Сила капель воды, оказываемая на поверхность почвы во время полива
The Intensity Depends On: Интенсивность зависит от: » Drops Size Distribution » Распределение размера капель » Dropping Velocity » Скорость падения капель » The Impact Angle at Which They Hit the Soil Surface » Угол падения капель на почву
Different Irrigation Intensity the Same Application Rate Coarse Drops
Application Rate: 8 mm/h
Fine Drops
Application Rate: mm/h
8
Irrigation Efficiency (IE) The Relation Between the Volume of Water Supplied to a Given Area &The Volume of Water Absorbed in the Root Zone Water Absorbed in the Root Zone IE (%) = ---------------------------------------------------Water Supplied to the Area
x 100
Irrigation Efficiency (IE) Эффективность полива (ЭП) The Relation Between the Volume of Water Supplied to a Given Area &The Volume of Water Absorbed in the Root Zone Зависит от объема внесенной на данную площадь воды и объема воды, поглощенной корневой системой растений Water Absorbed in the Root Zone IE (%) = ---------------------------------------------------Water Supplied to the Area
x 100
Вода, поглощенная корневой системой x 100 ЭП (%) = -------------------------------------------------------------------------------Внесенная вода
Reasons for Reducing Irrigation Efficiency • Surface Run-Off • Water Penetrated Below the Required Depth • Poor Distribution Uniformity
• Water Losses at Block Marginals • Water Losses Due to Soil & Plant Evaporation • Equipment Leakages
Reasons for Reducing Irrigation Efficiency Причины уменьшения эффективности полива Поверхностный сток• Вода уходит глубже заданной глубины• Неравномерное распределение воды• Потеря воды по краям поля•
Потеря воды из-за испарения с почвы и • растений Протечки оборудования•
Micro - Jet/Sprinkler Under the Canopy In
Orchard
Micro Sprinklers
Micro Sprinklers
Micro-Jet\Sprinkler Stand, Bridge Type
Spreader Types Rays
Swivel
Jet
Bridge Micro-Sprinkler
Swivel Big Range
Jet Rays Spreader
Micro-Jet in Young Citrus Orchard
The Maximum Irrigation Efficiency Can be Achieved With Sprinkler Irrigation is 75%
The Maximum Irrigation Efficiency Can be Achieved With Sprinkler Irrigation is 75% Максимальная эффективность орошения, которую можно получить дождеванием – 75%
Linear Irrigation System
Center Pivot
spraying
Drippers Features and Benefits
9
Drippers
Wikipedia:
An emitter is also called a dripper and is used to transfer water from a pipe or tube to the area to be irrigated. Typical emitter flow rates are from 0.16 to 4.0 U.S. gallons per hour (0.6 to 16 l/h). In many emitters, flow will vary with pressure, while some emitters are pressure compensating. Netafim: An emitter restricts water flow passage through it, thus creating head loss
required (to the extent of atmospheric pressure) in order to emit water in the form of droplets. This head loss is achieved by friction/ turbulence within the emitter. 97
Капельницы Википедия:
Эмиттер (капельница) используется для передачи воды из трубки на орошаемый участок. Типичный выпуск воды капельницей составляет 0,6-16 л/час. Во многих капельницах, вылив зависит от давления, хотя некоторые капельницы компенсируют давление.
Netafim: Эмиттер ограничивает поток воды сквозь него, создавая таким
образом
потерю
давления
(в
сравнении
с
атмосферным),
необходимую для вылива воды в виде капель. Эта потеря давления достигается трением / турбулентностью внутри эмиттера. 98
Drip Irrigation Water is applied by means of mains, manifold and plastic laterals. Equally spaced along the laterals are DRIPPERS , from which water drips into the soil . Drippers are point sources of water , operating at low inlet pressure heads, and small discharges (1-10 L/H)
Капельное орошение
Вода подается по магистральным и латеральным трубам. На латеральных трубах располагаются КАПЕЛЬНИЦЫ, с которых вода поступает в почву. Капельницы – точечные источники воды, работающие при низком давлении и с маленьким выливом (1-10 л/час).
Requirement from Drip Emitter
•Low, Uniform, Constant discharge. •Large flow section with low discharge and high pressure drop. •Low cost.
•Relatively resistant to clogging
Требования к капельному эмиттеру
Низкий, однородны, постоянный • водовылив. Большой поток с малым выливом и • большим перепадом давления. Дешевизна.• Устойчивость к засорению•
Drip System Prepared for Vegetables Only Part of the Field is Wetted
Young Plants & Wetted Points
The Wetted Volume, Cross-Section
The Wetted Volume, Cross-Section
Water Movement in the Wetted Volume
Dripper
Wetted Volume &?
Drippers Closer â&#x20AC;&#x201C; Less Salt Concentration Volume
Influence of type of soil and dripper discharge on water distribution in the soil 4 liter / hour
20 liter / hour
Radial distance ( cm )
0 5 10 15 20 25 30
0 5 10 15 20
-
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
- 0.007 - 0.02 - 0.03 - 0.08 - 0.12 0.18 - 0.32 0.45 - 0.59 0.72 - 0.85 0.98 -
mEq/L
LOAM
0.03 0.18 0.45 0.72 0.90 0.95
Wetting front mEq/L
0.05
SAND
Vertical distance ( cm )
Vertical distance ( cm )
Radial distance ( cm )
* - E. Bresler, 1975
0 5 10 15 20 25 30 35 40 45 0 50 - 0.06 5 - 0.32 10 - 0.59 0.96 15 LOAM 20 - mEq/L Wetting front 0 mEq/L 5 10 0.007 15 0.02 20 0.05 25 - 0.12 30 - 0.25 0.72 35 - 0.85 40 - 0.98 45 SAND 50 55 60 65 70 -
Drippers Discharge Range • From 1 to 8 l/h, for general purposes • Up to 24 l/h for special purposes • Nowadays drippers of less than 1 l/h can be found • During the 90’s years the tendency of reducing the drippers discharge & increasing the number of drippers per area exists
Drippers Discharge Range Вылив воды капельницами • • • • •
From 1 to 8 l/h, for general purposes 1-8 л/час для общего назначения Up to 24 l/h for special purposes До 24 л/час для специфических целей Nowadays drippers of less than 1 l/h can be found • Сейчас возможен вылив менее 1 л/час • During the 90’s years the tendency of reducing the drippers discharge & increasing the number of drippers per area exists • С 90х годов есть тенденция по уменьшению вылива капельницы и увеличения числа капельниц на единицу площади
DRIPPERS’ POSITION On-Surface Drip Irrigation Subsurface Drip Irrigation (SDI)
117
– –
DRIPPERS’ POSITION Размещение капельниц On-Surface Drip Irrigation – Поверхностное капельное орошение – Subsurface Drip Irrigation (SDI) – Подземное капельное орошение (ПКО)
118
–
ON-SURFACE DRIP IRRIGATION ADVANTAGES
Easy maintenance • Cheap installation, compared with SDI • LIMITATIONS
Sensitivity to damage by mechanical tools and animals • High labor investment in annuals • Weeds infestation • 119
ON-SURFACE DRIP IRRIGATION Поверхностное капельное орошение ПРЕИМУЩЕСТВА
Простое обслуживание • Дешевая по сравнению с ПКО установка • НЕДОСТАТКИ
Чувствительность к механическим повреждениям и • животным Высокие затраты труда для однолетних систем • Заражение сорняками • 120
Drip Irrigation – On Surface
Wetting volume is in a band
Spacing between trees Spacing between drippers from 0.50 to 0.75 m (as soil texture) Water application from 2.0 to 5.6 mm / day (depending on the region of cultivation) 121
Drip Irrigation â&#x20AC;&#x201C; On Surface
The drippers forming the wet track
Dripnet PC
Uniram RC 122
SDI (sub surface irrigation) ADVANTAGES
Negligible interference with farm activity Elimination of mechanical damage to laterals Decreased weed infestation Elimination of runoff and evaporation from soil surface Improved uptake of nutrition elements by the roots, notably phosphorous.
LIMITATIONS
High installation costs Plugging hazard by intruding roots and sucked-in soil particles Inconvenience in monitoring the performance of drippers and laterals Strict maintenance is mandatory 123
• • • •
SDI (sub surface irrigation) (ПКО) Подпочвенное капельное орошение ПРЕИМУЩЕСТВА Не мешает работе в поле Трубки не страдают от механических повреждений Меньшее развитие сорняков Исключение утечек и испарения с почвы Лучшее поглощение элементов питания корнями, особенно фосфора.
НЕДОСТАТКИ
Высокая стоимость установки Опасность засорения корнями и почвой Неудобство отслеживания работы капельниц Строгий уход обязателен 124
• • • •
Drip Irrigation – Sub Surface Improved nutrient and water management practices Wetting volume is in a band
Spacing between drippers from 0.50 to 0.75 m (as soil texture)
125
Drip Irrigation â&#x20AC;&#x201C; Sub Surface
Uniram AS
126
Classification of drippers In Line On Line Integrally built in Perforated pipe Multi exit
Regulated
Unregulated
Laminar flow Turbulent flow Thin pipe wall Thick pipe wall
In Line
Classification of drippers Классификация капельниц
On Line Integrally built in Перфорированная труба Мульти выход
Регулируемые
Нерегулируемые
Ламинарный поток Турбулентный поток Тонкая стенка трубы Толстая стенка трубы
TYPES OF DRIPPERS INTEGRAL DRIPPER A dripper produced as an individual unit, yet supplied as an integral part of a dripper line
ON-LINE DRIPPER A dripper produced as an individual unit mountable on PE pipe wherever required
129
TYPES OF DRIPPERS ТИПЫ КАПЕЛЬНИЦ Встроенная капельница Капельница производится отдельно, но является частью капельной трубки
Капельница «на линии» Капельница производится отдельно и устанавливается на трубу по необходимости
130
Drippers Connection to Lateral 1. Out Side Dripper • Regular (not regulated) • Regulated • Non leakage (regulated)?
Drippers Connection to Lateral Соединение капельницы с трубой 1. Out Side Dripper 1. Внешняя капельница • • • • • •
Regular (not regulated) Не регулируемые Regulated Регулируемые Non leakage (regulated)? Не протекающие (регулируемые)?
Outside Dripper, Nozzle Type
The Size of the Hole is Below 0.5 mm
Button Dripper Parts Cover With Out-Side Hole
Barb
Flow Path-Way Both Sides
Button Dripper Installed on the Lateral
20 mm O.D.
16 mm O.D.
Barb Entrance with Pre-Filtration Entrance for Water Big Entrance for Particles Small
Regulated Button Dripper Parts
Cover Path-Way Diaphragm
Entrance Barb
Pressure Differential Regulation Labyrinth Path Way
Diaphragm
P2
P1>P2
Water Entrance P1
P2 P1 Regulation Cell & Outside Hole
Flow Regulated On-Line Dripper Regulation Cell – P2
P1 > P2
Outlet Hole
Path Way
Diaphragm
Entrance – P1
Regulated Button Dripper with Nipple Outlet
Regulated Button Drippers with Manifold Outlet
Multi-Outlets Parts: Manifold, Flexible Hose, Arrow Dripper
Arrow Dripper
Flexible Hose
Multi-Outlets Drippers for Pot Irrigation
Drippers Connection to Lateral 2. Integral Dripper Regular dripper for long existence – lateral wall thickness: 0.9 – 1.2 mm Regular drippers for short existence – lateral wall thickness: 0.25 – 0.65 mm Regulated dripper for long existence – lateral wall thickness: 0.9 – 1.2 mm
Drippers Connection to Lateral Соединение капельницы с трубкой 2. Integral Dripper 2. Встроенная капельница
Обычная капельница длительного использования – толщина стенки трубы: 0.9 – 1.2 мм Обычная капельница короткого использования – толщина стенки трубы : 0.25 – 0.65 мм Регулируемая капельница длительного использования – толщина стенки трубы: 0.9 – 1.2 мм
Water Passages Labyrinth water passages create intensely turbulent flow that is fast and efficient.
Cleans drippers throughout the irrigation cycle; Ejects particles flowing in the water; Prevents sedimentation of contaminants within the water passages.
146
Water Passages Проход воды Labyrinth water passages create intensely turbulent flow that is fast and efficient. Проход воды «лабиринт» создает поток интенсивной турбулентности, быстрый и эффективный Cleans drippers throughout the irrigation cycle; Очищает капельницы во время полива Ejects particles flowing in the water; Удаляет частицы в воде Prevents sedimentation of contaminants within the water passages. Предотвращает оседание 147 загрязнений в водоводе
Turbulent Water Flow Through the Labyrinth Path-Way May Carry Particles Away
TURBUNEXTâ&#x201E;˘ LABYRINTH [Patented] Innovative labyrinth passage
Netafim's patented labyrinth water passage maintains a unique geometric tooth-shaped structure that increases turbulence, enabling the creation of wider, deeper and shorter passages.
151
TURBUNEXT™ LABYRINTH [Запатентован] Innovative labyrinth passage Инновационный лабиринт
Netafim's patented labyrinth water passage maintains a unique geometric tooth-shaped structure that increases turbulence, enabling the creation of wider, deeper and shorter passages.
Запатентованный Netafim проход воды по лабиринту имеет уникальный зубоподобную структуру, которая увеличивает турбулентность, позволяя создание более широких, глубоких, коротких проходов
152
Turbulent Flow
In-line Dripper, Screw Type Long Path-Way
Laminar Flow â&#x20AC;&#x201C; Very Long Path-Way
Filter area Why do we need a filter for each dripper? Every irrigation system has filtration at the head control at a level that allows smaller particles to easily pass through the drippers cross section.
Main problems: Some of those smaller organic matter particles may accumulate (downstream from the main filter) into larger particles. Elongated particle Faulty maintenance/treatment
Parameters affecting filter quality: Dripperâ&#x20AC;&#x2122;s filter slot width should be smaller than dripper flow path dimensions. There should be as many slots as possible, to prevent the filter from becoming the â&#x20AC;&#x153;bottle neckâ&#x20AC;?. Water inlet through the filter should be close to the dripper line center because the filter area enables water to flow over it and flush out the particles. 3D structure prevents elongated particles from penetrating the dripper flow path (like disc filter). 155
Self Flushing Particles that cause clogging will either be flushed out through the wide water passages or increase the pressure differential. This causes the diaphragm to momentarily increase the cross-section volume for outgoing water and thus flush the dirt out of the system. The diaphragm movement maintains constant differential pressure within the water passage resulting in a uniform flow rate at a wide pressure range. 156
In-line Dripper, Labyrinth Path-Way
Turbulent Flow â&#x20AC;&#x201C; Path-Way Shorten
Integral Dripper - Cylinder Molded Path-Way Trans-Planted Into the Lateral
Cylinder Path-Way, Pre-Filtration Dripper Path-Way
Pre-Filtration
Out Side Hole Location
Connecting Elements Comparison
161
Flat Dripper path-Way
Two Different Discharge
Integral Flat Dripper Integral Flat Dripper Inside
Out Side hole
Flat Path-Way, 2 Generations with the Same Discharge Small Pre Filtration
Old
Old
Big Pre Filtration
Wider & Shorter path- Way
New
Thin Wall Lateral Flat Path-Way New Model Big Pre Filtration
Old Model Small Pre Filtration
Dripper Path-Way Suitable for Medium Existent Life New
Old
Dripper Path-Way Few Seasons â&#x20AC;&#x201C; Many Seasons Few Seasons
Many Seasons
Special Path-Ways for Thin-Wall
Special Path-Way for Short Existence Use
Thin-Wall Lateral
10 Km on One Role
Wall Thickness - Operation Length Wall Thickness (mm)
One Season
0.2
0.4 – 0.6 0.9 – 1.2
Few Many Seasons Seasons
The Declared Discharge is 1.8 l/h
Regulation System Netafim’s
patented
pressure
compensated
drippers
are
constructed with wide water passages - TurboNet™ (Netafim™ patented labyrinth pattern) - and a free floating diaphragm. The diaphragm is activated by the continual differential pressure
created by the labyrinth, thus maintaining a constant dripper flow over a wide pressure range . Thanks to the free-floating diaphragm, the dripper’s action is precise,
immediate, sensitive and continually self-adjusting 174
Regulation Range
Minimum Pressure
Maximum Pressure
Simple Control Head Filter
Fertilizer Tank
Advantages of Drip Irrigation (1/2) High Water Use Efficiency Low Water Content Fluctuations
High Fertilizers Use Efficiency Fertilizers Can be Adjusted to
Physiological Stage Saline Water Can Be Used
Advantages of Drip Irrigation (1/2) Преимущества капельного орошения High Water Use Efficiency Высокая эффективность использования воды Low Water Content Fluctuations Низкое колебание количества воды High Fertilizers Use Efficiency Высокая эффективность использования удобрений Fertilizers Can be Adjusted to Physiological Stage Удобрения можно вносить в нужные фазы развития растений Saline Water Can Be Used Можно использовать соленую воду
Advantages of Drip Irrigation (2/2) Recycled Water Can Be Used Less Diseases – Less Chemicals Spray
Soil Dry - Less Development of Weeds Manpower Needs Reduced Not Sensitive to Wind Conditions
High Quantity & High Quality Yields
Advantages of Drip Irrigation (2/2) Преимущества капельного орошения Recycled Water Can Be Used Можно повторно использовать воду Less Diseases – Less Chemicals Spray Меньше болезней – меньше обработок Soil Dry - Less Development of Weeds Сухая почва – меньше сорняков Manpower Needs Reduced Меньше затраты ручного труда Not Sensitive to Wind Conditions Не зависит от ветра High Quantity & High Quality Yields Высокий урожай и качество продукции
Disadvantages of Drip Irrigation Salt Layer is created at the wetted volume front Need for Filtration
Need for Maintenance Need for Skilled Workers
Expensive
Disadvantages of Drip Irrigation Недостатки капельного орошения Salt Layer is created at the wetted volume front В увлажнённом слое почвы откладываются соли Need for Filtration Требуется фильтрация Need for Maintenance Требуется обслуживание Need for Skilled Workers Требуются квалифицированные работники Expensive Дороговизна
Drip Irrigation Systems – Even the Most Advanced Should be Related as Sensitive for Blockages Filtration System Should be Installed The Water Should be Chemically Treated The Drippers Performance Should be Followed Up
Drip Irrigation Systems – Even the Most Advanced Should be Related as Sensitive for Blockages Системы капельного орошения – даже новейшие подвержены засорению Filtration System Should be Installed Необходима установка системы фильтрации The Water Should be Chemically Treated Необходима химическая обработка воды The Drippers Performance Should be Followed Up
Types of Clogging Physical- Suspended solids, sand, silt, • rust Chemical- Chemical deposits, • carbonates (Ca, Mg), Fe, Mn, pH, PO4 Biological- micro-organisms, algae, • bacteria, organic matter
cleaning Physical – by filter
Chemical- befor plantig – by HCL 33% 25 L TO H AT 15 M 40 L TO H AT 15 M After plant – by H2PO4 61%
You can use also HNO3 , H2SO4
Biological- by cl2
Gaining Experience With Drip Irrigation Involved in 2 Main Subjects: • Technical Aspects of the System • -
Agronomical Aspects: Dripper Discharge & Spacing Water & Fertilizer Applications etc
The Maximum Irrigation Efficiency Can be Achieved With Drip Irrigation is 95%
The Maximum Irrigation Efficiency Can be Achieved With Drip Irrigation is 95% Максимальная эффективность капельного орошения – 95%
Lizyantus, 1 Dripper for 4 Plants
Table Grapes
One Lateral
Citrus Tree with 2 Drippers Roots System is Concentrated at the Wetted Volume
Salt Concentrated at the Upper Layer
Citrus Orchard
Two Laterals
Tomatoes at the Day of Transplanting
Sand Soil
One Dripper Per Plant
One Tomato Plant at the Day of Transplanting
Saturated zone
Fast Germination
Vegetables Growing on Sand
Pepper Bed, 4 Rows & 2 Laterals
Couple of Rows & Couple of Rows
A Very Good Pepper Plant, 40 Years Ago
Supporting Wire
Drip Lateral Poor Soil & Saline Water
Grade A Pepper Before Picking
Chrysanthemum, 3 Laterals per Bed
Hutubi Farm - Tomatoes Field
Tomatoes Bed 2 Rows â&#x20AC;&#x201C; 1 Lateral
Very Nice & Even Development of Plants in Both Rows
Row 1
Row 2
Cotton Bed 4 Rows 1 Lateral?
Poor & Not Even Plants Development
Corn Field
2 Rows 1 Lateral Even Development of Whole Plants
Chrysanthemum, Gravel Tuff, Drip Laterals
Drip Irrigation System Maintenance 1) Filters Cleaning The filters should be checked cleaned or inspected on a regular basis.
2) Laterals End Flush a. Just after installation. b. Before collecting the laterals. c. On a regular basis during the irrigation period.
3) Pressure Points Checking the pressure by only one portable pressure gauge will give us information on the system performance.
4) Drippers Discharge Follow-up 25 drippers spread in the field should be signed. Their discharge should be checked three times during the season.
basic calculations for pressurized irrigation systems
Thank you
219
The Same Dripper Later Generation
Bigger Pre-Filtration
Integral Cylinder Dripper Integral Dripper Inside
Out Side Hole
The Influence of Dripper Exponent on the Allowable Pressure Loss to Get 10% Discharge Difference Dripper Exponent
â&#x2C6;&#x2020;p
P-entrance
P-end
m
(%)
(m water)
(m water)
0.66
16
10
8.4
0.50
20
10
8.0
0.40
25
10
7.5
Pressurized Irrigation, Layout of Sequential Operation Regular Drippers P<20% ~ 2m’
Regulated Drippers
P= Pmax – Pmin 35m’ – 8m’ = 27m’
Thank you
242
Hydro PC ND Diaphragm Crown
“Plastro” Hydro-PC/ND
The Old Standard Demands for Flow Uniformity Parameters are Given in the Table: Deviation of the Sample Average Discharge q Deviation of the Sample Operation from the Characteristic from that Declared by Nominal the Cv Discharge qn Manufacturer Category (%) (%) (%) 5 A 5 5 10 B 10 10 Category A is stricter in comparison to category B. So, those drippers stand category A are more qualitative.
The Updated Standard Demands for Flow Uniformity Parameters are Given in the Table: Deviation of the Sample Average Discharge q Deviation of the Sample Operation from the Characteristic from that Declared by Nominal the Cv Discharge qn Manufacturer Category (%) (%) (%) 7 A ď&#x201A;ą7 ď&#x201A;ą7
מס טפטפת 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ממוצע CV
ספיקה (ל/ש)
2.2 2.18 2.27 2.18 2.23 2.2 2.27 2.24 2.28 2.18 2.25 2.17 2.21 2.28 2.19 2.19 2.25 2.27 2.16 2.14 2.18 2.24 2.09 2.19 2.25 2.21 2.18 תרשים ספיקת הטפטפות
.4
תרשים ספיקת הטפטפות
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
מס טפטפת
גודל המידגם ספיקה ממוצעת אומדן סטיית התקן ספיקות קיצוניות
N )q(x Sq Max Min
25טפטפות ל/ש 2.21 0.048ל/ש ל/ש 2.28 ל/ש 2.09
ספיקה (ל"ש)
2.4 2.35 2.3 2.25 2.2 2.15 2.1 2.05 2
Pressure Differential Regulation
Diaphragm
Button Dripper Path-Ways, Different Discharges
8 L/h
4 L/h
2 L/h
1 L/h
Cylinder Regulated Path-Way, Parts
“Plastro” Hydro-PC
A Regulated Dripper with a Very Big Pre-Filtration Area
Big Pre Filtration
You can calculate another way: 18m*12m=216m^2 Dunm = 1000 m^2 1000/216 = 4.63 sp 4.63*1.560 li/h= 7.2 mm/h
Dripper Operation Characteristic Discharge as Pressure Function m
q = k*p Var. q k p m
Terms Dripper Discharge Dripper Coefficient Pressure Dripper Exponent
Units l/h Kpas
m Value & Flow Character of a Dripper m Value m=1 m<1 0.4 < m < 0.5 m=0
Flow Character Laminar Flow Turbulent Flow For Modern Drippers For Regulated Drippers
Distribution Pattern in Optimum Pressure
Barb Entrance with Pre-Filtration Entrance for Water Big Entrance for Particles Small
On-line Drippers - Supertif Pressure Regulating Process
Regulation
Rest
0
Clogged
Flushing
Regulation
Pressure (Bar)
0.5
Root length of different crops Depth (cm)
Depth (cm)
Dripper Discharge Name â&#x20AC;˘ For regular drippers (not regulated) the discharge is related to pressure of 1 atm. (10mâ&#x20AC;&#x2122; w)
â&#x20AC;˘ For regulated drippers the discharge is related to the pressure regulation range
The Aims of drippers Developers • To Create a Dripper Less Sensitive to blockages • To Increase the Water Passage (Path-Way) • To Decrease the Length of the Path-Way • To Increase the Turbulence of the Water Flow
Cross Section How do labyrinth length and cross-section area affect clog resistance? In general, a larger cross-section area is preferable. The larger the dripperâ&#x20AC;&#x2122;s cross section area (by designing longer labyrinth), the greater is dripperâ&#x20AC;&#x2122;s clog resistance.
265
Cross Section However, in the case of two drippers with identical cross section dimensions and identical flow rates, a shorter flow path will supply greater clog resistance. Firstly, because a short flow path reduces the likelihood of sediments settling in. The second and most important reason is that a shorter flow path produces stronger turbulence, and therefore improves clogging resistance.
266
TurboNet™ vs Turbulent TurboNet™ improved and unique water passage. The sharply angled labyrinth creates: Fast, efficient turbulent flow. Efficient friction by using wide passages. Constant release of contaminants due to short water passages.
267
Filter Area Water enters the dripper via a ď &#x201C; finely engineered filter designed to prevent dirt from entering the water passages.
Even when most filter passageways are blocked, dripper ď &#x201C; operation and water flow are not affected. With the start of the next irrigation cycle, filter surface will be flushed and accumulated pollutants washed out.
268
Positioning Drippers Because of the unique shape of the drippers and the ď &#x201C; way they are welded to the wall of the pipe, water is drawn from the pipe center, thus preventing sediments from settling within the system.
269
Connecting Elements Why do drippers clog? contaminants inside drippers and in the whole irrigation system, have passed through the dripper inlet filter and can clog the flow path. Small particles accumulate in the dripper, mostly in laminar paths where the flow is slow and quiet. These particles when big enough, move towards the labyrinth and clog it! A clog resistant dripper should have as short as possible laminar path with slow non-turbulent flow. 270
Drippers Pressure Compensated (PC) drippers As long as the working pressure remains within the allowable pressure range, PC drippers provide uniform irrigation by maintaining a constant flow rate regardless of the working pressure. PC drippers deliver the same flow rate regardless of the dripperline length (as long as the drippers operate within its working range as determined by the manufacturer). In this case (for Netafimâ&#x201E;˘ drippers) the formula is the same:
Q=KPX (when X=0) 271
LABYRINTH CROSS SECTION COMPARISON dripper ( l/h) Dimensions (mm) Dripper
Width (mm)
Depth (mm)
Cross section (mm2)
Length
UniRam™ 1.0
0.83
0.74
0.61
40
DripNet PC™ 1.0
0.61
0.60
0.37
8
Other
0.73
0.54
0.39
73
Make your own comparison Dripper
Width (mm)
Depth (mm)
Cross section (sq/mm)
Typhoon™ , 1.6 l/h.
0.79
0.60
0.474
Other 1.4 l/h.
0.61
0.45
0.275
272
On-line Drippers - Supertif Pressure Regulating Process
Regulation
Rest
0
Clogged
Flushing
Regulation
Pressure (Bar)
0.5
Anti Siphon - Inside Vacuum Anti siphon mechanisms prevent suction of dirt into the dripperline. They provide critical protection against dripper clogging
Ideal for subsurface irrigation.
274
Anti Siphon - Outside Water Boost Irrigation systems do not usually operate during rain. Rain often causes standing water or saturated soil to collect on top of the SDI. The system then acts as a drainage system and pollution if ingested, can sometimes lead to clogging. To solve this problem, the anti-siphon mechanism seals the dripper so pollutants cannot enter the system.
275
Anti Drain - CNL Prevents system drainage when pressure is closed at the end of each irrigation cycle. Ensures uniform water and nutrient distribution during pulse irrigation. Tubes remain full, eliminating the drainage and refill effect, thus saving water. Enables more uniform Nutrigationâ&#x201E;˘. 276
Root Barrier Physical barrier against root intrusion. Ideal for subsurface drip irrigation.
Improves resistance to root intrusion.
277
UniRam™ RC
Root Barrier
Cover
Pressure compensated dripper.
Superior clog resistance: huge filter area and continuous self cleaning operation.
Diaphragm Pressure Compensation Chamber
Consistent flow rate over pressure ranges from 0.5 to 4.0 bar. Filtration
Available for all dripper spacing, a wide range of flow rates, diameters and wall thicknesses.
Applications : Row crops , cotton , corn .
278
Plastro Cylinder Type Regulated Dripper
Pre-Filtration Diaphragm
Video of How a dripper works
https://www.youtube.com/watch?v=5nh617OWZqg
Regulated Cylinder Dripper Diaphragm
Path-Way
Pre-Filtration
BAND OR WETTING STRIP
Individual Wetting points
283
Rotating Impact Sprinklers
Limitation for using perforated pipes
as dripper line â&#x20AC;˘To get low discharge the holes has to be very narrow that it has very high clogging hazard.
â&#x20AC;˘It is impossible to make such a narrow hole , enough accurate to keep uniformity of dripper discharge in the permissible limitation