Barbastella 8(1) 2015
1
Barbastella
Revista Científica de Investigación en Quirópteros Scientific Journal of Bat Research Se publica anualmente por la SECEMU (Asociación Española para la Conservación y el Estudio de los Murciélagos) y se edita en el Museu de Ciències Naturals de Granollers en Catalunya. Published annually by SECEMU (Asociación Española para la Conservación y el Estudio de los Murciélagos) in collaboration with the Granollers Museum of Natural Sciences in Catalonia. Abreviación sugerida/ Suggested abbreviation: Barb.
Equipo de Edición / Editors-in-chief
Adrià López-Baucells, Carles Flaquer, Juan Tomás Alcalde
Diseño y Maquetación / Graphic design Adrià López-Baucells & Maria Mas Navarro
Soporte en gestión y administración / Management editor Alba Coronado
Redes sociales / Social Media
Luis Hernández Tabernero (Facebook) & Ricardo Rocha (Twitter)
Equipo de revisión (2015) Editorial Board (2015)
Carles Flaquer Sánchez Carlos Ibáñez Ulargui Danilo Russo David García Jiménez Domingo Trujillo González Félix González Álvarez Godfried Schreur Inazio Garin Atorrasagasti Javier Juste Ballesta
Juan Quetglas Santos Juan Tomás Alcalde Díaz de Cerio Miguel Ángel Monsalve Dolz Óscar de Paz García Guerrero Pablo Tomás Aguirre-Mendi Joxerra Aihartza Azurtza Roberto Hermida Lorenzo Xavier Puig Montserrat Adrià López-Baucells
Publicado por/Published by: Museu de Ciències Naturals de Granollers / Granollers Museum of Natural Sciences c/ Palaudàries, 102 - Jardins Antoni Jonch Cuspinera - 08402 Granollers (Catalunya, Spain) Tel. y Fax: +34 938709651 - e-mail: barbastella@secemu.org Fotografía de la portada: Miniopterus schreibersii. Fotografía de Oriol Massana Valeriano & Adrià López-Baucells Cover picture: Miniopterus schreibersii. Photo: Oriol Massana Valeriano & Adrià López-Baucells © Copyright 2015, SECEMU (Asociación Española para la Conservación y el Estudio de los Murciélagos) ES ISSN 1576-9720 - Impresa en Catalunya por el Museu de Ciències Naturals de Granollers El papel de esta revista es totalmente libre de cloro y con certificado ecológico. The journal was printed on 100% chlorine-free, ecologically certified paper. En cumplimiento del artículo 24.1 de la vigente Ley de Prensa e Inprenta se hace constar que la Junta Directiva de la Asociación Española para la Conservación y el Estudio de los Murciélagos, para el periodo de 2011-2014 está constituida por: Presidente (President): Vicepresidente (Vice president): Secretario (Secretary): Vicesecretario (Assistant secretary): Tesorero (Treasurer):
2
Juan Tomás Alcalde Díaz de Cerio Vocales (Other members): Miguel Ángel Monsalve Dolz Antton Alberdi Estibaritz Xavier Puig Montserrat Gemma Carrasco Escrig Luis Lorente Villanueva Juan Emilio Echevarría Mayo Óscar de Paz García Guerrero
Barbastella 8(1) 2015
Barbastella
Revista Científica de Investigación en Quirópteros Scientific Journal of Bat Research
Barbastella es una revista anual que tiene como objetivo principal ser una plataforma para dar a conocer estudios sobre quirópteros. La revista pretende dar cobertura a estudios llevados a cabo en cualquier localidad del mundo. Se pretende dar visibilidad a estudios realizados con rigor científico pero considerados de ámbito local por las revistas internacionales. Asimismo, se espera poder dar cabida a información sobre proyectos destacados y hallazgos de interés en el territorio. Barbastella is an annual journal that wants to provide a platform to publicize studies on bats. The journal aims to cover research carried out in all over the world. It aims to give visibility to studies conducted with scientific rigor, but considered as local by international journals. Also, we expect to accommodate data about major research projects and findings in the territory.
Juan Tomás Alcalde Presidente de la SECEMU
Barbastella 8(1) 2015
3
4
Barbastella 8(1) 2015
Predation on bats by genets Genetta genetta (Linneaus, 1758): a review
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
Predation on bats by genets Genetta genetta (Linneaus, 1758): a review Maria Mas¹*, Adrià López-Baucells¹ & Antoni Arrizabalaga¹ ¹ Granollers Natural History Museum, Chiroptera Research Department Av. Francesc Macià 61, 08402 Granollers, Catalonia (Spain). *Corresponding author e-mail: maria.masnavarro@gmail.com DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.03 © 2015 Published by SECEMU. Spanish title: Predación de quirópteros por la gineta Genetta genetta (Linneaus, 1758): revisión
Abstract: Bats have partially evolved in response of predation pressure and have developed several strategies to cope with these threats. Nevertheless, the role played by many predators and their true impact on bat populations is poorly known and to date have only ever been considered superficially in studies. In this manuscript we review the role of genet as potential bat predator. We herein present an in-depth literature review of bats as prey of genets and also provide 4 new reports from scat analysis and 1 opportunistic event in a mist net placed next to a cave entrance. While the fact that only few reports of genet predation on bats have been detected seems to suggest that they only hunt bats occasionally, other repeated reports from South Portugal inside hibernating roosts (Palmeirim & Rodrigues 1991) and our new predation event next to a cave entrance suggests that genets could also repeatedly hunt bats in some caves (not as occasionally as usually considered). Key words: Genetta genetta, predation, chiroptera, carnivores, survival.
In Europe, only the mammals carnivores Beech marten (Martes foina Erxleben 1777), European pine marten (Martes martes Linneaus 1758), Genet (Genetta genetta Linneaus 1758) and non-wild carnivores as cats, have been reported as occasional bat predators (Romanowski & Lesinski 1991, Palmeirim & Rodrigues 1991, Clevenger 1993, Arrizabalaga 1984, Freixas et al. 2010, Ancillotto et al. 2013). According to Baker (1962) these mesopredator are more likely to take advantage of congested caves and roosts or eating carcasses of dead bats, rather than prey on solitary individuals (also in Palmeirim & Rodrigues 1991). Nevertheless, most available literature reports the occurrence of single bats, rather than multiple individuals: e.g. a single Vespertilio murinus (Linnaeus 1758) was identified from a skull found in a Beech marten’s faecal sample in Romania (Romanowski & Lesinski 1991). In this manuscript we aimed to review the role of genet as potential bat predator. Thus, a thorough revision was carried out using online databases (Google Scholar & Web of Knowledge) with the following keywords: ‘chiroptera’, ‘bats’, ‘diet’, ‘dietary composition’, ‘mortality’, ‘predator’, ‘predation’ and ‘Genetta genetta’ in English, Spanish, Portuguese and French. As a result, a wide range of studies
received: July 9th, 2014 accepted: September 11st, 2014
were retrieved for Genet diet description considering its whole distribution (Portugal, France, Spain and North Africa), but only few revealing bats on those diets. Genetta genetta (Viverridae) is a medium-sized opportunistic carnivore with a euryphagous diet (Larivière & Calzada 2001) found only in the Iberian Peninsula, southern France, North Africa and the Balearic Islands (Clevenger 1993; Virgos & Casanovas 1997; Larivière & Calzada 2001; Fig. 1). It is commonly classified between the specialist European Otter (Lutra lutra, Linnaeus 1758) and the generalist European Badger (Meles meles, Linnaeus 1758). In fact, several studies have investigated the species’ diet throughout its distribution by the analysis of scats (Arrizabalaga & Montagud 1984, Cugnasse & Riols 1984, Ariagno 1985, Delibes et al. 1989, Lodé et al. 1991, Amdine et al. 1993, Ruiz-Olmo & López-Martín 1993, Clevenger 1995, Gil Sánchez 1998, Rosalino & Santos-Reis 2002, Virgós et al. 1999, Carvalho & Gomes 2003, Mostefai et al. 2003, Torre et al. 2003, Amroun et al. 2007, Sánchez et al. 2008, Le Jacques & Lode 2009, Freixas et al. 2010, Palazón & Rafart 2010, Camps 2012, Torre et al. 2013). Small mammals (mostly Apodemus sp., Torre et al. 2013) represent more than 90% of the species’ diet and the remaining is usually composed
Barbastella 8(1) 2015
5
Maria Mas, Adrià López-Baucells, Antoni Arrizabalaga
Fig. 1 – Genet distribution in the Mediterranean area. Red spots: bat predation events. in equal proportions by invertebrates, reptiles, amphibians and birds depending on resource availability (Virgós et al. 1999, Arrizabalaga et al. 2002, Rosalino and Santos-Reis 2002). However, despite the species’ preference for small mammals, bats have only rarely been detected in the diet of this mammal (Arrizabalaga 1984, Freixas et al. 2010) We herein present an in-depth literature review of bats as prey of genets and also provide four new reports. Only three incidents of bat predation by genets are currently available in the literature, namely: 1 serotine bat (Eptesicus serotinus, Schreber 1774) and an unidentified bat individual in genet scats from the Iberian Peninsula (Arrizabalaga & Montagud 1984, Freixas et al. 2010, respectively; Table 1) and several Schreiber’s Bent-winged Bat (Miniopterus schreibersii Kuhl 1817), partially consumed inside some caves in South Portugal (Palmeirim & Rodrigues 1991).
M. schreibersii was found dead close to the ground in the first bag of the mist net. When the presence of the genet was detected near the mist net (another conspecific individual was also sighted simultaneously in the same area near the cave entrance), the bat was already dead and had numerous bite marks. As the bat could not be properly extracted from the mist net by the genet, we removed it and it is now deposited in the mammal collection of the Granollers Natural History Museum. Due to our presence, both genets left the area and were not detected again during any other field surveys of this cave.
We add one unidentified vespertilionid bat (4 pieces) in scats from 1983, another E. serotinus from the same scats analised by Arrizabalaga & Montagud (1984) and another E. serotinus, found in faecal samples from 2000 (Table 1). Bone rests and skulls found in scats were identified using own collections from the Museum of Natural Sciences of Granollers and published identification keys (Gallego & López 1991). We also report one opportunistic predation event of a G. genetta upon an individual of M. schreibersii (Kuhl 1817) entangled in a mist net. This 3m mist net was placed at the emergence point of a M. schreibersii equinoctial cave roost in a periurban natural park near Barcelona (Collserola Park: UTM ED50 418385, 4586771, Fig. 2). The individual of 6
Fig. 2 – Cave entrance.
Barbastella 8(1) 2015
Barbastella 8(1) 2015
Sorex minutus (6); Crocidura russula (32); Suncus etruscus (9); Sciurus vulgaris (4); Apodemus sylvaticus (394); Apodemus sp. (79); Mus spretus (10); Microtus duodecimcostatus (1); chiroptera sp (1): Sauria (7); Snake (2); birds (9)
Unavailable
Poblet Area of Natural Interest (Prades), Catalonia
Collserola Park. Can Rabella. Barcelona, Catalonia.
Portugal
(Freixas et al. 2010)
Current work
(Palmeirim & Rodrigues, 1991)
Miniopterus schreibersii
Miniopterus schreibersii
0.0018%
Bat #2 (unidentified)
Unavailable
Crocidura russula (1); Glis glis (2); Elyomis quercinus (1); Sciurus vulgaris (1); Apodemus sp. (50); Apodemus sylvaticus (85); Apodemus flavicollis (44); Clethrionomys glareolus (5); Birds (5)
Montseny, Sant Marçal, Barraca el Sot de les Illes, Catalonia.
0.005%
Eptesicus serotinus
(Unpublished 2000, own data)
Unavailable.
El Corredor Natural Park, Vallès Oriental, Barcelona, Catalonia.
(Arrizabalaga & Montagud 1984)
Eptesicus serotinus (2 ind)
Guilleries Natural Park, Sant Llorenç de Folgueroles, Catalonia.
(Unpublished 1983, own data)
0.0015%
Talpa europaea (4); Sorex minutus (9); Neomys anomalus (1); Suncus etruscus (5); Crocidura russula (7); Rattus rattus (1); Elyomis quercinus (6); Sciurus vulgaris (6); Mus spretus (15); Apodemus sp. (250); Apodemus sylvaticus (238); Apodemus flavicollis (51); Clethrionomys glareolus (45); Microtus agrestis (4); Arvicola sapidus (3); Microtus duodecimcostatus; Mustela nivalis (1), Oryctolagus cuniculus (2), Reptilia (5), Chiroptera sp.
Vespertilionid (unidentified)
Other vertebrates in the faeces
Source
Location
% in diet
Species
Table 1. Literature review and new reports of bats as prey of genets.
Predation on bats by genets Genetta genetta (Linneaus, 1758): a review
7
Maria Mas, Adrià López-Baucells, Antoni Arrizabalaga
Thus, we consider essential to report all witnessed predation events – even opportunistic ones – to provide more information on the diet of this secretive species. Due to lack of information, many questions still remain unanswered. Does this occur all year round or is it a more common practice during hibernation? Are there more non reported cases of genets visiting caves or forest roosts time and time again to hunt bats?
References Allen, G. M. 1939 (Reprinted. 1962). Bats. Dover (eds) New York.
Fig. 3 – Genet (Genetta genetta) © Ignasi Torre. This predation event represents the first report of a M. schreibersii being predated by a genet in Spain and it corresponds to similar predation events than previously cited in Portugal (Palmeirim & Rodrigues 1991). Nevertheless, although some bats have been detected in genet faecal samples (collected by the Granollers Natural History Museum), they always represent less than 0.1% of their diets. According to scat analysis and previous cited reports, conclusive answers to these questions remain unknown. While the few reports of genet predation on bats (detected though scat analysis) seem to suggest that genets only hunt bats occasionally, other reports from South Portugal (Palmeirim & Rodrigues 1991) affirm that genets repeatedly hunt bats in some caves (not opportunistically) taking advantage of bat roosting behaviour. This predation pressure caused relevant disturbance to these bat populations, being the cause of the uncompleted bat occupation in what would be the best hibernating cave in Portugal. Regarding our opportunistic predation report, and considering the behaviour of the two genets (which seemed to perfectly know the territory and the entrance of the cave), it could be another case of repeated hunting attempts in cave roosting bat colonies, leading us to consider often these genets could use this colony as an available food resource. We must highlight the presence of Eptesicus serotinus, which is the most concurrent bat species on a genet diet. Being a typical opportunist and common bat, which usually roosts on rock crevices, wood crevices and old buildings, and considering that genets usually forage up on trees and they move through urbanized, and they take advantage of dead carcasses, it seems plausible that genets are not selecting this species, but taking advantage of their weakness. As stated previously, it is hard to extrapolate and quantify genet predation rates upon bats as there are few reports and capture events are probably underestimated (Tuttle & Stevenson 1982). Indeed, as a result of all this predation pressure, bats have adopted several defensive strategies to avoid aerial predators and, for example, some bat species habitually evade predators by emerging from roosts in groups (Erkert 1982, Speakman 1991, Speakman et al. 1995). Assuming that aerial hunters pose the greatest threat, it still remains to be seen what effect predation by terrestrial predators has on bats. 8
Amdine, W. H., Thévenot, M., Sellami, M. & DE Smet, K. 1993. Régime alimentaire de la Genette (Genetta genetta Linné, 1758) dans le Parc national du Djurdjura, Algérie. Mammalia 57 (1): 9-18. Doi: http://dx.doi.org/10.1515/mamm.1993.57.1.9 Amroun, M., Giraudoux, P. & Delattre, P. 2007. Etude comparative des régimes alimentaires de deux carnivores sympatriques le chacal doré (Canis aureus) et la genette commune (Genetta genetta) en Kabylie, Algérie. Mammalia 70(3-4): 247-254. Doi: http:// dx.doi.org/10.1515/MAMM.2006.040 Ancillotto, Leonardo, Maria Tiziana Serangeli, & Danilo Russo. 2013. Curiosity killed the bat: Domestic cats as bat predators.” Mammalian BiologyZeitschrift für Säugetierkunde. Ariagno, D. 1985. Régime alimentaire de la Genette Genetta genetta dans le département du Rhône (France). Le Bièvre 7 (2): 115-126. Arrizabalaga, A. & Montagud, E. 1984. Notes sobre la fauna de Quiròpters del Vallès Oriental (Barcelona, Catalunya). Una nova espècie per a la fauna espanyola. Miscel·lània Zoològica 8: 307-310. Arrizabalaga, A., C. Flaquer, E. Montagud, A. Ribas & I. Torre 2002. Noves dades sobre la dieta del gat mesquer (Genetta genetta) al Montseny. V Trobades d’Estudiosos del Montseny. Monografies 33: 85-88. Baker, J. K. 1962. The manner and efficiency of raptor depredations on bats. The Condor 64(6): 500-504. Doi: http://dx.doi.org/10.2307/1365473 Camps, D. 2012. Jineta - Genetta genetta. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Cassinello, J. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. Carvalho, J. C. & Gomes, P. 2001. Food habits and trophic niche overlap of the red fox, European Wild Cat and Common Genet in the Peneda-Gerês National Park. Galemys 13 (2): 39-48. Clay, W. M. 1959. Blue jays attack a Red Bat. The Auk 76(4): 532. Clevenger, A. 1993. Pine marten (Martes martes Linné, 1758) comparative feeding ecology in an island
Barbastella 8(1) 2015
Predation on bats by genets Genetta genetta (Linneaus, 1758): a review
and mainland population of Spain. Zeitschrift für Säugetierkunde 58(4): 212-224. Clevenger, A. 1995. Seasonality and relationships of food resource use of Martes martes, Genetta genetta and Felis catus in the Balearic Islands. Revue d’écologie 50(2): 109-131. Cugnasse, J. M. & Riols, C. 1984. Contribution à la connaissance de l’écologie de la genette (Genetta genetta L.) dans quelques départements du sud de la France. Gibier faune sauvage 1, 25-55. Davis, W. H. 1966. Population Dynamics of the Bat Pipistrellus subflavus. Journal of Mammalogy 47(3): 383-396. Delibes, M., Alejandro Rodríguez & F. F. Parreno. 1989. Food of the common genet (Genetta genetta) in northern Africa. Journal of Zoology 218(2): 321-326. Elwell, A. S. 1962. Blue jay preys on young bats. Journal of Mammalogy 43(3): 434-434. Erkert, H. 1982. Ecological aspects of bat activity rhythms. In Kunz, T.H. Plenum Press (eds) Ecology of bats (201-236) New York. Escarlate-Tavares, Fabricio and Leila M. Pessôa. 2005. Bats (Chiroptera, Mammalia) in barn owl (Tyto alba) pellets in northern pantanal, Mato Grosso, Brazil. Mastozoología neotropical 12(1): 61-67. Estók, P., Zsebők, S. & Siemers B. M. 2010. Great tits search for, capture, kill and eat hibernating bats. Biology Letters 6(1): 59-62. Doi: http://dx.doi.org/10.1098/ rsbl.2009.0611 Fenton, M. B., Rautenbach, I. L., Smith, S.E., Swanepoel, J., Grosell, J. & vann Jaarsveld, J. 1994. Raptors and bats: threats and opportunities. Animal Behaviour 48(1): 9-18. Doi: http://dx.doi.org/10.1006/ anbe.1994.1207 Findley, J. S. 1993. Bats: a community perspective. CUP Archive. University of New Mexico (eds). 179p Freixas, L., Torre, I. & Arrizabalaga, A. 2010. Inventari dels petits mamífers al Paratge Natural d’Interès Nacional de Poblet. Natural History Museum of Granollers (eds). Gallego, L., López, S. 1991. Mamíferos, Quirópteros. In: Vertebrados Ibéricos. Vol 7. Bilbilis (Eds) Palma de Mallorca, Spain. Gil Sánchez, J. M. 1998. Dieta comparada del gato montés (Felis silvestris) y la jineta (Genetta genetta) en una área de simpatría de las Sierras Subbéticas (SE España) Miscel.lania Zooloaica 21 (2) 57-64. Gillette, D. D., & Kimbrough, J. D. 1970. Chiropteran mortality. About Bats. Southern Methodist University Press, Dallas, Texas, 262-283.
Hammer, M. & R. Arlettaz 1998. A case of snake predation upon bats in northern Morocco: some implications for designing bat grilles. Journal of Zoology 245(2): 211212. Doi: http://dx.doi.org/10.1111/j.1469-7998.1998. tb00090.x Hernández D.L., Mell, J. J. & Eaton, M.D. 2007. Aerial predation of a bat by an American Crow. The Wilson Journal of Ornithology 119(4): 763-764. Doi: http:// dx.doi.org/10.1676/06-049.1 Hopkins, H. & Hopkins, M. G. 1982. Predation by a snake of a flower-visiting bat at Parkia nitida (Leguminosae: Mimosoideae). Brittonia 34(2): 225-227. Doi: http:// dx.doi.org/10.2307/2806382 Kinsey, C. 1961. Leopard frog attacks bat. Journal of Mammalogy 42(3): 408. Krzanowski, A. 1973. Numerical comparison of Vespertilionidae and Rhinolophidae (Chiroptera: Mammalia) in the owl pellets. Acta zoologica Cracoviensia. 18: 133-140. Le Jacques, D. & Lode, T. 2009. L’alimentation de la Genette d’Europe, Genetta genetta L., 1758, dans un bocage de l’ouest de la France. Mammalia 58 (3) 383–390. Doi: http://dx.doi.org/10.1515/mamm.1994.58.3.383 Larivière, S. & Calzada, J. 2001. Genetta genetta. Mammalian Species: 1-6. Doi: http://dx.doi.org/10.1644/15451410(2001)680<0001:GG>2.0.CO;2 Lefevre, K. L. 2005. Predation of a bat by American Crows, Corvus brachyrhynchos. The Canadian FieldNaturalist 119(3): 443-444. Lesinski, G., Ignaczak, M. & Manias, J. 2009a. Opportunistic predation on bats by the tawny owl Strix aluco. Animal Biology 59(3): 283-288. Doi: http://dx.doi.org/10.1163/157075609X454917 Lesinski, G., J. Gryz, & Kowalski, M. 2009b. Bat predation by tawny owls Strix aluco in differently human‐transformed habitats. Italian Journal of Zoology 76(4): 415-421. Doi: http://dx.doi. org/10.1080/11250000802589535 Lodé, T., Lechat, I. & Le Jacques, D. 1991. Le régime alimentaire de la genette en limite nord-ouest de son aire de répartition. Revue d’écologie 46 (4): 339-348. McAlpine, D. F., Vanderwolf, K. J., Forbes, G. J. & Malloch, D. 2011 Consumption of Bats (Myotis spp.) by Raccoons (Procyon lotor) during an outbreak of white-nose syndrome in New Brunswick, Canada: Implications for Estimates of Bat Mortality. The Canadian Field-Naturalist 125(1):257-260 Molinari, J., Gutiérrez, E. E., Ascenção, A. A., Nassar, J. M., Arends, A., & Márquez, R. J. 2005. Predation by giant centipedes, Scolopendra gigantea, on three species of bats in a Venezuelan cave. Caribbean Journal of Science, 41(2), 340-346.
Barbastella 8(1) 2015
9
Maria Mas, Adrià López-Baucells, Antoni Arrizabalaga
Genet (Genetta genetta) © Ignasi Torre. Mostefai, N., Sellami, M. & Grenot, C. 2003. Contribution à la connaissance du régime alimentaire de la Genette commune (Genetta genetta) dans la réserve cynégétique de Moutas, Tlemcen (Algerie). Bulletin de la Société zoologique de France 128 (3): 227-237. Motta-Junior & José Carlos. 2006. Relações tróficas entre cinco Strigiformes simpátricas na região central do Estado de São Paulo, Brasil. Revista Brasileira de Ornitologia 14(4): 359-377. Munson, P. J. & Keith, J. H. 1984. Prehistoric Raccoon Predation on Hibernating Myotis, Wyandotte Cave, Indiana. Journal of Mammalogy 65(1): 152-155. Nyffeler, Martin & Mirjam Knörnschild. 2013. Bat Predation by Spiders. PloS one 8 (3): e58120. Doi: http://dx.doi.org /10.1371/journal.pone.0058120 Palazón, S. & Rafart, E. 2010. Dieta de la gineta común Genetta genetta (Linnaeus, 1758) en los hábitats riparios de Navarra. Galemys 22(2): 3-18. Palmeirim, J. M. & Rodrigues, L. 1991. Estatus y conservación de los murciélagos en Portugal. Pp. 98-110. En: Benzal, J., De Paz, O. (Eds.). Los murciélagos de España y Portugal. Colección técnica. Ministerio de Agricultura, Pesca y Alimentación, Instituto Nacional para la Conservación de la Naturaleza, Madrid. Rocha, R. & López-Baucells, A. 2014. Opportunistic predation by Crested Owl Lophostrix cristata upon 10
Seba’s Short-tailed Bat Carollia perspicillata. Revista Brasileira de Ornitologia, 22(1), 58-60 Romanowski, J. & Lesinski, G. 1991. A note on the diet of stone marten in southeastern Romania. Acta Theriologica 36(1-2): 201-204. Rosalino, L. M. & Santos-Reis, M. 2002. Feeding habits of the common genet Genetta genetta (Carnivora: Viverridae) in a semi-natural landscape of central Portugal. Mammalia, 66 (2) 795-205. Ruiz-Olmo, J. & López-Martín, J. M. 1993. Note on the diet of the common genet (Genetta genetta L.) in Mediterranean riparian habitats of NE Spain. Mammalia 57: 607-607. Doi: http://dx.doi. org/10.1515/mamm.1993.57.4.607 Ruprecht, A. L. 1979. Bats (Chiroptera) as constituents of the food of barn owls Tyto alba in Poland. Ibis 1214(1): 489-494. Doi: http://dx.doi.org/10.1111/ j.1474-919X.1979.tb06690.x Rydell, J. & Speakman, J. R. 1995. Evolution of nocturnality in bats: Potential competitors and predators during their early history. Biological Journal of the Linnean Society. 542: 183-191. Doi: http://dx.doi. org/10.1111/j.1095-8312.1995.tb01031.x Sánchez, M., Rodrigues, P. Ortuño, V. & Herrero, J. 2008. Feeding habits of the Genetta genetta in an Iberian continental wetland. Hystrix 19 (2) 133-142.
Barbastella 8(1) 2015
Predation on bats by genets Genetta genetta (Linneaus, 1758): a review
Sendor, T. & M. Simon. 2003. Population dynamics of the pipistrelle bat: effects of sex, age and winter weather on seasonal survival. Journal of Animal Ecology 72(2): 308-320. Doi: http://dx.doi.org/10.1046/ j.1365-2656.2003.00702.x
Torre, I., Ballesteros, T. & Degollada, A. 2003. Cambios en la dieta de la gineta (Genetta genetta Linnaeus, 1758) con relación a la disponibilidad de micromamíferos: ¿posible preferencia por el topillo rojo? Galemys (15): 25-36.
Speakman, J. R. 1991. The impact of predation by birds on bat populations in the British Isles. Mammal Review 213: 123-142. Doi: http://dx.doi. org/10.1111/j.1365-2907.1991.tb00114.x
Torre, I., Arrizabalaga, A., Freixas, L., Ribas, A., Flaquer, C., Díaz, M. (2013). Using scats of a generalist carnivore as a tool to monitor small mammal communities in Mediterranean habitats. Basic and Applied Ecology 14: 155-164.
Speakman, J., Lumsden, L. & Hays. g. 1994. Predation rates on bats released to fly during daylight in south‐ eastern Australia. Journal of Zoology 2332: 318-321. Doi: http://dx.doi.org/10.1111/j.1469-7998.1994. tb08593.x Speakman, J., Stone, R. & Kerslake, J. 1995. Temporal patterns in the emergence behaviour of pipistrelle bats, Pipistrellus pipistrellus, from maternity colonies are consistent with an anti-predator response. Animal Behaviour 505: 1147-1156. Doi: http://dx.doi. org/10.1016/0003-3472(95)80030-1
Tuttle, M. & Stevenson, D. 1982. Growth and survival of bats. in Kunz, T.H. ed. Ecology of bats. Plenum Press, New York: 105-150. Virgós, E. & Casanovas, J. G. 1997. Habitat selection of Genet Genetta genetta in the mountains of central Spain. Acta Theriologica 42: 169-178. Virgós, E., Llorente, M. & Cortésá, Y. 1999. Geographical variation in Genet (Genetta genetta L.) diet: a literature review. Mammal Review (292): 117-126. Doi: http://dx.doi.org/10.1046/j.13652907.1999.00041.x
Barbastella 8(1) 2015
11
Gianna Dondini, Simone Vergari
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
Range expansion? First record of parti-coloured bat (Vespertilio murinus Linnaeus, 1758) in Tuscany, Italy Gianna Dondini¹ & Simone Vergari¹ ¹ Centro Naturalistico e Archeologico dell’Appennino Pistoiese via L. Orlando 100, I-51028 Campo Tizzoro, Pistoia (Italy). *Corresponding author e-mail: svergar@tin.it DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.02 © 2015 Published by SECEMU. Spanish title: Ampliación de rango distribuconal? Primera cita de murciélago bicolor (Vespertilio murinus, 1758) in Tuscany, Italy
Abstract: Vespertilio murinus is a paleartic species. In Italy it is a rare species, apparently confined in the northern regions. During a survey on Tuscany bats, the authors have found an individual in the town of Prato. This finding significantly expands the Italian range of this species southward. A greater sampling effort and new records will be essential for determining the status of the parti-coloured male specimens in Italy. Key words: Vespertilio murinus, distribution, Italy received: October 14th, 2014 accepted: December 3rd, 2014
Parti-coloured bat (Vespertilio murinus L., 1758) is reported on a large portion of the Palearctic region. In northern Italy, Switzerland and France, the species reaches the western limit of its range (Mattei-Roesli et al. 2011, Lanza 2012). Its distribution within the area is heterogeneous, with a neat spatial segregation of males and females and a significant number of single migrating or wintering individuals (Dietz et al. 2009, Mattei-Roesli et al. 2011). The taxon is considered to be partially migratory, with a maximum documented displacement of 1787 km from Russia to France (Hutterer et al. 2005). In Italy, the species is only known for the northern regions (Lanza 2012). The finding of a dead specimen has recently been reported in Piedmont (Toffoli & Culasso 2011), while for Lombardy the capture of a specimen in the city of Milan is reported by De Carli and Fornasari (in verbis, cited in Agnelli et al. 2006). Lanza (2012) does not quote this latest data and deems that the presence of V. murinus in Lombardy has still to be confirmed. The species has also been documented for the central and eastern Alps, in the regions of Friuli Venezia Giulia and Trentino Alto Adige (Ruffo & Stoch 2005, Lanza 2012). In Tuscany, the species was reported at Accesa Lake (Grosseto province) on the basis of surveys with bat detector 12
Pettersson D200 (eterodina) and direct observation while in straight flight (Řehák 2010). Ultrasounds of V. murinus show a great similarity with those of some other species present in Tuscany (eg. Nyctalus leisleri and Eptesicus serotinus), therefore this signal was not regarded as sufficient evidence of the presence of the species in the region, an area relatively far from its known distribution area. As part of a monitoring program on bats in Tuscany, on 25th September 2014 an individual was found on the wall of a terrace in the north-central part of the town of Prato (F. Moggi street, 43°53’46”N - 11° 5’59”E) (Fig. 1). It is an adult male identified as V. murinus on the basis of the diagnostic characters indicated by Dietz & Von Helversen (2004). The specimen was in excellent physical condition, with a visible accumulation of fat between the shoulder blades. The following measures were taken: weight 19.9 g; forearm 44.9 mm; length of fifth finger (D5): 51.1 mm ; length of third finger (D3): 73.2 mm. Dorsal pelage dark brown with white hair tips (Fig. 2); penis long and very narrow (Fig. 3). The individual has been photographed and its ultrasounds recordings were made when hand-released. Recordings were made with a Pettersson Elektronik D-240X ultrasound detector, connected to an Edirol R-09. The resulting sequence was then analyzed (BatSound 3.10) using a sampling frequency of 44.1 kHz and a 512 pt FFT. The spectrogram
Barbastella 8(1) 2015
Range expansion? First record of party-coloured bat (Vespertilio murinus Linnaeus, 1758) in Tuscany, Italy
Fig. 1 - Record of Vespertilio murinus in Tuscany. 1= Prato; 2=Accesa Lake. Shaded area shows the distribution area of V. murinus according to Dietz et al. (2009) . analysis shows the following values: Start Frequency (SF): 50 KHz; End frequency (EF): 22 KHz ; Frequency of peak Energy (Fmax) = 25.2 KHz (Obrist et al. 2004). The discovery of this species in Tuscany enables us to expand its Italian range and European distribution significantly southwards. Males and females in this species have very different distribution ranges, with males reaching farther West and obviously South than females. This is likely a consequence of differences in their intra-speciesâ&#x20AC;&#x2122; niche differentiation between males and females (Safi et al. 2007, van Toor et al. 2011, Alberdi et al. 2012). Of course, the discovery of a single specimen does not allow to make assessments on the speciesâ&#x20AC;&#x2122; abundance and habitat use, which will be the subject of further study. However it seems that the reporting of Parti-colored bat at the Accesa lake (Grosseto province) could well be validated, thus extending its presence farther south. Range expansion as a biogeographical phenomenon might be a possibility in
V. murinus, but again, this should be only exclaimed once reproduction has been confirmed outside the known range of reproduction; the evidence accumulates recently, that V. murinus does occur South of the alps, but so far, no one has reported on females, with or without reproduction. Land use change is having an effect on many bat species. Climate change and urbanization may influence bat distribution and the case of V. murinus may well be driven by human-induced factors. For example In Italy, light pollution has even driven skull size variation in Pipistrellus kuhlii (Tomassini et al. 2014). A greater sampling effort and new records will be essential for determining the status of the parti-coloured male specimens in Italy.
Barbastella 8(1) 2015
13
Gianna Dondini, Simone Vergari
Fig. 3 - Penis of Vespertilio murinus Hutterer, R., Ivanova, T., Meyer-Cords, C. & Rodrigues, L. 2005. Bat migration in Europe. A review of banding data and literature. Federal Agency of Nature Conservation, Bonn, 162 pp. Lanza, B. 2012. Chiroptera. Fauna d’Italia. Mammalia V. Chiroptera. Edizioni Calderini, Bologna; 786 pp. Obrist, M.K., Fluckiger, P.F. & Boesch, R. 2004. Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia 69: 307-322. Doi: http://dx.doi. org/10.1515/mamm.2004.030
Fig. 2 - Male of Vespertilio murinus
Řehák, Z. 2010. Some faunistic data on the bats of Italy. Vespertilio 13–14: 113–119.
Acknowledgements Fieldwork was conducted under licence from the Italian Environment Ministry. We are grateful to Danilo Russo, Kamran Safi and an anonymous referee for providing constructive and insightful comments on this manuscript.
References Alberdi, A., Aihartza, J., Albero, J.C., Aizpurua, O., López-Baucells, A., Freixas, L., Puig-Montserrat, X., Flaquer, C. & Garin, I. 2012. First records of the parti-coloured bat Vespertilio murinus (Chiroptera: Vespertilionidae) in the Pyrenees. Mammalia, 76:109111. Doi: http://dx.doi.org/10.1515/MAMM.2011.106 Dietz, C., Von Helversen, O. & Nill, D. 2009. Bats of Britain, Europe and Northwest Africa. A&C Black, 400 pp. Dietz, C., Von Helversen, O. 2004. llustrated identification key to the bats of Europe. Elettronic Pubblication. Agnelli, P., Martinoli, A., Pat riarca, E., Russo, D., Scaravelli, D. & Genovesi, P. 2006. Guidelines for bat monitoring: methods for the study and conservation of bats in Italy. Quad. Cons. Natura, 19 bis, 1st Naz. Fauna Selvatica, Rome and Ozzano dell’ Emilia (Bologna), 193 pp.
14
Russo, D., Jones, G. 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology London 258: 91-103. Doi: http://dx.doi.org/10.1017/S0952836902001231 Safi, K., König, B. & Kerth, G. 2007. Sex differences in population genetics, home range size and habitat use of the parti-colored bat (Vespertilio murinus, Linnaeus 1758) in Switzerland and their consequences for conservation. Biological Conservation, 137: 28–36. Doi: http://dx.doi.org/10.1016/j.biocon.2007.01.011 Toffoli, R., Culasso, P. 2011. Vespertilio murinus (Linneo, 1758): una nuova specie per la chirotterofauna piemontese. Bollettino Museo regionale Scienze naturali Torino, 28: 191-196. Tomassini, A., Colangelo, P., Agnelli, P., Jones, G. & Russo, D. 2014. Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: a response to changing climate or urbanization? Journal of Biogeography, 41: 944–953. Doi: http://dx.doi. org/10.1111/jbi.12248 Van Toor, M.L., Jaberg, C., & Safi, K. 2011. Integrating sex-specific habitat use for conservation using habitat suitability models. Animal Conservation, 14: 512-520. Doi: http://dx.doi.org/10.1111/j.14691795.2011.00454.x
Barbastella 8(1) 2015
Primera observación de murciélago bicolor (Vespertilio murinus) en la Península Ibérica al sur de los Pirineos
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
Primera observación de murciélago bicolor (Vespertilio murinus) en la Península Ibérica al sur de los Pirineos Sylvia Ortega1 & David Merino1 ¹ TESTA SL. Pl. Madrid 3-6ºIzq 47001 Valladolid (Spain). *Autor para correspondencia: sylviaortega@testa.tv DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.01 © 2015 Published by SECEMU. English title: First record of parti-coloured bat (Vespertilio murinus) in the Iberian Peninsula, southern the Pyrenees recibido: 12-11-2014 aceptado: 28-12-2014
En la presente nota se informa del hallazgo, durante los trabajo de vigilancia ambiental en un parque eólico de la provincia de Soria, de un ejemplar hembra de murciélago bicolor (Vespertilio murinus) encontrado muerto. El hallazgo se produjo el día 26 de septiembre de 2014 en la localidad de Aguaviva de la Vega (Fig.2). Se trata de la primera hembra encontrada en la península Ibérica, lo que abre la hipótesis de un pequeño núcleo reproductor en España. El murciélago bicolor (Vespertilio murinus) presenta una amplia distribución centroeuropea. Se distribuye desde Francia, Países Bajos, Sur de Escandinavia, Europa Central, norte y este de Siberia hasta la costa del Pacífico. El límite sur de su distribución pasa a través de la península de los Balcanes, el norte de Irán, Asia Central, Afganistán, norte de Pakistán y China. En la región mediterránea esta especie se extiende desde el sureste de Francia hacia el este por el norte de Italia y los Balcanes (Hutson et al. 2008). La primera vez que se citó la especie en España fue en agosto de 2009 en los Pirineos, concretamente en la localidad de Sahún (Alberdi et al. 2009). Un año después, se capturaron tres machos dentro del programa de seguimiento ecológico del Parque Nacional de Ordesa y Monte Perdido, en Pirineos, uno en la localidad de Barbarruéns y los otros dos machos se capturaron en el valle de Pineta (Lorente et al. 2010). En 2011 se capturaron 13 machos de murciélago bicolor en las laderas sur del Parque Natural del Cadí. Estas citas se dan en un área poco extensa en comparación con la gran distribución mundial que tiene la especie, y en ambientes similares como son los macizos kársticos con abundantes cortados rocosos, masas forestales, y espacios abiertos al igual que ocurre con las otras citas del sureste de Europa (Pavlinic & Tvrtkovic 2003). Todas las citas existentes en los Pirineos parecen
Fig. 1 - Ejemplar hallado de Vespertilio murinus apuntar que se pueden tratar de poblaciones de machos que pasan el verano en estas zona, no siendo una especie tan escasa como se suponía (Alberdi et al. 2012). El ejemplar hallado el 26 de septiembre de 2014 en Aguaviva de la Vega fue identificado in situ en base a la longitud del antebrazo (45,6mm), la coloración del pelaje (Fig.1) y rasgos morfológicos como el trago y CM3 (5,8mm),
Barbastella 8(1) 2015
15
Sylvia Ortega, David Merino
Fig. 2 - Mapa de las localizaciones de la especie en la península Ibérica. ●nueva localidad ■ localidades ya conocidas antes de la presente nota siguiendo las claves de Dietz et al. (2009). El ejemplar fue hallado muerto, supuestamente debido a una turbina eólica, apareciendo con relativa frecuencia ejemplares de la misma especie muertos en parques eólicos de Alemania y en menor medida en Suecia, Grecia, Francia, República Checa y Polonia (Rydell et al. 2010). Se trata de la primera hembra localizada en la península Ibérica, ya que los ejemplares capturados anteriormente en España se trataban de machos adultos. La nueva localidad se encuentra aproximadamente a 270 km de las otras localidades pirenaicas (Alberdi et al. 2012). El hábitat dónde ha sido encontrado el ejemplar es un encinar aclarado situado en un páramo calizo a 1189 msnm, en cuya ladera sur se encuentran pequeños roquedos y cuestas yesífereas. Se abren varias hipótesis sobre el hallazgo del ejemplar en la meseta norte. En la primera de ellas se muestra la posibilidad de que se pueda tratar de un ejemplar en migración activa hacia algún sistema montañoso del centro peninsular, el cual bien podría ser el sistema Central. Está hipótesis se basa en la fecha del hallazgo, que se corresponde con la época de migración, y en que Vespertilio murinus es una de las cuatro especies de murciélagos europeos consideradas como migradores de largo recorrido. A fecha de hoy, se sabe que las colonias de hembras más próximas a la nueva localidad se encuentran en Neuchâtel (Suiza) (Blant & Jaberg 1995), a unos 980 km al NE de Aguaviva de la Vega, encontrándose esta distancia dentro del rango de desplazamientos conocidos para la especie (hasta 1780 km) (Hutterer et al. 2005). Aunque la totalidad de animales conocidos hasta ahora al SW de los Alpes son machos (Alberdi et al. 2012), un 26,6% de las recapturas de animales anillados con largos desplazamientos de migración en toda Europa son hembras (Hutterer et al. 2005). La segunda hipótesis sobre el hallazgo del ejemplar 16
sería la existencia de una población reproductora en los Pirineos o en el Sistema Ibérico, no descubierta aún. La última posibilidad para explicar el hallazgo sería la expansión lenta y gradual del área de distribución de la especie hacia el oeste, la cual complementa a ambas hipótesis anteriormente expuestas. Sería conveniente realizar prospecciones dirigidas a la búsqueda de esta especie, tanto en el sistema Ibérico como en el Central, al presentar hábitats adecuados para la especie.
Agradecimientos Agradecer a la empresa TESTA SL. por facilitar la información obtenida dentro del programa de vigilancia ambiental en parques eólicos en la provincia de Soria, en especial a los compañeros Alberto Cruz y Ángel Rubio. A todas las personas que han colaborado en la confirmación de la especie: Carles Flaquer, Fabio Flechoso, Mariano García, Christian Pascual, Andrés García, Juan Tomás Alcalde, Juan Quetglas y Toni Alcocer.
Barbastella 8(1) 2015
Primera observación de murciélago bicolor (Vespertilio murinus) en la Península Ibérica al sur de los Pirineos
Referencias Alberdi, A., Garin, I., Aizpurua, O. & Aihartza, J. 2009. Primera cita confirmada del murciélago bicolor (Vespertilio murinus L., 1859) en la Península Ibérica. Resúmenes IX Jornadas de la SECEM, Bilbao, pp: 5. Alberdi, A., Aihartza, J., Albero, JC., Aizpurua, O., López-Baucells, A., Freixas, L., Puig-Montserrat, X., Flaquer, C. & Garin, I. 2012. First records of the parti-coloured bat Vespertilio murinus (Chiroptera: Vespertilionidae) in the Pyrenees. Mammalia 76 (2012): 109–111. Doi: http://dx.doi.org/10.1515/ mamm.2011.106 Blant, J.D., & Jaberg, C. 1995. Confirmation of the reproduction of Vespertilio murinus L. Switzerland. Myotis, 32-33: 203-208 Dietz, C., Von Helversen, O. & Nill, D. 2009. Bats of Britain, Europe and Northwest Africa. A&C Black, London. pp. 400. Hutterer, R. 2005. Bat migrations in Europe: a review of banding data and literature. German Agency for Nature Conservation, Bonn, Germany. Hutson, A.M., Spitzenberger, F., Aulagnier, S., Coroiu, I., Stubbe, M., Ariunbold, J., Buuveibaatar, V., Dorjderem, S., Monkhzul, T., Otgonbaatar, M. & Tsogbadrakh, M. 2008. Vespertilio murinus. The IUCN Red List of Threatened Species. Version 2014.3. Lorente, L., Albero, J.C., Rivas, J.L. & Jato, R. 2010. Nuevas observaciones de Murciélago bicolor ( Vespertilio murinus L., 1758) en el Pirineo aragonés. Galemys 22: 53 – 54. Pavlinic, I. & Tvrtkovic, N. 2003. The presence of Eptesicus nilssonii and Vespertilio murinus in the Croatian bat fauna confirmed. Natura Croatica, 12(2): 55-62. Rydell, J., Bach, L., Dubourg-Savage, M. J., Green, M., Rodrigues, L., & Hedenström, A. 2010. Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica, 12(2): 261-274). Doi: http:// dx.doi.org/10.3161/150811010X537846
Barbastella 8(1) 2015
17
Ricardo Rocha
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
Look what the cat dragged in: Felis silvestris catus as predators of insular bats and instance of predation on the endangered Pipistrellus maderensis Ricardo Rocha1,2 ¹ Centre for Ecology, Evolution and Environmental Changes Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal). 2 Metapopulation Research Centre University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki (Finland). *Corresponding author e-mail: ricardo.nature@gmail.com DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.04 © 2015 Published by SECEMU. Spanish title: Felis silvestris catus como predador de murciélagos insulares y cita de depredación sobre el amenazado Pipistrellus madeirensis.
Abstract: This note reports the predation of a threatened Madeira pipistrelle bat by a domestic house cat. This represents the first confirmed record of cat predation upon a Macaronesian bat and adds to an increasing body of evidence suggesting that free-ranging cats pose a strong negative impact to native insular vertebrate populations. Keywords: bats, domestic cats, non-native species, Madeira pipistrelle, Macaronesia.
received: January 2nd. 2015 accepted: February 7th 2015
The impact of non-native species is one of the most influential forces underpinning the global biodiversity crisis (Nogales et al. 2013, Dirzo et al. 2014). Since the domestication of the African wildcat Felis silvestris lybica some 9500 years ago, the domestic counterpart F. s. catus (Fig. 1) has become one of the world’s most abundant and widespread pets and has established feral populations in both continental and island ecosystems (Driscoll et al. 2007). Free-ranging cats are generalist and opportunistic predators that tend to proliferate around human populated areas, with detrimental effects on a wide array of native taxa (Woods et al. 2003, Bonnaud et al. 2011, Loss et al. 2013). Their impacts are especially pervasive in insular ecosystems where they ultimately function as superpredators because most species have evolved in the absence of mammal predation (Blackburn et al. 2004). At least 175 insular vertebrate species have been driven to extinction or are threatened as a result of the introduction of this species (Medina et al. 2011). As such, F. s. catus has been included in the 100 worst invasive species list (Lowe et al., 2000) and is considered one of the top 100 terrestrial invasive flora and fauna species of conservation concern in the Macaronesia bioregion (Silva et al. 2008). 18
Fig. 1 – Free-roaming domestic cat Felis silvestris catus, Funchal, Madeira. Mammals are frequently preyed by cats (Woods et al. 2003), though in insular populations this mostly reflects predation upon non-native rodents and lagomorphs (Nogales & Medina 2009, Millan 2010, Bonnaud et al. 2011). Bats are
Barbastella 8(1) 2015
Look what the cat dragged in: Felis silvestris catus as predators of insular bats and instance of predation on the endangered Pipistrellus maderensis
represent an isolated capture of a debilitated bat from the ground but indeed corresponds to predation upon a healthy individual. Individual cats can specialize on particular types of prey (Churcher et al. 1989), including bats (Scrimgeour et al. 2012, Ancilloto et al. 2013). They can thus be potentially very dangerous for the persistence of entire colonies (particularly nursery roosts); the fact that the cat reported in this note already preyed upon other bats is alarming, particularly for a species with small populations.
Fig. 2 – Adult Madeira pipistrelle Pipistrellus maderensis, Porto Moniz, Madeira. common in human-made structures and co-occur with cats in many island ecosystems worldwide; however, reports of cat predation on insular bats are scarce (Bonnaud et al. 2011 but see Rodríguez-Durán et al. 2010 and Scrimgeour et al. 2012). The Madeira pipistrelle Pipistrellus maderensis (Fig. 2) is a small vesper bat known to occur in the Macaronesian archipelagos of Madeira and Canary (Jesus et al. 2013) and possibly on some Azorean islands (Rainho et al. 2002). Due to its reduced area of occurrence and presumed decreasing population size, this is one of the most threatened European bat species, thus being currently classified as endangered according to the IUCN Global Red List (Juste et al. 2008) and critically endangered according to the Portuguese Red Book of Vertebrates (Queiroz et al. 2005). Predation by non-native mammals, including cats, has been suggested as a possible threat to P. maderensis (Jesus et al. 2009), however, until now this has not been confirmed. The present note therefore provides evidence of the suspected predation of P. maderensis by introduced cats, reporting an instance of domestic cat predation on an adult bat in Madeira Island, Portugal. On 21st December 2014 a female adult domestic cat brought home a recently killed adult Madeira pipistrelle (forearm = 33 mm; tibia = 12.5 mm). The bat presented a ventral wound under the right arm and a single perforation to the right wing. The house was located in an urban area (32.6565, -16.9079) in Madeira’s capital, Funchal, and the domestic cat was well-fed, wore no bell and had unrestricted access to outdoors. After identification the retrieved bat was deposited at the Funchal Natural History Museum (MMF 44313). Prior to this incident, the same cat had brought home two other bats over the period of less than one year. However, the cat’s owner discarded both individuals and the specimens’ identity could not be confirmed. The type of injuries and the fact that the cat had already brought home other bats suggests that the instance here reported does not
Domestic cat predation was found to represent a significant threat to bats in the Italian peninsula, where most adult bat admissions to wildlife rescue centres were associated with cat-related injuries (Ancillotto et al. 2013). Furthermore, from a total of 9852 mammal prey items brought home by 986 cats in Great Britain over a 5 month period, 0.2% belonged to chiropteran species (Woods et al. 2003). Freeranging cats were estimated to kill between 6.9–20.7 billion mammals in the United States, surpassing all other sources of human-induced mortality (Loss et al. 2013). However, this study reported no breakdown of the mammalian prey species, therefore, the true impact of domestic cats in the US on bat populations is still unknown. Despite the paucity of studies investigating the relationship between cats and bats in insular ecosystems, several insular chiropteran species have been identified as targets of free-roaming cats. In Puerto Rico, cats were found to systematically visit caves harbouring multispecies bat assemblages and scat analyses revealed that at least 5 bat species were regularly consumed by free-ranging felines (Rodríguez-Durán et al. 2010). In this study, and during a period of 8 months, researchers recovered 320 bat wings representing at least 161 individual bats and observed up to 16 cats hunting in the same cave in a single night. In New Zealand a single male cat preyed on at least 102 IUCN vulnerable short-tailed bats Mystacina tuberculata rhyocobia in two colonial roost trees over a 7 day period (Scrimgeour et al. 2012). On Christmas Island, cats were reported to prey on black-eared flying foxes Pteropus melanotus (Bonnaud et al. 2011) and have been suggested to have contributed to the population decline of the presumed extinct Christmas Island Pipistrelle Pipistrellus murrayi (Schulz & Lumsden 2004, Martin et al. 2012). Free-roaming cat demographic management combined with initiatives aimed at altering human behaviours that augment the impacts of domestic cats on wildlife populations (e.g. allowing outdoor access or unwanted pet abandonment) would undoubtedly lessen the consequences of cat predation upon native taxa (Miller et al. 2014). Collar-mounted warning devices were suggested to reduce mortality of wildlife by domestic cats (Nelson et al. 2005), though their effectiveness in reducing cat predation upon bats is still to be verified. Further investigation on the magnitude of predation by domestic cats upon insular bats is clearly warranted, and detailed reports of cat kills such as the one here presented are essential for a better understanding of this major but neglected cause of bat mortality.
Barbastella 8(1) 2015
19
Ricardo Rocha
Acknowledgments I am extremely grateful to Sasha Vasconcelos for yet another English revision and to José Jesus for providing the photo of a live specimen of Pipistrellus maderensis. I also thank the Portuguese Foundation for Science and Technology for financial support (PhD grant SFRH/BD/80488/2011).
References Ancillotto, L., Serangeli, M. T. & Russo, D. 2013. Curiosity killed the bat: Domestic cats as bat predators. Mammalian Biology 78 (5): 369-373. Doi: http://dx.doi.org/10.1016/j.mambio.2013.01.003 Bonnaud, E., Medina, F. M., Vidal, E., Nogales, M., Tershy, B., Zavaleta, E., Donlan, C. J., Keitt, B., Le Corre, M. & Horwath, S. V. 2011. The diet of feral cats on islands: a review and a call for more studies. Biological Invasions 13 (3): 581-603. Doi: http:// dx.doi.org/10.1007/s10530-010-9851-3 Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L., & Gaston, K. J. 2004. Avian extinction and mammalian introductions on oceanic islands. Science 305(5692): 1955-1958. Doi: http://dx.doi. org/10.1126/science.110161 Churcher, P. B. & Lawton, J. H. 1989. Beware of well-fed felines. Natural History 98:40–47. Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B. & Collen, B. 2014. Defaunation in the Anthropocene. Science 345 (6195): 401-406. Doi: http://dx.doi.org/10.1126/science.1251817 Driscoll, C. A., Menotti-Raymond, M., Roca, A. L., Hupe, K., Johnson, W. E., Geffen, E., Harley, E. H., Delibes, M., Pontier, D., Kitchener, A. C., Yamaguchi, N., O’Brien, S. J. & Macdonald, D. W. 2007. The Near Eastern Origin of Cat Domestication. Science 317 (5837): 519-523. Doi: http://dx.doi. org/10.1126/science.1139518 Jesus, J., Teixeira, S., Teixeira, D., Freitas, T. & Russo, D. 2009. Vertebrados terrestres autóctones dos arquipélagos da Madeira e Selvagens. Direcção Regional de Ambiente, Funchal, Portugal. Jesus, J., Teixeira, S., Freitas, T., Teixeira, D. & Brehm, A. 2013. Genetic identity of Pipistrellus maderensis from the Madeira archipelago: a first assessment, and implications for conservation. Hystrix 24(2): 177-180. Doi: http://dx.doi.org/10.4404/hystrix-24.2-8736 Loss, S. R., Will, T. & Marra, P. P. 2013. The impact of freeranging domestic cats on wildlife of the United States. Nature Communications 4(1): 1396. Doi: http:// dx.doi.org/10.1038/ncomms2380 Juste, J., Palmeirim, J. M. & Alcaldé, J. T. 2008. Pipistrellus maderensis. The IUCN Red List of Threatened Species. Version 2014.3. <www.iucnredlist.org>. Downloaded on 28 December 2014. 20
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 2000. 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group Species Survival Commission, World Conservation Union (IUCN), Auckland, New Zealand. Martin, T. G., Nally, S., Burbidge, A. A., Arnall, S., Garnett, S. T., Hayward, M. W., Lumsden, L. F., Menkhorst, P., McDonald-Madden, E. & Possingham, H. P. 2012. Acting fast helps avoid extinction. Conservation Letters 5 (4): 274-280. Doi: http://dx.doi.org/10.1111/j.1755-263X.2012.00239.x Medina, F. M., Bonnaud, E., Vidal, E., Tershy, B. R., Zavaleta, E. S., Josh Donlan, C., Keitt, B. S., Le Corre, M., Horwath, S. V. & Nogales, M. 2011. A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology 17 (11): 3503-3510. Doi: http://dx.doi.org/10.1111/ j.1365-2486.2011.02464.x Millan, J. 2010. Feeding habits of feral cats Felis silvestris catus in the countryside of Majorca Island, Spain. Wildlife Biology in Practice 6(1): 32-38. Doi: http:// dx.doi.org/10.2461/wbp.2010.6.3 Miller, P. S., Boone, J. D., Briggs, J. R., Lawler, D. F., Levy, J. K., Nutter, F. B., Slater, M. & Zawistowski, S. 2014. Simulating free-roaming cat population management options in open demographic environments. PLoS ONE 9: e113553. Doi: http:// dx.doi.org/10.1371/journal.pone.0113553 Nelson, S. H., Evans, A. D. & Bradbury, R. B. 2005. The efficacy of collar-mounted devices in reducing the rate of predation of wildlife by domestic cats. Applied Animal Behaviour Science 94(3): 273-285. Doi: http:// dx.doi.org/10.1016/j.applanim.2005.04.003 Nogales, M. & Medina, F. M. 2009. Trophic ecology of feral cats (Felis silvestris f. catus) in the main environments of an oceanic archipelago (Canary Islands): An updated approach. Mammalian Biology 78(3): 169-181. Doi: http://dx.doi.org/10.1016/j. mambio.2008.10.002 Nogales, M., Vidal, E., Medina, F. M., Bonnaud, E., Tershy, B. R., Campbell, K. J., & Zavaleta, E. S. 2013. Feral cats and biodiversity conservation: the urgent prioritization of island management. BioScience 63(10): 804-810. Doi: http://dx.doi. org/10.1525/bio.2013.63.10.7 Queiroz A., Alves P., Barroso I., Beja P., Fernandes M., Freitas L., Mathias M., Mira A., Palmeirim J. M., Prieto R., Rainho A., Rodrigues L., Santos-Reis M., Sequeira M. 2005. Pipistrellus maderensis. In: Cabral M., Almeida J., Almeida P., Dellinger T., Ferrand de Almeida N., Oliveira M., Palmeirim J., Queiroz A., Rogado, L., Santos-Reis M. (Eds.). Livro vermelho dos vertebrados de Portugal. Instituto da Conservação da Natureza, Lisboa. 457–458.
Barbastella 8(1) 2015
Look what the cat dragged in: Felis silvestris catus as predators of insular bats and instance of predation on the endangered Pipistrellus maderensis
Rainho, A., Marques, J. T. & Palmeirim, J. M. 2002. Os morcegos dos arquipélagos dos Açores e da Madeira: um contributo para a sua conservação. Instituto da Conservação da Natureza, Lisboa. Rodríguez-Durán, A., Pérez, J., Montalbán, M. A. & Sandoval, J. M. 2010. Predation by freeroaming cats on an insular population of bats. Acta Chiropterologica 12(2): 359-362. Doi: http://dx.doi. org/10.3161/150811010X537945 Schulz, M. & Lumsden, L. F. 2004. National recovery plan for the Christmas Island Pipistrelle Pipistrellus murrayi. Department of the Environment and Heritage.
Scrimgeour, J., Beath, A. & Swanney, M. 2012. Cat predation of short-tailed bats (Mystacina tuberculata rhyocobia) in Rangataua Forest, Mount Ruapehu, Central North Island, New Zealand. New Zealand Journal of Zoology 39(3): 257-260. Doi: http://dx.doi. org/10.1080/03014223.2011.649770 Silva, L., Ojeda Land, E., Rodríguez Luengo, J. (eds.) 2008. Invasive terrestrial flora and fauna of Macaronesia. Top 100 in Azores, Madeira and Canaries. ARENA, Ponta Delgada, 546 pp. Woods, M., McDonald, R. A. & Harris, S. 2003. Predation of wildlife by domestic cats Felis catus in Great Britain. Mammal Review 33(2): 174-188. Doi: http:// dx.doi.org/10.1046/j.1365-2907.2003.00017.x
Barbastella 8(1) 2015
21
Hélia Marisa Vale-Gonçalves, Paulo Barros, Luís Braz, João Alexandre Cabral
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
The contribution of the Barn owl (Tyto alba) feeding ecology to confirm bat species occurrence in north Portugal Hélia Marisa Vale-Gonçalves1, Paulo Barros1, Luís Braz1 & João Alexandre Cabral1 1
Laboratory of Applied Ecology Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB) University of Trás-os-Montes and Alto Douro (UTAD), Vila Real (Portugal).
*Corresponding author e-mail: helia@utad.pt DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.05 © 2015 Published by SECEMU. Spanish title: Contribución de la ecología alimentaria de la lechuza común (Tyto alba) para confirmar la presencia de especies de quirópteros en el norte de Portugal
Abstract: The Barn owl (Tyto alba) is an opportunistic species which feeds mainly on small mammals but also on birds, bats, reptiles, amphibians, insects and fishes. With regard to bats, several studies in Europe suggest that this group constitutes a small portion of the Barn owl diet representing less than 1% of its prey items. Through the analysis of 2,934 Barn owl pellets, collected between 2006 and 2014 in 27 sites/nests located in north Portugal, the remains of six bats belonging to five species were identified in a total of 9,103 prey items identified: the Western barbastelle (Barbastella barbastellus), the Grey long-eared bat (Plecotus austriacus), the Brown long-eared bat (Plecotus auritus), the European free-tailed bat (Tadarida teniotis) and the Common pipistrelle (Pipistrellus pipistrellus). These findings are of great interest as they represent new data on the Brown longeared bat and European free-tailed bat distributions, and allow to confirm an historical record of the Western barbastelle in the region. Keywords: Bats distribution, Feeding ecology, Portugal, Pellets, Tyto alba.
The Barn owl (Tyto alba), a cosmopolitan nocturnal bird, is an opportunistic species which feeds mainly on small mammals (Taylor 1994, Meek et al. 2012). However, depending on prey’s availability, birds, bats, reptiles, amphibians, insects and fishes represent alternative preys (Mikkola 1983, Taylor 1994, Sommer et al. 2005, Roulin & Dubey 2012, 2013, Roulin & Christe 2013, Roulin, 2015). Since the information from Barn owl pellets provides consistent information on the proportion and availability of prey through the species feeding territories (Taylor 1994), the analysis of the respective prey items is an extremely valuable indirect method to document their diversity, geographical distribution and population ecology (Colvin & McLean 1986, Love et al. 2000, Torre et al. 2004, Avenant 2005). Although some species of mammals, birds (including raptors), reptiles, amphibians and fishes are potential predators of bats, only few of them are specialized on this prey group (Gillette & Kimbrough 1970, Sparks et al. 2000). Nevertheless, some studies reported that bats might represent between 27% and 51% of the prey items in the diet of some 22
received: February 20th 2015 accepted: April 7th 2015
specialized raptors (Vargas et al. 2002, Sommer et al. 2009), particularly in favourable contexts, such as in the case of Tawny owl (Strix aluco) (Obuch 1998) and the Common kestrel (Falco tinnunculus) (Negro et al. 1992). These are, for instance, contexts where these raptors hunt bats as main prey in habitats associated with urban areas, mostly captured when emerging from roosts at dusk (Lesiński et al. 2009, Lima & Keefe 2013). Conversely, the studies based on the feeding ecology of Barn owl in Europe suggest an opportunistic behaviour where bats constitute, on average, less than 1% of the prey items (Mikkola 1983, Obuch 1998, Avenant 2005, Sommer et al. 2005, Roulin & Christe 2013, Bekker et al. 2014). This study documents several bat species from Barn owl pellets collected in the north region of Portugal. The main goal is to update the knowledge about the distribution/occurrence of some of these species in this region. Potential Barn owl nest and roost sites were searched in the north-eastern districts of Vila Real, Bragança, Viseu and Guarda, in order to detect indirect evidences of the species occupation and to
Barbastella 8(1) 2015
The contribution of the Barn Owl (Tyto alba) feeding ecology to confirm bat species occurrence in north Portugal
Table 1. Dental formulas and main distinctive characteristics of each bat genus identified in the Barn owl pellets collected from north of Portugal (Palmeirim, 1985; Paz & Benzal, 1990; Jenrich et al., 2012).
Dental formulas (In.Cn.PMn.Mn/In.Cn.PMn.Mn)
Main distinctive characteristics
Barbastella
2.1.2.3/3.1.2.3
Depressed short rostrum. Upper C1 with elongate section and flat inner surface with a sharply defined cingulum.
Plecotus
2.1.2.3/3.1.3.3
Maximal diameter of tympanic bulla twice as large as the distance between them.
Tadarida
1.1.2.3/3.1.2.3
Single pair of upper incisors. The skull is depressed and its dorsal profile straight and almost horizontal.
Pipistrellus
2.1.2.3/3.1.2.3
Gap between PM2 and C1. Nyctalodont molars.
Genus
Fig. 1 - Bat skull remains identified in Barn owl pellets collected from north of Portugal: a - Upper canine of the Western barbastelle (Barbastella barbastellus) with elongate section and flat inner surface with a sharply defined cingulum; b - lower mandible of the Grey long-eared bat (Plecotus austriacus) with a salience on the processus angularis in the posterior part; c - a depressed and the dorsal profile of the European free-tailed bat (Tadarida teniotis) is straight and almost horizontal. The arrows indicate the respective distinctive morphological details.
confirm their potential as sampling points (Vale-Gonçalves & Cabral 2014). Bat species were assessed by the analysis of Barn owl pellets collected between 2006 and 2014, following the methodological protocol described in Vale-Gonçalves & Cabral (2014). Genera were identified through the dental formula and some other general distinctive characteristics (Table 1) (Palmeirim 1985, Paz & Benzal 1990), whereas the species confirmation was carried out as described in Jenrich et al. (2012), particularly to Plecotus and Pipistrellus. Among a total of 9,103 prey items identified, from the analysis of 2,934 Barn owl pellets collected in 27 sites/nests, six belong to five bat species (n=6; 0.07%): the Western barbastelle (Barbastella barbastellus, n=1; 0.01%; Fig. 1a), the Grey long-eared bat (Plecotus austriacus, n=2; 0.02%; Fig. 1b), the Brown long-eared bat (Plecotus auritus, n=1; 0.01%), the European free-tailed bat (Tadarida teniotis, n=1; 0.01%; Fig. 1c) and the Common pipistrelle (Pipistrellus pipistrellus, n=1; 0.01%). Species of the genus Plecotus were distinguished by the differences in the shape of the processus angularis in the posterior part of the mandibles (Fig. 1b) (Jenrich et al. 2012). Regarding the species of the
genus Pipistrellus, the identification was determined by comparisons of the size between the I1 and I2, and the shape of the processus angularis of the mandible (Table 1) (Jenrich et al. 2012). When projected on a 10x10km UTM grid (datum WGS84), the localization of the pellets with bat remains allowed us to trace unknown occurrence areas for two species, namely the Brown long-eared bat and the European free-tailed bat, as well to confirm an historical record of the Western barbastelle (Fig. 2) (Rainho et al. 2013). The spatial localization of the pellets with these bat remains was displayed in a GIS environment (ArcMap 10.0ÂŽ). The Western barbastelle is a forest-dwelling bat, the occurrence of which is strongly associated to the presence of old-grow deciduous forests (Russo et al. 2010; Barros & Braz 2013). In Portugal this species exhibits a fragmented distribution with higher abundances in the north and centre of the country (Rainho et al. 2013). With regard to the foraging habitat selection, this species is quite flexible, hunting in a range of habitats, including clearings, riverbanks, meadows and forests.
Barbastella 8(1) 2015
23
Hélia Marisa Vale-Gonçalves, Paulo Barros, Luís Braz, João Alexandre Cabral
Fig. 2 - Localization of the bat species identified in the Barn owl pellets from north Portugal in a 10x10km UTM grid cells (Datum WGS84). The Grey long-eared bat is primarily an open or edge habitat forager relatively common and well distributed throughout Portugal (Rainho et al. 2013). Its roosts are often located at the edge of villages, surrounded by open grasslands, well developed hedgerows and woodland patches. During summer this species seems to prefer available shelters in manmade roosts, mainly in the roof space of buildings, churches and barns, and in winter it can hibernate in underground galleries, mines and caves. There are few records of the Brown long-eared bat in Portugal, which appears to be more abundant in the north, with a very fragmented distribution (Rainho et al. 2013). As an arboreal species, associated with the presence of forested areas, its roosts are usually cavities or cracks in trees, but also buildings (attics and caves, on churches and abandoned houses), usually located close to the feeding areas. During hibernation this species can be found in underground roosts (caves and mines). It is clearly a species more generalist than the congener Grey long-eared bat. The European free-tailed bat is a medium-large crevicedweller, with a wide distribution in most of the mainland territory, although more abundant in the north (Rainho et al. 2013). It feeds in a wide variety of habitats, mostly above forests and olive grove areas, but it can also hunt over water bodies, urban and cultivated areas, with a home range from the roosts vicinity to more than 30 km away, between 10 and 300 meters above the ground. The Common pipistrelle is a crevice-dweller bat actually considered the most generalist of the bat species with a widespread distribution and higher abundances in Portugal (Rainho et al. 2013). It can forage in a variety of habitats, such as agricultural areas, deciduous and evergreen forests, coniferous forests, urban and peri-urban areas and riparian galleries. 24
Three of these five bat species usually occur in artificial roosts, such as human houses. The Brown long-eared bat and the Western barbastelle are almost exclusively associated with woodlands, although they can also roost sporadically in bridges and buildings (Ruprecht 1979, Uhrin et al. 2010, Rainho et al. 2013). Although the Barn owls are not specialized on hunting bats (Petrželková et al. 2004), several explanations have been proposed to clarify this unusual prey selection, suggesting a certain opportunism, namely when bats arrive at their hibernation sites and are caught during the exploratory flights (Sommer et al. 2009), or at the roosts’ entrance during the periods of emergence and return (Petrželková et al. 2004, Lesiński et al. 2012, Lima & Keefe 2013), or when both predator and prey shared a common roost (Lesiński et al. 2012). Our results confirm that bats are not a preferential prey of the Barn owl in northern Portugal. However, although the number of items found in Barn owl pellets is residual, the data collected for bats may represent very important contributions, particularly for rare species, such as Western barbastelle, or species classified with the conservationist status of “data deficiency”, as in the case of Western barbastelle, Brown long-eared bat and European free-tailed bat (Cabral et al. 2005). This is of particular relevance, since even in the most recent Atlas of bats in Portugal (Rainho et al. 2013) the data on the distribution of some species remain very scarce and incomplete, especially for species like the Western barbastelle, which is confirmed only in about 10% of the total of 1,008 10X10km grid cells. Additionally, for bat species that are difficult or impossible to distinguish by acoustic methods, such as Brown long-eared bat, less than 2% of the referred grids were confirmed. Therefore, the new records for the Western barbastelle, the Brown long-eared bat and the European free-tailed bat represent an important update of the respective distribution data in the study area.
Barbastella 8(1) 2015
The contribution of the Barn Owl (Tyto alba) feeding ecology to confirm bat species occurrence in north Portugal
Acknowledgments This study was supported by funding from several ecological monitoring projects of the Laboratory of Applied Ecology (University of Trás-os-Montes and Alto Douro, UTAD), including the grant BGCT/LEA/402/UTAD/2014 (Hélia Marisa Vale-Gonçalves), and by Portuguese Foundation for Science and Technology (FCT) through the project PEst-OE/AGR/UI4033/2014. A special thank is addressed to Sara Ramos and Octávia Veloso for helping in the analysis of some barn owl pellets.
References Avenant, N. L. 2005. Barn owls pellets: a useful tool for monitoring small mammal communities? Belgian journal of zoology, 135: 39-43. Barros, P. & Braz, L. 2013 Barbastella barbastellus (schreber, 1774) in mine from North Portugal, a case of “swarming”? barbastella, 6: 13-22. Doi: http:// dx.doi.org/10.14709/BarbJ.5.1.2012.01 Bekker, D., Janssen, R. & Buys J. 2014. First records of predation of grey-long-eared bats (Plecotus austriacus) by the barn owl (Tyto alba) in the Netherlands. Lutra, 57: 43-47. Cabral, M., Almeida, J., Almeida, P., Delinger, T., Ferrand Almeida, N., Oliveira, M., Palmeirim, J., Queiroz,A., Rogado, L. & Santos-Reis M. 2005. Livro vermelho de vertebrados de Portugal. Instituto da Conservação da Natureza, Lisboa, Portugal.
Love, R. A., Webbon C., Glue D. E. & Harris S. 2000. Changes in the food of British Barn owls (Tyto alba) between 1974 and 1997. Mammal Review, 30: 107129. Meek, W. R., Burman P. J., Sparks T. H., Nowakowski M. & Burman N. J. 2012. The use of Barn Owl Tyto alba pellets to assess population change in small mammals. Bird Study, 59: 166-174. Doi: http://dx.doi. org/10.1046/j.1365-2907.2000.00060.x Mikkola, H. 1983. Owls of Europe (eds.), Calton. Negro, J. J., Ibánez C., Pérezjordá J. L. & Delarivo M. J. 1992. Winter predation by Common kestrel Falco tinnunculus on pipistrelle bats Pipistrellus pipistrellus in Southern Spain. Bird Study, 39: 195-199. Doi: http://dx.doi.org/10.1080/00063659209477118 Obuch, J., 1998. The representation of bats (Chiroptera) in the diet of the owls (Strigiformes) in Slovakia. Vespertilio, 3: 65-75. Palmeirim, J.M. 1985. Bats from Portugal: Zoogeography and systematics. Tese de Mestrado, University of Kansas. 53pp. Doi: http://dx.doi.org/10.5962/bhl. title.4060 Paz, O. & Benzal, J. 1990. Clave para la identificación de los murciélagos de la Península Ibérica. Miscelánea Zoológica, 13: 153-176.
Colvin, B. A. & Mclean, E. B. 1986. Food habits and prey specificity of the Common Barn owl in Ohio. The Ohio Journal of Science, 86: 76-80.
PetržElková, K. J., Obuch J. & Zuka. J. 2004. Does the barn owl (Tyto alba) selectively predate individual great mouse-eared bats (Myotis myotis)? Lynx, 35: 123-132. Rainho, A., Alves P., Amorim F. Et Al. 2013. Atlas dos morcegos de Portugal Continental. Instituto da Conservação da Natureza e das Florestas. 76pp.
Gillette, D. D. & Kimbrough, J. D. 1970. Chiropteran mortality. In About Bats (eds B. H. Slaughter and D. W. Walton), pp. 262–281. Dallas Southern Methodist University Press, Dallas.
Roulin, A. & Christe P. 2013. Geographic and temporal variation in the consumption of bats by European Barn Owls. Bird Study, 60: 561-569. Doi: http:// dx.doi.org/10.1080/00063657.2013.847051
Jenrich, J., Löhr, P. W., Müller F. & Vierhaus, H. 2012. Fledermäuse: Bildbestimmungsschlüssel anhand von Schädelmerkmalen. Imhof Verlag.
Roulin, A. & Dubey S. 2012. The occurrence of reptiles in Barn Owl diet in Europe. Bird Study, 59: 504-508.
Lesiński G., Kasprzyk K. & Gryz J. 2012. Bats taken by the Tawny owl in relation to its roosting site. NorthWestern Journal of Zoology, 8: 247-251. Lesiński, G., Gryz, J. & Kowalski, M. 2009. Bat predation by tawny owls Strix aluco in differently human-transformed habitats. Italian Journal of Zoology, 76: 415-421. Doi: http://dx.doi. org/10.1080/11250000802589535 Lima, L. S & Keefe, J. M. 2013. Do predators influence the behaviour of bats? Biological Reviews, 88: 626-644. Doi: http://dx.doi.org/10.1111/brv.12021
Roulin, A. & Dubey S. 2013. Amphibians in the diet of European Barn Owls. Bird Study, 60: 264-269. Doi: http://dx.doi.org/10.1080/00063657.2013.767307 Roulin, A. 2015. Spatial variation in the decline of European birds as shown by the Barn owl Tyto alba diet. Bird Study, Doi: http://dx.doi.org/10.1080/00063657.2015 .1012043. Ruprecht, A. L. 1979. Bats (Chiroptera) as constituents of the food of barn owls Tyto alba in Poland. Ibis, 121: 489-494. Doi: http://dx.doi.org/10.1111/j.1474919X.1979.tb06690.x
Barbastella 8(1) 2015
25
Hélia Marisa Vale-Gonçalves, Paulo Barros, Luís Braz, João Alexandre Cabral
Russo, D., Cistrone, L., Garonna, A. P. & Jones, G. 2010. Reconsidering the importance of harvested forests for the conservation of tree-dwelling bats. Biodiversity and Conservation, 19: 2501-2515. Doi: http://dx.doi. org/10.1007/s10531-010-9856-3 Sommer, R., Niederle, M., Labes, R. & Zoller, H. 2009. Bat predation by the barn owl Tyto alba in a hibernation site of bats. Folia Zoologica, 58: 98-103. Sommer, R., Zoller, H., Kock, D., Böhme, W. & Griesau, A. 2005. Feeding of the barn owl, Tyto alba with first record of the European free-tailed bat, Tadarida teniotis on the island of Ibiza (Spain, Balearics). Folia Zoologica, 54: 364-370. Sparks, D. W., Roberts, K. J. & Jones, C. 2000. Vertebrate predators on bats in North America north of Mexico. In Reflections of a Naturalist: Papers Honoring Professor Eugene D. Fleharty, Fort Hays Studies Special Issue 1 (ed. J. R. Choate), pp. 229–241. Fort Hays State University, Hays, Kansas.
26
Taylor, I. 1994. Barn Owls: Predator-prey relationships and conservation (eds.). Cambridge. Torre, I., Arrizabalaga A. & Flaquer C. 2004. Three methods for assessing richness and composition of small mammal communities. Journal of Mammalogy, 85: 524-530. Uhrin, M., Benda, P., Obuch, J. & Urban, M. 2010. Changes in abundance of hibernating bats in central Slovakia (1992-2009). Biologia, 65: 349-361. Doi: http://dx.doi.org/10.2478/s11756-010-0020-z Vale-Gonçalves, H. M. & Cabral J. A. 2014. New records on the distribution of three rodent species in NE Portugal from barn owl (Tyto alba) diet analysis. Galemys, 26: 100-104. Doi: http://dx.doi.org/10.7325/ Galemys.2014.N3 Vargas, J., Landaeta C. & Simonetti J. A. 2002: Bats as prey of Barn Owls (Tyto alba) in a tropical savanna in Bolivia. Journal of Raptor Research, 36: 146-148.
Barbastella 8(1) 2015
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy)
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy) Leonardo Salari1 & Letizia Silvestri2 Dipartimento Scienze della Terra, “Sapienza” Università di Roma, Viale Aldo Moro, 5 I-00185 Roma (Italy). 2 Department of Archaeology, Durham University. South Road, DH1 3LE Durham (United Kingdom). 1
*Corresponding author e-mail: leonardosalari@virgilio.it DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.06 © 2015 Published by SECEMU. Spanish title: Murciélagos (Mammalia, Chiroptera) del Holoceno de cinco cuevas de los Apeninos Centrales (Italia)
Abstract: Sixteen taxa divided into three families (Rhinolophidae, Vespertilionidae and Miniopteridae) and seven genera (Rhinolophus, Myotis, Nyctalus, Plecotus, Barbastella, Miniopterus and Hypsugo vel Pipistrellus) have been recorded among the microvertebrate remains from five caves of the Central Apennines (Italy). Archaeological excavations were carried out in the caves Grotta Bella in Umbria, Grotta Continenza in Abruzzi, Grotta Mora Cavorso, Grotta Regina Margherita and Grotta di Pastena in Latium, over the last decades. The chronology of the sites spans from the early to middle Holocene (Mesolithic to the Bronze Age). Taphonomic observations suggest that the majority of the bat assemblages examined are autochthonous thanatocoenoses. The microclimate of the caves and the surrounding paleoenvironments can be reconstructed on the basis of ecological attributes of these taxa. The relative abundance of bat remains in the cave sediments testifies to the absence or the sporadic presence of humans in these sites during the corresponding time spans. The occurrence of Rhinolophus mehelyi in Central Italy during the early and middle Holocene adds new information on the geographical distribution of this species in the past. Keywords: Chiroptera, Holocene, Italy, ecology, microclimate, biogeography, human activities. Resumen: En cinco cuevas de los Apeninos Centrales (Italia) han sido encontrados, entre los restos de microvertebrados, dieciséis taxones agrupados en 3 familias (Rhinolophidae, Vespertilionidae y Miniopteridae) y 7 géneros (Rhinolophus, Myotis, Nyctalus, Plecotus, Barbastella, Miniopterus y Hypsugo vel Pipistrellus). En estas cuevas (Grotta Bella en Umbría, Grotta Continenza en Abruzos, Grotta Mora Cavorso, Grotta Regina Margherita y Grotta di Pastena en Lazio) se llevaron a cabo excavaciones arqueológicas en las últimas décadas. Los yacimientos se extendien desde el Holoceno antiguo y medio (Mesolítico hasta la Edad del Bronce ). Las observaciones tafonómicas sugieren que la mayoría de las comunidades de murciélagos analizadas son tanatocenosis autóctonas. Considerando las características ecológicas de estos taxones es posible reconstruir el microclima de las cuevas y el ambiente que constituye el entorno de los yacimientos. La abundancia relativa de los restos de murciélago hallados en el sedimento de las cuevas evidencia la ausencia o la esporádica presencia humana en estos sitios en los correspondientes intervalos de tiempo. La presencia de Rhinolophus mehelyi en Italia central durante el Holoceno antiguo y medio proporciona nueva información sobre la distribución geográfica de esta especie en el pasado. Palabras clave: Chiroptera, Holoceno, Italia, ecología, microclima, biogeografía, actividades humanas.
Barbastella 8(1) 2015
received: March 16th 2015 accepted: May 13rd 2015
27
Leonardo Salari, Letizia Silvestri
Introduction European Chiroptera are flying insectivorous animals that react rapidly to climatic and environmental changes (Kowalski 1995, Rebello et al. 2010, Lanza 2012). Therefore, they are very useful for paleoecological reconstructions, and they are also good indicators for reconstruction of hypogean microclimates. Their abundance in the cave sediments testifies to the absence or the sporadic presence of prehistoric humans in these sites during the same time spans (Guillem Calatayud 1997, Rossina, 2006, Rossina et al. 2006, Salari & Kotsakis 2011, López-García & Sevilla 2012). On the other hand, they do not provide significant biochronological indications, and probably for this reason few people are interested in their systematic study (Salari & Kotsakis 2011), particularly for the more recent past, the Holocene. This paper aims to explore the environmental, microclimate and biogeographic information provided by the bat remains recovered from five caves of Central Italy (Fig. 1), as well as their interactions with humans. The caves are: Grotta Bella in Umbria, Grotta Continenza in Abruzzi, Grotta Mora Cavorso, Grotta Regina Margherita and Grotta di Pastena in Latium. The archaeological investigations carried out over the last decades allowed to recover lithic, bone and pottery finds referred to a time interval spanning the early and middle Holocene (between the Mesolithic and the Middle Bronze Age), from Preboreal to Subboreal chronozones (Mangerud et al. 1974, Orombelli & Ravazzi 1996). Stratigraphic sequences of these caves also include Upper Palaeolithic and/or historical layers that are not considered in this work.
Stratigraphic notes Grotta Bella The cave is located on the slopes of Mount Aiola, in the Amerini Mountains, at 530 m a.s.l., about 2 km from Santa Restituta in Avigliano Umbro (Terni, Umbria). The cave consists of a vast, almost semi-circular chamber (about 25 x 30 m) with a floor sloping towards the bottom with a gradient of about 32%. The analysed material was recovered during archaeological excavations carried out by the “Soprintendenza per i Beni Archeologici dell’Umbria” in collaboration with the Palaethnology Institute of the University of Milan between 1970 and 1973. The excavations have shown evidence of human presence from the Neolithic to the Roman age. After a preliminary survey, three trenches (I, II and III) were opened; of these, the third (III) has revealed the best preserved stratigraphy. Below a remarkably thick layer of approximately 3 m (which contained archaeological and faunal finds related to the Imperial and Republican Age, the Iron Age and the Bronze Age), Neolithic levels were recognised, sealed by a thin soil layer concretioned and reddened by fire. The Neolithic levels are characterized by a first layer (about 1.65 m thick) of compact soil reddened by fire, followed by a crumbly gray soil with abundant sharpedged debris, large charcoal fragments and trichromatic painted pottery; finally, a dark layer (about 1.25 m thick) with charcoal fragments, increasingly abundant stones and linear pottery was identified (Guerreschi et al. 1992, Curci et al. 2010, 2014). 28
In the Stratigraphic Units (SSUU; Harris 1979) referred to the Neolithic and the Bronze Age, remains of Erinaceus europaeus, Lepus europaeus, Glis glis, Eliomys quercinus, Arvicola amphibius, Microtus (Terricola) savii, Clethrionomys glareolus, Apodemus sylvaticus vel flavicollis, Vulpes vulpes, Ursus arctos, Martes martes, Meles meles, Felis silvestris, Lynx linx, Cervus elaphus, Capreolus capreolus, Sus scrofa, S. domesticus, Bos taurus, Ovis aries vel Capra hircus, undetermined amphibians, reptiles and birds (Curci et al. 2010, 2014, Salari 2014, in press) and also of Myotis bechsteini, M. capaccinii and Miniopterus schreibersii (Tables 1 and 2) were recovered. The minimum number of individuals (MNI) of the nonvolant micromammals from the Bronze Age SSUU is 46 (Salari 2014), therefore bats make 11.5% of the total of micromammals from these SSUU. In the Amerini Mountains area, Rhinolophus ferrumequinum and R. hipposideros have been currently reported (Natura 2000 Database IT5220008). Grotta Continenza The cave is situated on the slopes of Mount Labbrone, 710 m a.s.l., along the southern slope of the Fucino basin, next to the village of Trasacco (L’Aquila, Abruzzi). Archaeological digs, started in 1978 and directed by the Archaeology Department of the University of Pisa, uncovered several human remains, as well as one of the most complete stratigraphic sequences ranging from final Epigravettian and the Neolithic (Barra et al. 1990, Bevilacqua 1994). In the Mesolithic and Neolithic layers Erinaceus europaeus, Crocidura suaveolens, C. leucodon, Sorex gr. arenaus-samniticus, Lepus europaeus, Marmota marmota, Glis glis, Eliomys quercinus, Microtus (Terricola) savii, Clethrionomys glareolus, Apodemus (Sylvaemus) sp., A. (S.) sylvaticus, A. (S.) flavicollis, Canis lupus, C. familiaris, Vulpes vulpes, Martes sp., Meles meles, Lutra lutra, Felis silvestris, Ursus arctos, Sus scrofa, S. domesticus, Cervus elaphus, Capreolus capreolus, Bos primigenius, B. taurus, Rupicapra sp., Capra ibex, C. hircus, Ovis aries and various bird, fish and mollusc species were found (Barra et al. 1990; Bevilacqua 1994, Di Canzio 2004), along with Rhinolophus ferrumequinum, R. mehelyi, R. euryale, R. hipposideros, Myotis myotis, M. blythii, M. capaccinii, M. emarginatus, Myotis sp., Hypsugo vel Pipistrellus, Nyctalus noctula, Barbastella barbastellus and Miniopterus schreibersii (Tables 1 and 2). In the Mesolithic spits, the remains of 230 individuals were found belonging to rodents and soricomorphs, and in the Neolithic spits, 89 individuals were counted (Di Canzio 2004); hence the bats make 15.1 and 17.6% of the micromammal individuals respectively. Currently, several bat species, such as R. ferrumequinum, R. hipposideros, M. myotis, M. brandtii, B. barbastellus and M. schreibersii are recorded in the neighbouring Abruzzi National Park (Natura 2000 Database IT7110205; Agnelli et al. 2006).
Barbastella 8(1) 2015
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy)
Fig. 1 - Location of the sites. GB: Grotta Bella; GC: Grotta Continenza; GMC: Grotta Mora Cavorso; GRM: Grotta Regina Margherita; GP: Grotta di Pastena.
Grotta Mora Cavorso The cave is located at 715 m a.s.l., in Palo Montano locality, near Jenne (Rome, Latium) and faces the right side of the upper Aniene River valley in the Regional Natural Park of the Simbruini Mountains. The cave presents a succession of chambers and passages. At the end of the chamber 1 (about 20 x 10 m) a narrow passage leads to a natural duct with a 20° gradient. At the end of the duct the first inner room (about 6 x 4 m) is found, covered by stalagmite crusts. On the north
wall, a second, horizontal natural duct is present, strongly concreted, and about 20 m long. At the end of it, two chambers (Upper and Lower) containing human remains were found. Archaeological investigations started in 2006 by the University of Rome “Tor Vergata”, in agreement with the “Soprintendenza per i Beni Archeologici del Lazio”, and focused initially on the areas with the human remains (at least 21 individuals spread over about 10 sq m) referred to the early Neolithic, fully incorporated into stalagmite crusts. Subsequently, several digs were opened with the purpose of investigating the stratigraphical sequence of
Barbastella 8(1) 2015
29
Leonardo Salari, Letizia Silvestri
Table 1 - Number of identified specimens (NISP) of taxa identified and their percentage reports. GC: Grotta Continenza; GMC: Grotta Mora Cavorso; GB: Grotta Bella; GRM: Grotta Regina Margherita; GP: Grotta di Pastena. M: Mesolithic; N: Neolithic; B: Bronze Age.
Species/NISP Rhinolophus ferrumequinum Rhinolophus euryale Rhinolophus mehelyi Rhinolophus euryale/mehelyi Rhinolophus hipposideros Myotis myotis Myotis blythii Myotis myotis/blythi Myotis bechsteini Myotis capaccinii Myotis emarginatus Myotis mystacinus s.l. Myotis sp. Hypsugo vel Pipistrellus Nyctalus noctula Plecotus auritus s.l. Barbastella barbastellus Miniopterus schreibersii total NISP total taxa
GC
GC
GC
M
M
N
N
n. 17 1 1
% 20,7 1,2 1,2
n. 15 1
% 35,7 2,4
1
2,4
1 1 30 1
1,2 1,2 36,6 1,2
15 1
18,3 1,2
6 1
7,3 1,2
11 1
26,2 2,4
10
23,8
1 2 5 82 12
2,4 6,1
GC
2 42 8
GMC
GMC
GMC
GMC
GB
N
N
NB
NB
B
B
B
B
B
B
n. 2
% 28,6
n. 8
% 61,5
n.
%
n. 15 2
% 42,9 5,7
n.
%
2
28,6
2 1
28,6 14,3
1 1 1
7,7 7,7 7,7
1 7 6
2,9 20,0 17,1
3
100
1
2,9
3 35 7
8,6
4 5
GB
GRM
GRM
GP
GP
40,0 50,0
2,4
4,8 7 4
1
7,7
1 13 6
7,7
1 10 3
10,0
3 1
Table 2 - Minimum number of individuals (MNI) of taxa identified and their percentage reports. For abbreviations see Tab.1 caption. Species/MNI Rhinolophus ferrumequinum Rhinolophus euryale Rhinolophus mehelyi Rhinolophus euryale/mehelyi Rhinolophus hipposideros Myotis myotis Myotis blythii Myotis myotis/blythi Myotis bechsteini Myotis capaccinii Myotis emarginatus Myotis mystacinus s.l. Myotis sp. Hypsugo vel Pipistrellus Nyctalus noctula Plecotus auritus s.l. Barbastella barbastellus Miniopterus schreibersii total MNI
GC
GC
GC
M
M
N
N
n. 8 1 1
% 19,5 2,4 2,4
n. 6 1
% 31,6 5,3
1
5,3
1 1 12
2,4 2,4 29,3
7 1
17,1 2,4
3 1
7,3 2,4
5
26,3
5
26,3
1 1 4 41
2,4 9,8
GC
1 19
GMC
GMC
GMC
GMC
N
N
NB
NB
B
B
B
B
B
B
n. 1
% 25,0
n. 5
% 50,0
n.
%
n. 8 1
% 36,4 4,5
n.
%
1
25,0
1 1
25,0 25,0
1 1 1
10,0 10,0 10,0
1 5 4
4,5 22,7 18,2
2
100
1
4,5
2 22
9,1
2 3
GB
GRM
GRM
GP
GP
33,3 50,0
5,3
5,3 4
the deposit. In particular, Digs B, C and D (in chamber 1, in chamber 2 and in the duct that connects them) held, with some discontinuities, archaeological findings from the Upper Palaeolithic to the historical age. In some layers of compact silty ground, intercalated with thin stalagmite concretions and containing, in places, limestone clasts with sharp edges, lithic artefacts were found (from Upper Paleolithic to middle Bronze Age), pottery (from Neolithic to the historical age), disarticulated human bones (only in the middle Bronze Age), 30
GB
1
10,0
1 10
10,0
1 6
16,7
2
faunal remains, charcoal fragments and ash (in all layers) (Rolfo et al. 2012a, 2013, Salari et al. 2011, 2012, Silvestri et al., in press). The Neolithic finds from Digs B, C and D were attributed to the early Neolithic and late Neolithic, but study of the stratigraphic sequence is still in progress. The SSUU related to the Neolithic and the Bronze Age held the remains of Talpa caeca, Lepus sp., Glis glis, Eliomys quercinus, Arvicola amphibius, Microtus (Microtus) arvalis,
Barbastella 8(1) 2015
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy)
M. (Terricola) savii, Clethrionomys glareolus, Apodemus sylvaticus vel flavicollis, Canis lupus, C. familiaris, Vulpes vulpes, Martes martes vel foina, Meles meles, Lutra lutra, Felis silvestris, Cervus elaphus, Capreolus capreolus, Sus scrofa, S. domesticus, Bos taurus, Ovis aries, Capra hircus, undetermined amphibians, reptiles and birds (Rolfo et al. 2012a, 2013, Salari et al. 2012, Salari 2014) and also of Rhinolophus ferrumequinum, R. hipposideros, Myotis myotis vel blythii, M. blythii, M. myotis, Plecotus auritus s.l. and Miniopterus schreibersii (microvertebrates found from 2006 to 2008 only) (Tables 1 and 2). The MNI of the non-volant micromammals is 18 in the burial area and 15 in Digs B, C and D (Salari 2014), therefore the bats represent 18.2 and 40.0% of the micromammal individuals found in the various areas investigated. Today, in the different karstic caves of the Regional Natural Park of Simbruini Mountains, R. euryale, R. ferrumequinum, R. hipposideros, M. myotis, Eptesicus serotinus and M. schreibersii occur (Papi 2004); Grotta Mora Cavorso is frequented by a small colony of R. hipposideros. Grotta Regina Margherita The cave is located on the southern side of the cliff on top of which is the village of Collepardo (Frosinone, Latium), in the Ernici Mountains, about 30 m above Fiume creek, a tributary of the Cosa River. The cave consists of a large chamber of about 90 x 60 m that reaches 20 m in height, and is divided into three sectors of increasingly higher level, delimitated by impressive stalagmite columns; to the east of the entrance is a branch with a length of about 20 m. This karst cave, recorded at the end of the 19th Century under the name “Grotta dei Bambocci”, is known in the literature for the excavations by Ponzi, for the Pleistocene faunal remains found by Segre in the last century and, later, for the pottery referred to the beginning of the Middle Bronze Age published by Biddittu and Guidi (Angle et al. 2010b, with references). The material examined comes from five test pits dug in different areas of the cave by the “Soprintendenza per i Beni Archeologici del Lazio” in 2008. Digs A (8 sq m), B (3 sq m), C (1 sq m), D (9 sq m) and E (1 sq m) held human bones referred to 31 individuals and several archaeological and faunal finds that testify to intense human frequentation during the early Middle Bronze Age (Angle et al. 2010b). A joint collaboration between the “Soprintendenza per i Beni Archeologici del Lazio” and the University of Durham has resumed the investigations in 2014. Preliminary analysis of the faunal remains recovered in 2008 has documented the presence of Ovis aries vel Capra hircus, Bos sp., Equus sp., Canis sp., Lepus sp., Vulpes sp., undetermined amphibians and birds (Angle et al. 2010b), Crocidura leucodon, Talpa caeca, Glis glis, Eliomys quercinus, Muscardinus avellanarius, Arvicola amphibius, M. (Terricola) savii, Microtus sp., Clethrionomys glareolus, Apodemus sylvaticus vel flavicollis and Rattus rattus (Salari 2014) and also of Rhinolophus ferrumequinum, R. euryale, R. hipposideros, Myotis myotis, M. blythii, M. mystacinus s.l. and Miniopterus schreibersii (Tables 1 and 2). The MNI of rodents and soricomorphs is 93 (Salari 2014), therefore bats in this cave make 19.1% of micromammal individuals.
Presently, R. ferrumequinum, R. euryale, R. hipposideros, Myotis capaccinii, M. myotis e M. schreibersii occur in the cave (Natura 2000 Database IT6050006). Grotta di Pastena The cave is located 310 m a.s.l., in the Cretaceous limestones of the S. Cataldo Mount, in the Ausoni Mountains, adjacent to the Province Road that leads from Castro dei Volsci to Pastena (Frosinone, Latium). Archaeological interest in this site has been known since the earliest investigations carried out in the 1980s (Angle et al., 2010a with references). Remains of Ovis aries vel Capra hircus, Bos sp., Sus sp., Felis sp. Emys sp., undetermined birds and molluscs come from the various test pits dug in 2008 by the “Soprintendenza per i Beni Archeologici del Lazio” (Angle et al. 2010a). A joint collaboration between the “Soprintendenza per i Beni Archeologici del Lazio” and the University of Rome “Tor Vergata” has resumed the investigations at the site in 2013 (Angle et al. 2014). Among the micromammal remains found in 2008 in the sediments of the niche “E10”, referred to the Middle Bronze Age, the only specimens taxonomically identified are an upper incisor of a medium-large sized rodent, along with an intact humerus and two distal portions of humerus attributed to M. blythii (Tables 1 and 2). Currently, R. ferrumequinum, R. euryale, R. hipposideros, M. myotis, M. blythii and Miniopterus schreibersii live in this karst cave (Natura 2000 Database IT6050022).
Materials and methods The material from Grotta Regina Margherita, Grotta di Pastena and Grotta Mora Cavorso (Digs B, C and D) was sieved with a 2-mm mesh in the field (smaller screens require the use of water, which was absent or scarce at the sites) and relatively good samples of bat remains were obtained. Because of difficulty separating the bones from the stalagmite crusts, only selected elements (mainly humeri) were recovered from the burial area of Grotta Mora Cavorso. The collection methods for the microvertebrate remains from Grotta Bella and Grotta Continenza are not known. The bat remains were compared with osteological material, both fossil and recent, stored in the Department of Earth Sciences of the University of Rome “Sapienza”, in the Department of Geological Sciences of the “Roma Tre” University and in the Laboratory of Archaeozoology of the National Museum of Prehistory and Ethnography “Luigi Pigorini” of Rome. The morphological and morphometric observations and the dichotomous keys given by Miller (1912), Lanza (1959, 2012), Felten et al. (1973), Sevilla García (1986; 1988), Ruedi et al. (1990), Niethammer & Krapp (2001), Benda et al. (2003), Csorba et al. (2003) and Salari (2004) were also consulted. The analyses were performed with a stereoscopic microscope Nikon SMZ-U in the Department of Geological Sciences of the “Roma Tre” University. For the taphonomic observations, the samples were considered in toto, while for the taxonomic determinations the analyzed material was chosen on the basis of its systematic
Barbastella 8(1) 2015
31
Leonardo Salari, Letizia Silvestri
importance (skull, maxilla, mandible and humerus). Other skeletal parts (e.g., scapula, radius, metacarpal bones, coxal) that enable identification at family or genus level or even species level, were not considered in order to minimize the statistical bias for small-bodied species. Their fragile skeletal elements are more frequently subject to the processes of differential destruction than those of larger species, or can be lost during collection. The minimum number of individuals (MNI) was calculated using the most represented side (right or left) of maxillae, mandibles and humeri; this result was integrated with the analysis of the age and the dimensional characters of the other skeletal elements. The environmental reconstructions are based on actual studies on the ecology and biogeography of the taxa found in the different levels of the caves (Lanza 1959, 2012, Horáček et al. 2000, Niethammer & Krapp 2001; Lanza & Agnelli 2002, Agnelli et al. 2006). Holocene chronostratigraphy follows Orombelli & Ravazzi (1996), supplemented by Ravazzi (2003).
Systematic notes In this work we follow the taxonomic and geographic synthesis by Simmons (2005), with the following exceptions. - Family Miniopteridae is considered distinct from Vespertilionidae, according to Mein & Tupinier (1977), Lanza & Agnelli (2002), Agnelli et al. (2006), MillerButterworth et al. (2007) and Lanza (2012). - We use the taxon M. blythii instead of M. oxygnathus. According to Simmons (2005), the extant European and Near-Eastern populations, up to North and West Iran, should be ascribed to M. oxygnathus as opposed to M. blythii oxygnathus or to M. blythii (Lanza 2012). However, the vast majority of the paleontological works examined identifies the remains of large-sized Myotis, distinct from M. myotis, as M. blythii (not as M. oxygnathus). In the Western Paleartic, M. blythii fossils date back to Pliocene (Salari et al. 2013 with references). With respect to the distinction between the large-bodied Myotis (excluding M. punicus for palaeobiogeographic reasons), M. myotis is larger in size, but the dimensions of large M. blythii and small M. myotis overlap (Sevilla 1988, Niethammer & Krapp 2001, Ghazali 2009). The only certain morphological difference between the teeth of M. myotis and M. blythii occurs on the talonid of m3, which is more reduced in M. myotis (Topál & Tusnadi 1963, Sevilla 1986, 1988). Therefore we calculated the talonid reduction index (TRI = talonid width x 100/tooth length) and we assigned the specimens with the TRI less to 0.45 to M. myotis, and those with TRI close to 0.50 to M. blythii (Mein 1975). The dimensions of other specimens (Table 4) support our attribution (Ruedi et al. 1990, Niethammer & Krapp 2001, Benda et al. 2003, Lanza 2012). Concerning the humeri of identical morphology (Felten et al. 1973), discrimination between the two species mainly relied on the distal epiphysis, ascribing only the larger ones and those of more robust aspect to M. myotis, with all remaining material being assigned to M. blythii.
32
In Tables 1 and 2, percentages of the number of identified specimens (NISP) and of the minimum number of individuals (MNI) from the different caves are recorded; in Table 1 the number of identified taxa is also recorded. It can be immediately noted that the data differ considerably from site to site: some caves, such as Grotta Continenza and partly Grotta Regina Margherita, held a large number of remains, whereas others, such as Grotta di Pastena, held a rather limited number of bones. The bat remains from the investigated caves do not show major morphological or morphometric differences from other Holocene and living species (Tables 3 and 4). However, the recent applications of modern bioacoustic and molecular biology techniques (combined with conventional approaches based on morphological and morphometric criteria), have allowed identification of new species. In particular, some subspecies or geographic varieties of species belonging to the genera Pipistrellus, Myotis and Plecotus (e.g., Pipistrellus pygmaeus, Myotis alcathoe, M. aurascens, M. punicus, Plecotus gaisleri, P. kolombatovici, P. macrobullaris, P. sardus) were elevated to the rank of full species (Agnelli et al. 2006, Lanza 2012), but the lack of sound morphometric data for their taxonomic determination did not permit adequate assessment of them. The fossil remains potentially falling into the above taxa were attributed to the traditionally recognised species, followed by s.l. (= sensu lato) in accordance with Agnelli et al. (2006) for reports of these taxa prior to 2000. This is the case of humeri of M. mystacinus s.l. (i.e. M. mystacinus or M. brandtii or M. alcathoe) from Grotta Regina Margherita and of Plecotus auritus s.l. (i.e. P. auritus or P. macrobullaris) from Grotta Mora Cavorso. Distinction between Hypsugo savii and the species of larger size of the genus Pipistrellus is also problematic: the morphology and size of the distal epiphysis of the humeri are identical (Felten et al. 1973) and the humerus from Grotta Continenza was attributed to Hypsugo vel Pipistrellus (i.e. H. savii or P. kuhlii or P. nathusii). The attribution of a distal humerus of a medium-sized Rhinolophus species collected in Grotta Continenza is uncertain because the morphology of the specimen missing the styloid process does not allow assignment the bone to species level, and the dimensions fall inside the range of both Rhinolophus euryale and R. mehelyi (Felten et al. 1973). The attribution of some distal humeri of medium/small-sized Myotis from Grotta Continenza is also uncertain, because the morphology and breadth (2.6 - 2.7 mm) of the distal epiphysis of the humerus of Myotis daubentonii, M. emarginatus and M. nattereri are identical (Felten et al. 1973), and these remains are reported as “Myotis sp.” in Tables 1 and 2; instead, a complete humerus was attributed to M. emarginatus. Finally, a few, highly fragmented bones of large-sized Myotis from Grotta Mora Cavorso and Grotta Continenza were attributed to Myotis myotis vel blythii, and a few toothless fragmented mandibles of medium/small-sized Myotis from Grotta Continenza is reported as “Myotis sp.”.
Taphonomy Bats are nocturnal animals and can be occasional prey of nocturnal birds of prey (Strigiformes), such as the longeared owl, Asio otus, the tawny owl, Strix aluco, the little owl, Athene noctua, the Eurasian eagle-owl, Bubo bubo and
Barbastella 8(1) 2015
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy)
Table 3 - Rhinolophidae: osteometric measurements (mm). Abbreviations for skull, mandible and humerus dimensions: L. = maximum length; ZB = zygomatic breadth; IcB = breadth of interorbital constriction; C-C = rostral width between upper canines (incl.); M3-M3 = rostral width between third upper molars (incl.); C-M3 = length of upper tooth-row between C and M3 (incl.); M1-M3 = length of upper molars (incl.); c-m3 = length of lower tooth-row between c and m3 (incl.); m1-m3 = length of lower molars; Bd = distal breadth of humerus. Other abbreviations: min = minimum; max = maximum; mea = mean; s.d. = standard deviation. Only humerus measurements were taken by Felten et al. (1973).
Species/measurements Rhinolophus ferrumequinum C-M3 M1-M3 L. mandible c-m3 m1-m3 L. humerus Bd humerus Rhinolophus euryale L. mandible c-m3 m1-m3 L. humerus Bd humerus Rhinolophus mehelyi Bd humerus Rhinolophus hipposideros L. skull ZB IcB C-C M3-M3 C-M3 M1-M3 L. humerus Bd humerus
early and middle Holocene bats of Italy Five caves of Central Appennine (this Salari 2011 work) n. min max mea s.d. n. min - max 1 2 11 17 18 10 33 1 2 2 1 1
5,1 15,0 8,7 6,0 32,4 5,0
5,2 15,4 9,3 6,4 35,0 5,2
6,4 4,2
6,8 4,6
8,5 5,15 15,13 9,07 6,15 33,74 5,16 11,4 6,60 4,40 27,0 4,3
1
4,6
1 1 1 1 1 2 2 2 4
15,3 7,4 1,6 3,2 5,3 5,4 3,4 22,55 3,05
22,1 3,0
23,0 3,1
0,071 0,135 0,193 0,142 1,075 0,056
0,283 0,283
3 6 4 13 20 2 13
8,4 - 8,6 4,9 - 5,3 14,4 - 15,5 8,7 - 9,6 5,8 - 6,5 33,2 4,9 - 5,2
4 14 22 10 38
11,2 - 12,0 6,2 - 7,0 4,2 - 4,7 25,9 - 28,2 4,1 - 4,4
4
4,4 - 4,7
Niethammer & Krapp 2001 n. min - max 27
8,4 - 8,7
93
8,31 - 9,08
8,4 - 8,6
27 27
14,9 - 15,9 9,0 - 9,3
94 94
14,94 - 16,48 8,72 - 9,73
15,0 - 16,3 8,8 - 9,3
27
4,8 - 5,3
29 29
11,5 - 12,2 6,5 - 6,9
1 4
especially the barn owl, Tyto alba (Andrews 1990, Lanza 2012); the last two species are the main, if not the exclusive, agents of accumulation of the non-volant micromammal remains from some of the caves examined (Salari 2014). Bats can also be occasionally preyed on by diurnal birds of prey (Falconiformes), reptiles and amphibians, as well as some mammalian carnivores (domestic dogs and cats, mustelids and foxes) and infrequently by the edible dormouse, Glis glis (Agnelli & Guaita 2009, Lanza 2012). In the boluses or pellets of the Strigiformes, bats make rarely more than 1% of prey, as their regurgitations are mainly consist of rodents, small birds and soricomorphs (Sevilla 1988, Andrews 1990, Vernier 1993, Kowalski 1995, GarcĂa et al. 2005). Among the material from these caves of Central Italy (leaving out the small sample from Grotta di Pastena), even where the number of remains is relatively low, percentages of bat individuals range from 11.5 to 40% of the micromammal total. These percentages can be correlated to anomalous behaviours of the predators or they can indicate autochthonous thanatocoenoses. In order to investigate what, and in which sites, were the agents of accumulation of the bat remains examined, taphonomic observations were undertaken following the methodologies proposed by Andrews (1990) and FernĂĄndez-Jalvo & Andrews (1992). These include observations about the relative abundance of bones and their fragmentation, and analysis of the material for evidence of digestion and patterns leading to the identification of the possible predators. Table 5 shows the different skeletal elements represented in the samples. Only in the sample from Grotta Regina
23,1 3,0 - 3,3
~5,1 165 168
10,82 - 12,22 5,91 - 6,92
11,5 - 12,2 6,6 - 6,9
~4,3 ~4,5 25 25 25 25 25 25
0,636 0,058
European extant bats Lanza 2012; Felten Benda et al 2003 et al 1973 n. min - max min - max
14,8 - 15,8 7,0 - 7,8 1,7 - 2,0
5,0 - 5,5
45 53 62 58 62 61
15,25 - 16,76 7,23 - 8,10 1,38 - 2,00 2,98 - 3,88 4,93 - 5,64 5,08 - 5,53
14,8 - 15,8 7,3 - 7,8 1,8 - 1,9
5,4 - 5,5 ~3,1
Margherita are almost all the skeletal elements represented. The humerus is the most abundant skeletal element from Grotta Bella, Grotta Mora Cavorso (burial area), Grotta di Pastena and Grotta Regina Margherita, whereas the most abundant elements from Grotta Continenza are the mandibles and from Grotta Mora Cavorso (Digs B, C and D) the radii (Table 5). The hindlimb bones and the smallest bones, such as phalanges, tarsal or metatarsal bones, together with isolated teeth, are absent or scarce in all the samples, especially when compared to the relative abundance of these elements expected for the respective estimated individuals (Table 5). Postcranial elements other than the humerus (not reported in Tables 1 and 2) are referable to the large-sized bats (R. ferrumequinum, M. myotis, M. blythii), except for two radii of medium-sized Rhinolophus and a radius referable to M. schreibersii from Grotta Continenza, and a radius of smallsized Myotis from Grotta Regina Margherita. Skulls and skull fragments are missing or are very scarce in all the samples. Several maxillae were found, but only a sub-entire skull of R. hipposideros embedded in the stalagmite crust from Grotta Mora Cavorso (burial area), 4 splancnocrania of M. blythii from Grotta Continenza and a splancnocranium of M. myotis from Grotta Regina Margherita. Mandibles are more numerous, often with the ascending ramus missing. In all the samples, about half of the postcranial bones are intact, and recent breakage is observed in several bones (humerus, radius and metacarpal bones). However, it is difficult to estimate the extent to which the aforementioned absence and/or destructive processes are related to ingestion, digestion and deposition by possible predators or selection caused by water transport
Barbastella 8(1) 2015
33
Leonardo Salari, Letizia Silvestri
Table 4 - Vespertilionidae and Miniopteridae: osteometric measurements (mm). For abbreviations see Tab. 3 caption. By Rabeder (1972) only N. noctula measurements were taken; by Felten et al. (1973) only humerus measurements were taken. Of the data of M. blythii taken by Niethammer & Krapp (2001), we have considered only M. blythii oxygnathus. Species/measurements Myotis myotis C-C M3-M3 C-M3 M1-M3 L. mandible c-m3 m1-m3 L. humerus Bd humerus Myotis blythii C-C M3-M3 C-M3 M1-M3 L. mandible c-m3 m1-m3 L. humerus Bd humerus Myotis bechsteini L. humerus Bd humerus Myotis capaccinii C-M3 M1-M3 L. mandible c-m3 m1-m3 L. humerus Bd humerus Myotis emarginatus L. humerus Bd humerus Myotis mystacinus s.l. Bd humerus Hypsugo vel Pipistrellus L. humerus Bd humerus Nyctalus noctula c-m3 m1-m3 Plecotus auritus s.l. L. humerus Bd humerus Barbastella barbastellus Bd humerus Miniopterus schreibersii L. mandible c-m3 m1-m3 L. humerus Bd humerus
early and middle Holocene bats of Italy Five caves of Central Appennine (this Salari 2011 work) n. min max mea s.d. n. min - max
European extant bats Niethammer & Krapp 2001; Benda et al 2003 Rabeder 1972 n. min - max n. min - max
1 1 2 4 1 1 2 2 2
19
5,99 - 6,59
5,4
5,6
20 20 20
33,3 4,3
4 4 8 10 9 20 28 5 13
5,8 8,6 8,8 5,0 16,0 9,2 5,4 31,6 4,0
33,8 4,4
6,2 10,0 10,1 5,55 17,6 11,4 6,8 33,55 4,35
6,1 9,2 9,2 5,2 16,8 10,2 6,1 32,6 4,2
5,95 8,90 8,97 5,16 16,29 9,55 5,84 32,16 4,13
2 4
24,0 3,0
2 2 7 12 13 3 14
5,8 3,0 10,80 6,10 3,83 21,73 2,79
10,4 5,8 3,8 21,2 2,7
11,2 6,2 4,0 22,0 3,0
0,354 0,071
1 1 2 2 2 5 7 4 15
6,1 9,7 9,8 5,6 17,4 10,5 - 11,1 6,2 - 6,6 34,2 - 34,6 4,4 - 4,6
0,173 0,346 0,138 0,088 0,247 0,260 0,221 0,434 0,095
1 2 3 6 12 21 32 12 36
6,2 9,2 8,9 - 9,2 5,0 - 5,4 14,7 - 17,0 9,8 - 10,2 5,4 - 6,1 31,9 - 32,4 3,9 - 4,3
0,100
9,65 - 10,24
71 68 71
5,35 - 6,55 9,28 - 10,38 9,52 - 10,42
9,8 - 10,0
17,79 - 19,14 10,15 - 11,11
72 72
17,32 - 18,87 10,33 - 11,90
17,5 - 18,0 10,5 - 10,8
4,0 - 4,6 19 19 19 19 19 19 19
5,36 - 5,89 8,41 - 9,13 8,21 - 9,03 4,82 - 5,29 15,35 - 16,78 8,83 - 9,68 5,26 - 5,86
37 36 38
5,22 - 6,17 8,05 - 9,27 8,06 - 9,13
8,6 - 8,8
39 39
15,30 - 17,15 8,85 - 9,80
15,0 - 15,5 9,0 - 9,5
4,0 - 4,6
2,9 - 3,1
0,383 0,135 0,075 0,462 0,077
1 1 2 11
6,2 3,7 23,5 2,7 - 3,0
28
5,2 - 5,8
29
5,35 - 5,91
5,4 - 6,0
28 28
10,0 - 11,7 5,7 - 6,4
28 28
10,38 - 11,38 5,69 - 6,53
10,4 - 11,7 5,7 - 7,0
~2,7
1 1
22,2 2,6
2,6 - 2,7
1
2,4
2,2 - 2,4
1 1
22,8 2,4
2,2 - 2,4
1 1
7,5 5,2
1 1
23,8 2,8
2 1 1 1 4 8
2,7
24,6 2,7
2,8
2,75
26,0 2,8
10,8 6,2 3,6 25,40 2,78
7,6 5,3
1
12
7,53 - 8,17
2,8
0,632 0,046
7,2 - 8,29
2,7 - 2,9
0,071
2,7 - 2,8 3 4 5 11 21
10,9 - 11,2 6,2 -6,4 3,6 - 3,9 25,2 - 26,4 2,6 - 2,8
or to destructive post-depositional processes. In the caves occupied by humans, trampling can also be responsible for dispersal, breakage and burial of bones (Andrews 1990). The weight of the sediments and the continuous trampling in confined spaces can cause bone fragmentation and the smaller fragments (together with isolated teeth and smaller bones) can be overlooked during collection. In the sites where it was used, the large mesh (2 mm) for sieving is most likely a cause of such loss. This has not strongly affected the intact long bones, the fragments of larger size, skull fragments, maxillae and mandibles, because their shape and size makes them more easily retained in the mesh.
34
Lanza 2012; Felten et al 1973 min - max
66 66
10,41 - 11,08 6,13 - 6,48
10,7 - 10,9 6,3 - 6,4 ~2,7
Ascertained traces of digestion were found only on two distal epiphyses of humerus from Grotta di Pastena, but the material is too poor to identify the probable predator. Therefore it is very likely that the finds from the other caves consisted mainly of the natural accumulation of animals that lived and died there. The taxa identified were mostly troglophilous species in all the sites, whereas species that usually roost in hollow trees, or rock crevices, as well as those today distinctly anthropophilous, were lacking or missing. These data suggest that the non-troglophilous species may really be underrepresented, but they tend to confirm that the vast majority of the bat remains examined (except for Pastena) represent autochthonous thanatocoenoses (Sevilla 1988, Kowalski 1995, LĂłpez-GarcĂa & Sevilla 2012).
Barbastella 8(1) 2015
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy)
Table 5 - Skeletal elements represented in the bat assemblages.The percentage is calculated versus the theoretical frequency of the anatomical element considered (2 maxillae, 2 mandibles, 2 scapulae, 2 humeri, 2 radii, 2 ulnas, 10 metacarpal bones, 2 pelves, 2 femora, 2 tibias, 2 astragals, 2 calcanei, 10 metatarsal bones and 56 phalanges); each skull or splanchnocranium was counted as 2 maxillae. For abbreviations see Tab. 1 caption. Skeletal elements Maxilla Mandible Scapula Humerus Radius Ulna Carpal bones Metacarpal bones Pelvis Femur Tibia Tarsal bones Metatarsal bones Phalanges MNI
GC M n. 6 40
GC M %
GC N % 31,6 57,9
GMC N n. 2 1
GMC N % 25,0 12,5
GMC NB n.
GMC NB %
48,8
GC N n. 12 22
1
5,0
39 3
47,6 3,7
16 6
42,1 15,8
5
62,5
15 18
5
1,2
5
2,6
41
19
4
GB B n.
GB B %
75,0 90,0
11 8
91,7 66,7
8
8,0
4
6,7
2
10,0
3
25,0
7 10
1,3
1 6
0,3
GRM B n. 6 17 2 22 16
GRM B % 13,6 38,6 4,5 50,0 36,4
GP B n.
GP B %
3 3
75,0 75,0
36 1 4 2
16,4 2,3 9,1 4,5
14
70,0
3
75,0
14 22
1,1
7 2
6,3
Table 6 - Comparison between early and middle Holocene bats (data from Taliana et al. 1996, Wilkens 1996, Salari & Di Canzio 2009, Salari 2011, and this work) and the current bat fauna from Umbria, Abruzzi and Latium (data from Agnelli et al. 2006, Russo et al. 2010, Biscardi et al. 2012), and schematic synthesis of some ecological attributes of the bats (Horáček et al. 2000, Lanza & Agnelli 2002, Agnelli et al. 2006, Salari & Di Canzio 2009, Lanza 2012). e.m.H.: early and middle Holocene; s.s.: sensu stricto; s.l.: sensu lato. Species Rhinolophus ferrumequinum Rhinolophus euryale Rhinolophus mehelyi Rhinolophus hipposideros Myotis myotis Myotis blythii Myotis bechsteini Myotis capaccinii Myotis daubentoni Myotis emarginatus Myotis nattereri Myotis mystacinus Myotis brandtii Myotis alcathoe
Umbria, Abruzzi and Latium e.m.H. today X X X X X X X X X X X X X X X ? X X X ? X X? X ? X ? X
caves caves caves caves caves caves hollow trees, caves caves caves caves caves caves caves, building caves
temperatures of hibernation 7 to 12 °C 10 to 12 °C 11 to 13 °C 4 to 12 °C 2 to 12 °C 4 to 14 °C 1 to 10 °C 4 to 15 °C 0 to 10 °C 5 to 9 °C 2 to 8 °C 2 to 8 °C 0 to 8 °C ?
hibernacula
Pipistrellus kuhlii
?
X
building, rock fissures
?
Pipistrellus nathusii
?
X
rock fissures, building
?
X
building, hollow trees
0 to 6 °C
X
building, caves
~12 °C
X X X X X X X X
building, caves hollow trees hollow trees caves hollow trees, caves grotte, hollow trees caves rock fissures
2 to 4 °C ? > -7 °C 0 to 8 °C 2 to 5 °C 2 to 12 °C 4 to 12 °C 0 to 10 °C
Pipistrellus pipistrellus s.l. Hypsugo savii Eptesicus serotinus Nyctalus leisleri Nyctalus noctula Barbastella barbastellus Plecotus auritus Plecotus austriacus Miniopterus schreibersii Tadarida teniotis
?
X X X? X
Barbastella 8(1) 2015
foraging environment
zoogeographical patterns
mixed woods woods woods woods
Mediterranean s.l. Mediterranean s.s. Mediterranean s.s. Mediterranean s.l. Mediterranean s.l. Mediterranean s.l. Nemoral Mediterranean s.s. Boreal mediterranea s.l. Nemoral Nemoral Boreal Nemoral?
open woods woods forests various woods various forests forests various, anthropophilous woods woods, anthropophilous various, anthropophilous various woods forests forests forests woods various rocky
Mediterranean s.s. Nemoral Mediterranean s.l. Mediterranean s.s. Mediterranean s.l. Nemoral Nemoral Nemoral Boreal Mediterranean s.l. Mediterranean s.s. Mediterranean s.s.
35
Leonardo Salari, Letizia Silvestri
Elements of juvenile bats were not identified in any sample, whereas in Grotta Bella, Grotta Mora Cavorso and Grotta Regina Margherita juvenile remains of Glis glis, Apodemus sylvaticus vel flavicollis and other rodents were found (Salari 2014, in press), along with perinatal remains of domestic animals from Grotta Continenza and Grotta Mora Cavorso (Barra et al. 1990, Salari et al. 2012, Silvestri et al. in press). This suggests that the absence of juvenile bat remains is not simply attributable to processes of differential destruction, and therefore we hypothesize that the examined remains were accumulated mainly during hibernation, during the winter semester.
Microclimateandenvironment For bats, the choice of diurnal roosts, as well as of reproduction and hibernation environments, is strongly influenced by the microclimate of the cave. Every species has a specific level of tolerance to limited ranges of temperature and humidity (generally, low temperature with high hygrometric rate) (Niethammer & Krapp 2001, Lanza & Agnelli 2002, Lanza 2012). However, temperature and humidity in caves can vary according to cave size, its morphology, the number of openings and their orientation. Larger caves can have different microclimates (with more or less constant temperatures but variable humidity, owing above all to draughts of air) and each species selects the spots that best suit their preferences (Sevilla 1988, Lanza & Agnelli 2002, Lanza 2012). With the only exception of Pastena, taphonomical observations suggest that the remains examined accumulated prevalently during the winter semester. By evaluating the hibernation requirements of the taxa identified (Table 6), inferences can be drawn about the winter microclimate of the caves (at least related to the areas close to the excavation areas) in the time intervals considered. At Grotta Mora Cavorso, in the inner chambers that held the human remains of at least 21 individuals, the Neolithic’s microclimate was probably characterised by a high humidity (close to saturation) and a temperature ranging between 7 and 12°C. The hypothesis, already formulated by Salari & Kotsakis (2011), has recently been confirmed by both the study of the stalagmite formations and the monitoring of the current physical parameters of the karst cave. In fact, in the winter semester of 2007-2008, temperatures between 10 and 12°C were recorded, with a relative humidity close to 80% in the inner chambers of the cave (Rolfo et al. 2012c). The temperature values, estimated on the basis of the assumed needs of the identified taxa, are thus compliant with the physical parameters recorded. With regards to the humidity, instead, it has to be noted that calcite precipitation in the Neolithic required a higher hygrometric rate than at present (Rolfo et al. 2012b). Supported by these experimental results, we can hypothesize that in the chronological intervals considered, at Grotta Continenza the winter microclimate remained rather constant, with average temperatures ranging from 8 to 12°C and a high humidity; moreover, we can assume that the winter temperature ranged between 4 and 12°C in Grotta Bella, and between 10 and 12°C in Grotta Regina Margherita. The occurrence of some taxa that usually roost 36
in hollow trees (Nyctalus noctula, Plecotus auritus s.l.), in addition, might indicate periods of climatic deterioration or at least particularly cold winters. Bats have a foraging range of several kilometres from their roosts (Niethammer & Krapp 2001, Lanza & Agnelli 2002, Lanza 2012). Therefore, by analysing the actual distribution areas and foraging environments of the taxa identified (Table 6), the study of the bones found in the archaeological digs provides interesting information on the surroundings of the caves at the time of their deposition. For refined quantitative analyses, significantly numerous samples are required, taking into account that some species form large colonies (monospecific or mixed), even of thousands of individuals (e.g., Myotis myotis, M. blythii, M. capaccinii, Miniopterus schreibersii), others form smaller colonies, from a few individuals to several hundred (e.g., Rhinolophus ferrumequinum, R. hipposideros, M. mystacinus) or have more solitary behaviours (e.g., M. bechsteini, M. emarginatus, Barbastella barbastellus). However, despite the limited numerical significance of some samples, these can still provide useful environmental information. For example, species found at Grotta Bella suggest that, in the Bronze Age, the slopes of Mount Aiola were mostly covered by woodland near wetland areas and they were frequented by Myotis bechsteinii and M. capaccinii, whereas the presence of Miniopterus schreibersii indicates the existence of a more varied environment, both rich in woodlands and clearings. The bat taxa found at Grotta Mora Cavorso show that in the chronological interval considered in the Upper Aniene Valley both woodlands, frequented by Myotis myotis, Plecotus auritus s.l. and Rhinolophus hipposideros, and open spaces were present, as suggested by Myotis blythii, which prefers rich grasslands as foraging areas, avoiding both arid or denuded areas and any type of woodland and forest. At the same time, R. ferrumequinum indicates the presence of different environments, both forested and open, close to waterways. Although the individuals of the species that prefer mixed environments are relatively numerous (R. ferrumequinum, Myotis mystacinus s.l. and Miniopterus schreibersii), the surroundings of the Grotta Regina Margherita, in Collepardo, were likely to be covered by woodlands in the Middle Bronze Age, and frequented by the other rhinolophids and by M. myotis, whereas the presence of M. blythii indicates the existence also of open spaces (Fig. 2). The ratio of the taxa recovered from the stratigraphic sequence of Grotta Continenza, finally, shows that from the Mesolithic (layer 27) to the Neolithic (layer 23), along the Fucino basin and the slopes of Mount Labbrone, the tree crown cover increased at the expense of open spaces (Fig. 3). In effect, this coincides with an increase in the woodlandadapted species, with some fluctuations, from 36.4 to 55.6%. The aforementioned environmental indications provided by bats are generally compliant with those derived from the study of the non-volant micromammals, i.e. rodents and soricomorphs (Di Canzio 2004, Salari 2014).
Barbastella 8(1) 2015
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy)
Biogeography All the taxa identified are still part of the extant Italian bat fauna. With regards to the species recognised through the use of modern bioacustic and biomolecular analyses (see “Systematic notes”), in Italy P. pygmaeus seems to be found along the entire pensinsula, M. punicus and P. sardus in Sardinia, M. alcathoe in central and southern Italy, P. macrobullaris in the Alpine regions, P. kolombatovici in the extreme North-East, P. gaisleri in the island of Pantelleria, whereas the presence of M. aurescens has not been confirmed (Agnelli et al. 2006, Lanza 2012). The taxa identified are mainly species of Mediterranean affinities (sensu lato and sensu stricto, Horáček et al. 2000), both in terms of the number of identified remains and invididuals and the number of sites where they were found. The presence of nemoral and especially boreal species is not significant (Table 6), which is similar to the trend on the peninsula for the extant bat fauna (Lanza & Agnelli 2002, Salari & Di Canzio 2009). Comparing the taxa identified only with those present today in the caves examined or their surroundings might be misleading, although in some cases this could provide data about the stability of the roost choices of those species. By widening the comparisons to species that live in Umbria, Latium and Abruzzi today (Agnelli et al. 2006, Russo et al. 2010, Biscardi et al. 2012), integrating the data discussed so far with the literature of the bat remains from Grotta del Lago, Grotta Sant’Angelo and Grotta dei Cocci (Taliana et
Fig. 2 - Grotta Regina Margherita, Bronze Age, Chiroptera: percent ratio (number of individuals) according to foraging environment (see Tab. 6).
al. 1996, Wilkens 1996, Salari & Di Canzio 2009, Salari 2011), it can be noted instead that the bat fauna of these regions in the early and middle Holocene was already very similar to the present (Table 6). Regional peculiarities can be also noted, such as the presence of Myotis capaccinii and Rhinolophus euryale in Abruzzi, a region where they are not recorded after 1980 (Agnelli et al. 2006). The key presence to be considered in this framework, however, is that of Rhinolophus mehelyi, a species that now does not live in the area, at Grotta Continenza and Grotta dei Cocci in the early and middle Holocene.
Fig. 3 - Grotta Continenza, Mesolithic and Neolithic, Chiroptera: percent ratio (number of individuals) between layer 27 and layer 23 according to foraging environment (see Tab. 6). M: Mesolithic; N: Neolithic.
Barbastella 8(1) 2015
37
Leonardo Salari, Letizia Silvestri
R. mehelyi is a cave-dwelling bat particularly sensitive to human disturbance, and in Italy presently limited in its distribution to Sardinia and Sicily, and probably Apulia (Agnelli et al. 2006, Mucedda et al. 2009, Lanza 2012, Dondini et al. 2014). Before 1980, the only ascertained occurrences in the peninsula were restricted to Apulia (Grotta della Cava, Grotte di Castellana and Grotta Zinzulusa, these latter open to tourism), whereas the past and the recent records in Calabria and Campania have been subsequently not confirmed (Mucedda et al. 2009, Lanza 2012). In the entire range of its distribution, R. mehelyi is today considered vulnerable and endangered: it has declined in numbers in the Iberian peninsula, where it is relatively more abundant, close to extinction in France and perhaps already extinct in Corsica, Croatia and Israel (Agnelli et al. 2006, Mucedda et al. 2009, Lanza 2012), but after about 45 years it has reappeared in Apulia, at Grotta Zinzulusa (Dondini et al. 2014). In the Lateglacial, Mehely’s horseshoe bat is reported in few sites of Mediterranean Europe and Caucasus; in Italy it occurs both in the Northern (Caverna delle Arene Candide, Isola di Palmaria, Grotta del Broion) and in the Central-Southern part of the Peninsula (Grotta Continenza, Grotta Paglicci) (Salari & Di Canzio 2009, Salari 2010, 2011, 2012) and in the less recent Holocene in Grotta Continenza and Grotta dei Cocci. Given that this species is linked to a certain extent to forested areas, these records might indicate a reduction of an initially wider range caused by the reduction of woodland (for natural or human causes) in a large portion of the Italian territory during the Holocene.
Human activity With regards to the human-bats interaction, it is known that chiropterans generally avoid caves that are intensively frequented by humans (Guillem Calatayud 1997, Rossina 2006, Rossina et al. 2006, Salari & Kotsakis 2011, LópezGarcía & Sevilla 2012). In addition, there is no evidence that they were preyed on by prehistoric hunters for food or other purposes in Europe, whereas exceptions in other parts of the world have been recorded (e. g., Hand & GrantMackie 2012). Bats can be occasional targets by birds of prey (see “Taphonomic observations”), which do not usually frequent caves that are regularly occupied by humans. Therefore, the bones examined are likely to testify to periods of abandonment or sporadic frequentation by humans. It has been well documented that the number of bat remains is generally inversely proportional, if not specular, to the quantity of lithic finds and/or anthropogenic traces found on animal bones (Jullien 1972, Salari 2010, 2012, Salari & Kotsakis 2011). A considerable presence of bats, in addition, can provide indirect data also on the seasonality of human frequentation, along with other indicators such as the presence or absence of juveniles among the most commonly hunted species in prehistory. Taking into account that the time intervals studied might have been unequal and that environmental factors might also have been influential, the decrease in remains from the Mesolithic to the Neolithic at Grotta Continenza (Tables 1 and 2) suggests progressive intensification of human frequentation of the cave. The alternating frequentation of the cave by bats and humans might be pluriannual or even seasonal (late spring - early autumn for humans, late autumn 38
- early spring for bats). With regards to the Neolithic, the second scenario would be supported by the funerary and/or ritual use of the cave in this period (Barra et al. 1990). With regards to the caves of Latium, archaeological and zooarchaeological studies are still ongoing, but it might not be the case that, at Grotta di Pastena, the only bat remains found were located in the niche “E10”, next to the lowest quantity of faunal remains presumably brought into the cave by humans (a fragment of juvenile radius of Ovis vel Capra) (Angle et al. 2010a). At Grotta Regina Margherita, the majority (68.6%) of the bat remains are from Dig C (1 sq m); the other finds are equally divided between Dig A (8 sq m) and Dig D (9 sq m), whereas Dig B (3 sq m) and Dig E (1 sq m) did not hold any (Angle et al. 2010b). Therefore, a small portion of the sediment deposited in a roughly equal time period produced a higher number of finds. Still keeping in mind that such an unequal distribution of bat osteological remains might be connected to microclimatic factors and preferences in the selection of roosts, it is plausible that human disturbance (smoke from hearths, light and noise) of the bats was lower in the area of Dig C compared to elsewhere in the cave.
Conclusions This study documents the presence of bats in five caves of Central Italy (Umbria, Lazio, Abruzzi) in the early and middle Holocene (between the Mesolithic and the Bronze Age, i.e. between the Preboreal and the Subboreal chronozones). Sixteen taxa have been identified, subdivided into three families (Rhinolophidae, Vespertilionidae and Miniopteridae) and seven genera (Rhinolophus, Myotis, Nyctalus, Plecotus, Barbastella, Miniopterus and Hypsugo vel Pipistrellus). The remains examined are morphologically and morphometrically indistinguishable from the extant species. The taphonomical observations suggest that the bat assemblages examined are autochthonous thanatocoenoses, except for that from Grotta di Pastena, which may have been accumulated by a predator. It has been briefly shown how the relative abundance of bat remains in the sediments can reveal periods of absence or occasional frequentation of the caves by prehistoric humans. Analysis of their ecological attributes has allowed formulation of some hypotheses on the winter microclimate of the caves, as well as on the environments surrounding the various sites. The estimated microclimate for the inner chambers of Grotta Mora Cavorso has been supported by study of the speleothems and monitoring of the current physical parameters (temperature, relative humidity) of the karst cave. The environmental indications provided by bats are generally compliant with those derived from the study of other microvertebrates, rodents and soricomorphs in particular. The comparison between the taxa identified in the caves examined, integrated with published data, and those taxa still found in Umbria, Latium and Abruzzi, sheds new light on the dynamics of bat populations between the end of the Pleistocene and the present-day in these regions. In the latest phases of the Pleistocene (Last Glacial Maximum and Lateglacial), some boreal species were present in Central Italy, such as Myotis dasycneme and Eptesicus nilssonii,
Barbastella 8(1) 2015
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy)
alongside various taxa of Mediterranean affinities (Salari & Di Canzio 2009, Salari & Kotsakis 2011). In the initial phases of the Holocene, the global warming that pushed the ”cold“ species North to their original distribution range has clearly favoured a similar trend of the bat fauna population as today, also in the innermost areas of the Apennines.
Benda, P., Ivanova, T., Horáček, I., Hanák, V., Červený, J., Gaisler, J., Gueorguieva,A., Petrov,A., & Vohralík, V. 2003. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 3. Review of bat distribution in Bulgaria. Acta Societatis Zoologicae Bohemicae 67: 245-357.
Finally, the occurrence of Rhinolophus mehelyi in the Central Apennines during the early and middle Holocene provides new information on the past geographical distribution of this species, which today occurs only in Sicily and Sardinia and which has been recently re-discovered in Apulia.
Bevilacqua, R. 1994. La Grotta Continenza di Trasacco. I livelli mesolitici ed epigravettiani. Rivista Scienze Preistoriche 46: 3-39.
Acknowledgements We are grateful to Katia F. Achino and Tassos Kotsakis for their support. We thank also Suzanne Hand, Juan Manuel López and a third anonymous referee for insightful suggestions on an earlier draft of the manuscript.
References Agnelli, P. & Guaita, C. 2009. Predazione di Glis glis su una colonia di Myotis emarginatus nella Riserva Naturale di Ponte Buriano e Penna (AR). In: G. Dondini, G. Fusco, A. Martinoli, M. Mucedda, D. Russo, M. Scotti, S. Vergari (eds.), Chirotteri italiani: stato delle conoscenze e problemi di conservazione - Atti del 2° Convegno Italiano sui Chirotteri, pp. 69-71. Agnelli, P., Martinoli, A., Patriarca, E., Russo, D., Scaravelli, D. & Genovesi, P. 2006. Guidelines for bat monitoring: methods for the study and conservation of bats in Italy. Quaderni di Conservazione della Natura, 19 bis, Min.Ambiente - Ist. Naz. Fauna Selvatica, 200 pp. Andrews, P. 1990. Owls, cave and fossils: Predation, preservation, and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK. Natural History Museum Publications, London, 231 pp. Angle, M., Bruni, N., Cerqua, M., Riva, A., Cavazzuti, C. & Celletti, P. 2010a. Nuovi scavi nella grotta di Pastena (Frosinone). Lazio e Sabina 6: 369-380. Angle, M., Catracchia, C., Cavazzuti, C., Celletti, P., Malorgio, M. & Mancini, D. 2010b. La grotta Regina Margherita a Collepardo (Frosinone). Lazio e Sabina 6: 381-393. Angle, M., Rolfo, M.F., Fusco, I. & Silvestri, L. 2014. New investigations at the Cave of Pastena (Frosinone). Report 2012. Lazio e Sabina 10: 205-2011. Barra, A., Grifoni Cremonesi, R., Mallegni, F., Piancastelli, M., Vitello, A. & Wilkens, B. 1990. La Grotta Continenza di Trasacco. I livelli a ceramiche. Rivista Scienze Preistoriche 42: 31-100.
Biscardi, S., Cistrone, L., Tomassini, A., Pieroni, A. & Russo, D. 2012. I chirotteri della Riserva Naturale Regionale Monti Navegna e Cervia. ARP, Roma, 84 pp. Csorba, G., Ujhelyi, P. & Thomas, N. 2003. Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Alana Book, Bishop’s Castle, 160 pp. Curci, A., De Angelis, M.C., Moroni, A., Padoanello, S. & Tagliacozzo, A. 2014. Grotta Bella (Umbria). Dati per un’analisi economica e paleo ambientale. Rivista Studi Liguri 77/79 (2011/13): 143-150. Curci, A., Padoanello, S. & Tagliacozzo, A. 2010. Nuove analisi archeozoologiche a Grotta Bella (Terni): considerazioni economiche e paleoambientali. In: A. Tagliacozzo, I. Fiore, S. Marconi, U. Tecchiati (eds.), Atti del 5° Convegno Nazionale di Archeozoologia, Osiride, Rovereto, pp. 135-138. Di Canzio, E. 2004. Record a micromammiferi dell’area mediterranea e loro relazioni con la ciclicità climatica ad alta frequenza dell’ultimo glaciale. PhD Thesis in Paleontological Sciences, Modena, Bologna andRoma “Sapienza” Universities. Dondini, G., Tomassini, A., Inguscio, S. & Rossi, E. 2014. Rediscovery of Mehely’s horseshoe bat (Rhinolophus mehelyi) in peninsular Italy. Hystrix, n.s. 25 (1): 5960. http://dx.doi.org/10.4404/hystrix-25.1-9248 Felten, H., Helfricht, A. & Storch, G. 1973. Die Bestimmung der europäischen Fledermäuse nach der distalen Epiphyse des Humerus. Senckenbergiana Biologica 54: 291-297. Fernández-Jalvo, Y. & Andrews, P. 1992. Small Mammal Taphonomy of Gran Dolina. Atapuerca (Burgos), Spain. Journal of Archaeological Science 19: 407-428. http://dx.doi.org/10.1016/0305-4403(92)90058-B Guillem Calatayud, P.M. 1997. Estudio tafonómico de los quirópteros de Cova Negra (Xátiva): una confirmación del carácter corto y esporádico de las ocupaciones antrópicas. Archivo de Prehistoria Levantina 22: 4156. Guerreschi, G., Catalani, P., Longo, G. & Iannone, A. 1992. Grotta Bella (Terni). Una sequenza stratigrafica dal Neolitico inferiore all’età imperiale. I livelli preistorici. Bullettino Paletnologia Italiana, N.S. 83: 143-228.
Barbastella 8(1) 2015
39
Leonardo Salari, Letizia Silvestri
García, A.M., Cervera, F. & Rodríguez, A. 2005. Bat predation by long-eared owls in Mediterranean and temperate regions of Southern Europe. Journal Raptor Research 39: 445-453.
Miller, G.S. 1912. Catalogue of the Mammals of Western Europe (Europe exculsive of Russia). British Museum (Nat. Hist.), London, 1019 pp. http://dx.doi. org/10.1515/mamm.1977.41.2.207
Ghazali, M.A. 2009. Identification of Myotis Blythii and M. Myotis (Chiroptera, Vespertilionidae) from Eastern Europe based on the measurements of lower teeth. Vestnik zoologii 43: 403-408. http://dx.doi. org/10.2478/v10058-009-0018-6
Miller-Butterworth, C.M., Murphy, W.J., O’Brien, S.J., Jacobs, D.J., Springer, M.S. & Teeling, E.C. 2007. A Family Matter: Conclusive Resolution of the Taxonomic Position of the Long-Fingered Bats, Miniopterus. Molecular Biology and Evolution 24: 1553-1561.
Hand, S.J. & Grant-Mackie, J.A. 2012. Late Holocene bats of Mé Auré Cave, New Caledonia: evidence of human consumption and a new species record from the recent past. The Holocene 20:79-90. http://dx.doi. org/10.1177/0959683611409783 Harris, E.C. 1979. Principles of archaeological stratigraphy. Academic Press, London, 170 pp. Horáček, I., Hanák, V. & Gaisler, J. 2000. Bats of the Palearctic Region: a taxonomic and biogeographic review. In: B.W. Wołoszyn (ed.), Proceedings of theVIIIth EBRS, 1, pp. 11-157. Jullien, R. 1972. Les chiroptères du Wurmien II de la grotte de l’Hortus (Valflaunès, Hérault). Etudes Quaternaires 1: 247-265. Kowalski, K. 1995. Taphonomy of bats (Chiroptera). Geobios, M.S. 18: 251-256. http://dx.doi.org/10.1016/ S0016-6995(95)80172-3 Lanza, B. 1959. Chiroptera Blumenbach, 1779. In: A. Toschi, B. Lanza, Fauna d’Italia, vol. IV, Mammalia, generalità, Insectivora, Chiroptera, Calderini, Bologna, pp. 187-473. Lanza, B. 2012. Fauna d’Italia. Mammalia V. Chiroptera. Edizioni Calderini de Il Sole 24 Ore, Milano-Bologna, 800 pp. Lanza, B. & Agnelli, P. 2002. Chirotteri, Chiroptera Blumenbach, 1779. In: M. Spagnesi, A.M. De Marinis (eds.), Mammiferi d’Italia. Quaderni di Conservazione della Natura 14: 44-142. López-García, J.M. & Sevilla, P. 2012. La contribución de los fósiles a la reconstrucción de las dinámicas de población de murciélagos. Barbastella 5 (1): 12-18. http://dx.doi.org/10.14709/BarbJ.5.1.2012.03 Mangerud, J., Andersen, S.T., Berglund, B.E. & Donner, J.J. 1974. Quatcrnary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3: 109-128. Mein, P. 1975. Les Chiroptères (Mammalia) du gisement pléistocène moyen des Abimes de la Fage à Noailles (Corrèze). Nouvelles Archives du Museum d’Histoire Naturelle de Lyon 13: 57-67. Mein, P. & Tupinier, Y. 1977. Formule dentaire et position systematique du Minioptere (Mammalia, Chiroptera). Mammalia 41: 207-210. 40
Mucedda, M., Pidinchedda, E. & Bertelli, M.L. 2009. Status del Rinolofo di Mehely (Rhinolophus mehelyi) (Chiroptera, Rhinolophidae) in Italia. In: G. Dondini, G. Fusco, A. Martinoli, M. Mucedda, D. Russo, M. Scotti, S. Vergari (eds.), Chirotteri italiani: stato delle conoscenze e problemi di conservazione - Atti del 2° Convegno Italiano sui Chirotteri, pp. 89-98. Natura 2000 Database, http://natura2000.eea.europa.eu/ Natura2000, consulted on 07/02/2015. Niethammer, J. & Krapp, F. 2001. Handbuch der Säugetiere Europas. Bd. 4: Fledertiere, Teil I: Chiroptera I. AULA-Verlag, Wiebelsheim, 603 pp. Orombelli, G. & Ravazzi, C. 1996. The Lateglacial and early Holocene: chronology and paleoclimate. Il Quaternario 9: 439-444. Papi, F. 2004. Contributo alla conoscenza della fauna cavernicola del Parco Naturale Regionale dei Monti Simbruini. Thesis in Biological Sciences, University of Roma “Tor Vergata”. Rabeder, G. 1972. Die Insectivoren und Chiropteren (Mammalia) aus dem Altpleistozan von Hundsheim (Niederosterreich). Annalen Naturhistorisches Museum Wien 76: 375-474. Ravazzi, C. 2003. An overview of the Quaternary continental stratigraphic units based on biological and climatic events in Italy. Il Quaternario 16 (1bis): 11-18. Rebello, H., Tarraso, P. & Jones, G. 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology 16: 561-76. http://dx.doi. org/10.1111/j.1365-2486.2009.02021.x Rolfo, M.F., Achino, K.F., Fusco, I., Salari, L.& Silvestri, L. 2013. La grotta Mora Cavorso a Jenne (Roma). I livelli dell’antica-media età del Bronzo. Rivista Scienze Preistoriche 63: 95-123. Rolfo, M.F., Achino, K.F., Fusco, I., Silvestri, L. & Salari, L. 2012a. Grotta Mora Cavorso a Jenne, campagne di scavo 2009-2010. Lazio e Sabina 8: 77-90. Rolfo, M.F., Isola, I., Salari, L. & Zanchetta, G. 2012b. Stratigraphy, archeology and paleoclimate of Cavorso Cave (Central Italy): preliminary data. Abstracts Congresso AIQUA “The transition from natural to anthropogenic-dominated environmental change in
Barbastella 8(1) 2015
Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy)
Italy and the surrounding regions since the Neolithic”, Pisa, 15-17 Febbraio 2012, p. 74.
Storia Naturale Verona 33 (Geologia Paleontologia Preistoria): 3-25.
Rolfo, M.F., Lelli, R., Martinez Labarga, C., Passacantando, D., Scorrano, G., Salari, L. & Rickards, O. 2012c. La comunità neolitica di Grotta Mora Cavorso a Jenne (Roma): osservazioni deposizionali, paleobiologiche e faunistiche. Atti del 10° Incontro di Studi sulla Preistoria e Protostoria in Etruria, Vol. I, pp. 131-143.
Salari, L. & Kotsakis, T. 2011. Late Pleistocene and Holocene bats of Latium (Central Italy). Il Quaternario 24: 121-129. Salari, L., Kotsakis, T. & Petronio, C. 2013. Early Pleistocene Bats from Pirro Nord (Apulia, Southern Italy). Palaeontographica, Abt. A 298: 55-72.
Rossina, V.V. 2006. Bats as an Indicator of Human Activity in the Paleolithic, Using the Example of Denisova Cave, Northwestern Altai. Paleontological Journal 40 (4): 5494-5500.
Salari, L., Passacantando, D. & Rolfo, M.F. 2011. First data on the latest Pleistocene Mammals from Mora Cavorso Cave (Jenne, Latium, Central Italy). Il Quaternario, 24: 131-140.
Rossina, V.V., Baryshnikov, G.F. & Woloszyn, B.W., 2006. Dynamics of the Pleistocene bat fauna from the Matuzka Paleolithic site (Northern Caucasus, Russia) (Chiroptera). Lynx (Praha) N.S. 37: 229-240.
Salari, L., Zarattini, A. & Rolfo, M.F. 2012. Nota preliminare sulla fauna del Neolitico antico di Grotta Mora Cavorso (Jenne, Lazio). In: J. De Grossi Mazzorin, D. Saccà, C. Tozzi (eds.), Atti del 6° Convegno Nazionale di Archeozoologia, Lucca, pp. 171-174.
Ruedi, M., Arlettaz, R. & Maddalena, T. 1990. Distinction morphologique et biochimique de deux especes jumelles de chauves-souris: Myotis myotis (Bork.) et Myotis blythi (Tomes) (Mammalia; Vespertilionidae). Mammalia 54: 415-429. http://dx.doi.org/10.1515/ mamm.1990.54.3.415 Russo, D., Cistrone, L. & Carotenuto, L. 2010. I chirotteri della Riserva Naturale Regionale Montagne della Duchessa. ARP, Roma, 82 pp. Salari, L. 2004. Contributo alla conoscenza dei resti ossei dei Chirotteri. Grotte e dintorni 8: 45-54. Salari, L. 2010. Lateglacial bats from the “M” layers of the Arene Candide Cave (Liguria, Italy). Rivista Italiana Paleontologia Stratigrafia 116: 119-138. Salari, L. 2011. Holocene bats from the Cocci Cave (Narni, Central Italy): palaeoecological and palaeobiogeographical implications. Revue de Paléobiologie 30: 605-618. Salari, L. 2012. I chirotteri tardopleistocenici della Caverna delle Arene Candide (Finale Ligure, Italia settentrionale): indicazioni paleoecologiche e paleobiogeografiche e interazione con gli esseri umani. In: J. De Grossi Mazzorin, D. Saccà, C. Tozzi (eds). Atti del 6° Convegno Nazionale di Archeozoologia, Lucca, pp. 89-95. Salari, L. 2014. Holocene micromammals (Soricomorpha and Rodentia) from some caves of Central Italy. Revue de Paléobiologie 33: 79-96. Salari, L. in press. Micromammiferi di alcune grotte dell’Appennino centrale tra il Mesolitico e l’età del Bronzo. In: Atti del 7° Convegno Nazionale di Archeozoologia, Ferrara-Rovigo 22-24 novembre 2012. Salari, L. & Di Canzio, E. 2009. I chirotteri del Pleistocene superiore e Olocene antico di alcune grotte dell’Italia centro-meridionale. Bollettino Museo Civico di
Sevilla García, P. 1986. Identificación de los principales quirópteros ibéricos a partir de sus dientes aislados. Valor sistemático de los caracteres morfológicos y métricos dentarios. Doñana Acta Vertebrata 13: 111130. Sevilla García, P. 1988. Estudio paleontologico de los quirópteros del Cuaternario español. Paleontologia i Evolució 22: 113-233. Silvestri, L., Rolfo, M.F. & Salari, L. in press. La fauna della media età del Bronzo di Grotta Mora Cavorso (Jenne, Lazio). In: Atti 7° Convegno Nazionale di Archeozoologia, Ferrara-Rovigo 22-24 novembre 2012. Simmons, N.B. 2005. Order Chiroptera. In: D.E.Wilson & D.A.M. Reeder (eds.), Mammal species of the world. A taxonomic and geographic reference. 3rd Ed., Johns Hopkins University Press, Baltimore, Vol. 1, pp. 312529. Taliana, D., Alessio, M., Allegri, L., Capasso Barbato, L., De Angelis, M.C., Esu, D., Girotti, O., Gliozzi, E., Improta, S., Mazzini, I. & Sardella, R. 1996. Preliminary results on the “Grotta del Lago” Holocene deposits (Triponzo, Nera River Valley, Umbria, Central Italy). Il Quaternario 9: 745-752. Topál, G. & Tusnadi, G. 1963.- Data for craniometric investigation of Myotis myotis Borkh. and Myotis oxygnathus Montic. in Hungary. Annales HistoricoNaturales Musei Nationalis Hungarici 55: 543-549. Vernier, E. 1993. Predazione di Chirotteri da parte del Barbagianni (Tyto Alba) in Italia. Hystrix, n.s. 5: 105107. http://dx.doi.org/10.4404/hystrix-5.1-2-4010 Wilkens, B. 1996. Le faune. In T. Di Fraia, R. Grifoni Cremonesi (eds), La Grotta Sant’Angelo sulla Montagna dei Fiori (Teramo), IEPI, Pisa-Roma, pp. 277-293.
Barbastella 8(1) 2015
41
Antonio Fulco, Ivy Di Salvo, Danilo Russo, Mario Lo Valvo
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
First record of brown long-eared bat Plecotus auritus (Chiroptera: Vespertilionidae) for Sicily island (Italy) Antonio Fulco ¹,², Ivy Di Salvo¹,², Danilo Russo² & Mario Lo Valvo¹* ¹ Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Laboratorio di Zoologia applicata University of Palermo, Via Archirafi 18, I-90123 Palermo (Italy). ² Wildlife Research Unit, Laboratorio di Ecologia Applicata, Sezione di Biologia e Protezione dei Sistemi Agrari e Forestali, Dipartimento di Agraria. University of Naples “Federico II”, Via Università 100, I-80055 Portici, Napoli (Italy). *Corresponding author e-mail: mario.lovalvo@unipa.it DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.07 © 2015 Published by SECEMU. Spanish title: Primera observación del murciélago orejudo dorado (Chiroptera: Vespertilionidae) en la isla de Sicília (Itália)
received: April 21st 2015 accepted: June 11st 2015
The knowledge of the bat fauna of Sicily (Southern Italy) is scarce, fragmentary or sometimes even confusing (Di Salvo et al. 2012b). Although for other groups of terrestrial vertebrates on the island a detailed checklist is available, this is not the case of bats, due to insufficient research effort and the typical difficulties of detecting and identifying these elusive mammals (Russo et al. 2004). A recent review by Agnelli et al. (2008) mentioned 20 species for the region, and a few more were added by further investigations, namely the Bechstein’s bat (Myotis bechsteinii Kuhl, 1817) (Di Salvo et al. 2012a), the soprano pipistrelle (Pipistrellus pygmaeus Leach, 1825) (Fichera et al. 2013) and the Maghreb mouse-eared bat (Myotis punicus Felten, 1977) (Bogdanowicz et al. 2015). The occurrence of Hypsugo cfr. darwinii – still awaiting morphological description – has also been confirmed (Veith et al. 2011). It is likely that the checklist of bats of Sicily is still far from being exhaustive. The large surface, the geographical position and the variety of habitats on the island, along with the good habitat quality still persisting in many areas are all factors providing potential niches to species occurring in the nearby Italian peninsula but not yet found in Sicily. Among the potentially overlooked species, several are forest bats, the most elusive and least investigated bat guild occurring in the region. To help fill this gap, in the past few years specific studies were carried out on the distribution of bat species in Sicily, especially in the woodlands of the Nebrodi Mountains, home 42
to large forests including old growth stands of Turkey oaks (Quercus cerris), beeches (Fagus sylvatica) and European yews (Taxus baccata), as well as wetlands (lakes Maulazzo and Biviere). Thirteen bat species have been reported for the territory of the Nebrodi Regional Park (Zava & Violani 1992, Di Salvo et al. 2012a, 2012b, Mucedda et al. 2012). On 12th September 2014 we surveyed a beech forest in the municipality of Caronia (Messina province) by erecting two mistnets (6 and 12 m, mesh size = 14 mm) at a drinking site at 1,500m a.s.l.. We captured a young female brown longeared bat Plecotus auritus (Linneaus, 1758) (Fig. 1), that was identified following Dietz & Helversen (2004), while sex and age class were ascertained following Anthony (1988) and Racey (1988). The main biometric measures taken from the specimen were as follows: forearm length = 38.3 mm; thumb = 6.5 mm; claw = 2.5 mm; weight 6.65 g. The capture of P. auritus, apparently widespread in Italy but occurring at low density whose presumed rarity in Italy (Lanza 2012), represents an interesting biogeographical record, as this bat is mostly known for the north and centre of the Italian peninsula (Lanza & Agnelli 1999, Agnelli et al. 2004, Lanza 2012); large gaps in the knowledge of the species distribution still occur for the rest of the country (Lanza & Agnelli 1999, Agnelli et al. 2004, Lanza 2012). In the nineteenth century Sanvicente (1849) reported on the presence of Vespertilio auritus (ancient synonym for P. auritus) on the island of Lampedusa (off the southern coast of Sicily) but the reliability of this record has been questioned (Massetti & Zava 2002 in Lanza 2012). Moreover, Galvagni
Barbastella 8(1) 2015
First record of brown long-eared bat Plecotus auritus (Chiroptera: Vespertilionidae) for Sicily island (Italy)
References Agnelli, P., Di Salvo, I., Russo, D. & Sarà, M. 2008. Chirotterofauna della Sicilia. In: AA.VV. Atlante della Biodiversità della Sicilia: Vertebrati terrestri. Studi e Ricerche, 6. Palermo: Arpa Sicilia. Agnelli, P., Martinoli, A., Petriarca, E., Russo, D., Scaravelli, D. & Genovesi, P. 2004. Linee guida per il monitoraggio dei Chirotteri: indicazioni metodologiche per lo studio e la conservazione dei pipistrelli in Italia. Istituto Nazionale per la Fauna Selvatica “Alessandro Ghigi”, Ministero dell’Ambiente e della Tutela del Territorio. Quaderni di Conservazione della Natura n° 19.
Fig. 1 – Close-up of the Plecotus auritus specimen captured in the Nebrodi Mountains (Sicily) (1837) mentioned P. auritus in Sicily for f Mt. Etna (Nicolosi) and Minà Palumbo for the Madonie Mountains, Palermo, Cefalù, Castrogiovanni (today called Enna) and Agrigento. However, Sarà (1999), following Kock (1969) and Felten and Storch (1970) attributed such findings to P. austriacus, known to occur in Sicily, since its distinction from the sibling P. auritus dates back to the mid 1950s’ (Topal 1958 in Lanza 1959) so previous records of this species were obviously attributed to P. auritus. For this reason, further reviews (Agnelli et al. 2004, 2008, Angelici et al. 2009, Lanza 2012) omitted P. auritus from the bat fauna of Sicily and its minor islands. Based on our observation we cannot rule out that some of the old records were actually correctly referred to P. auritus. P. auritus is listed as “near threatened”” (NT) in Italy (Rondinini et al. 2013); the species is also included in Annex IV of the 92/43/EC Habitats Directive. The major threat to this species is given by intensive forestry (Rondinini et al. 2013). Further information is needed on the distribution and ecology of P. auritus in Sicily to assess its conservation status and develop appropriate conservation plans.
Acknowledgements We wish to thank Stefania D’Arpa for her support in the field work. Funding was provided by the “Dipartimento Interventi Strutturali per l’Agricoltura della Regione Siciliana” in the framework of the “Sviluppo di strumenti gestionali propedeutici alla pianificazione Faunisticovenatoria ed ambientale e alla Conservazione delle specie minacciate della Regione Siciliana” project. Capture permits were issued by the ‘‘Ministero dell’Ambiente e della Tutela del Territorio e del Mare—Direzione Protezione Natura (Prot. 0042847/PNM of 9 Aug 2013, Div. II)’’. We also thank three anonymous reviewers for their valuable comments on a first manuscript draft.
Angelici, F.M., Laurenti, A. & Nappi, A. 2009. A checklist of the mammals of small italian island. Hystrix, the Italian Journal of Mammology 20: 3-27. Doi: http:// dx.doi.org/10.4404/hystrix-20.1-4429 Anthony, E.L.P. 1988. Age determination in bats: In: Kunz, T. H. (Ed.), Ecological and Behavioral Methods for the Study of Bats. Smithsonian Institution Press, Washington D. C. and London: 47-58. Bogdanowicz, W., Hulva, P., Černá Bolfíková, B., Buś, M. M., Rychlicka, E., Sztencel-Jabłonka, A., Cistrone, L. and Russo, D. (2015), Cryptic diversity of Italian bats and the role of the Apennine refugium in the phylogeography of the western Palaearctic. Zoological Journal of the Linnean Society. doi: 10.1111/zoj.12248. Doi: http://dx.doi. org/10.1111/zoj.12248 Di Salvo, I., Fulco, A., Sarà, M. & Russo, D. 2012a. Occurrence of Bechstein’s bat Myotis bechsteinii (Chiroptera: Vespertilionidae) in Sicily. Natura Rerum 1: 75-78. Di Salvo, I., Fulco, A. & Sarà, M. 2012b. New records on woodland bats in the nebrodi regional park. Hystrix, the Italian Journal of Mammology, (n.s.) Supp.: 115. Dietz, C. & Helversen (von), O. 2004. Illustrated identification key to the bats of Europe - Electronic publication, Version 1.0. Felten, H. & Storch, G. 1970. Kleinsauger von den italienischen Mittelmeer Inseln Pantelleria und Lampedusa. Senkenbergiana Biologica51: 159-173. Fichera, G., Mucedda, M., Catalano, P. & Pidinchedda, E. 2013. Firs record of Pipistrellus pygmaeus in Sicily. Biodiversity Journal 4: 467-470. Galvagni, G.A. 1837. Fauna etnea ossia materiali per la compilazione della zoologia dell’Etna. Atti Accademia Gioenia di Scienze Naturali in Catania, Catania. Kock, D. 1969. Die Fledermaus-Fauna des Sudan. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 521: 1-238.
Barbastella 8(1) 2015
43
Antonio Fulco, Ivy Di Salvo, Danilo Russo, Mario Lo Valvo
Lanza, B. 1959. Chiroptera. In: Toschi, A., Lanza, B., (eds.). Fauna d’Italia, Vol. IV, Mammalia. Bologna: Calderini, 187-473. Lanza, B. 2012. Chiroptera - Fauna d’Italia - Vol. XLVII Mammalia V. Bologna: Calderini. Lanza, B. & Agnelli, P. 1999. Chirotteri, Chiroptera Blumenbach, 1779. In: Spagnesi, M. & Toso, S. (eds.), pls by Catalano, U. Iconografia dei Mammiferi d’Italia. Ministero dell’Ambiente, Servizio Conservazione Natura - Istituto Nazionale per la Fauna Selvatica “Alessandro Ghigi”, Roma e Ozzano dell’Emilia (Bologna). Mucedda, M., Fichera, G. & Pidinchedda, E. 2012. Record of Barbastella barbastellus in Sicily after 56 years. Natura Rerum 1: 79-81. Racey, P.A. 1988. Reproductive assessment in bats. In: Kunz, T.H, (Ed.). Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington D.C. and London: 31-45. Rondinini, C., Battistoni, A., Peronace, V., Teofili, C. (compilatori). 2013. Lista Rossa IUCN dei Vertebrati Italiani. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Roma.
44
Russo, D., Cistrone, L., Jones, G. & Mazzoleni, S. 2004. Roost selection by barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of central Italy: consequences for conservation. Biological Conservation 117: 73-81. Doi: http://dx.doi.org/10.1016/S00063207(03)00266-0 Sanvisente, B. 1849. L’isola di Lampedusa eretta a colonia dal munificentissimo nostro Sovrano Ferdinando II, descritta dal Cav. B. Sanvisente capitano di fregata e governatore della medesima. Con un cenno sulle minori isole Linosa e Lampione. Regia tipografica Militare; Napoli. Sarà, M. 1999. Il catalogo dei mammiferi della Sicilia rivisitato. In Sarà M. (3° ed.), Minà Palumbo F., 1866-67, 1868. Catalogo dei mammiferi della Sicilia. Società Messinese di Storia Patria, XVII. Veith, M., Mucedda, M., Kiefer, A. & Pidinchedda, E. 2011. On the presence of pipistrelle bats (Pipistrellus and Hypsugo; Chiroptera: Vespertilionidae) in Sardinia. Acta Chiropterologica 13: 89-99. Doi: http://dx.doi.org/10.3161/150811011X578642 Zava, B. & Violani, C. 1992. Nuovi dati sulla chirotterofauna italiana. Bollettino del Museo Regionale di Scienze Naturali, Torino 10: 261-264.
Barbastella 8(1) 2015
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella in Twitter and Facebook
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella on Twitter and Facebook Adrià López-Baucells1,2*, Luis Hernández-Tabernero3 & Ricardo Rocha2,4,5 Granollers Museum of Natural Sciences. Av. Francesc Macià 51, Granollers 08402, Catalonia (Spain). 2 Center for Ecology, Evolution and Environmental Changes. Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal) 3 Animal Biology Department. University of Salamanca Campus Miguel de Unamuno,37007 Salamanca (Spain). 4 Metapopulation Research Centre. Faculty of Biosciences, University of Helsinki, Viikinkaari, Helsinki (Finland). 5 Faculty of Life Sciences. University of Madeira, Colégio dos Jesuítas Rua dos Ferreiros 9000-082 Funchal (Portugal). 1
*Corresponding author e-mail: adria.baucells@gmail.com DOI: http://dx.doi.org/10.14709/BarbJ.8.1.2015.08 © 2015 Published by SECEMU. Spanish title: Divulgación científica en la era de las redes sociales: análisis del rendimiento de la revista científica Barbastella en Twitter y Facebook
Abstract: Social media has deeply transformed the way people communicate ideas and information, shifting from traditional media forms (e.g. newspapers, television and magazines) to digital media; of which, Facebook and Twitter stand out in terms of disseminating academic information and conservation outreach. Broad scientific communication and outreach have been highlighted as one of the most efficient methods to tailor people’s behaviour towards environmentally-friendly practices. However, some concerns about the use of social media have been raised, particularly: the potential misinterpretation of inherently brief messages; the fast analysis of complex problems, situations or concepts; the fact that they can trigger misinformation cascades due to the time-sensitive and political nature of some conservation issues; an overestimation of potential outreach due to the homophilic effect; or the likelihood to suffer from information fatigue syndrome (IFS). We evaluated the presence of the scientific journal Barbastella - published by the Spanish Society for Bat Research and Conservation (SECEMU) - on Facebook and Twitter during a period of almost two years and its Twitter outreach performance during the Spanish Bat Research and Conservation Conference (SBRCC) in 2014. Since the launch of its Facebook and Twitter accounts, Barbastella has respectively gathered 1,935 and 931 followers. Several posts have potentially reached between 5,000-17,000 (Facebook) and 3,000-5,500 (Twitter) users and whereas the Facebook account presented an audience mostly composed by local researchers and bat enthusiasts from Spain and Portugal, the Twitter account had a much more international audience. During the SBRCC, there were more online (Twitter and Facebook) followers of the conference than in situ conference attendants, even though conference tweets were almost exclusively posted by the Journal committee. Our analyses reveal the large potential of Facebook and Twitter to disseminate information far beyond more classical tools and highlights that social media can potentially play an important role in conservation science, while serious consideration on its usage must be taken into account to reduce possible social media inherent weaknesses. Both social media platforms were found to be complementary suggesting that cross-posting on multiple networks can considerably improve visibility. In order to disseminate research without compromising time commitment towards other scientific tasks, it is essential to have a targeted strategy for using social media with an accurate and reasonable planning of online time commitment, addressing all public target time-zones, selecting the most appropriate platform, publishing understandable brief and visual posts with reliable information amongst other optimizing strategies. Key-words: Bats; conservation engagement; online presence; science communication; social media; virtual communities. received: December 8th 2015 accepted: December 29th 2015
Barbastella 8(1) 2015
45
Adriá López-Baucells, Luis Hernández-Tabernero & Ricardo Rocha
Introduction Social media in the society The recently defined Anthropocene demarks a new time period in which human impacts have elevated environmental parameters to values outside their normal Holocene ranges (Corlett 2014). The Anthropocene will undoubtedly be characterized by one of the largest extinctions and local population extirpation events to have affected the planet’s biodiversity (Butchart et al. 2010, Dirzo et al. 2014). Under this scenario, well-developed conservation strategies with efficient science communication and broad outreach have been highlighted as potentially important methods to influence people’s choices towards more environmentallyfriendly attitudes. Biological conservation encompasses a complex network formed by many inter-related sectors of society: scientists, general public, NGOs, journalists, practitioners, local communities, activists, policy makers (Baron 2010, Papworth et al. 2015), and one of the main constraints that hampers effective action is the limited available information to inform conservation decisionmaking, which is commonly regionally and taxonomically biased (Di Minin et al. 2015). For an increasing share of the human population, with frequent Internet access, society is changing as individuals and communities are more connected than ever through online social media platforms. Online extensions of individuals via social media form online communities and, for many, normal day-to-day activities run parallel in both real and virtual worlds (Kaplan and Haenlein 2010, Briones et al. 2011, Takhteyev et al. 2012). Social media has deeply transformed the way people communicate ideas and information, shifting from the traditional media forms (newspaper, television or magazines) to digital media (Darling et al. 2013). Scientists are no exception to this global trend, as it has been reflected by a recent online survey (Van Noorden 2014) in which thousands of researchers were interviewed about their use of social media. Online tools have become extremely popular with an increasing number of academics trying to make use of them as a novel communication strategy for their own research (Bik and Goldstein 2013). However, despite the fact that social media are almost omnipresent in most researcher’s daily activities (e.g. Youtube, ResearchGate, GitHub, Academia and LinkedIn) numerous researchers are still reluctant to use these new opportunities, sometimes due to lack of proper guidance or the alienating nature of online interactions (Bik and Goldstein 2013, Di Minin et al. 2015). Among social media, both Facebook and Twitter stand out due to their rapid and continuous growth worldwide (Darling et al. 2013, Weller et al. 2014, You 2014, Table 1), with Facebook being the most used and widespread in all continents. According to the State of Inbound Marketing (2012), 42% of business owners consider Facebook to be a critical component of their business plan. The massive impact of social media upon the world’s population is clearly reflected by the sheer amount of people that use them regularly: over 1.65 billion monthly active users with an increasing 15% rate per year (from those, 1.09 billion users log on daily) generating 4.5 billion “likes”/day (Facebook 46
04/27/16). Europe has over 307 million users and more than 300 million photos uploaded each day (Search Engine Journal, Facebook 04/27/16). Globally, young people ranging from 25 to 34 years old represent 29.7% of the users, with the highest traffic occurring between 1 to 3 pm (Emarketer 2012). Interactions between users is large with more than 510,000 comments posted per minute. On the other hand, Twitter has a total of 1.3 billion registered users of which 320 million can be considered active (1/3 of which use the site daily), with a similar increasing rate to Facebook. Despite the fact that Twitter was launched several years after Facebook, it became very popular due to the limited word count of each post which gave rise to the term micro-blogging - tailored for quick information updates using brief and simple messages. Every second, on average, around 6,000 tweets are tweeted on Twitter which corresponds to over 350,000 tweets sent per minute or 500 million tweets per day. Each Twitter user account has a mean of 208 followers, which spend a mean of 170’ in Twitter per month. Social media in Science Taking these numbers into account, a large proportion of academics have already accepted that Facebook and Twitter are too big to ignore (Priem and Costello 2010). As a communication tool, social media can be used to share journal articles, thoughts and concerns, initiate discussions or spread scientific news, not only within academic circles but also to non-governmental organizations, private industry, journalists and decision-makers, eroding boundaries between scientists and broader audiences (Letierce et al. 2010, Darling et al. 2013, Ferguson et al. 2014). It is also used to share updates from scientific meetings and conferences (Shiffman 2012), to disclose professional opportunities and grant applications, or to post upcoming events. From an academic perspective, mounting evidence over the last decade suggests that public visibility among social media might benefit scientists, impacting upon their research in a number of ways, or on the contrary, the lack of online visibility could limit and reduce scientific impact (Darling et al 2013). Additionally, classic scientific impact metrics show how online dissemination might increase the number of paper citations and downloads in a very direct way. Eysenbach (2011) demonstrated that tweeted articles were 11 times more likely to be cited, compared with papers not tweeted, and Priem et al (2012) proved that academic papers circulated through social media obtain more visibility than those that are classically disseminated (e.g. through e-mail, online databases such as ISI Web of Knowledge or through the specific journal access). Social media’s relevance among scientific circles is so evident, that since 2010 the concept of ‘altmetrics’ (from ‘alternative metrics’) was created as an alternative to more traditional citation impact metrics such as the Impact Factor Index. ‘Altmetrics’ are calculated based on the ‘hashtag’ metrics, evaluating the social impact of any work within the online society beyond traditional journals (Darling et al. 2013). It can be applied to any type of work, not only scientific publications, but also videos, documentaries, photographic articles, books, essays or anything that can be published and shared online. Although its use is still controversial as they are sometimes considered to be too easily misinterpreted
Barbastella 8(1) 2015
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella in Twitter and Facebook
Table 1: Brief description of the two different social media that Barbastella Journal has been using to disseminate batrelated information and published manuscripts.
Twitter (http://twitter.com, founded in 2006 by Jack Dorsey) Micro social network with 140 character limited posts (short and ephemeral form of information), mostly focused on stream or live discussions, forums and quick information shares. However, it has the capacity to have long-term impact on how scientists create and publish new ideas. It is the best social net to follow conferences or workshops. Among academic circles, Twitter is usually more visited for professional aims than for personal usage. The use of hashtags provides an efficient opportunity to group all information under common purposes or topics, and helps to keep ongoing discussions alive (e.g., #SECEMU14). To visit the Barbastella-Journal twitter profile see: http://twitter.com/BarbastellaJ
(http://www.facebook.com, founded in 2004 by Mark Zuckerberg) Facebook is the most used social network, joining billions of users, and growing every day. Contrary to Twitter, due to the privacy options and flexibility, Facebook is more commonly used as an academic way to disseminate information and as a personal profile to communicate with colleagues during daily life. To visit the Barbastella-Journal Facebook profile see: https://www.facebook.com/Secemu
and misused (Weller et al. 2011, 2011b, Thelwall et al. 2013), ‘Altmetrics’ are mainly used to evaluate visibility or engagement (which sometimes is of high importance for funding organizations) rather than to measure the impact to the progress of science (Darling et al. 2013). Concerns about social media Some concerns about the use of social media have been raised, especially relating to the potential misinterpretation of inherently brief messages and the rapid analysis of complex problems, situations or concepts that can trigger misinformation cascades (Bombaci et al 2015). These shortcomings can be particularly detrimental due to the time-sensitive and political nature of some conservation issues (Brossard 2013, Bombaci et al. 2015), or due to the inefficiency in influencing people in key positions to change conservation policies (Hall 2014, You 2014). Additionally, over-flow of information has been argued to lead to the wellknown ‘Information Fatigue Syndrome’ (IFS). This problem emerges due to a knowledge over-dose, when people start to feel indifferent and disconnected to the information being conveyed. The term refers to our inability to absorb and process all the information we’re exposed to. Moreover, apart from this major problem, sometimes the information has been shown not to reach the general audience, but only highly related audiences within similar academic circles. Social Network Theory describes this predisposition as ‘homophily’, a tendency found when the ‘contact between similar people occurs at a higher rate than among dissimilar people’. Reciprocal ‘homophily’ might then over-estimate outreach potential.
Barbastella Journal outreach through social media Analyzing to what extent academic information shared through social media is reaching public audience is of relevance for scientists committed to disseminate their findings beyond the walls of academia. The work presented here seeks to study the outreach impact of the scientific journal Barbastella - published by the Spanish Society for Bat Research and Conservation (SECEMU) and funded by the Natural Science Museum of Granollers - which has been publishing bat-related research since 2012. Alongside being hosted on the journal’s website (www.secemu.org/ Barbastella-Journal), since 2014 all publications have been disseminated through social media, primarily through SECEMU’s Facebook page (mainly posting in Spanish). This page has also been used to share other relevant bat conservation news. At the beginning of 2015 the journal created its own Twitter account (under the Twitter name @ BarbastellaJ, mainly posting in English) as a complementary strategy to disseminate its publications. We hereby present an evaluation of the presence of Barbastella on Facebook and Twitter during a period of almost two years and provide some suggestions on how to improve the journal’s ‘altmetrics’ and its social media communication strategy.
Material and Methods The assessment of total reach, followers’ trends, languages, countries, and total activity was performed using the analytic tools of Facebook and Twitter Analytic, which are freely available for business purposes within all professional profiles (SECEMU 2015 and BarbastellaJ 2015, respectively). Specifically, total reach and impressions from the Twitter account has been estimated using the ‘TotalReach’ online algorithms (https://tweetreach.com). All figures have been adapted and modified from original plots provided by the analytic online services. Temporal trends in Barbastella’s publications (number of manuscripts published per year) and citations (number of times each manuscript published in Barbastella is cited in total) have been analyzed in order to evaluate the short-term success of the journal since its launch in 2012. Information gathered on the origin of all followers was plotted and georeferenced onto world maps using QGIS v. 2.12.2 Lyon (QGIS Development Team 2015) using the base shape files obtained from Bjorn Sandvik (http://thematicmapping.org), with an original shape derived by Schuyler Erle from public domain sources. Word cloud charts have been built through the available Wordle services (www.wordle.com). Plots were carried out using R software, version 3.2.4. (R Foundation for Statistical Computing), with the “ggplot2” package (Wickham, 2009).
Results During this four-year period, the journal has published a total of 32 articles, all indexed in the CrossRef system since 2014, and freely available on the website as open-access papers (Fig. 1, Table 2). The publications cover studies carried out in Spain (including also Ceuta, in North Africa), Portugal, France, Italy, Peru and Brazil, thus spanning across three continents (Africa, America and Europe) (Supplementary material, Table 1), focusing on a variety of topics, from bat conservation (i.e. Alcalde et al. 2012, Rocha et al. 2015),
Barbastella 8(1) 2015
47
Adriá López-Baucells, Luis Hernández-Tabernero & Ricardo Rocha
paleontology (i.e. López-Garcia et al. 2012, Salari et al. 2015), species ecology (i.e. Camprodón and Guixé 2013), distribution range expansions (De Pasquale et al. 2014), check lists (i.e. Ubirajara et al. 2014), phylogenetics and systematics (i.e. Salicini et al. 2012) to bat boxes (i.e. Alcalde et al. 2013, Flaquer et al. 2014). The papers published were original research articles (i.e. De Pasquale et al. 2014), short communications (i.e. García et al. 2013) and reviews (i.e. Mas et al. 2015)”. On average, 8.25 manuscripts have been published per year (Fig. 1). In total, the journal gathered 14 citations in both indexed and non-indexed scientific publications, with an average of 0.4375 citations/paper. After this two-year period, using Facebook as a communication tool, we gathered a total of 1,935 followers, from several countries worldwide: Spain (56.8%), Mexico (6.6%), U.S.A. (3.5%), Brazil (3.1%), U.K. (3%), Portugal (2.3%), Peru (2.1%), Italy (1.8%), Colombia (1.8%), Argentina (1.7%) and Germany (1.1%), amongst others (Fig. 2A). The user demographics ranged from experienced academic bat specialists to general naturalists simply interested on bats, but also children who worked with bats at school, bat enthusiasts, bat rehabilitation centers’ staff, institutional organizations, forest rangers and many others. Language varied according to the country of origin, with a 66.8% of hispanophone followers and only 14.5% of anglophone speakers. This unbalanced proportion of languages strongly corresponds to the fact that most disseminated information is also published in Spanish. Gender was equally distributed during the whole period with 55% and 45% of men and women respectively. The number of followers has been increasing since the creation of the profile in a relatively constant rate over the analyzed period (Fig. 3A). However, at the beginning of 2015 a steady growth on the trends was detected, due to a very rapid increase of followers. The average global daily reach also increased in a similar manner (Fig. 3B), as well as the amount of ‘reactions’, ‘comments’ and ‘shares’ (Fig. 3C). The maximum reach that the Facebook account registered during the whole period was around 17,000 for a single post about general and basic bat ecology information, followed by other posts with 8,000 and 5,500 visits each (Fig. 4A).
The Twitter account gained 931 followers in slightly more than one year (since mid-2014), from several countries, mostly in Europe and North America: U.K. (44%), U.S.A. (17%), Australia (9%), Spain (7%), Canada (2%), The Netherlands (2%), Mexico (2%), Germany (1%) and Portugal (1%) (Fig. 2B). These proportions were clearly reflected in the follower’s languages with 93% of anglophones users, followed by 12% of hispanophones and only 2% of lusophones and Dutch-speakers. All these percentages also strongly matched with the highest proportion of English posts published by BarbastellaJ. Similar to the Facebook account, the gender of followers is currently quite balanced with 58% of men and 42% of women. The amount of Twitter followers has also been increasing at a constant rate during the whole period, and its reach varied little between months (ranging from 100 to 4000 individual visits per day) (Fig. 5). As an example of global reach/month, according to data acquired from ‘TweetReach’, the user @BarbastellaJ has had an estimated total reach of 29,764 personal accounts and 45,275 total impressions or visits during April 2016. The post that reached the widest audience since its launch received a total of 5,570 visits, followed by several tweets ranging from 3,000 to 4,000 visits (Fig. 4B). Twitter was used to broadcast the SECEMU National Conference in 2014 with the #SECEMU14 hashtag. Tweets were retweeted a total of 37 times in a single day, and, although nobody apart from the organization used the proposed hashtag, 4,690 people were reached that day, with 100 active followers.
Discussion Barbastella Journal has been active for a four-year period with a constant publication rate, fulfilling the main aims of the editorial committee. As a scientific journal, it can be considered a low impact journal with a relatively moderate number of citations but with growing outreach and social impact. During the last two-years the journal outreach and online presence in social media has rapidly increased thanks to
Fig. 1 - Trends of number of manuscripts published in Barbastella during the 4-year period since its launch 48
Barbastella 8(1) 2015
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella in Twitter and Facebook
Table 2: Pros and Cons of using social media as a science communication tool for conservation and academic purposes.
Social Media Pros 1) Social media and virtual communities provide all researchers, independently of their status or country a much larger virtual assemblage of scientists beyond their institution, and access to researchers from other disciplines to speed up multidisciplinary projects (Darling et al. 2013). 2) In stream discussions between cutting-edge research could push some ideas forward turning them into real scientific outputs (Darling et al. 2013). 3) Pro-conservation and scientific outreach rises massive impact on human beings and worldwide populations, accelerating changes, speeding up behavioural evolution, avoiding the often prolonged times of the traditional peer-review processes. Also, microblogging structure allows to summarize main ideas and results in a more comprehensible format for non-researchers than normal scientific papers (Darling et al. 2013). 4) Social media provides an available information source to extract datasets from billions of posts provided by millions of human beings (e.g., they could provide a direct measurement of actual public engagement in biodiversity conservation or interest in specific groups, Roberge et al. 2014, Di Minin et al. 2015). 5) Work quality information and outreach can be rated by surrogate measures such as “likes” in Facebook or “retweets” in Twitter (Di Minin et al. 2015).Monitoring of complex environmental issues such as invasive species spreading distributions can be properly monitored through social media and published pictures (Di Minin et al. 2015).
Social Media Cons 1) Spreading scientific workflow through social media can cause issues of intellectual property ownership, as well as misrepresentations of complex ideas due to the extent limitation (Darling et al. 2013). 2) Writing or chatting in social media is public and your words easily spreads far beyond your own circles. Misinterpretations and statements’ confusion is a big issue among conflictive topics or complex situations (Darling et al. 2013). 3) Social media usage is nevertheless still geographically biased towards the developed and anglophone countries (Roberge et al. 2014, Di Minin et al. 2015). 4) Some results suggest that Twitter users interact about a biased sample of topics, which can lead to unbalanced perceptions on real conservation issues and data usually comes from age-biased study groups (Roberge et al. 2014). 5) Social media used in conferences can get rid of the novelty of on-going or unpublished projects. 6) Over-flow of information could lead to the well-known ‘Information Fatigue Syndrome’ (IFS) when people start feeling indifferent and disconnected to the information being conveyed. 7) Social media is likely to be characterized by ‘homophily’, a tendency found when the ‘contact between similar people occurs at a higher rate than among dissimilar people’. the full dedication of Luis Hernández and Ricardo Rocha, responsible, respectively, for the Facebook and Twitter accounts. The broad audience it has reached through social media, with several tens of thousands of visits for some posts and several hundreds of ‘shares’, reflects the high potential of social media as communication channels. Basic and general ecological and conservation information has been mostly posted in Facebook while most Twitter posts had a more scientific focus. Audience nature A diverse cross-section of the public was reached using both Facebook and Twitter, however, the importance of combining different social media for independent purposes and audiences arises when the followers origin and interests are analyzed. While the Facebook account has mainly been
followed by local researchers and bat enthusiasts from Spain and Portugal with most contributions from hispanophone followers, the Twitter account, on the other hand, had a low percentage of followers from Spain and a largely anglophone community following from countries such as the U.K. and U.S.A. These differences between Facebook and Twitter audiences and the patterns emerging from our followers’ language analysis might correspond to existing inter-related people circles with already common interests. As stated by Takhateyev et al. (2012), many social media platforms might predominantly serve a purpose in connecting people that are already connected. There are pre-existing ties between places and people that are only somehow reinforced by Twitter and Facebook as well as the limitation of the language, which has an effect on Twitter ties despite the seeming ease with which
Barbastella 8(1) 2015
49
Adriá López-Baucells, Luis Hernández-Tabernero & Ricardo Rocha
long range ties can be formed (Fig. 6). That is undoubtedly one of the biggest social media limitations, and thus, in order to reach and target different groups and audiences, it would be worthwhile posting information in several languages about broad global topics.
than Facebook) might be exploited as a channel to spread information from scientists to the society, but also to connect bat researchers more closely.
Moreover, academic circles are usually more represented on Twitter, than on Facebook, given the public and open nature of Twitter’ compared to the more personal usage of the latter. This difference in demographics and audiences can perfectly illustrate the previously described phenomena of homophily, when information flow is found mainly between closely related social circles instead of among the general public. Diversifying topics, languages and posting timing schedules make it possible to substantially increase the journal’s outreach through the combined use of both platforms. On the other side, this high degree of reciprocity actually favours the connection among users with mutual acquaintances, in this case between bat researchers and other bat researchers in the world. Thus, specifically Twitter (more
As indicated by some researchers (Bik and Goldstein 2013), the spread of misinformation is also a problem, where the need for live updates and rapid ‘shares’ usually replace a more thorough analysis of complex scientific findings. Social media can, in fact, be a double-edged sword: either a powerful channel to spread valuable and scientifically validated information to global audiences, especially when content goes “viral” (Bik and Goldstein 2013), but it might eventually and unfortunately turn into a platform to spread misinformation and non-scientifically validated data. A certain degree of epistemic vigilance might generally be demanded from Twitter users. Extra caution on how the information is communicated is thus recommended. In an increasingly connected, information-infused modern and
Concerns about social media
Fig. 2 - World map presenting the origin of Barbastela’s followers for A) Facebook and B) Twitter accounts. 50
Barbastella 8(1) 2015
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella in Twitter and Facebook
Fig. 3 - Outreach trends through the Facebook account for a 2-year period (2014-2016). A) Accumulated number of followers in Facebook since the creation of the account; B) Average daily reach considering all published posts; C) Total daily activity.
Fig. 4 - The two most visited posts published by A) SECEMUâ&#x20AC;&#x2122;s Facebook account and B) BarbastellaJ Twitter account with 16.900 and 5590 visits respectively, registered at the 1/05/2016. Barbastella 8(1) 2015
51
Adriá López-Baucells, Luis Hernández-Tabernero & Ricardo Rocha
electronic era, we should be cautious on the amount, quality and content of information shared in social media if we really want that information to be effective and influential. Otherwise, it could lead to counter-reactive, undesired and less environmentally-friendly values. Nevertheless, despite the fact that utilization of social media is sometimes questioned (and rejected), in our case study, global outreach has improved greatly, and we would therefore recommend it as a valuable means to raise awareness for bat conservation and disseminate bat-related research. It has been demonstrated that online public pressure can drive policy changes or provide social support (political pressure) towards scientific research on particular conservation issues, which, in essence, highlights the potential of social media as a tool for conservation (Papworth et al. 2015). Further research is needed to explore how such networks may provide a venue to identify misuse or misunderstanding of information. How to successfully combine social media and scientific commitment Potential advantages of being active and widely known in virtual communities are evident, but it is becoming increasingly difficult to stand out from the crowd (due to the large amount of active users and their frenetic activity), and to optimize the time spent on multiple social media. The popularity of microblogging on social media to amplify scientific impact is enticing many researchers to the virtual skies. According to Priem et al. (2012) one in 40 scientists were active on Twitter and 25,000 blog entries were indexed on the Research Blogging platform (Piwowar 2013). However, this wealth of information can cover up ones work making it difficult to be found (Darling et al. 2013). To make sure ones research stands out from the crowd on each platform, and not devote too much time, one needs to optimize their usage on social media. To increase visibility, it is recommended to take into serious consideration that the global online audience has never been this big and so planning when to post content is necessary based upon the targeted time zone, for example during commuting hours when people use their smart phones. Another important point is to write short and clear messages. The average time spent on Facebook per user visit is around 20 minutes (Infodocket), which means that time dedicated to each post is relatively short and therefore messages should be precise and concise (limited scope for extended details). But more than that, as
Fig. 5 - Outreach trends through the Twitter account for the period 2014-2016. 52
postulated by Bostrom et al. (2013), tailored information that is salient, legitimate and credible, matching local realities, is more likely to be influential. Besides Facebook and Twitter, other professional social media are available online (e.g. Google+, Ozone, Sina Weibo, Hi5, Pinterest, Instagram and Linkedin) and they also offer greater access to online communities. As our results have shown, most social media platforms are in general complementary, therefore crossposting on multiple networks can considerably improve visibility (Bik and Goldstein 2013). If one aims to mobilize scientific knowledge to the critical and compelling arena of conservation action, one should, first of all, try to connect people who understand each other (Cash et al. 2003). Successful translation of scientific concepts to a non-technical language is mandatory. It is not just how much and how fast we share and exchange information, but how good these channels are to provide effective, influential, credible, legitimate, scientifically-validated and salient information. Thus, we strongly recommend carefully considering what information is posted. It is necessary to publish well-summarised and well-written information, under a seriously planned outreach strategy according to the targeted public, choosing the most appropriate social media platforms. Social media in conferences Using social media (especially Twitter) in conferences has been widely recognised as a successful tool to evaluate event visibility/success and promote interaction between participants at the conference but also for those unable to attend (Letierce et al. 2010, Weller et al. 2011b, Shiffman 2012, Bombaci et al. 2015). It provides an easily accessible platform to engage in discussions, to develop ideas and to introduce young researchers to specialists within the field (who would otherwise be difficult to engage with) (Letierce et al. 2010, Bik and Goldstein 2013). Broadcasting the SECEMU Conferences on Twitter with the hashtag #SECEMU14 offered free access to presentations and conference debates to other researchers worldwide. As stated by Desai et al. (2012), who studied the efficiency of Twitter to disseminate conferencerelated information at medical symposia, the most successful posts/tweets were those with ‘informative content’, ‘internal citations’ and ‘a positive sentiment score’. Other ways to better promote ones’ work on Twitter and Facebook are to engage with a broad audience, to tweet repeatedly with similar posts and to make links between one’s own work and other media sources. Enriching the posts with pictures, charts or illustrations can increase post popularity (Papworth et al. 2015). However, success is also directly related to local and regional engagement, which can increase the likelihood of one’s findings being widely disseminated. The fact that Twitter is not widely used amongst the SECEMU members (in a clear contrast to Facebook) contributed to the relatively low performance of the SECEMU 2014 conference posts. To avoid that, participants should be actively encouraged to sign up and engage with Twitter before attending the conference. Despite this, and although Twitter was mainly used and managed by the Journal committee, active followers of the conferences through Twitter were in higher number than in situ conference attendants. However, it is important to notice that in other conferences it is more and more usual to see
Barbastella 8(1) 2015
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella in Twitter and Facebook
Conclusions 1) During this four-year period, Barbastella published 32 manuscripts (which have received 14 citations); all manuscripts are in full colour, indexed in CrossRef since 2014 and open-access. 2) Some concerns about the use of social media have also been raised, such as the overestimated outreach potential due to the inherent homophily caused by language or topics being shared, or the likelihood to suffer the information fatigue syndrome (IFS). 3) The Journal has gathered a total of 1,935 followers in Facebook in slightly more than two years, and 931 followers in Twitter. Several posts reached up to 5,00017,000 (Facebook) and 3,000-5,500 (Twitter) users, proving the large potential of social media to disseminate information far beyond more conventional methods.
Fig. 6 - Word cloud chart with the most common words used in A) Twitter and B) Facebook accounts. Word is proportional to the amount of times the words appears amongst the published posts (worlds are randomly distributed within the plot). “no twitter” signs, as many scientists are reluctant to spread their own on-going or unpublished projects and due to the difficulty to monitor virtual discussions. This is of course, up to each researcher to decide if presented data within a conference can or cannot be widely public. Considering both Twitter and Facebook’s outreach, it becomes possible for a relatively small piece of wellstructured information to easily reach a broad and diverse audience beyond the global academic community (Bombaci 2015). The #conservation revolution may not be televised, but if social media continues to gain momentum, it may be shared, liked and (re)tweeted.
Acknowledgements We would also like to thank Maria Mas and Alba Coronado for their continuous help within the Barbastella Journal editorial team, as well as Juan Tomás Alcalde and Carles Flaquer as Barbastella Journal co-Editors. And of course we would like to thank all the authors that have submitted a variety of novel manuscripts to the journal during this four-year period of publishing. We would like to thank James Kemp for proofreading the manuscript, and two anonymous reviewers that contributed with constructive comments and suggestions which greatly improved the accuracy of the manuscript.
4) The success of Twitter usage in conferences and meetings is directly influenced by local and regional engagement, which might exponentially increase the reach of the conference beyond its walls. 5) Social media data can potentially play an important role in conservation science. A good combination of social network usage, with an accurate and reasonable planning of online time commitment, addressing several timezones, selecting the most appropriate platform, publishing understandable concise and visual posts with reliable information, as well as other optimizing strategies make it possible to disseminate research without compromising time commitment towards other scientific tasks and linking knowledge to action and science to society
1.
References
Agirre-Mendi, P. T., & Ibáñez, C. 2012. Primeros datos sobre la distribución de Myotis cf. nattereri y Myotis escalerai Cabrera, 1904 (Chiroptera: Vespertilionidae) en la Comunidad Autónoma de La Rioja. Barbastella 5:8-11. Doi: http://dx.doi. org/10.14709/BarbJ.5.1.2012.02 Alcalde, J. T., Campion, D., Fabo, J., Martín, F., Artácoz, A., Martínez, I. & Antón, I. 2013. Ocupación de cajas-refugio por murciélagos en Navarra. Barbastella 6:34-43. Doi: http://dx.doi. org/10.14709/BarbJ.6.1.2013.05 Alcalde, J. T., Artácoz, A. & Meijide, F. 2012. Recuperación de la colonia de Miniopterus schreibersii de la cueva de Cueva de Ágreda (Soria). Barbastella 5:32-36. Doi: http://dx.doi.org/10.14709/BarbJ.5.1.2012.05 Alcalde, J. T., & I. Antón. 2014. Recolección de guano de murciélagos de Cabrera (Pipistrellus pygmaeus) por hormigas rojas (Formica rufa). Barbastella 7:32-34. Doi: http://dx.doi.org/10.14709/BarbJ.7.1.2014.06
Barbastella 8(1) 2015
53
Adriá López-Baucells, Luis Hernández-Tabernero & Ricardo Rocha
Alvarez, F., Ó. Paz, and M. Carbonell. 2012. Los murciélagos de La Bóveda (Segovia), treinta y dos años después. Barbastella 5:37-42. Doi: http:// dx.doi.org/10.14709/BarbJ.5.1.2012.06 Amorim, F., Alves, P. & Rebelo. H. 2013. Bridges over the troubled Conservation of Iberian Bats. Barbastella 6:3-12. Doi: http://dx.doi.org/10.14709/ BarbJ.6.1.2013.01 BarbastellaJ. 2015. Analytics [Analytics]. Retrieved 05, 01, 2016, from https://analytics.twitter.com/user/ BarbastellaJ/home
Capaverde, J. Pacheco, U.D.S.M. & Duarte, M. E. 2014. Species of bats (Chiroptera) in urban area of the Boa Vista, Roraima. Barbastella 7:13-18. Doi: http://dx.doi.org/10.14709/BarbJ.7.1.2014.03
Baron, N. 2010. Escape from the ivory tower: a guide to making your science matter. Island Press. Washington.
Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., Jäger, J. & Mitchell, R.B. 2003. Knowledge systems for sustainable development. Proceedings of the National Academy of Sciences 100(14):8086-8091
Barros, P. 2012. Contribución al conocimiento de la distribución de quirópteros en el norte y centro de Portugal. Barbastella 5:19-31. Doi: http://dx.doi. org/10.14709/BarbJ.5.1.2012.04
Corlett, R.T. 2014. Tropical Forest Ecology in the Anthropocene. Forest Forestry Handbook. Springer Berlin Heidelberg. Doi: http://dx.doi. org/10.1007/978-3-642-41554-8_51-1
Barros, P. 2014. Pasos agrícolas inferiores de carreteras: su importancia para los murciélagos como refugio y lugar para cruzar la vía. Barbastella 7:22-31. Doi: http://dx.doi.org/10.14709/BarbJ.7.1.2014.05
Darling, E.S., Shiffman, D., Côté, I.M. & Drew, J.A. 2013. The role of Twitter in the life cycle of a scientific publication.” arXiv preprint arXiv:1305.0435.
Barros, P., & Braz. L. 2013. Barbastella barbastellus (Schreber, 1774) en minas del Norte de Portugal: ¿un caso de “swarming”? Barbastella 6:13-22. Doi: http://dx.doi.org/10.14709/BarbJ.6.1.2013.02 Bik, H.M., & Goldstein, M.C. 2013. An introduction to social media for scientists. PLoS Biol 11.4: e1001535. Doi: http://dx.doi.org/10.1371/journal. pbio.1001535 Bombaci, S.P., Farr, C.M., Gallo, H.T., Mangan, A.M., Stinson, L.T., Kaushik, M. & Pejchar, L. 2016. Using Twitter to communicate conservation science from a professional conference. Conservation Biology 30(1): 216-225. Doi: http://dx.doi. org/10.1111/cobi.12570
Desai, T., Shariff, A., Shariff, A., Kats, M., Fang, X., Christiano, C. & Ferris, M. 2012. Tweeting the meeting: an in-depth analysis of Twitter activity at Kidney Week 2011. PLOS ONE, 7(7): e40253. Doi: http://dx.doi.org/10.1371/journal. pone.0040253 Di Minin, E., Tenkanen, H., & Toivonen, T. 2015. Prospects and challenges for social media data in conservation science. Frontiers in Environmental Sciences 3: 63. Doi: http://dx.doi.org/10.3389/fenvs.2015.00063 Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J. & Collen, B. 2014. Defaunation in the Anthropocene. Science 345(6195): 401-406. Doi: http://dx.doi.org/10.1126/science.1251817
Bostrom, A., Böhm, G. & O’Connor, R. E. 2013. Targeting and tailoring climate change communications. WIREs Climate Change, 4:447–455. Doi: http:// dx.doi.org/10.1002/wcc.234
Dondini, G. & Vergari, S. 2015. Range expansion? First record of parti-coloured bat (Vespertilio murinus Linnaeus, 1758) in Tuscany, Italy. Barbastella 8: XX Doi: http://dx.doi.org/10.14709/ BarbJ.8.1.2015.02
Briones, R.L., Kuch, B., Liu, B.F. & Jin, Y. 2011. Keeping up with the digital age: How the American Red Cross uses social media to build relationships. Public Relations Review 37(1):37-43 Doi: http:// dx.doi.org/10.1016/j.pubrev.2010.12.006
Dubourg-Savage, M.J., Bec, J. & Gaches. L. 2013. First roosts of Nyctalus lasiopterus breeding females in France. Barbastella 6:44-50. Doi: http://dx.doi. org/10.14709/BarbJ.6.1.2013.06
Brossard, D. & Scheufele, D.A. 2013. Science, new media, and the public. Science, 339(6115): 40-41. Doi: http://dx.doi.org/10.1126/science.1232329 Butchart, S.H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J.P., Almond, R.E., Baillie, J.E., Bomhard, B., Brown, C., Bruno, J. & Carpenter, K.E. 2010. Global biodiversity: indicators of recent declines. Science 328(5982): 1164-1168. Doi: http://dx.doi.org/10.1126/science.1187512 54
Camprodon, J. & Guixé, D. 2013. Estado poblacional, selección de refugios y ecología espacial de las poblaciones de nóctulo grande (Nyctalus lasiopterus) y nóctulo mediano (Nyctalus noctula) en Cataluña. Barbastella 6:51-59. Doi: http://dx.doi. org/10.14709/BarbJ.6.1.2013.07
Eysenbach, G. 2011. Can tweets predict citations? Metrics of social impact based on Twitter and correlation with traditional metrics of scientific impact. Journal of medical Internet research 13(4): e123. Doi: http:// dx.doi.org/10.2196/jmir.2012 Ferguson, C., Inglis, S.C., Newton, P.J., Macdonald, P.S. & Davidson, P.M. media: a tool to spread information: analysis of Twitter conversation at
Barbastella 8(1) 2015
Cripps, P.J., 2014. Social a case study the Cardiac
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella in Twitter and Facebook
Society of Australia & New Zealand 61st annual scientific meeting 2013. Collegian, 21(2): 89-93. Doi: http://dx.doi.org/10.1016/j.colegn.2014.03.002 Fernández-Arellano, G. J. & Torres-Vásquez, M.I. 2013. Lista actualizada de quirópteros de los Departamentos de Loreto, Ucayali y Madre de Dios (Perú). Barbastella 6:71-85. Doi: http://dx.doi. org/10.14709/BarbJ.6.1.2013.10 Flaquer, C., Puig-Montserrat, X., López-Baucells, A., Torre, I., Freixas, L., Mas, M., Porres, X. & Arrizabalaga, A. 2014. Could overheating turn bat boxes into death traps? Barbastella 7:46-53. Doi: http://dx.doi.org/10.14709/BarbJ.7.1.2014.08 Fulco, A., Di Salvo, I., Russo, D & Lo Valvo, M. 2015. First record of brown long-eared bat Plecotus auritus (Chiroptera: Vespertilionidae) for Sicily island (Italy). Barbastella 8: XX Doi: http://dx.doi. org/10.14709/BarbJ.8.1.2015.07
de población de murciélagos. Barbastella 5:12-18. Doi: http://dx.doi.org/10.14709/BarbJ.5.1.2012.03 Marisa, H., Gonçálves, V., Barros, P., Braz, L. & Cabral, J.A. 2015. The contribution of the Barn owl (Tyto alba) feeding ecology to confirm bat species occurrence in north Portugal. Barbastella 8: XX Doi: http://dx.doi.org/10.14709/ BarbJ.8.1.2015.05 Mas, M, López-Baucells, A. & Arrizabalaga, T. 2015. Predation on bats by genets Genetta genetta (Linnaeus, 1758): a review. Barbastella 8: XX Doi: http://dx.doi.org/10.14709/BarbJ.8.1.2015.03 Monsalve-Dolz, M. Á. 2014. Eventos de mortalidad accidental de Murciélago rabudo Tadarida teniotis en edificios altos de la ciudad de Valencia (España). Barbastella 7:42-45. Doi: http://dx.doi. org/10.14709/BarbJ.7.1.2014.07
García, D., Capellà, L. & Quetglas, J. 2013. Nuevo dato sobre la longevidad del murciélago grande de herradura Rhinolophus ferrumequinum (Schreber, 1774) en las islas Baleares. Barbastella 6:60-63. Doi: http://dx.doi.org/10.14709/BarbJ.6.1.2013.08
Nogueras, J., Garrido-García, J.A., Fijo-León, A., Juste, J., García-Mudarra, J.L. & Ibáñez, C. 2013. Patrones de distribución del complejo “Myotis mystacinus” en la península Ibérica. Barbastella 6:23-29. Doi: http://dx.doi.org/10.14709/ BarbJ.6.1.2013.03
Hall, N. 2014. The Kardashian index: a measure of discrepant social media profile for scientists. Genome biology, 15(7):424p. Doi: http://dx.doi.org/10.1186/ s13059-014-0424-0
Ortega, S. & Merino, D. 2015. First record of parti-coloured bat (Vespertilio murinus) in the Iberian Peninsula, southern the Pyrenees. Barbastella 8: XX. Doi: http://dx.doi.org/10.14709/BarbJ.8.1.2015.01
Hermida, R. J., Arzúa, M., Santos, L. & Lamas, F. J. 2013. Primeros datos sobre Myotis alcathoe von Helversen & Heller, 2001 en Castilla y León y primer refugio de cría localizado en el noroeste de la península Ibérica. Barbastella 6:30-33. Doi: http://dx.doi. org/10.14709/BarbJ.6.1.2013.04
Papworth, S.K., Nghiem, T.P.L., Chimalakonda, D., Posa, M.R.C., Wijedasa, L.S., Bickford, D. & Carrasco, L.R. 2015. Quantifying the role of online news in linking conservation research to Facebook and Twitter. Conservation Biology 29(3): 825-833. Doi: http://dx.doi.org/10.1111/cobi.12455
Jato, R., Albero, J.C. & Lorente, L. 2014. Confirmada la presencia y reproducción de Myotis bechsteinii en el Pirineo aragonés. Barbastella 7:6-12. Doi: http:// dx.doi.org/10.14709/BarbJ.7.1.2014.02
Pasquale, P.P. & Galimberti, A. & 2014. New records of the Alcathoe bat, Myotis alcathoe (Vespertilionidae) for Italy Barbastella 7: 3-5. Doi: http://dx.doi. org/10.14709/BarbJ.7.1.2014.01
Kaplan, A.M., Haenlein, M. 2010. Users of the world, unite! The challenges and opportunities of Social Media, Business Horizons 53(1):59-68 Doi: http:// dx.doi.org/10.1016/j.bushor.2009.09.003
Piwowar, H. 2013. Altmetrics: Value all research products. Nature 493(7431): 159-159. Doi: http:// dx.doi.org/10.1038/493159a
Letierce, J., Passant, A., Breslin, J. & Decker, S. 2010. Understanding how Twitter is used to spread scientific messages. In: Proceedings of the WebSci10: Extending the Frontiers of Society OnLine, Raleigh, NC: US. López-Baucells, A., Flaquer, C., Puig-Montserrat, X., Freixas, L. & Mohamed, L. 2012. Actualización del inventario de quirópteros y refugios en Ceuta: primera cita de Pipistrellus pygmaeus en el norte de África. Barbastella 5:43-50. Doi: http://dx.doi. org/10.14709/BarbJ.5.1.2012.07 López-García, J. M. & Sevilla, P. 2012. La contribución de los fósiles a la reconstrucción de las dinámicas
Priem, J. & Costello, K.L. 2010. How and why scholars cite on Twitter. Proceedings of the American Society for Information Science and Technology 47(1): 1-4. Priem, J., Piwowar, H.A. & Hemminger, B.M. 2012. Altmetrics in the wild: Using social media to explore scholarly impact. arXiv preprint arXiv:1203.4745 Doi: http://dx.doi.org/10.1002/meet.14504701201 Rocha, R. 2015. Look what the cat dragged in: Felis silvestris catus as predators of insular bats and instance of predation on the endangered Pipistrellus maderensis. Barbastella 8: XX Doi: http://dx.doi. org/10.14709/BarbJ.8.1.2015.04
Barbastella 8(1) 2015
55
Adriá López-Baucells, Luis Hernández-Tabernero & Ricardo Rocha
Salari, L. & Silvestri, L. 2015. Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy). Barbastella 8: XX Doi: http://dx.doi. org/10.14709/BarbJ.8.1.2015.06 Salicini, I., Ibáñez, C. & Juste, J. 2012. El complejo Myotis nattereri en Iberia: una larga historia. Barbastella 5:3-7. Doi: http://dx.doi.org/10.14709/ BarbJ.5.1.2012.01 Secemu. 2015. Analytics tools [Analytics tools ]. Retrieved 05, 01, 2016, from https://www.facebook.com/ Secemu/insights/ Shiffman, D.S. 2012. Twitter as a tool for conservation education and outreach: what scientific conferences can do to promote live-tweeting. Journal of Environmental Studies and Sciences 2(3): 257-262. Doi: http://dx.doi.org/10.1007/s13412-012-0080-1 Takhteyev, Y., Gruzd, A. & Wellman, B. 2012. Geography of Twitter networks, Social Networks 34(1):73-81 Doi: http://dx.doi.org/10.1016/j.socnet.2011.05.006 Thelwall, M., Haustein, S., Larivière, V. & Sugimoto, C.R. 2013. Do altmetrics work? Twitter and ten other social web services. PLOS ONE, 8(5): e64841. Doi: http://dx.doi.org/10.1371/journal. pone.0064841
56
Van Noorden, R. 2014. Online collaboration: Scientists and the social network. Nature 512(7513): 126-129. Villanueva, L. L., Ugalde, C.L. & Sanz, J. M.S. 2014. Primera cita de nóctulo mediano (Nyctalus noctula) en Aragón (NE de España). Barbastella 7:19-21 Doi: http://dx.doi.org/10.14709/BarbJ.7.1.2014.04 Weller, K., Bruns, A., Burgess, J.E., Mahrt, M. & Puschmann, C. 2014. Twitter and society: An introduction. Twitter and society, 89pp. Peter Lang, New York. Weller, K. & Puschmann, C. 2011a. Twitter for scientific communication: How can citations/references be identified and measured? WebSci 11:14-17, Koblenz, Germany. Weller, K., Dröge, E. & Puschmann, C. 2011b. Citation Analysis in Twitter: Approaches for Defining and Measuring Information Flows within Tweets during Scientific Conferences. In # MSM (pp. 1-12). Wickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer Science & Business Media. You, J. 2014. Who are the science stars of Twitter?. Science 345(6203): 1440-1441. Doi: http://dx.doi. org/10.1126/science.345.6203.1440
Barbastella 8(1) 2015
2013
2012
Year
Contribution to the knowledge of bat distribution in northern and central Portugal
Paulo Barros
Barbastella 8(1) 2015
http://dx.doi.org/10.14709/BarbJ.6.1.2013.02
Barbastella barbastellus (Schreber, 1774) in mines from North Portugal: ¿a case of “swarming”?
Distribution patterns of the “Myotis mystacinus” complex in the Iberian Peninsula http://dx.doi.org/10.14709/BarbJ.6.1.2013.03
First report of Myotis alcathoe von Helversen & Heller, 2001 in Castilla y León and first breeding roost in the northeast Iberian Peninsula
Occupancy of bat-boxes in Navarre
Paulo Barros, Luís Braz
Jesús Nogueras, José Antonio Garrido-García, Alberto Fijo-León, Javier Juste, Juan Luis GarcíaMudarra & Carlos Ibáñez
Roberto J. Hermida, Manuel Arzúa, Ledicia Santos y Francisco J. Lamas
Juan Tomás Alcalde, David Campion, Javier Fabo, Felipe Marín, Alberto Artázcoz, Iñaki Martínez & Inmaculada Antón
http://dx.doi.org/10.14709/BarbJ.6.1.2013.05
http://dx.doi.org/10.14709/BarbJ.6.1.2013.04
http://dx.doi.org/10.14709/BarbJ.6.1.2013.01
Bridges over the troubled Conservation of Iberian Bats
Francisco Amorim, Pedro Alves, Hugo Rebelo
http://dx.doi.org/10.14709/BarbJ.5.1.2012.07
Updated inventory of bats and their refuges in Ceuta: first record of Pipistrellus pygmaeus in north Africa
http://dx.doi.org/10.14709/BarbJ.5.1.2012.06
http://dx.doi.org/10.14709/BarbJ.5.1.2012.05
http://dx.doi.org/10.14709/BarbJ.5.1.2012.04
Adrià López Baucells, Carles Flaquer, Xavier PigMonserrat, Lidia Freixas & Lotfi Mohamed
Félix González Álvarez, Óscar de Paz & Monserrat The bats of La Bóveda (Segovia) thirty-two years on Carbonell
Recovery of a colony of Miniopterus schreibersii from a cave, Cueva de Ágreda, in Soria
The role of fossils in the reconstruction of bat population dynamics
Juan Manuel López-García & Paloma Sevilla
Juan Tomás Alcalde, Alberto Aratácoz & Federico Mejide
http://dx.doi.org/10.14709/BarbJ.5.1.2012.02
First data on the distribution of Myotis cf. nattereri and Myotis escalerai Cabrera, 1904 (Chiroptera: Vespertilionidae) in the Autonomous Community of La Rioja
Pablo Tomás Aguirre-Mendi & Carlos Ibáñez
http://dx.doi.org/10.14709/BarbJ.5.1.2012.03
http://dx.doi.org/10.14709/BarbJ.5.1.2012.01
The Myotis nattereri complex in Iberia: a long history
Irene Salicini, Carlos Ibañez & Javier Juste
DOI
Title
Author
Table 1: Summary of the papers that have been published in Barbastella since its launch in 2012.
Supplementary material
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella in Twitter and Facebook
57
58
2014
2013
Year
Hypopigmentation in vespertilionid bats: the first record of a leucistic soprano pipistrelle Pipistrellus pygmaeus An updated list of bats from the Departments of Loreto, Ucayali and Madre de Dios (Peru) New records of the Alcathoe bat, Myotis alcathoe (Vespertilionidae) for Italy
Adrià López-Baucells, Maria Mas, Xavier Puig-Montserrat & Carles Flaquer
Gilberto Josimar Fernández-Arellano & María Isabel TorresVásquez
Pier Paolo De Pasquale & Andrea Galimberti
Barbastella 8(1) 2015
First record of Noctule Bat (Nyctalus noctula) in Aragón (NE Spain) Agricultural underpasses: their importance for bats as roosts and role in facilitating movement across roads Collecting bat guano of soprano pipistrelles (Pipistrellus pygmaeus) by red wood ants (Formica rufa) Accidental mortality events of the European free-tailed bat Tadarida teniotis in high buildings in Valencia (Spain)
Luís Lorente, C. Llana, J.M. Sánchez
Paulo Barros
Juan Tomás Alcalde, Inmaculada Antón
Miguel Angel Monsalve-Dolz
Species of bats (Chiroptera) in urban area of the Boa Vista, Roraima
New data of longevity in the Greater Horseshoe bat Rhinolophus ferrumequinum (Schreber, 1774) in the Balearic Islands
David García, Llorenç Capellà & Juan Quetglas
Ubirajara Dutra Capaverde Junior, Susi Missel Pacheco & Marcos Eugenio Duarte
Population status, roost selection and spatial ecology of the Greater Noctule Bat (Nyctalus lasiopterus) and the Common Noctule (Nyctalus noctula) in Catalonia
Jordi Camprodon, David Guixé
Presence and reproduction of Myotis bechsteinii confirmed in the Aragonese Pyrenees
First roosts of Nyctalus lasiopterus breeding females in France
Marie-Jo Dubourg Savage, Joël Bec & Lionel Gaches
Ramón Jato, Juan Carlos Albero & Luis Lorente
Title
Author
http://dx.doi.org/10.14709/BarbJ.7.1.2014.07
http://dx.doi.org/10.14709/BarbJ.7.1.2014.06
http://dx.doi.org/10.14709/BarbJ.7.1.2014.05
http://dx.doi.org/10.14709/BarbJ.7.1.2014.04
http://dx.doi.org/10.14709/BarbJ.7.1.2014.03
http://dx.doi.org/10.14709/BarbJ.7.1.2014.02
http://dx.doi.org/10.14709/BarbJ.7.1.2014.01
http://dx.doi.org/10.14709/BarbJ.6.1.2013.10
http://dx.doi.org/10.14709/BarbJ.6.1.2013.09
http://dx.doi.org/10.14709/BarbJ.6.1.2013.08
http://dx.doi.org/10.14709/BarbJ.6.1.2013.07
http://dx.doi.org/10.14709/BarbJ.6.1.2013.06
DOI
Adriá López-Baucells, Luis Hernández-Tabernero & Ricardo Rocha
2015
2014
Year
First record of parti-coloured bat (Vespertilio murinus) in the Iberian Peninsula, southern the Pyrenees Range expansion? First record of parti-coloured bat (Vespertilio murinus Linnaeus, 1758) in Tuscany, Italy Predation on bats by genets Genetta genetta (Linnaeus, 1758): a review. Look what the cat dragged in: Felis silvestris catus as predators of insular bats and instance of predation on the endangered Pipistrellus maderensis The contribution of the Barn owl (Tyto alba) feeding ecology to confirm bat species occurrence in north Portugal Holocene bats (Mammalia, Chiroptera) from five caves of Central Apennines (Italy) First record of brown long-eared bat Plecotus auritus (Chiroptera: Vespertilionidae) for Sicily island (Italy)
Gianna Dondini, Simone Vergari
Maria Mas, Adrià López-Baucells & Antoni Arrizabalaga
Ricardo Rocha
Hélia Marisa Vale-Gonçalves, Paulo Barros, Luís Braz, João Alexandre Cabral
Leonardo Salari, Letizia Silvestri
Antonio Fulco, Ivy Di Salvo, Danilo Russo, Mario Lo Valvo
Barbastella 8(1) 2015
http://dx.doi.org/10.14709/BarbJ.8.1.2015.07
http://dx.doi.org/10.14709/BarbJ.8.1.2015.06
http://dx.doi.org/10.14709/BarbJ.8.1.2015.05
http://dx.doi.org/10.14709/BarbJ.8.1.2015.04
http://dx.doi.org/10.14709/BarbJ.8.1.2015.03
http://dx.doi.org/10.14709/BarbJ.8.1.2015.02
http://dx.doi.org/10.14709/BarbJ.8.1.2015.01
http://dx.doi.org/10.14709/BarbJ.7.1.2014.08
Could overheating turn bat boxes into death traps?
Carles Flaquer, Xavier Puig, Adrià López-Baucells, Ignasi Torre, Lidia Freixas, Maria Mas, Xavier Porres, Antoni Arrizabalaga
Sylvia Ortega, David Merino
DOI
Title
Author
Science outreach in the time of social media: an analysis of the performance of the scientific journal Barbastella in Twitter and Facebook
59
V Jornadas de la SECEMU - 2014
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
V SECEMU Conference – December 2014 (Madrid, Spain) V Jornadas de la SECEMU – Diciembre 2014 (Madrid, España) INVITED SPEAKERS História da conservação dos morcegos em Portugal continental Luísa Rodrigues Instituto da Conservação da Natureza e das Florestas. Lisboa, Portugal. luisa.rodrigues@icnf.pt Em 1987 iniciaram-se em Portugal continental estudos regulares sobre morcegos. Para além de inúmeros estágios, mestrados, doutoramentos e projectos, têm sido publicados numerosos artigos. São conhecidas actualmente 25 espécies, das quais nove com estatuto de ameaça: três “criticamente em perigo” (Rhinolophus mehelyi, R. euryale e Myotis blythii), uma “em perigo” (M. bechsteinii), cinco “vulneráveis” (R. ferrumequinum, R. hipposideros, M. myotis, M. escalerai (herdou o estatuto de M. nattereri) e Miniopterus schreibersii). Nove detêm um estatuto de “Informação insuficiente” (M. emarginatus, M. mystacinus, Hypgugo savii, Nyctalus leisleri, N. lasiopterus, N. noctula, Barbastella barbastellus, Plecotus auritus e Tadarida teniotis) e apenas seis são consideradas como “pouco preocupante”: M. daubentonii, Pipistrellus pipistrellus, P. pygmaeus, P. kuhli, Eptesicus serotinus e Plecotus austriacus). E. isabellinus não foi clasificado por não ser conhecida à data do último Livro Vermelho. Considera-se que R. ferrumequinum, M. myotis e M. schreibersii têm tendência “Estável”, M. blythii “Decréscimo”, e R. hipposideros, R. euryale e R. mehelyi “Indeterminada”. Os morcegos portugueses estão sujeitos a várias ameaças, que incluem a perda ou alteração do habitat, a destruição e/ou perturbação dos abrigos (sobretudo nas épocas de hibernação e maternidade), o uso excessivo de pesticidas e a perseguição directa. Adicionalmente, as espécies de voo alto estão sujeitas a mortalidade acrescida por colisão com aerogeradores e/ou barotrauma, e as espécies de voo baixo por atropelamento. Para além dos principais marcos de recolha de informação, são apresentadas as actividades que têm vindo a ser desenvolvidas em varias áreas: avaliação de impacte ambiental, sensibilização e apoio ao cidadão, cooperação internacional e conservação in situ. 60
Conservación de los quirópteros en España: Estado actual y perspectivas de futuro Ricardo Gómez Calmaestra Subdirección General de Medio Natural, Dirección General de Calidad y Evaluación Ambiental y Medio Natural, Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid, España. rgcalmaestra@magrama.es Durante la segunda mitad del siglo XX, el incremento del conocimiento científico sobre los quirópteros impulsó un cambio en la percepción de estos animales. El establecimiento de algunos Convenios internacionales sobre conservación de biodiversidad, todavía vigentes, fue un factor clave. Así, los quirópteros pasaron de ignorados o perseguidos a legalmente protegidos. Actualmente, en España todos los murciélagos estén protegidas bajo el régimen general que otorga el art. 52.3 de la Ley 42/2007, de 13 de diciembre, y bajo el régimen reforzado del Listado de Especies Silvestres en Régimen de Protección Especial (19 especies) o el Catálogo Español de Especies Amenazadas (12 especies en la categoría “Vulnerable” y una en la categoría “En peligro de extinción”). La Directiva comunitaria 92/43/CEE, de hábitats, impulsó a través de la Red Natura 2000 la protección in situ de numerosos refugios. Pero los quirópteros españoles siguen afrontando amenazas. El informe sexenal de aplicación de la Directiva de hábitats para el periodo 2007-2013, elaborado en España por el MAGRAMA con información aportada por todas las administraciones competentes, señala como principales amenazas el uso masivo de fitosanitarios, la alteración de los hábitats y las molestias por actividades humanas en los refugios. Este informe también valora, por región biogeográfica, el estado de conservación de las diferentes especies de quirópteros (30 especies en 4 regiones, con 82 valoraciones en total). En el 76% de las valoraciones el estado de conservación fue U1 o “Desfavorable-inadecuado”; en el 15% fue U2 o “Desfavorable-malo” y sólo en el 5% fue “Favorable”. En el 4% de los casos fue “Desconocido”. Aunque la calidad y cantidad de información mejoró respecto al sexenio anterior, todavía dista de ser óptima, denotando que el seguimiento estandarizado es fundamental y debe
Barbastella 8(1) 2015
V SECEMU Conference - 2014
potenciarse para el cumplimiento del marco normativo (arts. 11 y 17 Directiva 92/43/CEE; art. 47 Ley 42/2007; art. 9 Real Decreto 139/2011). Por tanto, es necesario mejorar la información y el estado de conservación de los quirópteros en España. Para ello ya han comenzado a darse algunos pasos. Por una parte, la creación de un grupo de trabajo entre administraciones para elaborar una (o varias) Estrategias de Conservación, con criterios aplicables a través de los planes de recuperación. Por otra, la identificación de Áreas de Protección donde se recomienda limitar el uso de fitosanitarios, en el marco del Plan Nacional para el Uso Sostenible de Productos Fitosanitarios. Para ello, se ha empleado la distribución de los quirópteros incluidos en el Catálogo Español de Especies Amenazadas. Es un primer paso hacia posibles limitaciones futuras al uso de estos productos.
Finally, we looked at the impact of wind power plants on European bats and the resulting lesions. In accordance to earlier reports from North America, we found massive bleedings into the thorax and/or abdominal cavity, muscle rupture and bone fractures. In conclusion, beside their importance as reservoir hosts numerous infectious agents can act as bat-pathogen and are capable to cause disease. Additionally, also European bats are facing dramatic impacts by moving between wind power plants.
Enfermedades transmitidas por murciélagos Juan E. Echevarría
Diseases and fatalities in European Bats
Centro nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda. Madrid, España.
Gudrun Wibbelt
jeecheva@isciii.es
Leibniz Institute for Zoo and Wildlife Research. Berlin, Germany.
El catálogo de enfermedades víricas que afectan al hombre está sujeto a continuo cambio. Los esfuerzos en el tratamiento y la prevención han permitido el control efectivo de muchas de ellas, e incluso en la erradicación de algunas como la viruela, pero al mismo tiempo somos testigos de cómo aparecen otras nuevas llegando algunas a ocasionar graves pandemias como la gripe de 1918 o el SIDA. Los virus no tienen vida libre y solo pueden existir infectando a una célula, por ello, todos los virus humanos que no hemos heredado de nuestros ancestros evolutivos nos han sido alguna vez transmitidos por otra especie. Las barreras biológicas para la transmisión de virus son tanto menores cuanto menor es la distancia filogenética entre especies, por esta razón, la principal fuente de nuevos virus para el hombre son los otros mamíferos. Se conoce desde hace mucho el papel de los murciélagos como reservorios de la rabia. Dada la gran diversidad de lisavirus encontrada en murciélagos y su aparente buena adaptación mutua, se considera que los lisavirus son virus de murciélago que han pasado a otros mamíferos en tiempos recientes.
wibbelt@izw-berlin.de At the latest from the discovery of Henipavirus twenty years ago and SARS coronavirus in 2002 bats moved worldwide into the focus of virologists and researchers of zoonotic pathogens. While the number of viruses discovered in bats is continuously rising, a possible effect on bats themselves is rarely addressed. We were interested to investigate infectious agents that are not only carried by bats serving as reservoir hosts (i.e. containing and shedding a pathogen without falling ill), but which will affect the bats by clinical disease. In close cooperation with German bat rehabilitation centers we examined carcasses of almost 500 European bats from 19 different species. All bats were necropsied and tissue samples were subsequently investigated by histo-pathology, bacteriology and virology. More than half of the animals suffered from inflammatory lesions with the lung as the organ most often altered by inflammation (interstitial pneumonia). Twenty-two bacterial species were isolated and associated with pathologic changes in various organs. Two Eptesicus serotinus were found to be positive for European bat lyssavirus 1. From three Pipistrellus pipistrellus novel adenoviruses were isolated by cell culture. Moreover, in eight bats of six different species and of different geographical origin three novel orthoreoviruses were detected and isolated. In each case the viruses were suggestive for causing enteric disease. In another study investigations regarding the occurrence and effects of the fungus Pseudogymnoascus destructans (formerly Geomyces destructans) responsible for White-nose syndrome in North America were performed in European bats. While the fungus is apparent in hibernating European bats, the infection in the examined animals remained in the superficial epidermis and did not invade the deeper dermis as described in American bats.
En los últimos años los murciélagos se han revelado como los reservorios de otras enfermedades emergentes como el síndrome respiratorio agudo severo (SARS) y el síndrome respiratorio de Oriente Medio (MERS) producidos por coronavirus, el síndrome respiratorio por virus Hendra, la encefalitis por virus Nipah o las fiebres hemorrágicas por filovirus Ébola y Marburg. En la mayoría de los casos estas enfermedades no son transmitidas directamente por los murciélagos, sino a través de otras especies animales que hacen de hospedadores intermediarios. Algunos de estos virus, como el Ébola, muestran capacidad para contagiarse de persona a persona estableciendo cadenas efectivas de transmisión. La emergencia de estas enfermedades en tiempos recientes parece obedecer a causas complejas que tienen que ver con los cambios ecológicos ocasionados por la expansión demográfica humana y la globalización. El hallazgo de algunos virus parecidos a estos en murciélagos ibéricos nos lleva a preguntarnos por su capacidad potencial de producir la emergencia de nuevas enfermedades en nuestro medio.
Barbastella 8(1) 2015
61
V Jornadas de la SECEMU - 2014
Rabia transmitida por vampiros. Experiencias en el estado de Puebla (México) Manzano Martínez María Dolores1; Ramírez Hernández Roberto1; Echevarría Mayo Juan Emilio2 Comité de Fomento y salud Animal del Estado de Puebla. Puebla, México. 2 Centro nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda. Madrid, España.
1
lolismanzano@yahoo.es / jeecheva@isciii.es América es el único continente donde habitan las tres especies de murciélagos hematófagos o vampiros: Diphylla ecaudata, Diaemus youngi y Desmodus rotundus (vampiro común). Las dos primeras se alimentan de sangre de aves y son mucho menos abundantes que Desmodus rotundus, cuyo principal alimento es la sangre de mamíferos. Los murciélagos hematófagos se alimentaban originalmente de la sangre de animales silvestres, pero con la destrucción de su hábitat y la introducción de grandes cantidades de animales domésticos, el hombre les proporcionó una nueva y abundante fuente alimenticia de fácil obtención, provocando una explosión en sus poblaciones, que se cree eran reducidas. En el Estado de Puebla se notificaron en el año 1995 más de 2,000 muertes masivas en ganado bovino, ovino, equino y porcino por rabia transmitida por vampiros, causando un notable desequilibrio social y económico en la zona, por lo que a partir de esa fecha se decide abordar un plan de actuación.
62
Investigación, Educación, Difusión y Capacitación. En el año 2006 se realiza un DVD divulgativo sobre la Prevención y Control de la Rabia en Ganado que se difunde entre los ganaderos del Estado. El segundo DVD Científico – Educativo, fue producido en 2012 por un conjunto de expertos en murciélagos hematófagos de México, Brasil, España y Estados Unidos, con la finalidad de proporcionar a los países de América herramientas para su mayor conocimiento de las diferentes especies de murciélagos hematófagos. Prevención y Control. Tras la detección de un caso sospechoso y/o foco rábico se elabora un plan local de trabajo basado en la confirmación de laboratorio, la vacunación antirrábica del ganado y el control de las poblaciones de vampiros. Esta última se realiza mediante productos vampiricidas anticoagulantes (warfarina) aplicados en pomada directamente sobre vampiros capturados en la propia explotación ganadera o en sus refugios, o indirectamente a través del ganado, al que se le administra de forma tópica o sistémica de forma que sea ingerido por los vampiros al alimentarse. El objetivo de esta ponencia es compartir estas experiencias de investigación, difusión, prevención y control de la rabia transmitida por vampiros al ganado realizadas por el Comité de Fomento y Salud Animal del Estado de Puebla.
Barbastella 8(1) 2015
V SECEMU Conference - 2014
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
V SECEMU Conference – December 2014 (Madrid, Spain) V Jornadas de la SECEMU – Diciembre 2014 (Madrid, España) ORAL COMMUNICATIONS Conservación de colonias de murciélagos en construcciones mediante acuerdos de custodia Roberto Hermida Lorenzo; Rafael Sánchez Vilas; Zeltia López Gallego; Ledicia Santos Fernández; Manuel Arzúa Piñeiro Morcegos de Galicia – Drosera. Poboado da Magdalena. As Pontes. A Coruña, España.
Se exponen resultados del trabajo desarrollado por Morcegos de Galicia en este campo y algunos casos de éxito.
Actuaciones dirigidas a la conservación de murciélagos en la comunidad Autónoma del País Vasco Jimenez-Bujanda Lide; Garin Atorrasagasti Inazio; Aihartza Azurtza Joxerra Zoologia eta Animali Zelulen Biologia, UPV/EHU. Leioa, País Vasco.
info@morcegosdegalicia.org Los murciélagos utilizan con frecuencia construcciones humanas para refugiarse. En paisajes muy antropizados, las construcciones de diferentes tipos son, de hecho, los refugios de cría más habituales para algunas especies. La percepción que los usuarios de las construcciones tienen de los murciélagos suele ser negativa y se fundamenta bien en mitos y falsas creencias, bien en molestias derivadas de la presencia de murciélagos. Dado el ámbito generalmente íntimo en el que se produce este encuentro entre usuarios y murciélagos en construcciones, la conservación de estas colonias no depende tanto de la existencia de una legislación que proteja a los murciélagos, como de la tolerancia que los usuarios muestren a su presencia. Por tanto, se impone la necesidad de contar con la complicidad de los usuarios en su conservación.
lidejibu@gmail.com
A nuestro juicio, los puntos más importantes que deben tenerse en cuenta para conservar estas colonias son: información a usuarios sobre la especie, su biología y su estatus legal; puesta en valor de los murciélagos en general y de la colonia en particular; desterramiento de mitos y falsas creencias; propuestas para la corrección de posibles molestias; acompañamiento cercano del usuario de la construcción en este proceso; cuando la cohabitación sea difícil, asesoramiento sobre el modo y época adecuados de proceder para su desalojo.
Respondiendo a estas obligaciones, se ha puesto en marcha un proyecto conjunto entre el Gobierno Vasco y la Universidad del País Vasco para el sexenio 2012-2017 cuyas líneas de trabajo son las siguientes: 1) Monitorización anual o bianual de colonias; 2) Protección de colonias cavernícolas mediante cerramientos e instalaciones de paneles de aviso; 3) Seguimiento de la efectividad de las medidas tomadas y monitorización de la actividad humana en cuevas; 4) Redacción del Plan de Gestión de Refugios Subterráneos y de Edificios de Quirópteros; 5) Generación de conocimiento sobre enjambramientos postestivales (swarming); 6) Desarrollo de jornadas teórico-prácticas sobre gestión de quirópteros, destinadas a los técnicos y guarderío con responsabilidad medioambiental.
La custodia de territorio, como conjunto de estrategias que buscan la complicidad de propietarios y usuarios del territorio con entidades sociales en la conservación de sus valores naturales, crea un marco de confianza adecuado para el desarrollo de las acciones anteriores. Se propone por ello como una metodología útil para abordar la conservación de colonias en construcciones.
En materia de Biodiversidad, uno de los objetivos operativos del Gobierno Vasco es mejorar las tendencias de evolución de las poblaciones de especies en situación crítica en la CAPV, de los cuales muchos son Quirópteros. Las 25 especies presentes están incluidas en el Catálogo Vasco de Especies Amenazadas (CVEA) y una de las mayores amenazas que pesan sobre ellos es la perturbación de sus refugios. Para la conservación de las especies de fauna silvestre en situación de amenaza, el decreto 167/1996, por el que se regula el CVEA, exige a los órganos competentes la elaboración de planes de gestión y llevar a cabo la vigilancia, seguimiento y evaluación de su estado de conservación, así como de las medidas de conservación aplicadas.
Los resultados más remarcables son, el seguimiento ininterrumpido de los tamaños de las colonias más
Barbastella 8(1) 2015
63
V Jornadas de la SECEMU - 2014
importantes; la respuesta positiva de los murciélagos a los cerramientos instalados; la posibilidad de seguimiento del grado y estacionalidad de la actividad humana en las cuevas; y el incremento del conocimiento tras las jornadas de formación.
Comunidades de murciélagos en la reserva Nietoperek (Oeste de Polonia) y sus estrategias de conservación Laura Torrent Alsina1; Grzesiek Apoznański1; Ania Zapart2; Marcin Rusiński3; Jorid Camprodon4; Tomasz Kokurewicz1 1 Depatamento de Vertebrate Ecology and Paleontology, Wrocław University of Environmental and Life Sciences. Wrocław, Poland. 2 Depatamento de Vertebrate Ecology and Zoology, University of Gdańsk. Gdańsk, Poland. 3 Consultoria Ansee. Wrocław, Poland 4 Escola Politècnica Superior, Universitat de Vic, Universitat Central de Catalunya. Vic, Catalunya.
arual.torrent@gmail.com La reserva de Nietoperek está situada en la Fortificación Międzyrzecz construida por los alemanes en los años treinta y durante la Segunda Guerra Mundial. Forma parte de la reserva Natura 2000 (Código: PLH080003). Nietoperek está compuesto por una red de 32 km de túneles subterráneos conectados a búnquers que dan acceso al exterior. Es el octavo emplazamiento más importante de hibernación de murciélagos de la Unión Europea. Se realizaron censos mensuales des de octubre hasta abril durante tres inviernos consecutivos (2011/12 – 2013/14) en el 30% del complejo de túneles. Los objetivos del estudio eran: (1) describir variaciones en el número de individuos de cada especie durante el periodo de hibernación, (2) sugerir el mejor mes para hacer el censo de algunas especies para obtener el mayor número de individuos y (3) describir el impacto negativo que causa el turismo en invierno a los murciélagos. Los resultados serán útiles para restringir el turismo durante el invierno en Nietoperek. El número total de murciélagos observados durante el estudio fue de 27.869 individuos de 9 especies. Debido a dificultades en la diferenciación sin tenerlos en mano, Myotis mystacinus y Myotis brandtii se agruparon. Myotis myotis representó del 53% (primer invierno) al 64% (tercer invierno) de todos los murciélagos censados. El máximo número de M. myotis fue observado en noviembre (primero y segundo inviernos) y en diciembre (tercer invierno). Myotis daubentonii constituyó del 27% (segundo invierno) al 21% (tercer invierno) y Myotis nattereri del 10% (primer invierno) al 11% (segundo invierno) de todos los murciélagos. De M. daubentonii y M. el máximo número de individuos fueron observados en noviembre y diciembre respectivamente. Barbastella barbastellus y Plecotus aurtitus constituyeron del 4% (primer invierno) al 2% (tercer invierno) de todas las especies invernantes. El número máximo de B. barbastellus fue observado en enero y el de P. aurtitus en enero (primer y segundo inviernos) y en diciembre (tercer invierno). Los resultados indican que el 64
mejor mes para censar el máximo número de M. myotis y M. daubentonii es noviembre, para M. nattereri es diciembre y para B. barbastellus i P. aurtitus es enero. El estudio hecho en la parte visitada por el turismo en invierno (un total de 900 m de todas las galerías) demuestra un efecto negativo, causado por la presencia humana, que se tradujo en una disminución del 23% de todos los murciélagos invernantes.
Utilización de la modelización de la distribución de especies para la conservación de los murciélagos Rebelo, Hugo1,2; Amorim, Francisco1; Mata, Vanessa1; Santos, Helena1 InBIO/CIBIO, Universidade do Porto. Porto, Portugal. 2 University of Bristol, School of Biological Sciences. Bristol, Reino Unido. 1
hugo.rebelo@cibio.up.pt El conocimiento sobre la distribución de las especies es esencial para la elaboración de medidas de gestión adecuadas y eficientemente localizadas. Sin embargo, el comportamiento nocturno y esquivo de los murciélagos es un obstáculo para profundizar en el conocimiento de sus poblaciones. En la última década ha habido una ‘explosión’ de técnicas estadísticas dirigidas a responder a estos problemas, muchas de estas técnicas sólo requieren datos de presencia que son correlacionados con variables ecológicas de interés. Este planteamiento compensa muchas limitaciones que frecuentemente ocurren con la obtención de datos de murciélagos, como es por ejemplo la obtención de datos fidedignos de ausencia. Así, en los últimos años se han multiplicado las posibles aplicaciones y usos de estas técnicas. En esta charla se presentarán algunos ejemplos de aplicación de modelización de distribución para el estudio y conservación de los murciélagos. Con el descubrimiento de nuevos complejos de especies crípticas en Iberia se cuestionó cuál sería su distribución y qué relación ecológica tendrían las especies hermanas. Para tres complejos, Eptesicus serotinus/ isabellinus, Myotis mystacinus/alcathoe y Plecotus auritus/ begognae, se determinó su distribución y propusimos tres hipótesis distintas para las interacciones ecológicas dentro de cada complejo [1]. En otro estudio se demostró que las poblaciones Ibéricas de Plecotus austriacus son las más diversas genéticamente de Europa y a través de modelización se identificaron regiones en las que los individuos estaban potencialmente mejor adaptados a los cambios climáticos previstos [2]. Finalmente, mostraremos cómo diseñar un plan de monitorización para murciélagos considerando los cambios climáticos previstos según dos escenarios. Este plan se implementará en el norte de Portugal centrándose en siete especies de murciélagos [3]. Con estos tres ejemplos hemos demostrado la potencialidad de aplicación que estas técnicas pueden presentar para propósitos de conservación. Seguro que en el futuro con la integración de resultados de genética, fisiología y otras áreas de conocimiento, las técnicas de modelización de distribución serán una herramienta esencial en el desarrollo de medidas y políticas para la conservación de la biodiversidad.
Barbastella 8(1) 2015
V SECEMU Conference - 2014
Secuenciación masiva revela segregación trófica entre los murciélagos cazadores aéreos Tadarida teniotis y Nyctalus lasiopterus Elsa Asensio Cenzano; Carlos Ibáñez Ulargui; Juan Luis García Mudarra; Detlev Kelm; Jesús Nogueras Montiel Los murciélagos cazadores aéreos alcanzan tallas sensiblemente menores que otros murciélagos animalívoros como los que cazan sus presas sobre superficies (gleaning) o desde perchas (flutter detecting). Se ha sugerido que es por la escasez de insectos voladores grandes. Nyctalus lasiopterus y Tadarida teniotis son los murciélagos cazadores aéreos más grandes de Europa y su talla puede estar imponiendo limitaciones a su ecología trófica. Hemos estudiado la dieta de los murciélagos T. teniotis (88 muestras) y N. lasiopterus (85 muestras) durante el periodo de gestación y lactancia (13-14 semanas) en el área de Doñana a partir del análisis del ADN de sus presas presente en las heces, utilizando la secuenciación masiva. Hemos detectado 95 OTUs para T. teniotis y 41 para N. lasiopterus. T. teniotis tiene una dieta más especializada ya que consume exclusivamente insectos blandos (Lepidoptera y Tipula sp.), a pesar de esto incluye un elevado número de presas tanto en el total como en cada muestra. N. lasiopterus tiene una dieta más variada a nivel de orden (Lepidoptera, Coleoptera y Diptera) pero el número de especies consumidas es mucho más bajo tanto a nivel general como de muestras individuales, indicando que está especializado en consumir presas muy abundantes que viven en ambientes muy concretos. Durante la primera parte del periodo de estudio ambas especies consumen las mismas presas blandas (Tipula sp y polillas migradoras) por lo que hay un amplio solapamiento de nicho trófico. En la segunda parte Tadarida mantiene la composición de la dieta mientras que N. lasiopterus incorpora escarabajos acuáticos de la familia Dytiscidae con lo que el solapamiento disminuye drásticamente. Ninguno de los murciélagos incluye de forma significativa en la dieta insectos de pequeño tamaño (principalmente Chironomidae y Culicidae) a pesar de que pueden ser extraordinariamente abundantes en las zonas de marisma en esas fechas.
El murciélago patudo: claves ecológicas y sensoriales para el cambio trófico de insectivoría a piscivoría Ostaizka Aizpurua; Antton Alberd; Joxerra Aihartza; Inazio Garin Euskal Herriko Unibertsitatea (UPV/EHU). Bilbao, País Vasco. ostaizka.aizpurua@ehu.es El murciélago patudo (Myotis capaccinii) es una especie predominantemente insectívora que ocasionalmente también puede alimentase de peces. Durante los cuatro últimos años
se ha estudiado el comportamiento de pesca de la colonia de cría de la cueva de Punta de Benimaquia (Dènia, Alacant). Como primer paso, se estudió la importancia de la piscivoría y las características de los peces consumidos mediante análisis de heces. Por un lado se identificó la especie consumida: Gambusia holbrooki, y se observó que el murciélago patudo seleccionaba los individuos de menor tamaño. Por otro lado, se encontraron restos de peces durante todo el periodo activo, remarcando así la importancia de la pesca en esta especie. Además, la identificación de una gran poza artificial con gran densidad de peces como el lugar de pesca del murciélago patudo reforzó la hipótesis de la abundancia de peces como catalizadora de la piscivoría. Como segundo paso, mediante una cámara de vídeo de alta velocidad y un detector de ultrasonidos, se estudió la cinemática de vuelo y los pulsos de ecolocación utilizados durante la captura de insectos y pesca, con el fin de comprender las circunstancias sensoriales y ecológicas necesarias para ello. El murciélago patudo cambia de técnica según la presa. Para capturar insectos emite similar número de pulsos de ecolocación en los dos buzzes, y realiza arrastres cortos y superficiales. Cuando pesca, en cambio, emite más pulsos de ecolocación en el primer buzz y menos en el segundo buzz. Además, realiza largos y profundos arrastres. Mediante un experimento de selección realizado en la poza, se observó que el murciélago patudo responde ante los estímulos que rompen la superficie del agua, ignorando prácticamente las ondas superficiales. Por último, se identificó el estímulo desencadenante de la técnica de pesca: la desaparición de la presa bajo el agua. Además, el murciélago patudo adaptó su técnica de pesca según la distancia de desaparición de la presa: cuando mayor era esa distancia, mayor era la duración del arrastre y la emisión de pulsos de ecolocalización en el primer buzz, y menor la emisión de pulsos en el segundo buzz.
Desvelando el nicho ecológico del murciélago orejudo alpino Plecotus macrobullaris Antton Alberdi; Ostaizka Aizpurua; Joxerra Aihartza; Inazio Garin Euskal Herriko Unibertsitatea (UPV/EHU). Bilbao, País Vasco. antton.alberdi@ehu.es El murciélago orejudo alpino Plecotus macrobullaris es una especie descrita recientemente con una distribución geográfica única entre los murciélagos europeos, y un conocimiento limitado y contradictorio sobre sus preferencias ecológicas. Hemos realizado varios estudios con la intención de conocer aspectos relacionados con la dieta, los hábitos de forrajeo y el uso de refugios de P. macrobullaris, que junto a un análisis de modelización desarrollado a varias escalas geográficas y resoluciones nos han permitido caracterizar el nicho ecológico de la especie y entender el porqué de su peculiar distribución. La distribución de P. macrobullaris se extiende desde los Pirineos hasta Irán, pero esta restringida a zonas montañosas. La modelización de su nicho ecológico mediante el análisis de factores climáticos, topográficos y relacionados al hábitat
Barbastella 8(1) 2015
65
V Jornadas de la SECEMU - 2014
demostró que su distribución esta limitada en mayor parte debido a factores topográficos, encontrándose las zonas con mayor idoneidad ecológica en zonas altamente abruptas. Los factores climáticos analizados demostraron que la especie tolera una gran amplitud térmica, lo que le permite encontrarse en zonas montañosas frías como los Alpes o más cálidas como las cordilleras del Medio Oriente. Para entender cómo los factores topográficos pueden afectar tan positivamente es necesario conocer las preferencias ecológicas de la especie. Los múltiples muestreos que realizamos en la zona alpina de varias cordilleras europeas mostraron que P. macrobullaris es una especie abundante en zonas abiertas de alta montaña, y el análisis molecular de sus heces desveló que su dieta esta basada en gran medida en lepidópteros alpinos. Mediante un estudio de radioseguimiento desvelamos que estos animales, incluyendo hembras preñadas y lactantes, se resguardan sobre todo en estructuras rocosas naturales situadas por encima del límite boscoso. Consecuentemente, la especie se encuentra relacionada con zonas abruptas seguramente porque éstas proporcionan los recursos ecológicos necesarios para esta especie, en concreto extensas zonas abiertas y gran abundancia de recursos rocosos. Finalmente, mediante un análisis biogeográfico comparativo identificamos 5 especies de vertebrados con una distribución geográfica muy similar a la de P. macrobullaris, con preferencias ecológicas muy similares al orejudo alpino.
Ecología de refugios de Myotis alcathoe (Alcathoe bat) en bosques maduros del Mediterráneo Alba Coronado 1; Adrià López-Baucells1 ,4; Xavier Puig-Montserrat2; Emilie Barthe3; Maria Mas1; Antoni Arrizabalaga1; Carles Flaquer1 Museu de Ciències Naturals de Granollers. Granollers, Catalunya. 2 Galanthus, Carretera de Juià 46, 17460 Celrà, Catalunya. 3 Conseil Général des Pyrénnées Orientales. Francia. 4 Centre for Evolution Ecology and Environmental changes, Universidade de Lisboa. Lisboa, Portugal.
1
adria.baucells@gmail.com Durante el inventario de murciélagos en 2009 fue detectada la presencia de Myotis alcathoe en el PNIN (Paraje Natural de Interés Nacional) de la Albera en el extremo nororiental de Cataluña. Los pocos datos disponibles en la literatura sobre la biología de esta especie de murciélago sugieren que habita en bosques naturales de hoja caduca con árboles grandes en diferentes estadios de decadencia y con puntos de agua corriente. El presente trabajo aporta información sobre el uso de refugios de poblaciones estables de ésta especie forestal estricta. Entre el 2009 y 2014, mediante la técnica de radioseguimiento, se han identificado un total de 19 refugios mediante telemetría siguiendo 10 machos y 11 hembras en los meses de julio y agosto. Se han caracterizado los árboles refugio, las cavidades y orificios, el hábitat circundante en un buffer de 10m y los refugios potenciales más cercanos. Los refugios encontrados corresponden a 6 Ilex aquifolium, 5 Acer campestre, 3 Fagus sylvatica, 2 Quercus ilex, 1 Quercus 66
pubescens, 1 Quercus suber y 1 Indeterminado (debido al estado muy avanzado de descomposición del árbol). Los datos preliminares obtenidos hasta el momento, concordantes con la escasa bibliografía existente sobre la especie, muestran una dependencia hacia los árboles caducifolios (excepto Ilex aquifolium, cuyo uso es reseñable) con cierto grado de decrepitud, que favorece la aparición de los refugios, por lo general de pequeño tamaño, que utilizan como mínimo durante el período reproductor. Los resultados parecen confirmar la literatura, tratándose de una especie bastante restricta a bosques maduros con gran cantidad de árboles en varios estadios de decadencia, aunque proporcionando más peso a los árboles de pequeño porte. Estos resultados incrementan en gran medida el interés de conservación para las áreas en que esta especie es detectada. Aun se necesitan más datos sobre la selección de refugios por esta especie en otras épocas del año para poder delinear una imagen completa de sus requerimientos ecológicos y sus consecuentes medidas de conservación.
Vertical stratification in aerial insectivorous bat ensembles in the Central Amazon Maria Mas Navarro1; Adrià López-Baucells1,2; Carles Falquer1; Christoph F.J. Meyer2 1 Museu de Ciències Naturals de Granollers. Granollers, Catalunya. 2 Centre for Evolution Ecology and Environmental changes, Universidade de Lisboa. Lisboa, Portugal.
maria.cat12@gmail.com Amazonian rainforests are under constant anthropogenic pressure. Of all the types of human activities that affect these forests, forest fragmentation probably has the greatest implications for conservation. Due to the prevailing pattern of land-use change landscapes that are comprised of a mosaic of recovering and mature forests that encompass structurally and ecologically different habitats are increasingly common. Within these forests, two layers are easily distinguishable: the canopy and the understory. Most of the studies of bat ecology and conservation in the Amazon have focused on the understory, which means that there is a remarkable lack of information about higher forest strata. This study aimed to determine the differences in vertical stratification in the activity of aerial insectivorous bat species in primary and secondary forests. Automatic acoustic detectors were used to record bat activity in both strata, while insect availability and vegetation obstruction were assessed as variables to explain bat activity. A total of 90,641 bat passes was recorded and classified. Our results showed specific differences in activity between canopy and understory for 8 out of the total of 24 species (Pteronotus sp. and Centronycteris maximiliani being, respectively, the species most strongly associated with the understory and the canopy). Several species showed the same distribution patterns between strata in both primary and secondary forests, which could possibly be explained by the old age of the regrowth forest in our study area. Insect availability and vegetation obstruction were weakly
Barbastella 8(1) 2015
V SECEMU Conference - 2014
correlated to only a few species and so bat distribution is hard to explain either by food resource availability or by the difficulty of flight inside the forest. Thus, considering those results, to get a complete view of this bat ensemble we strongly recommend that research focuses on sampling aerial insectivorous bats in both strata. Overall, that bat activity patterns in the canopy are similar in both primary and 30-year-old secondary forests.
Fenología de emergencia de especies de murciélagos cavernícolas simpátricas en su período de cría Irene García1; Marjorie Machado1; Miguel Ángel Monsalve2; Juan S. Monrós1 Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, España. 2 Conselleria de Infraestructuras, Territorio y Medio Ambiente. Valencia, España.
1
Análisis del tiempo de emergencia y depredación por rapaces en el nóctulo grande (Nyctalus lasiopterus) David Pastor Beviá; Detlev Kelm; Ana G. PopaLisseanu; Carlos Ibáñez Ulargui Estación Biológica de Doñana (CSIC). Sevilla, España. david.pastor@ebd.csic.es El tiempo de emergencia de los murciélagos ha sido estudiado ampliamente (1, 2). Variados son los factores que condicionan dicho tiempo de salida de los refugios (1, 2, 3, 4). En los murciélagos cazadores aéreos, los factores más importantes son la hora del ocaso, la alta disponibilidad de insectos voladores durante las horas previas al ocaso y la presión por depredación (1, 3, 5). En este estudio analizamos el tiempo de emergencia de colonias matriarcales de nóctulo grande en el Parque Natural de Los Alcornocales (Cádiz), donde se constatan casos de depredación tanto por rapaces diurnas (Falco sp.) como por nocturnas (cárabo). Para ello, marcamos individuos con radioemisores y transponders e instalamos lectores de transponders en los refugios encontrados mediante radiotracking. Durante el periodo que duró el estudio (mayo-julio de 2012) se registraron las horas de salida de los refugios con lectores y se constataron 5 casos de depredación por aves rapaces: 4 nóctulos depredados por falcónidos (halcón peregrino y cernícalo vulgar) y 1 por cárabo. Además, se observaron varios casos en los que los cárabos se acercaban a las proximidades de los refugios y realizaban esperas con la finalidad de poder atrapar algún murciélago.
igaruiz@alumni.uv.es Existen diversos factores tales como evasión de depredadores, demanda energética y/o picos de abundancia de presas, que podrían determinan el momento en que las especies de murciélagos cavernícolas abandonan los refugios en busca de alimento. El objetivo de este trabajo fue determinar los patrones de salidas del refugio de especies de murciélagos durante el período abril-julio de 2013 en cuevas de la Comunidad Valenciana. Para ello se filmó la salida durante una hora, con la ayuda de una cámara de video y foco de luz infrarroja, conectado a un detector de ultrasonidos Pettersson D230. Posteriormente los videos se analizaron para contabilizar la emergencia de los individuos de cada especie con la ayuda de un sonograma. Los murciélagos tendieron a surgir antes en relación con la puesta del sol en verano (especialmente en junio) que en primavera. Se observó que Miniopterus schreibersii siempre sale antes que el resto de las especies con las que comparte refugio, mientras que el grupo Myotis myotis/Myotis blythii mostró una tendencia a salir antes que las otras especies del género Myotis (Myotis capaccinii y Myotis escalerai). No se observaron diferencias significativas entre las cuevas. Así, M. schreibersii y M. myotis/M. blythii suelen tener vuelos más rápidos y con mayor maniobrabilidad, respectivamente, además que M. myotis/M. blythii tiene un tamaño mayor que el resto de especies, por lo que es posible que las variaciones en los tiempos de emergencia entre especies se deba a diferencias en la presión de depredación, permitiéndoles a estos salir antes para así aprovechar el pico de abundancia de insectos. Las diferencias entre meses pudieran estar relacionadas con la presencia a partir de junio de hembras lactantes, las cuales encaran mayores demandas energéticas debido tanto al gasto que supone amamantar a las crías, como a la urgencia de retornar pronto al refugio para el cuidado de estas.
En el solsticio de verano, la diferencia entre la hora del ocaso y la hora de emergencia de los murciélagos se reduce. Esto puede ser debido a factores tales como el adelantamiento de la salida de los refugios por parte de las hembras, al presentar un mayor requerimiento energético el proceso de lactancia y así poder explotar la alta disponibilidad de insectos voladores que hay durante ese momento. Es en este periodo del año donde se registra la depredación por falcónidos, al solaparse la temprana emergencia de los nóctulos con el fin del periodo de actividad diurno de las rapaces.
Barbastella 8(1) 2015
67
V Jornadas de la SECEMU - 2014
Barbastella 8 (1) ISSN: 1576-9720 SECEMU
Open Access
www.secemu.org
V SECEMU Conference – December 2014 (Madrid, Spain) V Jornadas de la SECEMU – Diciembre 2014 (Madrid, España) POSTER COMMUNICATIONS Tendencia de las poblaciones invernales de quirópteros cavernícolas en el centro de la Península Ibérica
y las poblaciones de R. euryale en Sierra Morena y de R. mehelyi en Montes de Toledo, donde disminuyen con el incremento de las temperaturas por lo que habría que buscar otras variables que puedan explicar esas tendencias.
Óscar de Paz1; Jesús de Lucas2; Gonzalo PérezSuárez1; Susana Martínez-Alos1
First isolation of Pseudogymnoascus destructans in bats from Portugal
Departamento de Ciencias de la Vida, Universidad de Alcalá. Alcalá de Henares, Madrid. 2 Junta de Comunidades de Castilla La Mancha. 1
o.depaz@uah.es Se analizan las tendencias poblacionales basadas en los censos realizados en cuatro regiones del centro peninsular (Sistema Central, Sistema Ibérico, Sierra Morena y Montes de Toledo) durante el periodo invernal. Los censos se han realizado entre la primera quincena de enero y la primera de febrero en 44 refugios mediante recuento de los individuos sobre fotografías en el periodo comprendido entre los años 1997 y 2014. De las 14 especies observadas, solamente en 5 (Rhinolophus ferrumequinum, R. hipposideros, R. euryale, R. mehelyi y Miniopterus schreibersii) se han podido detectar tendencias poblacionales, en el resto no fue posible debido a la escasez de datos. Los resultados de 18 años de seguimiento muestran que las poblaciones de R. ferrumequinum se incrementan en todas las regiones con una tasa de crecimiento anual comprendida entre el 4 y el 8%, al igual que ocurre con R. euryale en Sierra Morena donde experimenta un elevado crecimiento anual (15%) y con la población de R. mehelyi en Montes de Toledo que crece del orden de un 7% anual. También, M. schreibersii experimenta un fuerte crecimiento del 15% anual en el Sistema Central así como un crecimiento más moderado (3% anual) en Montes de Toledo. Para el resto de las regiones, el modelo predictivo no muestra una tendencia definida como tampoco lo hace para R. hipposideros en todas las regiones estudiadas. Aún cuando resulta complejo establecer la causalidad de las tendencias observadas, al menos en algunas regiones podrían atribuirse a cambios en las condiciones ambientales, ya que las poblaciones de R. ferrumequinum en el Sistema Ibérico y de M. schreibersii en el Sistema Ibérico y Montes de Toledo crecen con el incremento de las temperaturas. Sin embargo, no resulta clara la relación entre la temperatura 68
Paulo Barros1; Francisco Morinha1,2; Hélia Marisa Vale-Gonçalves1; Ana Cláudia Coelho3; Lisete Fernandes4; Paulo Travassos1; Ana Sofia Faria1,3; Estela Bastos2; Mário Santos1; João Alexandre Cabral1; Maria das Neves Paiva-Cardoso1,3 Laboratory of Applied Ecology, Centre for the Research and Technology of Agro-Environment and Biological Sciences. University of Trás-os-Montes and Alto Douro (UTAD). Vila Real, Portugal. 2 Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology. UTAD. Vila Real, Portugal 3 Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, Animal and Veterinary Research Centre. UTAD. Vila Real, Portugal 4 Electronic Microscopy Unit. UTAD, Vila Real, Portugal. 1
pbarros@utad.pt The psychrophilic fungus Pseudogymnoascus destructans (formerly known as Geomyces destructans) is considered the etiological agent of white-nose disease (WND), an emerging disease which affects bats during their hibernation period. This disease is clinically characterized by the growth of a white fungus on muzzle, ears, and wings’ membranes of affected bats. This infection caused the death of several million bats in North America. Conversely, European bats show no evidence of significant mortality occurrences associated with P. destructans colonization. This fungus has been isolated from bats in at least 15 European countries since 2008, but was never before reported in the Iberian Peninsula. This study describes the first case report of P. destructans colonization in bats from Portugal. The identification of the respective fungal isolates was based on the macroscopic and microscopic characterization of the cultures and confirmed by PCR-based analysis. This new finding improves the current knowledge about the European distribution of P. destructans, which is of great interest for forthcoming studies on the fungus dispersion and impact among bat populations at regional and/or global level.
Barbastella 8(1) 2015
V SECEMU Conference - 2014
Actividade e riqueza de quirópteros por tipologia de habitat: um estudo no campus da Universidade de Trás-osMontes e Alto Douro Sandra Faria; Dalila Shafie; Paulo Barros; João Alexandre Cabral Laboratório de Ecologia Aplicada, Centro de Investigação e Tecnologias Agroambientais e Biológica. Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. sandra_faria@hotmail.com Em Portugal Continental estão descritas 25 espécies de quirópteros. Embora seja um dos grupos faunísticos com mais espécies protegidas em Portugal continua a ser um dos menos estudados. Este trabalho constitui o primeiro estudo sistemático das espécies de quirópteros que ocorrem no Campus da Universidade de Trás-os-Montes e Alto Douro (UTAD), uma antiga quinta transformada num espaço heterogéneo de base agro-florestal, com o objectivo principal de contribuir para o conhecimento das relações causaefeito que explicam a actividade e a riqueza específica de quirópteros que ocorre nas diferentes tipologias de habitats que constituem este sistema. Foram registadas 378 faixas acústicas que possibilitaram a identificação de um mínimo confirmado de 11 espécies (Tadarida teniotis, Pipistrellus kuhlii, P. pipistrellus, P. pygmaeus, Miniopterus schreibersii, Nyctalus leisleri, Myotis daubentonii, Plecotus austriacus ou P. auritus, Eptesicus serotinus ou E. isabellinus, Myotis myotis ou M. blythii e Nyctalus lasiopterus ou N. noctula) e um máximo potencial de 14 espécies. A análise de variância (ANOVA) dos dados demonstrou que o desenvolvimento sazonal do estado vegetativo dos habitats é mais preponderante na explicação do aumento da riqueza específica do que a tipologia específica do habitat dominante em cada ponto de amostragem (aquático, jardim, folhosas, resinosas, vinhas e urbano). Por outro lado, a actividade de quirópteros já revelou diferenças altamente significativas entre tipologia de habitat, com valores mais elevados em habitats com massas de água e/ou ajardinados. De forma mais discriminada ficou ainda patente a importância que os habitats com massas de água representam como territórios de alimentação e dos jardins como locais preferenciais para comportamentos sociais (com emissão mais frequente de social calls). Estes resultados, embora preliminares, confirmam a potencialidade que o Campus da UTAD tem para a comunidade de quirópteros, expressa pelos valores relevantes de actividade e riqueza específica de quirópteros, representando um excelente mosaico de nichos ecológicos para as diferentes espécies que nele ocorrem, uma área modelo para estudos controlados deste grupo faunístico e um local de elevada importância para a sua conservação no contexto regional.
Importance of the underground galleries of hydroelectric plants in the conservation of bats David Guixé1; Elena Roca1; Gerard Barengueras1; Jordi Camprodon1,2 Centre Tecnològic Forestal de Catalunya. Solsona, España. Departamento de Biociencias. Escuela Politécnica Superior. Universitat de Vic. Vic, España. 1
2
david.guixe@ctfc.cat Caves are the main mating and hibernation resources for most of temperate bat species. However, there is a lack of information about how bats use caves and galleries of hydroelectric plants. We surveyed Catalonian dams from spring until autumn. We monitored bats’ activity in 37 caves using harp traps, mist nets, phototrapping and ultrasonic detectors. A total of 994 bats representing 19 out of the 29 catalan species existing were caught. Over 75% of caves surveyed were used by bats at some point. Abundance and richness of bats was positively correlated with schist rock, the absence of grid, the hole’s width and the maximum cave’s height. Activity was negatively correlated with cement, granite and small size grid. Temperature and relative humidity are also significant but with a weak correlation. Therefore, both the type of rock in the caves and the type of grating in the entrance of them have a big influence on the presence and abundance of bats in these habitats. We also found new colonies of Myotis capaccinii (endangered species) and we caught 5 species considered as vulnerable ones. Due to this fact and the large number of captured species, the conservation of these areas is vital. Hence, these sites deserve a special consideration in bat’s conservation and management strategies.
Reparto específico de presas entre los murciélagos Rhinolophus euryale Y Rhinolophus mehelyi en simpatría Aitor Arrizabalaga-Escudero1,2; Elizabeth Clare; Antton Alberdi1; Egoitz Salsamendi1; Joxerra Aihartza1; Urtzi Goiti1; Inazio Garin1 Zoologia eta AZB Saila, Euskal Herriko Unibertsitatea (UPV/EHU). Leioa, País Vasco. 2 School of Biological and Chemical Sciences, Queen Mary University of London. London, United Kingdom. 1
arrizabalaga.aitor@gmail.com Rhinolophus euryale y R. mehelyi muestran un elevado grado de solapamiento en la morfología y la ecolocalización. Ambas especies se alimentan principalmente de polillas en y a lo largo de los bordes del bosque tanto en alopatría como en simpatría. Se ha sugerido que la segregación en los hábitats de alimentación es el principal mecanismo que permite la coexistencia de ambas especies. Sin embargo, la baja resolución taxonómica de los métodos tradicionales
Barbastella 8(1) 2015
69
V Jornadas de la SECEMU - 2014
para analizar la dieta no ha permitido desvelar si existen procesos ecológicos ocultos bajo la categoría Lepidoptera. En consecuencia, pretendemos dilucidar si existen diferencias en las especies de polillas consumidas en simpatría por las dos especies de murciélagos, que a su vez puedan ser funcionalmente significativas. Gracias al uso de códigos de barras de ADN y las tecnologías de NGS (Next Generation Sequencing) identificamos 147 MOTU (unidades taxónomicas moleculares) de presas en las heces de 36 R. euryale y 144 MOTU en 36 R. mehelyi. La amplitud de nicho no difirió entre R. euryale y R. mehelyi (índice de Levin estandarizado B = 0,240 y 0,228, respectivamente), aunque ambas especies mostraron un solapamiento taxonómico bajo (Ojk = 0,186). Se compararon las secuencias representativas de cada MOTU con la base de datos BOLD (El código de barras del sistema de datos de la Vida) e identificamos con éxito el 41% de todos los MOTU generados, de los cuales más del 80% correspondieron a los lepidópteros en ambas especies. Los resultados indican un solapamiento de nicho trófico más bajo de lo que cabría esperar atendiendo únicamente a las características morfológicas y de ecolocalización de ambas especies. Este reparto de recursos es coincidente con un uso del hábitat diferente en simpatría, como se observó en los primeros estudios, ayudado presumiblemente por una diferencia en la disponibilidad de presas en los hábitats. Por último, el bajo éxito de identificación taxonómica ha limitado la capacidad de profundizar en un análisis funcional de las presas, lo que a su vez, resalta la necesidad de realizar un registro más completo del código de barras de ADN de la comunidad de lepidópteros en el centro de la Península Ibérica.
Bat activity in the urban area of Vila Real (Portugal) Luís Braz Laboratory of Applied Ecology, Centre for the research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal. luisfbraz@gmail.com The Geographic Information Systems (GIS) are a recurrent and essential tool in ecology studies. They are fundamental to comprehend and display the relationship between the organisms and the areas where they live, therefore helping to determine, for instance, distribution patterns, ecological niches and biodiversity hotspots. The order Chiroptera (Bats) is one of the most diverse groups of Mammals, which occupies a large range of habitats. They are present in several types of habitats, including the most altered and less natural resulting from human activity, such as cities. In this study we perform a geostatistical analysis in the preliminary data collected from acoustic surveys to determine the bat activity in an urban area of a city in the north of 70
Portugal (Vila Real). Between March 2014 and October 2014 there where sampled a total of 120 samples distributed by 30 fixed points of 10 minutes each, in three types of habitat: urban zones, parks and riverside areas. During the sampling periods were also counted the “feeding buzz” calls, the social calls and the number of passes/contacts on each period. There were obtained 451 records and identified 9 species of insectivorous bats. The results of ANOVA statistic test show significant differences between the riverside and the urban areas in the number of passes and also between urban areas and park/riverside areas regarding to the species richness. The parks and riverine habitats inside the cities are important to maintain the diversity of bats, because they are used as foraging habitats by a larger number of species, to the detriment of urban areas. The natural areas, such as parks and gardens, are important to maintain the bat diversity inside the cities. P. pipistrellus and P. kuhlii are the most abundant species on urban habitat, where the species richness is lower, so despite being generalist species with a favourable conservation status, they are important to maintain the ecosystem balance inside the cities (e. g. control of insect populations). Further studies with a larger data sampling are important to comprehend the seasonal activity of bat populations inside this urban area.
Instalación de cajas-refugio para murciélagos en torres de alta tensión de red eléctrica de España (REE). Valoración de la experiencia Miguel Angel Monsalve1; Mauro Montesinos2 C.R.F La Granja de El Saler - VAERSA. El Saler-Valencia, España. 2 Técnico Medio Ambiente Red Eléctrica de España S.A.U. L’Eliana Valencia. España.
1
brigada_granja@gva.es Una de las acciones de REE, dentro de su política ambiental, es la colaboración con diferentes organismos públicos o privados que trabajan en proyectos de conservación. Uno de estos proyectos ha sido la instalación en 2011 de 61 cajasrefugio para murciélagos Schwegler 1FF en el Parque Natural del Turia (provincia de Valencia). Se han utilizado como soporte torres de alta tensión de la REE (36 cajas) y árboles despejados de ramas (25). Se realizan visitas en enero, junio y diciembre de 2012 y en abril, agosto y septiembre de 2013 con objetivo de valorar lo siguiente: Ocupación de las cajas: El indicador utilizado es “número de ejemplares observados”. La especie detectada siempre es Pipistrellus pygmaeus. Se llega a un máximo en primavera de 2013 con el 28,9% de las cajas ocupadas. Se observa mayor ocupación en primavera-verano y menor ocupación en invierno. La media del número de ejemplares hallados en las cajas pasa de 1 en ene-12 a 3 en sept-13. Comparación entre las torres de alta tensión y otros soportes (pinos): En el segundo año de seguimiento se da un porcentaje
Barbastella 8(1) 2015
V SECEMU Conference - 2014
de ocupación (35,9%) en las cajas instaladas en torres de alta tensión. La ocupación en cajas instaladas en árbol es menor (10,0%),. Comparación de efectividad en dos hábitats: Río y Forestal: Se han comparado dos zonas, pinar-monte bajo y ribera. Se observó mayor ocupación (36,5%) en el río que en zona forestal (20,8%). Comparación según altura de instalación: se analizan cajas colocadas en las torres de alta tensión, a 4m. (n=9), a 5m. (n=4) y otras a 6m. (n=13). Los datos de 5m son muy escasos y se han agrupado con los de 4m. Aunque las diferencias no son muy marcadas, la ocupación es ligeramente mayor en las cajas de 6 metros (39,8%) que en las cajas instaladas a 4 y 5 metros (32,4%). La ocupación observada en las cajas de las torres de alta tensión es similar a la de otros trabajos donde se instalan las cajas en otros soportes.
Actuaciones de conservación en refugios de murciélagos declarados ZEC (Red Natura 2000) en la Comunitat Valenciana Miguel Ángel Monsalve1; Juan Jiménez VAERSA-Generalitat Valenciana. CRF La Granja de El Saler. El Saler-Valencia. Spain 2 Servicio de Vida Silvestre. Conselleria de Infraestructuras. Territorio y Medio Ambiente. Generalitat Valenciana. Spain. 1
brigada_granja@gva.es En marzo de 2013 la Generalitat Valenciana aprobó un Decreto que declaraba como Zonas Especiales de Conservación (ZEC) 17 refugios de murciélagos. El estado de conservación de las colonias era dispar. Por un lado, se registraba descenso poblacional de Rhinolophus euryale, y del grupo de los Myotis grandes (M.blythii y M.myotis) en las dos colonias de cría más importantes de la Comunitat Valenciana. Por otro, dos refugios cerrados al público hace más de 8 años presentaban el mejor estado de conservación registrando aumentos del grupo de los Myotis pequeños (M.capaccinii, M.emarginatus y M.escalerai) y de Miniopterus schreibersii. Para el conjunto de las especies la situación más favorable era para el grupo de los Myotis pequeños que aumentaba en 6 refugios, y la más desfavorable para los Myotis grandes que disminuía en 6. El Decreto contemplaba 6 actuaciones de conservación. Se describe el cumplimiento un año después de la aprobación de la normativa: 1) Seguimiento de las poblaciones: se han censado 11 refugios. 2) Regulación de accesos: Sólo son visitables 6 de estos refugios en períodos y con cupos determinados. Se halla en trámite un convenio de colaboración por la cual la Federación de Espeleología de la C.V. regulará dichos accesos. 3) Instalación de cerramientos: se ha culminado la instalación de vallado o reja de protección en 15 refugios. Se
han restaurado los cierres ya existentes y se han protegido 5 nuevos refugios con vallado periférico, 2 con reja de ¾, instalando carteles en 3 más. 4) Limpieza de los refugios y eliminación de obstáculos en las entradas: En 2013 se han retirado basuras en 7 cavidades. Se han eliminado ramas de arbustos que dificultaban el vuelo libre de los murciélagos en 13. 5) Topografías de las cavidades: Desde hace años se vienen realizando topografías de la cavidad, registro de temperaturas en el interior y localización de las colonias y/o manchas de guano. Se ha cubierto el 56,9% de los trabajos propuestos. 6) Campaña de información: Ninguna acción realizada. Incluye una campaña para la población local de los municipios próximos y la edición de material didáctico de apoyo.
¿Histioplasmosis en España? Negativo en anticuerpos en un biólogo tras 20 años trabajando con murciélagos. Juan1 Quetglas Santos; Maria José Buitrago Serna2 Murciélagos y Más. Espartinas, España. Servicio de Micología. Centro Nacional de Microbiología Instituto de Salud Carlos III Majadahonda. Madrid, España.
1
2
jqmurcielagos@gmail.com. La histoplasmosis es una enfermedad de humanos y otros mamíferos causada por el hongo dimórfico Histoplasma capsulatum. Aparece naturalmente como un saprófito del suelo en áreas relativamente cálidas y húmedas. Su desarrollo se potencia mediante material orgánico apropiado como las heces de aves o murciélagos. La infección ocurre por inhalación de las esporas, que son fácilmente suspendidas en el aire al mover depósitos fecales secos, habiendo muchos casos en América de contagio de espeleólogos y otras personas que frecuentaban cuevas y minas con colonias de murciélagos. No es posible el contagio directo entre personas. En 2013 un biólogo especializado en murciélagos sufrió durante muchos meses distintos síntomas parecidos a neumonías partiendo de una sensación parecida al asma que no respondía ante antihistamínicos. Sus dos hijos también presentaron en un momento dado síntomas de neumonía por lo que se barajó la posibilidad de una tuberculosis contagiada entre la familia, que se descartó mediante los análisis correspondientes. España es considerada como zona libre de histoplasmosis, pero el hongo se supone de distribución cosmopolita. Los datos sobre presencia en Europa son escasos y muy dudosos. No se ha dado histoplasmosis entre espeleólogos ibéricos, pero en el sujeto afectado se daba el caso de que todas las expediciones a cuevas se hacían precisamente a las zonas con murciélagos, donde se permanecía durante el trabajo con éstos animales. El conocimiento de un artículo de una revista sin revisores que afirmaba haber encontrado H. capsulatum en una cueva de la provincia de Málaga en la que también había estado el biólogo animó a salir de dudas y se analizó la presencia de anticuerpos en sangre con resultado negativo.
Barbastella 8(1) 2015
71
V Jornadas de la SECEMU - 2014
El análisis de muestras de guano y suelos implica un laboratorio de bioseguridad de nivel 3, lo que complica mucho el estudio de éste hongo. Nuestros resultados de anticuerpos ayudan sugiriendo la ausencia de H. capsulatum en guano de murciélagos en Andalucía y la dificultad de contraer aquí histoplasmosis en estos casos teóricos de riesgo.
Caracterización del pelaje y patrón cuticular de los pelos de Eptesicus serotinus y Eptesicus isabellinus en España Susana Martínez-Alós1; Adrián Vazquez1; Oscar de Paz1; Gonzalo Pérez-Suárez1; Javier Juste2; Carlos Ibáñez2 Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares. Madrid, España. 2 Departamento de Ecología Evolutiva, Estación Biológica de Doñana (CSIC). Sevilla, España. 1
susana.martinez@uah.es Se describe con el microscopio lumínico y el microscopio electrónico de barrido, la estructura de los pelos de las dos especies del género Eptesicus presentes en la península ibérica con el fin de encontrar diferencias que contribuyan a su identificación. Para el estudio se ha tenido en cuenta su distribución actual en nuestro país, por lo que se han usado muestras de pelos de ejemplares de La Rioja, Segovia, Madrid, Cádiz, Huelva y Málaga, pero también de la zona de contacto en el centro peninsular (Cáceres, Ciudad Real y Toledo). Los resultados permiten distinguir dos tipos de pelos, llamados de lana y de guarda. Los primeros son más abundantes, cortos, ondulados y poco pigmentados, mientras que los segundos son más escasos, largos, rígidos y están más pigmentados. En cada uno de ellos, se han caracterizado las regiones presentes y sus escamas cuticulares, siendo posible diferenciarlos por la presencia en la región distal de los pelos de guarda de la característica espátula. La estructura y el patrón cuticular de la espátula nos han permitido identificar dos tipos de pelos de guarda, primarios y secundarios. En los primarios, la espátula tiene sección transversal más o menos circular y sus escamas cuticulares son de tipo coronal imbricado, asimétricas y no lobuladas, mientras que en los secundarios la sección transversal es arriñonada y sus escamas son de tipo coronal imbricado, simétricas y lobuladas. La estructura y el patrón cuticular de los pelos de lana es la misma en ambas especies, al igual que ocurre con los pelos de guarda primarios y secundarios. Estos resultados ponen de manifiesto que, a diferencia de lo que sucede en otras especies de mamíferos y también de murciélagos, la estructura del pelaje y el patrón cuticular no permite diferenciar los murciélagos hortelanos de nuestra fauna.
Determinación de áreas de importáncia para quirópteros a través de modelos predictivos Xosé Pardavila1; Adrián Lamosa1; Alvaro Moraña; Alberto Gil; Francisco Carro. Sorex, Ecoloxía e Medio Ambiente S.L. Santiago de Compostela, Galiza. 1
xosepardavila@sorexecoloxia.com Los quirópteros dependen de diversos hábitats para el desarrollo de su ciclo biológico o parte de él (reproducción, caza o hibernación), teniendo así mismo un papel importante en la dinámica de estos ecosistemas. De este modo la pérdida de hábitat es uno de los principales factores de amenaza para estas especies. Durante las últimas décadas se ha producido una pérdida de biodiversidad generalizada, lo que ha exigido la delimitación de áreas protegidas. Sin embargo a menudo estas áreas protegidas no “protegen” adecuadamente a algunas especies, como es el caso de los quirópteros. Entre los años 2010 y 2014 se ha estudiado la comunidad de quirópteros del LIC Baixa Limia-Serra do Xurés y áreas limítrofes, obteniendo datos de presencia de varias de estas especies (20). Este espacio se caracteriza por ser también un Parque Natural y en especial por constituir un parque transfronterizo con el Parque Nacional de Peneda-Gerês (Portugal). Recientemente ambos han constituido la Reserva de la Biosfera Transfronteriza Gerês-Xurés. A partir de los datos de distribución de 12 de estas especies, fueron construidos modelos de nicho ecológico (MAXENT 3.3), de ámbito local. Con los datos obtenidos en el LIC se ha realizado una proyección de la distribución de estas especies al entorno de la Reserva de la Biosfera Transfronteriza Gerês-Xurés. La sumatoria de todos los modelos obtenidos nos ha permitido determinar las áreas de mayor importancia para la comunidad quiropterológica de este territorio, constatando que hasta la constitución de la RB, al menos en la parte gallega, muchas áreas de gran importancia carecían de algún tipo de protección.
Parques eólicos: zonas de riesgo en Galicia Zeltia López Gallego; Francisco Conde; Ledicia Santos Fernández; Roberto X. Hermida Lorenzo Asociación Drosera para o Estudo e Conservación do Medio Natural. Lugo, España. zeltia.lopez.gallego@gmail.com
72
Barbastella 8(1) 2015
V SECEMU Conference - 2014
La energía eólica es un sector en expansión en nuestro país. En el año 2013, cubrió el 20,9% de la demanda eléctrica en España, siendo la primera tecnología en el sistema eléctrico. Con 158 parques eólicos en funcionamiento y unos 4000 aerogeneradores instalados, Galicia es la segunda comunidad autónoma con mayor número de parques eólicos del país, por detrás de Castilla-León. Debido al impacto negativo que los parques eólicos producen sobre las poblaciones de murciélagos, se hace necesario identificar las áreas con mayor riesgo de mortalidad. Para ello se han utilizado los mapas de distribución (cuadrículas UTM 10x10) de 12 especies de quirópteros para las que existe información en Galicia y cuya sensibilidad a los parques eólicos ha sido confirmada en trabajos previos. Dichas especies son: Myotis myotis, Myotis daubentonii, Pipistrellus pipistrellus, Pipistrellus pygmaeus, Hypsugo savii, Nyctalus leisleri, Nyctalus lasiopterus, Eptesicus serotinus, Plecotus auritus, Plecotus austriacus y Miniopterus schreibersii. Tras superponer todos los mapas de distribución, se han clasificado las cuadrículas en función del número de especies sensibles presente en cada una de ellas. Y se han establecido las categorías siguientes: Riesgo bajo (entre 1 y 3 especies sensibles), medio (4-6), alto (7-9) y muy alto (10-12). Los resultados obtenidos muestran que solo el 0,6% de las cuadrículas estudiadas presentan un riesgo muy alto, el 6,5% alto, el 20,6% medio y el 72,4% riesgo bajo. La mayoría de las cuadrículas clasificadas como de riesgo alto o muy alto se encuentran en la montaña oriental de Lugo y en el Sur de Ourense (Parque Natural Baixa-Limia-Serra do Xurés y comarca de Verín). Estos resultados proporcionan una herramienta útil para la elaboración de informes previos a la instalación de parques eólicos así como para el establecimiento de planes de vigilancia ambiental en aquellos situados en zonas de riesgo. Sin embargo, cabe destacar que este estudio presenta información de 170 cuadrículas de las 365 que conforman Galicia. Además algunas de ellas contienen datos incompletos. Todo esto hace necesario incidir en futuras prospecciones para completar así este mapa preliminar de zonas de riesgo.
Importancia de los pasos inferiores de carreteras como refugio e lugar de paso para los murciélagos Paulo Barros Laboratorio de Ecologia Aplicada, CITAB— Centro de Investigação e Tecnologias Agroambientais y Biológica. Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal. pbarros@utad.pt.t. Con objeto de ampliar el conocimiento sobre la utilización de los pasos inferiores agrícolas por parte de los murciélagos se han desarrollado trabajos de detección acústica, captura y revisión de refugios en cinco pasos inferiores ubicados a lo largo de 8250m de un tramo de la carretera situada en el Norte de Portugal en una zona rural de uso agrícola y pastoreo.
Los resultados de los registros acústicos y de captura de murciélagos con redes de niebla, permitieron confirmar la utilización de por lo menos 12 especies (Pipistrellus pipistrellus, P. kuhlii, P. pygmaeus, Myotis daubentonii, M. escalerai, M. myotis, Nyctalus leisleri, Plecotus austriacus, Rhinolophus ferrumequinum, R. hipposideros, R. mehelyi/R. euryale y Eptesicus serotinus/E. isabellinus). La inspección y revisión de refugios en los 5 pasos inferiores han permitido constatar la presencia de por lo menos 6 especies (M. daubentonii, M. myotis, N. leisleri, P. austriacus, Eptesicus serotinus/E. isabellinus y Pipistrellus sp.) que usaron fisuras dentro de los túneles de entre 1,2 y 1,9 cm. Para una misma altura (4,2-4,3m) y anchura de túnel (9m), los pasos más utilizados fueron los de mayor longitud. Estos resultados confirman la importancia que los pasos inferiores tienen en la conectividad y minimización de los impactos de las carreteras, así como proporcionan nuevos refugios artificiales para los murciélagos cuando son tenidas en cuenta características como la longitud de los pasos y la cantidad de fisuras con anchura adecuadas para el refugio de murciélagos.
Patrón reproductivo de algunas especies de murciélagos cavernícolas de la Comunidad Valenciana Marjorie Machado; Juan S. Monrós Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, España. marmasi2@uv.es El periodo reproductivo es una fase particularmente sensible, ya que supone una importante inversión energética y alta vulnerabilidad. En los quirópteros cavernícolas las hembras suelen agruparse en grandes colonias de cría que aglutina a miles de individuos de zonas circundantes. El objetivo de este estudio es describir los componentes del patrón reproductivo de Miniopterus schreibersii, Myotis blythii, M. myotis, M. capaccinii, M. escalerai y Rhinolophus euryale en diferentes refugios de la Comunidad Valenciana. En el período abriljulio de 2013 y 2014 con la ayuda de una trampa de arpa se capturaron, una vez al mes, individuos de estas especies en 5 cuevas de la provincia de Valencia. A cada individuo se le determinó sexo, edad y condición reproductiva a las hembras (nulipara, preñada, lactante, postlactante o no reproductiva). Con un esfuerzo de 96 horas/trampa/noche y un éxito de 12,16 individuo/hora/noche se capturaron 1216 individuos, 858 hembras y 500 machos. En ambos años la mayoría de las hembras llegaron a los refugios con gestaciones medias o avanzadas a finales de abril, los primeros partos se registraron para M. escalerai (Sagunto) y M. capaccinii (Sagunto y Llombai) en mayo. A finales de junio se capturaron juveniles de todas las especies a excepción de M. schreibersii, M. blythii y R. euryale, los cuales aparecieron en julio. Todas las especies mostraron altas tasas reproductivas, siendo las más altas para M. capaccinii (1,00) y M. escalerai (1,00-0,90) y las más bajas para M. myotis (0,88) y M. schereibersii (0,85). Destaca un primer grupo formado por M. capaccinii, M. escalerai y M. myotis con aparición temprana de juveniles (junio) y un segundo grupo de juveniles tardíos (julio) conformado por M. schereibersii y M. blythii.
Barbastella 8(1) 2015
73
V Jornadas de la SECEMU - 2014
Dieta de murciélagos cavernícolas durante el período de cría en la Comunidad Valenciana
Universidade de Lisboa. Lisboa, Portugal. 4 Metapopulation Research Group, Faculty of Biosciences, University of Helsinki. Helsinki, Finland. adria.baucells@gmail.com
Luis Mateu; Carmen Hernández; Marjorie Machado ; Juan S. Monrós Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, España. luismami@alumni.uv.es Los estudios ecológicos realizados sobre quirópteros han sido abordados desde diferentes puntos de vista, desde técnicas de detección, captura y consumo de presas, pasando por patrones y éxitos reproductivos, y hasta por aquellos referidos a distribución geográfica, selección de refugios y estrategias termorreguladoras. En la península ibérica, particularmente en la Comunidad Valenciana, habita una notable variedad de especies de murciélagos insectívoros, la mayoría de los cuales se encuentra actualmente protegidos. Esta gran diversidad se mantiene gracias al reparto tanto espacial como temporal de los recursos disponibles en el ambiente. Estos patrones de uso de los recursos es, tal vez, el principal factor que estructura estas comunidades. El objetivo del presente trabajo fue determinar y comparar los componentes de la dieta de Miniopterus schreibersii, Myotis blythii, Myotis capaccinii, Myotis escalerai y Myotis myotis, mediante la evaluación de muestras fecales para conocer las presas que componen su dieta. Durante el período abriljunio de 2014, correspondiente al período de cría de estas especies, se capturaron 254 individuos, de los cuales se colectaron 213 muestras fecales, constituidas por 1194 unidades de excremento. Se encontró que estas especies consumen Diptera (32%), Lepidoptera (26%) y Coleoptera (23’3%), principalmente. La diferencia en la dieta de estas especies radica en la distinta proporción de estos grupos de insectos y de otros tales como: hemípteros, ortópteros y lepidópteros. Además se alimentan esporádicamente también de dermápteros, neurópteros, himenópteros y tricópteros, quizás como suplemento nutricional o como sustituto en ausencia de sus presas más comunes. Este espectro de presas parece responder a las diferencias en estrategias de búsqueda y captura de recurso previamente descritas para estas especies.
Echolocation calls of Central Amazonian Bats. A proposal for an acoustic identification key Adrià López-Baucells1,2,3; Ricardo Rocha2,3,4; Maria Mas1; Jorge Palmeirim3; Paulo E. D. Bobrowiec2; Christoph F. J. Meyer2,3 Natural Science Museum of Granollers. Granollers, Catalunya. 2 Biological Dynamics of Forest Fragments Project, National Institute for Amazonian Research (INPA). Manaus, Brasil. 3 Centre for Evolution, Ecology and Environmental Changes,
We provide a local library of reference calls for 29 Central Amazonian aerial insectivorous bats, and a unique data set for further identification of these bat species through acoustic recordings. In order to compile recordings for the library of reference calls, we used mist-netting in the whole habitats (terra firme, lakes and ponds, swamps, meadows and riparian areas) and roost searches, leading to an effort of 29.299 net hours for ground mistnets and 2.235 net hours for canopy mistnets, rising a total of nearly 700 recordings of aerial insectivorous bats. Pettersson D1000 and D500 detectors were used to record echolocation calls upon release. Generally, the detector was placed between 5 to 10 meters from the point of releasing and once an individual was in flight, the detector was pointed towards it as long as possible in order to record a maximum number of pulses. Depending on the situation and environment different methodologies were used to obtain these release calls: releasing bats by hand, attached to an elastic cord, inside a flight room, in the natural environment, close to the mistnets with a 20’’ pretriggering time to record them before capture and flying out of their roosts. Kaleidoscope Pro v. 2.10 software (Wildlife Acoustics) was used for characterization of the pulses and the measurement of standard variables such as frequency of maximum energy (peak frequency), start/end frequency, lowest/highest frequency, call duration and shape. Thus, we present a comparative description of each species’ echolocation calls with a proposal of an acoustic identification key. The fact that the parameters of our pulses do not considerably differ from recordings from French Guiana (Barataud 2013), indicate relatively little intraspecific geographic variation between distant localities, which would make this compilation a good reference source for the acoustic identification of Central Amazonian bats. We also present the first echolocation descriptions for three aerial insectivorous species such as Eumops maurus, Lasiurus egregius and Saccopteryx gymnura, corresponding to three different families. Our data thus make an important contribution to improve acoustic bat species identification in the Neotropics, and can help to avoid misidentifications in future research.
Ocupación de cajas refugio por murciélagos en el parque de Salburua (Vitoria-Gasteiz) Juan T. Alcalde; Iñaki Martínez Pamplona, España.
1
74
jtalcalde@gmail.com El parque de Salburua es un humedal de 206 Ha, situado a 510 m.s.n.m., en el término de Vitoria Gasteiz. Posee un clima subcantábrico. El lugar es atravesado por el río
Barbastella 8(1) 2015
V SECEMU Conference - 2014
Santo Tomás y contiene diversas balsas, tanto permanentes como temporales. Se trata de un lugar muy apropiado para determinadas especies de quirópteros, pero deficiente en refugios, ya que en la zona no existen cavidades, roquedos o edificios, y los árboles con huecos son muy escasos. A finales de 2008 se colocaron 95 cajas-refugio específicas para murciélagos (modelos 1FF, 1FW, 2FN y 2F de doble pared de Schwegler) a una altura de entre 4 y 7 m, sobre postes, árboles o casetas de observación de aves. Las cajas se han revisado los años 2010, 2011 y 2013 para comprobar su ocupación por murciélagos y realizar labores de mantenimiento. Las revisiones se han realizado fundamentalmente en otoño. En total se han realizado 127 observaciones de murciélagos, pertenecientes a 4 especies: murciélago de Cabrera (Pipistrellus pygmaeus, 107 observaciones), nóctulo pequeño (Nyctalus leisleri, 12 observaciones), murciélago de borde claro (Pipistrellus kuhlii, 7 observaciones) y murciélago ratonero ribereño (Myotis daubentonii, 1 observación). Se han identificado machos y hembras de las tres primeras especies (tabla 3), observándose grupos de apareamiento en todas ellas.
La ocupación de cajas y el número de murciélagos hallados han aumentado progresivamente en cada revisión anual:
Año
% cajas ocupadas 2010 1,58 2011 11,58 2013 17,89
N murc./caja 0,03 0,28 0,35
Los modelos con mayor ocupación son el 1FF (20,8 %), 2F de doble pared (18,5 %) y 2FN (14,3 %). Las cajas 1FW no han sido ocupadas. En algunas cajas se ha encontrado guano, lo que revela su ocupación en fechas anteriores a la revisión; no obstante, este dato no ha sido considerado ya que las cajas planas (1FF) no retienen el guano y por tanto este parámetro no es comparable entre modelos. Los resultados muestran el asentamiento progresivo de una población de murciélagos en la zona, lo cual redunda en un aumento de la biodiversidad y un mayor control biológico de los insectos del lugar.
Barbastella 8(1) 2015
75
Instructions for publishing papers Manuscripts should be sent in digital format only (.odt, .doc or .docx) to the Barbastella Commission through the application form or by e-mail (barbastella@secemu.org). They may be written in either English or Spanish and can deal with any chiropter-related topic worldwide. Manuscripts may not be sent to any other journal whilst they are under revision by Barbastella. Before acceptance, all manuscripts will be evaluated and validated by anonymous referees. Barbastella accepts manuscripts in the following categories: article, review and short note. All authors are required to adopt the following style guide in order to present their manuscripts: Manucript file Must be sent without figures and tables, in one single Word document. Format: Times New Roman, 12, double space, margin 2.5cm., and all lines and pages must be numbered, without tabulated paragraphs. Species names must be written in italics; decimal numbers must be separated by comas. DNA sequences must be placed in GenBank and accession numbers included in the text. Figures and table captions must be properly specified at the end of the manuscript. Title and abstract page Title of the paper (concise and informative) The whole name of the authors: one corresponding author should be responsible for all communication during the editing process) Institutions and complete addresses / E-mail of the corresponding author. Abstract with a maximum of 300 words (concise and informative). Key words (10 maximum) Sections of the manuscript (recommended for articles and reviews but not required for short-notes) Introduction / Material and methods / Results / Discussion / Conclusions / Acknowledgements / References References In the text, they must be given in chronological order, separated by comas. When there are two authors they must include both in the reference (eg. Mas & López-Baucells 2014), while if there are more than two authors, the form et al. must be used (eg. Flaquer et al. 2014). For papers waiting for publication, please use (in press). If one author has more than one paper per year, use letters to be distinguished. Ex. Ibáñez (2010), (Flaquer 2008), (Garin 2009a), (Parry-Jones in press). In the section References, they must be given alphabetically, with the full name of the journal/book; the title must be in the original language, using small letters (a...z) to indicate the papers published by the same author in the same year. The references must include: the name of the authors in versalic letters, the year of publication, the title of the paper, the journal/book, the volume, number and pages. Please, also include all available DOI codes! Ej. Ibáñez, C., García-Mudarra, J. L., Ruedi, M., Stadelmann, B. & Juste, J. 2006. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterologica 8 (2): 277-297. http://dx.doi.org/10.3161/1733-5329(2006)8[277:TICTCD]2.0.CO;2 Ej. Gardner, A.L. & Handley, C. O. 2007. Mammals of South America, vol. 1: Marsupials, Xenarthrans, Shrews, and Bats. (eds.) University of Chicago Press, Chicago, IL.http://dx.doi.org/10.1644/08-MAMM-R-296.1 Ej. Barclay, R. M. R. & Brigham, M. 2000. Geographic variation in the echolocation calls of bats: A compilation for identifying species by their calls. pp.142-146. In: (Bat Echolocation Research. Tools, techniques and analysis. Bat Conservation International eds.) Ej. Rocha, P.A. 2010. Diversidade, composição e estructura de comunidade de morcegos (Mammalia: Chiroptera) em hábitats de caatinga e brejo de altitude do Estado de Sergipe. Universidad Federal de Sergipe. MSc dissertation. São Cristóvão, Brazil, Programa de Pós Graduação em Ecologia e Conservação, Universidade Federal de Sergipe. pp. 1-82.
Figures and tables Figures must be sent separately (jpg, tiff or pdf) and be properly referenced in the text as Fig. or Table. Tables must be as simple as possible with no vertical lines, and the information they contain should not be repeated in graphics. Tables must be sent in a single word file. Short-notes: parts of the manuscript All the text must be written in one single part. It should not be included any subdivision, neither the abstract or keywords.
By publishing in Barbastella, the journal does not obtain any kind of authorship for both the text and the figures or images. All articles will be freely available and disseminated on the web. If anybody is interested in presenting pictures for the cover of the next volume, please get in contact directly to the Commission at barbastella@secemu.org.
76
Barbastella 8(1) 2015
Normas para la publicación de artículos Los manuscritos deben ser entregados únicamente en formato digital (odt. .doc o .docx) a la comisión Barbastella de la SECEMU a través del formulario online o por correo electrónico (barbastella@secemu.org). Deben estar escritos en inglés o en castellano, y versar sobre cualquier temática relacionada con la quiropterología en cualquier zona del mundo. Los artículos no pueden ser enviados a otra revista para su consideración al mismo tiempo que a Barbastella. Previa aceptación, cada manuscrito será evaluado por revisores especialistas en esta ámbito que valorarán su idoneidad. Barbastella acepta artículos y notas científicas. Se pide a los autores que sigan la normativa para la publicación de artículos: Texto Se tiene que enviar sin figuras, gráficos, mapas, fotos, etc en un solo documento de texto. Formato: Times New Roman, 12, doble espacio, márgenes 2,5cm. y todas las páginas y líneas deben ir numeradas sin tabulaciones al iniciar nuevos párrafos. Los nombres de las especies deben tener formato cursiva; los decimales deben estar separados por comas. Las secuencias de DNA deben mostrarse en GenBank junto con sus números de acceso. Pies de figura y tabla deben estar debidamente presentados al final del manuscrito. Página con el título y resumen Título del artículo (conciso e informativo) Nombre completo de los autores (en caso de haber más de un autor, solamente uno se reponsabiliza de los trámites de su publicación) Instituciones con sus direcciones y dirección electrónica y correo electrónico del autor Resumen de máximo 300 palabras (conciso e informativo). Palabras clave: Máximo 10). Secciones del manuscrito (recomendadas para artículos, pero no necesarias para notas) Introducción / Materiales y métodos / Resultados / Discusión / Conclusiones / Agradecimientos / Referencias Referencias Las referencias del texto deben citarse por orden cronológico y separados mediante comas. Si hay 2 autores se deben incluir los dos (ej. Mas & López-Baucells 2014), mientras que si hay más de 2 autores se debe usar la fórmula et al. Para artículos pendientes de publicacción, usar (en prensa). Ej. Ibáñez (2010), (Flaquer 2008), (Garin 2009a), (Parry-Jones en prensa). En el apartado de “Referencias”, deben ordenarse alfabéticamente, con el nombre de la revista/libro completo; el título en su idioma original; letras minúsculas a...z para indicar diferentes artículos del mismo autor publicados el mismo año. La referencia debe incluir: el nombre de los autores en versales, el año de publicación, el título del artículo, el nombre de la revista, volúmen, número y páginas. Por favor, incluir siempre todos los códigos DOI disponibles! Ej. Ibáñez, C., García-Mudarra, J. L., Ruedi, M., Stadelmann, B. & Juste, J. 2006. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterologica 8 (2): 277-297. http://dx.doi.org/10.3161/1733-5329(2006)8[277:TICTCD]2.0.CO;2 Ej. Gardner, A.L. & Handley, C. O. 2007. Mammals of South America, vol. 1: Marsupials, Xenarthrans, Shrews, and Bats. (eds.) University of Chicago Press, Chicago, IL. http://dx.doi.org/10.1644/08-MAMM-R-296.1 Ej. Barclay, R. M. R. & Brigham, M. 2000. Geographic variation in the echolocation calls of bats: A compilation for identifying species by their calls. pp.142-146. In: (Bat Echolocation Research. Tools, techniques and analysis. Bat Conservation International eds.) Ej. Rocha, P.A. 2010. Diversidade, composição e estructura de comunidade de morcegos (Mammalia: Chiroptera) em hábitats de caatinga e brejo de altitude do Estado de Sergipe. Universidad Federal de Sergipe. MSc dissertation. São Cristóvão, Brazil, Programa de Pós Graduação em Ecologia e Conservação, Universidade Federal de Sergipe. pp. 1-82.
Figuras y tablas Deben ser entregadas por separado (jpeg, tiff or pdf) bien referenciadas en el texto como Fig. o Tabla/Table. Las tablas deben ser lo más simplificadas posible, sin líneas verticales, y la información no debe repetirse en gráficos y tablas. Las tablas se deben enviar en un documento word independiente. Nota científica: partes del manuscrito: Se desarrolla todo el texto en un solo apartado. No debe haber ninguna división, ni resumen, ni palabras clave.
Para cualquier publicación en Barbastella, la revista no adquiere ningúm tipo de autoría sobre el texto, figuras o imágenes utilizados. Todos los artículos se encontrarán disponibles en la web. Si se desea presentar alguna imagen para la portada de la Barbastella, contactar directamente con la comisión de la revista en barbastella@secemu.org.
Barbastella 8(1) 2015
77
78
Barbastella 8(1) 2015