Designing Living Systems LARC20001
Assignment 02 Charensia Pricilla Rompis 860209 Samantha Downing -T2
1
Dingy Swallowtail Butterfly
NT
DISTRIBUTION
QLD
Dingy Swallowtail Butterfly is a native fauna to Australia originated from New South Wales, Queensland, and Victoria. Nevertheless, due to the growth of citrus trees in Australia, this species has found to be spreading to South Australia (Atlas of Living Australia, 2018).
Figure 1. Dominelli. J.(2015).Papillo (Eleppone) anactus Macleay 1826. Retrieved from https:// bie.ala.org.au/species/urn:lsid:biodiversity.org.au:afd.taxon:f3a4c4e7-90e8-45dc-9b73-deaa9 f 7 7 1 a 3 7 # g a l l e r y .
Native to Australia. Kingdom : Animalia Phylum : Arthropoda Class : Insecta Order : Lepidoptera Family : Papilionidae Genus : Papilio Species : Papilio Anactus (Atlas of Living, 2012) *In Boon Wurrung language, butterflies are called ‘balam balam’ (Cranney et al.,2017).
According to the map of distribution, it was found that this species has been seen around Shrine of Remembrance and Royal Botanic Garden. Thus, it is possible for rewilding this species in Southbank Boulevard with the use of plantations along the pathway from Royal Botanic Gardens and Shrine of Remembrance to Southbank Boulevard (see the strategy on the next page).
Figure 3. Fast Growing Trees (2018). Citrus Trees. Retrieved from https://www.fastgrowing-trees.com/images/T/ Owari-Satsuma-Tree2-350w.jpg.
WA SA NSW VIC
Figure 2. Atlas of Living Australia (2018). Spread of Dingy Swallowtail Butterfly. Retrieved and edited from https://spatial.ala.org.au/?q=lsid:urn:lsid:biodiversity. org.au:afd.taxon:f3a4c4e790e8-45dc-9b73-deaa9f771a37.
Figure 4. Dico’s (2018). Schinus Mole. Retrieved from https:// diacos.com.au/product/schinus-molle-peppercorn-tree/.
Figure 5. Gardens Online (2018). Canna Generalis. Retrieved from https://www.gardensonline.com.au/GardenShed/ PlantFinder/Show_1010.aspx.
2
Southbank Boulevard
Primary Network for Rewilding
This area will create a corridor connectivity through plantations of Citrus trees, Schinus Mole, Canna Generalis, and Angiophora Floribunda. These plants will attract the butterflies around Shrine of Remembrance and Royal Botanic Gardens and eventually lead them to the Southbank Boulevard area.
Royal Botanic Gardens
Legend: Occurence of the species
Shrine of Remembrance
Plantation Building not to scale
3
PUBLIC ENGAGEMENT Butterflies have found to attract human according to the evidence found in prehistoric cave paintings in France (Mata et al., 2016). Butterflies have a functional role inside an ecosystem. This species could establish themselves as pest species, but also can be used as biological control agents for invasive plants (Radchuk et al., 2013 cited in Kirk et al., 2017). Adult butterfly feed on the nectar of the flowers and may contribute to pollination during their visit (Kirk et al., 2017).
Figure 6. ANBG (2018). Angiophora Floribunda. Retrieved from https://www.anbg.gov.au/cpbr/ cd-keys/euclid3/euclidsample/ html/Angophora_floribunda.htm.
Additionally, to increase public engagement, plantation strategy could be used to attract the species and human. Citrus trees can be attractive due to its fruit, smell from the leaves and the colour itself. Other nonnative plants could be planted and spread around the network previously shown on the previous page. The combinations of different plants could create an aesthetic value from each characteristics such as colour.
HABITAT Dingy Swallowtail Butterfly can be attracted to any garden that has food plant for caterpillar such as citrus trees. (Backyard Buddies, n.d). It was observed that butterfly loves to eat the plants such as oranges, lemons, and limes (Braby et al., 1997; Cranney et al.,2017). The caterpillar feeds on both native and non-native species in the citrus family (Rutaceae). The native plants include Citrus australasica, Citrus australis, and Citrus glauca, and also other range of nonnative citrus, for instance, lemon, orange, and grapefruit. For adult butterfly, they usually feed on other non-native plants such as Schinus Mole,Canna Generalis, and Angophora Floribunda (Kirk et al., 2017; Mata, L., 2018). While providing habitat for this species, this plantations will also help rewilding and increasing the population of the species.
Citrus Tree
Eagle
F O O D W E B
Butterfly
Lizard
Figure 7. Food Web of a Butterfly (Rompis, 2018).
4
MORPHOLOGY AND PHYSIOLOGY
: le m a m c F e .2 7
Ma 6. l e 7 : cm
Antenna
Butterfly adopts mimicry behaviour that enable self protection from the predators (Scriber et al., 1996).
Head Thorax Forewing Wing Vein
3-4 days
Hindwing
Summer: 2 weeks
Female butterflies will lay their eggs on new grown leaves, picking the plant species for their caterpillars as a food source after they have hatched (Backyard Buddies, n.d; Climate Watch. (2018) ; Cranney et al.,2017).
Winter - Spring: depends
Butterfly
Chrysallis/ Pupa
3-4 days
L I F E C Y C L E
The eggs will have a change in colour as they emerge into caterpillar (Cranney et al.,2017).
Egg
Autumn: 4 weeks
Green patches acting as a camouflage of a bark from citrus tree to protect themselves from predators (Backyard Buddies, n.d; Evans, D. H. and Crossley, S. (1996)).
Figure 8. Life Cycle of a Butterfly (Rompis, 2018).
Caterpillar/ Larva
Osmeterum emits strong and stinky chemicals that smell like a citrus to prevent predators from attacking them (Backyard Buddies, n.d; Climate Watch. (2018); Evans, D. H. and Crossley, S. (1996)).
Depending on the Instar
5
6
Dingy Swallowtail butterfly is a living creature that will transform Southbank Boulevard into a new precinct in Melbourne, Australia. Butterfly represents resurrection, life, and hope. Hence, this idea will be developed through the resurrection of Southbank Boulevard which now has a limited urban ecosystem into a new precinct that broaden its network through rewilding Dingy Swallowtail butterfly. The corridor strategy will be explored through planting variety of citrus plants that attract the butterfly, and therefore, it will create a landscape diversity along Southbank Boulevard. Citrus plants have a number of traits from its smell and colours that could create a public engagement with human and urban ecosystem.
7
Reference List
Atlas of Living, 2012. Papilio (Eleppone) anactus Macleay, 1826. Retrieved from https://bie.ala.org.au/species/ urn:lsid:biodiversity.org.au:afd.taxon:f3a4c4e7-90e8-45dc-9b73-deaa9f771a37#classification. Backyard Buddies. n.d. Dainty Swallowtail Butterflies. Retrieved from http://www.backyardbuddies.org.au/ backyard-buddies/dainty-swallowtail-butterflies. Braby, M. F., Atkins, A. F., Dunn, K. L., Woodger, T. A., & Quick, W. N. B. (1997). A provisional list of common names for Australian butterflies. Australian Journal of Entomology, 36(3), 197-212. Climate Watch. (2018). Dainty Swallowtail Butterfly. Retrieved from http://www.climatewatch.org.au/species/ insects/dainty-swallowtail-butterfly. Cranney, K., Bekessy, S., Mata, L. (2017). The Little Things that Run the City: 30 amazing insects that live in Melbourne. City of Melbourne. Evans, D. H. and Crossley, S. (1996). Papilio Anactus W.S. Macleay, 1826. Dainty Swallowtail. Retrieved from http://lepidoptera.butterflyhouse.com.au/papi/anactus.html. Kirk, H., Smith, T., Backstrom, A., Moran-Ordones, A., Garrard, G. E., Gordon, A., Ives, C. D., Bekessy, S. A., Mata, L. (2017). Our City’s Little Gems: Butterfly diversity and flower-butterfly interactions in the City of Melbourne. Mata, L., Ives, C. D., Morán-Ordóñez, A., Garrard, G. E., Gordon, A., Cranney, K., Smith, T. R., Backstrom, A., Bickel, D. J., Hahs, A. K., Malipatil, M., Moir, M. L, Plein, M., Porch, N., Semeraro, L., Walker, K., Vesk, P.A., Parris, K.M., Bekessy, S. A. (2016). The Little Things that Run the City – Insect ecology, biodiversity and conservation in the City of Melbourne. Mata, L. (2018). Designing for Nature in Cities. The University of Melbourne. Scriber, M., Hagen, R., Lederhouse, R. (1996). Genetics of Mimicry in the Tiger Swallowtail Butterflies, Papilio glaucus and P. canadensis (Lepidoptera: Papilionidae). Society for the Study of Evolution.
8
Designing Living Systems LARC20001
Assignment 03 Charensia Pricilla Rompis 860209 Samantha Downing -T2 1
10:45
10:30
9:30
10:00 10:00
10:00
11:30
10:00
9:30
45.00 -2 -2 -2 -2 -2 -
R
80.00 70.00
65.00 9:0 9:1 9:3 9:4 10: 10: 60.00 10: 10: 11: 7.00 0 5 0 5 00 15 30 45 00 55.00 ‐1 6.00 Series ‐4 ‐4 ‐3 ‐3 ‐3 ‐3 ‐2 ‐2 ‐2 50.00 5.00 ‐1.5 -2 -2 -2 45.00 4.00 ‐2
-4 -4
‐4
2.00
10:00
3.00
‐2 ‐2 ‐
-2 -2 -
9:30
-3 -3 -3 -3
‐3
11: 11: 1 15 30 4
9:00
‐2.5
1.00 0.00
10:00
9:30
Prediction 9:00
‐4.5 45
9:30
9:00
9:00
11:15
11:00
55.00
75.00 Prediction
-4 -4
‐4 0 ‐4.5 ‐0.5
‐3.5
9:30
Temperature Temperature (˚C) (˚C)
60.00
-3 -3 -3 -3 85.00
‐3 ‐3.5
65.00
11:00 9:00 11:15 9:30 11:30 10:00
‐2.5
10:15
‐2
Prediction 70.00 10.00
50.00 10:00
‐0.5 6 ‐1 4 ‐1.5
7.1 7.3
10:45
9
9:45
80
8.3
9:00
10
26.00 24.00 22.00 20.00 R 12.9 18.00 12.412. 85.00 11.611.611.8 16.00 10.6 80.00 14.00 75.00 12.00 10:30
8.9
12
10:15 (˚C) Humidity Temperature (%)
9:45
10:00
9:30
9:15
14
G Prediction 28.00
7.1 7.3
9:00
6 18 4 16
9
9:0 9:1 9:3 9:4 10: 10: 10: 10: 11: 11: 11: 1 0 5 0 5 00 15 7.00 30 45 00 15 3041.4 40.9
Series ‐4 ‐4 ‐3 ‐3 ‐3 ‐3 6.00 ‐2 ‐2 ‐2 ‐2 ‐2 40 38 5.00 37.1 36.136.3 35.4 34.334.5
UC‐A 4.00
31.7 31.2
30 25
29
3.00 2.00 1.00
2
0.00 Prediction 0
35
0
0
0
0 00 0
0 00 0 30
0 00 0 30
0 00 0 30
0 00 0 30
30.00
0 00 0 30
35.00
8
8.9
8.3
0
40.00
0
UC ‐ A
0 00 0 30
65.00
9:00
Tem
50.00 4. Variation of Wind Velocity values Figure WF‐B Wind Velocity on 45.00 22.01.2016 during day time (9am to 6pm).
70.00
10
9:30
17:30
17:30
17:00
16:30
15:30 18:00 16:00
14:30 17:00 15:00 17:30
13:30 16:00 14:00 16:30
Time (H) Measurement Measurement Time (H)
12
19.00 18.00 17.00 16.00 G 15.00 14.00 Prediction 28.00 13.00 26.00 12.00 24.00 11.00 22.00 10.00 20.00 18.00 12.9 12.412. 16.00 11.611.611.8 10.6 14.00 12.00 10.00
Humidity (%) Wind Velocity (m/s)
17:00
16:30
16:00
18:00 15:30
17:30 15:00
17:00 14:30
16:30 14:00
16:00 13:30
15:30 13:00
15:00 12:30
12:30 15:00 13:00 15:30
17:30
17:00
16:30
16:00
18:00 15:30
17:30 15:00
17:00 14:30
16:30 14:00
16:00 13:30
15:30 13:00
15:00 12:30
14:30 12:00 14:30 12:00
11:30 14:00 12:00 14:30
ysiological Equivalent Heat Stress 0 18:00 Level of 18:00 Temperature (˚C)
55.00
10:30 13:00 11:00 13:30
60.00
9:30 12:00 10:00 12:30
11:00 9:00 11:30
Relative Humidity Wind Velocity
14
9:15
17:30
17:00
16:30
16:00
15:00 17:30 15:30 18:00
14:00 16:30 14:30 17:00
13:30 16:00
13:00 15:30
12:30 15:00
12:00 14:30
11:30 14:00
14:00 11:30 14:00 11:30
13:30 11:00
13:00 10:30
12:30 10:00
12:00 9:30
11:00
11:30 9:00
Measurement Time (H) Measurement Time (H)
UC ‐ A
16
9:00
17:30
17:00
16:30
16:00
15:30 18:00
15:00 17:30
14:30 17:00
14:00 16:30
13:30 16:00
13:00 15:30
12:30 15:00
12:00 14:30
14:00 11:30
13:30 11:00
13:00 10:30
10:30 13:00
11:00 13:30
13:30 11:00
13:00 10:30
12:30 10:00
11:30 9:00 12:00 9:30
11:00
10:30
45.00
30.00
9:00
Physiological EquivalentPhysiological Equivalent Level of18:00 Heat Stress 18:00 18:00 Temperature18:00 (˚C) Temperature (˚C)
17:30
17:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
10:00 12:30 10:00
10:00 12:30
12:00 9:30
11:30 9:00
11:00
10:30
9:30
50.00 25.00
35.00
75.00
18:00
17:30
17:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
9:30
10:00
9:00 9:00
9:30 12:00 9:30
11:30 9:00
11:00
10:30
9:30
9:00
10:00
Temperature (˚C) Humidity (%) 10:00
40.00
00 0 30
00
30
00
30
00
30
00
30
00
30
00
30
00
30
00
30
00
30
00
30.00 55.00
Measurement Time (H) Measurement Time (H)
45.00
40.00
80.00
60.00 7.00 55.00 6.00 50.00 5.00 45.00 4.00
50.00
55.00 30.00
Wind Velocity (m/s)
35.00 60.00
Figure 2. Variation of Globe Temperature values Globe Temperature Relative Humidity on 22.01.2016 during day time (9am to 6pm).
35.00 60.00
00
18:00
17:30
17:00
16:30
16:00
Figure 3. Variation of Relative Humidity values 40.00 Wind day Velocity on 22.01.2016 during time (9am to 6pm).
Humidity (%) city (m/s)
45.00
Measurement Measurement Time (H) Time (H)
Wind Velocity Relative Humidity
55.00
85.00
Measurement Time (H)
Measurement Time (H) Measurement Time (H)
25.00
45.00 15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
10:00
9:30
9:00
Relative Humidity
35.00
12.00 11.00 10.00
Wind Velocity (m/s)
Tem 60.00
40.00 25.00
30.00
50.00
25.00
25.00 50.00
65.00
50.00
10:30
18:00
17:30
17:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
Measurement Time (H)
30.00
50.00
11:30
11:00
10:30
35.00
10:00
25.00 40.00
9:30
30.00 45.00
Air Temperature Globe Temperature
10:30
35.00 50.00
Measurement Time (H)
30.00
30
(˚C)
Relative Humidity
Humidity (%) Temperature
40.00
28.00 26.00 24.00 22.00 20.00 18.00 85.00 16.00 14.00 80.00 12.00 75.00 10.00 70.00
35.00
10:00
18:00
17:30
17:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
10:00
9:30
Measurement Time (H)
45.00
9:00
Humidity (%)Temperature (˚C)
50.00
9:00
Figure 1. Variation of Air Temperature values Globe Temperature on 22.01.2016 during day time (9am to 6pm).
40.00 24.00
Wind Velocity (m/s) Humidity (%) 10:00
25.00
18
45.00 26.00
10:00
30.00
50.00 28.00
00
Measurement Time (H)
Globe Temperature Temperature
45.00 30.00
9:00
18:00
17:30
17:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
35.00
10:00
24.00 40.00
9:30
26.00 45.00
30.00 Air
35.00 50.00
9:30
28.00 50.00
32.00
40.00 Relative Humidity Globe Temperature
9:00
Globe Temperature
30.00
Measurement Time (H)
34.00
45.00
9:30
32.00
19.00 18.00 17.00 16.00 15.00 14.00 28.00 13.00 26.00 12.00 24.00 11.00 22.00 10.00 20.00 18.00 16.00 14.00 12.00 10.00
Air Temperature
25.00
9:00
Measurement Time (H)
Temperature Temperature (˚C) (˚C)
18:00
17:30
17:00
16:30
16:00
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
9:30
Air Temperature
10:00
34.00
9:00
Temperature Temperature (˚C) (˚C)
9:00
24.00
15:30
26.00
9:30
28.00
19.00 18.00 17.00 16.00 15.00 14.00 13.00 12.00 11.00 10.00
30
Temperature (˚C)
34.00
: Waterfront Zone 32.00 : 22.01.2016 30.00 Summer
city (m/s) Humidity (%)
Location Time
Temperature (˚C)
Air Temperature
24.00
TemperatureTemperature (˚C) (˚C)
Part A. Meteorological Analysis at Waterfront Zone, Southbank Boulevard.
26.00
75.00
9:45
9:30
9:15
9:00
12 10
17:45
9:45
9:30
9:15
-3 -3
5.2
‐3 ‐3.5
9:00
7.1 7.3
‐0.5 6 ‐1 4 ‐1.5
17:30
8.9
8.3
80
-4 -4
18:00
Temperatur Temperature (˚C)
-4
14
‐2
‐4 0 ‐4.5 ‐0.5 9:0 9:1 9:3 9:4 0 5 0 5 ‐1 Series ‐4 ‐4 ‐3 ‐3 ‐1.5 ‐2
6.8 6.7 6.5
‐2.5
‐3.5
18:00
17:30
17:15
-3 -3
5.2
‐3
at Stress Physiological EquivalentPhysiological Equivalent Temperature (˚C) Temperature (˚C)
17:00
16:45
-3 -3
-4 Prediction of Physiological Heat Stress 70.00 Wind Velocity 65.00
-4 -4
16:30
11:15
10:15
9:45
10:00
9:30
9:15
11:00
Humidity (%) Wind Velocity (m/s)
80.00
-3 -3 -3
9
7.1 7.3
‐2.5
UC ‐ A
11:30 9:00 11:45 9:30 12:00 10:00 12:15 10:30 12:30 11:00 12:45 11:30 13:00 12:00 13:15 12:30 13:30 13:00 13:45 13:30 14:00 14:00 14:15 14:30 14:30 15:00 14:45 15:30 15:00 16:00 15:15 16:30 15:30 17:00 15:45 17:30 16:00 18:00 16:15
Measurement Time (H) -3 -3 Measurement Time (H)
85.00
8
6.8 6.7 6.5
17:00
7.3 7.4
8.9
8.3
6 18 4 16
Level of Heat Stress
18:00
16:45
16:30
16:15
18:00
16:00
17:30
15:45
17:30
17:00
16:30
7.8 7.9
10
17:45
18:00
17:30
17:00
17:00
15:30
16:30
15:00 16:00
14:45
15:30
14:30
15:00
14:15
14:30
14:00
14:00
13:45
13:30
13:30
13:00
13:15
12:30
13:00
12:00
12:45
11:30
12:15
12:30
11:00
10:30
15:15
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
10:00
12:00
10:00
Physiological EquivalentPhysiological Level of Heat Stress 17:15
18:00
17:30
17:00
16:30
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
9:30
9:00
16:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
10:00
9:30
9:30
9:00
11:30
11:45
9:30
11:15
9:00
11:00
10:30
Humidity Temperature (%) (˚C) 10:45
10:15
9:45
10:00
9:30
9:15
9:00
18:00
18:00 9:00
-4 -4
‐4
‐4.5 45
9:0 9:1 9:3 9:4 0 5 0 5
Series ‐4 ‐4 ‐3 ‐3 40
-4 -4 -4 -4 -4 -4
34.334
35 11: 11: 12: 12: 12: 12: 13: 13: 13: 13: 14: 14: 14: 14: 15: 15: 15: 15: 16: 16: 16: 16: 17: 17: 17: 17: 18: 41.500 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 0029 30 45 40.9 Measurement Time (H) 30 ‐2 ‐2 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐3 ‐3 ‐3 ‐3 ‐3 ‐4 ‐4 ‐3 ‐3 ‐4 ‐4 ‐4 ‐4 ‐4 ‐4
33
31.3
2.00
29.6
29.4 29.3 28.8 28.828.8
27.527.8
26.927.2 26.3 26 26.226.2
0.00
25.4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Prediction of Outdoor Thermal Comfort 22.1 23
24.6
23.1
0
1.00 0
29
3.00
0
31.7 31.2
4.5 25 4
2.5 2
9:45
9:30
33.5
3.5 20 28.928.6 3
2
3
3 9:45
Measurement Time (H)
9:00
37.3
Figure 8. Variation of Wind Velocity values 4.00 UC‐A 13.08.2015 on during day time (9am to 6pm).
36.1 35.4 34.334.5
34.334 31.7 31.2
9:30
17:30
17:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
10:00
9:30
9:00
9:0 9:1 9:3 9:4 10: 10: 10: 10: 11: 11: 7.00 0 5 0 5 00 15 30 45 00 15 Series ‐4 ‐4 ‐3 ‐3 ‐3 ‐3 ‐2 ‐2 6.00 ‐2 ‐2 40 38 37.1 5.00 36.3
40
-4 -4 -4 -4 -4 -4
9:15
-4 -4
45 20
9:15
-3 -3
9:00
18:00
17:30
17:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
10:00
1.00
0.00 Prediction of Wind Outdoor Thermal Comfort Velocity
‐4
‐4.5 45
25
-3 -3 -3 -3 -3
Measurement Time (H)
2.00
18:00
-4 -4
3.00
9:30
-3 -3 -3 -3
9:00
17:00
9:00
18:00
18:00
Physiological Equivalent 17:00 17:00 17:00 Physiological Equivalent Level of Heat Stress Temperature (˚C) 17:30 Temperature17:30 (˚C) 17:30 17:30
16:30 16:30
16:30
0
0
0
0 00 0
0 00 0 30
0 00 0 30
0 00 0 30
0 00 0 30
7.3 7.2
12
35 9:0 9:1 9:3 9:4 10: 10: 10: 10: 11: 11: 11: 11: 12: 12: 12: 12: 13: 13: 13: 13: 14: 14: 14: 14: 15: 15: 15: 15: 16: 16: 16: 16: UC ‐ A 17: 17: 17: 17: 18:31.231.7 60.00 7.00 0 5 0 5 00 15 30 45 00 15 30 45 00 15 30-145 00 15 30-145 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 29 00 55.00 30 ‐1 Series ‐4 ‐4 ‐3 ‐3 ‐3 ‐3 ‐2 ‐26.00 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐3 ‐3 ‐3 ‐3 ‐3 ‐4 ‐4 ‐3 ‐3 ‐4 ‐4 ‐4 ‐4 ‐4 ‐4 50.00 ‐1.5 5.00 Time -2 -2 45.00 -2 -2 -2 -2 -2 -2 -2Measurement -2 -2 -2 -2 -2 (H) 25 ‐2 4.00
30
00 0 30 0 00 0 30
30
00
30
00
30
00
00
30
00
30
-3 -3 -3 -3
35
35.00
-1
8
-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 45.00 Figure 6. Variation of -2Globe Temperature values on 13.08.2015 Relative during dayHumidity time (9am to 6pm).
‐3
UC ‐ A
40.00
-1
Stress
8.6
7.3 7.4
50.00
‐2.5
‐3.5
7.8 7.9
Measurement Time (H)
55.00
0
50.00 Figure 70.00 7. Variation of Relative Humidity values Wind Velocity on 65.00 13.08.2015 WF‐B during time (9am to 6pm). 45.00 day
00
16:30
16:00
15:30
18:00 15:00
17:00 14:00 17:30 14:30
16:00 13:00 16:30 13:30
15:00 12:00 15:30 12:30
14:00 11:00 14:30 11:30
13:00 10:00 13:30 10:30
Measurement Time (H) Measurement Time (H)
30.00
60.00
‐3
55.00
60.00 7.00 55.00 6.00
‐2
‐3.5
12:00 9:00 12:30 9:30
11:30
11:00
10:00
9:30
60.00
9
65.00
UC ‐ A ‐2.5
35.00
Wind Velocity Relative Humidity
8.9
Measurement Time (H) 26.00 16.3 24.00 15.6 15.5 15.3 22.00 14.9 14.9 14.4 14.3 14.3 20.00 13.8 Relative Humidity 12.9 18.0012.412.6 Measurement Time (H) 11.8 85.00 11.611.6 16.00 10.6 80.00 14.00 10.2 9.9 12.00 75.00 8.8 Prediction of Physiological Heat 10.00 70.00
Wind Velocity (m/s)
Time (H) Measurement Time Measurement (H)
30.00
8.3
07.1 7.3
‐0.5 6 ‐1 4 ‐1.5
16:30
16:00 16:00
15:30
15:00
14:30 18:00
14:00 17:30
13:30 17:00
13:00 16:30
12:30 16:00
12:00 15:30
11:30 15:00
11:00 14:30
10:30 14:00
10:00 13:30
13:00 9:30
12:30 9:00
12:00
11:30
10:30
40.00
4
17:00 Level of17:00 0 Heat Stress siological Equivalent 17:30 0 Temperature (˚C) 17:30 18:00 0 18:00
Wind Velocity (m/s) 10:30 Wind Velocity (m/s) Humidity (%) 11:00
10:00
50.00 25.00
75.00
50.00 5.00 45.00 4.00
16:30
16:00
15:30 15:30
12:00 9:00 12:30 9:30 13:00 10:00 13:30 10:30 14:00 11:00 14:30 11:30 15:00 12:00 15:30 12:30 16:00 13:00 16:30 13:30 17:00 14:00 17:30 14:30 18:00 15:00
11:30
11:00
10:30
10:00
9:30
9:00
30.00 55.00
45.00
6
8
19.00 Measurement Time (H) 18.00 17.00 16.00 15.00 Globe Temperature 14.00 Prediction of Outdoor Thermal Comfort 28.00 13.00 26.00 12.00 16.3 24.00 11.00 15.6 15.5 15.3 22.00 14.9 14.9 10.00 14.4 14.3 14.3 13.8 20.00 12.9 18.00 12.412.6 11.8 11.611.6 16.00 Measurement Time (H) 10.6 14.00 10.2 9.9 12.00 8.8 8.6 10.00 8
7.3 7.2 Globe Temperature Prediction of Outdoor Thermal Comfort 28.00
7.1 7.3
‐4 0 ‐4.5 ‐0.5
35.00 60.00
80.00
Humidity (%) city (m/s)
50.00
40.00
55.00
85.00
16:00
15:30
17:30 14:30 18:00 15:00 14:30 18:00 15:00
13:30 17:00 14:00 17:30
12:30 16:00 13:00 16:30
11:30 15:00 12:00 15:30
11:00 14:30
10:30 14:00
10:00 13:30
9:30 13:00
12:00
11:30
10:30
10:00
Time (H) Measurement Time Measurement (H)
Relative Humidity Wind Velocity
60.00
8
9
8.9
8.3
10
45.00
65.00
10
12
Time (H) Measurement TimeMeasurement (H)
80.00 14.00 12.00 75.00 10.00 70.00
12
14
30.00
9:30
28.00 26.00 24.00 22.00 20.00 18.00 85.00 16.00
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
12:00
11:30
11:00
10:30
10:00
9:30
9:00
12:00 9:00 12:30 9:30 13:00 10:00 13:30 10:30 14:00 11:00 14:30 11:30 15:00 12:00 15:30 12:30 16:00 13:00 16:30 13:30 17:00 14:00
11:30
11:00
10:30
Humidity (%)Temperature (˚C) 11:00
9:30
10:00
9:00
9:30
9:00
35.00
14
16
30.00 45.00 25.00 40.00
16
18
35.00 50.00
9:00
18:00
17:30
17:00
16:30
16:00
15:30
Time (H) Measurement TimeMeasurement (H)
Relative Humidity Globe Temperature
45.00
30
50.00
40.00
50.00
(H)
Globe Temperature Air Temperature
9:00 12:30
Temperature (˚C)
(˚C)
H)
30.00
25.00 Figure 5. Variation of Air Temperature values Relative on 13.08.2015 Globe during Temperature day time (9am to Humidity 6pm).
Temperature Humidity (%)
18:00
17:30
17:00
16:30
16:00
y
Measurement Time (H)
45.00
9:00
18:00
17:30
17:00
16:30
16:00
(H)
35.00
18
25.00
Temperature (˚C) (˚C)
19.00 18.00 17.00 16.00 15.00 14.00 28.00 13.00 26.00 12.00 24.00 11.00 22.00 10.00 20.00 18.00 16.00 14.00 12.00 10.00
Temperature
18:00
17:30
17:00
16:30
16:00
15:30
15:30
H)
15:30
26.00 45.00 : Urban Canyon Zone 24.00 : 13.08.2015 40.00 Winter
18:00
17:30
17:00
16:30
16:00
Location Time
50.00 28.00
Air Temperature
10:00
Temp
32.00
30.00 Globe Temperature Air Temperature
19.00 18.00 17.00 16.00 15.00 14.00 13.00 12.00 11.00 10.00
13.00 12.00 11.00 10.00
Temperature Temperature (˚C) (˚C)
18:00
17:30
17:00
16:30
16:00
15:30
15:00
14:30
14:00
13:30
13:00
12:30
Measurement Time (H)
10:30
34.00
12:00
11:30
11:00
10:30
9:30
10:00
9:00
Temperature Temperature (˚C) (˚C)
Air Temperature
10:45
Tem
Part A. Meteorological Analysis at Urban Canyon Zone, Southbank Boulevard.
15:30
15:00
24.00
(H)
15:00
26.00
3 2
Level of Heat Level Stressof He
17:3
17:0
16:3
18:0 18:00
17:30
17:00
‐3.5 ‐1
-3 -3
-1
-4 -4
-4 -4
‐4 ‐1.5 ‐4.5 ‐2 ‐2.5
-2 -2 -2 -2 -2 -2 -2 -2 -2
-2 -2 -2
-4 -4 -4 -4 -4 -4
-2 -2
at Waterfront Zone, Southbank Boulevard.
9:0 9:1 9:3 9:4 10: 10: 10: 10: 11: 11: 11: 11: 12: 12: 12: 12: 13: 13: 13: 13: 14: 14: 14: 14: 15: 15: 15: 15: 16: 16: 16: 16: 17: 17: 17: 17: 18: 0 5 0 5 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 -3 -3 -3 -3
-3 -3 -3 -3 -3
-3 -3
Series ‐3 ‐4 ‐4 ‐3 ‐3 ‐3 ‐3 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐3 ‐3 ‐3 ‐3 ‐3 ‐4 ‐4 ‐3 ‐3 ‐4 ‐4 ‐4 ‐4 ‐4 ‐4 ‐3.5
Measurement Time (H)
-4 -4
-4 -4
-4 -4 -4 -4 -4 -4
‐4 ‐4.5
9:0 9:1 9:3 9:4 10: 10: 10: 10: 11: 11: 11: 11: 12: 12: 12: 12: 13: 13: 13: 13: 14: 14: 14: 14: 15: 15: 15: 15: 16: 16: 16: 16: 17: 17: 17: 17: 18: 0 5 0 5 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00
UC ‐ A
41.5 40.9
Prediction of Outdoor Thermal Comfort 31.3 25.4
22.1
24.6
23.1
23
33.5
Measurement Time (H)
25.4
22.1
17:45
29.6
27.527.8
17:30
17:00
16:45
16:30
16:15
16:00
15:45
15:30
26.927.2 26.3 26 26.226.2
15:15
15:00
14:45
14:30
14:15
14:00
29.4 29.3 28.8 28.828.8
13:45
13:30
31.3
12:15
12:00
33
11:45
11:00
10:45
10:30
37.3
28.928.6
28.928.6
24.6
23.1
23
WF ‐ B
3
3
3 2
18:00
17:45
17:30
17:15
17:00
16:45
16:30
16:15
16:00
15:45
15:30
3
4
1.5 4
4
4
4
4
4
3
0.5 3
3
3
2
2
3 2
2
4 1
1 3.5
1
1
1
1
1
1
1
1
3
3 0
0
3
0
9:0 2 9:1 2 9:3 9:4 10: 10: 10: 10: 11: 11: 11: 11: 12: 12: 2 12: 2 12: 2 13: 2 13: 2 13: 2 13: 14: 14: 14: 14: 15: 15: 15: 15: 16: 16: 16: 16: 2 17: 2 17: 17: 2 17: 2 18: 0 5 0 5 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00
2 Series 1.5 2
2
3
3
3
3
4
4
4
4
4
4
4
2
2
2
2
2
2
1 1
1 1
1 1
1 1
Measurement Time (H)
1
1 1
1 1
0.5 0
15:15
15:00
14:45
14:30
14:15
14:00
13:45
13:30
13:15
13:00
12:45
12:30
4
12:15
4
12:00
4
11:45
11:30
11:15
4
Prediction of 2Physiological Heat Stress 2 2 2 2 2
2
2 4.5
0 2.5
4
Measurement Time (H)
3.5 2.5
4
11:00
3
4
10:45
10:15
3
10:30
10:00
9:45
9:30
9:15
9:00
Figure 9. Variation of Physiological Equivalent Temperature values on 22.01.2016 20 day time (9am during to 6pm) atofWaterfront Zone. Heat Stress Prediction Physiological
Level of Heat Level Stressof Heat Stress
18:00
38
25
4 17:30
10:15
9:45
29
30
9:30
31.7 31.2
9:15
9:00
35 20
10:00
37.1 36.136.3 35.4 34.334.5
11:15
40 25
29.6 27.527.8
26.927.2 26.3 26 26.226.2
18:00
41.5 40.9
33.5
33
29.4 29.3 28.8 28.828.8
29
13:15
45 30
13:00
31.7 31.2
12:45
35
37.3
17:15
37.1 36.136.3 35.4 34.334.5
38
12:30
40
11:30
Physiological Physiological Equivalent Equivalent Temperature (˚C) Temperature (˚C)
18:00 18:00 18:00
17:30 17:30 17:30
17:00 17:00 17:00
MeasurementThermal Time (H) Comfort Prediction of Outdoor
45
4.5 17:00
16:0
16:00
16:30 16:30
16:00
-3 -3 -3 -3 -3 -1
Series ‐4 ‐4 ‐3 ‐3 ‐3 ‐3 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐3 ‐3 ‐3 ‐3 ‐3 ‐4 ‐4 ‐3 ‐3 ‐4 ‐4 ‐4 ‐4 ‐4 ‐4
16:30
16:00
UC ‐ A
16:30
16:00
-3 -3 -3 -3
‐3 ‐0.5
Part B. Prediction of Thermal Comfort
16:30
16:00
‐2 ‐2.5 0
0
0
0
0
1 1
0
1 1
1 1
2
2
3
2
2
3
0
9:0 9:1 9:3 9:4 10: 10: 10: 10: 11: 11: 11: 11: 12: 12: 12: 12: 13: 13: 13: 13: 14: 14: 14: 14: 15: 15: 15: 15: 16: 16: 16: 16: 17: 17: 17: 17: 18: 0 5 0 5 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00
Series 2
2
3
3
3
3
4
4
4
4
4
4
4
2
2
2
2
2
2
1
1
1
1
1
1
0
0
1
0
1
1
2
2
3
2
2
Measurement Time (H)
Figure 10. Variation of Physiological Heat Stress levels on 22.01.2016 during WF ‐ B day time (9am to 6pm) at Waterfront Zone.
3
In Summer at Waterfront Zone, people will experience moderate heat stress (-2) with warm temperature at 9:00am and extreme heat stress (4) around 11:45pm with 41.5°C. From 12:00pm, the temperature will start decreasing and people will gain no thermal stress (0) and be more comfortable around 15:15pm (Sooshtarian, 2017; ISO 7730, 2006).
4
Part B. Prediction of Thermal Comfort
Prediction of Outdoor Thermal Comfort 16.3 15.6 15.5 15.3 14.9 14.9 14.3 14.3
16
14.4 13.8
14
12.9
10.2
9.9
16.3 15.6 15.5 15.3 14.9 14.9 14.4 14.3 14.3 13.8
9
8.9
8.3
12.412.6
11.611.611.8 Prediction of Outdoor Thermal Comfort
10.6
7.1 7.3
8.8 8.6
8
7.8 7.9
7.3 7.2
7.3 7.4
6.8 6.7 6.5
12.9
12.412.6 11.611.611.8
of Heat Stress Level of Heat Level Stress
18:00 18:00
17:30
17:30
17:00 17:00
16:30
18:00 18:00
17:45
17:30
17:00
16:45
16:30
16:15
16:00
15:45
15:30
15:15
15:00
14:45
14:30
14:15
14:00
13:45
13:30
13:15
13:00
12:45
12:30
12:15
12:00
11:45
11:30
11:15
11:00
10:45
10:30
10:15
10:00
9:45
9:30
9:15
9:00
‐0.5
17:15
5.2
Measurement Time (H) -1 -1
‐1 ‐1.5 ‐2 0 ‐2.5 ‐0.5 ‐3 ‐1 ‐3.5 -4 -4 ‐1.5 ‐4 ‐2 ‐4.5 9:0 9:1 ‐2.5 0 5 ‐3 ‐4 ‐4 Series ‐3.5
-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 Prediction of Physiological Heat Stress -3 -3 -3 -3
-3 -3 -3 -3 -3 -1
-3 -3
-1 -4 -4
-2 -2 -2 -2 -2 -2 -2 -2 -2
-2 -2 -2
-4 -4 -4 -4 -4 -4
-2 -2
9:3 9:4 10: 10: 10: 10: 11: 11: 11: 11: 12: 12: 12: 12: 13: 13: 13: 13: 14: 14: 14: 14: 15: 15: 15: 15: 16: 16: 16: 16: 17: 17: 17: 17: 18: 0-3 5-3 00 -3 15 -3 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 -3 45 -3 00 -3 15 -3 30 -3 45 00 15 -3 30 -3 45 00 15 30 45 00 ‐3 ‐3 ‐3 ‐3 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐3 ‐3 ‐3 ‐3 ‐3 ‐4 ‐4 ‐3 ‐3 ‐4 ‐4 ‐4 ‐4 ‐4 ‐4
Measurement Time (H)
-4 -4
-4 -4
-4 -4 -4 -4 -4 -4
‐4 ‐4.5
9:0 9:1 9:3 9:4 10: 10: 10: 10: 11: 11: 11: 11: 12: 12: 12: 12: 13: 13: 13: 13: 14: 14: 14: 14: 15: 15: 15: 15: 16: 16: 16: 16: 17: 17: 17: 17: 18: 0 5 0 5 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45 00
Measurement Time (H) Prediction of Outdoor Thermal Comfort 45
Figure 12. Variation of Physiological Heat Stress levels on 13.08.2015 during UC ‐ A 41.5 40.9 day time (9am to 6pm) at Urban Canyon Zone. logical Equivalent alent mperature (˚C) )
18:00 18:00
17:30
17:30
17:00
17:00
Series ‐4 ‐4 ‐3 ‐3 ‐3 ‐3 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐2 ‐1 ‐2 ‐2 ‐3 ‐3 ‐3 ‐3 ‐3 ‐4 ‐4 ‐3 ‐3 ‐4 ‐4 ‐4 ‐4 ‐4 ‐4 16:30
16:00
16:00
16:30
0
16:00
6.8 6.7 6.5
6
Figure 11. Variation of Physiological Equivalent Temperature values on 4 Prediction Heat Stress 13.08.2015 during day time (9amoftoPhysiological 6pm) at Urban Canyon Zone.
UC ‐ A
17:45
7.3 7.4
17:30
17:15
7.8 7.9
17:00
16:45
7.3 7.2
16:30
16:15
8
Measurement Time (H)
16:00
8.8 8.6
15:45
15:30
15:00
9.9
14:45
14:30
14:15
14:00
13:45
13:30
13:15
13:00
12:45
12:30
12:15
12:00
11:45
11:30
11:15
11:00
10.2
10:45
9
10:30
8.9
10:15
9:45
9:30
7.1 7.3
10:00
8
8.3
15:15
5.2
10.6
9:15
12 18 10 16 8 14 6 12 4 10
9:00
Equivalent Physiological Physiological Equivalent Temperature (˚C) Temperature (˚C)
17:30
17:00
16:30
18:00 18:00
17:30
17:00
16:30
16:00
16:00
18
16:30
16:00
at Urban Canyon Zone, Southbank Boulevard.
40
37.1 36.136.3 35.4 34.334.5
35 45 30 40
31.7 31.2
38
37.3
Prediction of Outdoor Thermal Comfort
33
33.5
31.3
29
41.5 40.9 38
In Winter at Urban Canyon Zone, people will experience extreme cold stress (-4) with very cold temperature at 9:00am and start having moderate cold stress (-2) from 10:30am to 14:15pm with slightly cool (-1) temperature in between the timeframe. From 15:45pm, people will continue to experience the extreme cold stress (-4) (Sooshtarian, et al., 2018).
29.6
29.4 29.3 28.8 28.828.8 26.927.2 26.3 26 26.226.2
27.527.8 25.4
28.928.6
5
a Yarr
r
Rive
Sa
nd
ri
dg
e
Br
id
ge
Part C. Design Response
Queensbridge Square
ty
Ci
ad
Ro
South
bank
Legend:
Urban Canyon Zone
Waterfront Zone
Boule
vard
Proposed Area
Scale: 1:2000 @A4 6
Waterfront Zone - Summer Thermal Discomfort:
Tensile Shading Structure
Increased Tree Canopy
- High Solar Radiation and UV level. The solutions to this issue are the use of misting fans, surface water and evaporative cooling, increase tree canopy and shading structures. Melbourne has a low rainfall rate in summer, therefore, in order to utilise the evaporative cooling, the management of rainwater and stormwater is necessary (Jamei, et al., 2016; Jamei, et al., 2017; Low Carbon Living CRC, 2017; Walls, 2018).
id
ge
Misting Fan
Sa
nd
ri
dg
e
Br
- Over Heating. Use of high emittance and reflective paving could help overcoming the urban heat. It was reported that solar energy reflects 5% Ultraviolet Rays, 43% Visible Light, and 52% Infrared Radiation, therefore, in order to absorb the heat coming from the solar energy, concrete paving could have a solar reflectance of 5-40% and absorb 60-95% of the energy received. Also, high albedo and permeable paving are two another urban cooling strategies (Low Carbon Living CRC, 2017).
Queensbridge Square
Concrete Paving
100%
80%
Albedo
ty
Ci
ad
Ro
Other Solutions: - Outdoor furniture surface with high albedo could reflect back the unwanted solar radiant (Gago, et al., 2013) . - Increase green spaces such as parks, trees, and shrubs, pavilions and planted pergolas for shading and cooling (Eliasson, 1996; Lenzholzer, 2015).
Tree as Shading Element
South
bank
Pavilion
Planted Pergola
Boule
vard 7
Urban Canyon Zone - Winter Thermal Discomfort:
ri
dg
e
Br
id
ge
- High Wind Velocity. The tall buildings surrounding this area could have wind protection such as awning or stepped shape building to protect the pedestrian from strong wind.Trees and bushes could also be planted and used as windbreaks (Lenzholzer, 2015).
nd Sa
Sun
- Higher Rate of Rainfall compared to Summer. Use of glass roof or canopy as a shading structure could block the pedestrian from rain, but also in the same time allowing solar access through the transparency of the glass (Walls, 2018).
Glass Roof
Queensbridge Square
Rain
Awning
Other Solutions: - Street trees to avoid channelling effect (when the streets are parallel to the direction of strong winds). The tree crowns could softly swirl the wind and thus, it will minimise the wind velocity.
Street Trees
ty
Ci
ad
Ro
Street Orientation
Changing the street orientation is also another option, however, it might be impossible due to the buildings that have been built in the adjacent area (Lenzholzer, 2015). Images are from Weather in the City book and one photograph from Walls (2018).
South
bank
Boule
vard 8
Reference List
Eliasson, I. 1996). Urban nocturnal temperatures, street geometry and land use. Retrieved from https:// doi.org/10.1016/1352-2310(95)00033-X. ISO 7730. (2006). Moderate Thermal Environments Determination of the PMV and PPD Indices and Specifications of the Conditions for Thermal Comfort. Geneva: International Organization for Standardization (ISO). Gago, E. J., J. Roldan, R. Pacheco-Torres, and J. Ordóùez, 2013: The city and urban heat islands: A review of strategies tomitigate adverse effects. Renewable Sustainable Energy. Retrieved from https:// doi.org/10.1016/j.rser.2013.05.057. Jamei, E., Rajagopalan, P., Seyedmahmoudian, M. and Jamei, Y., 2016. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 54, pp.1002-1017. Jamei, E., & Rajagopalan, P. (2017). Urban development and pedestrian thermal comfort in Melbourne. Solar Energy, 144, 681-698. Lenzholzer, S. (2015). Weather in the City: How Design Shapes the Urban Climate. Influencing Reflection. Nai010 Publishers. Low Carbon Living CRC. (2017). Guide to Urban Cooling Strategies. Retrieved from http://www. lowcarbonlivingcrc.com.au/sites/all/files/publications_file_attachments/rp2024_guide_to_urban_cooling_ strategies_2017_web.pdf. Shooshtarian, S. (2017). Evaluation of microclimates and thermal perceptions in educational precinct. School of Property, Construction and Project Management, RMIT University Shooshtarian, S., Rajagopalan, P. and Sagoo, A., 2018. A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustainable Cities and Society. Walls, W. (2018). Designing Thermal Effect. University of Melbourne.
9
Designing Living Systems LARC20001
Assignment 04 Charensia Pricilla Rompis 860209 Samantha Downing -T2
SCHEMATIC DESIGN PLAN
LEGEND: SCALE 1:2000 10m 20m
40m
1. Rewilding Zone B Attract species into the Southbank Boulevard.
3. Low Shrub Zone Combination of grass surrounding citrus trees.
5. Saturated Zone Less-dense plantation and oriented to pedestrian.
2. Flowering Zone Variation of flowers for public engagement.
4. Colourful Zone Habitat for the species.
6. Rewilding Zone A Food source for the species.
3. Low Shrub Zone.
2. Flowering Zone.
4. Colourful Zone.
HAMMER HALL
SO
UT
5. Saturated Zone.
AT E
G RID G SA
ESOO EMPLOYEES’ CREDIT UNION
Fitness M RO NK P THBA
Skate Park.
SOU
AV E
QUAY WEST SUITES
AVE ATE
ND R
ID
THG
QUEENS BRIDGE
EB
SOU
DE ENA
7. Citrus Dominated Zone.
6. Rewilding Zone A.
HG
E
1. Rewilding Zone B.
S
DETAILED DESIGN
DE
OMENA
ANK PR OUTHB
YARRA RIVER
7. Dense Planting for Rewilding Combination of plants that attract the species coming from the Shrine of Remembrance.
ALEXANDR
A AVENUE
SOUTHGATE Solar Charging Station.
Playground.
HWT TOWER IBM STUDIOS
Water Feature and Garden.
Open Space. ARTS CENTRE Pergola with Citrus Plant.
Bossiaea Prostrata AY
E QU
Canopy & Street Light.
Bike Racks. EUREKA SKYDECK 88
D OA
OK
CO
SID RIVER
R ITY
ET
RE
ST
C
UT
SO MIMECAST AUSTRALIA
Basketball Court.
RE ET
TY CI
ST
SOUTH
EET
Citrus.
Canna Generalis.
Angiophora Floribunda.
Schinus Mole.
AB
D
EET MOO
SOUTHBANK RESIDENTIAL
RE STR
KA VA NA GH
FA W
ET
ULEVAR
AA
STR
KN E
R
BANK B O
Correa Reflexa.
ABC
SOUTHBANK THEATRE
UNIVERSITY OF MELBOURNE VCA AND MCM CAMPUS
D
TRE
NATIONAL GALLERY OF VICTORIA
ROA
RS
Epacris Impressa.
ILDA
PO WE
ST K
RO AD
Wahlenbergia Stricta.
STREET
BMW
Eucalyptus Melliodora. ET ULTIMATE TRE S DESIGN GH NA GRAPHICS A V KA CARLTON AND UNITED BREWERIES
STURT
T NSBR
FAW
STREET
E
KN
BLUE ZONE
Seating Area.
EET
TR RS
D
IDGE
AR EV UL
BO
QUEE
Billardiera Scandens. Canopy.
TYPICAL PLANTATION BASED ON ZONING RED ZONE
ACMI X
K
STREE
AN HB
FRESHWATER PLACE
Poa Sieberiana.
MANTRA SOUTHBANK
STURT
PwC
QUEEN VICTORIA GARDENS
DETAILED LANDSCAPE PLAN
LEGEND: SCALE 1:250 1m 2m
5m
Glass Canopy with PV Panel
Proposed Mulch Area
Albedo Concrete Permeable Pavings
Proposed Instant Turf
Timber Bench
Rubbish Bin
ANG FLO BOS PRO CAN GEN CIT AUS
COR REF
EPA IMP GOO OVA POA SIE SCH MOL WAH STR
NATIONAL GALLERY OF VICTORIA
SOUTHBANK THEATRE
PLANTING SCHEDULE
PLANT CODE
BOTANICAL NAME
ANG FLO BOS PRO CAN GEN CIT AUS COR REF
Angophora Floribunda Bossiaea Prostrata Canna Generalis Citrus Australasica Correa Reflexa
COMMON NAME
SPACING
QUANTITY
POT SIZE
PLANT CODE
BOTANICAL NAME
COMMON NAME
SPACING
Rough Barked Apple Creeping Bossiaea Canna Lily Citrus ‘Sunrise Lime’ Common Correa
20000mm 1000mm 1000mm 1500mm 1500mm
4 12 100 38 6
500mm 200mm 200mm 200mm 200mm
EPA IMP GOO OVA POA SIE SCH MOL WAH STR
Epacris Impressa Goodenia Ovata Poa Sieberiana Schinus Molle Wahlenbergia Stricta
Native Heath Hop Goodenia Grey Tussock Grass Peppercorn Tree Tall Bluebell
450mm 500mm 300mm 15000mm 500mm
QUANTITY
POT SIZE
20 21 30 5 27
150mm 150mm 150mm 400mm 150mm
Poa Sieberiana
Instant Turf
Timber Bench
Bossiaea Prostrata
Angophora Floribunda
Citrus Australasica
Canna Generralis
Wahlenbergia Stricta
Glass Canopy with Solar Panel
Permeable Albedo Concrete Paving
Epacris Impressa
Goodenia Ovata
Schinus Molle
Correa Reflexa
“plantation pattern between each patches creating a corridor for the species”
SECTION AXONOMETRIC
- not to scale
National Gallery of Victoria Glass Canopy
rus A
Pedestrian Path
PV panel Glass Canopy
Cit
Cit
Cit
las ica ust ra
las ica
ust ra
Car Lanes
rus A
ust ra
KEY FEATURE - DETAIL at 1:50
Tram and Bike Lanes
Pedestrian Path
rus A
University of Melbourne VCA & MCM campus
las ica
S E C T I O N AA - Citrus Dominated Zone
“connectivity of patches between each zone providing immense diversity of plants (habitat)�
S E C T I O N AB - Rewilding Zone A
Timber
Timber Bench
1m 2m
5m
a nd ibu
Car Lanes
Flo r
a sic
Tram and Bike Lanes
ora ph go An
rus
Au
str
ala
Pedestrian Path
Cit
a nd
Flo ri
ho ra op
SCALE 1:250
An g
Ca n
na
Ge
ne
rra
Southbank Theatre
bu
lis
Bench Pedestrian Path
National Gallery of Victoria
Drainage - not to scale
Concrete
SP RI N
W
N
W
SP RI N ) ks ee
R TE IN
R TE IN
SP RI N
R TE IN
SP RI N
R TE IN
N
SP RI N
W
ER T IN
N
R ME UM
(4 w
Chrysallis/ Pupa
S
G
AUT UM N
W
SP RI N
W
s) ek we (2
Antenna Lizard
Head
W
Transform after 5-6 instars (a couple of days).
N
R TE IN
W Hatches after 3-4 days
Eagle
AU TU M
Egg
DINGY SWALLOWTAIL BUTTERFLY
A U TU M
R TE N I
R ME UM
SP RI N
Hindwing
S
G
F O O D C H A I N
Wing Vein
Laying Perio Egg d
N
N
R TE IN
AU TU M
ER
FLIGHT TIME
Forewing Caterpillar/ Larva
S R ME UM
Canna Generalis
Thorax
AU TU M W
C Y C L E
S
G
Schinus Molle
G
ERING TIME FLOW
SU MM
G
Seasonality
R ME UM
L I F E
S
A U TU M
ting Time Spa n Adul
ERING TIME FLOW
R ME UM
Angophora Floribunda
G
AU TU M
Citrus Australasica
AU T UM
S O U R C E
G
S R ME UM
F O O D
ERING TIME FLOW
N
S
G
R ME UM
SP RI N
ERING TIME FLOW
ECOLOGICAL CONCEPT DIAGRAM
Dingy Swallowtail butterfly is an Australian species that will transform Southbank Boulevard into a new precinct in Melbourne, Australia. Butterfly represents resurrection, life, and hope, meaning that the application of these ideas in Southbank Boulevard will bring benefits through the immense diversity of plants and species. One key major of rewilding Dingy Swallowtail butterfly is from the plantation of various native citrus plants that attract the species with its particular smell and colour. The plantation will be arranged in an unified form through a corridor that links each habitat and allow movement between patches throughout Southbank Boulevard.