08 sposoby polyvu

Page 1

Irrigation – Pressurized Methods: Water Use Efficiency & Economical Potential AMRAM HAZAN

Irrigation Technology Extension Service Ministry of Agriculture, ISRAEL


Irrigation – Pressurized Methods: Water Use Efficiency & Economical Potential Орошение – Методы подачи воды под давлением: Эффективное использование воды и экономический потенциал AMRAM HAZAN

Irrigation Technology Extension Service Ministry of Agriculture, ISRAEL


AGRICULTURE: LARGEST CONSUMER OF WATER  About 70% of available water goes to agriculture  Only 17% of all cultivated areas are irrigated, yet provide 40% of global food production  79% of irrigated areas use flooding Mechani Sprinklers zed (2%)

Domesti c

Industri al

20 %

Agricult ure

10 % 70 %

15 4 % %

Flooding 79%

Saving 15% in agricultural use will more than double available water for domestic use

Source: ICID - CIID

Drip Irrigation


AGRICULTURE: LARGEST CONSUMER OF WATER Сельское хозяйство: главный потребитель воды Около 70% доступной воды используется в сельском хозяйстве  Только 17% площадей с с/х орошаются, но дают 40% мирового  производства продуктов питания 79% орошаемых площадей используют затопление  Механи Дождевание Капельное зирован (2%) орошение ное

Домашн ее

Промы шленно сть

20 %

10 %

С/х

70 %

Saving 15% in agricultural use will more than double available water for domestic use Source: ICID - CIID

15 4 % %

Затоплен ие 79%

15% экономия воды для с/х нужд позволит увеличить объем воды для домашнего использования более чем в 2 раза


FLOOD & FURROW IRRIGATION  Water source depletion and contamination, excessive use of chemicals  Contamination of aquifers and ground water from chemical/fertilizer seepage 

5

Waste of expensive nutrients/manures that feed soil and aquifers but not the plant


FLOOD & FURROW IRRIGATION Затопление и орошение по бороздам Water source depletion and contamination, excessive use of chemicals Истощение и загрязнение водных источников Contamination of aquifers and ground water from chemical/fertilizer seepage Загрязнение водоносных слоев и грунтовых вод от просачивания химикатов/удобрений  Waste of expensive nutrients/manures that feed soil and aquifers but not the plant Трата дорогих питательных веществ / навоза, которые питают почву и водоносные горизонты, но не растения

6



Wheat – Basin Irrigation 100% Coverage


Irrigation / Rain-Fed • Irrigation: Artificial Application of Water for Supplying the Plants Need, in the Right Quantity, at the Right Time (Interval). • Rain-Fed: Water Applied When Rain Falls, not According to Plants Need.


Irrigation / Rain-Fed Орошение / Осадки • Irrigation: Artificial Application of Water for Supplying the Plants Need, in the Right Quantity, at the Right Time (Interval). • Орошение: искусственное внесение воды для удовлетворения потребности растений, в нужном количестве, в правильное время (промежуток) • Rain-Fed: Water Applied When Rain Falls, not According to Plants Need. • Осадки: вода поступает, когда выпадает дождь, а не когда это нужно растению


Modern Irrigation Should Give Answers to 3 Questions How Much Water to Apply? (Quantity) How Often to Apply? (Interval) How to Apply? (Irrigation Method)


Modern Irrigation Should Give Answers to 3 Questions Современное орошение должно отвечать на 3 вопроса  How Much Water to Apply? (Quantity) =Сколько внести воды? (Количество)  How Often to Apply? (Interval) = Как часто подавать воду? (Интервал)  How to Apply? (Irrigation Method) = Как подавать воду? (Способ орошения)


How Much Water to Apply? (Quantity) Depend On: • Soil Character

• Root System Depth • Irrigation Method

• Allowable Depletion


How Much Water to Apply? (Quantity) Сколько внести воды? (Количество)

Depend On: (Зависит от): • Soil Character = Типа почвы • Root System Depth = Глубины залегания корневой системы • Irrigation Method = Способа полива • Allowable Depletion = Допустимого истощения


How Often to Apply? (Interval) Depend On:  Plant Character Water Consumption of the Crop (at Peak Demand Period)  Soil Character Quantity of Water stored in the Soil Profile


How Often to Apply? (Interval) Как часто вносить воду? (Интервал) Depend On: Зависит от:  Plant Character - Water Consumption of the Crop (at Peak Demand Period)  Тип растения – потребление воды (в период максимальной потребности)  Soil Character - Quantity of Water stored in the Soil Profile  Тип почвы – количество запасов влаги в профиле почвы


How to Apply? (Irrigation Method) o Flood Irrigation (Basin) – 100% coverage o Sprinkler Irrigation (Rain Imitation) – 100% Coverage o Drip Irrigation – Less than 100% Coverage


How to Apply? (Irrigation Method) Как вносить воду? (Способ полива) o Flood Irrigation (Basin) –100% coverage

o Sprinkler Irrigation (Rain Imitation) – 100% Coverage o Drip Irrigation –Less than 100% Coverage

o Орошение затоплением (водоем) –100% покрытие площади o Дождевание (Имитация осадков) – 100% покрытие площади o Капельное орошение – покрытие менее 100% площади


Flood Versus Pressurized -45 Minutes -Minimum Quantity of Water to Get Uniformity -Potential Efficiency – 50%

-The Field is Irrigated Simultaneously -Water Quantity flexible -Potential Effi’ Spri’ – 75%

-Potential Effi’ Drip – 95%

4


Flood Versus Pressurized Орошение затоплением и орошение под давлением -45 минут -Больший расход воды для равномерности

-Потенциальная эфф. – 50%

-Одновременный полив всего поля -Регулируемый расход воды -Пот. эфф. дождевания – 75%

- Пот. эфф. капельного орош.– 95%

4


Pressurized Irrigation • Water is Delivered to a Field Unit Simultaneously by Discharge & Pressure Through Pipes. • Pressure is Created by Pump. • The Water Spreads Out From the Pipes to the Field Through Emitters (Water Outlets).

• The Emitter Discharge & the Spreading Way is Characterize by the Irrigation Method.


Pressurized Irrigation Орошение под давлением • Water is Delivered to a Field Unit Simultaneously by Discharge & Pressure Through Pipes. • Вода подается на разные участки поля одновременно под давлением по трубам

• Pressure is Created by Pump. • Давление создается насосом • The Water Spreads Out From the Pipes to the Field Through Emitters (Water Outlets). • Вода выливается из труб на поле через эмиттеры (водовыпуски)

• The Emitter Discharge & the Spreading Way is Characterize by the Irrigation Method. • Вылив воды эмиттером и распыление определяются способом полива


Pressurized Irrigation System, Pipes in Installation


Pressurized Irrigation, Layout of Sequential Operation



Sprinkle Irrigation


Kinds sprinklers


Cross-section Through a Rotating Impact Sprinkler


Rotating Impact Sprinkler


Sprinklers Discharge Range

• Micro Jet/Spr.: 20 l/h – 120 l/h (Localize) • Small Spr.: 250 l/h – 600 l/h • Field Spr.: 900 l/h – 3 m3/h • Big Spr.: 5 m3/h – 10 m3/h • Giant/Gun: 10 m3/h – 50 m3/h


Sprinklers Discharge Range Пропускная способность • • • • •

Микро: 20 л/час – 120 л/час (локально) Маленький.: 250 л/час – 600 л/час Полевой: 900 л/час – 3 м3/час Большой: 5 м3/час – 10 м3/час Гиганский/пушка: 10 м3/час – 50 м3/час


Dispatch Angle Under the Canopy: 4o - 7o

Field Crops: 30o


Good Distribution Performance Using full & Part Circle Spri.


APPLICATION RATE (AR) Quantity of water applied to a given area in a given time Units: mm/h, m3/du/h, 10m3/he/h Sprinkler Discharge ( Li / h ) AR = -------------------------------Sprinkler Spacing ( m * m )

EXAMPLE: Sprinkler Discharge: 1,560 Li/h Sprinkler Spacing: 18 X 12 m

1,560 Application Rate: ------------ =7.2 mm/h 18X12

AR=?


Скорость вылива (AR) Количество воды, внесенную на единицу площади за единицу времени Единицы измерения: мм/час, 10м3/га/час Вылив спринклера (л/час ) AR = ----------------------------------------------------------Расположение спринклеров (м* м)

ПРИМЕР: Вылив спринклера : 1,560 л/час Расположение спринклеров : 18 X 12 м

1,560 Скорость вылива: ------------ =7.2 мм/час 18X12

AR=?


The Same Application Rate & Different Application Intensity Sprinkler Type

254

323

Spacing: m’ x m’

24 x 24

12 x 12

Nozzles: Size mm

7.0 & 4.2

4.0 & 2.5

Pressure: atm’

4.5

2.5

Discharge: m3/h

4.8

1.2

Application Rate: mm/h

8.2

8.3


The Same Application Rate & Different Application Intensity Одинаковая скорость вылива при разной интенсивности вылива Тип спринклера

254

323

24 x 24

12 x 12

7.0 & 4.2

4.0 & 2.5

Давление: атм

4.5

2.5

Вылив: м3/час

4.8

1.2

Скорость вылива: мм/час

8.2

8.3

Расположение: м x м Форсунки: Размер мм


Rain


Rain Falls Evenly & Soil Wetted Profile Creation


Sprinkler =

Rain Imitation


Portable Pressure Gauge & Pressure Point


Distribution Pattern in Too High Pressure


Distribution Pattern in Too Low Pressure


Wind Direction

Needed Depth

Wet Front Profile of Single Lateral Operated in Wind Conditions


WIND A. Application profile of single lateral operated in windless conditions.

WIND DIRECTION

B .Application profile of single lateral operated in windy conditions.


Wind Velocity Ranges Nil Wind: 0.0 – 1.0 m’/sec

Light Wind: 1.0 – 2.5 m’/sec

Strong Wind: 2.5 – 4.0 m’/sec


EFFECT OF WIND ON WATER DISTRIBUTION


Modern Sprinkler for Vegetables


Sprinkler Irrigation, 100% Coverage a. Solid-Set

b. Moveable a

b


Sprinklers Set in Tomato Field Water Application Rate mm/h

Soil Infiltration Rate mm/h

Rule: WAR < SIR


Cotton Field is Irrigated with Set of Sprinklers Laterals


Objectives of sprinkler irrigation • To apply water as uniformly as possible • At the required amount of water [ the irrigation "depth" ], • At the proper time, • At an adequate rate, [ without run-off ].


Objectives of sprinkler irrigation Цели дождевания • To apply water as uniformly as possible • Внести воду максимально равномерно • At the required amount of water [ the irrigation

• • • • •

"depth" ], С правильным количеством воды («глубина») At the proper time, В правильные сроки At an adequate rate, [ without run-off ]. С правильной скоростью (без выключения)


Precipitation Intensity The Force of Water Drops Exerted on the Soil Surface During Application The Intensity Depends On: » Drops Size Distribution » Dropping Velocity » The Impact Angle at Which They Hit the Soil Surface


Precipitation Intensity Интенсивность полива The Force of Water Drops Exerted on the Soil Surface During Application

Сила капель воды, оказываемая на поверхность почвы во время полива

The Intensity Depends On: Интенсивность зависит от: » Drops Size Distribution » Распределение размера капель » Dropping Velocity » Скорость падения капель » The Impact Angle at Which They Hit the Soil Surface » Угол падения капель на почву


Different Irrigation Intensity the Same Application Rate Coarse Drops

Application Rate: 8 mm/h

Fine Drops

Application Rate: mm/h

8


Irrigation Efficiency (IE) The Relation Between the Volume of Water Supplied to a Given Area &The Volume of Water Absorbed in the Root Zone Water Absorbed in the Root Zone IE (%) = ---------------------------------------------------Water Supplied to the Area

x 100


Irrigation Efficiency (IE) Эффективность полива (ЭП) The Relation Between the Volume of Water Supplied to a Given Area &The Volume of Water Absorbed in the Root Zone Зависит от объема внесенной на данную площадь воды и объема воды, поглощенной корневой системой растений Water Absorbed in the Root Zone IE (%) = ---------------------------------------------------Water Supplied to the Area

x 100

Вода, поглощенная корневой системой x 100 ЭП (%) = -------------------------------------------------------------------------------Внесенная вода


Reasons for Reducing Irrigation Efficiency • Surface Run-Off • Water Penetrated Below the Required Depth • Poor Distribution Uniformity

• Water Losses at Block Marginals • Water Losses Due to Soil & Plant Evaporation • Equipment Leakages


Reasons for Reducing Irrigation Efficiency Причины уменьшения эффективности полива Поверхностный сток• Вода уходит глубже заданной глубины• Неравномерное распределение воды• Потеря воды по краям поля•

Потеря воды из-за испарения с почвы и • растений Протечки оборудования•


Micro - Jet/Sprinkler Under the Canopy In

Orchard


Micro Sprinklers


Micro Sprinklers


Micro-Jet\Sprinkler Stand, Bridge Type



Spreader Types Rays

Swivel

Jet


Bridge Micro-Sprinkler


Swivel Big Range


Jet Rays Spreader


Micro-Jet in Young Citrus Orchard


The Maximum Irrigation Efficiency Can be Achieved With Sprinkler Irrigation is 75%


The Maximum Irrigation Efficiency Can be Achieved With Sprinkler Irrigation is 75% Максимальная эффективность орошения, которую можно получить дождеванием – 75%


Linear Irrigation System



Center Pivot


spraying


Drippers Features and Benefits

9


Drippers

Wikipedia:

An emitter is also called a dripper and is used to transfer water from a pipe or tube to the area to be irrigated. Typical emitter flow rates are from 0.16 to 4.0 U.S. gallons per hour (0.6 to 16 l/h). In many emitters, flow will vary with pressure, while some emitters are pressure compensating. Netafim: An emitter restricts water flow passage through it, thus creating head loss

required (to the extent of atmospheric pressure) in order to emit water in the form of droplets. This head loss is achieved by friction/ turbulence within the emitter. 97


Капельницы Википедия:

Эмиттер (капельница) используется для передачи воды из трубки на орошаемый участок. Типичный выпуск воды капельницей составляет 0,6-16 л/час. Во многих капельницах, вылив зависит от давления, хотя некоторые капельницы компенсируют давление.

Netafim: Эмиттер ограничивает поток воды сквозь него, создавая таким

образом

потерю

давления

сравнении

с

атмосферным),

необходимую для вылива воды в виде капель. Эта потеря давления достигается трением / турбулентностью внутри эмиттера. 98


Drip Irrigation Water is applied by means of mains, manifold and plastic laterals. Equally spaced along the laterals are DRIPPERS , from which water drips into the soil . Drippers are point sources of water , operating at low inlet pressure heads, and small discharges (1-10 L/H)


Капельное орошение

Вода подается по магистральным и латеральным трубам. На латеральных трубах располагаются КАПЕЛЬНИЦЫ, с которых вода поступает в почву. Капельницы – точечные источники воды, работающие при низком давлении и с маленьким выливом (1-10 л/час).


Requirement from Drip Emitter

•Low, Uniform, Constant discharge. •Large flow section with low discharge and high pressure drop. •Low cost.

•Relatively resistant to clogging


Требования к капельному эмиттеру

Низкий, однородны, постоянный • водовылив. Большой поток с малым выливом и • большим перепадом давления. Дешевизна.• Устойчивость к засорению•


Drip System Prepared for Vegetables Only Part of the Field is Wetted


Young Plants & Wetted Points


The Wetted Volume, Cross-Section


The Wetted Volume, Cross-Section


Water Movement in the Wetted Volume

Dripper


Wetted Volume &?



Drippers Closer – Less Salt Concentration Volume





Influence of type of soil and dripper discharge on water distribution in the soil 4 liter / hour

20 liter / hour

Radial distance ( cm )

0 5 10 15 20 25 30

0 5 10 15 20

-

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

- 0.007 - 0.02 - 0.03 - 0.08 - 0.12 0.18 - 0.32 0.45 - 0.59 0.72 - 0.85 0.98 -

mEq/L

LOAM

0.03 0.18 0.45 0.72 0.90 0.95

Wetting front mEq/L

0.05

SAND

Vertical distance ( cm )

Vertical distance ( cm )

Radial distance ( cm )

* - E. Bresler, 1975

0 5 10 15 20 25 30 35 40 45 0 50 - 0.06 5 - 0.32 10 - 0.59 0.96 15 LOAM 20 - mEq/L Wetting front 0 mEq/L 5 10 0.007 15 0.02 20 0.05 25 - 0.12 30 - 0.25 0.72 35 - 0.85 40 - 0.98 45 SAND 50 55 60 65 70 -


Drippers Discharge Range • From 1 to 8 l/h, for general purposes • Up to 24 l/h for special purposes • Nowadays drippers of less than 1 l/h can be found • During the 90’s years the tendency of reducing the drippers discharge & increasing the number of drippers per area exists


Drippers Discharge Range Вылив воды капельницами • • • • •

From 1 to 8 l/h, for general purposes 1-8 л/час для общего назначения Up to 24 l/h for special purposes До 24 л/час для специфических целей Nowadays drippers of less than 1 l/h can be found • Сейчас возможен вылив менее 1 л/час • During the 90’s years the tendency of reducing the drippers discharge & increasing the number of drippers per area exists • С 90х годов есть тенденция по уменьшению вылива капельницы и увеличения числа капельниц на единицу площади


DRIPPERS’ POSITION On-Surface Drip Irrigation Subsurface Drip Irrigation (SDI)

117

– –


DRIPPERS’ POSITION Размещение капельниц On-Surface Drip Irrigation – Поверхностное капельное орошение – Subsurface Drip Irrigation (SDI) – Подземное капельное орошение (ПКО)

118


ON-SURFACE DRIP IRRIGATION ADVANTAGES

Easy maintenance • Cheap installation, compared with SDI • LIMITATIONS

Sensitivity to damage by mechanical tools and animals • High labor investment in annuals • Weeds infestation • 119


ON-SURFACE DRIP IRRIGATION Поверхностное капельное орошение ПРЕИМУЩЕСТВА

Простое обслуживание • Дешевая по сравнению с ПКО установка • НЕДОСТАТКИ

Чувствительность к механическим повреждениям и • животным Высокие затраты труда для однолетних систем • Заражение сорняками • 120


Drip Irrigation – On Surface

 Wetting volume is in a band

 Spacing between trees  Spacing between drippers from 0.50 to 0.75 m (as soil texture)  Water application from 2.0 to 5.6 mm / day (depending on the region of cultivation) 121


Drip Irrigation – On Surface

The drippers forming the wet track

Dripnet PC

Uniram RC 122


SDI (sub surface irrigation) ADVANTAGES

Negligible interference with farm activity Elimination of mechanical damage to laterals Decreased weed infestation Elimination of runoff and evaporation from soil surface Improved uptake of nutrition elements by the roots, notably phosphorous.

    

LIMITATIONS

High installation costs Plugging hazard by intruding roots and sucked-in soil particles Inconvenience in monitoring the performance of drippers and laterals Strict maintenance is mandatory 123

• • • •


SDI (sub surface irrigation) (ПКО) Подпочвенное капельное орошение ПРЕИМУЩЕСТВА Не мешает работе в поле Трубки не страдают от механических повреждений Меньшее развитие сорняков Исключение утечек и испарения с почвы Лучшее поглощение элементов питания корнями, особенно фосфора.

    

НЕДОСТАТКИ

Высокая стоимость установки Опасность засорения корнями и почвой Неудобство отслеживания работы капельниц Строгий уход обязателен 124

• • • •


Drip Irrigation – Sub Surface  Improved nutrient and water management practices Wetting volume is in a band

 Spacing between drippers from 0.50 to 0.75 m (as soil texture)

125


Drip Irrigation – Sub Surface

Uniram AS

126


Classification of drippers In Line On Line Integrally built in Perforated pipe Multi exit

Regulated

Unregulated

Laminar flow Turbulent flow Thin pipe wall Thick pipe wall


In Line

Classification of drippers Классификация капельниц

On Line Integrally built in Перфорированная труба Мульти выход

Регулируемые

Нерегулируемые

Ламинарный поток Турбулентный поток Тонкая стенка трубы Толстая стенка трубы


TYPES OF DRIPPERS INTEGRAL DRIPPER A dripper produced as an individual unit, yet supplied as an integral part of a dripper line

ON-LINE DRIPPER A dripper produced as an individual unit mountable on PE pipe wherever required

129


TYPES OF DRIPPERS ТИПЫ КАПЕЛЬНИЦ Встроенная капельница Капельница производится отдельно, но является частью капельной трубки

Капельница «на линии» Капельница производится отдельно и устанавливается на трубу по необходимости

130


Drippers Connection to Lateral 1. Out Side Dripper • Regular (not regulated) • Regulated • Non leakage (regulated)?


Drippers Connection to Lateral Соединение капельницы с трубой 1. Out Side Dripper 1. Внешняя капельница • • • • • •

Regular (not regulated) Не регулируемые Regulated Регулируемые Non leakage (regulated)? Не протекающие (регулируемые)?


Outside Dripper, Nozzle Type

The Size of the Hole is Below 0.5 mm


Button Dripper Parts Cover With Out-Side Hole

Barb

Flow Path-Way Both Sides


Button Dripper Installed on the Lateral

20 mm O.D.

16 mm O.D.


Barb Entrance with Pre-Filtration Entrance for Water Big Entrance for Particles Small


Regulated Button Dripper Parts

Cover Path-Way Diaphragm

Entrance Barb


Pressure Differential Regulation Labyrinth Path Way

Diaphragm

P2

P1>P2

Water Entrance P1

P2 P1 Regulation Cell & Outside Hole


Flow Regulated On-Line Dripper Regulation Cell – P2

P1 > P2

Outlet Hole

Path Way

Diaphragm

Entrance – P1


Regulated Button Dripper with Nipple Outlet


Regulated Button Drippers with Manifold Outlet


Multi-Outlets Parts: Manifold, Flexible Hose, Arrow Dripper

Arrow Dripper

Flexible Hose


Multi-Outlets Drippers for Pot Irrigation


Drippers Connection to Lateral 2. Integral Dripper Regular dripper for long existence – lateral wall thickness: 0.9 – 1.2 mm Regular drippers for short existence – lateral wall thickness: 0.25 – 0.65 mm Regulated dripper for long existence – lateral wall thickness: 0.9 – 1.2 mm


Drippers Connection to Lateral Соединение капельницы с трубкой 2. Integral Dripper 2. Встроенная капельница

Обычная капельница длительного использования – толщина стенки трубы: 0.9 – 1.2 мм Обычная капельница короткого использования – толщина стенки трубы : 0.25 – 0.65 мм Регулируемая капельница длительного использования – толщина стенки трубы: 0.9 – 1.2 мм


Water Passages Labyrinth water passages create intensely turbulent flow that is fast and efficient.

Cleans drippers throughout the irrigation cycle; Ejects particles flowing in the water; Prevents sedimentation of contaminants within the water passages.

146


Water Passages Проход воды Labyrinth water passages create intensely turbulent flow that is fast and efficient. Проход воды «лабиринт» создает поток интенсивной турбулентности, быстрый и эффективный Cleans drippers throughout the irrigation cycle; Очищает капельницы во время полива Ejects particles flowing in the water; Удаляет частицы в воде Prevents sedimentation of contaminants within the water passages. Предотвращает оседание 147 загрязнений в водоводе


Turbulent Water Flow Through the Labyrinth Path-Way May Carry Particles Away


TURBUNEXT™ LABYRINTH [Patented] Innovative labyrinth passage

Netafim's patented labyrinth water passage maintains a unique geometric tooth-shaped structure that increases turbulence, enabling the creation of wider, deeper and shorter passages.

151


TURBUNEXT™ LABYRINTH [Запатентован] Innovative labyrinth passage Инновационный лабиринт

Netafim's patented labyrinth water passage maintains a unique geometric tooth-shaped structure that increases turbulence, enabling the creation of wider, deeper and shorter passages.

Запатентованный Netafim проход воды по лабиринту имеет уникальный зубоподобную структуру, которая увеличивает турбулентность, позволяя создание более широких, глубоких, коротких проходов

152


Turbulent Flow


In-line Dripper, Screw Type Long Path-Way

Laminar Flow – Very Long Path-Way


Filter area Why do we need a filter for each dripper? Every irrigation system has filtration at the head control at a level that allows smaller particles to easily pass through the drippers cross section.

Main problems: Some of those smaller organic matter particles may accumulate (downstream from the main filter) into larger particles. Elongated particle Faulty maintenance/treatment

Parameters affecting filter quality: Dripper’s filter slot width should be smaller than dripper flow path dimensions. There should be as many slots as possible, to prevent the filter from becoming the “bottle neck�. Water inlet through the filter should be close to the dripper line center because the filter area enables water to flow over it and flush out the particles. 3D structure prevents elongated particles from penetrating the dripper flow path (like disc filter). 155


Self Flushing Particles that cause clogging will either be flushed out through the wide water passages or increase the pressure differential. This causes the diaphragm to momentarily increase the cross-section volume for outgoing water and thus flush the dirt out of the system. The diaphragm movement maintains constant differential pressure within the water passage resulting in a uniform flow rate at a wide pressure range. 156


In-line Dripper, Labyrinth Path-Way

Turbulent Flow – Path-Way Shorten


Integral Dripper - Cylinder Molded Path-Way Trans-Planted Into the Lateral


Cylinder Path-Way, Pre-Filtration Dripper Path-Way

Pre-Filtration

Out Side Hole Location


Connecting Elements Comparison

161


Flat Dripper path-Way

Two Different Discharge


Integral Flat Dripper Integral Flat Dripper Inside

Out Side hole


Flat Path-Way, 2 Generations with the Same Discharge Small Pre Filtration

Old

Old

Big Pre Filtration

Wider & Shorter path- Way

New


Thin Wall Lateral Flat Path-Way New Model Big Pre Filtration

Old Model Small Pre Filtration


Dripper Path-Way Suitable for Medium Existent Life New

Old


Dripper Path-Way Few Seasons – Many Seasons Few Seasons

Many Seasons


Special Path-Ways for Thin-Wall

Special Path-Way for Short Existence Use


Thin-Wall Lateral

10 Km on One Role


Wall Thickness - Operation Length Wall Thickness (mm)

One Season

0.2

0.4 – 0.6 0.9 – 1.2

Few Many Seasons Seasons

 


The Declared Discharge is 1.8 l/h


Regulation System Netafim’s

patented

pressure

compensated

drippers

are

constructed with wide water passages - TurboNet™ (Netafim™ patented labyrinth pattern) - and a free floating diaphragm. The diaphragm is activated by the continual differential pressure

created by the labyrinth, thus maintaining a constant dripper flow over a wide pressure range . Thanks to the free-floating diaphragm, the dripper’s action is precise,

immediate, sensitive and continually self-adjusting 174


Regulation Range

Minimum Pressure

Maximum Pressure


Simple Control Head Filter

Fertilizer Tank




Advantages of Drip Irrigation (1/2) High Water Use Efficiency Low Water Content Fluctuations

High Fertilizers Use Efficiency Fertilizers Can be Adjusted to

Physiological Stage Saline Water Can Be Used


Advantages of Drip Irrigation (1/2) Преимущества капельного орошения  High Water Use Efficiency  Высокая эффективность использования воды  Low Water Content Fluctuations  Низкое колебание количества воды  High Fertilizers Use Efficiency  Высокая эффективность использования удобрений  Fertilizers Can be Adjusted to Physiological Stage  Удобрения можно вносить в нужные фазы развития растений  Saline Water Can Be Used  Можно использовать соленую воду


Advantages of Drip Irrigation (2/2) Recycled Water Can Be Used Less Diseases – Less Chemicals Spray

Soil Dry - Less Development of Weeds Manpower Needs Reduced Not Sensitive to Wind Conditions

High Quantity & High Quality Yields


Advantages of Drip Irrigation (2/2) Преимущества капельного орошения  Recycled Water Can Be Used  Можно повторно использовать воду  Less Diseases – Less Chemicals Spray  Меньше болезней – меньше обработок  Soil Dry - Less Development of Weeds  Сухая почва – меньше сорняков  Manpower Needs Reduced  Меньше затраты ручного труда  Not Sensitive to Wind Conditions  Не зависит от ветра  High Quantity & High Quality Yields  Высокий урожай и качество продукции


Disadvantages of Drip Irrigation Salt Layer is created at the wetted volume front Need for Filtration

Need for Maintenance Need for Skilled Workers

Expensive


Disadvantages of Drip Irrigation Недостатки капельного орошения  Salt Layer is created at the wetted volume front  В увлажнённом слое почвы откладываются соли  Need for Filtration  Требуется фильтрация  Need for Maintenance  Требуется обслуживание  Need for Skilled Workers  Требуются квалифицированные работники  Expensive  Дороговизна


Drip Irrigation Systems – Even the Most Advanced Should be Related as Sensitive for Blockages Filtration System Should be Installed The Water Should be Chemically Treated The Drippers Performance Should be Followed Up


Drip Irrigation Systems – Even the Most Advanced Should be Related as Sensitive for Blockages Системы капельного орошения – даже новейшие подвержены засорению  Filtration System Should be Installed  Необходима установка системы фильтрации  The Water Should be Chemically Treated  Необходима химическая обработка воды  The Drippers Performance Should be Followed Up


Types of Clogging Physical- Suspended solids, sand, silt, • rust Chemical- Chemical deposits, • carbonates (Ca, Mg), Fe, Mn, pH, PO4 Biological- micro-organisms, algae, • bacteria, organic matter


cleaning Physical – by filter

Chemical- befor plantig – by HCL 33% 25 L TO H AT 15 M 40 L TO H AT 15 M After plant – by H2PO4 61%

You can use also HNO3 , H2SO4

Biological- by cl2


Gaining Experience With Drip Irrigation Involved in 2 Main Subjects: • Technical Aspects of the System • -

Agronomical Aspects: Dripper Discharge & Spacing Water & Fertilizer Applications etc


The Maximum Irrigation Efficiency Can be Achieved With Drip Irrigation is 95%


The Maximum Irrigation Efficiency Can be Achieved With Drip Irrigation is 95% Максимальная эффективность капельного орошения – 95%


Lizyantus, 1 Dripper for 4 Plants


Table Grapes

One Lateral


Citrus Tree with 2 Drippers Roots System is Concentrated at the Wetted Volume

Salt Concentrated at the Upper Layer


Citrus Orchard

Two Laterals


Tomatoes at the Day of Transplanting

Sand Soil

One Dripper Per Plant


One Tomato Plant at the Day of Transplanting

Saturated zone

Fast Germination


Vegetables Growing on Sand


Pepper Bed, 4 Rows & 2 Laterals

Couple of Rows & Couple of Rows


A Very Good Pepper Plant, 40 Years Ago

Supporting Wire

Drip Lateral Poor Soil & Saline Water

Grade A Pepper Before Picking


Chrysanthemum, 3 Laterals per Bed


Hutubi Farm - Tomatoes Field


Tomatoes Bed 2 Rows – 1 Lateral


Very Nice & Even Development of Plants in Both Rows

Row 1

Row 2


Cotton Bed 4 Rows 1 Lateral?


Poor & Not Even Plants Development


Corn Field

2 Rows 1 Lateral Even Development of Whole Plants


Chrysanthemum, Gravel Tuff, Drip Laterals


Drip Irrigation System Maintenance 1) Filters Cleaning The filters should be checked cleaned or inspected on a regular basis.

2) Laterals End Flush a. Just after installation. b. Before collecting the laterals. c. On a regular basis during the irrigation period.

3) Pressure Points Checking the pressure by only one portable pressure gauge will give us information on the system performance.

4) Drippers Discharge Follow-up 25 drippers spread in the field should be signed. Their discharge should be checked three times during the season.


basic calculations for pressurized irrigation systems


Thank you

219


The Same Dripper Later Generation

Bigger Pre-Filtration


Integral Cylinder Dripper Integral Dripper Inside

Out Side Hole


The Influence of Dripper Exponent on the Allowable Pressure Loss to Get 10% Discharge Difference Dripper Exponent

∆p

P-entrance

P-end

m

(%)

(m water)

(m water)

0.66

16

10

8.4

0.50

20

10

8.0

0.40

25

10

7.5


Pressurized Irrigation, Layout of Sequential Operation Regular Drippers P<20% ~ 2m’

Regulated Drippers

P= Pmax – Pmin 35m’ – 8m’ = 27m’


Thank you

242


Hydro PC ND Diaphragm Crown


“Plastro” Hydro-PC/ND


The Old Standard Demands for Flow Uniformity Parameters are Given in the Table: Deviation of the Sample Average Discharge q Deviation of the Sample Operation from the Characteristic from that Declared by Nominal the Cv Discharge qn Manufacturer Category (%) (%) (%) 5 A 5 5 10 B  10  10 Category A is stricter in comparison to category B. So, those drippers stand category A are more qualitative.


The Updated Standard Demands for Flow Uniformity Parameters are Given in the Table: Deviation of the Sample Average Discharge q Deviation of the Sample Operation from the Characteristic from that Declared by Nominal the Cv Discharge qn Manufacturer Category (%) (%) (%) 7 A ď‚ą7 ď‚ą7


‫מס טפטפת‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪10‬‬ ‫‪11‬‬ ‫‪12‬‬ ‫‪13‬‬ ‫‪14‬‬ ‫‪15‬‬ ‫‪16‬‬ ‫‪17‬‬ ‫‪18‬‬ ‫‪19‬‬ ‫‪20‬‬ ‫‪21‬‬ ‫‪22‬‬ ‫‪23‬‬ ‫‪24‬‬ ‫‪25‬‬

‫ממוצע‬ ‫‪CV‬‬

‫ספיקה (ל‪/‬ש)‬

‫‪2.2‬‬ ‫‪2.18‬‬ ‫‪2.27‬‬ ‫‪2.18‬‬ ‫‪2.23‬‬ ‫‪2.2‬‬ ‫‪2.27‬‬ ‫‪2.24‬‬ ‫‪2.28‬‬ ‫‪2.18‬‬ ‫‪2.25‬‬ ‫‪2.17‬‬ ‫‪2.21‬‬ ‫‪2.28‬‬ ‫‪2.19‬‬ ‫‪2.19‬‬ ‫‪2.25‬‬ ‫‪2.27‬‬ ‫‪2.16‬‬ ‫‪2.14‬‬ ‫‪2.18‬‬ ‫‪2.24‬‬ ‫‪2.09‬‬ ‫‪2.19‬‬ ‫‪2.25‬‬ ‫‪2.21‬‬ ‫‪2.18‬‬ ‫תרשים ספיקת הטפטפות‬

‫‪.4‬‬


‫תרשים ספיקת הטפטפות‬

‫‪1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25‬‬

‫מס טפטפת‬

‫גודל המידגם‬ ‫ספיקה ממוצעת‬ ‫אומדן סטיית התקן‬ ‫ספיקות קיצוניות‬

‫‪N‬‬ ‫)‪q(x‬‬ ‫‪Sq‬‬ ‫‪Max‬‬ ‫‪Min‬‬

‫‪ 25‬טפטפות‬ ‫ל‪/‬ש‬ ‫‪2.21‬‬ ‫‪ 0.048‬ל‪/‬ש‬ ‫ל‪/‬ש‬ ‫‪2.28‬‬ ‫ל‪/‬ש‬ ‫‪2.09‬‬

‫ספיקה (ל"ש)‬

‫‪2.4‬‬ ‫‪2.35‬‬ ‫‪2.3‬‬ ‫‪2.25‬‬ ‫‪2.2‬‬ ‫‪2.15‬‬ ‫‪2.1‬‬ ‫‪2.05‬‬ ‫‪2‬‬


Pressure Differential Regulation

Diaphragm


Button Dripper Path-Ways, Different Discharges

8 L/h

4 L/h

2 L/h

1 L/h


Cylinder Regulated Path-Way, Parts


“Plastro” Hydro-PC


A Regulated Dripper with a Very Big Pre-Filtration Area

Big Pre Filtration


You can calculate another way: 18m*12m=216m^2 Dunm = 1000 m^2 1000/216 = 4.63 sp 4.63*1.560 li/h= 7.2 mm/h


Dripper Operation Characteristic Discharge as Pressure Function m

q = k*p Var. q k p m

Terms Dripper Discharge Dripper Coefficient Pressure Dripper Exponent

Units l/h Kpas


m Value & Flow Character of a Dripper m Value m=1 m<1 0.4 < m < 0.5 m=0

Flow Character Laminar Flow Turbulent Flow For Modern Drippers For Regulated Drippers



Distribution Pattern in Optimum Pressure


Barb Entrance with Pre-Filtration Entrance for Water Big Entrance for Particles Small


On-line Drippers - Supertif Pressure Regulating Process

Regulation

Rest

0

Clogged

Flushing

Regulation

Pressure (Bar)

0.5



Root length of different crops Depth (cm)

Depth (cm)


Dripper Discharge Name • For regular drippers (not regulated) the discharge is related to pressure of 1 atm. (10m’ w)

• For regulated drippers the discharge is related to the pressure regulation range


The Aims of drippers Developers • To Create a Dripper Less Sensitive to blockages • To Increase the Water Passage (Path-Way) • To Decrease the Length of the Path-Way • To Increase the Turbulence of the Water Flow


Cross Section How do labyrinth length and cross-section area affect clog resistance? In general, a larger cross-section area is preferable. The larger the dripper’s cross section area (by designing longer labyrinth), the greater is dripper’s clog resistance.

265


Cross Section However, in the case of two drippers with identical cross section dimensions and identical flow rates, a shorter flow path will supply greater clog resistance. Firstly, because a short flow path reduces the likelihood of sediments settling in. The second and most important reason is that a shorter flow path produces stronger turbulence, and therefore improves clogging resistance.

266


TurboNet™ vs Turbulent TurboNet™ improved and unique water passage. The sharply angled labyrinth creates: Fast, efficient turbulent flow.  Efficient friction by using wide passages.  Constant release of contaminants due to short water passages. 

267


Filter Area Water enters the dripper via a ď “ finely engineered filter designed to prevent dirt from entering the water passages.

Even when most filter passageways are blocked, dripper ď “ operation and water flow are not affected. With the start of the next irrigation cycle, filter surface will be flushed and accumulated pollutants washed out.

268


Positioning Drippers Because of the unique shape of the drippers and the ď “ way they are welded to the wall of the pipe, water is drawn from the pipe center, thus preventing sediments from settling within the system.

269


Connecting Elements Why do drippers clog? contaminants inside drippers and in the whole irrigation system, have passed through the dripper inlet filter and can clog the flow path. Small particles accumulate in the dripper, mostly in laminar paths where the flow is slow and quiet. These particles when big enough, move towards the labyrinth and clog it! A clog resistant dripper should have as short as possible laminar path with slow non-turbulent flow. 270


Drippers Pressure Compensated (PC) drippers As long as the working pressure remains within the allowable pressure range, PC drippers provide uniform irrigation by maintaining a constant flow rate regardless of the working pressure. PC drippers deliver the same flow rate regardless of the dripperline length (as long as the drippers operate within its working range as determined by the manufacturer). In this case (for Netafim™ drippers) the formula is the same:

Q=KPX (when X=0) 271


LABYRINTH CROSS SECTION COMPARISON dripper ( l/h) Dimensions (mm) Dripper

Width (mm)

Depth (mm)

Cross section (mm2)

Length

UniRam™ 1.0

0.83

0.74

0.61

40

DripNet PC™ 1.0

0.61

0.60

0.37

8

Other

0.73

0.54

0.39

73

Make your own comparison Dripper

Width (mm)

Depth (mm)

Cross section (sq/mm)

Typhoon™ , 1.6 l/h.

0.79

0.60

0.474

Other 1.4 l/h.

0.61

0.45

0.275

272


On-line Drippers - Supertif Pressure Regulating Process

Regulation

Rest

0

Clogged

Flushing

Regulation

Pressure (Bar)

0.5


Anti Siphon - Inside Vacuum Anti siphon mechanisms prevent suction of dirt into the dripperline. They provide critical protection against dripper clogging

Ideal for subsurface irrigation.

274


Anti Siphon - Outside Water Boost Irrigation systems do not usually operate during rain. Rain often causes standing water or saturated soil to collect on top of the SDI. The system then acts as a drainage system and pollution if ingested, can sometimes lead to clogging. To solve this problem, the anti-siphon mechanism seals the dripper so pollutants cannot enter the system.

275


Anti Drain - CNL Prevents system drainage when pressure is closed at the end of each irrigation cycle. Ensures uniform water and nutrient distribution during pulse irrigation. Tubes remain full, eliminating the drainage and refill effect, thus saving water. Enables more uniform Nutrigation™. 276


Root Barrier Physical barrier against root intrusion. Ideal for subsurface drip irrigation.

Improves resistance to root intrusion.

277


UniRam™ RC

Root Barrier

Cover

Pressure compensated dripper. 

Superior clog resistance: huge  filter area and continuous self cleaning operation.

Diaphragm Pressure Compensation Chamber

Consistent flow rate over  pressure ranges from 0.5 to 4.0 bar. Filtration

Available for all dripper spacing,  a wide range of flow rates, diameters and wall thicknesses.

Applications : Row crops , cotton , corn .

278


Plastro Cylinder Type Regulated Dripper

Pre-Filtration Diaphragm


Video of How a dripper works

https://www.youtube.com/watch?v=5nh617OWZqg


Regulated Cylinder Dripper Diaphragm

Path-Way

Pre-Filtration


BAND OR WETTING STRIP

Individual Wetting points

283



Rotating Impact Sprinklers


Limitation for using perforated pipes

as dripper line •To get low discharge the holes has to be very narrow that it has very high clogging hazard.

•It is impossible to make such a narrow hole , enough accurate to keep uniformity of dripper discharge in the permissible limitation


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.