·
For Engineering Design For Scientific Research For Operations Research For Financial Analysis For Academic Instruction For Academic Research For Students For Testing & Assessment Maple 13 MapleSim 2 Maple Toolbox for MATLAB BlockBuilder for Simulink BlockImporter for Simulink Placement Test Suite Maple T.A. MapleNet E-Books & Study Guides Add-on Products Professional Services ·
Maplesoft Web Store Product Pricing Request a Quote Contact Maplesoft Sales International Resellers Elite Maintenance Pgrogram Support & Customer Service Frequently Asked Questions Download Product Updates Training Documentation Center Welcome Center Training Application Briefs User Stories Product Demonstrations Webinars Teacher Resource Center Student Help Center Maple Reporter Events User Testimonials Subscriptions Maple Books Math Matters Application Center Maple T.A. Content Center MaplePrimes MapleCast Adoption Program Maple Conference Third Party Developers About Maplesoft Careers Maplesoft Blog Media Center Plant Modeling Consortium Events Sponsorships Contact Application Center Home Application Search Editor's Choice Applications MapleSim Content New Applications Tips & Techniques Contribute your Work My Applications
Application Center · · · · · ·
Home Editor's Choice Applications MapleSim Content New Applications Tips & Techniques Contribute your Work
Application Search
·
Advanced Search
Browse Categories · · · ·
· · · · ·
Mathematics Communications Computer Science Engineering o Chemical o Civil & Structural o Control o Dimensional Analysis o Electrical o Engineering Mathematics o Finite Element Modeling o Fluid Dynamics o Heat Transfer o Manufacturing o Mechanical o Modeling & Simulation o Nuclear Finance Maple Tools Operations Research Science Statistics & Data Analysis
Subscribe · ·
New Applications Editor's Choice
Home : User Community : Application Center : Engineering : Mechanical : The Relaxation function problem of an orthotropic cylinder
You are in HTML Preview Mode You are viewing the HTML version of this application. Options to rate, download or comment on this document can be found below. You can switch back to the summary page for this application by clicking here.
The Relaxation function problem of an orthotropic cylinder Co. H. Tran. Faculty of Mathematics, University of Natural Sciences - VNU-HCM coth123@math.com & cohtran@math.com Copyright 2007 By CO HONG TRAN at 5:20 pm, Jun 19, 2009
June 06 2007
NOTE: This worksheet demonstrates Maple's capabilities in researching the numerical and graphical solution of the relaxation function problem of an orthotropic cylinder . All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed .
Abstract The worksheet presents some thoughts about the plane strain problem of the viscous orthotropic composite materials cylinder under internal and external pressure with respect to using the direct method . To compute the interior stress , from the elastic solution we use the correspondence principle and the inverse Laplace transform .
1. Analysis of the composite orthotropic cylinder :
We examine an orthotropic viscoelastic composite material cylinder which has the horizontal section within limit of 2 circles : r = a , r = b ( a < b ) .
Choosing the cylindrical coordinates r , , z ( the axial z is along with the cylinder ) . The components of stress and deformation
are functions of r , t respectively . The two components of deformation-tensor :
and the differential equation of equilibrium : The boundary conditions :
2. Direct method : The direct method is an approximate inversion technic based on the direct relation between the time dependence and the transformed solution . If the plot of the viscoelastic solution has small curvature when plotted with variables logt then :
(1)
where (1) is exact if (1) can be rewritten :
C is Euler's constant .. ,
is proportional to logt .
(2) Note that (2) is used when
,
has small curvature with respect to logt .
From the correspondence principle we obtain the viscoelastic solution .
(3)
(4)
(5)
(6) The operator moduli :
(7)
We consider the relaxation test , in which
,
is a constant at
t = 0 (8) . We have
By the similar way , we find out :
,
,
(9)
(10)
(11)
Assume that the relaxation moduli have power form : where
are constants .
By applying the Laplace transfom for (11) , we obtain the operator moduli : with the values of Gamma function :
;
(13)
3. Parameters - The Numerical and Graphical Solution : > restart; cycrstrecom:=proc(T,Gamma1,c1,P1,Q1,M1,d1) global P,Q,sigmaat1,sigmaat2,sigmabt2,sigmabt1,sigmaatisotropic,sigmabtisotropic ; local To,E,E1,M,d,j,Gamma,Gamma_form,gamma; with(inttrans):with(plottools):with(plots): print(" PARAMETERS DEFINITION : "); print( T=To,gamma=Gamma1,c=c1); print(" REPRESENTATION OF STRESS : "); sigma[theta](at):=(gamma*P*(1+c^(2*gamma))-gamma*Q*2*c^(gamma-1))/(1-c^(2*gamma)); print(sigma[theta](a)=sigma[theta](at)); sigma[theta](bt):=(gamma*P*2*c^(gamma+1)-Q*(1+c^(2*gamma)))/(1-c^(2*gamma));
(12)
print(sigma[theta](b)=sigma[theta](bt)); P:=P1;Q:=Q1; To:=T;E[rt]:=(100*(t/To)^(-0.5)+1)*E[e];E[thetat]:=(100*(t/To)^(-0.1)+1)*E[e]; print(E[r]=E[rt]); print(E[theta]=E[thetat]); print(" LAPLACE TRANSFORM OF MODULI : "); E1[rp]:=p*evalf(laplace(E[rt],t,p),3); print(E1[r]=E1[rp]); E1[thetap]:=p*evalf(laplace(E[thetat],t,p),3); print(E1[theta]=E1[thetap]); Gamma_form:=sqrt(E1[theta]/E1[r]); print(" EXPRESSION OF : ",gamma=Gamma_form); Gamma:=evalf(sqrt(E1[thetap]/E1[rp]),5): Gamma:=simplify(Gamma); print(gamma=Gamma); sigma[theta](a):=(Gamma*P1*(1+c1^(2*Gamma))-Gamma*Q1*2*c1^(Gamma-1))/(1-c1^(2*Gamma)); sigma[theta](b):=(Gamma*P1*2*c1^(Gamma+1)-Q1*(1+c1^(2*Gamma)))/(1-c1^(2*Gamma)); print(sigma[Theta](a)=sigma[theta](a));;print(sigma[Theta](b)=sigma[theta](b)); sigma[theta](at):=(gamma*P*(1+c^(2*gamma))-gamma*Q*2*c^(gamma-1))/(1-c^(2*gamma)); print(" SUBSTITUTE ",c=c1 ,p =1/(2*t),gamma=Gamma); sigmaat1:=evalf(subs(c=(1/2),p=(1/(2*t)),gamma=Gamma,P=P1,Q=Q1,sigma[theta](a)),3); sigmaat1:=evalf(simplify(sigmaat1),2); print(sigma[Theta](a)=sigmaat1); sigmaat2:=subs(t=10^(s)*To,sigmaat1): sigmaat2:=evalf(simplify(sigmaat2),2)/P1; sigmabt1:=evalf(subs(c=(1/2),p=(1/(2*t)),gamma=Gamma,P=P1,Q=Q1,sigma[theta](b)),3); sigmabt1:=evalf(simplify(sigmabt1),2); print(sigma[Theta](b)=sigmabt1); sigmabt2:=subs(t=10^(s)*To,sigmabt1): sigmabt2:=evalf(simplify(sigmabt2),2); print(" CHANGE THE PRESENTATION OF TIME INTO LOG(t/To) "); print(sigma[Theta](a)=sigmaat2); print(sigma[Theta](b)=sigmabt2); sigmaatisotropic:=subs(s=0,sigmaat2); sigmaatisotropic:=evalf(simplify(sigmaatisotropic),2); print(sigmaa_isotropic=sigmaatisotropic); sigmabtisotropic:=subs(s=0,sigmabt2): sigmabtisotropic:=evalf(simplify(sigmabtisotropic),2); print(" OUTPUT DATA "); M:=M1; d:=d1;
printf(" s=log(t/To) sigma[Theta](a)(s)/P \n\n"); for j from 0 to M do printf("%10.1f %10.4f \n", -d*(10-j), subs(s=-d*(10-j),sigmaat2)); end do; for j from 1 to M do printf("%10.1f %10.4f \n", d*j, subs(s=d*j,sigmaat2)); end do; print(" NUMERICAL AND GRAPHICAL SOLUTION "); printf("\n%s"," KET THUC BAI TOAN ONG TRU COMPOSITE DAN NHOT TRUC HUONG BANG PHUONG PHAP TRUC TIEP "); plot([sigmaat2,sigmaat2,sigmaatisotropic],s=10..30,y=0.85..5.2,color=[grey,black,black],style=[line,point,point],thickness=1,symbol=[cross,diamond,cross],linestyle=1,axes=boxed,labels=[ solution`],title="Numerical solution"); end:
> cycrstrecom(1, .83, 1/2, 1, 0, 30, 1);
s=log(t/To)
sigma[Theta](a)(s)/P
-10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
1.4286 1.4286 1.4287 1.4289 1.4294 1.4305 1.4335 1.4409 1.4595 1.5056 1.6182 1.8804 2.4264 3.3300 4.3240 4.8725 4.8419 4.5127
8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0
4.1110 3.7260 3.3828 3.0857 2.8323 2.6184 2.4396 2.2913 2.1691 2.0691 1.9877 1.9217 1.8684 1.8804 2.4264 3.3300 4.3240 4.8725 4.8419 4.5127 4.1110 3.7260 3.3828 3.0857 2.8323 2.6184 2.4396 2.2913 2.1691 2.0691 1.9877 1.9217 1.8684 1.8255 1.7910 1.7634 1.7413 1.7237 1.7096 1.6984 1.6894
29.0 30.0
1.6823 1.6766
KET THUC BAI TOAN ONG TRU COMPOSITE DAN NHOT TRUC HUONG BANG PHUONG PHAP TRUC TIEP
By CO HONG TRAN at 5:20 pm, Jun 19, 2009
REFERENCES
[1] Ngo Thanh Phong , Nguyen Thoi Trung , Nguyen Dinh Hien , Ap dung phap gan dung bien doi Laplace nguoc de giai bai toan bien dang phang trong lieu composite dan nhot truc huong , Tap chi phat trien KHCN , tap 7 , so 4 & in Vietnamese ) , 2002 . [2] R.A. Schapery , Stress Analysis of Viscoelastic Composite Materials , Edited by G.P.Sendeckyj ,Academic Press , Newyork , London , 1971 .
Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.
Application Details Author: Application Type: Publish Date: Created In: Language: Category:
Dr. Co Tran Maple Document July 23, 2007 Maple 11 Maple 10 English Engineering: Mechanical
Toolkit Download Maple Document View Details Tell a Colleague about this Application Contact the Author Contribute Your Work
Community Rating: Your Rating:
Move the slider to rate Add a Comment If you have a Maplesoft.com account, please sign in to fill in these fields automatically. Name:* Email:* Website: What is
http://
?*
Please log in to submit a Comment. If you do not have a Maplesoft.com membership, create an account here. Or submit a comment without logging in. E-mail Address: Password:
Forgot your password? It is easy to include math in your comment. Click here to find out how.
Please note that much of the Application Center contains content submitted directly from members of our user community. Although we do our best to monitor for objectionable content, it is possible that we occasionally miss something. If there is something objectionable on this page, please click here to report it. Products & Solutions | Purchase | Customer Support | Site Resources | User Community | Company | Site-Map | Login Language: English | Français Š Maplesoft, a division of Waterloo Maple Inc. 2009. | Privacy | Trademarks
Digitally signed by COHONGTRAN DN: cn=COHONGTRAN, c=US, o=MMI, ou=NCU HUI, email=cohtran@math.com Reason: I am the author of this document Location: HCMC Date: 2009.06.19 17:16:47 +07'00'