E&EG Journal Volume XXIX, Number 1

Page 1

Environmental & Engineering Geoscience

F EBRUARY 2023 VOLUME XXIX, NUMBER 1

Special Issue on Dams and Levees

Guest Editors - Kevin S. Richards, Gary D. Rogers, and Cassandra Wagner

THE JOINT PUBLICATION OF THE ASSOCIATION OF ENVIRONMENTAL AND ENGINEERING GEOLOGISTS AND THE GEOLOGICAL SOCIETY OF AMERICA

SERVING PROFESSIONALS IN ENGINEERING GEOLOGY, ENVIRONMENTAL GEOLOGY, AND HYDROGEOLOGY

Environmental& EngineeringGeoscience

Volume29,Number1,February2023

TableofContents

1IntroductiontoSpecialIssueonDamsandLevees

KevinS.Richards,GaryD.Rogers,andCassandraWagner

3PotentialforHydraulicFracturewhenDrillinginDamsandLevees

JeffreyA.Schaefer

17BestPracticesforPlanningandImplementingSiteInvestigationsatFederallyOwnedorRegulated DamsandLevees

KathleenBensko,BryanK.Simpson,ThomasA.Terry,andScottR.Walker

41DamandLeveeSafetyRiskduringRemedialConstruction

JeffreyA.Schaefer

53RoughRiverDamSafetyModificationProjectEvolution

StevenShifflettandWillAilstock

67SonicDrillingonEmbankmentDamsandLevees

MarkS.ElsonandStevenD.Widincamp

IntroductiontoSpecialIssueonDamsandLevees

KEVINS.RICHARDS*

1530WillowStreet,LakeForest,IL60045

GARYD.ROGERS

SchnabelEngineering,11AOakBranchDrive,Greensboro,NC27407

CASSANDRAWAGNER

DamSafetyProductionCenter,USACE,12596WBayaudAvenue,Suite400, Lakewood,CO80228-2019

InSeptember2019,thechairsoftheFoundations CommitteeattheU.S.SocietyonDams(USSD)and theDamsandLeveesTechnicalWorkingGroupatthe AssociationofEnvironmentalandEngineeringGeologists(AEG)begandiscussingthepossibilityoforganizingajointworkshop.Thisworkshopwasthefirst formalcollaborationbetweenthesetwocommittees. Thecollaborationwasrelativelyeasybecausemany membersofAEGandUSSDhaddualmemberships andhadbeencoordinatinginformallyduringtheyears beforethiseffort.

Earlyon,aworkshopplanningcommitteewas formedanditwasdeterminedthatthebestformat forthisworkshopwouldbetoinviteavarietyof speakers,withspecializedexpertise,whocouldshare theircurrentpracticesformanagingriskduringinvestigationsandconstructionathigh-hazarddamsor levees.TheU.S.ArmyCorpsofEngineers(USACE) recentlyissuedanEngineeringandConstruction Bulletin(ECB),“InterimApproachforRisk-Informed DesignsforDamsandLeveeProjects”(USACE ECB2019,ECBNo.2019-15,https://www.wbdg. org/FFC/ARMYCOE/COEECB/ecb_2019_15.pdf), thatcalledforinclusionofriskinallphasesofdesign andconstructionandhadarelativelynewengineering regulation(ER),“DrillinginEarthEmbankment DamsandLevees”(31Dec2014,ER1110-1-1807, https://www.publications.usace.army.mil/USACEPublications/Engineer-Regulations/).Theworkshop providedavenuetosharehowvariousfederalagencies wereimplementingriskmanagementpracticesandto hearfromconsultantsandcontractorsaboutcurrent challengesconcerningriskmanagementrequirements duringinvestigationsandconstruction.Oneoftheprimarygoalsofthisworkshopwastoemphasizethese issuesand,asaresult,tohelpadvancethestateof

*Correspondingauthoremail:kevin.richards@comcast.net

thepracticetoimproveriskmanagementthroughall stagesofdesignandconstruction.Onetakeawayfrom theworkshopwastheimportanceofcoordinatingrisk managementexpectationsduringthepre-bidphase. Identifyingspecificriskmanagementproceduresthat maybenecessaryforthecontractdocumentsallowsforeasyinclusionofthemintheworkandthe contractor’sbid.

WeareindebtedtoAEG,USSD,SchnabelEngineering,9800JebStuartParkway,Suite200,Glen Allen,VA23059,andPrimeResins,2291Plunkett Road,Conyers,GA30012forsponsoringthisworkshop.Wewouldliketothankourprogramchair, GaryRogers,SchnabelEngineering,forhishelpwith selectingandorganizingtheinvitedspeakers.The workshopwasheldinFortLauderdale,Florida,from December6–8,2021,andincludedafieldtripto HerbertHooverDiketoobservevariouscutoffwall installationmethodsthatwereinprogress.Kudosto theU.S.ArmyCorpsofEngineers,theU.S.Bureau ofReclamation,theFederalEnergyRegulatoryCommission,theTennesseeValleyAuthority,andallthe consultantsandcontractorsfortheirparticipation intheworkshop.Approximately100professionals attendedandthelivelyaudiencediscussionsduring theworkshopwerequiteinformativeandverymuch appreciated.Notallinvitedspeakerswereableto providetechnicalpapersforthispublication,but theworkshoppresentationsarepostedathttps:// www.aegweb.org/dams-levees.Weencourageyouto checkthemout.

Asguesteditors,wehopethatyouenjoythisspecial editionof EnvironmentalandEngineeringGeoscience andjoinusinourquesttoimproveriskmanagement practicesinyourfutureplanningforconstructionand investigationsathigh-hazarddamsandlevees.

Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,p.1 1

PotentialforHydraulicFracturewhenDrilling inDamsandLevees

SchaeferGeotechnicalConsultingLLC,12102RehlRoad,Louisville,KY40299

KeyTerms: HydraulicFracture,EmbankmentDams, Levees,Drilling,Grouting,ConfiningStress,Undrained Strength,PressureMeasurement

ABSTRACT

Hydraulicfracturingofembankmentdamsorlevees andtheirsoilfoundationsisarealconcernwheninvasive techniquesareusedforinvestigationandremediation. Methodsusingwater,drillingmud,compressedair,and grouthaveresultedinfracturingoftheembankmentsor foundationsasevidencedbycracking,lossofcirculation,connectionstootherborings,andblowoutsonembankmentslopes.Numerousincidentshavebeendocumentedintheliterature,butmanymoreundocumented casesarelikelytohaveoccurred.Topredicttheoccurrenceofhydraulicfracture,apracticalmodelrequired byU.S.ArmyCorpsofEngineersregulationswascomparedtolaboratoryandfielddata.Themodelrequires estimationofthetotalminorprincipalstressandthe undrainedshearstrengthofthesoil.Methodsforestimatingtheseparametersarediscussed.Pressuremeasurementandcomparisontothecorrectlimitingpressures,intermsoftotalstress,arecriticalfactorsinthe evaluationofhydraulicfracturepotentialandthepotentialtodamageundergroundstructures.Decisionstodrill intodamsandleveesshouldbemadeonlyafterproper evaluationoftherisk.Drillingtechniquesthatdonotrequirefluidsshouldbeusedwhenpossible.Iffluidsare required,thenpressuresshouldbelimitedtogravity.If higherpressuresmustbeused,thenthepressuresmust bemeasured,andeffortsmustbemadetokeepthembelowtheestimatedthresholdforhydraulicfracture.

INTRODUCTION

Drillingorotherinvasivetechniquesthatusedrilling fluids,water,grout,air,orslurrycanpotentiallycause hydraulicfractureofembankmentdamsorlevees andtheirfoundations.Beforeconductinginvasiveprocedures,itisthedesigner’sresponsibilitytounderstandthepotentialriskassociatedwiththatprocedure. Hydraulicfracturingcanincreasetheriskofdamor

*Correspondingauthoremail:jschaefer.geo@gmail.com

leveefailurebydamagingtheimpervioussoilsections oftheembankments.Itcancauseasignificantincrease inthepotentialforconcentratedleakerosion,displacementoftheembankment,reductioninshearstrength, andadverseenvironmentaldischarges.Hydraulicfracturingcausedbydrillingcanalsoleadtotheimproper interpretationofinvestigationresults.Forexample,if allthedrillingfluidislostinaboringintheimpervioussectionofthedamcore,whatarethepossible interpretations?Isthereaverypervioussoillayerora preexistingdefect,ordidthedrillingcausethesoilto crackduetohydraulicfracturing?

INCIDENTS

Numerousincidentshaveoccurredondamsand leveeswheredrilling,grouting,andotheractivities havecausedhydraulicfracturing.Sherard(1973)documentedmanycasesofcrackinganddrillfluidloss,includingincidentsatseveralU.S.ArmyCorpsofEngineers(USACE)projects.TheincidentlistedinTable1 atWisterDamoccurredduringattemptedremediationoftheembankmentaftera1949eventwhenthe damsufferedmajorconcentratedleakerosion.Mud groutingwithonlygravitypressurealongthecenter lineofthedamwasattemptedtoaddresspotentialembankmentdefectsatunknownlocations.Afterplacing32,140cubicfeet(910m3 )ofgrout,thegrouting operationwassuspendedduetothelargenumberof cracksbeinggeneratedinthecrestofthedam(Erwin andGlenn,1992).

AspartoftheforensicinvestigationoftheTeton Damfailure(IndependentPaneltoReviewCauseof TetonDamFailure,1976),theindependentpanelperformedafieldhydraulicfracturingtestontheintact remnantembankmentsection.Thetestsweredoneto determineifhydraulicfracturewasapotentialfailure modethatcontributedtothefailure.Ironically,while drillingtheboringstodothetests,theysuddenlylost drillwaterandfracturedtheembankment.Additional attemptsweremadetodrillwithair,butreturnblockagescausedadditionalfracturing.

Numerousadditionalhydraulicfractureincidentswerefoundbytheauthorthroughvarious communicationswithUSACEDistricts.TheseincidentsaresummarizedinTable2.

Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16 3

Table1. SummaryofpotentialhydraulicfracturingincidentsfromSherard(1973).

DamLocationIncidentDescription

DjatiluhurDamIndonesiaSuddenwaterlossincrestboringinthecore. ElIsiroDamVenezuelaCorecrackedfromfoundationrockgrouting.

GarrisonDamNorthDakotaAhighpercentageoftheholesdrilledinapartiallycompletedembankmentexhibitedamajorloss ofdrillwaterwithintheembankment.

GraminhaDamBrazilCompletedrillfluidlossduringpiezometerinstallations.

HartfordDamGeorgiaAcrestboringlocatedoveranabutmentlostallthedrillwateratadepthof20ftand(6m)then continuouslybetween20and55ft(6and17m).

IlhaSoteiraDamBrazilAboringwasdrilledtoinstallapiezometerintotheclayembankment,andwaterlossoccurredat adepthof36ft(11m).

LaVillitaDamMexicoAboringaccomplishedwithrotarydrillingintoheavybentoniteabruptlylostfluidat40ft(12m). Atthesametime,aninstrument100ft(30m)awayalongthecrestreactedtothefluidloss.

LivingstonDamTexasWaterlossesduringdrillingforpiezometerinstallationexperiencedinmorethanhalftheborings.

LovewellDamNebraskaTwenty-sixboringslostdrillfluidinimperviousembankment.

MatahinaDamNewZealandExcavationofembankmentrevealedgroutfractures.

ShekPikDamHongKongNumerousboringsexperiencedfluidlossduringthedrilling. WisterDamOklahomaCrestcracksoccurredfromgrouting.

YardsCreekUpper ReservoirDam

NewJerseyDrillwaterlostinboringsinthelowerhalfofthecore.

WhenreviewingrecordsfromtheNationalArchives forariskassessment,noteswerefoundfrom1966 recordingadiscussionwithaseniorUSACEengineer. Theengineerstatedthatineveryinstancewherethe coreofexistingdamsinTulsaandFt.WorthDistrictshadbeendrilled,drillingfluidhadbeenlost. ThisincludedSanAngelo,Toronto,CouncilGrove, andCanyonDams.

EVIDENCEOFHYDRAULICFRACTURE

Cracking,groutleaks,excavatedgrout-filledfractures,andslurry-filledfracturesareallexamples

ofphysicalevidenceofhydraulicfracturethatoccurredasaresultofdrilling,grouting,orslurrywall construction.

Figure1showsagroutleakthatoccurredduring groutingofarockstageover200ft(61m)below theworkplatformatWolfCreekDam.

Figure2showsgroutleaksfromthesheetpileinterlocksontheworkplatformintheupper-left cornerphoto.Thevibratingwirepiezometerspike indicatedonthegraphwiththeredarrowcorrespondstotheleak.Thepiezometermeasureda

Table2. AdditionalUSACEhydraulicfracturingincidents.

DamLocationIncidentDescription

AddicksDamTexasGroutleaksfromleveeembankment/foundation.

Grout-filledhydraulicfracturesfoundinexcavationofembankment.

AmericanRiverLeveeCaliforniaHydraulicfracturefromslurrywallconstruction.

BarkerDamTexasGroutleaksfromleveeembankment/foundation.

Grout-filledhydraulicfracturesfoundinexcavationofembankment.

CenterHillDamTennesseeGroutleaksandworkplatformdeformation.

EastBranchDamPennsylvaniaGroutlossduringpiezometerinstallationinimperviousdamembankment. Completewaterlossduringdrillinginimperviousdamembankment.

GreenhavenPocketLeveeCaliforniaHydraulicfracturefromslurrywallconstruction. HartwellDamHartwellDrillfluidlossadjacenttoconcretesection. KentuckyLockKentuckyGrouthydraulicfracturesfoundinembankment.

LittlevilleDamMassachusettsWaterlossandpiezometercommunicationduringdrillingadjacenttoconduit. MosulDamIraqNumeroushydraulicfracturesignaturesingroutdata.

MudMountainDamWashingtonSlurryfromcut-offwallconstructioncausednumerousembankmentcracksandhydraulic fractures.

PatokaSaddleDamIndianaGrout-filledhydraulicfracturesfoundinembankment. RedRockDamIowaGrouthydraulicfractureduringremedialgrouting.

ThomastonDamConnecticutDrillfluidlossadjacenttoconduit.

WhittierNarrowsDamCaliforniaCompletewaterlossduringdrillinginimpervioussection. WolfCreekDamKentuckyGroutleaksthroughworkplatform,crestcracking.

Schaefer
4 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16

HydraulicFracturePotentialduringDrillinginDams

pressurespikethatexceededtheelevationofthe workplatformbymorethan100ft(30m)ofhead. WhengroutingvoidsbelowtheoutletworksonAddicksDam,groutleaksexiteddownstreamandright oftheconduit.Figure3showstheleakthatoccurred duetoahydraulicfracture.

Asimilargroutingprogramwasperformedtofill voidsundertheconduitatBarkerDam.Later,duringconstructionofadownstreamconduitfilter, grout-filledcracks(Figure4)causedbyhydraulic fracturewereuncoveredintheexcavation.

Figure1.Groutleaksemergingthroughcracksintheworkplatform slabonWolfCreekDam. Figure3.GroutleakthatoccurredatAddicksDamwhengrouting voidsundertheoutletworksconduitlocatedofftherightedgeof thephoto.
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16 5
Figure2.GroutleakthroughsheetpileretainingwallonworkplatformonWolfCreekDamandcorrespondingvibratingwirepiezometer spikesmeasuredduringgroutingoperations.

AnexcavationinanembankmentontheKentucky Lockprojectrevealedexamplesofbothhorizontal andverticalhydraulicfracturesinthesoil(Figure5a andb).Theseweretheresultofapreviousgrouting projectwherehighpressureswereusedinkarstrock groutstages.

Duringtheconstructionofadeepcut-offwallin MudMountainDam,WA,thedamembankment wasfracturedfromtheslurryusedtosupportthe excavation.Therewerenumerouslargeslurrylosses intheembankmentalongwithvisiblecrackingof thedam.Thedamwasconstructedinaverysteep narrowrockvalley,whichresultedintheembankmentsoilshavinglowconfiningstress(Figure6a). Thismadethedamsusceptibletocracking.Figure 6bshowsanexampleofalongitudinalcrackinthe workplatformatthecrestofthedam,andFigure 6cshowsacrackinthesideofacut-offwallpanel excavation.SeeDavidsonetal.(1992)formore details.

WhenconstructingaslurrywallinapoorlycompactedembankmentontheGreenPocketLevee, ahydraulicfractureoccurred,resultinginalarge crackandasignificantslurryloss.Thecrackinitiatedattheexcavationandpassedunderandbehind theexcavatoralongthecrest,anditthenturnedand exitedatthetoeofthelevee(Figure7a).Figure7b showsanexamplephotooftheslurry-filledcrack foundinanexcavationoftheembankment.

AsimilarincidentoccurredontheAmericanRiver Leveeduringconstructionofaslurrywall.The poorlycompactedleveecouldnotsupportthe slurry,andahydraulicfractureoccurred.Figure8a isasurfaceexpressionofthefracture,andFigure8b

showstheslurry-filledfracturefoundinanexcavationoftheembankment.

Aspartofaresearchproject,USACE(1998)WaterwaysExperimentStationevaluateddrillfluidpressuresandthepotentialforhorizontaldirectional

Schaefer
Figure4.Grout-filledhydraulicfracturecracksfoundatBarker Damwhenanexcavationwasmadeforconstructionofafilter aroundtheoutletworksconduitstructure. Figure5.Horizontal(a)andvertical(b)grout-filledhydraulicfracturesfoundinanembankmentexcavationfortheKentuckyLock project.
6 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16

HydraulicFracturePotentialduringDrillinginDams

Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16 7
Figure6.(a)Cut-offwallconstructedinMudMountainDam,WA(USACESeattleDistrict).Noteverysteepandnarrowrockvalley,which resultsinlowconfiningstressintheembankment.(b)Longitudinalcrackthatdevelopedintheworkplatformduringconstructionofthe cut-offwall.(c)Verticalcrackinthesideofacut-offwallpanelexcavation.

Figure6.(continued)

drilling(HDD)tocausehydraulicfracture.The groutleaksandfractureswereeasilyidentifiedwith thered-dye-coloreddrillfluid(Figure9).

Duetothesignificantnumberofknownincidents, wecanconcludethatitisnotrareforhydraulic fracturestooccurfromintroductionoffluidsinto embankmentsandtheirfoundationsduringdrilling, grouting,orunbalancedslurryconstruction.Intheauthor’sopinion,itisalsolikelythattherearemanymore casesthathavenotbeenreportedduetoamisinterpretationofdrillfluidlossorexcessivegrouttakes.

ESTIMATINGHYDRAULICFRACTURE PRESSURES

Severalmechanismsforhydraulicfractureinsoils havebeenproposedbydifferentresearchers.Aliteraturereviewrevealedthattherearemanydifferentconceptsandmodelswithwhichtoestimatedamaging fracturepressuresinsoils,including tensilestress, undrainedshearstrength, unconfinedcompressionstrength,

Figure7.(a)Sketchshowingthelocationofahydraulicfracture thatoccurredontheGreenPocketLevee.(b)Photographshowing aslurry-filledhydraulicfracturefoundinanexcavationoftheembankment.

elastictheory, linearelasticfracturemechanics, empiricalformulas,and cavityexpansion.

Thesemodelsrangefrompracticaltoverytheoretical.Inthisstudy,itwasdesiredtodetermineifthere wasapracticalmodelthatwouldgivereasonableresults.Sherard(1973,p.273),statedthat,“Fromapracticalstandpoint,acrackmaybecausedtoopenona givenplaneiftheeffectivestressactingontheplane goestozero;thatis,ifthetotalstressontheplaneis equaltoorlessthanthewaterpressure(providedthe soilcannotwithstandtensilestress).”

Documentationintheliteraturerelatedtofieldhydraulicfracturetesting(Bozozuk,1974;Calcagno, 1983;ChenandZhang,1989;Hamoucheetal., 1995;andSherard,1973)revealedthatthepressurerequiredtoinitiatehydraulicfracturewasalwayssomewhatgreaterthantheminorprincipal stress.Thefieldtestresultsshowedthatthefracturepressurewasapproximately300to3,000psf

Schaefer
8 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16

(14to144kPa)greaterthantheestimatedminorprincipalstress,whichsupportstheideathat thesoilstrengthcontributestothefracturepressure resistance.

TheapproachtakenbyAndersenetal.(1994)was basedonthegeneralprinciplethathydraulicfracturingcanoccurifthegroutpressureexceedstheminorprincipalstressplusthetensilestrengthofthe soil.ThiswassupportedbyastudybyAlfaroand Wong(2001),whereinthevariousconceptswereinvestigatedandcomparedtolaboratorytesting,and thetensilestrengthapproachbestapproximatedlaboratorytestsforhydraulicfracture.AdditionalbackgroundonhydraulicfracturingcanbefoundinSherard(1970),Sherardetal.(1972),Sherard(1986),and Bjerrumetal.(1972).

Becausetensilestrengthisnotcommonlydeterminedforsoils,itisproposedthattheundrained strengthofthesoilcanbeusedtoreasonablyapproximatethetensilecapacityofthesoil.Hydraulicfracture ofclaysoccursinanundrainedloadingconditionbecausethereisaquickloadactingonanimpervious soil.Severalresearchershavepublisheddatafromlaboratoryhydraulicfractureteststhatalsoincludedinformationontheundrainedstrengthofthesoil.The author’sevaluationofthemeasureddatafoundinthe literaturereviewrevealedthattheboreholefracture pressurecancloselyapproximatethemeasuredfracturepressureinthelaboratoryusingtheminimum principalstressplustheundrainedstrengthofthesoil intermsoftotalstress. P

which,fornormallyconsolidatedsoils,wouldreduce to:

Ifenoughdatawereprovidedinthepapers,theresultswerereplottedandoverlainwiththeproposed predictionfromEq.1.Figures10and11showthatthe predictionfromEq.1agreeswellwiththelaboratory

HydraulicFracturePotentialduringDrillinginDams
Figure7.(continued)
f = σ3 + σ3 tanφu + cu , (1)
Pf = σ3 + cu . (2)
Figure8.(a)Asurfacecrackand(b)anexcavatedslurry-filledhydraulicfracturecrackfoundontheAmericanRiverLeveeduring constructionofaslurrywall.
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16 9

hydraulicfracturetestsandhighlightstheimportance oftheundrainedshearstrengthofthesoil.

DELFTCAVITYEXPANSIONEQUATION

TheHDDindustrycommonlyusestheDelftCavity ExpansionEquation.Thecavityexpansiontheorywas firstdevelopedbyVesic(1972)andthenfurtherdevelopedforuseinHDDprojectsbyresearchersatDelft Geotechnics,LugerandHergarden(1988).Thetheory isthatastheannularfluidpressureincreases,theboreholeradiuswillexpand.Initially,thedeformationwill beelastic,butasthepressureincreases,thedeformationwillbecomeplastic.Asthezoneofplasticdeformationincreasestothegroundsurface,blowoutwill occur,anddrillingfluidwillflowtothesurface,creatinga“fracout”or“inadvertentreturn.”USACEguidancedocumentEM1110-2-2902—Conduits,Pipes, andCulvertsAssociatedwithDamsandLeveeSystems(USACE,2020),describesseveralissueswiththis equationandapproach.Theprimaryissuesare(1)the equationisusedtolimitpressuretopreventdrilling fluiddischargeonthesurfaceratherthanpreventing theinitiationofhydraulicfractureand(2)thethe-

oryisbasedonisotropicstressconditions,whichalmostneverexistinrealsoils.Fordamandleveesafety, weareconcernedwithpreventingdamage,notjust fluidreleaseonthesurface.However,forclays,ifwe simplifytheequationbyassumingundrainednormally consolidatedsoilconditionsandtheminorprincipal stressisusedinsteadoftheisotropicstress,theDelft equationreducesdowntobeequivalenttoEq.2given above.

USACEREGULATIONER1110-1-1807

TheapproachusedbyUSACEinER1110-1-1807— DrillinginEarthEmbankmentDamsandLevees(USACE,2014)shouldbeimplementedwithintheprofessionalpracticeandfollowedwheneverdrillingorother invasivetechniquesareusedondamorlevees.Ifpossible,theuseofdrillingfluidsshouldbeavoidedin orneardamorleveeembankments.Ifdrillingfluids mustbeusedduetothedrillingobjectiveorthesubsurfaceconditions,theDrillingProgramPlan(DPP) mustcontainananalysiswithcalculationsforthepotentialtocausedamageandthemeasuresthatwillbe usedtominimizerisk.ForUSACEdams/levees,all DPPsthatproposetheuseoffluidsmustbereviewed bytheStandingCommitteeonDrillingandInstrumentation,ledbytheUSACEGeotechnical,Geology, andMaterialsCommunityofPracticeLeadandapprovedbytheDamSafetyOfficerortheLeveeSafety Officerattherelevantdistrict.Thetotalminorprincipalstressplustheundrainedstrengthofthesoilshould beusedtoestimatethehydraulicfracturepressure. TheUSACEregulationdoesnotrecommendafactorofsafety.Designersshouldselectanappropriate factorofsafetybasedontheimportanceofthestructureandlevelofuncertaintyintheanalysis.Itwould bereasonabletouseafactorofsafetyinthe1.3to 1.5range.

CONFININGSTRESS

ThefirstparameterinEq.1andEq.2isthetotalminorprincipalstress.Todeterminethisforflatground conditionswithnormallyconsolidatedsoils,thesteps are:

1.Determinethesoilunitweights.

2.Estimatetheporepressureusingseepagemodeling ormeasureddatafrompiezometers.

3.Calculatetheverticaleffectivestress.

4.Estimate k0 byusingtheequationinJaky(1944), whichgivestherelationshipbetweenthemajorand minoreffectiveprincipalstressesas

Schaefer
Figure9.Red-dyedslurry-filledhydraulicfracturecrackoverahorizontaldirectionaldrillingboring.
k0 = σ 3 /σ 1 = 1 sinφ . (3) 10 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16

However,therealconditionsfordamsandmanyleveesaremuchmorecomplicated.Theconfiningstresses cannotbeaccuratelyestimatedbysimplecalculations duetothefollowingissues:

Embankmentsalwayshaveslopedgroundconditions.

Majorandminorstressesarenotalwaysverticaland horizontal.

Theupperzonesoftheembankmentmaybeoverconsolidatedduetolocked-incompactionstresses, whilethelowerzoneswillbenormallyconsolidated becausethesoilweightisgreaterthanthecompactionstresses.

Thephreaticsurfacecanvarysignificantlyacrossthe coreofadam.

Irregularrocksurfaces,pinnaclesandslots,steep abutments,overhangs,conduits,concretedamcontacts,anddifferentialsettlementwillallcauselocalizedlowconfiningstressconditions.

SeeSherard(1986)foragooddiscussiononthespecialconsiderationsforlow-stresszonesthatcontribute tohydraulicfracturing.

Withmodernnumericalanalysistoolssuchas SIGMA/W,FLAC,andPLAXIS,atwo-dimensional modelcanbedevelopedtoestimatethestaticstresses inanembankmentdamatthelocationoftheproposed drilling.Inspecialcaseswithcomplexgeometry,threedimensionalmodelsmaybeappropriate.Thiswilltypicallyrequireevaluatingdifferentsections,including bothlongitudinalandtransversesections.Thegeometryofthemodelshouldbebasedonconstruction recordsandanyavailableboringdata,sothefoundationgeometryandembeddedstructuralfeatures,such asconduits,areproperlyincluded.Multiplepoolelevationsandpiezometricconditionsmayneedtobe consideredbasedonthepotentialforpoolfluctuations.Alinearelasticsoilstrengthmodelcanbeused. Theunitweightofthematerials,anestimateofPoisson’sratio,andcharacterizationofgroundwaterconditionsaretheprimaryvariablesrequired.Poisson’sratio isusedinthemodeltodeterminetheratioofhorizontaltoverticalstress(k0 ).

Oncethemodelisconstructed,itisloadedwithselfweight(gravity),andstressesarecalculated.Contour plotsofdepthversusstressprofilesofthetotalminimumstressescanbedeveloped.Thisanalysiswillprovideanapproximateestimateofthestressesinthedam

HydraulicFracturePotentialduringDrillinginDams
Figure10.LaboratoryhydraulicfracturetestresultsonfivesamplesfromMoriandTamura(1987)comparedtoproposedpredictionequation.
σ 3 =
σ 1 (4)
5.Calculatethehorizontaleffectivestress,
k0
6.Addtheporepressuretodeterminethetotalhorizontaleffectivestress.
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16 11

andfoundation.Moredetailedevaluationcanbedone usingmultistagesequencemodelingandmorerigorous materialmodels.SeeMcCookandGrotrian(2010)for proceduresformorerigorousmodelingforhydraulic fracture.Multiplesimplifiedrunscanbeperformed parametricallybyvaryingtheinputparameterstoestimatetherangeofstresses.

MEASUREMENTOF INSITU STRESS

Itispossibletomeasure insitu stressusingtools suchastheself-boringpressuremeter(Benoit,1995).

Theself-boringpressuremeterisconsideredtobethe mostreliablemethodformeasurementoflateralstress insoils.Thepressuremeterisplacedinthebottomof aboringandadvancedusingarecessedcuttingbit.

Afteradvancementtothedesireddepth,testingisdelayedtoallowforthedissipationofporepressure.

Themembraneisthenpressurized,andtotalpressure

versuscavitystrainismeasured.Thetotalhorizontal stressisdeterminedateachstrainarmbyinspectionof thetotalpressureversuscavitystrainplots.Thepressureatwhichthemembraneliftsoff(beginsdeforming thesoil)isequaltothe insitu totalhorizontalstress. Schmertmann(1985)providedadditionalinformation on insitu lateralstressandmethodsformeasurement. Measurementof insitu stresscanreallyonlybeused asaconfirmationoftheestimatedstresses,sincea boringusingdrillfluidmustbeperformedtodothe measurement.

DRILLINGNEXTTOCONDUITSANDSTEEP ROCKABUTMENTS

Cautionshouldbeusedbeforedrillinganyboringsnexttoconduitsorsteeprockabutments.Numerousincidentsofdrillfluidlossadjacenttoconduits

Schaefer
Figure11.Laboratoryhydraulicfracturetestresultsfromfourotherstudies(SeedandDuncan1981;LoandKaniaru,1990;Yanagisawaand Panah,1994;andAlfaroandWong2001)comparedtoproposedpredictionequation.
12 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16

orabutmentshaveoccurred.Stressesaroundconduits canbeverylow.Itispossibletohavetensilestresses adjacenttoconduitsduetoarchingeffects,asdemonstratedinaresearchreportbyCasagrandeandCovarrubias(1970)fortheUSACEWaterwaysExperiment Station.Iftensilezonesarepresent,thentheuseofany drillingfluidwilllikelycausehydraulicfracture.Figure 12showsacommonconditionwhereoutletworksconduitswereconstructednearasteeprockabutment.In theareamarkedbytheredarrowinFigure12,arching ofthesoilswilloccur,andtheconfiningstressesinthe areabetweentherockabutmentandtheconduitwill beverylow.

UNDRAINEDSTRENGTH

ForthesecondpartofEq.1andEq.2,the undrainedstrengthofthesoilisrequired.Thiscanbe determinedfrompreviouslaboratoryorfieldtestingor correlationstoindexproperties,oritcanbeestimated usingcriticalsoilmechanics.Aconservativeestimate canbeobtainedbyassumingtheembankmentdamor leveeisnormallyconsolidated,andEq.2canbeused.

Thisassumptionisvalidinmostcases,exceptin theuppersoilzones,wherethelocked-incompaction stressesaregreaterthantheoverburdenstress,andthe undrainedstrengthwillbemorethanestimated.Ifno previoustestingforundrainedstrengthisavailable,for normallyconsolidatedclays,theundrainedstrength ratiototheverticaleffectivestresscantypicallybeestimatedas ½ sin φ orintherangeof0.22to0.25. Equation5canthenbeusedtoestimatetheundrained strength.

Figure13showsdamagetoabottomoutlettunnel linercausedbyexcessivegroutpressureswhenrefusal pressureadjacenttothetunneldidnotconsiderthetotalpressure.

PRESSUREMEASUREMENT

Whencomparingestimatedfracturepressuresto pressuresinthefield,therelevantvaluetouseisthe totalpressure.Thetotalfluidpressureistheinitial porepressureplustheadditionalpressureappliedby thecolumnoffluidorgrout.Pressuremeasureddown theholeinthefieldwillbethetotalpressure.Groutingprojectstypicallyuseeffectivepressurestomonitor groutingprograms.Thisisappropriatefordeterminingtheeffectivenessofthegrouting.Inorderforthe grouttobepushedintosubmergedrockjoints,theinjectionpressuremustfirstovercomethe insitu groundwaterpressure.Theadditionalpressureistheeffectivepressure.However,totalpressureshouldbeused toevaluatehydraulicfracture,andeffectivepressure shouldbeusedtoevaluategroutingeffectiveness.Also, whendeterminingtheloadappliedtounderground structures,thetotalpressureshouldbeevaluated.

Onewaytoimproveourabilitytomonitorpressuresiswiththeuseofinstrumentedpackers,which candirectlymeasurethetotalgroutorwaterpressure directlyatthetopofthegroutorwaterpressuretest stage.Detailsofaninstrumentedpackerdevelopedby ACTforuseontheRoughRiverDamprojectcanbe foundinIvanovetal.(2017).Itisalsocommonfor HDDdrillingequipmenttohavepressuresensorsat thecuttingheadtodirectlymeasurethedrillfluidpressure.Forstandardgeotechnicaldrilling,directmeasurementoffluidpressuresinnotcommonlydone.If pressurizedfluidsareused,amethodtomeasurethe appliedpressureatthedrillrigshouldbeused,which willneedtobeaddedtothecalculationofthestatic headofthedrillfluid.Oncethethresholdpressures

HydraulicFracturePotentialduringDrillinginDams
cu = σ 1 × 0 5sinφ (5)
PRESSURECOMPARISON
Figure12.Exampleofpotentiallow-stresszonebetweenrockabutmentandoutletworksconduit.
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16 13
Figure13.Steel-linedbottomoutlettunnelwasdamagedbygroutingusingeffectivepressurecriteriainsteadoftotalpressure.

Figure14.Simplifiedexampleofhydraulicfracturepressurecalculation.

Column1:DepthofCalculation.

Column2:MajorTotalStress = Column1 × γsoil .

Column3:PorePressure = (Column1 DepthtoWater) × γwater ifpositive,else0.

Column4:MajorEffectiveStress = Column2 Column3.

Column5:MinorEffectiveStress = Column4 × k0 .

Column6:MinorTotalStress = Column5 + Column3.

Column7:UndrainedStrength = Column4 × 0.5 × sin φ

Column8:FracturePressure = Column6 + Column7.

Column9:GroutFluidPressure = Column1 × γgrout .

Column10:FactorofSafety = Column8/Column9.

arecalculated,apressurereliefvalvecouldbeusedto protectagainstpressurespikes,whichcouldhappenif cloggingoccursinthedrillfluidreturnpath.

SIMPLIFIEDEXAMPLE

Figure14showsasimplifiedexampleoffracture pressurecalculationsforgravitygroutingonaflat groundsite.Thisisforillustrativepurposesonlyand doesnotapplytoconditionsthatarefoundinand underdamsandlevees.Theboringisplannedtobe drilledinasingleclaysoillayertoadepthof100ft (30m).Calculationswillbedonefor5ft(1.5m)in-

crementsofdepth.Thesoilunitweightis120pcf(18.9 kN/m3 ).Thegroutunitweightis80pcf(12.5kN/m3 ). Theinitialwatertableisatadepthof50ft(15m).The drainedstrengthisassumedtobe φ = 30degrees.The k0 valueiscalculatedusingEq.3.

Notethatthelowestfactorofsafetyisnotatthebottomoftheboring.Groundwaterhasasignificantinfluenceonthefracturepressures.Practitionersshould considersettingupthecalculationsforsmallincrementsofdepthandincludeallsoillayerspresenton thesite.Fordamsandleveeswherenumericalmodelingisusedtoestimatethestresses,valuesoftotalminorprincipalstressversusdepthcanbeoutputfrom

Schaefer
14 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16

HydraulicFracturePotentialduringDrillinginDams

themodelingsoftwareandusedinasimilarspreadsheettocalculateprofilesforfracturepressure,drill fluidorslurrypressure,andfactorofsafetyversus depthforeachproposedboringorslurry-supported excavation.

SUMMARY

1.Numeroushydraulicfractureincidentshaveoccurredondamsandlevees.

2.Holesshouldnotbedrilledindamsorleveesunless thereisawell-reasonedcasethatjustifiestherisk.

3.Aplanshouldbedraftedtomanagetheriskinthe bestwaypossibleto“donoharm.”

4.Riskcanbeminimizedthroughcarefulplanningof boringlocation/samplesites.

5.Theuseofsonicdrillingorhollowstemaugers shouldbeconsideredtoavoidtheriskofdrilling withfluids.

6.Iffluidsareused,onlygravitypressureshouldbe used,ifpossible.

7.Ifpressurizedfluidsmustbeused,thenahydraulic fractureanalysismustbeperformedtodetermine theestimatedfracturepressure,estimatedfluid pressurefromdrillingactivity,andestimatedfactor ofsafety.

8.Pressuresshouldbemonitoredandkeptbelowthresholdsusinganappropriatefactorof safety.

9.Ifpossible,apressurereliefvalveshouldbeused toprotectagainstspikesinpressurecausedbydrill fluidreturnclogging.

REFERENCES

Alfaro,M.C.andWong,C.K.,2001,Laboratorystudiesoffracturingoflow-permeabilitysoils: CanadianGeotechnicalJournal,Vol.38,pp.303–315.

Andersen,K.H.;Rawlings,C.G.;Lunne,T.A.;andBy,T.H., 1994,Estimationofhydraulicfracturepressureinclay: CanadianGeotechnicalJournal,Vol.31,pp.817–828.

Benoit,J.,1995,Advancesinpressuremetertechnologywithspecificreferencetoclays.InBallivy,G.(Editor), ThePressuremeterandItsNewAvenues,Proceedingsofthe4thInternational Symposium, 17–19May1995,Sherbrooke,Québec,Canada: CRCPress,BocaRaton,FL,pp.125–139.

Bjerrum,L.;Nash,J.K.;Kennard,R.M.;andGibson, R.E.,1972,Hydraulicfracturinginfieldpermeabilitytesting: Geotechnique,Vol.22,pp.319–332.

Bozozuk,M.,1974,Minorprincipalstressmeasurementsinmarineclaywithhydraulicfracturetests.In Proceedings:EngineeringFoundationConferenceonSubsurfaceExploration forUndergroundExcavationandHeavyConstruction,Henniker,NH:AmericanSocietyofCivilEngineers,NewYork, pp.333–349.

Calcagno,F.,Jr.,1983,HydraulicfracturestudyoftheTiber spillwaycofferdam: AEGNewsletter,Vol.26,pp.25–26.

Casagrande,A.andCovarrubias,S.W.,1970, CrackingofEarth andRockfillDams,TensionZonesinEmbankmentsCausedby ConduitsandCutoffWalls:U.S.ArmyEngineerWaterways ExperimentStationContractReportS-70-7.

Chen,Yu-JiongandZhang,Shu-Lu,1989,Testembankmentof fracturegrouting: JournalofGeotechnicalEngineering,Vol. 115,No.11,pp.1668–1672.

Davidson,R.R.;Levallois,J.;andGraybeal,K.,1992,SeepagecutoffwallforMudMountainDam.In ASTMSTP 1129—SlurryWalls:Design,Construction,andQualityControl: AmericanSocietyforTestingandMaterials,Philadelphia,PA,pp.309–333.

Erwin,E.D.andGlenn,J.M.,1992, ASTMSTP1129—Plastic ConcreteSlurryWallforWisterDam,SlurryWalls:Design ConstructionandQualityControl:AmericanSocietyforTestingandMaterials,Philadelphia,PA.

Hamouche,K.K.;Leroueil,S.;Roy,M.;andLutenegger,A.J., 1995, Insitu evaluationof k0 ineasternCanadaclays: CanadianGeotechnicalJournal,Vol.32,pp.677–688.

IndependentPaneltoReviewCauseofTetonDamFailure, 1976,FailureofTetonDam:ReporttotheU.S.Departmentof InteriorandStateofIdaho,U.S.GovernmentPrintingOffice, Washington,D.C.

Ivanov,D.;Horvath,D.;andHeenan,D.,2017,Advancesin measuringgroutingpressuresusinganinstrumentedpacker. InByle,J.,Johnson,L.,Bruce,D.,ElMohtar,C.,Gazzarrini, P.,andRichards,T.(Editors), Grouting2017:AmericanSocietyofCivilEngineers,Honolulu,HI,pp.313–322.

Jaky,J.,1944,ThecoefficientofEarthpressureatrest: Journalof theSocietyofHungarianArchitectsandEngineers,Vol.25,pp. 355–358.

Lo,K.Y.andKaniaru,K.,1990,Hydraulicfractureinearth androck-filldams: CanadianGeotechnicalJournal,Vol.27, pp.496–506.

Luger,H.J.andHergarden,A.M.,1988,Directionaldrilling insoftsoil:Influenceofmudpressures.In Proceedings:NoDigConference: InternationalSocietyofTrenchlessTechnology,WashingtonD.C.

McCook,D.K.andGrotrian,K.O.,2010,UsingSIGMA/W topredicthydraulicfractureinanearthenembankment.In Proceedings:DamSafety: AssociationofDamSafetyOfficials, SeattleWashington,pp.247–271.

Mori,A.andTamura,M.,1987,Hydrofracturingpressure ofcohesivesoils: SoilsandFoundations,Vol.27,No.1, pp.14–22.

Schmertmann,J.H.,1985,Measureanduseofthe insitu lateral stress.In ThePracticeofFoundationEngineer,OsterbergVol. DepartmentofCivilEngineering,NorthwesternUniversity, Evanston,IL,pp.189-213.

Seed,H.B.andDuncan,J.M.,1981,TheTetonDam—Aretrospectivereview.In ProceedingsoftheTenthInternationalConferenceonSoilMechanicsandFoundationEngineering,Vol.3: Stockholm,Sweden,pp.219–238.

Sherard,J.L.,1970,Lossofwaterinboreholesinimperviousembankmentsections.In Proceedingsofthe10th ICOLDCongress,Vol.VI:Montreal,Quebec,Canada, pp.377–381.

Sherard,J.L.,1973,Embankmentdamcracking.InPoulos,S. andHirschfeld,R.(Editors), EmbankmentDamEngineering: JohnWileyandSons,NewYork,pp.272–353.

Sherard,J.L.,1986,Hydraulicfracturinginembankmentdams: ASCEJournalofGeotechnicalEngineering,Vol.112,No.10, pp.905–927.

Sherard,J.L.;Decker,R.S.;andRyker,N.L.,1972,Hydraulic fracturinginlowdamsofdispersiveclay.In Proceedingsof

Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16 15

Schaefer

theSpecialtyConferenceonPerformanceofEarthandEarthSupportedStructures,Vol.1,PartI:AmericanSocietyofCivil Engineers,NewYork,pp.563–590.

USACE(U.S.ArmyCorpsofEngineers),1998, Installationof PipelinesBeneathLeveesUsingHorizontalDirectionalDrilling: U.S.ArmyCorpsofEngineersTechnicalReportCPAR-GL98-1.

USACE(U.S.ArmyCorpsofEngineers),2014, ER1110-11807—DrillinginEarthEmbankmentDamsandLevees:U.S. ArmyCorpsofEngineers,Washington,D.C.

USACE(U.S.ArmyCorpsofEngineers),2020, EM1110-22902—Conduits,Pipes,andCulvertsAssociatedwithDamsand LeveeSystems:U.S.ArmyCorpsofEngineers,Washington, D.C.

Vesic,A.S.,1972,Expansionofcavitiesininfinitesoilmass: ASCE JournaloftheSoilMechanicsandFoundationsDivision,Vol. 98,pp.265–290.

Yanagisawa,E.andPanah,A.K.,1994,Twodimensionalstudy ofhydraulicfracturingcriteriaincohesivesoils: Soilsand Foundations,Vol.34,No.1,pp.1–9.

16 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.3–16

BestPracticesforPlanningandImplementingSite InvestigationsatFederallyOwnedorRegulatedDams andLevees

KATHLEENBENSKO

FederalEnergyRegulatoryCommission,OfficeofEnergyProjects,DivisionofDam SafetyandInspections,888FirstStreet,N.E.,Washington,DC20426

BRYANK.SIMPSON

U.S.BureauofReclamation,GeotechnicalServicesDivision,EngineeringGeologyand Geophysics,DenverFederalCenter,POBox25007(86-68320),Denver,CO 80225-0007

THOMASA.TERRY

U.S.ArmyCorpsofEngineers,RiskManagementCenter,12596W.BayaudAvenue, Suite400,Lakewood,CO80228

SCOTTR.WALKER*

TennesseeValleyAuthority,DamSafetyGovernance&Oversight,1101MarketStreet, LP1F-C,Chattanooga,TN37402

KeyTerms: DamSafety,LeveeSafety,Geotechnical SiteInvestigations,DrillingProgramPlans,Drilling Guidance,FederalAgency

ABSTRACT

Management,regulation,andreviewoftheplanning andexecutionofintrusivesiteinvestigationsvarywithin eachoffourfederalorganizationsinvolvedwithdam andleveesafetybaseduponvariousrolesandresponsibilities.TheU.S.BureauofReclamation(USBR),the TennesseeValleyAuthority,andtheU.S.ArmyCorps ofEngineers(USACE)areowner-operatorsofdams thatservemultiplepurposes,includingfloodcontrol,hydropower,watersupply,andnavigation.TheFederalEnergyRegulatoryCommission(FERC)regulatesandinspectsnon-federalhydropowerdams,anddevelopsand implementspolicies,programs,andstandardstoensure thesafetyoftheselicensedprojects.Eachorganization (exceptFERC)isalsoresponsibleforoversight,rehabilitation,andrepairofstructuresincludingdamaged levees,canals,anddams,includingsome(inthecaseof USBRandUSACE)thatareoperatedandmaintained byothers.Thispaperprovidesabriefoverviewofthe variousregulationsandguidancerelatedtotheplanning andexecutionofintrusivesiteinvestigationsconducted atstructureswithineachorganization’sportfolio.Italso

*Correspondingauthoremail:srwalker3@tva.gov

providesaprogrammaticoverviewoftheprocessesutilizedbythedifferentfederalorganizationsforplanning, reviewing,andimplementingintrusiveinvestigations.It coversspecificrequirements(guidanceandregulations), timeframesthatareinvolvedwiththereviewprocess, anddiscussesupdatesandchangesthatareplannedor beingconsidered.

OVERVIEW

Thepurposeofthepaperistoexplainhowthefour majorfederalorganizationswithdamandleveesafety programs—theU.S.BureauofReclamation(USBR), U.S.ArmyCorpsofEngineers(USACE),Tennessee ValleyAuthority(TVA),andFederalEnergyRegulatoryCommission(FERC)—planandimplement intrusivesiteinvestigationsforhydraulicstructures. Eachorganizationhasdifferentprimarypurposesand rolesrelatedtodamsandleveeswhichaffectwhyand howsiteinvestigationsforeachareperformedand implemented.

Topicsdiscussedincludethefollowing:

Asummaryofeachorganization’srolesandresponsibilitiesrelatedtodamandleveesafety,including thepurposesoftheirdamsandlevees,regulatory position,emergencyandpost-emergencyworkfor others,andworkforotheroutsideentitiesrelatedto damandleveesafety

Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 17

Adescriptionofthebasicsiteinvestigationprocessestheorganizationsallfollowandhowriskassessmentsareutilizedininvestigationplanning Abriefdescriptionofhoweachorganizationplans andexecutesintrusivesiteinvestigations,including adiscussionofthevariousregulationsandguidance documentseachorganizationfollows Contracting,communications,levelofinvolvement, andoversightoftheintrusivesiteinvestigation process

DiscussiongenerallyfollowstheorderofUSBR, USACE,TVA,andFERC.Thisreflectsaprogression fromfewertomoreentitiesinvolved,andfromanalmostfullyinternalprogram(USBR)toamixedinternal/externalprogram(USACE)toowneroversightof theprocess(TVA)toregulatoroftheprocess(FERC).

Notalldamandleveesafety-relatedaspectsthatare importanttositeinvestigationprogramsarediscussed. Additionalrequirementscouldincludepreparedsubmittalssuchashealthandsafetyplans(HASPs), qualityassuranceandqualitycontrol(QA/QC)processes,TemporaryConstructionEmergencyAction Plans(TCEAPs),siteaccess,realestateissues,utility clearances,tribalconsultations,NationalEnvironmentalPolicyAct(NEPA)and/orStateHistoricPreservationOffice(SHPO)reviewsorrestrictions,andother archeological,biological,orhistoricalevaluations.

BACKGROUNDONORGANIZATIONS

USBR

Establishedin1902,theUSBR(alsoreferredtoas Reclamation)isbestknownforthedams,powerplants, andcanalsitconstructedinthe17westernstates(see Figure1).Thesewaterprojectsledtohomesteading andpromotedtheeconomicdevelopmentoftheWest. Reclamationhasconstructedmorethan600damsand reservoirsincludingHooverDamontheColorado RiverandGrandCouleeDamontheColumbiaRiver.

Reclamationisalsothesecondlargestproducerof hydroelectricpowerintheUnitedStates.USBR’s53 powerplantsannuallyprovidemorethan40billion kilowatthours,generatenearly$1billioninpowerrevenue,andproduceenoughelectricitytoserve3.5millionhomes.Today,theUSBRisacontemporarywatermanagementagencywithastrategicplanoutlining numerousprograms,initiatives,andactivitiestohelp thewesternstates,NativeAmericantribes,andothers balanceamultitudeofcompetingusesforwater.The missionistoassistinmeetingtheincreasingwaterdemandsofthesestatesandentitieswhileprotectingthe environmentandthepublic’sinvestmentinReclamation’sinfrastructure.

Reclamationplacesgreatemphasisonfulfillingwaterdeliveryobligations,waterconservation,waterrecyclingandreuse,anddevelopingpartnershipswith customers,states,andNativeAmericantribes,and findingwaystobringtogetherthevarietyofintereststoaddresscompetingneedsforlimitedwater resources.

USACE

In1853,USACEbeganworkontheWashington Aqueduct,whichsupplieswatertotheDistrictof Columbia(WarDept,1939)andisstilloperatedby USACE.Subsequently,USACEbecameinvolvedin floodcontrolandnavigationalongtheMississippi Riverin1879withthecreationoftheMississippi RiverCommission(StatutesatLarge,1881).In1885 USACEcompletedthreereservoirsinMinnesotanear theheadwatersoftheMississippiRiverforflood controlandnavigationpurposes(USACE,1885and 2020a).TheRansdell–HumphreysFloodControlAct of1917(StatutesatLarge,1917)wasthefirstfederal FloodControlActpassedbyCongress,andthenthe FloodControlActof1936(StatutesatLarge,1936a) madefloodcontrolafederalpolicyandofficiallyrecognizedUSACEasthemajorfederalfloodcontrol agencywithofficesandprojectsacrossthecountryand overseasterritories(Figure2).

USACEself-regulatesitsdamsandleveesandinspectsandpartiallyregulatesothersunderaprogram authorizedbyPublicLaw(PL)84-99(Statutesat Large,1955andU.S.C.,2020c).USACEisthelargest producerofhydropowerintheU.S.asmeasuredby hydroelectricgenerationcapacityinmegawatts.Additionally,USACEprovidesfloodfightingassistance andaidstheFederalEmergencyManagementAgency (FEMA)indisasterrecoveryefforts.USACEmanagestheNationalInventoryofDamsandtheNational LeveeDatabaseandisworkingwithFEMAonthe NationalLeveeSafetyProgram.

TVA

TVAisacorporateagencyandinstrumentalityof theUnitedStates,createdonMay18,1933,when CongresspassedtheTennesseeValleyAuthorityAct of1933(TVAAct;StatutesatLarge,1934andU.S.C., 2020b)inresponsetoPresidentFranklinDelanoRoosevelt’svisionfor,“acorporationclothedwiththe powerofgovernmentbutpossessedoftheflexibilityandinitiativeofaprivateenterprise”(Roosevelt, 1938).Incontrasttoauthorizationsforotherfederal agencies,theTVAActreferstoTVAas“theCorporation”anddescribesitspurposesasimprovingnavigabilityandprovidingfloodcontrolontheTennessee

Bensko,Simpson,Terry,andWalker
18 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

River,initiatingenvironmentalimprovements(reforestationandimprovingfarmingpractices),stimulatingeconomicdevelopmentwithintheTennesseeValley,andprovidingfornationaldefense.

Asthenation’slargestpublicpowerproducer,TVA utilizesmultiplegenerationsources,includingnuclear, naturalgas,coal,andrenewables.Hydroelectricrepresentsabout10percentofTVA’soverallgenerationmix, andtwenty-nineofTVA’sriverdamprojects(along withtheRaccoonMountainPumped-Storagefacility) generateelectricity.TVAceasedreceivingfederalappropriationsin1999andmadeitsfinalscheduledrepaymentonCongress’original$1billioninvestmentin theTVApowersystemin2014.TodayTVAisfullyselffunded,withnearlyallrevenuederivedfrompower sales.WhilethisfiscalmodeldifferentiatesTVAfrom USBRandUSACE,akeysimilarityisthatTVA’sDam SafetyProgram(DSP),likethoseofotherfederaldam owners,isself-regulated.

TVAoperateswithinapowerserviceareathat coverspartsofsevenstates,asshowninFigure3. AllbutoneofTVA’sriverdamsarelocatedwithin thedrainagebasinoftheTennesseeRiver,whichis alsodepictedinFigure3.TVA’scurrentriverdam

inventoryincludes49projectscomprisedof88individualstructures(includingsaddledams,dikes,etc.). TVAconstructed42riverdamprojects(80totalstructures),purchasedsixotherprojects(sevenstructures), andacquiredoneprojectfromUSACEaspartofthe TVAAct.

Inadditiontotheriverdams,TVA’sDSPoversees ninewaterretentionstructuresconstructedtosupport ongoingfossilandnucleargeneration,sixleveesoriginallyconstructedforvectorcontrolandwhichnow providerecreationandwildlifehabitatbenefits,and onehistoricgristmilldamsituatedonlandTVAacquiredaspartofaflowageeasement.Allnon-river damsareclassifiedaslow-hazardpotentialstructures. AseparateregulatoryprogramatTVAprovidesgovernanceandoversightofcoalashandcoalwashfinesimpoundmentsatactiveanddecommissionedfossilgenerationsites.

FERC’soriginbeganwiththepassageoftheFederalWaterPowerActof1920(FWPA;Statutesat Large,1921)whichprovidedthefederalgovernment

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Figure1.U.S.BureauofReclamationregions. FERC
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 19

withmorecomprehensivecontrolofthenation’snavigablewaterresources.In1935theFWPAbecame PartIoftheFederalPowerAct(U.S.C.,2020a),underwhichtheFederalPowerCommissionevolvedinto anindependentregulatoryagency(McKernan,1950). In1977,asaresultoftheDepartmentofEnergyOrganizationAct(StatutesatLarge,1980),theFederal PowerCommissionwasre-designatedastheFederal EnergyRegulatoryCommission.Sincetheenactment oftheFederalPowerAct,CongresshasassignedexpandedresponsibilitiestoFERCthroughvariouslaws toincludeproposalreviewofinterstatenaturalgas pipelines,storageprojects,liquifiednaturalgasterminals,responsibilitiesrelatingtobulk-powersystemreliabilityandcybersecurity,andlicensesfornon-federal hydropowerprojects.

FERC’soversightofnon-federalhydropowerdevelopmentishandledbythreeofsixdivisionswithin theOfficeofEnergyProjects.TheDivisionofDam

SafetyandInspections(D2SI)executestheCommission’sDamSafetyandPublicSafetyProgramsbyimplementingpolicies,programs,andstandardsfordam safetytoensurethatjurisdictionalprojectsareinspectedandevaluatedintheirdesign,construction, operation,maintenance,andsecurityphasestoprotectlife,health,property,andtheenvironment.Project compliancetothetermsandconditionsofthelicensesandexemptionsregardingdamsafetyarealso assessed.D2SI’soversightroleisexplainedintheCode ofFederalRegulations(CFR;CFR,2020).D2SIis comprisedoffiveregionalofficesasshowninFigure4, andaHeadquartersofficeinWashington,D.C.,totalingabout130personnel.

FERCregulatesover2,500hydropower-producing projectswithintheUnitedStates.Federallyowned hydropower-producingprojectsdonotfallwithin FERC’sjurisdiction;however,FERCdoesregulate privatelydevelopedhydropowerfacilitieslocatedat

Bensko,Simpson,Terry,andWalker
Figure2.UnitedStatesArmyCorpsofEngineersdistrictsandheadquarterslocations.
20 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

USACE-andUSBR-ownedprojects.(Therearecurrentlynoprivatelydevelopedhydropowerprojectsat TVAfacilities.)TheprojectswithinFERC’spurview varygreatlyintype,size,design,age,purpose,andoperation.Thenumberoflicensedprojectsandlicensees resultsinaratherdynamicportfoliobecauseitfrequentlychangesasnewprojectsarelicensedandother licensesaresurrendered.Figure5showsthedistributionofbothFERC-regulatedandfederalhydropower projects.

Figures6through8summarize(asapplicable),the inventory,structurepurposes,roles,anddegreeto whichdamorleveesafetyriskisappliedtoeach organization’soveralldamsafetyprogramandintrusivesiteinvestigations.Thenumberofregulated structuresforUSBRandUSACEreferstoadditionalfacilitiestheyregulate.Emptycellsindicate not applicable.Collectively,thesefiguresprovideasummaryofthesimilaritiesanddifferencesbetweeneach organization.

Asummaryoftheorganizationalrolesshownin Figure8isasfollows:

Self-governing–organizationregulatesitsownactionsrelatedtodamorleveesafety.

Regulator–regulatesallaspectsofdamorlevee safety.TheFERCregulatoryroleislimitedtothose structuresthatarepartofnon-federalhydropowerproducingfacilities(however,thefacilitiesmaybe locatedatfederalprojects).Pertinentstructuresrelatingtothesefacilitiesareincluded,suchassaddledams,etc.USACE’sregulatoryroleislimitedto leveesthatwerebuiltbyUSACEandturnedover toalocalsponsortooperateandmaintain,structuresforwhichanentityhaselectedtoparticipate inthePL84-99program(whichprovidesreimbursementforspecificdamagestoleveesthatresultfrom high-waterevents),andreviewofrequestsbynonUSACEentitiesforpermitstomodify,alter,oroccupyanyexistingUSACE-constructedpublicworks projectorassociatedlandsthatwouldotherwise beprohibitedby33U.S.C.§408(U.S.C.,2020d). (ThisstatuteiscommonlyreferredtoasSection 408,andtheassociatedauthorizationsareknownas 408permits.)

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Figure3.LocationsofTennesseeValleyAuthority(TVA)riverdamswithintheTennesseeRiverwatershed(lightershading)andTVApower servicearea(darkershading).
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 21

Emergencyassistance–aidsduringfloodemergenciestolocalsponsorsuponrequest.

Repairandrehabilitation–forstructuresthatare partofthePL84-99programsrelatedtoleveesand limiteddamsthatwerebuiltbyUSACEandarenow operatedandmaintainedbyalocalsponsor.USACEalsoactsasFEMA’sengineeringandcontractingbranchwhenrespondingtonationallydeclared disasterssuchashurricanesandfloods.

USBR,USACE,TVA,andFERCaretransitioningtowardfullyrisk-informedmanagementoftheir respectivedamandleveesafetyprograms.However, internaldesignandguidancestandards,externalregulations,treatyobligations,andcontractsdocontinue tocontrolsomeaspectsoftheprograms(tovarying degrees)andsiteinvestigationsisoneareawhereriskinformedprocesseshavebeenslowertoimplement.

USBRisthefurthestalongintheprocess,withthe majorityofitsdecision-making,design,andsiteinvestigationsinformedbyrisk.TVAandFERCaretransitioningtorisk-informedprocessesformanagementof theirfacilities,includingsiteinvestigations,butboth alsohavestandards-basedcriteriaandrequirements thatmustbefollowed.

USACEisusingrisktomanagedamandleveeportfoliosandtoinformdesigns;however,forsiteinvestigations,integrationofriskvariesbetweenthedam andleveeprograms.USACEtypicallyavoidsdrilling inorneardams(particularlyearthembankments)exceptinsupportofdesigns,aspartofissueevaluation studies(IESs)followingriskassessments,ortorepair orreplaceinstrumentationorreliefwells.Leveesfully ownedandoperatedbyUSACEaregenerallytreated similarlytothedamswhenitcomestointernalinitiationofsubsurfaceinvestigationprograms.However, unlikedamsthatoccupycomparativelysmallfootprints,leveesarelongstructuresthatoftenparallelmajorriversformanymiles.Thisgeometryandgeography commonlyplacetheminconflictwithtransportation andutilitycorridorsandmakethemattractiveaslocationsforparksorsimilaropenspace.Entitiesexternal toUSACEthatwishtoplacestructuresin,on,orunderUSACE-ownedleveesutilizetheSection408permitprocess(whichdoesnothaveariskcomponent)to requestpermissiontoconductsubsurfaceinvestigation insupportoftheirneeds(e.g.,designofbridges,directionalboresforpipelines,utilitytowers,picnicsheltersandoutbuildings).TheSection408processalso appliestodrillinginleveesthatareownedandoper-

Bensko,Simpson,Terry,andWalker
Figure4.FederalEnergyRegulatoryCommissionregionalofficesandcoverageareas.
22 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

JOINTOPERATIONSBETWEENTHE ORGANIZATIONS USBRandUSACE

USBRandUSACEjointlyoperateseveralfacilities, withtheUSBRtypicallymakingday-to-dayoperationaldecisionsrelatedtowaterandhydropower,while USACEtypicallymakesdecisionsrelatedtofloodcontrol.Theentitythatcontrolsthemainoperationisconsideredtheleadorganizationanddetermineswhich ofthetwowillleadindamsafetypractices.ExamplesoftheseincludetheFolsomDamjointuseproject andtheGarrisonDamproject’sSnakeCreekEmbankment,whichseparatesLakeAudubon(whichis controlledbyUSBRforirrigationwatersupply)from LakeSakakawea(whichiscontrolledbyUSACEprimarilyforfloodcontrol).

TVAandUSACE

TVA’sportfolioincludes10damswithnavigation facilities—nineontheTennesseeRiverandoneon theClinchRiver.Ateachfacility,TVAownstheinfrastructureandisresponsibleformaintenanceofthe dam,whileUSACEisresponsibleforoperationand maintenanceofthenavigationlocks.TVAmanages reservoirlevelsanddischargesacrossthesystemto supportnavigation.USACEdesignedandisnowcontractingforandmanagingconstructionofnewnavigationlocksattheKentuckyandChickamaugaprojects becauseUSACEcanreceivethefederalappropriations necessarytofundtheprojects.Additionally,thenorthernendoftheTennessee–TombigbeeWaterway(which isoperatedandmaintainedbyUSACE)is8.5miles upstreamfromTVA’sPickwickLandingDam.WaterfromPickwickLakeisreleasedwhenvesselslock throughJamieWhittenLockandDaminMississippi.

TVAalsocoordinatescloselywiththeUSACEdistrictofficesinNashvilleandCincinnatiforroutineand floodoperationsontheTennesseeandCumberland

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Figure5.FederalEnergyRegulatoryCommission(FERC)-regulatedandfederallyownedhydropowerprojects(FERC,2017). atedbyasponsor(forwhichUSACEonlyservesa regulator).
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 23

Bensko,Simpson,Terry,andWalker

Rivers.Thelowermostreservoirsoneachriver(KentuckyLakeandLakeBarkley,respectively)arehydraulicallyconnectedbyanavigationcanal.TVA runsthehydraulicmodelforthecombinedsystem andschedulesnormaloperationdischargesfromboth dams.TVAalsoscheduleshydroelectricgeneration fromtheotherUSACEdamsupstreamontheCumberlandandprovidesUSACEwithdischargesfrom

GreatFallsDam(whichistheonlyTVAriverdam intheCumberlandwatershed).Duringfloodevents ontheOhioRiver,USACEschedulesdischargefrom KentuckyandBarkleyDamstoreduceimpactstothe lowerOhioandMississippiRivers.Inaddition,TVA utilizesUSACEcadrestoassistwithroutinesemiquantitativeriskassessments(SQRAs)forselected dams.

Figure6.Summaryofstructureinventories.
24 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39
Figure7.Primaryandsecondarypurposesofdamsandlevees.

TVAandUSBR

Althoughtherearenocurrentjointoperations,TVA andUSBRcollaboratedcloselyintheyearsimmediatelyfollowingpassageoftheTVAAct.Becauseit tooktimetocreateadesignbranch,TVAhiredUSBR todevelopthedesignsforNorrisandWheelerDams (whichiswhyNorrisistheonlyTVAdamwithdrum gates).TVAiscurrentlyworkingwithUSBRonrehabilitationofringsealgatesatHiwasseeDam,thedesignforwhichisvirtuallyidenticaltothoseatGrand CouleeDam.

FERCandUSBR,USACE,orTVA

TherearenumerousprojectswhereUSACEor USBRisthedamownerandoperatorwitha third-partyhydropowerproviderthatisregulated byFERC.ForUSACEstructures,thehydropower providergenerallycontrolstheday-to-dayoutflow operationsincoordinationwithUSACE,whileUSACEcontrolsthefloodpoolandfloodcontrol operations.Iftheprojectsalsohavenavigation, thenUSACEcontrolsthenavigationthroughthe locksandthenavigation-relatedpools;examples

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Figure8.Summaryoforganizationrole(s).
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 25
Figure9.SimplifiedTennesseeValleyAuthorityDamSafetyProgramorganizationalchart.

oftheseincludemanydamsalongtheColumbia River.

ForReclamationassets,thirdpartiesarepermittedunderaleaseofpowerprivilege(LOPP)contract.LOPPprojectsmustnotimpairtheefficiency ofReclamation-generatedpowerorwaterdeliveries, jeopardizepublicsafety,ornegativelyaffectanyother Reclamationprojectpurpose.

TVAcoordinateswithFERClicenseesthatoperate damswithintheTennesseeRiverwatershed(mostnotablyontheLittleTennesseeRiverdownstreamfrom FontanaDam),buttherearenoformaljointoperationsbetweenFERC,theirlicensees,andTVA.

GENERALCONSIDERATIONS, REGULATIONS,ANDGUIDELINES

ThepartiesinvolvedandthereasonsforconductingintrusiveinvestigationsatstructuresownedorregulatedbyUSBR,USACE,TVA,orFERCvary.For structuresownedbyoneoftheorganizations,theprocessmaybeself-initiated(suchastocollectinformationtobetterquantifyanidentifiedpotentialfailure mode(PFM),ortosupportdesignofamodification), orinitiatedbyanoutsideorganization(e.g.,transportationdepartments,pipelineowners,orthird-party hydropowerdevelopers).Forstructuresregulatedby USBRorUSACE,theprocessistypicallyinitiatedby anoutsideorganization;inadditiontotheexamples above,thesemayalsoincludealocalfloodcontrolor irrigationdistrict.ForFERC-regulatedstructures,the processisalwaysinitiatedbythelicensee.

Eachfederalorganizationutilizesregulationsand guidelinesthatdescribepermissibleorpreferredinvestigationtechniques,minimumqualifications,andsubmittalrequirements.Whilethespecificsofthevarious documentsdiffer,theunderlyingfundamentalprincipleis DONOHARM tothestructure.Theprimary governingdocumentsforeachorganizationareas follows:

USBR: GuidelinesforDrillingandSamplinginEmbankmentDams (USBRDrillingGuidelines;USBR, 2014)

USACE: DrillinginEarthEmbankmentsandLevees (ER1110-1-1807;USACE,2014a)

FERC: GuidelinesforDrillinginandNearEmbankmentDamsandtheirFoundations,Version3.1 (FERCDrillingGuidelines;FERC,2016)

TVA: EvaluationsandDesignofDams (TVAStandardProgramsandProcesses(SPP)-27.001; TVA,2022a),whichreferencestheFERCDrilling Guidelines

Supportingdocumentsthatmaybeusedtoassist withtheplanningofintrusiveinvestigations,including

internalandexternalguidancefordrillingandabandonmentofborings,andmethodologies,arelisted inthe References section.TheseincludeAustralian DrillingIndustryAssociation[ADIA],2020;ASTM, 2014,2016,2017,2018a–e;Dustmanetal.,1992;Farrar,1999;FEMA,2005;Luteneggeretal.,1995;Ruda andBosschler,2005;TVA,2013;USBR,1990,1998a, 1998b,2001;USBRandUSACE,2019;andUSACE, 2020b.

Whiletheintentofthisarticleisnottoreiterateinformationpublishedinthesedocuments,thefollowing areconsiderationsthatconstitutegoodpracticeand aregenerallyapplicabletointrusiveinvestigationplanningforprojectsatanydamorlevee(whetherforor regulatedbyafederalorganizationornot).

ResearchingAvailableBackgroundInformation

Researchistheleastinvasiveandsafestwayto gatherinformation.Thistaskincludesgathering,organizing,andreviewingallavailableinformationabout thestructureandsubsurfaceconditions.Potential sourceswillvaryfromprojecttoprojectbutshould includeallrecordsheldbytheownerandpriorownersattheiroffices(local,regional,andnational),at thesite,historicarchives(newspaper,county,state, andfederal–includingtheNationalArchivesand RecordsAdministration),stateandfederalagencies (e.g.,UnitedStatesGeologicalSurvey;stategeologicalsurveys;UnitedStatesDepartmentofAgriculture, NaturalResourcesConservationServicesoilsurveys), andotherresourcesasneeded.

Itisessentialtounderstandthefollowinginformationataminimumaspartofthepreparationforarisk assessmentandanysiteinvestigation:

Originaldesignplansandspecificationsforthe structure

As-builtdocumentation,andhistoryofmodifications

Recordphotosfrompreconstruction,duringconstruction,andpost-construction

Relevantanalyses(particularlystabilityandseepage)

Bedrockgeology,includinginformationaboutgeologicstructure,seismotectonicfeatures,joints,or discontinuities

Surficialgeologyincludingthegeomorphologyof thesiteandsurroundingarea

Hydrogeologicconditions

Inspectionrecords,includinginstrumentationreadings,recordsandperformanceevaluations

Muchofthisinformationistypicallycontained inthesupportingsummarydocumentationforeach structure;however,forvariousreasonsthisisnot

Bensko,Simpson,Terry,andWalker
26 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

Table1. Supportingsummarydocumentnomenclatureby organization.

Organization

SupportingSummaryDocumentName andAcronym

USBRComprehensiveReview(CR)

USACEPeriodicAssessment(PA)orRiskAssessment (RA)

TVASupportingTechnicalInformation(STI)

FERCSupportingTechnicalInformationDocument (STID)

USBR = U.S.BureauofReclamation;USACE = U.S.ArmyCorps ofEngineers;TVA = TennesseeValleyAuthority;FERC = Federal EnergyRegulatoryCommission.

alwaysthecaseinpractice.Eachorganizationusesdifferenttermsforthesupportingsummarydocuments; seeTable1fortheorganization-specificnomenclature.

PlanningSiteInvestigations

Intrusiveinvestigationprogramsshouldbedesigned bygeotechnicalandgeologicalprofessionalswithexperienceindamandleveesafety.Thefirststepisto definethequestionstobeansweredaswellasthegoals andtargetsoftheprogram,whichwillinformthelocationsanddepthsfortheexplorations,thesamples andotherinformationtocollect,andtheinstrumentationtoinstall.Inmanycases,intrusiveinvestigationprogramsareinitiatedfollowingriskassessments. ForPFMswithadispositionof“InsufficientInformation,”drillingorexcavationmaybenecessaryto collecttheinformationrequiredtoproperlyevaluate thePFM.ForSQRAsorquantitativeriskassessments (QRAs),informationfromtheinvestigationsmaybe neededtoreduceuncertaintyrelatedtorisk-driving failuremodesidentifiedbytheSQRAortoinformor refinenodalestimatesinaQRA.

Theneedfortheinformation,however,mustbebalancedagainsttheriskassociatedwithcollectingit.To thatend,theplanningteamshouldidentifywhatinformationcanbeobtainedbynon-invasiveandminimally invasivemethods.Additionally,forsomeinvestigation programs,phasingmaybeappropriate,withtheprogramtoendwhensufficientinformationisavailable toanswerthequestionsposed,thegoalshavebeen achieved,ortheriskofcontinuingtheprogrambecomesunacceptable.

Documentation

USBR,USACE,TVA,andFERCallrequire detailedplansforfieldinvestigationswithsimilarcontent,althoughnomenclatureandspecificsof howinformationispresenteddifferbyorganization.

FollowingFERC’smethodfororganizinginformation, intrusiveinvestigationplansshouldgenerallyinclude:

(1)Purpose,objective,andjustificationforthework, includinganswerstothefollowing:

• Whydoyouwanttodrillordiginthedamor levee(i.e.,putadefectinthestructure)?

• Didyouconsiderotheralternatives?

• Howwilltheinformationhelpyoumakeadecision?

• Whatifyoudidnothavetheinformation? Wouldthedecisionchange?

(2)Existinginformationcollectedduringtheresearchphaseshouldbesummarizedandkeyinformationpresented,includingbutnotlimitedto thefollowing:

• Geologic,hydrogeologic,andgeotechnicalinformation

• Boringlogsandothersubsurfaceexplorations

• As-builtdrawingsandspecifications;record photographsoforiginalconstructionandmodifications

• Relevantdesignandconstructionreports

• Relevantanalyses

• Inspectionandassessmentreports

• Instrumentationplans,installationrecords, data,andperformancereports

(3)Essentialgeologicandengineeringdrawings shouldshowthefollowingitems:

• Embankmentzones

• Detailsofsubsurfacematerialclassification, geologiccontacts,andcontinuityinterpretationssupportedbyallnearbydrillingandsamplingdetails

• Depthtothetopofrockandallotherzonesof importance

• Piezometerlocationsshowingscreenedinfluencezonesandrecordedpiezometriclevelstied tothereservoirwaterlevel

• Otherinstrumentationsuchasinclinometers, movementmonuments,etc.,showninthecontextofthefoundationgeologycontactsandinterpretations

• StandardPenetrationTest(SPT)blowcounts orother insitu andlaboratorytestresultsdefiningengineeringproperties

• Geophysicaldata,whereuseful(e.g.,crosshole shearwavevelocityprofiles)

• Estimatedextentofanyzonesofinterest,both naturalandmade-made(e.g.,groutholes)

• Seepageareastiedtoembankmentzonesand geologicunits,wherepossible

• Locationsofallinternalandexternalstructures,includingseepagecontrolfeatures,conduits,etc.

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 27

• Locationandtypesofanydistressfeatures (seepage,wetspots,sandboils,sinkholes,etc.)

(4)Drillingscopeandmethodology:

• Numberandlocationofproposedborings

• Utilities,surfaceandundergroundobstacles,and accessibility

• Materialsexpectedtobedrilled,sampled,and tested

• Depth,diameter,bearing,andinclinationofborings

• Drilling,sampling(e.g.,SPT,shelbytube,HQ3 wirelinerockcore),and insitu testingmethods (e.g.,vaneshear,pressuremeter,waterpressure [packer]tests,etc.)

• Detailsoftheproposeddrillingequipmentand tooling

• Instrumentationandboreholecompletionrequirements(influencezone,seals,etc.)

• Personnelresponsibleforloggingmaterialsand assuringgeologicdrawingsareupdatedregularly duringthedrillingprogram

• Fieldandlaboratorytestingprogram

• Verificationthat insitu testingpressureswillnot causehydraulicfracturing

(5)Boreholecompletionshouldanswerthefollowing questions:

• Howdoyouplantouseorrepairthedefect?

• Haveyoucheckedthetremiegroutingpressures (hydrostatichead)tomakesuretheywillnot hydraulicallyfracturethestructure?

• Doesgroutingneedtobestagedtocontrolthe pressures?

• Howwillyoubackfillacrossadrainagefeature?

• Istheinstrumentationplanned?

(6)Instrumentationinformation:

• Plannedconstructiondetailsandconstruction methods

• Verificationthatwelldevelopmentandrehabilitationwillnotcausehydraulicfracturingor damagethecasings

• Isinstrumentationtemporaryorpermanent? Willitbeautomated?

(7)Documentationandcoordinationshouldanswer thefollowingquestions:

• Whataretheloggingproceduresorspecifications(e.g.,UnifiedSoilClassificationSystem,InternationalSocietyforRockMechanics, organization-specific)?

• Whatformswillbeused?

• Whatinformationneedstobecollectedinthe fieldduringthedrilling?

• Whoisresponsibleforupdatingtheinformationonthedrawings?

• Howfrequentlywilltheboringlogsbesentin fromthefieldtoupdatethedrawings?

• Whodecidesonchangestotheplanduringthe investigation,andhowarechangesapproved?

(8)Personnelexperienceshouldincludethefollowing:

• Explorationteam:Listmembersoftheexplorationteamthatdevelopedthesiteinvestigationplan.Includename,organization,title, registration,andyearsofexperience

• Drillrigoperators:Includenameandyearsof experience.Noteexperiencedrillinginornear damsorlevees

• Fieldsupervisionpersonnel:Includename,organization,title,registrations,andyearsofexperiencewithdamandleveeinvestigations

(9)Evaluationofpotentialrisks:includeanevaluationoftheriskofhydraulicfracturing,erosion, contaminationofdrainagefeatures,heave,orany otherpotentialdamage.Thisshouldincludethe following:

• Adetaileddescriptionofanydrillingfluiduse includingdetailsonthecirculationsystem,locationswherefluidwillcontactsoil,andcirculationpressuresthatwillbeused

• Monitoringneedsduringdrillingandacontingencyplaniflossofdrillingfluidorothercomplicationsareobservedduringdrilling

• Measurestominimizetheriskofdamagetothe dam,levee,orfoundation

• Measurestopreventthepossibilityofcrosscontaminationandleakagefromconfinedand separategroundwateraquifers

• Measurestopreventdrillcontactwithstructuralfeatures,suchasconduits

• Nearbyinstrumentswhosebehaviorwillbe monitoredduringtheinvestigationandtheexpectedresponse,includingthresholdandlimit values,andcontingencyplansforanunexpectedresponse

• Anemergencyactionplanincludingalistof emergencyequipmentandsuppliestohaveonsite(phoneorradio,filtermaterials,groutmaterials,etc.)

• Potentialremediationproceduresforrisks identified

(10)Other:

• Siteaccessmethods

• Environmentalprotectionmeasures

• NEPA,SHPO,orotherrequirementsandrestrictions

SafetyBeforeScope

Afinalconsiderationisthatinallcases,damand leveesafetyshouldbeprioritizedabovescope.Owners, consultants,anddrillingcontractorshavebeenguilty

Bensko,Simpson,Terry,andWalker
28 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

ofpushingtocompleteascopeofworkwhilelosingfocusontheoverallsafetyofthestructure.Ifthe subsurfaceconditionswereknown,therewouldbeno needfortheexplorationprogram.Thus,iftheconditionsencountereddifferunfavorablyfromwhatwasexpected,itbecomescriticaltostopandre-evaluatethe planandtheassociatedrisk.Thisis(inpart)whyminimumexperiencerequirementsexistforpersonnelexecutingtheprograminthefield.

ORGANIZATION-SPECIFICPLANNING AND/ORREVIEWPROCESSES

Thissectionprovidesadditionaldetailsregarding planningand/orreviewofintrusiveinvestigationprograms,specifictoeachorganization.

Oncetheneedforanintrusiveinvestigationprogram isjustified,amultidisciplinaryteamdeterminesexplorationcomponentsrequiredtoadequatelyaddressthe dataneeds.Ideally,theexplorationteamincludesthe principalengineer,principalgeologist,geophysicists, andexpertsinlaboratoryanalysis, insitu testing,and otherdisciplinesasneeded.Dataneedsandinvestigationplansarediscussedtoensurecompatibility.Items todetermineincludethefollowing:

Purposeoftheinvestigation

Costoftheexploration

Requiredsampletypeandsize(disturbedorundisturbed)

Acceptabledrillingandinvestigativemethods

Depth,diameter,andinclinationofdrillingrequired Materialstobedrilledandsampled

Utilities,surfaceandundergroundobstacles,andaccessibility

Developmentoffieldexplorationrequests(FERs) occursinternallywithintheUSBRforavarietyof clients,withthelargestpercentagefromtheUSBR DamSafetyoffice.OtherclientsforFERsincludethe BureauofIndianAffairs,BureauofLandManagement,NationalParkService,stateagencies,andother waterdistrictauthorities.Typically,FERsaredevelopedfortheDamSafetyOfficeattheTechnicalServiceCenter,alongwithotheragencies.FERsforother agenciesoccasionallymaybedevelopedwithinthevariousUSBRregions.

AmajorityofFERsarewrittentobettercharacterizesubsurfaceconditionsinsupportofexisting damsafetyissueevaluations,correctiveactionstudies,orfinaldesignsfordammodifications.Other casesforFERdevelopmentincludeassessmentor feasibility-levelsubsurfacecharacterizationsofnew damsites,retrofittingexistingdamsforhydropower, linearprojectssuchascanalsorpipelines,andmany otherprojectapplications.

FERsarewrittenfollowingtheUSBRDrilling Guidelines(USBR,2014),whichsupersedeUSBR’s 1989policydocument.TheUSBRDrillingGuidelinesprovideagencypolicyfortheinvestigationofembankmentdams,includinginvestigationplanning,site preparation,boreholeadvancement,subsurfacetesting,andboreholecompletion.

Specifically,theUSBRDrillingGuidelinesrequire considerationofwhethertheneedforcollecteddata justifiesthecostandpotentialrisktothestructurecreatedbythedatacollectionprocess.Thisincludesthe determinationofpotentialconsequencesifnoaction istakencomparedwithsubsequentinvestigationcost estimates.Consequencesincludeboththeriskandlikelihoodofworseningconditions,whichcoulddriveup futurecostsofremediationifrequired.

Damfoundationgeometryandhazardoffracturing Instrumentationandcompletionrequirements

Typicaldamsafetyinvestigationsincludesampling andtestingmethodstodeterminethepotentialforliquefaction(dynamicstability),seepageandpiping(includingfiltercompatibility),staticstability,collapse offoundationsoils,andcracking.Emergencyrepairs anddamremediationactivitiestypicallyrequiresome drillingcomponenttocollectneededdata.

Specificconsiderationsrelatedtointrusiveinvestigationsincludethefollowing:

Hydraulicfracturingduringthedrillingprocess and/orboreholecompletioncanopenseepagepaths andcreateconditionsconducivetointernalerosion, piping,andultimatelydamfailure.Locationsorsituationsthatrequireparticularcare(orpreferably avoidance)areasfollows:

◦ Inornearcutofftrenchesorcutoffwallswhere stressconcentrationsand/orhighgradientsare morelikelytoexist

◦ Nearstructuresorconduitswithinembankments

◦ ImperviousZone1corewithaninternalslope ratiosteeperthan0.5horizontalto1vertical (0.5H:1V)

◦ ThinZone1core

◦ UpstreaminclinedZone1core

◦ Nearabutmentswhereabruptchangesinslopes (shoulders)occur

◦ Inareaswheretheembankmentissubjectto transversedifferentialsettlementduetolarge changesinthicknessofcompressiblefoundation soils

◦ Nearabutmentssteeperthan0.5H:1V

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
USBR
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 29

◦ Imperviouszonesconsistingofsiltandmixtures offinesandandsilt(e.g.,lowplasticitysoilsthat aremoreeasilyfractured)

◦ Drillinginorthroughgroutcurtains

◦ Nearareassoftenedorweakenedbyseepage

◦ Inlocationsofknowndefectsincompactedfill Damagetointernaldrainagefeatures,eitherdueto drillingorcontaminationwithgroutduringboreholecompletionorabandonment

Drillingorexcavatingatthetoeofadamwherea criticalhydraulicgradientorartesianconditionsexist,includingtheneedtoconstructadrillingberm

Drillingandsamplinglooseorunconsolidatedmaterialsandbalancingdrillingtechniques(e.g.,mud rotary)againstthepotentialforhydrofractureifthe holeisadvancedthroughtheembankment

Presenceofloosecollapsiblesoilswherewetting couldleadtocollapse,cracking,andultimatelyfailureofthestructure.Collapsiblesoilsarepresentin variouslocationsinthearidwesternstatesandunderliesomeearthdamsandsaddledikes.

Qualificationsandexperienceoftheleaddriller whenuseofReclamationcrewsisnotanoption

Preferred,restricted,andprohibiteddrillingtechniques

Instrumentationinstallationsandboreholecompletionorabandonment.Whenusingneatcement grout,specifyingtypeKcement,oraddinguptoone percentgypsumoraluminumpowderwillgivethe cementexpansiveproperties,whichmaybeadvantageousinembankmentdamswhereinternalseepage isanissue.

InadditiontointrusiveinvestigationsconductedundertheFERprocess,drillingassociatedwithremediationcarriesrisksthatmustbeconsidered.Examples includetheuseofcompressedairasadrillingfluidfor advancinggroutholesandjetgroutingwhichinvolves drillingholeswithveryhighairandfluidpressuresat rapidrates.

USACE

USACEsiteinvestigationsfallundermultipleUSACEregulatoryandguidancedocuments(USACE 2001,2014a,2014b,2018,2019,2020,2021)foundin the References section.

TheDrillingProgramPlan(DPP)processdescribed inER1110-1-1807(USACE,2014a)appliestositeinvestigationsatUSACE-ownedandUSACE-regulated damsandlevees,includingsiteinvestigationsconductedunderSection408.Thisincludesanyintrusive workinto,through,orbelowUSACEdamsandlevees withafederalinterest.

ER1110-1-1807includesabackgroundsectionon thepotentialproblemsrelatedtodrillingindamsand leveesandspecificallyidentifiesbasicrisksandpotentialbenefitsofdrillingwithfluidsandtheneedtobalancetheneedforusingfluidswiththepotentialrisks tothestructures.Thedocumentlaysoutthepolicyrequirementsasfollows:

DPPsneedtodiscussoraddressthefollowing topics:

◦ Justificationfortheplannedexploration(s)

◦ Existingdatareview

◦ Restrictionontheuseoffluidsfordrillingindams andlevees

◦ Riskidentificationandmitigation

◦ Boreholecompletion

◦ Drillingpersonnelrequirementsforthedrillerand on-siteoversightbyageologistorengineer

◦ Approval

◦ Exemptionrequirements

AppendixBofER1110-1-1807containsfurther guidanceandageneraloutlineofwhatshouldbeincludedintheDPP.Thesecontentsaresimilartothose describedpreviouslyinthedocumentationsectionand alsoincludethefollowing:

Riskevaluation:thissectionshouldincludeallthe potentialproblemstheproposedinvestigationplan couldcausetothestructureandhowtheyhavebeen addressedbytheplan,includingemergencymeasuresandemergencycontacts

DistrictDamorLeveeSafetyOfficercertification thattheplanfollowsER1110-1-1807

Additionalrequirementsbeyondwhatislistedabove includeaminimumoffiveyearsofexperiencedrilling indamsandleveesforthedrillerandfieldpersonnel loggingtheboringsandtheneedforeitheralicensed engineerorgeologisttobeonsiteandinresponsiblechargeofthedrillingwork.Thispersonneedsto beknowledgeableenoughabouttheplanneddrilling tobeabletorespondtoanysituationsoremergenciesthatmayarise.Lessexperiencedpersonnelare notexcludedfromloggingborings,providedafully experiencedsupervisoryprofessionalispresentonsiteduringdrillingoperations.ER1110-1-1807coversalldrillingindamsorleveeswithUSACEinterestnomatterthepurpose,includingbutnotlimited toinvestigations,instrumentationreplacement,relief wells,andconstruction-relateddrillingincludingcutoffwalls,grouting,andinstallationofutilitiesthrough orbelowthestructures.

USACEreviewoftheDPPs,whethergeneratedinhouseorbyconsultants,forUSACEinvestigations orinvestigationsbyothersunder408permits,allfollowthesamebasicprocess.Requirementsarelisted

Bensko,Simpson,Terry,andWalker
30 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

inER1110-1-1807,withadditionalguidanceprovided byEM1110-2-2902(USACE,2020).Theplansare firstreviewedbythelocaldistrictstoensuretechnicalcontentisappropriateandforquality-controlconsiderations.TheplansarethensubmittedforAgency TechnicalReview(ATR)bythedrillingandinstrumentationcommitteeoftheGeotechnical,Geology, andMaterialsCommunityofPractice(GG&MCoP). ThereviewprocessismanagedfortheGG&MCoP bytheRiskManagementCenter.TheATRbythe GG&MCoPisnormallydonebytwotothreemembersfromacrossUSACEwhoaregeologistsand/or geotechnicalengineers.Reviewcommentsareprovidedbacktothedistrictthatsubmitstheplanfor review.

Goalsandconsiderationsofthisprogramareas follows:(1)Donoharmtothestructures.(2)Fluids usedwhenneededduringthedrillingandabandonment(grouting)oftheboringshavealowriskofcausinghydraulicfracture.(3)Thedrillinghasalowriskof causingdamagetothestructure.(4)Theinvestigation plannershavethoughtthroughanddescribedpotentialproblemsalongwithappropriateresponseplans andmaterialstohaveavailabletoaddresspotentialissues.(5)Bereadytoreactappropriatelytoanyproblemsthatmayarise.

USACE’sreviewprocessforinternallydeveloped DPPsandassociatedworkdevelopedtosupportan IESisslightlydifferentfromthereviewprocessfor DPPspreparedbyentitiesexternaltoUSACE.The teamsthatdeveloptheplanspresentthemtoagroup ofseniorgeologistsandgeotechnicalengineerswith significantexperienceinplanningandexecutingfield workondamsandlevees.Thesepresentationsbythe riskassessmentteamaretypicallyvirtualmeetings. Duringtheseinteractivemeetings,thereviewersask questionsandprovidecomments,suggestions,andrecommendationsbacktotheteamwithfollow-upcommentswrittenbytwoorthreeofthereviewersprimarilyfocusedontheDPPportionsoftheplan.These plansaregenerallyphasedwithpredeterminedtriggers forthenextphaseofinvestigationandevaluationas needed.Whensiteinvestigationissuesarise,thereview teamsubjectmatterexperts(SMEs)arere-engagedto assisttheriskassessmentteaminfindingsolutions. ThisactiveinvolvementofSMEswiththeriskassessmentteaminupdatingandmodifyingtheplanshas reducedUSACE’stimeandcostrelatedtositeinvestigationsandriskassessments.

Inallcases,thereviewmanagerandreviewersare availabletodiscusstheircommentsandresolution ofthemwiththesiteinvestigationdesignteamto helpfinalizetheplansandwhenneededdiscussmodificationsduringthesiteinvestigationsorintrusive activities.

TVA

AsdepictedinFigure9,theheadofTVA’sDSPis theAgencyDamSafetyOfficial(ADSO),aposition currentlydelegatedbyTVA’schiefexecutiveofficerto thechiefoperatingofficer.FromtheADSO,thereare twobranches:governanceandexecution.Governance includestheDamSafetyOfficer(DSO),andtheDam SafetyGovernance&Oversight(DSG&O)organizationthatprovidesday-to-daygovernanceandoversightoftheDSPonbehalfoftheDSO.Ontheexecutionside,AssetOwners(AOs)aretheexecutivesfor thevariousbusinessunitsthatownresponsibilityfor assetsthatclassifyasdams.AOsdesignateaResponsibleEngineeringManager(REM)foreachstructure intheirrespectiveinventories,andtheREMisresponsibleforensuringthatDSPrequirementsaremetfor theirassignedstructures.

DamSafetyServices(DSS)providesin-housetechnicalsupport.Forintrusiveinvestigations,theAOwill generallyengageaconsultanttohelpdeveloptheexplorationprogram,andtheconsultantwillinturnhire theexplorationcontractor.

TherequirementsoftheTVADSParedescribedin aseriesofinternaldocumentsreferredtoas“Procedures.”Thetop-tierdocumentdefinestheframework oftheprogramitself;eighttier-downsectionsdescribewhatisrequiredconcerningevaluationand design,construction,operationandmaintenance,inspections,instrumentation,emergencypreparedness, governance,andriskassessment;andtheneachAO developsaparallelsetof“Procedures”thatdefine howtherequirementsoftheTVA-levelprocedureswill beimplementedwithintheirparticularbusinessunit. Overall,TVA’sDSPismodeledafterboththeFERC frameworkandFEMA’sFederalGuidelinesforDam Safety(FEMA,2004).Tothatend,theFERCDrilling Guidelines(FERC,2016)areincorporatedintoTVA’s DamSafetyProceduresbyreference.

SeparateorganizationswithinTVAactasowners andregulatorswhenitcomestointrusiveinvestigations.Foratypicalriverdaminvestigationproject, theREMservesastheprojectmanager;ageotechnicalengineer,geologist,orstructuralengineerfrom DSSservesasthetechnicalmanager;andresponsibilityfordevelopmentandexecutionoftheexploration scopeiscommonlyoutsourcedtoanexternalconsultant.AOsarerequiredbyprocedure(TVA,2022aand 2022b)tosubmitinformationaboutplannedintrusive inspectionsforreview,andDSG&OreviewstheAO’s submittalonbehalfoftheDSO.

ThetypicalprocessforplanninganintrusiveinvestigationataTVAdamstartswhenanAOidentifiesthe needforsubsurfaceinvestigation(tobetterquantify risk,supportthedesignofamodification,etc.).TVA

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 31

developsthegeneralscopeandoverallprojectobjectivesandcontractswithaconsultanttoplantheprogram.Theconsultantthendevelopsaninvestigation planandothersupportingdocuments,asrequired. Next,theAOinformsTVA’sDSOoftheplannedwork andsubmitssupportingdocumentationtoDSG&O forreviewandcomment.

Intrusiveinvestigationandsubmittalsareintended tobescalablecommensuratewiththescope,complexity,andriskoftheproject.DSG&Oexpectsto receiveaworkplanthatgenerallyincludesthefollowinginformation(asapplicable):(1)reason(s)forthe investigation,includingjustificationthattheneedfor subsurfacedataorinstrumentationneedsoutweighs therisksassociatedwiththeintrusiveinvestigation(s);

(2)location(s),depth(s),inclination(fromvertical)and bearing(asapplicable)ofproposedinvestigationholes;

(3)dimensions(length,width,depth,andsideslope angles)oftrenchesortestpits;(4)anticipatedsubsurfaceconditions;proposedinvestigationanddrilling techniques,includingchangeoversbetweendrilling methodsandtype(s)ofplannedsamplingand insitu testing;(5)lengthoftimethatboringsand/orexcavationsareexpectedtoremainopen(notbackfilled);(6) plannedholecompletion(i.e.,instrumentationinstallationorabandonment),includingproposedproducts andmaterials,mixingproportions,andinstallation andplacementtechniques);(7)documentationthat boththeresponsibleon-siterepresentativeandlead drillrigoperatorandequipmentoperatormeetexperiencerequirements;(8)plannedsiterestoration andrepair,includingpatchingofreinforcedormass concrete,asphalt,orturf;and(9)anoverallproject schedule,includingthedurationofdrillingactivities. Fornon-drilledexcavations(testpits,testtrenches, etc.),adescriptionofthebackfillplan,including materialspecifications,placementtechniques,and compactionrequirements,shouldbeincluded,andif instrumentationisplanned,notewhichPFM(s)the instrumentsareintendedtomonitorordetect.When applicable,theriskofcausinghydraulicfractureof theembankmentand/orunderlyingformationdueto theintroductionoffluid(whetherduringdrilling, in situ testing,orbackfillingthehole)alsoneedstobe consideredandevaluated,andmethodsforcalculating andmonitoringallowablehydrostaticand/orapplied pressuresinthefieldneedtobedescribed.

Acontingencyplantoaddressand/ormitigatethe risksassociatedwithdrillingchallenges,geologichazards,and/ordamsafetyissuesthatcouldbeencounteredortriggeredbytheintrusiveinvestigationactivitiesneedstobeprovided.Thisrequirementoriginatedduetotheextensivepotentialforkarstacrossthe TennesseeValleyandhasexpandedbasedonindustrylessonslearned.Potentialdrillingchallengesand

hazardstoaddressinclude(butarenotlimited to)voidsandroddrops,lostcirculation,heaving sands,artesianconditions,pipingandinternalerosion, blowout,contaminationofdrainagematerials,inducementofslopeinstability,presenceofhazardousand explosivegasses,andthepresenceofburiedorembeddedconduitsandotherappurtenances.Anexampleof acontingencymeasureisstockpilingmaterialsnecessarytoconstructareverse-gradedfilterandcoordinatingwithamaintenancebasetostationabackhoeor excavatoratornearthedamwhendrillingnearthetoe ofanembankmentinknownkarstterrain.

TheotherrequireddocumentisaQualityManagementPlan(QMP).TheQMPisintendedtoensureintrusiveinvestigationactivitiesmeetTVA’sdamsafety andcontractrequirementsbyensuringQAandQC activitiesareperformedcompetentlyandconsistently andinamannerthatwillidentifyandaddressdam safetyissues.TheQMPcommonlyincludesanaccountabilitymatrixthatdescribeswhoholdstheultimatedecision-makingauthorityforvariousactivities throughoutexecutionoftheinvestigationprogram, andwhoisauthorizedtostopthework.

AttheAO’sdiscretion(orifrequiredbyTVA’s DSO),twoadditionaldocumentsthatmayberequired (typicallyformorecomplexand/orhigherriskinvestigationprograms)areatemporarysupplementtothe EmergencyActionPlan(TEAP)andTemporaryInstrumentationMonitoringPlan(TIMP).TheTEAP addressesdetectionofandresponsetoeventsduring intrusiveinvestigationsthatcouldthreatenthesafety ofthestructureanddescribestheresponsibilitiesand communicationproceduresshouldanemergencyoccur.ATIMPidentifiestheinstrumentstoberead, thefrequencyofreadings,andresponsibilitiesfordata evaluationduringtheinvestigationprogram,aswell asalertandactionthresholds,communicationprocedures,andresponseprotocolsifathresholdisexceeded.WhenaTIMPisnotrequired,theworkplan shoulddescribeanymonitoringofexistinginstrumentsand/orinspectionsplannedtobeconducted duringtheinvestigationprogram.

DSG&Oreviewsthesubmittalforcompliancewith TVAproceduresandgeneralindustrybestpractices (includingtherequirementsoftheFERCDrilling Guidelines)andprovidescommentstotheAO. DSG&OalsodeterminesiftheprojectrequiresformalDSOconcurrence.(Concurrenceisgenerallyreservedforprogramsthatareunusuallycomplexor whichcarryelevateddamsafetyrisk;forexample,the programscopeinvolvesdrillingthroughthecoreofan embankmentdamorinjectingfluidsunderpressure.) Oncecommentsareresolved,DSG&OeitherrecommendsthattheDSOconcurwiththeAO’splanned program,or(morecommonly)notifiestheAOthat

Bensko,Simpson,Terry,andWalker
32 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

concurrenceisnotrequired,andthatDSG&Otakes noexceptiontotheexecutionoftheproject.Inthe eventofsignificantmodificationstotheplannedactivities,AOsarerequiredtoinformtheDSOandallowtimeforsupplementalreviewandcommentby DSG&Oasnecessary.

Separatefromthesubmittalreviewdescribedabove, AOsalsoneedtoobtainadrillingandchippingpermitand/oranexcavationpermitinaccordancewith TVATechnicalInstructionTI-DS-0002(TVA,2022c). ThisisaninternalTVAprocessthatevaluatespotentialconflictswithundergroundorembeddedinfrastructure.Drillingandchippingpermitsapplytopenetrationsgreaterthan2in.(5cm)inconcreteandto geotechnicalboringslessthan12in.(30cm)indiameterinconcrete,rock,earthenembankments,orareas adjacenttothedam.Excavationpermitsapplytotest pitsorotherexcavationsopenedbynon-rotarymethodsandboringsgreaterthan12in.(30cm)indiameter. Forinvestigationsofnavigationstructures,theprocess alsoincludescoordinationwiththeUSACELockmaster.Additionally,TVArequiresaHASPbedeveloped (althoughthisrequirementoriginatesoutsideofDam SafetyandDSG&OdoesnotformallyreviewHASPs).

DSG&OalsoreviewsconstructionandmodificationprojectsonbehalfoftheDSOandmakesrecommendationstotheDSOaboutprovidingformal concurrence.DSG&Oconductsanoveralldesignreviewandforconstructionprojectsthatincludedrilling (e.g.,secantpilewalls,shaftfoundations,confirmation borings,etc.)aspartoftheproject.DSG&Oreviews thedrillingscopeforconsistencywithtypicalindustry standardsandTVAprocedures,andAOsareobligated toresolveDSG&O’scommentstothesatisfactionof theDSObeforeconcurrenceisprovided.

Oncetheintrusiveinvestigationprogram(orconstructionandmodificationproject)iscomplete,theresultsneedtobeincorporatedintothenextregularupdatetotheSTIdocumentforthedam.

FERC

D2SIisresponsiblefordevelopingandimplementingFERC’sDamSafetyProgramtoevaluatethe integrityofwaterretainingstructures,theadequacy oftheemergencyactionplansdevelopedtoachieve publicsafety,andthesecuritymeasuresdevelopedto includethethreatofcyberattacks.Thisincludesoversightofthedesign,construction,operation,andmaintenanceofthedamsandwaterconveyancestructures withinFERC’sjurisdiction.Theregulatoryauthority vestedtoFERCisdescribedin18CFRPart12(CFR, 2020)whichalsooutlinestheresponsibilitiesofthe projectlicensees.D2SIhasonecriticalmission:the safetyofdamsunderFERC’sHydropowerProgram.

TherolesandresponsibilitiesthatFERCplaysduringdesignandconstructiondiffergreatlyfrommost agencies.FERCisnottheowneroftheprojectsand doesnotdesignorprepareplans,specifications,or contractdocuments,nordoesitgetinvolvedwithany contractorprocurement.Astheregulatorybody,for theconstructionofanewprojectorremediationof anexistingprojectaddressingPFMs,FERCservesto reviewandapprovetheplanandscheduledeveloped bythelicenseetoperformtheworkanddefinethe pathmovingforwardtoensurethesafetyoftheproject (Figure10).

Damsclassifiedashavingahighhazardpotential, havingaheightgreaterthan32.8ft(10m)abovethe streambed,orthatimpoundmorethan2,000acre-feet (2.5millionm3 )ofwater,fallundertherequirements ofPart12DoftheCommission’sregulations.InApril 2022,arevisiontotheregulationsbecameeffective thatchangesthewayPart12Dinspectionswillbeexecuted.AsdescribedinChapter16oftheEngineering GuidelinesfortheEvaluationofHydropowerProjects (FERCEngineeringGuidelines;FERC,2021a),the inspectionswillalternateeveryfiveyearsbetweena PeriodicInspection(PI)conductedbyanIndependentConsultant(IC)andaComprehensiveAssessment(CA)performedbyanICandateamofSMEs. APIisprojectperformancefocused,whileaCAisa morein-depthandcomprehensiveassessmentofthe project.ThescopeoftheCAincludesaPotentialFailureModesAnalysis(PFMA)alongwithaLevel2 RiskAnalysis(L2RA)asdefinedinChapter18ofthe FERCEngineeringGuidelines(FERC,2021c).The PFMAprocessisdescribedinChapter17oftheFERC EngineeringGuidelines(FERC,2021b)andincludes identificationandscreeningofPFMs.TheL2RAthen estimatestheriskassociatedwithcrediblePFMstoinformprioritizationoffutureriskreductionactivities.

BoththePFMAandL2RAprocessesmayidentifytheneedforsite-specificinvestigations.Duringthe PFMA,theinformationavailablemaybeinsufficient tofullyevaluatesomepostulatedPFMsandaccurately determinetheircredibility.DuringtheL2RA,limited informationmayintroduceahighdegreeofuncertaintywhenestimatingtheriskassociatedwithacrediblePFM.Subsurfaceinvestigationtocollectadditionalgeologicandgeotechnicalinformationthenbecomesnecessarytoclosedatagaps,supportadditional evaluationsandanalyses,orrefineriskestimates.Informationobtainedfromsiteinvestigations,associated testing,andinstrumentationcanalsobeusedtoinformdesignofbothremediationandnewconstruction projects,andtoaidindetermininganyRiskReduction Measuresthatmaybenecessary.

Afteritisdeterminedthatasiteinvestigationisrequired,theDPPispreparedandsubmittedbyali-

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 33

censeetoFERC.TheDPPisrequiredbyFERCfor anydrillingprojectandmustfollowtheFERCDrilling Guidelinesthatprovideinformationonthehazardsof drillingatanembankmentdamandguidanceforplanningandpreparingaDPP.Theguidanceprovidedin theFERCDrillingGuidelinesalignsverycloselywith thoseofUSACEandUSBR.Thedifferencebetween theseorganizationsisbasicallyhowtheDPPsrequired foranydrillingprojectarehandled,processed,and implemented.

AConstructionPFMAmayberequiredbythe RegionalEngineerbeforeconstructionbutafterthe drawings,specifications,procurementofthecontractor,andproposedmeansandmethodshavebeendeveloped.Thisassessmentisdesignedtoidentifyany PFMsthatmayresultfromconstructionprocedures, sequences,orprojectloadingvariations.Itservesto providetheopportunitytomakemodificationstothe workorincorporateInterimRiskReductionMeasures tobuydownconstructionrisks.Afterprojectcompletion,aPost-ConstructionPFMAmayalsobeperformedtoevaluateandaccountforthenewactual conditionsimpactingtheproject.Thiscouldinclude changesinloading,unknownfoundationcharacteristicsrevealed,ornecessarydesignchangesmadeduring construction(FERC,2021b).

TheadministrationofFERC’sinvolvementwiththe projectsistypicallyperformedbytheregionaloffices, headedbytheRegionalEngineer.OncetheDPPis

received,theregionalofficeentersitintoatrackingsystemwhereitproceedsthroughaverycarefully orchestratedandmethodicprocess,asillustratedin Figure11.

SomeofthecommondeficienciesnotedinDPPs receivedbyFERCareinadequateinformationon theessentialgeologicandengineeringdrawings,and incompletedetailsdescribingthedrillingscopeand methodology,emergencyprocedures,boreholecompletionmaterialsandmethods,personnelexperience, andtheevaluationofthepotentialrisksandcorrective remedialmeasures.Dependingonthespecificcircumstancesandcomplexnatureofthescopeofwork,some submittalreviewsinvolvethecollaborationofboth theregionalofficeandSMEsstaffedatHeadquarters. Allreviewcommentsarediscussedandcompiledand providedtothelicenseebyletter.Onceallcomments havebeenaddressedtothesatisfactionofFERC,authorizationtoproceedtothenextstepisprovidedby theRegionalEngineer.

IMPLEMENTATIONOFINTRUSIVESITE INVESTIGATIONPROGRAMS

TheUSBRhasfullin-housedrillingcapability. Site-specificsurface-subsurfaceexplorationsareperformedfollowingUSBRFERsandareexecutedpri-

Bensko,Simpson,Terry,andWalker
Figure10.FederalEnergyRegulatoryCommission’sroleintheplanningprocess.
USBR
34 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

marilybyin-houseUSBRpersonnel.Therearedrill crewsandequipmentlocatedwithinvariousUSBR regions.Thesepersonnelarespeciallytrainedfor drillingintoandneardamstomaximizedatacollectionandminimizedamsafetyriskrelatedtosubsurfaceexploration.USBRgeologistsarealsoonsitefull timetodirectdrillingoperationsandcollectandlog samples.

Dependingondemand,outsidedrillingservicesare occasionallyprocuredandused,buttypicallyonlyfor non–dam-specificexplorations(pipelines,foundations, etc.).

USACE-InitiatedProjects

SiteinvestigationworkbyandforUSACEvaries bydistrictandproject.Somedistrictsutilizein-house personnelandequipmentasmuchaspossible,while otherdistrictsprefertousecontractors.Forcontracted work,theoversightandlevelofUSACEinvolvement on-sitewillfollowthecontractdocuments.Difficultaccessandspecialtydrillingarealmostalwaysdoneby contract.

Beforedrillingcommences,thedrillersandUSACE shouldmakesurethereisanapprovedDPPandthat theyhaverevieweditandarefollowingitsrequirements.ThelevelofUSACEinvolvementintheplanningandon-siteactivitieswillvarybycontract.Inall casesthedrillingplanshouldbedevelopedandapprovedfollowingER1110-1-1807(USACE,2014a), andwherefluidsareused,followingtheguidancein

EM1110-2-2902(USACE,2020b)relatedtohydraulic fracturingcalculations.Iffluidsarebeingusedduringthedrillingorbackfillingprocess,thefluidpressurewillneedtobemonitoredusingafloatingneedlepressurevalvetorecordthemaximumpressure spikesthatcanoccurinstantaneouslyandareoften unnoticed.

USACE–InitiatedbyNon-USACEEntities

Drillingdonebynon-USACEentitiesforwhatever reasonalsoneedstofollowER1110-1-1807(USACE, 2014a),andwherefluidsareused,followtheguidanceinEM1110-2-2902(USACE,2020b)relatedto hydraulicfracturingcalculations.Forpipesandconduitsthatarebeinginstalledusingdirectionaldrilling orsimilarmethods,theyalsoneedtofollowtheguidanceinEM1110-2-2902,particularlysection5.6on hydraulicfracturingcalculations.

TVAdoesnothavein-housedrillingcapability,and in-houseresourcesfortestpitsarelimited.In-houseresourcesforfieldoversightofinvestigationprojectsare alsolimited,soTVAtypicallyoutsourcesintrusiveinvestigationprojectstoprivateconsultants,whointurn subcontractfordrillingorexcavationservicesfollowingTVArequirements.Theconsultantsprovideexperiencedfieldstaffwhooverseetheinvestigations,log samples,anddocumentthework.TVAstaffarecom-

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Figure11.FederalEnergyRegulatoryCommission’sDrillingProgramPlanreviewprocess. TVA
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 35

monlyonsiteforthekickoffandtoobserveprojectcriticalactivities.

FERC

OncetheDPPisacceptedandthenoticetoproceedisgrantedforthesiteinvestigationworkto start,FERC’srolecontinuesbutnotinthecapacityoffull-time,on-sitepresence.Theconstruction progressiscarefullymonitoredtypicallythroughregularlyscheduledmeetingsand,ataminimum,monthly inspectionsbytheregionaloffice.PIsmayalsoinvolvestafffromHeadquarters.Boringlogsarerequiredtobesubmittedwithin24hoursofholecompletionandadraftofthefieldboringlogsand dailyworklogsmayberequestedandsubmittedto theFERCregionalofficedaily.ChangesordeviationsfromtheDPParerequiredtobecoordinated withFERCalongwithnotificationofanycomplicationsthatarisesuchasvaryingsiteconditions,the needfordesignmodifications,orunexpecteddevelopments.Anyconditionsthatpresentthemselvesas damsafetyissuesareexpectedtotriggerastop-work response,implementationofrisk-reductionmeasures, and,ifnecessary,activationoftheTCEAP.These incidentsarerequiredtobereportedimmediately toFERC.

CONCLUSIONSANDFUTUREUPDATES

Theprimaryreasonsforperformingsiteinvestigationsatexistingdamsandleveesaretosupportdam andleveesafetydecisions,toreviewmodificationsthat addressdeficiencies,orwhenaddinghydropowertofacilities.Potentialfuturemodificationsincludeincreasingwaterstoragethroughdamraisesandmodificationsinstorageoperations.

Theuseof3Dsoftwareforplanningandimplementingsiteinvestigationswithgeoreferenced3Dhydrogeomodelstoimproveunderstandingofthestructures andfoundationsisincreasingindustry-wide.Examplesincludeamarkedincreaseintheuseofinstrumentedequipmentforhorizontaldirectionaldrilling, grouting,andcutoffwallinstallation,andweanticipatethesetechnologiesmovingtoreal-timemonitoringofsite-investigationdrillingequipment.The sensorandrecordingequipmentalreadyexist;itis justamatterofaddingthemtositeinvestigation equipmenttostartobtainingadditionalinformation onthedrillingandgroutingprocessesusedforthese investigations.

Updatestovariousguidanceandsupportdocumentsareinprogressorunderconsideration,asdiscussedinthefollowingsections.

USBR

Updatestothefollowingdocumentsareexpectedin thefuture:

EngineeringGeologyFieldManual,VolumesIandII GuidelinesforDrillingandSamplinginEmbankment Dams

USACE

USACEisnearingtheendoftheprocesstoupdate ER1110-1-1807,andthemostsignificantchangeisto includealldams,levees,andappurtenantstructures includingconcretedamsandfloodwalls,notjustembankments.Theupdatealsoincludesspecificreference toEM1110-2-2902forhorizontaldirectionaldrilling andothertrenchlessinstallationmethods,andabandonmentofsimilarstructuresandpressuregrouting.It alsoincludesclarificationthatitcoversconstructionrelateddrillingandreliefwells,andtheneedtoaddress existingon-siteinfrastructure,includingbutnotlimitedto,reliefwells,conduits,instrumentation,andcutoffwalls.OtherrelateddocumentsthatarebeingupdatedincludeER1110-2-1156(USACE,2014b),and EngineeringandConstructionBulletin(ECB)2019-15 (USACE,2019).

TVA

AnupdatetotheTVA-levelProceduresbecame effectiveApril1,2022.TVA-SPP-27.001nowmore specificallyreferencesintrusiveinvestigations,althoughnosignificantchangestotheprocessorapproachwereimplemented.Revisedbusinessunit-level procedurestoalignwiththeTVA-levelupdateswillbe developedinthecomingmonths.

TheTVA-levelproceduresaretypicallyupdatedon a3-yearcadence,andthenextupdateisanticipated tobemoreextensive.Additionally,developmentofan engineeringguidelineortechnicalinstructionspecific tointrusiveinvestigationsisunderconsideration.

FERC

Anupdatetothe FERCGuidelinesforDrillingin andNearEmbankmentDamsandtheirFoundations is inprogress.Thisupdatewillincludethefollowing:

ArevisiontotheEmbankmentDamssection Expansiontoincludedrillinginconcretedams,appurtenantstructures,andothertypesofdams

Additionally,theDrillingProgramPlanrequirementsarebeingrefinedtoaddressspecificrisksasapplicabletothestructuretype.Thenewoutlineisbeing

Bensko,Simpson,Terry,andWalker
36 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

designedtobeuser-friendlyandapplicable(asneeded) toalltypesofdamstructures.

REFERENCES

ASTMD2113,2014,Standardpracticeforrockcoredrillingand samplingofrockforsiteexploration.In AnnualBookof ASTMStandards:Section4,Construction,4.08,Soiland Rock(I):ASTM,WestConshohocken,PA,20p.

ASTMD5876,2017,Standardguideforuseofdirectrotarywirelinecasingadvancementdrillingmethodsforgeoenvironmentalexplorationandinstallationofsubsurfacewater-quality monitoringdevices.In AnnualBookofASTMStandards:Section4,Construction,4.08,SoilandRock(I):ASTM,West Conshohocken,PA,11p.

ASTMD5781,2018a,Standardguideforuseofdual-wallreversecirculationdrillingforgeoenvironmentalexplorationandthe installationofsubsurfacewaterqualitymonitoringdevices. In AnnualBookofASTMStandards:Section4,Construction,4.08,SoilandRock(I):ASTM,WestConshohocken,PA, 7p.

ASTMD5782,2018b,Standardguideforuseofdirectairrotarydrillingforgeoenvironmentalexplorationandtheinstallationofsubsurfacewater-qualitymonitoringdevices. InAnnualBookofASTMStandards:Section4,Construction,4.08,SoilandRock(I):ASTM,WestConshohocken, PA,8p.

ASTMD5783,2018c,Standardguideforuseofdirectrotary drillingwithwater-baseddrillingfluidforgeoenvironmental explorationandtheinstallationofsubsurfacewater-quality monitoringdevices.In AnnualBookofASTMStandards:Section4,Construction,4.08,SoilandRock(I):ASTM,West Conshohocken,PA,8p.

ASTMD5872,2018d,Standardguideforuseofcasingadvancementdrillingmethodsforgeoenvironmentalexplorationand installationofsubsurfacewaterqualitymonitoringdevices. In AnnualBookofASTMStandards:Section4,Construction, 4.08,SoilandRock(I):ASTM,WestConshohocken,PA, 8p.

ASTMD5875,2018e,Standardguideforuseofcable-tooldrilling andsamplingmethodsforgeoenvironmentalexplorationand installationofsubsurfacewaterqualitymonitoringdevices.In AnnualBookofASTMStandards:Section4,Construction, 4.08,SoilandRock(I):ASTM,WestConshohocken,PA, 11p.

ASTMD6914,2016,Standardpracticeforsonicdrillingforsite characterizationandtheinstallationofsubsurfacemonitoringdevices.In AnnualBookofASTMStandards:Section4, Construction,4.09,SoilandRock(II):ASTM,WestConshohocken,PA,12p.

AustralianDrillingIndustryAssociation(ADIA),2020, The DrillingManual, 6thed.:ADIA,Wangara,WesternAustralia, Australia,793p.

CodeofFederalRegulations(CFR),2020, Title18-ConservationofPowerandWaterResources, ChapterI-FederalEnergyRegulatoryCommission,DepartmentofEnergy(Parts1 to399),SubchapterB-RegulationsUndertheFederalPower Act,Part12-SafetyofWaterPowerProjectsandProject Works, SubpartA-GeneralProvisions,SubpartB-Reports andRecords, SubpartC-EmergencyActionPlans, SubpartDInspectionbyIndependentConsultant,andSubpartE-Other ResponsibilitiesofApplicantorLicensee:NationalArchives andRecordsAdministration,OfficeoftheFederalRegister, Washington,DC,p.219-232

Dustman,J.R.;Davis,R.;andOothoudt,T.,1992,Soil,bedrock, andgroundwatersamplingusingrotasonicdrillingtechniques. In ProceedingsoftheSixthNationalOutdoorActionConferenceonAquiferRestoration, GroundWaterMonitoring,GeophysicalMethods:NationalGroundWaterAssociation,Las Vegas,NV,pp.179–187.

Farrar,J.,1999, Standardpenetrationtest:Drillers/Operators guide:UnitedStatesBureauofReclamation(USBR)TechnicalNoteDSO-98-17:USBRDamSafetyOffice,Denver,CO, 28p.

FederalEmergencyManagementAgency(FEMA),2004, FederalGuidelinesforDamSafety,FEMAP-93:Electronic document,availableathttps://www.fema.gov/multimedialibrary

FederalEmergencyManagementAgency(FEMA),2005, The NationalDamSafetyProgram-ResearchNeedsWorkshop: SeepagethroughEmbankmentDams,FEMA535:Electronic document,availableathttps://www.fema.gov/multimedialibrary

FederalEnergyRegulatoryCommission(FERC),2016, GuidelinesforDrillinginandnearEmbankmentDamsandtheir Foundations,Version3.1:Electronicdocument,availableat https://www.ferc.gov/

FederalEnergyRegulatoryCommission(FERC),2017, DivisionofDamSafetyandInspectionsInternalAuditPresentation: Unpublishedelectronicdocument,accessed07-19-2021.

FederalEnergyRegulatoryCommission(FERC),2021a, EngineeringGuidelinesfortheEvaluationofHydropowerProjects, Chapter16–Part12DProgram:Electronicdocument,availableathttps://www.ferc.gov/

FederalEnergyRegulatoryCommission(FERC),2021b, EngineeringGuidelinesfortheEvaluationofHydropowerProjects, Chapter17–PotentialFailureModeAnalysis:Electronicdocument,availableathttps://www.ferc.gov/

FederalEnergyRegulatoryCommission(FERC),2021c, EngineeringGuidelinesfortheEvaluationofHydropowerProjects, Chapter18–Level2RiskAnalysis:Electronicdocument,availableathttps://www.ferc.gov/

Lutenegger,A.J.;Degroot,D.J.;Mizra,C.;andBozozuk,M., 1995, RecommendedGuidelinesforSealingGeotechnicalExploratoryHoles:NationalCooperativeHighwayResearchProgramReport378,TransportationResearchBoard,National ResearchCouncil:NationalAcademyPress,Washington,DC, 52p.

McKernan,L.W.,1950, LegislativeHistoryoftheFederalWaterPowerActof1920:PepperHamilton,NewYork,NY, 31p.

Roosevelt,F.D.,1938, ThePublicPapersandAddressesof FranklinD.Roosevelt;Volume 2:TheYearofCrisis,1933:RandomHouse,NewYork,p.122

Ruda,T.C.andBosschler,P.J.(Editors),2005, NationalDrilling AssociationDriller’sManual:NationalDrillingAssociation, Brunswick,OH,360p.

StatutesatLargeoftheUnitedStatesofAmerica(Statutes atLarge),1881, Vol 21:Anacttoprovidefortheappointment ofa“MississippiRiverCommission”fortheimprovementofsaid riverfromtheHeadofthePassesnearitsmouthtoitsheadwaters (Ch43):GovernmentPrintingOffice,Washington,D.C., p.37-38

StatutesatLargeoftheUnitedStatesofAmerica(Statutes atLarge),1917, Vol 39,Part1:Anacttoprovideforthe controlofthefloodsoftheMississippiRiverandoftheSacramentoRiver,California,andforotherpurposes (Pub.L.64367,Ch144):GovernmentPrintingOffice,Washington,D.C., p.948-951

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 37

StatutesatLargeoftheUnitedStatesofAmerica(Statutes atLarge),1921, Vol 41,Part1:Anacttocreatea FederalPowerCommission;toprovidefortheimprovement ofnavigation;thedevelopmentofwaterpower;theuseof thepubliclandsinrelationthereto,andtorepealsection 18oftheRiverandHarborAppropriationAct,approved August8,1917,andforotherpurposes (Pub.L.66-280, Ch285):GovernmentPrintingOffice,Washington,D.C., p.1063-1077

StatutesatLargeoftheUnitedStatesofAmerica(Statutes atLarge),1934, Vol 48,Part1:AnacttoimprovethenavigabilityandtoprovideforthefloodcontroloftheTennessee Rivertoprovideforreforestationandtheproperuseofmarginal landsintheTennesseeValley;toprovidefortheagricultural andindustrialdevelopmentofsaidvalley;toprovideforthe nationaldefensebythecreationofacorporationfortheoperationofGovernmentpropertiesatandnearMuscleShoals intheStateofAlabama,andforotherpurposes (Pub.L.64367,Ch144):GovernmentPrintingOffice,Washington,D.C., p.948-951

StatutesatLargeoftheUnitedStatesofAmerica(Statutes atLarge),1936a, Vol 49,Part1:Anactauthorizingtheconstructionofcertainpublicworksonriversand harborsforfloodcontrol,andforotherpurposes (Pub. L.73-17):GovernmentPrintingOffice,Washington,D.C., p.58-72

StatutesatLargeoftheUnitedStatesofAmerica(Statutes atLarge),1936b, Vol 49,Part1:Anacttoprovideforcontrolandregulationofpublic-utilityholdingcompanies,andfor otherpurposes (Pub.L.74-333,Ch687):GovernmentPrinting Office,Washington,D.C.,p.803-863

StatutesatLargeoftheUnitedStatesofAmerica(Statutes atLarge),1955, Vol 69:Anacttoamendsection5oftheFlood ControlActofAugust18,1941,asamended,pertainingtoemergencyfloodcontrolwork (Pub.L.84-99):GovernmentPrinting Office,Washington,D.C.,p.186

StatutesatLargeoftheUnitedStatesofAmerica(Statutes atLarge),1980, Vol 91:AnacttoestablishaDepartmentof Energyintheexecutivebranchbythereorganizationofenergy functionswithintheFederalGovernmentinordertosecureeffectivemanagementtoassureacoordinatednationalenergypolicy, andforotherpurposes (Pub.L.95-91):GovernmentPrinting Office,Washington,D.C.,p.565-613

TennesseeValleyAuthority(TVA),2013, R&ORGuidelinesfor DrillingandSamplinginDams(Draft):TVA,Chattanooga, TN,31p.(unpublished)

TennesseeValleyAuthority(TVA),2022a, EvaluationsandDesignandEvaluationofDams:TVA-SPP-27.001:TVA,Chattanooga,TN,21p.

TennesseeValleyAuthority(TVA),2022b, EmergencyPreparednessforDamSafety:TVA-SPP-27.006:TVA,Chattanooga, TN,18p.

TennesseeValleyAuthority(TVA),2022c, DrillingandChipping,andExcavationPermitInstructionforRiverSystem DamSafetyAssets:TI-DS-0002:TVA,Chattanooga,TN, 32p.

UnitedStatesArmyCorpsofEngineers(USACE),1885, AnnualReportoftheChiefofEngineers,UnitedStatesArmy,to theSecretaryofWar,fortheYear1885:GovernmentPrinting Office,Washington,DC,p.272

UnitedStatesArmyCorpsofEngineers(USACE),2001, GeotechnicalInvestigations:EM1110-1-1804:USACE,Washington,DC,441p.

UnitedStatesArmyCorpsofEngineers(USACE),2014a, DrillinginEarthEmbankmentDamsandLevees:ER1110-

1-1807:Electronicdocument,availableathttps://www. publications.usace.army.mil/

UnitedStatesArmyCorpsofEngineers(USACE),2014b, SafetyofDams–PolicyandProcedures,ER11102-1156:Electronicdocument,availableathttps://www. publications.usace.army.mil/

UnitedStatesArmyCorpsofEngineers(USACE),2018, Policy andProceduralGuidanceforProcessingRequeststoAlterU.S. ArmyCorpsofEngineersCivilWorksProjectsPursuantto33 USC408,EC1165-2-220:Electronicdocument,availableat https://www.publications.usace.army.mil/

UnitedStatesArmyCorpsofEngineers(USACE),2019, InterimApproachforRisk-InformedDesignsforDamandLevee Projects,ECB2019-15:Electronicdocument,availableat https://www.publications.usace.army.mil/

UnitedStatesArmyCorpsofEngineers(USACE),2020a, A HistoryTour:UpperMississippiRiverHeadwatersDamand RecreationSites,CEMVP25-1-42:Electronicdocument, availableathttps://www.mvp.usace.army.mil/Portals/57/ docs/Public%20Affairs/Brochure/Recreation/Headwaters_ A_History_Tour_Booklet_Web.pdf?ver=2020-03-06-111621280/

UnitedStatesArmyCorpsofEngineers(USACE),2020b, Conduits,Pipes,andCulvertsAssociatedwithDamsandLevee Systems,EM1110-2-2902:Electronicdocument,availableat https://www.publications.usace.army.mil/

UnitedStatesArmyCorpsofEngineers(USACE),2021, USACELeveeSafetyProgram,EC1165-2-218:Electronicdocument,availableathttps://www.publications.usace.army.mil/

UnitedStatesBureauofReclamation(USBR),1990, EarthManual,Part2,3rded.:USBR,Denver,CO, 1270p.

UnitedStatesBureauofReclamation(USBR),1998a, EngineeringGeologyFieldManual,Vol.I,2nded.:USBR,Denver, CO,432p.

UnitedStatesBureauofReclamation(USBR),1998b,Earth Manual,Part1,3rded.:USBR,Denver,CO,329p.

UnitedStatesBureauofReclamation(USBR),2001, EngineeringGeologyFieldManual,Vol.II,2nded.:USBR,Denver, CO,535p.

UnitedStatesBureauofReclamation(USBR),2014, Guidelines forDrillingandSamplinginEmbankmentDams:Electronic document,availableat https://www.usbr.gov/

UnitedStatesBureauofReclamation(USBR)andUnited StatesArmyCorpsofEngineers(USACE),2019, BestPracticesinDamandLeveeSafetyRiskAnalysis,Version4.1: Electronicdocument,availableathttps://www.usbr.gov/or https://www.iwrlibrary.us/

UnitedStatesCode(U.S.C.),2020a, 2018Edition,Supplement2,Title16-Conservation,Chapter12-FederalRegulationanddevelopmentofPower,SubchapterI -RegulationoftheDevelopmentofWaterPowerand Resources,Section791a:Shorttitle (16U.S.C.§791a): GovernmentPrintingOffice,Washington,D.C.,p.13871413

UnitedStatesCode(U.S.C.),2020b, 2018Edition,Supplement 2,Title16-Conservation,Chapter12A-TennesseeValley Authority,Sections831-831ee(16U.S.C.§§831-831ee): GovernmentPrintingOffice,Washington,D.C.,p.13871413

UnitedStatesCode(U.S.C.),2020c, 2018Edition,Supplement2, Title33-NavigationandNavigableWaters,Chapter15-Flood Control,Section701n:Emergencyresponsetonaturaldisasters (33U.S.C.§701n):GovernmentPrintingOffice,Washington, D.C.,p.194-199

Bensko,Simpson,Terry,andWalker
38 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39

UnitedStatesCode(U.S.C.),2020d, 2018Edition,Supplement 2,Title33-NavigationandNavigableWaters,Chapter9ProtectionofNavigableWatersandofHarborandRiverImprovementsGenerally,SubchapterI,Section408:Takingpossessionof,useof,orinjurytoharbororriverimprovements (33

U.S.C.§408):GovernmentPrintingOffice,Washington,D.C., p.50-51

UnitedStatesWarDepartment(WarDept),1939, TheWashingtonAqueduct,WaterSupply,DistrictofColumbia:War Dept,Washington,D.C.,p.2

BestPracticesforPlanningSiteInvestigationsatDamsandLevees
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.17–39 39

DamandLeveeSafetyRiskduringRemedial Construction

JEFFREYA.SCHAEFER*

SchaeferGeotechnicalConsultingLLC,12102RehlRoad,Louisville,KY40299

KeyTerms: DamSafety,LeveeSafety,RemedialConstruction,ConstructionRisk,ConstructabilityEvaluation,RiskMitigation,Cofferdams,Risk-Informed Decisions

ABSTRACT

Structuralmodificationstodamsandleveescancreatelifesafetyrisksduringtheconstructionperiod.It isimportantforallpartiesinvolvedtounderstandthe potentialrisk,evaluatemethodstomitigaterisk,and considertheriskwhenmakingdecisions.Mostimportantly,itiscriticaltoalwaysstriveto“donoharm”and preventactivitiesthatcouldpotentiallyincreaserisk. Thiscasehistorywillprovideexamplesofconditions thatcanleadtoincreasedriskduringconstructionincludingexcavationsthatlowerthecrestofadamor levee,excavationsatthetoeofanembankment,rapid embankmentconstruction,blockedbypasstunnels,spillwaymodifications,excavationsforoutletculverts,and damagefromgrouting.Akeycomponentofmanyconstructionprojectsisatemporarycofferdamtoprotect theworkareafromflooding.Cofferdamshaveahighpotentialtocreateriskduringconstruction.Animportant steptohelppreventincreasingriskduringconstruction istohavemultipleconstructabilityreviewsduringthedevelopmentoftheprojectdesign.Ifthepotentialforconstructionriskisproperlyidentified,theriskcanoften bemitigatedorreduced.Decision-makerinvolvementis necessarytoassurerisksareunderstoodandproperdecisionscanbemade.Severalcasehistoriesarepresented todemonstratehowrisksduringremedialconstruction areevaluatedandincorporatedintodecision-making.

INTRODUCTION

Whenadecisionismadetoreducerisksatadamor levee,astructuralmodificationmaybeimplemented. Sometimesastructuralmodificationcanpotentially exposethepublictoevengreaterrisksduringthe timethatittakestoconstructthemodifications.Itis criticaltoalwaysstriveto“donoharm”andprevent activitiesthatcouldpotentiallyincreaserisk.Some

*Correspondingauthoremail:jschaefer.geo@gmail.com

examples(notall-inclusive)areprovidedforthereader tounderstandtheneedtoevaluatethepotentialfor proposedremedialmeasuresthatincreaseriskduring construction.Theterm“constructionrisk”isusedto describethisriskduringconstruction.Construction riskcanhavedifferentmeanings,suchascostriskor scheduleriskduringconstruction.However,forthis document,constructionriskreferstothelifesafety oreconomicriskthatexistsduringtheperiodof constructionwhenadamorleveeisbeingmodified. Lifesafetyriskistherisktotheworkersandpublic downstreamofadamorlevee.Itistheproductofthe probabilityoftheloading,theprobabilityoffailure, andtheexpectedliveslostwithfailure.Economic riskissimilarbutisbasedontheexpectedcostsof damagestostructuresandfacilitiesdownstream.

ConditionsThatCanLeadtoIncreasedRisksduring Construction

Whenselectinganddesigningdamorleveealternatives,itisimperativetoevaluateandunderstand theconditionsthatcanleadtoincreasedriskduringconstruction.Thefollowingareafewexamples ofcommonconditionsassociatedwithdamandlevee remediation.

Excavationsthatlowerthecrestofthedamorlevee canincreaseitssusceptibilitytofloodovertopping.An examplewherealeveeprotectingSacramento,CA,is temporarilydegradedfortheconstructionofacutoffwallisshowninFigure1.Itistypicaltodegrade theleveeuptoone-halftheleveeheighttoprovidea workplatformforthecutoffwallconstructionequipmentandtoreducetheslurryhead,loweringtherisk ofhydraulicfracturefromtheslurry.

Excavationsatthetoeofadamcanincreaseitssusceptibilitytoslidinginstabilitybyremovingmassand allowingpotentialslidingsurfacestodaylightinthe excavation.Figure2showsanexamplewhereexcavationofthematerialatthetoeofadamwouldcausea stabilityproblem.

Excavationsthatremoveaportionofthedownstreamslopeorfoundationofanembankmentcan leadtoashortenedseepagepathandincreasedsusceptibilitytointernalerosion.Figure3showsanex-

Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51 41

amplewhereaditchwasexcavatedalongthetoeofa levee(LeveeUnit8ontheWhiteRiver,Washington, IN).Thisledtotheinitiationofinternalerosioninto theditchwhichunderminedthelandsideslope,causinginstability.Thiseventuallyresultedinbreachofthe levee.

Rapidconstructionofembankmentscanincrease thelikelihoodofslopeinstability.Therearenumerous casehistorieswhereembankmentswereconstructed ataratethatwastoofastfortheporepressuresin theembankmentand/orthefoundationtodissipate, andaslopefailurewasinitiated.Figure4showsFort PeckDam(Redlingeretal.,2018)andWacoDam (Stromanetal.,1984)whichbothhadmajorslopefailuresduringconstruction.Thecauseoftheslopefailuresonthesetwodamswasacombinationofapoor understandingofthegeologiccharacteristicsoftheir foundationsandtherapidconstructionthatcaused

veryhighconstructionporepressures.Althoughthese examplesareofslopefailuresthatoccurredinthe originaldamconstruction,thisisalsoaconcernif embankmentfillsforremediationareconstructedtoo quickly.

Ifbypasstunnelsareusedtodivertwaterduring constructionofadam,thereisapotentialthatthetunnelswillcollapseorbecomecloggedduringconstruction,leavingtheprojectwithnowaytopassinflows whichcouldleadtoovertopping.AtItuangoDam (Colombia,SouthAmerica),anauxiliarybypasstunnelcollapsedandalandslideblockedtheentrancesto theprimarybypasstunnels,leavingtheprojectwithno reliablemechanismtocontrolthepool.

Spillwayremediationthattakesthespillwayoutof servicetemporarilycanincreasethechanceofuncontrolledreleasesorovertopping.Fullorpartial replacementofstructuralfeatures,suchasspillways, couldpotentiallyresultinareleaseofwaterifa bulkheadorcofferdamweretofail.Figure5shows

Schaefer
Figure1.LeveedegradedinSacramento,CA,duringcutoffwall construction.Leveecresthasbeenlowereduptohalfthelevee height.Thiscanincreasetheriskoffloodingduetoovertopping andbreach(U.S.ArmyCorpsofEngineers,SacramentoDistrict). Figure3.Ditchexcavationatthetoeofalevee(LeveeUnit8,White River,IN)thattriggeredbackwarderosionpipinginthebottomof theditchwhichledtoslopefailureandeventualfailureofthelevee (U.S.ArmyCorpsofEngineers,LouisvilleDistrict).
42 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51
Figure2.Drawingshowsthatexcavationnearthetoeofadam(hatchedarea)canincreasetheriskofdaminstability.Theredlineindicatesa potentialfailureplane.ForsourceseeAcknowledgments.
RiskDuringConstruction
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51 43
Figure4.Slopefailuresduringconstruction:(a)FortPeckDam,MT(U.S.ArmyCorpsofEngineers[USACE],OmahaDistrict);and(b) WacoDam,TX(USACE,FortWorthDistrict).Bothdamsfailedduetoacombinationofapoorunderstandingofthegeologiccharacteristics oftheirfoundationsandporepressureincreasesinshalefoundationsthatresultedinreducedfoundationstrengths.

anexamplewhereaU.S.ArmyCorpsofEngineers (USACE)spillwaygateistakenoutofserviceandrepairsarebeingmadebehindtemporarybulkheads.

Repairworkongatescanalsopotentiallycause gatestoinadvertentlyopenandresultinanunplanned waterrelease.ArecentaccidentonClevelandDamin Vancouver,Canada,occurredwhenrepairswerebeing madeonaspillwaygateanditsuddenlyopened,resultinginamajorreleasethatkilledfishermeninthe riverdownstream(SchmunkandMigdal,2020).

Temporaryremovaloffloodprotection(leveeor floodwall)canexposetheprotectedareatoincreased floodrisk.Figure6showsareplacementofalevee

tainconstruction.Failureofthelinercouldincreasetheriskofinternalerosion.Overtoppingriskisalsoincreasedifthebottomoutletwasnotabletobeusedforrequireddischarges(U.S.ArmyCorps ofEngineers,MosulDamTaskForce).

drainageculvertwithnocofferdamorothertemporary floodprotectioninplace.Theleveeprotectspartofthe cityofClarksville,IN.

Constructingremedialelementslikegroutcurtains andcutoffwallsadjacenttoexistingstructurescan leadtodamageandpotentialinitiationofinternalerosion.Areasnexttoexistingstructuresaremorelikely tohavelowconfiningstressandembankmentmaterialsthatarenotaswellcompactedastherestoftheembankment,makingthemmoresusceptibletohydraulic fracturing.Figure7showsanexamplewherehigh groutingpressuresdamagedaconcreteandsteelliner inadam’sbottomoutlettunnel(MosulDam,Iraq). Pressuresfromtheadjacentgroutcurtainconstructionpenetratedthe5-ft(1.5-m)-thickconcreteliner andbuckledthe1-in.(2.5-cm)-thicksteelliner.Thedeformationwasapproximately3ft(1m)intothetunnel and40ft(12m)long.Fortunately,thesteellinerdid notfail,andthetunnellinerwasabletoberepaired. Hadthesteellinerburst,therewasapotentialto initiateinternalerosionintotheconduit.

Pressuresinducedfromdrillingfluidsorgrouting canbelargeenoughtoproducedamageeitherbycausingthegroundtofractureordisplace,orboth,and increasetheriskofinternalerosionfailuremodes. Figure8showsanembankmentdam(AddicksDam, TX)excavationthatwasfracturedbygrouting,and Figure9isacrackinthecrestofWolfCreekDam (Jamestown,KY),adamcrestthatwasassociatedwith grouting-induceddisplacements.

Wheredamsandleveeshavedrainagefeaturesthat areimportanttotheperformanceofthestructure,uncontrolleddrillingfluidsorgroutingactivitieshavethe

Schaefer
Figure5.Damgaterepairbehindtemporarybulked(U.S.Army CorpsofEngineers,LouisvilleDistrict).Thiscanincreaseriskof damovertoppingduetoinabilitytomakefullreleasesandincrease riskofuncontrolleddischargeifthebulkheadweretofail. Figure6.Leveeembankmentsection(Clarksville,IN)ontheOhio Riverwasremovedforculvertreplacementincreasingtheriskof leveeovertoppingfloodingduringtheconstructionperiod(U.S. ArmyCorpsofEngineers,LouisvilleDistrict). Figure7.Steelbottomoutlettunnellinerdamagefromgroutcur-
44 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51

potentialtoclogdrainagesystemsandincreasetherisk ofinternalerosionfailuremodesorincreasingpore pressures,leadingtoslopefailure.Improperlyconstructedfiltersordrainscanpotentiallyprovideanunfilteredexitforseepage.Thisincludesfilterlayersthat wereplacedtoothin,aremissingorinadvertentlyremoved,ordrainpipesthatarenotproperlyconnected orbrokenduringinstallation.

Cofferdams

Akeycomponentofmanyconstructionprojectsis acofferdamtoprotecttheworkareafromflooding. Designofcofferdamsrequiresthesameriskconsiderationsasanyotherwater-retentionstructure.Con-

sequencesneedtobeconsidered.Willfailureofthe cofferdamresultinuncontrolledreleaseofimpounded waterthatfloodspopulationdownstreamorwithinthe leveedareaorjustthefloodingoftheworkarea?The trade-offsbetweencostandriskreductionneedtobe weighed.Itisoftenadvisabletoinvolvethedecisionmakersintheselectionofdesignfloodsforcofferdams. Ananalysisneedstobedonetodeterminetherisk ofovertoppingduringconstructionandotherfailure modes.

Tomitigatetheriskofbreachingduetoovertopping,manycofferdamsaredesignedwithcomponents toallowcontrolledfloodingoftheexcavationarea. Thecofferdam(fortheOlmstedLocks,Olmsted,IL) inFigure10wasfloodedbeforebeingovertoppedby 2ft(0.6m)for2weeks.Iftheexcavationhadnot beenfloodedbeforeovertopping,thecellularcofferdamsurelywouldhavefailed.Headdifferencewas over100ft(30.5m)fromthesandfoundationexcavationfloortothecofferdamcrest.Aftertheflood,other thantheextensivecleanupofthedepositedmud,only minorrepairofsomefillerosioninafewsheet-pilecell topswasrequired.

CaseHistory:CofferdamforOutletWorks Replacement

Thiscasehistorydemonstratestheimportanceof consideringconstructionriskwhendeterminingthe heightofacofferdam.Thisisespeciallytruewhen thecofferdamreplacesthereservoirdamastheprimarydammingsurfaceduringtheconstructionperiod.Itwasdeterminedthatoutletworksontwoadjacentdryreservoirs(AddicksandBarkerDamsin Houston,TX)requiredreplacementtomitigateaninternalerosionalongtheconduitfailuremode.Numerousvoidshadbeendetectedundertheconduitsand stillingbasins.Atthattime,thesereservoirsweredeterminedtohavethehighestriskintheUSACEportfolio ofdamsduetotheirhighprobabilityoffailureandthe veryhighestimatedlossoflifedownstreamifthedams weretofail.Figure11showsoneoftheoutletworks beforetheconstructionofthereplacement.

Toreplacetheoutletworks,aportionoftheexisting damhadtoberemoved.Tocreateaprotectedwork areaforthedamremovalandoutletworksreplacement,largeearthcofferdamswererequired.Thesecofferdamsnotonlyprovidedaprotectedareaforconstructionbutalsoservedastheprimarydamthat heldbackthereservoirduringconstruction.Figure12 showsadrawingofoneofthecofferdamsrequiredto buildthenewoutletworks.

Aconstructabilityreviewwasperformedaspartof thestudyphaseandtheteamrecommendedthatthe cofferdamsbebuilttomatchthefullheightofthe

RiskDuringConstruction
Figure8.HydraulicfractureinAddicksDam,TX,embankment causedbyexcessivegroutingunderadamoutletworks(U.S.Army CorpsofEngineers,GalvestonDistrict). Figure9.DeformationcrackinWolfCreekDam,KY,crestroadassociatedwithfoundationgrouting(U.S.ArmyCorpsofEngineers, NashvilleDistrict).
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51 45
Schaefer
46 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51
Figure10.(a)Controlledcofferdamfloodingbeforeovertopping.(b)OvertoppedcofferdamattheOlmstedLocksandDamprojectinOlmsted,IL(U.S.ArmyCorpsofEngineers,LouisvilleDistrict).

dams.Avalueengineering(VE)studywasperformed withamajorrecommendationtoreducetheheightof thecofferdams.TheVEteambelievedthatthecofferdamdidnotneedtobeequaltotheheightoftheexistingdamandthatareductioninheightwouldprovide costsavingswithlittleincreasedrisk.Estimatedsav-

ingswere$1.3millionforeachdam.TheVEteamapparentlydidnotunderstandorappreciatetheconcept ofconstructionrisk.Theproposalwasrejectedbased ontheincreasedliferiskto1.2millionpeopleandthe potential$60billionineconomiclossesintheevent ofamajorfloodevent.Thecofferdamwouldserveas thedamembankmentthroughoutconstruction.Accordingly,theestimatedsavingspaledincomparison tothepotentiallossoflifeandeconomicconsequences ifamajorfloodeventhadoccurredandthecofferdam wasovertoppedorbreached.Thetopelevationofthe cofferdamwasdeterminedbasedonariskassessment duringthestudyphaseandmaintainingthecofferdam elevationthesameastheexistingdamwaswarranted asaresultoftheproject’shighconsequences.

Duringconstruction,thelargestfloodinthe project’shistoryoccurredduringHurricaneHarvey. Between35and40in.(89and102cm)ofrainfell inthearea.Bothreservoirsreachednewrecordpools approximatelyjust10ft(3m)belowthecrest.At oneofthedams,theVEstudy’sproposedcofferdam crestwasbelowthenewrecordpool.Ifthecofferdamsweredesignedwithalowercrestelevation,significantdamageswouldhaveoccurredfromovertoppingand/orincreaseddischargestopreventtheover-

RiskDuringConstruction
Figure11.OutletworksatAddicksDam,TX,beforereplacement (U.S.ArmyCorpsofEngineers,GalvestonDistrict).
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51 47
Figure12.CofferdamplanforthenewoutletworksatAddicksDam,TX(U.S.ArmyCorpsofEngineers,GalvestonDistrict).

toppingofthecofferdams.Figure13showsoneofthe cofferdamsduringthenewrecordflood.Thiscasehistoryisagoodexampleofthe“donoharm”philosophythatmustbefollowedwhenperformingremedial constructiontoensurerisksarenotincreasedduring construction.

ConstructabilityEvaluation

Oneofthekeytaskstohelppreventincreasedrisk duringconstructionistohavemultipleconstructabilityreviewsduringdevelopmentoftheprojectdesign.Ataminimum,constructabilityreviewsshould beperformedduringthestudyphase,aswellasduringthe65percentplansandspecificationdevelopment.Constructabilityreviewteamsshouldinclude personnelwithexperienceinthedesignandconstructionofprojectssimilartotheproposedalternative.Thereshouldalsobegeologistsandgeotechnicalengineersexperiencedinthegeologicconditions attheprojectsite.Duringthestudyphase,alternativerisk-managementplansareformulated.Constructionriskcanbeamajorfactorinselectingtheriskmanagementplan.Ifconstructionisnotconsidered duringthestudyphase,aplanmaybeselectedwhich isnotfeasiblebecauseofintolerableconstructionrisk, leadingtounexpecteddelaysandcostincreases.Duringdesign,specialelementsandspecificationrequirementscanbeincorporatedtomitigateandreduce risk.

Allconstructionrisksmustbeidentifiedandproperlymitigatedtoreducethemtotolerablelevels.Constructionriskcanbeevaluatedusingengineeringjudgmenttoqualitativelycharacterizetheriskorafull eventtreeanalysistoquantitativelyestimatetherisk,

dependingonthecomplexityandlevelofriskinvolved. Methodsforestimatingriskcanbefoundin“Best PracticesinDamandLeveeSafetyRiskAnalysis” (U.S.BureauofReclamation[USBR]–USACE,2019).

MitigationofRisk

Ifthepotentialforconstructionriskisproperly identified,theriskcanoftenbemitigatedorreduced. Afewexamplesarepresentedbelow.

1.ExcavationSequencing.Aslopeexcavationcanbe sequencedtoalwaysbeunloadingthetopofthe slopeinsteadofthebottomwhichmaydestabilize theslope.

2.ExcavationSizeLimits.Thelengthofopentrench excavationscanbelimitedtothatwhichcanbe backfilledthesamedaytominimizeprolonged exposureconditions.USBRdevelopedasolution toimprovetheseismicstabilityofadamby excavatinglow-strengthalluvialmaterialsatthe toeofthedamandreplacingthemwithahigherstrengthconcretezone(Harrisetal.,2013).Figure14showshowthedesignmitigatedtherisk ofslopeinstabilityduringconstructionbybuilding shortsectionsofbracedexcavations(MoormanIslandAuxiliaryDam,Folsom,CA).

3.EncasementWall.Specialtechniquescanberequiredonportionsofaprojecttomitigaterisk. Forexample,ontheEastBranchDam(Wilcox, PA)cutoffwallproject,secantpilesusingthecased method(Figure15)wereusedtoconstructaprotectivebarrieraroundthealignmentforanewdeep cutoffwallinanareaoftheembankmentthatwas damagedbyapreviousinternalerosionincident. Thenewdeepcutoffwallusedthehydromillpanel method.Thesecantpilesprovidedabarriertoeliminatetheriskoftheslurryusedwiththehydromill initiatingerosionintheembankment.

4.ProtectiveGroutLines.Anotherexampleisthe MississinewaLakeDam(Peru,IN)cutoffwall projectwheresignificantslurrylossesoccurred whileexcavatingkarstrockwithahydromillinthe demonstrationsection.Thecontractwasmodified togroutthekarstbedrockbeforeexcavatingcutoffwallpanels.Figure16showsthegroutlinesjust upstreamanddownstreamofthecutoffwallalignment.Thisprocedureisnowcommonlyusedwhen installingcutoffwallpanelsinkarstorhighlyfracturedrocktomitigatetheriskofexcavationcollapse,erosion,andunwantedslurry.

5.WorkSchedule.Often,thescheduleofworkcanbe optimizedtoreducerisk.Thereservoirwatersurfaceelevationmaydrivetheriskduringconstructionandthelikelihoodofreachingvariouseleva-

Schaefer
Figure13.CofferdamatAddicksDam,TX,holdingpoolduring recordfloodfromHurricaneHarvey(U.S.ArmyCorpsofEngineers,GalvestonDistrict).
48 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51

tionsmayvaryduringtheyear.Thus,onewayto minimizethetemporaryincreaseinriskduringconstructionistoadjusttheconstructionscheduleso thathigh-riskactivitiesoccurwhenthereservoiris likelyatthelowestlevel.Thiscanbeaccomplished byacceleratingtheconstructionscheduletoreduce thewindowoftimetheprojectisatrisk.

6.ReservoirRestrictions.Reservoirrestrictionscanbe implementedtolowerthepooltoreducethefrequencyanddurationthatthereservoirexceedstargetelevationsduringtheperiodofconstruction. Poolrestrictionscaninfluenceallthreeaspectsof theriskequation:

• restrictionscanreducethefrequencyofthe load,

• canreducethemagnitudeoftheloadandlower probabilityoffailure,and

• canreducethepotentialconsequencesdueto lesswatervolumeavailableinabreach.

7.DemonstrationTestSections.Anothermethodof mitigatingriskduringconstructionistorequire

demonstrationsectionstobeconstructedaway fromthepermanentworkorinlesscriticalareas beforegoingintofullproduction.Demonstration testsectionscanbeaproof-of-conceptexerciseand provideearlyinformationtoevaluatethesuitability ofequipment,excavationprocedures,construction techniques,andmaterials.Demonstrationtestsectionsoftenrevealproblemswithaproposedmethod ofconstructionthatcanthenberemediedbefore initiatingfullproduction.Testsectionshavebeen constructedformanyoftheUSACEcutoffwall projects.

8.ReliableCofferdams.Thefacilityownershouldtake responsibilitytoprovidethedesignfloodfortemporarycofferdamswhenportionsofadamorleveeare temporarilyremoved.Thisresponsibilityhasbeen frequentlyassignedtocontractors,sometimeswith negativeoutcomes.Thecofferdamheightshouldbe arisk-informeddecision.Figure17(FolsomDam AuxiliarySpillway,Folsom,CA)isanexampleof spillwayconstructionriskmitigatedbyconstructing afull-heightcofferdamwithreliabilityequivalentto themaindam.

RiskDuringConstruction
Figure14.BracedexcavationmethodtomitigatethepotentialforslopeinstabilityusedbytheBureauofReclamationontheMormonIsland AuxiliaryDamSeismicRemediationProject(Folsom,CA).
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51 49

Decision-MakerInvolvement

Perhapsoneofthemostimportantaspectsregardingconstructionriskisdecision-makerinvolvement.Decision-makersforeveryorganizationare different.FortheUSACE,theywouldinclude: DamandLeveeSafetyofficersattheDistrictand Division,DamandLeveeSafetycommunityofprac-

ticeleadsatHeadquarters,directorsoftheDamSafety ModificationCenter,andtheRiskManagementCenter.Otherdecision-makerscouldincluderegulators liketheFederalEnergyRegulatoryCommission,local stakeholders,orotherorganizationsforjointmultipurposeprojects.Designersofmodificationsneedtobe awareofdesignandconstructionsituationsandtiming thatcouldresultinanincreaseinrisktothestructure

Schaefer
Figure15.(a)CasedsecantpileswereusedtoconstructaprotectiveencasementwallattheEastBranchDam,PA,tomitigatethepotential forslurrylosswhenconstructingthehydromillpanelwallthroughanareaintheembankmentthatwasdamagedinapastinternalerosion incident.(b)Planviewofsecantpileencasementwall(U.S.ArmyCorpsofEngineers,PittsburghDistrict).
50 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51

andthepopulationdownstreamorwithintheleveed area.Attimes,itisnecessarytoacceptahigherlevel ofrisktemporarilytoachievethelong-termbenefits ofriskreduction.However,thedesigneraloneshould notbethejudgeofwhatleveloftemporarilyincreased riskisacceptable,howlongthatriskwouldbepresent, andhowmuchmoneyshouldorshouldnotbespent tomitigatethoserisks.Arisk-informeddecisionon constructionriskcanbemadeifalloftheinformation ismadeavailabletothedecision-makers.Thereare manywaystodealwithincreasedriskduringconstruction;someinvolveadditionalfundingtoconstructengineeredmitigationmeasurestooffsetrisks,andothers involvetheuseofscheduleadjustmentsandconstructiontiming.Alloftheoptionsshouldbeevaluatedso thataninformeddecisioncanbemade.

SUMMARY

1.Manyconditionscanleadtoincreasedriskduring construction.

2.Allstructuralmodificationsshouldbedesignedto minimizethepotentialtoincreaserisk.

3.Constructabilityreviewsshouldbeperformedto evaluatethepotentialriskassociatedwiththeremedialmeasure.

4.Qualitativeorquantitativemethodscanbeusedto evaluaterisk.

5.Waystomitigatetheriskshouldbeexplored.

6.Constructiontimingandscheduleadjustments shouldbeevaluatedforeachalternative.

7.Arisk-informeddecisiononconstructionofremedialmeasurescanbemadeifallthekeyinformation isconsideredandmadeavailabletothedecisionmakers.

8.Donoharm;donotincreaseriskorcausedamage whiledoingtheremediation.

ACKNOWLEDGMENTS

MostofthecontentinthiscasehistoryisalsocontainedinarecentUSACEdraftupdatetoChapterH3ConstructionRisk,BestPracticesinDamandLevee SafetyRiskAnalysisthatwaspreparedbytheauthor priortoretiringfromtheUSACE.

REFERENCES

Harris,M.J.;Lindquist,E.S.;Jameson,R.;andPorter,T., 2013,Acollaborativesuccess–ConstructionoftheMormon Islandauxiliarydamkey-blockforseismicrehabilitation. 2013 AssociationofStateDamSafetyOfficials(ASDSO)Annual ConferenceProceedings:AssociationofStateDamSafetyOfficials,Providence,RI.

Redlinger,C.G.;Ferguson,K.A.;andBerre,L.M.,2018,80th anniversaryoftheFortPeckDamconstructionslide. 2018AssociationofStateDamSafetyOfficials(ASDSO)AnnualConference:AssociationofStateDamSafetyOfficials,Seattle,WA. Schmunk,R.andMigdal,A.,2020, Humanerror‘clearestcontributingfactor’indeadlyClevelandDamincident: Preliminaryreport:CBCNews.Posted:October8,2020, 9:54AM(PT).https://www.cbc.ca/news/canada/britishcolumbia/cleveland-dam-deaths-human-error-1.5755380 Stroman,W.R.;Beene,R.R.W.;andHull,A.M.,1984,Clay shalefoundationslideatWacoDam,Texas. FirstInternational ConferenceonCaseHistoriesinGeotechnicalEngineering, Vol4: InternationalConferenceonCaseHistoriesinGeotechnicalEngineering,St.Louis,MO,pp.578–586.

U.S.DepartmentoftheInteriorBureauofReclamation (USBR)–U.S.ArmyCorpsofEngineers(USACE),2019, Bestpracticesindamandleveesafetyriskanalysis:U.S.Army CorpsofEngineersRiskManagementCenter. Electronic document, availableat https://www.rmc.usace.army.mil/ Library/RMC-Publications/

RiskDuringConstruction
Figure16.Groutcurtainlinesupstreamanddownstreamofcutoff wallalignmentinstalledatMississinewaDam,IN,topreventsignificantslurrylosseswhileexcavatingkarstlimestone(U.S.Army CorpsofEngineers,LouisvilleDistrict). Figure17.RobustcofferdamforFolsomDam,CA,auxiliaryspillwayconstruction(U.S.ArmyCorpsofEngineers,Sacramento District).
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.41–51 51

RoughRiverDamSafetyModificationProjectEvolution

STEVENSHIFFLETT* WILLAILSTOCK

KeyTerms: RoughRiver,USACE,Karst,Grouting, CutoffWall,DamSafetyModification

ABSTRACT

ThispaperisacasestudydocumentinghowtheRough RiverDamSafetyModificationProjectevolvedover time.RoughRiverDamisanembankmentdamlocated inwest-centralKentuckythatisownedandoperated bytheU.S.ArmyCorpsofEngineers(USACE)for floodriskmanagement.Theprojecthasarightabutmentcut-and-coveroutletconduitfoundeduponkarstic limestone.In2012,aDamSafetyModificationReport (DSMR)wascompletedthatidentifiedmultipleinternal erosion-relatedpotentialfailuremodesrequiringmitigation.TheDSMRrecommendedamulti-phasedapproach.ThePhaseIprojectincludedconstructionofa workplatforminordertoperformexploratorydrilling andgroutingfortwopartialgroutlines.ThePhaseII projectwastoconsistofgroutlinecompletion,constructionofafull-lengthcutoffwalloverandaroundtheexistingoutletconduit,groutingwithintheoutletconduit, andconstructionofadownstreamfilter.Basedonencounteredconditions,thePhaseIgroutingcontractwas modifiedtocompletebothpartialgroutlinesforslurry controlpriortocutoffwallconstruction.Duringdesign ofthePhaseIIcutoffwall,theexistingoutletconduit wasdeterminedtobestructurallyinadequatetosupport thecutoffwall.ASupplementalDSMRrecommended anewleftabutmentoutletworkstopermittheexisting conduittobeseveredandtoallowforconstructionofthe fullcutoffwallacrossthedamfoundation.ThePhase IIdesignwascompletedinthefallof2021.Thispaper summarizesthekeyinformation,findings,anddecisions thatinformedthefinaldirectionoftheproject.

PROJECTINTRODUCTION

RoughRiverDamislocatedinFallsofRough,KY, ontheRoughRiverapproximately60mi(100km) southwestofLouisville,KY,andapproximately120mi (200km)northofNashville,TN.Theprojectisan earthenfloodriskmanagementdamworkingincon-

*Correspondingauthoremail:Steven.w.shifflett@usace.army.mil

junctionwiththreeotherdamsintheGreenRiver Basintoreducefloodimpactslocallyandalongthe OhioRiver.Theembankmentis130ft(40m)talland 1,590ft(485m)longwitha40ft(12m)crestwidth. Asoriginallyconstructed,theoutletworksisinthe rightabutmentandconsistsofacontroltower,cutand-coverconduit,stillingbasin,andretreatchannel. Theoutletworksistheonlymeansofcontrolledflow conveyancefortheproject.Inthefar-leftabutment, thereisanuncontrolled,open-cut,rockspillwaythat is65ft(20m)wideand1,800ft(550m)long.

PROJECTGEOLOGY

RoughRiverDamislocatedonthenorthwestern portionoftheMississippianPlateauinKentucky.The RoughRivervalleyisarelativelynarrowentrenchment cutintorockofthelowerandmiddleChesterSeriesof Mississippianagethatdipstothesouthwestatarateof about85ft/mi(16m/km).SeeFigure1forasummary ofthestratigraphiccolumnandgeologicdescriptions forproject.Theprimaryrisk-drivingfailuremodesfor thedamareassociatedwiththeuntreatedBeechCreek Limestone(BCLS)andtheuntreatedHaneyLimestoneunits.Theseunitsarepresentonbothsidesof theincisedvalleybuthavebeenfullyerodedatthevalleycenter.Bothunitsarehighlykarsticwithpinnacledupperrockcontactelevationsandcontinuoussolutionfeaturesalongjointsandbeddingplaneswhere theunitsareexposedtoweathering.TheHaneyLimestoneisknowntocontainmassivekarstfeaturesover 50ft(15m)inwidth.TheBCLSrangesfrom10to15ft (3–4.5m)thickandisknowntocontainkarstfeatures over6ft(2m)thick.Thevarioussandstoneandshale unitsunderlyingthedamgenerallyexhibitreducedhydraulicconductivitywithdepthandarenotconsidered toberisk-drivingfailuremodesforthedam.

Abovethebedrockintheincisedvalley,thereisnaturallydepositedalluvialmaterialreferredtoas“overburden”or“foundationsoils”interchangeablyinthe constructiondocuments.Thedamfoundationsoils varyoneachsideoftheriverchannel.Leftoftheriver channel,thedamwasfoundedon40to50ft(12–15m)ofleanclay,silts,andinterfingeredsandswith sandyclays.Totherightofthechannel,thefoundation

U.S.ArmyCorpsofEngineers(USACE),LouisvilleDistrict,600Dr.MartinLuther
King,Jr.Place,Louisville,KY40202
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65 53

materialisupto30ft(9m)thickandisgenerallycomposedofpoorlydrainingcohesivematerial.

CONSTRUCTIONHISTORY

ConstructionofthedambeganinNovember1955 andwascompletedinJanuary1958,withthedam placedintoservicein1960.Thealluvialsoilswereonly excavatedaspartoftherightabutmentoutletworks constructionandwerenotexcavatedduringconstructionofthedam.Thedamwasconstructedwithno coretrench,foundationgrouting,ordentaltreatment acrosstherivervalleybetweentherightabutmentoutletconduitandthelowerleftdamabutment,withthe exceptionofa6ft(2m)inspectiontrenchexcavated intothealluvium.TheoutletworkstowerandapproximatelytwothirdsoftheupstreamportionoftheoutletconduitwerefoundedontheBCLS.Theremaining downstreamportionoftheoutletconduitandtheoutletworksstillingbasinwerefoundedonshale.During foundationmappingfortheoutletconduitexcavation intheBCLS,linearkarstfeatureswereobservedand mappedwithintheoutletconduitexcavation.These featuresweretreatedwithdentalconcrete.Karstfeaturesthatexitedtheexcavationorwereotherwisecoveredwithshalewerenottreated.

Theoriginaldamdesignerswereconcernedwithembankmentstabilityassociatedwiththepoorlydrainingsoilsontherightsideofthevalley.Thedesign

incorporateda2-ft-thick(0.6m)upstreamfilterblanketconstructedabovethepoorlydrainingmaterialextendingtowithin50ft(15m)ofthedamcenterlineto addresstheseconcerns.Downstreamofthedamcenterline,aninclinedfilterand2-ft-thick(0.6m)filter blanketweredrapedoverthefoundationsoilsacross thedownstreamtoeofthedam,andthesealsoextendedtowithin50ft(15m)ofthedamcenterline. Seriesof368sanddrainagewells(wickdrains)were advancedthroughbothblanketstothetopofbedrock betweentheriverchannelandoutletconduit(Figure 2a).Thesanddrainagewellsare12in.(30cm)indiameterandspacedat13ft(4m)fromcentertocenter.

Thereservoirisusedforfloodriskmanagement, andthereservoirsurfacecyclesbetweenhighheadwaterandtailwaterlevelsaspartofroutineoperations. Theupstreamblanketallowsreservoirpressurestobe transmittedtowithin50ft(15m)ofthedamcenterline,chargingthesanddrainagewellsincontactwith theBCLS(Figure2b).TheverticaldrainsinadvertentlyfunctionasinjectionwellscapableoftransmittingcyclicalhighhydraulicgradientswithintheBCLS frombothupstreamanddownstreaminfluences.Once insidethekarstnetwork,thesewaterpressurescan betransmitteddirectlytofoundationsoilsindirect contactwithkarstfeatures.Headlossacrossthedam foundationiscontrolledbythealluvialsoilabovethe BCLSbetweentheblanketdrainsthatisindirectcontactwiththesekarstfeatures.

ShifflettandAilstock
Figure1.RoughRiverDamstratigraphyandgeologicdescriptions.
54 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65

HISTORICINSTRUMENTATION OBSERVATIONS

Piezometersintheembankmentandfoundation strategicallytargettheupstreamblanket,thealluvial overburden,andtheBCLSforfoundationmonitoring (Figure2b).Afterfloodeventsin2007and2011,instrumentsintheupstreamalluvialfoundationbegan todecline,whileinstrumentsintheupstreamblanketmaintainedhistoriclevels,readingapproximately 3ft(1m)belowthereservoir.Instrumentslocated

downstreamofthedamcenterlinetippedintheBCLS alsoexhibitedtrendchangesafterthe2011recordpool event.Thechangesindicatedareductioninheadloss acrossthedamfoundationandincreasedreservoirinfluenceactingonthedownstreamdamfoundation.In 2012,anautomateddataacquisitionsystem(ADAS) wasinstalledatRoughRiverDam.Duringthe2012 stillingbasindewatering,significantandinstantaneous dropsinpiezometer(PZ)levelsoccurredalongtheentirelengthoftheoutletconduitalignment.Theautomatedinstrumentswerealsoabletoinstantaneously

RoughRiverDamSafetyModificationProject
Figure2.Interactionof(a)upstreamdrainagewellsandkarstand(b)drainagewellsandinstrumentationnearStation22+30.
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65 55

detectgatechangeoperationsinthedamfoundation 35ft(10.5m)upstreamofthedamcenterline,orto within15ft(4.5m)oftheupstreamhorizontalblanket. Thisdatasetwaskeysupportingevidencefordevelopmentofconnectivitybetweenthekarstfoundation, thealluvialfoundation,theupstreamblanket,andthe drainagewells.

EXPLORATORYDRILLINGANDGROUTING

In2012,aDamSafetyModificationReport (DSMR)wascompletedthatidentifiedfourinternal erosion-relatedpotentialfailuremodes(PFMs)across thedamfoundationandafifthPFMlocatedalongthe outletconduit.TheDSMRrecommendedexecutinga seriesofcontractstorelocateStateHighway79from thedamcresttotheupstreamslope(PhaseIA),toperformexploratoryfoundationgrouting(PhaseIB),and toemplaceslurry-controlgroutingandinstallacutoff wall(PhaseII)tomitigateprojectrisks.Thescopeof thefuturePhaseIIprojectwascontingentuponthe resultsofthePhaseIBgrouting.Thegroutingwas intendedforfutureslurrycontrol,andthedamwas notgroutedtoclosure.TheDSMRincludedplansfor thefuturecutoffwalltobeinstalledacrossthedam foundationandaroundtheexistingconduit,withadditionalgroutinginsidetheconduit.

Theexploratorydrillingandgroutingproject,referredtoasRoughRiverDamSafetyModification PhaseIB,wascompletedinaccordancewiththe DSMRrecommendationsbetween2015and2017.The goalofthePhaseIBprojectwastoexploreandevaluatesubsurfaceconditionsandtoprovideadditional informationtosupport/validatecutoffwalldesign. Phase1BwasawardedinApril2015.Thebasecontractrequiredtwopartialgroutlinestotaling1,670ft (509m)inlengthtobeplacedparalleltoandoffset fromthedamcenterlineby7.5ft(2.3m)upstreamand 10ft(3m)downstream.Groutholeswereangled20 degreestowardeachabutment,crossinginthehistoric valleyarea.Primaryholeswerespacedat20ft(6m) oncenter.Criticalareaswheretheembankmentwas incontactwiththekarsticlimestoneweresplit-spaced downtotertiaryholesspaced5ft(1.5m)oncenter.Inthebasecontract,thecontractorwasrequired toperformopticalandacousticteleviewer(O/ATV) surveyingforprimaryboreholesandverification boreholes.

Waterpressuretestingandgroutingoccurredinprescribedstagesinthebedrockrangingfrom15to30ft (4.5–9m)withtheintenttoisolatespecificformations tothegreatestextentpossible.Theoreticalgrouting pressuresforeachstagewerecalculatedatthemidpointofthestagebasedon0.5psi/ft(11.5kPa/m) ofsoiland1psi/ft(23kPa/m)ofrock.Groutinguti-

lizedbalanced,stablegrouts,whichwerethickenedas appropriatetoallowthetargetpressuretobeachieved. Therefusalcriterionforeachstagewasdefinedas maintainingaflowoflessthan1gal/min(3.8L/min) heldfor10minutesatthemaximumpressurespecifiedforthegroutstage.Refusalforgravitygroutstages wasdefinedasmaintainingequivalentgravitygrout pressureforthestageasmeasuredfromtheground surfaceelevationwithnogrouttakeforaperiodof 1hour.

InnovationsinGrouting

Theprojectrequiredtheuseofinstrumentedpackersforallwaterpressuretestingandgroutingoperations.Thedatageneratedbytheinstrumentedpackers weremadeavailablebyanautomatedgroutingmonitoringanddatacollectionsystem,whichenabledrealtimedatacollection,monitoring,reporting,andevaluationofdrilling,grouting,waterpressuretesting,and instrumentationresponses.Duringtheperformanceof theexploratorygroutingprogram,anintegratedelectronicrecordssystemwithageographicinformation system(GIS)interfacewasusedtomanagedataas theywerecollectedtoaidininterpretationanddata management.Thereal-timedatarecordsanddaminstrumentationavailablefromtheADASsystemwere criticalforeffectivereal-timemonitoringoftheembankment,foundationsoils,andbedrockduringconstruction.Severalcriticalpiezometersweremonitored duringoperations,whichresultedinhalteddrillingand groutingoperations.

AlldrillingandgroutingconformedtoU.S.Army CorpsofEngineers(USACE)EngineeringRegulation (ER)1110-1-1807—DrillinginEarthEmbankment DamsandLevees(USACE2014)andEngineering Manual(EM)1110-2-3506—GroutingTechnology (USACE2017).Thegroutprogramwasdesignedto effectivelytreattheweatheredrockinterfacezone whileminimizingtheriskofinducingdamageto thedamembankmentandfoundationbyisolating thesoil/bedrockcontact.Thiswasaccomplishedby isolatingthesoil/bedrockcontactusingagroutinflatedgeotextilebarrierbagacrossthecontactrather thanusingalow-mobilitygroutsocket,andbyfully treatingtheupper15ft(4.5m)ofanygivenbedrock formationincontactwiththeembankmentatgravity pressurebeforeallowingpressuregroutingtooccur inthatarea.Thedrillingandgroutingproceduresfor anygivenboreholewereasfollows:

1.EmbankmentDrilling:Thedamembankmentand underlyingoverburdenweredrilledusingresonant sonicdrillswithaprimary6-in.-diameter(15cm) steelcasingadvancedfirst,followedbyanouter

ShifflettandAilstock
56 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65

7-in.-diameter(17.5cm)overridecasing.Theouter casingprotectedtheembankmentandfoundation soilswhiletheinnercasingwasremovedandsampleswereextruded.Thisprocesswasrepeateduntil a4-ft-long(1.2m)socketwasemplacedintocompetentbedrock.

2.InstallationofCasingandRockSocketTreatment: Thetemporarysteelcasinginstalledfromtheresonantsonicdrillingwasrequiredtoremaininplace untilthepermanentcasingwasgroutedintothe borehole.Thepermanentcasingconsistedofa6in.-diameter(15cm)schedule80polyvinylchloride(PVC)multiple-portsleevepipe(MPSP)that wasinsertedinsidethesonicdrillcasingtothebottomoftheboreholesocket.Aninflatablegeotextile barrierbagwasattachedtotheMPSPusingdoublepunchlockclampsateachendofthebag.The barrierbagwasusedtoisolatetheembankmentat therocksocket.TheMPSPwastrimmedsothat thebarrierbagwascenteredatthebedrockcontact withsufficientportsintheMPSPbelowthebag,at thebag,andabovethebagtoaccommodategroutingoftheMPSPintoplace.

3.BarrierBagInflationandCasingGrouting:The barrierbagwasinflatedusingneatcementgrout andadouble-packersetup.Theannularspace aroundtheMPSPpipewasthenbackfilledabove thebarrierbaginstagestonotexceed90percentofthetheoreticalhydrofracturepressure,determinedinaccordancewithER1110-2-1807— DrillinginEarthEmbankmentDamsandLevees. OncetheMPSPwasbackfilled,thesteelcasingwas pulled,andtheannularspacearoundthecasingwas toppedoffwithgrout.

4.RockSocketInterface:Therocksocketwasgrouted atgravitypressurethroughopenportsbelowthe barrierbagusingasingle-packersetup.

5.15ft(4.5m)GravityZone:Oncethegroutreached strengththresholds,therocksocketwasredrilled alongwithanadditional15ft(4.5m)sectionof rockbelowtherocksocketusingwater-actuated, down-the-holehammersorstandardrotarydiamondcoringdrillsinsertedthroughtheMPSP. Theholeswerethenwashed,selectholesweresurveyedusingO/ATVdownholeequipment,andthe holeswerethengravitygroutedtorefusal.Any givenrockformationthatwasexposedtothefoundation/embankmentsoilwasrequiredtobefully isolatedbycompletingallgravitygroutingzones acrosstheexposedformationbeforepressuregroutingwasallowedtocommence.Thedamwasthereforeseparatedbyformationforthepurposeofsequencingthework.

6.RockDrillingandPressureGrouting:Afterthe15 ft(4.5m)gravitystagesmetageandstrengthre-

quirementsforanygivenrockformationexposure, downholedrillingandupstagepressuregrouting couldcommence.Atthispoint,theremainderof theholewastypicallydrilledtofulldepth.Thehole wasthenupstagegroutedinprescribedstagesrangingfrom15to30ft(4.5–9m).Asinglepackercould beusedforthedeepestgroutstageatthebottom ofthehole,butadouble-packerassemblywasrequiredforsubsequentwaterpressuretestandgrout stages.Primaryholeswerecompletedfirst,followed bysecondaryandtertiaryholes.

RequiredUseofInstrumentedPackers

RoughRiverwasoneofthefirstUSACEprojectsto requiretheuseofaninstrumentedpackeraspartofthe projectspecifications(Figure3).Thecontractordevelopedinstrumentedpackersthatallowedforadirect pressuremeasurementatthepointofdischargebelow thepackerwithinthefluidcolumn.Theinstrumented packerswereusedduringallbarrierbaginflation,casingannulargrouting,waterpressuretesting,androck groutingoperations.Thisinformationwascompared toavailablepiezometricdataforanygivengroutstage toexpediteeffectivepressurecalculationsandtodeterminehydrofracturinglimitsandtargetgroutingpressures.Thisprocesswasmoreefficientthantraditional methodsofmodifyingheadergaugepressuresbased ondynamiclinelosses,particularlywhenmultiple holeswerebeinggroutedsimultaneously.Anotheradvantagewasthatequivalentgravitypressurecouldbe quicklyappliedusingtheinstrumentedpackersrather thanfillingtheentireboreholewithgrout,whichsaved productiontimeandmoney.Theinstrumentedpacker wasalsoabletoquicklydetectpoorpackersealsand groutblow-byinrealtime,resultinginreducedrisksto thedamembankmentandfoundation.

PhaseIBProjectCompletion

Duringthebasecontractconstruction,USACEdeterminedthekarsticfoundationconditionswarranted expedientcutoffwallconstruction.ThePhaseIBcontractwasmodifiedtocompletebothpartialgrout linesforslurrycontrolinadvanceofthefuturecutoffwalltobeconstructedduringPhaseII(Figure 4).TheprojectwascompletedinApril2017,having successfullyinstalledatotalof308productiongrout holesand20verificationholes.Theseholesrequired 32,422ft(9,882m)ofoverburdensoildrilling,7,477ft (2,279m)ofrockcoring,26,058ft(7,942m)ofrock drilling,andatotalof28,444cf(805.4m3 )ofgrout.

RoughRiverDamSafetyModificationProject
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65 57

BEECHCREEKLIMESTONEKARST ENCOUNTERS

TheBCLSwasfoundtohavehighhydraulicconductivityandcorrespondinglyhighgrouttakeswhere theformationwasunprotectedbyupperrockunits, particularlyinthevicinityoftheexposedbedrock outcrops.Highlyweathered,solutionedbedrockand karstwithclayseams,voids,andinterconnectedpathwayswereencounteredinmostoftheBCLSboreholes

shownonFigure5a.Inmostinstances,theinfilledlayersvariedfromafewinchestoafewfeetthick(severalcentimeterstoameterormore).Thesoilinfillbelowtheupperrockroofwascomposedofverysoft, saturatedfinesiltandclayparticleswithweathered limestonefragments.Theconsistencyofthismaterial andthelocationwithintherockmassareconsistent withfine-grainedfoundationandembankmentmaterialtransportedintotherockmassfromlow-stress zonesincontactwithlimestonesolutionfeatures.

ShifflettandAilstock
Figure3.InstrumentedpackerusedatRoughRiverDam.
58 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65
Figure4.RoughRiverDambaseandmodifiedgroutlines.
RoughRiverDamSafetyModificationProject
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65 59
Figure5.(a)BCLSgeology.(b)Groutintothetailwater.(c)Karstclayinfill.

Whileadvancingtheangledgroutholeleftoftheoutletconduit,returnfluidwaslostwhilecoringthrough therocksockettreatmentzone.Perprotocol,thistriggeredmandatorydownstagegroutingatgravitypressuretobackfilltheholeandtoprotectthedamembankment.Duringthisgrouting,apiezometerlocated 72ft(22m)downstreamofthedamcenterlineand tippedintheBCLSwasgroutedup.Thislocationcoincidedwiththeareaofhistorictailwaterconnectivitypreviouslyreferencedfromthe2012dewatering.It wastheorizedthatakarsticconnectionlikelyexisted thatlinkedwaterpressurefromthereservoirtoan outletsomewhereinthevicinityofthestillingbasin. Thewaterreleaseswerereducedtozerobeforeadditionalgroutingwaspermittedinordertoverifyifthere wasadownstreamexitpoint.Theboreholewascored againuntildrillfluidwaslostandgravitygroutingresumed.Within30minutesofinitiatingthenextgravity groutstage,groutemerged500ft(152m)downstream inthestillingbasinapron.Instrumentationresponses totheeventaresummarizedonFigure5b.Inlate 2017,PZ-80wasinstalled25ft(7.5m)downstream ofthedamcenterlinetippedatthealluvialfoundation soil/BCLScontactalongthispathway.Thelower4ft (1.2m)oftheboreholeencounteredgroutabovethe bedrockcontact.Thiswasinterpretedtosuggestthat groutfilledapre-existingvoidpresentatthesoil-rock interfacealongthepathway.

Aftercompletionoftheangledholes,threevertical holeswereinstalledat5ft(1.5m)offsetsalongthe conduit.Holestotheleftoftheconduitadvancedinto theBCLSencounteredinfilledvoidsrangingfrom4to 6ft(1.2–1.8m)thickcharacterizedbynoresistance duringadvanceoftheroto-sonictooling(Figure5c). Theclayinfillpresentdemonstratesthelimitationsfor high-mobilitygrouttodisplacesoilwithinkarstand thehighvolumeofinfillmaterialthatcanremainin placeevenwithsuccessfulgroutingefforts.Itshould alsobenotedthatgroutwasencounteredatthesoilbedrockinterfaceabovetheBCLSsimilartoPZ-80.

DuringgroutingoperationsinboreholeDXP2262, theinstrumentedpackerdetectedcoredrillingoperationsinboreholeDXP2162,located100ft(30m) away.Thecoringoperationwashaltedsoworkcould proceedsafely.Thehole-to-holecommunicationisevidencethatfluidpressurefromtheabutmenthasdirect connectiontotheBCLSbelowtheconduit.Theuntreatedwindowbelowtheconduithasthepotentialto circumventthegroutcurtaininadditiontoconcentratingflowneartheconduit.

HANEYLIMESTONEKARSTENCOUNTERS

TheHaneyLimestoneispresentonbothupper abutmentsofthedamandwasdeterminedtohavea

highconcentrationofkarstfeatures.Mostholesonthe leftabutmentbetweenStations10+00and12+10were downstagegroutedduetofluidloss,holecommunication,and/orholecollapse.Thiswasattributedtoa complexnetworkofkarstfeatureswithintheformation.Thelargestsolutionfeatureencounteredinthe HaneyLimestoneformationwasclayfilledbetween Station10+45andStation10+90andextendingapproximately47ft(14m)deepontheupstreamsideof thecrest(Figure6).AsecondsolutionfeaturewasencounteredonthedownstreamgroutlinebetweenStations11+75and12+10,anditwasestimatedtobeapproximately35ft(11m)deep.Bothsolutionfeatures werefilledwithsoftsandyclaywithatraceofgravel. Otherboreholesintheformationrevealedthatalarge lateralnetworkofinterconnectedvoids(referredtoas asubdrainagenetworkonFigure6)existsinthemiddleandlowerpartsoftheformationwithcavesupto 10ft(3m)indiameter.Thisnetworkislikelypartially hydraulicallyconnectedtotheuppersolutionfeatures andiscapableoftransmittingwaterandpotentially movingsoil.Twogroutoutbreaksoccurredintheright abutmentofHaneyLimestoneabout20ft(6m)below thedamcrest.

2017CUTOFFWALLDESIGN

TheDSMRassumedconservativecutoffwalllimitswitha1,700ft(518m)rectangularwallextending acrossthefulllengthofthedamfoundationtoatotal

ShifflettandAilstock
Figure6.HaneyLimestone(a)upstreamkarstand(b)downstream karst.
60 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65

depthofapproximately200ft(61m)intotheSample Sandstoneunit.Thephasedapproachrecommended intheDSMRallowedforthegroutingresultstoinformandrefinethecutoffwalldesign.Evaluationsof boringlogs,waterpressuretestresults,andgrouting resultsconcludedthatgenerally40–60ft(12–18m)of caprockwouldbesufficienttogreatlyincreaserock qualityintheabutmentswherecaprockwaspresent. Thisallowedthecutoffwallgeometrytobemodified intoasteppedconfiguration,resultinginsignificant costsavings.Thegroutingresultswerealsousedto informthelimitsofcriticalareasforthecutoffwall withinthedamfoundation.ThefoundationareabelowtheconduitincontactwiththeBCLS(designated CriticalArea“A”)presentedthemostcomplextechnicalchallengefortheproject,asdetailedinthefollowingsections.

CriticalAreaADesignandOutletConduit Evaluation

TheDSMRincludedseveralalternativesforconstructingthecutoffwallaroundtheexistingoutletconduitatCriticalAreaA.USACEassembledateam ofexpertscomposedofrepresentativesfromUSACE andexternalconsultantstoevaluatetheDSMRalternativesforinstallingthecutoffwallatCriticalArea Aandtodevelopadditionalmethodsthatcouldbe implemented.Evaluationcriteriafactorsincludedlife safety,constructability,andcost.Theteamofexternalconsultantsrecommendedanalternativetoplace aconcretepluginsidetheconduitandthenuseahydrocuttertoremoveaconduitsectionandconstruct aseepagebarrierthroughtheconduit.Oncethewall wascompleted,theconduitwouldbere-establishedby miningouttheconcreteplugintheconduitandinstallingastructuralliner.USACEfurtherdeveloped theconceptofliningtheconduitanddiscoveredseveralfatalflaws:

1.Theexistingconduitwastheonlymeansofcontrolledflowconveyance.Theconstructionduration tolinetheconduitwouldtakeapproximately1year. Thisperiodoflimitedtonoreleasesthroughthe outletconduitwouldinevitablyresultinsustained uncontrolledreleasesthroughtheunlinedspillway, increasingbothbreachandnon-breachrisksforthe dam.

2.Theexistingconduitwaseggshaped,andfabricated steellinersectionsareround.Theresultinglinerdiameterthatwouldstillallowforastructuralconnectiontotheexistingconduitwouldresultinapermanent40percentreductioninavailabledischarge capacity,increasingriskfordamfailure.

3.Theconduitsidewallrangedinthicknessfrom12in. (30cm)atthecrownto18in.(45cm)atthebase, whichprovidedonlymarginalthicknessthrough whichtoinstallproperlyembeddedsteellineranchoragesnecessarytowithstandthefullhydrostatic loadingcondition.

Basedontheseconsiderations,constructionrisks forthisapproachweredeterminedtobeunacceptable. USACEelectedtoproceedwithdesignofacontinuousconcretepanelconstructedaroundtheconduit combinedwithgroutingtotreatthebedrockbelowthe conduitoutlet(Figure7aandb).Earlyinthedesign, athree-dimensional(3D)finiteelementanalysiswas performedtoevaluatetheexistingconduitcondition. Thestructuralanalysisandsoilloadingswerecalibratedandverifiedtobackcalculatecrackingobserved

RoughRiverDamSafetyModificationProject
Figure7.(a)Cutoffwallaroundtheconduitand(b)groutingatthe conduit.
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65 61

immediatelyaftertheconduitwasplacedintoservice. Theoriginalconduitdesignmadeaflawedassumption thatthestructurewouldbeloadedsymmetricallyas anarchanddidnotconsiderthe3Deffectsfromthe rockoutcroptotherightoftheconduit,whichresulted innon-uniformstressregimesactingonthestructure. Theanalysisconcludedtheconduitwasoverstressedin itsexistingconditionanddidnotmeetmoderndesign criteria.

Theteamdevelopedaseriesofrestrictionsand designfeaturestoensuretheconduitwouldnotbe overloaded.Nostructuralreinforcementcouldbecut within2ft(0.6m)oftheconduitsidewalls;thiswas criticaltomaintainingthestructuralintegrityofthe conduit.Thedesignteamalsoanalyzedhowtheconduitwouldbeloadedandunloadedduringexcavation andconcreteplacementtoensureworkableconstructionsequencesthatwouldnotoverstresstheconduit. Thisinformationwasusedtodevelopasteelbracing designtoensuretheconduitwouldnotfailduring excavationandcutoffwallconcreteplacement.This bracingwouldbeplacedinsidetheconduitpriortoexcavationandremaininplaceuntiltheconcretepanel aroundtheconduithadfullycured.Thebracingsystemitselfwouldbeheavilyinstrumentedtomonitor theappliedstressesthroughconstructionandconcrete curing.ThePhaseIIdesignwascompletedinOctober 2017.

DuringthefinalSafetyAssuranceReview(SAR) fortheproject,additionalstructuralcommentsand recommendedchangestotheconduitanalysiswere received.Therewerealsosomeconcernsabouthow thelong-termincreaseinthehydrostaticloadingupstreamofthecutoffwallwasfactoredintothedesign.Inresponsetotheseconcerns,thebracingdesignwasfurtherenhanced,andconcreteliftheights abovetheconduitwerelimited.Theresultinghorizontaljointswouldrequireadditionaltreatmentbetween liftstoensureacompletecutoff.WithinUSACE, additionalconcernswereraisedbasedonrecentinclinometermeasurementsmonitoringthecutoffwall installationatEastBranchDamnearJohnsonburg, PA,whichindicatedmeasurablegrounddisplacements duringcutoffwallinstallation.Thesegrounddisplacements,iftheyweretooccuratRoughRiverDam, wouldresultinadditionaleccentricloadingonthe conduitimposedbythecutoffwallandpotentiallyincreasethestressregimebeyondpredictedlimits.The finalconsiderationinvolvedanincidentwheregroutingnearaconduitcauseda1-in.-thick(2.5cm)steel concretelinertobuckle,resultinginsignificantdamageatthatproject.

Theimplicationsofthesefindingswerecarefully evaluatedanddiscussedwithinUSACE.Theconcernsallcenteredonpotentialdamagetotheexisting

conduit,whichwastheonlywayofmakingcontrolled releasesfromthereservoir.Iftheconduitweretobe damagedduringconstructionorbedamagedbylateral movementofthecutoffwallafterconstruction,there wouldbelimitedmeanstomakeaneffectiverepair. Inaddition,theserepairswouldtakeaconsiderable amountoftime,resultinginriskssimilartothoseidentifiedpreviouslyassociatedwithtakingtheconduit outofcommissiontolinetheconduit.Basedonthese considerationsforconstructionandpost-construction risk,USACEdecidedtonotadvertisethecompleted design.TheapprovedDSMRplanwasthenconsideredincomplete,withadditionaldesignmeasuresrequiredinordertosuccessfullyinstallthecutoffwall forriskmitigation.

DSMRSUPPLEMENT

Theprimaryriskreductionalternativerequiredfor RoughRiverDamwasthecutoffwall.Additional measureswererequiredinordertodevelopacompleteplantosafelyinstallthecutoffwallacrossthe damfoundationandintheareaoftheconduit.These designmeasureswouldsignificantlyincreasethecost fortheproject.ThisrequiredUSACEtore-initiate theplanningphasethroughaprocesscalledaDSMR Supplementinordertogetthenewdesignmeasures approved.TheDSMRSupplementwasessentiallya planningdocumentdetailingconceptualdesignsofalternativemeasuresandengineering/damsafetyanalysesanddocumentation.Theadditionalmeasures wouldthenbeevaluatedbyUSACE,andselectedmeasure(s)wouldbeofficiallyaddedinconjunctionwith theprimaryriskreductionalternative.Thisrevised TentativelySelectedPlan(TSP)wouldthenbecomparedtothealternativesfromtheoriginalDSMRto makeanewrecommendationforthemostappropriate alternative.

TheProjectDeliveryTeam(PDT)initiallydevelopedfourdesignmeasures,whichincludeda rightabutmentoutletworks,aleftabutmentoutlet works,aspillway-controlledoutletstructure,anda re-examinationofliningtheconduit.Eachoneof themeasureswasdesignedtothesamelevelofdetailsothattheycouldbedirectlycomparedwiththe sameamountofriskanduncertainty.Thetwooutletworksmeasuresalsoincludedtheevaluationof multiplealignmentstoensurethatthemostefficient alignmentwasevaluated.ThePDTinitiallyconsidered straighttunnels,butthroughevaluationofsiteconstraints,theseconceptsresultedinmuchlongertunnels,greaterexcavationquantities,andhighercosts. Ultimately,itwasdeterminedthatsignificantcostsavingscouldbeobtainedbyutilizingacurvedtunnel alignmentfortheleftandrightabutmentoutletworks

ShifflettandAilstock
62 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65

measures.Beforeimplementingsuchasolution,a prototypeprojectwasidentifiedatYatesvilleDamin easternKentucky.ThePDTcompletedasitevisitto thisprojecttotalktooperationsanddamsafetypersonnel,tourthefacility,andgatherfeedbackregarding operationandmaintenanceofthestructure.Toexpeditetheplanningprocess,USACEcarefullyplanned andexecutedanenhancedconstructabilityevaluation anddesigncharrettetoevaluateeachdesignmeasure withrepresentativesfromthePDT,USACEtechnicaladvisors,costengineers,operationspersonnel,and constructionpersonnel.Thegroupworkedtorefine eachmeasure,workingthroughmultiplescenariosand constraintsforeachdesignmeasure,andimplementing designchangesinrealtime.Costengineersupdatedestimatesinrealtimebasedonestimatedquantitiescalculatedduringthemeetingasthemeasuresevolved.

Eachofthemeasuresincludedtheinstallationof acutoffwallthatseveredtheconduit;therefore,it wasagreedwithinUSACEthattheprojectriskat completionwasessentiallythesameforeachmeasure.Measureswereultimatelyevaluatedbasedoneffectiveness(technicalfeasibility),acceptability(environmental/realestateimpacts),andefficiency(project cost,lifecyclecost,andcutoffwallimpacts).Theleft abutmentoutletworksmeasureandthecutoffwall weredeterminedtobethepreferredalternativeand underwentariskevaluationfordirectcomparisonto theothernon-structuralalternativesidentifiedinthe originalDSMR.Thepreferredalternativewasthen comparedtothealternativesevaluatedintheoriginalmodificationstudy.Theprimarycomparisoncategoriesusedtojustifythepreferredalternativewere projectcost(adjustedforinflation),performancerisk, andbenefit/costanalysis.TheUSACEDamSafety SeniorOversightGroup(DSOG)endorsedthepreferredalternativeinNovember2018.Duringthemeeting,DSOGchangedtheDamSafetyActionClassification(DSAC)from2toDSAC3basedonimproved instrumentationresponsesobservedduringthePhase Igrouting.TheSupplementalDSMRrequiredthedesigntobedevelopedtothe30percentlevelandacertifiedcostestimatetobeobtained.TheSupplementalDSMRwascompletedin2020,approvedbyUSACEHeadquartersinFebruary2021,andendorsed bytheAssistantSecretaryoftheArmy,CivilWorks (ASA[CW])inOctober2021.Thefinaldesignwas completedinSeptember2021,andtheprojectiscurrentlywaitingonappropriation.

PHASEIIPROJECTOVERVIEW

ThePhaseIIprojectnowincludesconstructionof anewleftabutmentoutletworksfollowedbyinstallationofafull-lengthcutoffwallthatwillseverthe

existingoutletconduitandmitigatePFMsassociated withthekarsticfoundationbedrockbelowthedam (Figure8aandb).Thecutoffwallcanbeconstructed withhydromillpanels,secantpiles,oracombination ofthetwomethods.Completionofthenewoutlet workswillrequireanewapproachchannel,control tower,servicebridge,outletconduittunnel,stilling basin,concrete-linedapron,andretreatchannel.The newoutletworksmustbeconstructedandoperational beforethecutoffwallcanbeinstalled.Completionof thecutoffwallwillrequireabandonmentoftheexistingrightabutmentoutletworks,constructionofa workplatform,constructionofthecutoffwallacross thedamfoundationthroughtheexistingoutletconduit,backfillingoftheexistingretreatchannel,andrelocationofStateHighway79onthedam.

POST-2017GROUTCURTAINPERFORMANCE

Acrossamajorityofthedam,instrumentationdata generallysupporttheconclusionthatheadlosshas improvedacrossthedamfoundationaftercompletion ofPhaseIgrouting.Figure9summarizesthebeforeandafter-groutingconditionsfortheright-sideBCLS unit.InstrumentslocatedinthedeepvalleyfoundationsoilswheretheBCLSdoesnotexistshowedno changeinphreaticsurfaceaftergrouting.Profile1on Figure9showsinstrumentstippedinthefoundation soil20to33ft(6to10m)upstreamofthedamcenterline,withinstrumentationresponsesbeforegroutingshowningreenandthoseaftergroutingshownin blue.Priortogrouting,PZ-24andPZ-36hadadrawndownphreaticsurfaceindicatingtheywereinfluenced bytheinterconnectedkarstnetwork.Aftergrouting, therewasanincreaseinthephreaticsurface,indicatingthatthedownstreamconnectionhadbeenpartially disrupted.Notethattheinstrumentationstillreflectsa drawn-downconditionthatislikelyinfluencedbyremainingconnectivitytokarstwithinthedamfoundation.Thisconnectivityislikelyinfluencedbythearea belowtheconduitwheregroutingcouldnotbeperformed,whichallowsseepagetocircumventthegrout curtain.

Onprofile2,located25to47ft(7.5to14m)downstream,thephreaticsurfaceindicatesconcentrated flowneartheconduitasmeasuredbyPZ-80,whichis tippedatthealluvialfoundation/bedrockcontactlocated25ft(7.5m)downstreamofthedamcenterline. TherearenoreadingsforPZ-80priortogrouting,but only8ft(2.4m)ofheadlossisnotedbetweenPZ-80 andPZ-36acrossthedamcenterline.Thelower4ft (1.2m)ofPZ-80encounteredgroutabovethebedrock contact.Therewasalsogroutnotedabovethebedrock contactneartheconduitatthedamcenterline.This suggeststhataseepagepathwayexistsbothintoand

RoughRiverDamSafetyModificationProject
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65 63
ShifflettandAilstock
64 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65
Figure8.(a)RenderingofPhaseII:outletworksandcutoffwallproject;(b)cutoffwallprofile.

outofthebedrockandalongthefoundationcontact. Clayinfillingandalluvialsoilincontactwithgrout areatrisktoformvoidsandnewpathways.PZ-80is consideredtorecorddirectevidencethatinternalerosionhadinitiated,continued,andprogressedpriorto grouting.Theareaofnogroutingbelowtheconduit concentratesflowwherethedamismostvulnerable.It isimportanttoconsiderthatgroutingisonlyatemporarymeasureanddoesnotpreventthemechanisms thatledtotheinitiationandprogressionofinternal erosion;groutingsimplyarrestsdevelopedpathways.

CONCLUSION

EffectivelyplacedinstrumentationintheRough RiverDamProjectindicatedacontinuousupstream todownstreamconnectionfromthereservoirpoolto tailwaterbelowthedam.Thepresenceofextensive karst,progressinginternalerosion,andthepotential foranunfilteredexitwereconfirmedthroughfoundationgroutingobservations.Massivekarstwasconfirmedtoexistintheupperleftabutment.Themoderngroutingmethodshavebeentemporarilysuccessfulatfillingsomeopenvoidsandincreasingheadloss acrossthedamcenterline.Thenotedimprovementin instrumentationresponseisconsideredtobetemporaryduetotheextentofclayinfillingandkarsticvoids documentedinandabovethekarsticlimestoneformations.Post-groutingevaluationsindicatedthatpreferentialseepagepathwaysstillremainwithinthekarst, atthefoundationcontact,andwithinthezoneofno

groutingbelowtheconduit,whichwillexpeditefuture erosion.Ifahighpoolevent(asoccurredin2007or 2011)weretooccuragain,itisanticipatedthatinstrumentationdeclinesintheupstreamfoundationinstrumentswouldonceagainresult,potentiallyatafaster ratethanpreviouslyobserved.Theprojectrequires afull-lengthcutoffwalltopermanentlyreducerisks tobelowtolerableriskguidelinesasestablishedby USACE.

Consistentcommunicationandcoordinationto makethebestdecisionspossibleinthemomentare keyfactorsincompletingasuccessfuldamsafetymodificationproject,especiallywhendealingwithchanges inscope,schedule,andbudget.Whilethedecisionto notsolicitthe2017cutoffwallprojectwasdifficultto make,itwasthecorrectdecision,anditisanexampleoftheUSACEprocessworkingasintended.The revisedprojecthasincreasedinscope,schedule,and budgetbutcannowbeconstructedinamuchsafer manner.Therevisedprojectalsohasreducedlongtermoperationandmaintenancecosts,removesthe needforplannedfutureremediation,andstillachieves thesame,orbetter,levelofriskreductionupon completion.

REFERENCES

ER1110-2-1807,2014,DrillinginEarthEmbankmentDamsand Levees,USArmyCorpsofEngineers

EM1110-2-3506,2017,GroutingTechnology,USArmyCorpsof Engineers

RoughRiverDamSafetyModificationProject
Figure9.Comparisonofpre/post-groutingphreaticsurface(green = before;blue = after).
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.53–65 65

SonicDrillingonEmbankmentDamsandLevees

MARKS.ELSON*

U.S.ArmyCorpsofEngineers,NashvilleDistrict,1109thAvenueSouth,RoomA520, Nashville,TN37203

STEVEND.WIDINCAMP

U.S.ArmyCorpsofEngineers,SavannahDistrict,100WestOglethorpeAvenue, Savannah,GA31401

KeyTerms: SonicDrilling,EmbankmentDam,Levee, DrillingMethod,SoilSampling,RockCoring

ABSTRACT

Sonicdrilling,augerdrilling,andcable-tooldrilling arethepreferredmethodsutilizedtodrillthroughleveesandembankmentdams.Sonicdrillingisthemost recentlydevelopedofthethreeandhasdistinctadvantagesovertheothermethods.Notably,sonicdrilling offersahighrateofadvancethroughmostmaterials whilestillprotectingembankmentsfromerosionandhydrofracturing.Themethodisnotwithoutlimitations,as costandspaceconstraintspreventitfrombeingthemost effectivechoiceinsomecircumstances.

INTRODUCTION

Theembankmentdrillingguidancedocumentsfrom theFederalEnergyRegulatoryCommission(FERC), U.S.BureauofReclamation(USBR),andtheU.S. ArmyCorpsofEngineers(USACE)identifythree preferreddrillingmethodsforadvancingborings: hollow-stemaugers,cable-toll(churndrills),andsonic (FERC,2016;USACE,2014;USBR,2014).Ofthese, sonicdrillingisthemostrecentlydevelopedmethod andoffersseveraladvantagesoverhollow-stemauger boringsandcable-tooldrilling,althoughitdoeshave limitations.Itisalsonotedthatcable-tooldrillingisa relativelyarchaicmethodandisnotgenerallyusedfor geotechnicalexplorations.

Sonicdrillingutilizeshigh-frequencymechanicaloscillationsthataredevelopedinthedrillhead.Theseoscillationsaretransmittedasresonantvibrationsand, witharotaryaction,aretransferredthroughthetoolingtothebittopenetratesoilorrock(Figure1). Withintheboring,vibratoryactionfluidizessoilparticles,reducingshearstrengthandpushingtheparticles

awayfromthedrillbitandalongthesidesofthedrill string(TerraSonicInternational,2022).

Thedrillingprocedurebeginswithadvancingthe corebarrelfromthegroundsurfaceintotheformation(Figure2).Typically,nofluidsarenecessaryto advancethecorebarrel.Thisinitialadvancementis limitedtothelengthofthecorebarrel,approximately a10-ft(3-m)run.Largersonicdrillrigscanadvance uptoabout20-ft(6-m)runs.Leavingthecorebarrel inplace,alargerdiameteroutsidecasingisadvanced aroundthecorebarreltothesamedepthasthetipor bitofthecorebarrel.Alimitedamountofwatermay beusedtolubricatethecasing’sinteriortoreducefrictionagainstthecorebarrel.Whenneeded,drillfluidis pumpedthroughthesonicheadviaawaterswivel,like aconventionalrotaryrig,andcirculatedintotheannularspacebetweencorebarrelandcasing.Drillfluid pressureismonitoredbyagaugeandcontrolledbya valveattheoperator’spanel.Sincetypicallylowquantitiesofdrillfluidareusedforlubrication,thefluid usuallydissipatesintotheformationandrarelyreturns tothesurface.Despitethelowvolumeofwater,the drillerwillstillneedtomonitorpressurescloselyto preventhydrofracturingtheformation.Thecorebarrelcanthenberetrievedandthesampleextrudedwithoutconcernoftheholecollapsing.Afterretrievingthe sample,thecorebarrelisloweredbackdownthehole andfurtheradvancedintotheformation;theabove processisrepeateduntilthefinaldepthoftheboring isreached(TerraSonicInternational,2022).Ondeep holes,thisprocesscantakesometimebecause,foreach drillinginterval,theentirecoreroddrillstringhasto beremoved(trippedout)andthenreinserted(tripped in)intheholeforeachrun.

SONICDRILLINGADVANTAGES

Sonicdrillinghasseveralbenefitsoverotherpreferredembankmentdrillingmethods.Theseare,notably,thedrillingrateofadvance,theabilitytodrill throughmostmaterials,precisionofthedrilledhole,

*Correspondingauthoremail:mark.s.elson@usace.army.mil
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.67–71 67

RateofAdvance

Thehighrateofadvanceofsonicdrilling(compared toothertypesofdrillingmethods)isabigadvantage oftencitedforselectingthismethod.WhenN-values fromastandardpenetrationtest(SPT)orother insitu testingorsamplingarenotrequired,theholecanbe advancedasfastasthecorebarrelcanpenetratethe formation.Sincethecorebarrelisusuallyadvancedin 10-or20-ft(3-or6-m)runs(intervals),thefrequency thatdrillingisstoppedtoaddadditionaldrillrods ishalforevenone-fourthasoftenascomparedwith adding5-ft(1.5-m)flightstoastringofhollow-stem augers.Requirementsforfrequentsamplingwillsignificantlyreducetherateofadvancementbutisnearly alwaysfasterthanotherdrillingmethods.Usingdrill waterwhenadvancingthecasing,asdescribedabove, willhelptomaintaintherateofadvancement.Ifuseof drillwaterisprohibited,therateofadvancementwill likelybereduced,especiallyindensesandandclay.

Penetration

Thecombinationofbothvibrationandrotationallowsthedrillbittopenetratealmostanykindofsubsurfacematerial.Thiscanbeasignificantadvantagein rockandrandomfillwithlargeboulders,whichcould oftenmeanhollow-stemaugerrefusal.Theuseofdrill waterwhileadvancingthecasingwillmakepenetrationeasier,butdrydrilling(usingnodrillwater)isnot likelytocauseprematuredrillingrefusal.

Frictionbetweencasingandcorebarrelcanreduce casingadvancementpenetrationratesandcauseother concerns.Soniccasingandcorebarrelsareavailablein numerousdiameterswhichallowfordown-telescoping ofthedrillstringtoreachgreaterdepthsandmitigate difficultdrillingconditions.

StraightHole

Drillingandmaintainingastraightdrillholecanbe criticalwhendrillingnearstructureswithintheembankment,suchaspipepenetrations,drains,anddischargetunnels.Locatingdrillholesnearthesestructurescanbeimportantwhenmeasuringsoilpropertiesandinstallinginstrumentstoevaluateassociated potentialfailuremodes.Hollow-stemaugershavean especiallydifficulttimemaintainingastraightverticaldrillhole,astheirconnectionsaretypicallyloose andtheyarevulnerabletodriftinganddeviationswith changesinsoilconditions.

Sonicdrillingusuallywillmaintainastraighterdrill holethanotherfavoredembankmentdrillingmethods.Duetothevibrationusedtoadvancethedrill hole,drillrodsusedinsonicdrillingmustberelatively thickandthethreadedjointsmustbetighttotransfer thevibrationsthroughthedrillstring.Becauseofthis, sonicdrillingequipmentproducesastiffdrillstring thathelpsmaintainastraightboring.Inaddition,the rotationofthedrillrodsisrelativelylow,whichkeeps torquetoaminimum,therebyreducingthetendency forthedrillstringtocorkscrew.

SampleRecoveryandTesting

Oncethecorebarrelisextractedfromthehole,the sampleisextrudedbyvibratingthecorebarrel.This causesthecollectedsampleinthecorebarreltoslide outthebottom.Themostcommonmethodtocollect thesampleisinplastictubing,butpolycarbonatelinerscanalsobeinsertedintothecorebarrelforsample collection.Rockcorescanbeextrudeddirectlyintoa troughorcoreboxforlogging.

Sonicdrillingcanprovideacontinuouscoreofsoil thatinsomecasespreservesmuchofthesoilstructure,althoughitisconsideredadisturbedsampleand

ElsonandWidincamp
Figure1.Sonicdrillheadschematicandphoto. andcompletesamplerecovery(BruceandDespres, 2004). Figure2.Thesonicdrillingprocedure.
68 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.67–71

cannotbeusedforundisturbedlaboratorytests,such astriaxialtests.SeeFigure3foranexampleofarecoveredclaysample.Whendrillinginnon-cohesivematerials,steelandplasticcorebasketscanbeusedto augmentsampleretention.Looseningorexpansionof samplescanbeobservedinsomematerialsasa10-ft (3-m)runcouldyielduptoa12-ft(3.7-m)baggedsample.Ifstrengthtestsarerequired,itisstillbesttorely onothersamplingmethods.

Fortunately,mostsonicdrillrigscanperformnumeroustypesofspecializedsampling, insitu testing, andinstrumentinstallationsthatarecommonlyused ingeotechnicalexploration.ThesesamplingandtestingmethodsincludeSPT,Shelbytubesampling,flat dilatometertest,pressure-metertest,andothermethods.Inaddition,sonicdrillscandrillandsample angledholes,whichisasignificantadvantageover hollow-stemaugersandcable-tooldrills.

RockCoring

Rockcorescanbetakenwithsonicdrilling,but thevibrationoftendamagesthecores.Althoughusuallymorefracturedthanwithwirelinecoring,recoverycanbeverygoodandthelackofcirculatingdrill waterallowsforrecoveryofsoftmaterialsthatmay fillvoidsintherock.Foranexample,Figure4shows rockcoredwithasonicdrill.Thecorerecoveredis morefracturedthanthe insitu rock,makingconditionsappearworsethanreality.Coresrecoveredfrom sonicdrillingshouldnotberelieduponforcalculating rockengineeringpropertiessuchasrockqualitydesignation(RQD),rockmassrating(RMR),orQ-system, sincethevibrationfromthedrillstringwillusually induceadditionalfractures.However,downholegeophysicalmethodscanbeusedtoprovidesomeofthe

informationlostfromthesonic-drill–damagedcores. Whenusingwirelinerockcoringmethodsbeneathan embankment,casingwillbeneededtosealthetopof rocktoprotecttheembankmentfromthedrillwater return.Withasonicdrill,youcanpenetratethetopof rocktogetpasttheweatheredzoneandgroutinPVC casingbeforeswitchingtoolsforwirelinerockcoring andtoprotecttheembankment.

Incircumstanceswheredetailedcoreloggingofthe rockisnotaconcern,sonicdrillingmayprovidearock coreofsufficientqualitytoidentifyappropriatesensingzonesforapiezometerorverifythattherockisof sufficientqualityforsocketinganinclinometerintothe rockfoundation.

DISADVANTAGES SampleDisturbance

Whileretrievingacontinuoussampleisanadvantageofothermethodsofdrilling,itisimportantto rememberthatsamplesfromthesoniccorebarrel aredisturbedsamples.Inaddition,fieldteststomeasuresoilstrengthshouldbeusedwithcaution,ifnot avoidedaltogether.PocketpenetrometerandTorvane testsonsamplesretrievedbysonicdrillingarelikely tohavelowervaluesfromthevibrationofthedrill looseningthesamplethanwouldberecordedifmeasuredfromasamplerecoveredinasplitspoonor Shelbytube.Inaddition,theupperportionsofSPT andShelbytubesamplestakenfromsonicboringsmay notproviderealisticstrengthvaluesifthevibration fromadvancingthesoniccorebarrelhasdisturbed thezoneofsoilimmediatelybelowthebit.Thesevaluesarelikelyadequateforgeneralanalysisandrelativestrengthbutmaynotbesuitableforhigh-precision analysessuchasliquefactionpotential.

DrillWaterUsage

Sonicdrillingisoftenconsideredadrymethod. Whiledrillwaterdoesnothavetobeused,itdoeshelp withlubricationandpreventsexcessiveheatatthedrill bit.Thisisespeciallytruewhendrillinginverydense sands,clays,androck.Theamountofdrillwaterand pressureneededtokeeptheannulusclearisdependent ontheformationandfeedpressuresusedbytheoperator.Whiledrillinginmostformations,drillwaterpressurestypicallyremaininthe35–50psi(241–345kPa) range,buttheycanspikeupto200–300psi(1,379–2,068kPa)whendrillingthroughclaysordensesands. Thesamecanbesaidwiththeamountofdrillwater; agoodaverageis20–30gallons(76–113.6L)whileadvancinga10-ft(3-m)lengthofcasingbutthiscanget ashighas100gallons(378.5L)inloosesands.Drill

SonicDrillingonEmbankments
Figure3.ClaysampledrilledwithsonicatChickamaugaDam, Chattanooga,TN. Figure4.RockcoredrilledwithsonicatMcCookQuarry,Chicago, IL.
Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.67–71 69

waterusageneedsmustbekeptinmindwhendevelopingadrillingprograminornearadamorleveeembankment,andallowablefluidpressurescalculated,in casedrillwaterisrequired.

AccessLimitations

Full-size,truck-mounteddrillrigsareveryheavy andrequirealotofspace,withalargesupporttruck usuallypositioneddirectlybehindthedrillrigholdingtheheavydrillcasing.Evensmaller,track-mounted sonicdrillrigsneedtobepositionedonarelatively levelsurface.Thisworksoutfinewhendrillingfrom thecrestortoeoftheembankmentbutmaynotbe idealwhenboringsarelocatedontheupstreamor downstreamslope.Positioningadrillrigonaslope usuallyrequiresjackingthedrillrigupontimbersor constructingalevelaccessroadontheslope.Theembankmentownermaynotallowadrilling-accessroad tobeconstructedintoorontheembankmentandlevelingalarge,heavydrillrigwithtimbersrequirescarefulplanningandisverytime-consuming.Figure5, left,showsatrack-mountedsonicdrillatthetoeof anembankmentandthespaceneededforsupporting drillingequipmentandtools.Ontheright(Figure5),a smallerrotarydrillisleveledusingtimbers,something thatmaynotbepossiblewiththelargerandheavier sonicdrill.

CostConsiderations

Sonicdrillingtendstobecostly.Asonicdrillcan costamilliondollars,whileatypicalrotarydrillmay beabouthalfthatcost.Thedrillitselfisexpensiveand requiressupportequipmenttohandletooling,especiallythelargerdiameters.Whileithasarapidpenetrationrateinawiderangeofmaterials,shallowholesare generallycost-prohibitiveduetoincreasedsetuptime withsonicdrills.Inaddition,obtainingfrequentSPTs, Shelbytubesamples,orother insitu testingorsamplingwilldecreasethedrillingefficiencyandreducethe advantageofrapidholeadvancementandshouldbe consideredwhenselectingthedrillingmethod.

CONCLUSION

Sonicdrillinghasbecomeago-tomethodfor drillingindamandleveeembankments.However, carefulplanningandevaluationoftheconditionsare stillrequiredtodeterminetheappropriatedrilling method.Thedrillingprogramdesignerwillneedto weightheneedsoftheprojectagainsttheprosand consofthedrillingmethodsbeingconsideredfor use.High-precisionrequirements,aneedtoexpedite theprogram,and/orchallengingconditionsmaybe thedeterminingfactorsthatnecessitatetheuseof sonicdrillingversusotherdrillingmethods,despitethe higherper-footcost.Anattempttoexecuteachallengingdrillingprogramwithalessexpensivemethod couldfailtoachievetheprogram’sgoalsorevenplace thestabilityoftheembankmentatrisk.Ineithercase, furtherexplorationlikelyusingsonicdrillingmaybe necessary,thuscostingtheprojectevenmoreintime aswellasmoney.

Whenevaluatingpotentialdrillingmethodsforan explorationprogram,thedesignershouldbeencouragedtodevelopacomparisonofcost,schedule,and riskimpactstotheprojectforeachdrillingmethodbeingconsidered.Whilethecostofsonicdrillingmaybe higher,scheduleimpactsorriskstothestructuremay outweighthecost,makingsonicdrillingthepreferred methodinmanycircumstances.

Projectschedule,drillaccess,cost,samplingtype andfrequency,andwhetherwaterwillbeallowedmust allbeconsideredwhendevelopingthedrillingprogram.Inmanycases,sonicdrillingwillbethemost effectivemethodtoobtaintheneededinformationbut willnotbetheanswerforeverysituation.

ACKNOWLEDGMENTS

TheauthorsgratefullyacknowledgeM.M.Goff (U.S.ArmyCorpsofEngineers[USACE],Headquarters),G.D.Rogers(SchnabelEngineeringSouth), andW.D.Mackie(USACE,NashvilleDistrict [LRN])fortheircontributionstothispaper,andto TerraSonicInternationalforuseoftheimagein Figure2.

REFERENCES

Bruce,D.A.andDespres,D.L.,2004, Drillingandsampling ofembankmentsusingthesonicdrillingmethod: Association ofStateDamSafetyOfficials(ASDSO)AnnualConference, Phoenix,AZ,September26–29,2004.

FederalEnergyRegulatoryCommission(FERC),2016, Guidelinesfordrillinginandnearembankmentdamsandtheir

ElsonandWidincamp
Figure5.Left:Sonicdrillattoeofanembankment.Right:Rotary drillonanembankmentslope.
70 Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.67–71

SonicDrillingonEmbankments

foundations:Electronicdocument,availableathttps://www. ferc.gov/sites/default/files/2020-04/guidelines.pdf

TerraSonicInternational,2022, Howsonicdrillingworks:Electronicdocument,availableathttps://www.terrasonicinter national.com/tsi-sonic-technology/how-sonic-drillingworks/

U.S.ArmyCorpsofEngineers(USACE),2014, Drillinginearth embankmentdamsandlevees,ER1110-1-1807:Electronic

document,availableathttps://www.publications.usace.army.mil/ Portals/76/Publications/EngineerRegulations/

U.S.BureauofReclamation(USBR),2014, Guidelinesfordrilling andsamplinginembankmentdams: Electronicdocument,availableathttps://www.usbr.gov/tsc/techreferences/mands/ mands-pdfs/GuidelinesForDrillingSamplingInEmbankment Dams_April2014v2_508.pdf

Environmental&EngineeringGeoscience,Vol.XXIX,No.1,February2023,pp.67–71 71

Environmental & Engineering Geoscience (ISSN 1078-7275) is published quarterly by the Association of Environmental & Engineering Geologists (AEG) and the Geological Society of America (GSA). Periodicals postage paid at AEG, 3053 Nationwide Parkway, Brunswick, OH 44212 and additional mailing offices.

EDITORIAL OFFICE: Environmental & Engineering Geoscience journal, Kent State University, Kent, OH 44242, U.S.A., ashakoor@kent.edu.

CLAIMS: Claims for damaged or not received issues will be honored for 6 months from date of publication. AEG members should contact AEG, 3053 Nationwide Parkway, Brunswick, OH 44212. Phone: 844-331-7867. GSA members who are not members of AEG should contact the GSA Member Service center. All claims must be submitted in writing.

POSTMASTER: Send address changes to AEG, 3053 Nationwide Parkway, Brunswick, OH 44212. Phone: 844-331-7867. Include both old and new addresses, with ZIP code. Canada agreement number PM40063731. Return undeliverable Canadian addresses to Station A P.O. Box 54, Windsor, ON N9A 6J5 Email: returnsil@imexpb.com.

DISCLAIMER NOTICE: Authors alone are responsible for views expressed in articles. Advertisers and their agencies are solely responsible for the content of all advertisements printed and also assume responsibility for any claims arising therefrom against the publisher. AEG and Environmental & Engineering Geoscience reserve the right to reject any advertising copy.

SUBSCRIPTIONS:

Member subscriptions: AEG members automatically receive digital access to the journal as part of their AEG membership dues. Members may order print subscriptions for $75 per year. GSA members who are not members of AEG may order for $60 per year on their annual GSA dues statement or by contacting GSA.

Nonmember subscriptions are $310 and may be ordered from the subscription department of either organization. A postage differential of $10 may apply to nonmember subscribers outside the United States, Canada, and Pan America. Contact AEG at 844-331-7867; contact GSA Subscription Services, Geological Society of America, P.O. Box 9140, Boulder, CO 80301.

Single copies are $75.00 each. Requests for single copies should be sent to AEG, 3053 Nationwide Parkway, Brunswick, OH 44212.

© 2023 by the Association of Environmental and Engineering Geologists

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from AEG.

THIS PUBLICATION IS PRINTED ON ACID-FREE PAPER EDITORS

Abdul Shakoor Kent State University

Kent, OH 44242

ashakoor@kent.edu

Eric Peterson

Department of Geography, Geology, and the Environment

Illinois State University

Normal, IL 61790

309-438-5669

ewpeter@ilstu.edu

ADVISORY BOARD

Watts, Chester “Skip” F. Radford University

Hasan, Syed

University of Missouri, Kansas City

Nandi, Arpita

East Tennessee State University

Ackerman, Frances

Oommen, Thomas

Board Chair, Michigan

Technological University

Sasowsky, Ira D.

University of Akron

ASSOCIATE EDITORS

Ramboll Americas Engineering Solutions, Inc.

Bastola, Hridaya

Lehigh University

Beglund, James

Montana Bureau of Mines and Geology

Bruckno, Brian

Virginia Department of Transportation

Clague, John

Simon Fraser University, Canada

Dee, Seth

University of Nevada, Reno

Fryar, Alan

University of Kentucky

Gardner, George

Massachusetts Department of Environmental Protection

Hauser, Ernest Wright State University

Keaton, Jeff WSP USA

May, David USACE-ERDC-CHL

Pope, Isaac

Book Review Editor

Santi, Paul Colorado School of Mines

Schuster, Bob

Shlemon, Roy

R.J. Shlemon & Associates, Inc.

Stock, Greg

National Park Service

Swanson, Susan (Sue) Beloit College

Ulusay, Resat

Hacettepe University, Turkey

West, Terry Purdue University

Submitting a Manuscript

Environmental & Engineering Geoscience (E&EG), is a quarterly journal devoted to the publication of original papers that are of potential interest to hydrogeologists, environmental and engineering geologists, and geological engineers working in site selection, feasibility studies, investigations, design or construction of civil engineering projects or in waste management, groundwater, and related environmental fields. All papers are peer reviewed.

The editors invite contributions concerning all aspects of environmental and engineering geology and related disciplines. Recent abstracts can be viewed under “Archive” at the web site, “http://eeg.geoscienceworld.org”. Articles that report on research, case histories and new methods, and book reviews are welcome. Discussion papers, which are critiques of printed articles and are technical in nature, may be published with replies from the original author(s). Discussion papers and replies should be concise.

To submit a manuscript go to https://www.editorialmanager.com/EEG/ default.aspx. If you have not used the system before, follow the link at the bottom of the page that says New users should register for an account. Choose your own login and password. Further instructions will be available upon logging into the system. Upon submission, manuscripts must meet, exactly, the criteria specified in the revised Style Guide found at https://www.aegweb.org/e-eg-supplements.

Manuscripts of fewer than 10 pages may be published as Technical Notes. The new optional feature of Open Access is available upon request for $750 per article.

For further information, you may contact Dr. Abdul Shakoor at the editorial office.

Cover photo

kesmith6@kent.edu

Exploratory drilling at the downstream toe of the TVA’s Little Bear Creek Dam, Alabama. Courtesy of Mark Bauer. See article on page 17.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.