NUMERICAL - GRAPHICAL SOLUTIONS OF THE NON-LINEAR VIBRATION MODEL with discrete data input
CO HONG by CO.H . TRAN University of Natural Sciences, TRAN
Digitally signed by CO HONG TRAN DN: cn=CO HONG TRAN, c=VN, o=VNU-HCM, ou=MMI, email=cohtran@math.com Date: 2008.01.01 19:16:58 +07'00'
HCMC Vietnam coth123@math.com & coth123@yahoo.com Copyright 2007 May 06 2007 Abstract : The system of non-linear differential quations with discrete input function is solved by Runge-Kutta method . Subjects: Vibration Mechanics , The Differential equations . NOTE: This worksheet demonstrates Maple's capabilities in the design and finding the numerical solution of the non-linear vibration system .
All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed .
LOI GIAI SO VA DO THI CUA MAU DAO DONG PHI TUYEN voi so lieu roi rac TRAN HONG CO Dai hoc Khoa hoc tu nhien tp HCM Vietnam coth123@math.com & coth123@yahoo.com
Step 1 : System Definition. > restart: eq1:=(m1+m2)*Diff(y,t$2)*l*cos(phi)+(m1*l^2+J)*Diff(phi,t$2)+m1*g*l*cos(phi)=f(t);eq2:=(m1+m2)*Diff(y,t$2)+m1*l*cos(phi) *Diff(phi,t$2)-m1*l*Diff(phi,t)^2*cos(phi)+b*Diff(y,t)+c1*y+c3*y^3 =h(t);
(1.1)