NUMERICAL - GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL with discrete data input
CO HONG by CO.H . TRAN University of Natural Sciences, TRAN
Digitally signed by CO HONG TRAN DN: cn=CO HONG TRAN, c=VN, o=VNU-HCM, ou=MMI, email=cohtran@math.com Date: 2008.01.01 19:16:58 +07'00'
HCMC Vietnam coth123@math.com & coth123@yahoo.com Copyright 2007 May 06 2007 Abstract : The system of non-linear differential quations with discrete input function is solved by Runge-Kutta method . Subjects: Vibration Mechanics , The Differential equations . NOTE: This worksheet demonstrates Maple's capabilities in the design and finding the numerical solution of the non-linear vibration system .
All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed .
LOI GIAI SO VA DO THI CUA MAU DAO DONG PHI TUYEN voi so lieu roi rac TRAN HONG CO Dai hoc Khoa hoc tu nhien tp HCM Vietnam coth123@math.com & coth123@yahoo.com
Step 1 : System Definition. > restart: eq1:=(m1+m2)*Diff(y,t$2)*l*cos(phi)+(m1*l^2+J)*Diff(phi,t$2)+m1*g*l*cos(phi)=f(t);eq2:=(m1+m2)*Diff(y,t$2)+m1*l*cos(phi) *Diff(phi,t$2)-m1*l*Diff(phi,t)^2*cos(phi)+b*Diff(y,t)+c1*y+c3*y^3 =h(t);
(1.1)
(1.1)
> with(plots): readlib(spline): with(inttrans):
Warning, the name changecoords has been redefined
Step 2 : Fitting the experimental data by Spline function. > eq1:=(m1+m2)*Diff(y,t$2)*l*cos(phi)+(m1*l^2+J)*Diff(phi,t$2)+m1*g*l*cos(phi)=f(t);eq2:=(m1+m2)*Diff(y,t$2)+m1*l*cos(phi) *Diff(phi,t$2)-m1*l*Diff(phi,t)^2*cos(phi)+b*Diff(y,t)+c1*y+c3*y^3 =h(t);
(2.1)
(2.1)
> datax1:=[0,0.5,1,1.5,2,2.5,3,3.5,4]; datay1:=[0.2,0.5,0.7,0.4,0.65,1.2,2.4,0.9,1.1]; pldataf:= zip((x,y)->[x,y], datax1, datay1): dataplot1 := pointplot(pldataf, symbol=diamond);
(2.2)
(2.2)
(2.2)
> Ft:=spline(datax1, datay1, w, cubic);
(2.3)
> dothif:=plot(Ft, w=0..5, color=red): display(dataplot1,dothif, axes=frame);
By CO HONG TRAN at 7:19 pm, Jan 01, 2008
> fnum:=subs(w=t,Ft);eq1:=subs(f(t)=fnum,eq1);
(2.4)
> datax2:=[0,0.5,1,1.5,2,2.5,3,3.5,4]; datay2:=[0.3,0.5,0.58,0.4,0.85,1.2,1.4,0.9,1.55]; Ht := zip((x,y)->[x,y], datax2, datay2): dataplot2 := pointplot(Ht, symbol=cross);
(2.5)
(2.5)
(2.5)
> Ht:=spline(datax2, datay2, w, cubic);
(2.6)
> dothih:=plot(Ht, w=0..5, color=blue): display(dataplot2,dothih, axes=frame);
> h1:=subs(w=t,Ht);eq2:=subs(h(t)=h1,eq2);
(2.7)
Step 3 : The non-linear vibration system with discrete data input . > T:=5;m1:=1; m2:=1; b:=5; c1:= 1;c3:=1 ; l:= 0.05 ; J:= 0.5 ; g:=9.8;n:=2;
> with(DEtools):with(plots): alias(y=y(t), phi=phi(t), y0=y(0),p0=phi(0), yp0=D(y)(0),pp0=D(phi)(0));
Digitally signed by COHONGTRAN DN: cn=COHONGTRAN, c=US, o=MMI, ou=NCU HUI, email=cohtran@math.com Reason: I am the author of this document Location: HCMC Date: 2009.06.21 10:40:44 +07'00'
eq1 := .10*Diff(y,`$`(t,2))*cos(phi)+.5025*Diff(phi,`$`(t,2))+.490*cos(phi) = PIECEWISE([.2000000000+.559628129599999968*t+.161487481600000010*t^3, t < .5],[.1596281296+.680743740799999997*t+.242231222385861644*(t-.5)^2-1.60743740800000001*(t-.5)^3, t < 1],[.9826030927.282603092700000002*t-2.16892488954344652*(t-1)^2+3.06826215099999988*(t-1)^3, t < 1.5],[.6254970546.150331369699999995*t+2.43346833578792321*(t-1.5)^2-2.26561119299999980*(t-1.5)^3, t < 2],[.5178571430+.583928571299999977*t-.964948453608247214*(t-2)^2+3.99418262299999994*(t-2)^3, t < 2.5],[5.336542708+2.61461708300000017*t+5.02632547864506574*(t-2.5)^2-10.9111192900000002*(t-2.5)^3, t < 3],[4.027190721.542396906999999984*t-11.3403534609720165*(t-3)^2+12.8502945499999992*(t-3)^3, t < 3.5],[8.7576030922.24502945500000006*t+7.93508836524300420*(t-3.5)^2-5.29005890999999994*(t-3.5)^3, otherwise]); eq2 := 2*Diff(y,`$`(t,2))+.5e-1*cos(phi)*Diff(phi,`$`(t,2))-.5e-1*Diff(phi,t)^2*cos(phi)+5*Diff(y,t)+y+y^3 = PIECEWISE([.3000000000+.401389911599999982*t-.555964654000000014e-2*t^3, t < .5],[.3013899116+.397220176799999990*t.833946980854194387e-2*(t-.5)^2-.932201767300000039*(t-.5)^3, t < 1],[.8902706185-.310270618499999984*t1.40664212076583217*(t-1)^2+2.61436671600000015*(t-1)^3, t < 1.5],[.342065540e1+.243862297300000003*t+2.51490795287187030*(t-1.5)^2-2.40526509599999994*(t-1.5)^3, t < 2],[1.059642857+.954821428699999974*t-1.09298969072164964*(t-2)^2+1.16669366700000010*(t-2)^3, t < 2.5],[.642129970+.736851987999999958*t+.657050810014727760*(t-2.5)^2-2.66150957300000002*(t-2.5)^3, t < 3],[3.206688144-
.602229381300000033*t-3.33521354933726099*(t-3)^2+5.07934462299999990*(t-3)^3, t < 3.5],[1.347770617.127934461999999998*t+4.28380338733431554*(t-3.5)^2-2.85586892500000022*(t-3.5)^3, otherwise]); G:=dsolve({eq1,eq2,y0=0,p0=0,yp0=0,pp0=0.1},[y,phi],'numeric'): print(" Loi giai so bang phuong phap RUNGE - KUTTA "); for i from 0 to T do print(G(i)); od; yy:=t-> rhs(G(t)[2]): pp:=t-> rhs(G(t)[4]): yyp:=t->rhs(G(t)[3]):ppp:=t->rhs(G(t)[5]):plot(yy,0..n*T,color=red,thickness=3,title=`tung do y(t)`); plot(pp,0..n*T,color=blue,thickness=3,title=`goc phi phi(t)`); plot(yyp,0..n*T,color=green,title=`daohamtungdo y'(t)`); plot(ppp,0..n*T,color=black,title=`daohamgocphi phi'(t)`);
By CO HONG TRAN at 7:19 pm, Jan 01, 2008
CO HONG TRAN
Digitally signed by CO HONG TRAN DN: cn=CO HONG TRAN, c=VN, o=VNUHCM, ou=MMI, email=cohtran@math.com Date: 2008.01.01 19:20:03 +07'00'
By CO HONG TRAN at 7:20 pm, Jan 01, 2008
By CO HONG TRAN at 7:20 pm, Jan 01, 2008
Animation Code
Activate the following procedure twice to obtain the result completely . (use Maple 9.5 & 10 ) Mohinh procedure
> mohinh:=proc(M,lan)
> mohinh(0.75,3);
By CO HONG TRAN at 7:21 pm, Jan 01, 2008
Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.
CO HONG TRAN
Digitally signed by CO HONG TRAN DN: cn=CO HONG TRAN, c=VN, o=VNUHCM, ou=MMI, email=cohtran@math.com Reason: I am the author of this document Date: 2008.01.01 19:21:38 +07'00'