15 minute read

10 BIBLIOGRAFÍA

Next Article
ANEXOS

ANEXOS

10 BIBLIOGRAFÍA

 Acosta, R. 2009. El cultivo del maíz, su origen y clasificación. El maíz en

Advertisement

Cuba. Cultivos tropicales, vol. 30, no. 2, p. 113-120.

 Allendorf, F. W., & Luikart, G. 2009. Conservation and the genetics of populations. John Wiley & Sons.

 Azofeifa-Delgado, Á. 2006. Uso de marcadores moleculares en plantas; aplicaciones en frutales del trópico. Agronomía mesoamericana, 172:221242.

 Batley, J. 2015. Plant genotyping: Methods and protocols. 2015th Ed.. New

York, NY: Springer New York.

 Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 323:314–331.

 Chang, M. T., & Coe Jr, E. H. 2009. Double haploids. In Molecular Genetic

Approaches to Maize Improvement pp. 127-142. Springer Berlin

Heidelberg.  Chen, J., Zavala, C., Ortega, N., Petroli, C., Franco, J., Burgueño, J., &

Hearne, S. J. 2016. The Development of Quality Control Genotyping

Approaches: A Case Study Using Elite Maize Lines. PloS one, 116, e0157236.  Chiu, C., & Miller, S. 2016. Next-generation sequencing. Molecular microbiology: diagnostic principles and practice, 3rd ed. ASM Press,

Washington, DC.  Crossa, J., Beyene, Y., Kassa, S., Perez, P., Hickey, J. M., Chen, C., de

Los Campos, G., Burgueño, J., Windhausen, V. S., Buckler, E. S., Jannink,

J., Lopez-Cruz, M. A. & Babu, R. 2013. Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 3:1903–1926

 Dillman, C., Bar-Hen, A., Guerin, D., Charcosset, A. & Murigneux, A. 1997.

Comparison of RFLP and morphological distances between maize Zea mays L. inbred lines. Consequences for germplasm protection purposes.

Theoretical and Applied Genetics. 95:92–102.

 Domínguez-Mercado, C.A. 2012. Red de valor para maíz con alta calidad de proteína. Institución de enseñanza e investigación en ciencias Agrícolas.

Tesis de Maestría en Ciencias.  Dudley, J. W. 2007. From means to QTL: The Illinois long-term selection experiment as a case study in quantitative genetics. Crop Science 47:522531.  Earl, D. A., & VonHoldt, B. M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the

Evanno method. Conservation genetics resources, 42:359-361.  Espinoza, F., Argenti, P., Urdaneta, G., Araque, C., Fuentes, A., Palma, J., & Bello, C. 2004. Uso del forraje de maíz Zea mays hidropónico en la alimentación de toretes mestizos. Zootecnia Trop, 224:303-315.  Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K.,

Buckler, E. S., & Mitchell, S. E. 2011. A robust, simple genotyping-bysequencing GBS approach for high diversity species. PloS one, 65, e19379.  Evanno, G., Regnaut, S., & Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology, 14(8):2611-2620.  Falush, D., Stephens, M., & Pritchard, J. K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 1644:1567-1587.  FAOSTAT. 2017. Base de datos estadísticos de la FAO. Disponible en: http://faostat.fao.org/ consultado en abril de 2017.  FIRA. 2011. Resumen de costos para producir maíz de riego en el ciclo OI 2011-12, en el municipio de Guasave Sinaloa. Disponible en: http://www.fira.gob.mx/Nd/SINALOA_MAIZ_PV_2012_P.pdf/ consultado en enero de 2016.

 Food and Agriculture Organization of the United Nations, FAO. &

International Maize and Wheat Improvement Center, CIMMYT. 1997. El maíz blanco: un grano alimentario tradicional en los países en desarrollo.

Digitizer.Fao.  Forster, B. P., & Thomas, W. T. 2005. Double haploids in genetics and plant breeding. Plant Breeding Rev, 25:57-88.  Fundación Produce Sinaloa 2008. Memoria II Jornada de transferencia de tecnología de cultivo de maíz. Fundación Produce Sinaloa.  Garcion, C., & Métraux, J. P. 2006. FiRe and microarrays: a fast answer to burning questions. Trends in plant science, 117, 320-322.  Geiger, H. H. & Gordillo, G. A. 2009. Double haploids in hybrid maize breeding. Maydica 54:485-499.  Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun,

Q., Buckler, E. S. 2014. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346

 González-Estrada, A.; Gutiérrez, I., J; Espinoza, C., A.; Vázquez, C., A.; &

Wood, S.. 2007. Impacto económico del maíz en México: Híbrido H-50.

INIFAP-SAGARPA. Publicación técnica No. 24. 83 p. México, D.F.  Guillen, C. P., De la Cruz, L. E., Castañón, N. G., Osorio, O. R., Brito, M. N.

P., Lozano, R. A., & López, N. U. 2009. Aptitud combinatoria general y específica de germoplasma tropical de maíz. Tropical and Subtropical

Agroecosystems, 101:101-107.  Hayward, M. D., & Breese, E. L. 1993. Population structure and variability.

In Plant Breeding pp. 16-29. Springer Netherlands.

 He, J., Zhao, X., Laroche, A., Lu, Z. X., Liu, H., & Li, Z. 2014. Genotypingby-sequencing GBS, an ultimate marker-assisted selection MAS tool to accelerate plant breeding. Frontiers in plant science, 5.  Huang, X., & Han, B. 2014. Natural variations and genome-wide association studies in crop plants. Annual review of plant biology, 65:531551.  Hirsch, C., Hirsch, C. D., Brohammer, A. B., Bowman, M. J., Soifer, I.,

Barad, O., & Fields, C. J. 2016. Draft Assembly of Elite Inbred Line PH207

Provides Insights into Genomic and Transcriptome Diversity in Maize. The

Plant Cell, tpc-00353.  Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. 2009. Inferring weak population structure with the assistance of sample group information.

Molecular Ecology Resourses 9:1322–1332.  Illumina Inc. 2016. An introduction to Next-Generation Sequencing technology. Disponible en: http://www.illumina.com/content/dam/illuminamarketing/documents/products/illumina_sequencing_introduction.pdf consultado en octubre de 2016.  Jarquín, D., Kocak, K., Posadas, L., Hyma, K., Jedlicka, J., Graef, G., &

Lorenz, A. 2014. Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC genomics, 151:740.  Karn, A., Gillman, J. D., & Flint-Garcia, S. A. 2017. Genetic analysis of teosinte alleles for kernel composition traits in maize. G3: Genes,

Genomes, Genetics, 74:1157-1164.  Kato, T. A., Mapes, C., Mera, L. M., Serratos, J. A., & Bye, R. A. 2009.

Origen y diversificación del maíz: una revisión analítica. Universidad

Nacional Autónoma de México, Comisión Nacional para el Conocimiento y

Uso de la Biodiversidad. México, DF, 116.  Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H., ... &

Aschenbrenner-Kilian, M. 2012. Diversity arrays technology: a generic genome profiling technology on open platforms. Data Production and

Analysis in Population Genomics: Methods and Protocols, 888:67-89.  Kozik, E. U., Nowakowska, M., Staniaszek, M., Dyki, B., Stepowska, A., &

Nowicki, M. 2013. More than meets the eye: A multi-year expressivity analyses of tomato sterility in ps and ps-2 lines. Australian Journal of Crop

Science, 713:2154.  Kumar, S., Tamura, K., & Nei, M. 1994. Mega. Bioinformatics, 102:189-191.  Lee, H., Gurtowski, J., Yoo, S., Nattestad, M., Marcus, S., Goodwin, S. &

Schatz, M. 2016. Third-generation sequencing and the future of genomics. bioRxiv, 048603.

 Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J. & Liu, J. 2013.

Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 451:43-50.  Li, H., Vikram, P., Singh, R. P., Kilian, A., Carling, J., Song, J. & Sehgal, D. 2015. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC genomics, 161:216.  Liu, J. 2002. POWERMARKER–A powerful software for marker data analysis. Raleigh, NC: North Carolina State University, Bioinformatics

Research Center http://www. powermarker.net.  Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R. & Law, M. 2012. Comparison of next-generation sequencing systems. BioMed Research

International, Vol 2012:1-11.  Liu, N., Xue, Y., Guo, Z., Li, W., & Tang, J. 2016. Genome-Wide

Association Study Identifies Candidate Genes for Starch Content

Regulation in Maize Kernels. Frontiers in Plant Science, 7.  López-Pereira, M. A. 1992. The economics of quality protein maize as an animal feed. Case studies of Brazil and El Salvador. CIMMYT Economics

Working Paper 92-06. Mexico, DF.  Lorenz, A. J., Chao, S., Asoro, F. G., Heffner, E. L., Hayashi, T., Iwata, H. &

Jannink, J. L. 2011. 2 Genomic Selection in Plant Breeding: Knowledge and

Prospects. Advances in agronomy, 110:77.  Lu Y., Yan J., Guimaraes C. T., Taba S., Hao Z., Gao S., Chen S., Li J.,

Zhang S., Vivek B. S., Magorokosho C., Mugo S., Makumbi D., Parentoni

S. N., Shah T., Rong T., Crouch J. H. & Xu Y. 2009. Molecular characterization of global maize breeding germplasm based on genomewide single nucleotide polymorphisms. Theor Appl Genet 120:93–115.  Mardis, E. R. 2008. Next-generation sequencing platforms. Annual review of analytical chemistry, 6:287-303.  Mengesha, W. A., Menkir, A., Unakchukwu, N., Meseka, S., Farinola, A.,

Girma, G., & Gedil, M. 2017. Genetic diversity of tropical maize inbred lines combining resistance to Striga hermonthica with drought tolerance using

SNP markers. Plant Breeding, 1363:338-343.

 Milne, I. 2014. Graphical applications for visualization and analysis of genotype data sets. In Plant and Animal Genome XXII Conference. Plant and Animal Genome.  Minoche, A., Dohm, J., Himmelbauer H. 2011. Evaluation of genomic highthroughput sequencing data generated on Illumina HiSeq and Genome

Analyzer systems. Genome Biology 12:R112.  Miracle, M. P. 1966. Maize in tropical Africa. Madison, WI, USA, The

University of Wisconsin Press.  Morozova, O., & Marra, M. A. 2008. Applications of next-generation sequencing technologies in functional genomics. Genomics, 925:255-264.  Oliva, R., & Vidal, J. 2006. Genoma Humano Nuevos avances en investigación, diagnóstico y tratamiento. Volumen, 2:215.  Olmos, S. E., Delucchi, C., Ravera, M., Negri, M. E., Mandolino, C., &

Eyhérabide, G. H. 2014. Genetic relatedness and population structure within the public argentinean collection of maize inbred lines. Maydica, 591:16-31.  Organisation for Economic Cooperation and Development. 2003.

Consensus Document on the Biology of Zea mays subsp. mays Maize.

OECD Environment, Health and Safety, Publications Series on

Harmonisation of Regulatory Oversight in Biotechnology, 27:11-27. Paris,

Francia.  Ortega-Corona, A., R. E. Preciado, O., A. D. Terrón, I., A. S. Cruz, M., H.

Vallejo, D., S. García, L., O. Cota, A., M. J. Guerrero, H. y S. O. Serma, Z. 2012. Selección recurrente para incrementar el contenido de aceite en cuatro poblaciones de maíz. Memoria de Resúmenes del XXIV Congreso

Nacional y IV Internacional de Fitogenética. Sociedad Mexicana de

Fitogenética, A. C. y Universidad Autónoma de Nuevo León. Monterrey,

Nuevo León, México. 24 a 28 de septiembre de 2012. p. 66.  Ortega-Corona, A. 2015. Selection response for oil content and agronomic performance in four subtropical maize populations. Maydica, 603, 1-8.  Pacheco, A., Alvarado, G., Rodríguez, F., Crossa, J. & Burgueño, J. 2016.

BIO-R Biodiversity Analysis whith R for Windows. Version 1.0, International

Maize and Wheat Improvement Center.

 Pailles, Y., Ho, S., Pires, I. S., Tester, M., Negrão, S. & Schmöckel, S. M. 2017. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands. Frontiers in Plant Science. 2017;8:138. doi:10.3389/fpls.2017.00138.  Palacios, V. O., Ortega-Corona, A., Guerrero, H., M.J. & Hernández, C.,

J.M. 2008. Proyecto FZ002. Conocimiento de la diversidad y distribución actual del maíz nativo y sus parientes silvestres en México. Componente 1.

Maíces nativos de los estados del norte de México. Informe final de actividades 2007-2008 en el estado de Sinaloa. CONABIO. INIFAP.

Documento sin publicar. Culiacán, Sinaloa, México. 81 p.  Paliwal, R. L., Granados, G., Lafitte, H. R., Violic, A. D., & Marathée, J. P. 2001. El maíz en los trópicos: Mejoramiento y producción No. 28. Food &

Agriculture Org.  Pavlov, J., Delić, N., Živanović, T., Ristić, D., Čamdžija, Z., Stevanović, M., & Tolimir, M. 2016. Relationship between genetic distance, specific combining abilities and heterosis in maize Zea mays L.. Genetika, 481: 165172.  Perales, H., & Golicher, D. 2014. Mapping the Diversity of Maize Races in

Mexico. PloS one, 912:114  Piñero, D., Caballero-Mellado, J., & Cabrera-Toledo, D. 2008. La diversidad genética como instrumento para la conservación y el aprovechamiento de la biodiversidad: estudios en especies mexicanas. Capital natural de

México, 1:437-494.  Poland, J. A., & Rife, T. W. 2012. Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome, 53:92-102.  Poland, J., Endelman, J., Dawson, J., Rutkoski, J., Wu, S., Manes, Y., &

Jannink, J. L. 2012. Genomic selection in wheat breeding using genotypingby-sequencing. The Plant Genome, 53:103-113. .  Prasanna, B. M., Chaikam, V., & Mahuku, G. 2013. Tecnología de dobles haploides en el mejoramiento de maíz: teoría y práctica. CIMMYT.  Preciado-Ortiz, R. E., García-Lara, S., Ortiz-Islas, S., Ortega-Corona, A., &

Serna-Saldivar, S. O. 2013. Response of recurrent selection on yield,

kernel oil content and fatty acid composition of subtropical maize populations. Field Crops Research, 142:27–35.  Prigge, V., & Melchinger, A. E. 2012. Production of haploids and doubled haploids in maize. In Plant cell culture protocols pp. 161-172. Humana

Press.  Pritchard, J. K., Stephens, M., & Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 1552:945-959.  Reif, J. C., Melchinger, A. E., Xia, X. C., Warburton, M. L., Hoisington, D.

A., Vasal, S. K., Beck, D., Bohn, M. & Frisch, M. 2003. Use of SSRs for establishing heterotic groups in subtropical maize. Theoretical and Applied

Genetics 107:947–957  Rocandio-Rodríguez, M., Santacruz-Varela, A., Córdova-Téllez, L., Lopez-

Sanchez, H., Castillo-González, F., Lobato-Ortiz, R., & García-Zavala, J. J. 2014. Detection of genetic diversity of seven maize races from the high central valleys of Mexico using microsatellites. Maydica, 592014:144-151.  Rogers, J. S. 1972. Measures of genetic similarity and genetic distance. In:

Studies genetics VII, no. 7213. University of Texas Publication, Austin.  Romay, M. C., Millard, M. J., Glaubitz, J. C., Peiffer, J. A., Swarts, K. L.,

Casstevens, T. M. & McMullen, M. D. 2013. Comprehensive genotyping of the USA national maize inbred seed bank. Genome biology, 146, R55.  Sánchez-Ortega, I. 2014. Maíz I Zea mays. Departamento Biología Vegetal

I Fisiología Vegetal. Facultad de Biología, Universidad Complutense.

Madrid. Reduca Biología. Serie Botánica. 7 2: 151-171.  Sansaloni, C., Petroli, C., Jaccoud, D., Carling, J., Detering, F.,

Grattapaglia, D., & Kilian, A. 2011. Diversity Arrays Technology DArT and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. In BMC

Proceedings Vol. 5, No. 7, p. P54. BioMed Central.  Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak,

S.... & Minx, P. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science, 3265956:1112-1115.  Semagn, K., Magorokosho, C., Vivek, B. S., Makumbi, D., Beyene, Y.,

Mugo, S., & Warburton, M. L. 2012. Molecular characterization of diverse

CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC genomics, 131:113.  SIAP. 2016. Producción Agropecuaria. Servicio de Información

Agroalimentaria y Pesquera, México.  Singh, N., Choudhury, D. R., Singh, A. K., Kumar, S., Srinivasan, K., Tyagi,

R. K., ... & Singh, R. 2013. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS One, 8(12), e84136.  Singh, B. D., y Singh, A. K. 2015. High-Throughput SNP Genotyping.

In Marker-Assisted Plant Breeding: Principles and Practices pp. 367-400.

Springer India.  Sonah, H., O'Donoughue, L., Cober, E., Rajcan, I., & Belzile, F. 2015.

Identification of loci governing eight agronomic traits using a GBS‐GWAS approach and validation by QTL mapping in soya bean. Plant biotechnology journal, 132:211-221.  Sosa, P. A., González-Pérez, M. A., Moreno, C., & Clarke, J. B. 2010.

Conservation genetics of the endangered endemic Sambucus palmensis

Link Sambucaceae from the Canary Islands. Conservation

Genetics, 116:2357-2368.  Stewart Jr, C. N., y Via, L. E. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 145:748-750.  Tian, H. L., Wang, F. G., Zhao, J. R., Yi, H. M., Wang, L., Wang, R., ... &

Song, W. 2015. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Molecular Breeding, 356:136.  Vázquez-Carrillo, M. G., Santiago-Ramos, D., Gaytán-Martínez, M.,

Morales-Sánchez, E., & de Jesús Guerrero-Herrera, M. 2015. High oil content maize: Physical, thermal and rheological properties of grain, masa, and tortillas. LWT-Food Science and Technology, 601:156-161.  Vielle-Calzada, J. P., de la Vega, O. M., Hernández-Guzmán, G., Ibarra-

Laclette, E., Alvarez-Mejía, C., Vega-Arreguín, J. C., ... & Herrera-Estrella,

A. 2009. The Palomero genome suggests metal effects on domestication.

Science, 3265956:1078-1078.  Wang, M., Yan, J., Zhao, J., Song, W., Zhang, X., Xiao, Y., & Zheng, Y. 2012. Genome-wide association study GWAS of resistance to head smut in maize. Plant science, 196:125-131.  Warburton, M. L., Xia X. C., Crossa, J., Franco J., Melchinger, A. E., Frisch,

M., Bohn, M., Hoisington, D. A. 2002. Genetic characterization of CIMMYT maize inbred lines and open pollinated populations using large scale fingerprinting methods. Crop Science 42:1832–1840.  Warham, E. J. 1998. Ensayos para la semilla de maíz y de trigo: Manual de laboratorio. Cimmyt.  Watson, S.A. 1988. Corn marketing, processing, and utilization. In G.F.

Sprague & J.W. Dudley, eds. Corn and corn improvement, p. 882-940.

Madison, WI, USA, American Society of Agronomy.  Weng, J., Xie, C., Hao, Z., Wang, J. & Liu, C. 2011. Genome-Wide

Association Study Identifies Candidate Genes That Affect Plant Height in

Chinese Elite Maize Zea mays L. Inbred Lines. PLoS ONE 612: e29229.  Wu, Y., San Vicente, F., Huang, K., Dhliwayo, T., Costich, D. E., Semagn,

K., ... & Babu, R. 2016. Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs. Theoretical and Applied

Genetics, 1-13.  Xia, X. C., Reif, J. C., Hoisington, D. A., Melchinger, A. E., Frisch, M. &

Warburton, M. L. 2004. Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Lowland tropical maize. Crop

Science 44:2230–2237  Xia, X. C., Reif, J. C., Melchinger, A. E., Frisch, M., Hoisington, D. A., Beck,

D., Pixley, K, Warburton, M. L. 2005. Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with elite US and European maize. Crop Science 45:2573–2582  Xu, Y., & Crouch, J. H. 2008. Marker-assisted selection in plant breeding: from publications to practice. Crop Science, 482:391-407.

 Xu, C., Ren, Y., Jian, Y., Guo, Z., Zhang, Y., Xie, C., Fu, J., Wang, H.,

Wang, G. & Xu, Y., l. 2017. Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Molecular Breeding. 37:20.  Yadav, P., Vaidya, E., Rani, R., Yadav, N. K., Singh, B. K., Rai, P. K., &

Singh, D. 2016. Recent Perspective of Next Generation Sequencing:

Applications in Molecular Plant Biology and Crop

Improvement. Proceedings of the National Academy of Sciences, India

Section B: Biological Sciences, 1-15.  Zamora-Hernández, T., Prado-Fuentes, A., Capataz-Tafur, J., Barrera-

Figueroa, B. E., & Peña-Castro, J. M. 2014. Demostraciones prácticas de los retos y oportunidades de la producción de bioetanol de primera y segunda generación a partir de cultivos tropicales. Educación química, 252:122-127.  Zhang, J., Chiodini, R., Badr, A., & Zhang, G. 2011. The impact of nextgeneration sequencing on genomics. Journal of genetics and genomics, 383:95-109.  Zhang, X., Pérez-Rodríguez, P., Semagn, K., Beyene, Y., Babu, R., López-

Cruz, M. A., San Vicente, F., Olsen, M., Buckler, E., Jannink, J. L.,

Prasanna, B. M. & Crossa J. 2015. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity 114:291–299.

This article is from: