Bioclimatic Tools in Architecture
Sustainability by using Bioclimatic tools in architecture Harry Hirsch Dipl.-Ing. Arch. TUD/EPFL HarryHirsch Consult
Baden-Baden/Zurich/Vancouver
Jakarta, 13.02.2012 http://issuu.com/gbc_indonesia/docs/bioclimatic_tools_in_arch_by_mr_harry/1 didownload 10Sep2012
Bioclimatic Tools in Architecture
Harry Hirsch
Dipl.-Ing. Architekt TU Darmstadt / EPF Lausanne ≡ DU Diederichs Projektmanagement, Head Sustainability ≡ HarryHirsch Consult, Real Estate- und Portfoliomanagement, Baden-Baden/Vancouver ≡ PricewaterhouseCoopers, Head Real Estate ≡ Prof. Mäckler Architekten, Ffm, Managing Director ≡ Federal Agency for Building and Planning, Personal Assistant to the President
≡ Federal Chamber of Architects, Director for Architecture and Building technology
≡ Co-Founder German Sustainable Building Council (GeSBC), Auditor, Member of Certification Board
Bioclimatic Tools in Architecture
Holistic approach
6 fields of criterias 49 criterias
Bioclimatic Tools in Architecture
Criteria groups
Oecological Quality
22,5 %
Oeconomical Quality
Socio-cultural und Functional Quality
22,5 %
22,5 %
Technical Quality
22,5 %
Process Quality
10 %
Location Quality
(only documented)
Bioclimatic Tools in Architecture
Potentialanalyse
Bioclimatic Tools in Architecture
Systembewertung
100 % 95 % 90 % 85%
80 %
1,5
Gold
75 % 70 %
65 %
2,0
Silber
60 % 55 %
50 %
3,0
Bronze
DGNB - Stand Version 2009
Bewertung of 49 single criterias with zugehรถrigen indicators in the above mentioned groups of criterias
Bioclimatic Tools in Architecture
Certification according to DGNB (German Quality Seal for Sustainable Construction) Objectives Making Quality Measurable – Sustainability Certificates for Buildings Improvement of the building quality over the entire lift cycle Quantification of relevant topics with the help of a comprehensive and expandable catalog of criteria Development of a certification system for new and old building
7
Bioclimatic Tools in Architecture
Requirements
Requirements A certificate for buildings will only be successful if its introduction can be financed, it can be updated easily and at low cost, its statements are objective and understandable for end users and the collected data do not only serve for the certificate but also support day-today business
8
Bioclimatic Tools in Architecture
Strategy of Sustainability Sustainable Construction
Economy
Ecology long-life, environmentally compatible building materials
Saving Energy:
disposal relevance of the buildings
insulation of the building shell and
components
of the mechanical distribution
commissioning environmentally
networks
responsible project participants
efficient heating and water heating
(checking the realization)
energy-efficient components,
Waste concept, separation of
drives and lighting systems
secondary material
Socially Cultural Environment attractive design (building and outdoor facilities) health and safety high living and additional benefit
(balconies) comfortability emission protection optimized development (e. g. lifts) accessability
Saving Operating Costs: long-life, low-maintenance, highly
efficient mechanical services simplification of the FM services (cleaning and maintenance)
9
passenger car and bike parking
lots
Bioclimatic Tools in Architecture
„The European needs“
Bioclimatic Tools in Architecture
„The European needs“
Bioclimatic Tools in Architecture
„First Passive House ever“
L1150249.JPG
Bioclimatic Tools in Architecture
„The Indonesian Way“
Bioclimatic Tools in Architecture
Bioclamatic tools
1. Passive Strategies of sustainable building design •
Orientation
•
Geometry
•
Free and controlled ventilation (no AC)
•
Thermical Trägheit (thermical mass)
•
Transparence / Opaqueness
•
Materials und involved energy
14
Bioclimatic Tools in Architecture
Bioclimatic tools
2. Active Strategies of sustainable building design •
Solar Collektor2 (Warmwater, PV)
•
Regainment of Energy
•
New Materials (PCM - Phase Change Material, Transparent Insulation, Low-E Glas)
15
Bioclimatic Tools in Architecture
Bioclimatic tools
3. Differences and conflicts between summer- and winteroptimiziation •
Adaptivity as strategy (adaptive U-factor, adaptive ventilation, adaptive layers)
•
Being opaque or transparent
•
Building mass (collectivity, Trägheit)
•
Closed Elevation versus performated outer layer
•
Exposition versus shadiness
16
Bioclimatic Tools in Architecture
„The Indonesian Tradition“
Bioclimatic Tools in Architecture
Roof Overstand
Bioclimatic Tools in Architecture
Wisma Dharmala Building Jakarta
Bioclimatic Tools in Architecture
Local Shading Solution
Bioclimatic Tools in Architecture
Natural Shading
Bioclimatic Tools in Architecture
Zero Energy House Singapore
Bioclimatic Tools in Architecture
Green 4 Facades
Bioclimatic Tools in Architecture
Green Facade Jakarta 1
Bioclimatic Tools in Architecture
Green Appendix Jakarta
Bioclimatic Tools in Architecture
Green facade Jakarta
Bioclimatic Tools in Architecture
Green layer with pockets
Bioclimatic Tools in Architecture
Shading
Bioclimatic Tools in Architecture
Intelligent Shading- and Reflection System
Bioclimatic Tools in Architecture
Balinese Solution
Bioclimatic Tools in Architecture
Balinese Solution
Bioclimatic Tools in Architecture
Light Collectors Singapore
Bioclimatic Tools in Architecture
Light Reflection and Diffusor
Bioclimatic Tools in Architecture
your traditional waste reduction
Bioclimatic Tools in Architecture
maintenance
Bioclimatic Tools in Architecture
Health Requirements
A green building provides a healthier working environment. Improved indoor air quality helps to reduce the health and safety risks to occupants from Sick Building Syndrome (SBS) and Legionnaire’s Disease (Shiers, 2000). There are estimates, that improved heating, ventilating, and air conditioning (HVAC) systems, which limit the spread of contaminants and pathogens, could reduce respiratory illnesses by 9%–20%. Better indoor air quality can also reduce asthma attacks and allergies. Health and comfort are becoming increasingly important with the growing concern about staff welfare. Through sustainability, companies can improve their competitive advantage in the recruitment and retention of talent.
36
Bioclimatic Tools in Architecture
Centre Jean-Marie Tjibaou at New Caledonia
Bioclimatic Tools in Architecture
Renzo Piano‘s answer to local needs
Bioclimatic Tools in Architecture
Wind grids
Bioclimatic Tools in Architecture
„The Wind Gap“
Bioclimatic Tools in Architecture
Ökologische Qualität
Kriterien 01-05, 10,11 – Ökobilanzierung ZIEL
© S. Lakenbrink
Reduktion der negativen Wirkungen von Materialeigenschaften in Bezug auf ihr Treibhauspotenzial, Ozonschichtabbaupotenzial, Ozonbildungspotenzial, Überdüngungspotenzial und Versauerungspotenzial sowie Berücksichtigung des Anteils regenerativer und nicht-erneuerbarer Energie.
Bioclimatic Tools in Architecture
Ökologische Qualität
Risiken für die lokale Umwelt ZIEL Reduktion der Verwendung von Stoffen und Produkten, die ein Risikopotenzial für Grundwasser, Oberflächenflächenwasser, Boden und Luft enthalten.
© Lakenbrink S. Lakenbrink © S.
Berücksichtigte Stoffgruppen: Halogene, Schwermetalle, Organische Lösemittel, Stoffe und Produkte, die gemäß Biozid- oder REACH-Richtlinie umweltschädigend sind.
Bioclimatic Tools in Architecture
Ökologische Qualität
Kriterium 08 Nachhaltige Ressourcenverwendung / Holz ZIEL
Subtropische und boreale Hölzer dürfen nur dann verwendet werden, wenn durch Vorlage eines Zertifikats „die geregelte, nachhaltige Bewirtschaftung des Herkunftsforstes nachgewiesen wird.“
© S. Lakenbrink
Ziel ist ein Ausschluss von Holz und Holzwerkstoffen aus unkontrollierter Gewinnung in gefährdeten tropischen, subtropischen und borealen Waldregionen zur Förderung des nachhaltig gewonnenen Rohstoffes Holz.
Bioclimatic Tools in Architecture
Ökologische Qualität
Kriterium 09 Mikroklima ZIEL
© S. Lakenbrink
Reduzierung des Wärmeinseleffekts durch Auswahl geeigneter Produkte und Lösungen im Fassaden- und Dachbereich durch Schaffung von unversiegelten Bereichen, Begrünung oder Verwendung von Materialien mit geringer solarer Absorption.
Bioclimatic Tools in Architecture
Ökologische Qualität
Kriterium 14 – Trinkwasserbedarf und Abwasseraufkommen ZIEL
© S. Lakenbrink © Lakenbrink S. Lakenbrink © S.
Ziel ist eine Reduzierung des täglichen Trinkwasserbedarfs und Abwasseraufkommens durch Einbau wassersparender Armaturen, Nutzung von Regen- und Brauchwasser sowie die Ableitung von konzentriertem Schmutzwasser.
Bioclimatic Tools in Architecture
Ökologische Qualität
Kriterium 15 – Flächeninanspruchnahme ZIEL
© S. Lakenbrink © Lakenbrink S. Lakenbrink © S.
Ziel ist die Reduzierung des Flächenverbrauchs und folglich die Beendigung der Zersiedelung der Landschaft sowie die Geringhaltung zusätzlicher Bodenversiegelung.
Bioclimatic Tools in Architecture
Ökonomische Qualität
Kriterium 16 – Gebäudebezogene Kosten im Lebenszyklus ZIEL
S. Lakenbrink © © Lakenbrink S. Lakenbrink © S.
Ziel ist die Minimierung der Lebenszykluskosten von Gebäuden zur Kostenreduktion von Umbau- und Erhaltungsinvestitionen. Folgekosten finden oft nur wenig Beachtung, heutige Einsparungen sollen jedoch nicht auf Kosten zukünftiger Nutzer/Besitzer vorgenommen werden.