COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 1. FBD Block B: Tension in cord is equal to W A = 25 lb from FBD’s of block A and pulley. ΣFy = 0:
N − WB cos 30° = 0,
N = WB cos 30°
(a) For smallest WB , slip impends up the incline, and
F = µ s N = 0.35WB cos30° ΣFx = 0:
F − 25 lb + WB sin 30° = 0
( 0.35cos30° + sin 30° )WB = 25 lb WB min = 31.1 lb (b) For largest WB , slip impends down the incline, and F = − µ s N = − 0.35 WB cos30° ΣFx = 0:
Fs + WB sin 30° − 25 lb = 0
( sin 30° − 0.35cos30° )WB = 25 lb W B max = 127.0 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 2. FBD Block B:
Tension in cord is equal to WA = 40 lb from FBD’s of block A and pulley. (a)
ΣFy = 0:
N − ( 52 lb ) cos 25° = 0,
N = 47.128 lb
Fmax = µ s N = 0.35 ( 47.128 lb ) = 16.495 lb ΣFx = 0:
Feq − 40 lb + ( 52 lb ) sin 25° = 0
So, for equilibrium, Feq = 18.024 lb Since Feq > Fmax , the block must slip (up since F > 0)
∴ There is no equilibrium (b) With slip,
F = µk N = 0.25 ( 47.128 lb )
F = 11.78 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
35°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 3. FBD Block: Tension in cord is equal to P = 40 N, from FBD of pulley.
(
)
W = (10 kg ) 9.81 m/s 2 = 98.1 N ΣF y = 0 :
N − (98.1 N ) cos 20° + (40 N ) sin 20° = 0
N = 78.503 N Fmax = µ s N = ( 0.30 )( 78.503 N ) = 23.551 N For equilibrium:
ΣFx = 0:
( 40 N ) cos 20° − ( 98.1 N ) sin 20° − F = 0
Feq = 4.0355 N < Fmax , F = Feq
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∴ Equilibrium exists F = 4.04 N
20°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 4.
Tension in cord is equal to P = 62.5 N, from FBD of pulley.
(
)
W = (10 kg ) 9.81 m/s 2 = 98.1 N ΣFy = 0:
N − ( 98.1 N ) cos 20° + ( 62.5 N ) sin15° = 0 N = 76.008 N
Fmax = µ s N = ( 0.30 )( 76.008 N ) = 22.802 N For equilibrium:
ΣFx = 0:
( 62.5 N ) cos15° − ( 98.1 N ) sin 20° − F = 0
Feq = 26.818 N > Fmax
so no equilibrium,
and block slides up the incline
Fslip = µ x N = ( 0.25 )( 76.008 N ) = 19.00 N F = 19.00 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
20°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 5.
Tension in cord is equal to P from FBD of pulley.
(
)
W = (10 kg ) 9.81 m/s 2 = 98.1 N
ΣFy = 0:
N − ( 98.1 N ) cos 20° + P sin 25° = 0
(1)
ΣFx = 0:
P cos 25° − ( 98.1 N ) sin 20° + F = 0
(2)
For impending slip down the incline, F = µ s N = 0.3 N and solving (1) and (2),
PD = 7.56 N
For impending slip up the incline, F = − µ s N = − 0.3 N and solving (1) and (2),
PU = 59.2 N
so, for equilibrium
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
7.56 N ≤ P ≤ 59.2 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 6. FBD Block:
(
)
W = ( 20 kg ) 9.81 m/s 2 = 196.2 N
For θ min motion will impend up the incline, so F is downward and F = µs N ΣFy = 0:
ΣFx = 0:
(1) + ( 2 ):
N − ( 220 N ) sin θ − (196.2 N ) cos 35° = 0 F = µ s N = 0.3 ( 220 sin θ + 196.2 cos 35° ) N
(1)
( 220 N ) cosθ
(2)
− F − (196.2 N ) sin 35° = 0
0.3 ( 220 sin θ + 196.2cosθ ) N = ( 220 cosθ ) N − (196.2sin 35° ) N
or
220cosθ − 66sin θ = 160.751
Solving numerically:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 28.9°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 7. FBD Block: For Pmin motion will impend down the incline, and the reaction force R will make the angle
φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900° with the normal, as shown.
Note, for minimum P, P must be ⊥ to R, i.e. β = φs (angle between P and x equals angle between R and normal).
β = 19.29°
(b) then P = (160 N ) cos ( β + 40° ) = (160 N ) cos 59.29° = 81.71 N (a)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Pmin = 81.7 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 8. FBD block (impending motion downward)
φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.036°
(a) Note: For minimum P,
P⊥R
So
β = α = 90° − ( 30° + 14.036° ) = 45.964°
and
P = ( 30 lb ) sin α = ( 30 lb ) sin ( 45.964° ) = 21.567 lb P = 21.6 lb
(b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
β = 46.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 9. FBD Block:
For impending motion. φ s = tan −1 µ s = tan −1 ( 0.40 )
φ s = 21.801°
Note β1,2 = θ1,2 − φ s 10 lb 15 lb = sinφs sinβ1,2
From force triangle:
15 lb 33.854° sin ( 21.801° ) = 10 lb 146.146°
β1,2 = sin −1
55.655° So θ1,2 = β1,2 + φ s = 167.947° So
(a)
equilibrium for
0 ≤ θ ≤ 55.7°
(b)
equilibrium for
167.9° ≤ θ ≤ 180°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 10. FBD A with pulley: Tension in cord is T throughout from pulley FBD’s
ΣFy = 0:
2T − 20 lb = 0,
T = 10 lb
FBD E with pulley: For θ max , motion impends to right, and
φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900°
From force triangle, 20 lb 10 lb = , sin (θ − φs ) sinφ s
2sin φ s = sin (θ − φ s )
θ = sin −1 ( 2sin19.2900° ) + 19.2900° − 60.64° θ max = 60.6°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 11. FBD top block: ΣFy = 0:
N1 − 196.2 N = 0
N1 = 196.2 N (a) With cable in place, impending motion of bottom block requires impending slip between blocks, so F1 = µ s N1 = 0.4 (196.2 N )
F1 = 78.48 N FBD bottom block:
ΣFy = 0:
N 2 − 196.2 N − 294.3 N = 0
N 2 = 490.5 N F2 = µ s N 2 = 0.4 ( 490.5 N ) = 196.2 N ΣFx = 0:
− P + 78.48 N + 196.2 N = 0
P = 275 N FBD block: (b) Without cable AB, top and bottom blocks will move together ΣFy = 0:
N − 490.5 N = 0,
Impending slip: ΣFx = 0:
N = 490.5 N
F = µ s N = 0.40 ( 490.5 N ) = 196.2 N − P + 196.2 N = 0
P = 196.2 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 12.
FBD top block:
Note that, since φ s = tan −1 µ s = tan −1 ( 0.40 ) = 21.8° > 15°, no motion will impend if P = 0, with or without cable AB. (a) With cable, impending motion of bottom block requires impending slip between blocks, so F1 = µ s N ΣFy′ = 0:
N1 − W1 cos15° = 0,
N1 = W1 cos15° = 189.515 N
F1 = µ s N1 = ( 0.40 )W1 cos15° = 0.38637 W1
F1 = 75.806 N FBD bottom block:
ΣFx′ = 0:
T − F1 − W1 sin15° = 0 T = 75.806 N + 50.780 N = 126.586 N
(
)
W2 = ( 30 kg ) 9.81 m/s 2 = 294.3 N ΣFy = 0 :
N 2 − (189.515 N ) cos (15° ) − 294.3 N + ( 75.806 N ) sin15° = 0
N 2 = 457.74 N F2 = µ s N 2 = ( 0.40 )( 457.74 N ) = 183.096 N
FBD block:
ΣFx = 0:
− P + (189.515 N ) + ( 75.806 N ) cos15° + 126.586 N + 183.096 N = 0
P = 361 N (b) Without cable, blocks remain together ΣFy = 0:
N − W1 − W2 = 0
N = 196.2 N + 294.3 N = 490.5 N
F = µ s N = ( 0.40 )( 490.5 N ) = 196.2 N ΣFx = 0:
− P + 196.2 N = 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 196.2 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 13. FBD A:
Note that slip must impend at both surfaces simultaneously. N1 + T sin θ − 16 lb = 0
ΣFy = 0:
N1 = 16 lb − T sin θ Impending slip:
F1 = µ s N1 = ( 0.20 )(16 lb − T sin θ )
F1 = 3.2 lb − ( 0.2 ) T sin θ
(1)
F1 − T cosθ = 0
ΣFx = 0:
(2)
FBD B: ΣFy = 0:
N 2 − N1 − 24 lb = 0,
N 2 = N1 + 24 lb = 30 lb − T sin θ
Impending slip:
F2 = µ s N 2 = ( 0.20 )( 30 lb − T sin θ ) = 6 lb − 0.2 T sin θ
ΣFx = 0:
10 lb − F1 − F2 = 0 10 lb = µ s ( N1 + N 2 ) = ( 0.2 ) N1 + ( N1 + 24 lb )
10 lb = 0.4 N1 + 4.8 lb, Then Then
N1 = 13 lb
F1 = µ s N1 = ( 0.2 )(13 lb ) = 2.6 lb
(1):
T sin θ = 3.0 lb
( 2 ):
T cosθ = 2.6 lb
Dividing tan θ =
3 , 2.6
θ = tan −1
3 = 49.1° 2.6
θ = 49.1°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 14. FBD’s:
Note: Slip must impend at both surfaces simultaneously.
A: ΣFy = 0:
N1 − 20 lb = 0,
Impending slip:
N1 = 20 lb
F1 = µ s N1 = ( 0.25 )( 20 lb ) = 5 lb
ΣFx = 0:
− T + 5 lb = 0,
T = 5 lb
ΣFy′ = 0:
N 2 − ( 20 lb + 40 lb ) cosθ − ( 5 lb ) sin θ = 0 N 2 = ( 60 lb ) cosθ − ( 5 lb ) sin θ
B: Impending slip: ΣFx′ = 0:
F2 = µ s N 2 = ( 0.25 )( 60cosθ − 5sin θ ) lb − F2 − 5 lb − ( 5 lb ) cosθ + ( 20 lb + 40 lb ) sin θ = 0 − 20cosθ + 58.75sin θ − 5 = 0
Solving numerically,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 23.4°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 15. FBD: For impending tip the floor reaction is at C.
(
)
W = ( 40 kg ) 9.81 m/s 2 = 392.4 N For impending slip φ = φs = tan −1 µ s = tan −1 ( 0.35 )
φ = 19.2900° tan φ =
0.8 m , EG
EG =
0.4 m = 1.14286 m 0.35
EF = EG − 0.5 m = 0.64286 m (a)
α s = tan −1
EF 0.64286 m = tan −1 = 58.109° 0.4 m 0.4 m
α s = 58.1° (b)
P W = sin19.29° sin128.820 P = ( 392.4 N )( 0.424 ) = 166.379 N P = 166.4 N Once slipping begins, φ will reduce to φk = tan −1 µk . Then α max will increase.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 16. First assume slip impends without tipping, so F = µ s N FBD
ΣFy = 0:
N + P sin 40° − W = 0,
N = W − P sin 40°
F = µ s N = 0.35 (W − P sin 40° ) ΣFx = 0:
F − P cos 40° = 0
0.35W = P ( cos 40° + 0.35sin 40° ) Ps = 0.35317 W
(1)
Next assume tip impends without slipping, R acts at C.
ΣM A = 0:
( 0.8 m ) P sin 40° + ( 0.5 m ) P cos 40° − ( 0.4 m )W
=0
Pt = 0.4458W > Ps from (1)
(
∴ Pmax = Ps = 0.35317 ( 40 kg ) 9.81 m/s 2
)
= 138.584 N (a)
Pmax = 138.6 N
(b) Slip is impending
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 17. FBD Cylinder: For maximum M, motion impends at both A and B FA = µ A N A; ΣFx = 0:
FB = µ B N B N A = FB = µ B N B
N A − FB = 0
FA = µ A N A = µ Aµ B N B
ΣFy = 0:
N B + FA − W = 0 1
or
NB =
and
FB = µ B N B =
1 + µ Aµ B
W
µB W 1 + µ Aµ B
FA = µ Aµ B N B =
µ Aµ B W 1 + µ Aµ B
ΣM C = 0: M − r ( FA + FB ) = 0 (a) For
µA = 0
N B (1 + µ Aµ B ) = W
and
M = Wr µ B
1 + µA 1 + µ Aµ B
µ B = 0.36 M = 0.360Wr
(b) For
µ A = 0.30
and
µ B = 0.36 M = 0.422Wr
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 18. FBD’s: FBD Drum:
(a)
ΣM D = 0:
10 ft F − 50 lb ⋅ ft = 0 12
F = 60 lb Impending slip: N =
F
µs
=
60 lb = 150 lb 0.40
FBD arm:
ΣM A = 0:
( 6 in.) C + ( 6 in.) F − (18 in.) N
=0
C = − 60 lb + 3 (150 lb ) = 390 lb Ccw = 390 lb (b) Reversing the 50 lb ⋅ ft couple reverses the direction of F, but the magnitudes of F and N are not changed. Then, using the FBD arm:
ΣM A = 0:
( 6 in.) C − ( 6 in.) F − (18 in.) N
=0
C = 60 lb + 3 (150 lb ) = 510 lb Cccw = 510 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 19. For slipping, F = µ k N = 0.30 N
FBD’s:
(a) For cw rotation of drum, the friction force F is as shown. From FBD arm:
ΣM A = 0:
( 6 in.)( 600 lb ) + ( 6 in.) F − (18 in.) N 600 lb + F − 3
F =
=0
F =0 0.30
600 lb 9
Moment about D = (10 in.) F = 666.67 lb ⋅ in.
M cw = 55.6 lb ⋅ ft
(b) For ccw rotation of drum, the friction force F is reversed
ΣM A = 0:
( 6 in.)( 600 lb ) − ( 6 in.) F − (18 in.) N 600 lb − F − 3
=0
F =0 0.30
F =
600 lb 11
10 600 Moment about D = ft lb = 45.45 lb ⋅ ft 12 11 M ccw = 45.5 lb ⋅ ft
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 20. FBD:
(a)
ΣM C = 0:
r ( F − T ) = 0,
T = F
Impending slip: F = µ s N or N =
ΣFx = 0:
F
µs
=
T
µs
F + T cos ( 25° + θ ) − W sin 25° = 0
T 1 + cos ( 25° + θ ) = W sin 25° ΣFy = 0:
(1)
N − W cos 25° + T sin ( 25° + θ ) = 0
1 + sin ( 25° + θ ) = W cos 25° T 0.35 Dividing (1) by (2):
(2)
1 + cos ( 25° + θ ) = tan 25° 1 + sin ( 25° + θ ) 0.35
Solving numerically, 25° + θ = 42.53°
θ = 17.53° (b) From (1)
T (1 + cos 42.53° ) = W sin 25° T = 0.252W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 21. FBD ladder: Note: slope of ladder =
L = 6.5 m, so AC =
4.5 m 12 13 = , so AC = ( 4.5 m ) = 4.875 1.875 m 5 12
4.875 m 3 = L, 6.5 m 4
and DC = BD =
AD =
1 L 2
1 L 4
For impending slip: FA = µ s N A ,
FC = µ s NC
12 Also θ = tan −1 − 15° = 52.380° 5 FA − W sin15° + FC cosθ − NC sin θ = 0
ΣFx = 0:
FA = W sin15° − µ s
10 10 W cosθ + W sin θ 39 39
= ( 0.46192 − 0.15652µ s )W ΣFy = 0:
N A − W cos15° + FC sin θ + NC cosθ = 0 N A = W cos15° − µ s
10 10 W sin θ − W cosθ 39 39
= ( 0.80941 − 0.20310µ s )W But FA = µ N A :
0.46192 − 0.15652µ s = 0.80941µ s − 0.20310µ s2
µ s2 − 4.7559µ s + 2.2743 µ s = 0.539, 4.2166 µ s min = 0.539
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 22. FBD ladder: Slip impends at both A and B, FA = µ s N A , FB = µ s N B ΣFx = 0: ΣFy = 0:
FA − N B = 0,
N B = FA = µ s N A
N A − W + FB = 0,
N A + FB = W
N A + µs N B = W
(
)
N A 1 + µ s2 = W ΣM O = 0:
( 6 m ) N B +
5 5 m W − m N A = 0 4 2
6µ s N A +
µ s2 +
(
)
5 5 N A 1 + µ s2 − N A = 0 4 2
24 µs − 1 = 0 5
µ s = − 2.4 ± 2.6
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ s min = 0.200
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 23. FBD rod: (a) Geometry:
BE =
L cosθ 2
EF = L sin θ So or Also, or
L DE = cosθ tan β 2
DF =
L cosθ 2 tan φ s
1 L cosθ L cosθ tan β + sin θ = 2 2 tan φs
tan β + 2 tan θ =
1 1 1 = = = 2.5 tan φ s µ s 0.4
(1)
L sin θ + L sin β = L sin θ + sin β = 1
Solving Eqs. (1) and (2) numerically
θ1 = 4.62°
(2)
β1 = 66.85°
θ 2 = 48.20° β 2 = 14.75° θ = 4.62° and θ = 48.2°
Therefore, (b) Now and
or
φ s = tan −1 µ s = tan −1 0.4 = 21.801° T W = sin φs sin ( 90 + β − φ s ) T =W
sin φs sin ( 90 + β − φ s )
For
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 4.62°
T = 0.526W
θ = 48.2°
T = 0.374W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 24. FBD: Assume the weight of the slender rod is negligible compared to P. First consider impending slip upward at B. The friction forces will be directed as shown and FB,C = µ s N B,C ΣM B = 0:
( L sinθ ) P −
a sin θ
NC = P ΣFx = 0:
NC = 0
L 2 sin θ a
NC sin θ + FC cosθ − N B = 0 NC ( sin θ + µ s cosθ ) = N B
so ΣFy = 0:
NB = P
L 2 sin θ ( sin θ + µ s cosθ ) a
− P + NC cosθ − FC sin θ − FB = 0
P = NC cosθ − µ s NC sin θ − µ s N B so P = P
L 2 L sin θ ( cosθ − µ s sin θ ) − µ s P sin 2 θ ( sin θ + µ s cosθ ) a a
Using θ = 35° and µ s = 0.20, solve for
(1)
L = 13.63. a
To consider impending slip downward at B, the friction forces will be reversed. This can be accomplished by substituting µ s = − 0.20 in L = 3.46. equation (1). Then solve for a Thus, equilibrium is maintained for
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
3.46 ≤
L ≤ 13.63 a
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 25. FBD ABC:
ΣM C = 0:
0.045 m + ( 0.30 m ) sin 30° ( 400 N ) sin 30° + 0.030 m + ( 0.30 m ) cos 30° ( 400 N ) cos 30° 12 5 − ( 0.03 m ) FBD − ( 0.045 m ) FBD = 0 13 13
FBD = 3097.64 N
FBD Blade:
ΣFx = 0:
N −
25 ( 3097.6 N ) = 0 65
N = 1191.4
F = µ s N = 0.20 (1191.4 N ) = 238.3 N ΣFy = 0:
P+F−
60 ( 3097.6 N ) = 0 65
P = 2859.3 − 238.3 = 2621.0 N Force by blade
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 2620 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 26. FBD CD: Note: The plate is a 3-force member, and for minimum µ s , slip impends at C and D, so the reactions there are at angle φ s from the normal. From the FBD,
OCG = 20° + φ s
and
ODG = 20° − φ s
Then OG = ( 0.5 in.) tan ( 20° + φs )
1.2 in. + 0.5 in. tan ( 20° − φs ) and OG = sin70° Equating, tan ( 20° + φs ) = 3.5540 tan ( 20° − φs ) Solving numerically,
φ s = 10.5652°
µ s = tan φs = tan (10.5652° ) µ s = 0.1865
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 27. FBD pin A:
From FBD Whole the force at A = 750 lb
4 ( FAB′ − FAB ) = 0, FAB′ = FAB 5
ΣFx = 0:
3 750 lb − 2 FAB = 0, FAB = 625 lb 5
ΣFy = 0: FBD Casting:
ΣFx = 0:
N D′ − N D = 0, N D′ = N D = N
FD = FD′ = µ N D , or N D =
Impending slip
ΣFy = 0:
FD
µs
2FD − 750 lb = 0, FD = 375 lb ND =
375 lb
µs
FBD ABCD:
ΣM C = 0:
(12 in.)
375 lb
µs
4 5
(12 in.) N − ( 6 in.) F − ( 42.75 in.) ( 625 lb ) = 0 = ( 6 in.)( 375 lb ) + ( 42.75 in.)
4 ( 625 lb ) = 0 5
µ s = 0.1900
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 28. From FBD Whole, and neglecting weight of clamp compared to 550 lb plate, P = − W Since AB is a two-force member, B is vertical and B = W .
FBD BCD: ΣM C = 0:
(1.85 in.)W − ( 2.3 in.) D cos 40° − ( 0.3 in.) D sin 40° = 0,
D = 0.94642W
FBD EG:
( 0.9 in.) NG − (1.3 in.) FG − (1.3 in.) N D cos 40° = 0
ΣM E = 0: Impending slip:
FG = µ s NG
Solving: ( 0.9 − 1.3µ s ) NG = 0.94250W
(1)
FBD Plate: By symmetry NG = NG′ , ΣFy = 0:
FG = FG′ = µ s NG
2 FG − W = 0,
Substitute in (1): ( 0.9 − 1.3µ s )
FG =
W , 2
NG =
W 2µ s
W = 0.94250W 2µ s
Solving, µ s = 0.283,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µsm = 0.283
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 29. FBD table + child:
( ) = 16 kg ( 9.81 m/s ) = 156.96 N
WC = 18 kg 9.81 m/s 2 = 176.58 N WT
2
(a) Impending tipping about E , N F = FF = 0, and
ΣM E = 0:
( 0.05 m )(176.58 N ) − ( 0.4 m )(156.96 N ) + ( 0.5 m ) P cosθ − ( 0.7 m ) P sin θ
=0
33cosθ − 46.2sin θ = 53.955
Solving numerically
θ = −36.3°
and
θ = −72.6° −72.6° ≤ θ ≤ −36.3°
Therefore Impending tipping about F is not possible (b) For impending slip:
FE = µ s N E = 0.2 N E
ΣFx = 0: FE + FF − P cosθ = 0
or
FF = µ s N F = 0.2 N F
0.2 ( N E + N F ) = ( 66 N ) cos θ
ΣFy = 0: N E + N F − 176.58 N − 156.96 N − P sin θ = 0 N E + N F = ( 66sin θ + 333.54 ) N So Solving numerically,
330 cosθ = 66sin θ + 333.54
θ = −3.66°
and
θ = −18.96°
Therefore,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
−18.96° ≤ θ ≤ −3.66°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 30. Geometry of four-bar:
Considering the geometry when α = 0, 1/ 2
2 2 LCD = ( 60 mm − 52 mm ) + ( 36 mm + 22 mm )
= 58.549 mm
In general, 52 mm − ( 36 mm ) sin α = 60 mm − ( 58.549 mm ) sin β 36sin α + 8 so β = sin −1 58.549 (a) FBD ACE:
α =0
β = 7.8533°, note that the links at E and K are prevented from pivoting downward by the small blocks FE FCD sin β − FE = 0, FCD = ΣFy = 0: sin 7.8533° ΣM A = 0:
( 60 mm )
FE cos 7.8533° − ( 32 mm ) FE − ( 212 mm ) N E = 0 sin 7.8533°
Impending slip on pad N E =
FE
µs
, so
212 435.00 − 32 − FE = 0 µs
µ s = 0.526
(b) α = 30°, β = 26.364° ΣFx = 0: ΣFy = 0:
−
3 FAB + FCD cos 26.364° − N E = 0 2
1 − FAB + FCD sin 26.364° − FE = 0 2
Eliminating FAB ,
FCD ( 0.89599 − 0.76916 ) − N E + FE = 0
Impending slip FE = µ s N E , so 0.126834 FE = (1 − µ s ) N E
( 60 mm ) FCD cos 26.364° − ( 212 mm ) N E − ( 32 mm ) µ s N E 53.759 FCD = ( 212 − 32µ s ) N E = 0
ΣM A = 0:
212 − 32µ s 53.759 = 1 − µs 0.12634
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
=0
µ s = 0.277
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 31. FBD ABD:
(15 mm ) N A − (110 mm ) FA = 0
ΣΜ D = 0: Impending slip:
FA = µ SA N A
So
15 − 110µ SA = 0 µ SA = 0.136364
µ SA = 0.1364 FA − Dx = 0, Dx = FA = µ SA N A
ΣFx = 0:
FBD Pipe:
r = 60 mm ΣFy = 0:
NC − N A = 0,
NC = N A
FBD DF:
ΣM F = 0: Impending slip: So,
( 550 mm ) FC − (15 mm ) NC − ( 500 mm ) Dx = 0 FC = µ SC NC = µ SC N A
550µ SC N A − 15N A − 500µ SA N A = 0
550µ SC = 15 + 500 ( 0.136364 )
µ SC = 0.1512
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 32. FBD Plate:
Assume reactions as shown, at ends of sleeves, FA = µ s N A ,
For impending slip
FB = µ s N B
P sin θ − µ s N A − µ s N B = 0
ΣFx = 0:
N A + N B = 2.5 P sin θ ΣFy = 0:
N A − N B − P cosθ = 0,
Solving: N A = ΣM B = 0:
P ( 2.5sin θ + cosθ ) , 2
N A − N B = P cosθ NB =
P ( 2.5sin θ − cosθ ) (1) 2
( 23.5 in.) P sin θ − (16 in.) N A + (1 in.) FA = 0
( 23.5 in.) P sin θ
P − 16 in. − 0.4 (1 in.) ( 2.5sin θ + cosθ ) = 0 2
4sin θ − 7.8cosθ = 0,
(2)
θ = 62.9°
For θ > 62.9°, the panel will be self locking, ∴ motion for θ ≤ 62.9°. As θ decreases, N B will reverse direction at 2.5sin θ − cosθ = 0, (see equ. 1) or at θ = 21.8°. So for θ ≤ 21.8°
ΣFx = 0 :
P sin θ − µ s ( N A + N B ) = 0 N A + N B = 2.5 P sin θ
ΣFy = 0:
N A + N B − P cosθ = 0,
∴ 2.5sin θ = cosθ ,
N A + N B = P cosθ
θ = 21.8°
So impending motion for 21.8° ≤ θ ≤ 62.9° W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 33. FBD Plate:
Assuming reactions as shown, at ends of sleeves, For impending slip
FB = µ s FB
P sin θ − µ s ( N A + N B ) = 0
ΣFx = 0: ΣFy = 0:
FA = µ s N A ,
N A + N B = 2.5 P sin θ
(1)
N A − N B = P cosθ
(2)
N A − N B − P cosθ = 0, NA =
Solving:
P ( 2.5sin θ + cosθ ) , 2
NB =
P ( 2.5sin θ − cosθ ) 2
Note that, for θ < 21.8°, N B becomes negative, so we must change equ. 2 to N A + N B = P cosθ , ( 2′ ) but equ. (1) does not change. Solving (1) and ( 2′ ) gives P cosθ = 2.5P sin θ , or θ = 21.8°, so the lower limit for impending slip is θ = 21.8°. For θ ≥ 21.8°, the forces are as shown, and ΣM B = 0:
( 23.5 in.) P sin θ
+ xP cosθ + (1 in.) FA − (16 in.) N A = 0
P + x P cosθ + 0.4 (1 in.) − (16 in.) ( 2.5sin θ + cosθ ) = 0 2 x 4sin θ − ( 7.8 in.) − x cosθ = 0, tan θ = 1.950 − 4 in.
( 23.5 in.) P sin θ or
(a) For x = 4 in., tan θ = 1.950, θ = 43.5°. For θ > 43.5° self locking
∴ impending motion for 21.8° ≤ θ ≤ 43.5° W (b) As x increases from 4 in., the upper bound for θ decreases, becoming 21.8° ( tan θ = 0.4000 ) when x = ( 4 in.)(1.950 − 0.400 ) = 6.2 in. Thus xmax = 6.20 in. W at which θ must equal 21.8°.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 34. FBD Collar:
Impending motion down:
a −a cosθ
Stretch of spring x = AB − a =
a 1 − a = (1.5 kN/m )( 0.5 m ) − 1 Fs = kx = k cos cos θ θ 1 = ( 0.75 kN ) − 1 cos θ
N − Fs cosθ = 0
ΣFx = 0:
N = Fs cosθ = ( 0.75 kN )(1 − cosθ )
Impending motion up: Impending slip:
F = µ s N = ( 0.4 )( 0.75 kN )(1 − cosθ ) = ( 0.3 kN )(1 − cosθ )
+ down, – up ΣFy = 0:
Fs sin θ ± F − W = 0
( 0.75 kN )( tan θ or
− sin θ ) ± ( 0.3 kN )(1 − cosθ ) − W = 0
W = ( 0.3 kN ) [ 2.5 ( tan θ − sin θ ) ± (1 − cosθ )]
with θ = 30°:
Wup = 0.01782 kN Wdown = 0.0982 kN
( OK ) ( OK )
Equilibrium if 17.82 N ≤ W ≤ 98.2 N W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 35. Geometry: 1 m − ( 0.5 m ) cos α tan θ = ( 0.5 m ) sin α
tan θ ( 2 − cos α ) = sin α
θ = 30° → α = 60° then LAB = (1 m ) cos 30° = FBD B:
3 m 2
1 kN 3 m − m Fs = k ( LAB − L0 ) = 1.5 m 2 2 Fs = 0.75
(
)
3 − 1 kN = 549.04 N
ΣFx = 0:
F + W sin 60° − 549.04 N = 0 F = 549.04 N −
ΣFy = 0:
W 2
N − W cos 60° = 0,
N =
3 W 2
For impending slip upward, F is as shown and F = µ s N , so 549.04 N −
W 3 W, = 0.40 2 2
Wmin = 648.61 N
For impending slip downward, F is reversed, or F = − µ s N , so 549.04 N − m=
W
( 9.81 m/s ) 2
W 3 W, = − 0.40 2 2 so
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Wmax = 3575 N 66.1 kg ≤ m ≤ 364 kg W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 36. FBD Collar:
Note: BC is a two-force member, and for M max , slip will impend to the right. ΣFy = 0: Impending slip: ΣFx = 0:
FBC cosθ − N = 0,
N = FBC cosθ
F = µ s N = µ s FBC cosθ FBC sin θ − F − P = 0 FBC ( sin θ − µ s cosθ ) = P
FBD AB:
ΣM A = 0:
M − ( 2l ) FAB cosθ = 0 M = 2l cosθ
P sin θ − µ s cosθ M max =
2 Pl W tan θ − µ s
For µ s = tan θ , M max = ∞ self locking W For µ s > tan θ , M max < 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 37. Geometry:
FBD AB:
θ = cos −1
L L L + − 2 4 2 = 60° L 2
For min
a L
slip will impend to right and reactions will be at
φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900° from normal. Note: AB is a three-force member
CD = a tan ( 60 + φs ) = ( L − a ) tan ( 60° − φ s ) a tan ( 79.29° ) = ( L − a ) tan ( 40.71° )
6.1449 =
L −1 a
a = 0.13996 L min
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
a = 0.1400 W L
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 38.
FBD A:
Note: Rod is a two force member. For impending slip the reactions are at angle
φ s = tan −1 µ s = tan −1 ( 0.40 ) = 21.801°
FBD B:
Consider first impending slip to right 9 lb FAB = = 3.8572 lb tan 66.801 ΣFy = 0:
N B − ( 3.8522 lb ) sin 30° − ( 6 lb ) cos 30° = 0 N B = 7.1223 lb,
FB = µ s N B = 0.40 ( 7.1223 lb ) FB = 2.8489 lb
ΣFx = 0:
− 2.8489 lb + ( 3.8572 lb ) cos 30° − ( 6 lb ) sin 30° − P = 0 Pmin = − 2.508 lb
FBD A:
Next consider impending slip to left FAB = ( 9 lb ) tan 66.801° = 21.000 lb FBD B:
ΣFy = 0:
N B − ( 21 lb ) sin 30° − ( 6 lb ) cos 30° = 0,
N B = 15.6959 lb
FB = µ s N B = 0.4 (15.6959 lb ) = 6.2784 lb ΣFx = 0:
6.2784 lb + ( 21 lb ) cos 30° − ( 6 lb ) sin 30° − P = 0 Pmax = 21.465 lb equilibrium for − 2.51 lb ≤ P ≤ 21.5 lb W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 39. FBD AB:
ΣM A = 0:
8 in 2 + 4 in 2 ( N ) − M A = 0
N =
(12 lb ⋅ ft )(12 in./ft ) 8.9443 in.
= 16.100 lb
F = µ s N = 0.3 (16.100 lb ) = 4.83 lb
Impending motion:
Note: For max MC, need F in direction shown; see FBD BC. FBD BC + collar:
ΣM C = 0: or
MC =
M C − (17 in.)
1 2 2 N − ( 8 in.) N − (13 in.) F =0 5 5 5
17 in. 16 in. 26 in. (16.100 lb ) + (16.100 lb ) + ( 4.830 lb ) = 293.77 lb ⋅ in. 5 5 5
( MC )max
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
= 24.5 lb ⋅ ft
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 40. FBD yoke:
ΣFx = 0:
P − N = 0,
N = P = 8 lb F = µ s N = 125 ( 8 lb )
For impending slip,
F = 2 lb For M max , F on yoke is down as shown FBD wheel and slider:
For M min , F on yoke is up.
(a) For M max the 2 lb force is up as shown. ΣM B = 0:
M B − ( 3 in.) sin 65° ( 8 lb ) − ( 3 in.) cos 65° ( 2 lb ) = 0
M B max = 24.3 lb ⋅ in. W (b) For M min the 2 lb force is reversed, and ΣM B = 0:
M B − ( 3in .) sin 65° ( 8 lb ) + ( 3 in.) cos 65° ( 2 lb ) = 0
M B min = 19.22 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 41. FBD Rod:
ΣM A = 0:
( 20 in.) N1 − (12.5 in.)(12 lb ) = 0 N1 = 7.5 lb.
FBD Cylinder:
ΣFy = 0:
N 2 − 7.5 lb − 36 lb = 0,
N 2 = 43.5 lb
since µ1 = µ2 and N1 < N 2 , slip will impend at top of cylinder first, so F1 = µ s N1 . F1 = 0.35 ( 7.5 lb ) = 2.625 lb ΣM D = 0:
( 4.25 in.) P − (12.5 in.)( 2.625 lb ) = 0,
P = 7.7206 lb Pmax = 7.72 lb W
To check slip analysis above, ΣFy = 0:
N 2 − 36 lb − 7.5 lb = 0 N 2 = 43.5 lb
F2max = µ s N 2 = 0.35 ( 43.5 lb ) = 15.225 lb ΣFx = 0:
P − F1 − F2 = 0,
7.72 lb − 2.625 lb − F2 = 0
F2 = 5.095 lb < Fmax ,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
OK
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 42. FBD pulley: Note that φSA = tan −1 µ SA = tan −1 ( 0.5 ) = 26.565° < 30°, Cable is needed to keep A from sliding downward.
ΣFy = 0:
2T − WB = 0,
T =
WB , 2
WB = 2T
(1)
FBD block A: (a) For minimum WB , there will be impending slip of block A downward, and FA = µ SA N A as shown.
ΣFy′ = 0:
N A − WA cos 30° = 0,
N A = WA cos 30°
= 23.544 N cos 30° = 20.390 N
(
)
WA = ( 2.4 kg ) 9.81 m/s 2 = 23.544 N
FA = ( 0.50 )( 20.390 N ) = 10.195 N
FBD block C:
ΣFx′ = 0:
T − WA sin 30° + FA = 0
T = ( 23.544 N ) sin 30° − 10.195 N = 1.577 N From (1)
WB = 2T = 3.154 N,
mB =
3.154 N
(
9.81 m/s 2
)
= 0.322 kg,
mB min = 322 g
ΣFy = 0:
NC − WC = 0,
NC = 58.86 N
FC max = µ SC NC = 0.30 ( 58.86 N ) = 17.658 N Since T = 1.577 N < FC max , block B doesn’t slip and above answer for
mB min is correct.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) For mB max assume impending slip of block C to left, FC = Fmax
ΣFx = 0:
− T + FC = 0,
From (1) WB = 2T = 35.316 N,
T = FC = FC max = 17.658 N
mB =
WB 35.316 N = = 3.6 kg g 9.81 m/s 2
From FBD block A,
ΣFx = 0:
T − WA sin 30° + FA = 0,
FA = WA sin 30° − T
FA = ( 23.544 N ) sin 30° − 17.658 N = − 5.886, Since FA < FA max , A does not slip
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
FAmax = 10.195 N M B max = 3.6 kg
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 43. FBD A: For impending motion A must start up and C down the incline. Since the normal force between A and B is less than that between B and C, and the friction coefficients are the same, Fmax will be reached first between A and B, and B and C will stay together. ΣFy = 0:
Impending slip: ΣFx = 0:
N1 − ( 4 lb ) cos 30° = 0,
F1 = µ s N1 = 2 3µ s lb
T − ( 4 lb ) sin 30° − 2 3µ s lb = 0
(
FBD B and C:
N1 = 2 3 lb
)
T = 2 1 + 3µ s lb ΣFy = 0:
N 2 − 2 3 lb − ( 3 lb + 8 lb ) cos 30° = 0
N2 = Impending slip: ΣFx = 0:
(1)
15 3 lb 2
15 3µ s lb 2 15 3 µs lb − ( 3 + 8) lbsin 30° = 0 T + 2 3 + 2
F2 = µ s N 2 =
11 19 3µ s lb T = − 2 2
FBD B:
Equating (1) and (2):
(
(2)
)
4 1 + 3µ s lb = 11 − 19 3µ s
23 3 µ s = 7,
µ s min = 0.1757 W
To check slip reasoning above: ΣFy = 0:
N3 − 2 3 lb − ( 3 lb ) cos 30° = 0, F3max = µ s N3 =
ΣFx = 0:
N3 =
7 3 lb 2
7 3µ s 2
− ( 3 lb ) sin 30° + 2 3µ s lb − F3 = 0
F3 = 2 3 ( 0.1757 ) lb −
3 lb = − 0.891 lb 2
F3 < F3max , OK
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 44. FBD rod: 3 in. N B − ( 4.5 in.) cosθ W = 0 cosθ
ΣM A = 0: or
N B = (1.5cos 2 θ )W
Impending motion:
FB = µ s N B = (1.5µ s cos 2 θ )W
= ( 0.3cos 2 θ )W ΣFx = 0:
N A − N B sin θ + FB cosθ = 0 N A = (1.5cos 2 θ )W ( sin θ − 0.2 cosθ )
or Impending motion:
FA = µ s N A = ( 0.3cos 2 θ )W ( sin θ − 0.2 cosθ )
ΣFy = 0: FA + N B cosθ + FB sinθ − W = 0
(
FA = W 1 − 1.5cos3 θ − 0.3cos 2 θ sin θ
or
)
Equating FA’s 0.3cos 2 θ ( sin θ − 0.2cosθ ) = 1 − 1.5cos3 θ − 0.3cos 2 θ sinθ 0.6cos 2 θ sin θ + 1.44cos3 θ = 1 Solving numerically
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 35.8° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 45. FBD pin A:
ΣFx = 0: ΣFy = 0: Solving:
12 3 FAB − FAC = 0 13 5 5 4 FAB + FAC − P = 0 13 5 FAB =
13 P, 21
FAC =
20 P 21
FBD B:
ΣFx = 0:
NB −
12 13 ⋅ P = 0, 13 21
NB =
For Pmin slip of B impends down, so FB = µ s N B = ΣFy = 0: FBD C:
11 12 5 13 ⋅ P− ⋅ P − 18 lb = 0, 20 21 13 21
12 P 21
11 NB 20 Pmin = 236.25 lb
(For P < 236.25 lb, A will slip down)
ΣFy = 0:
NC − 80 lb −
4 20 16 ⋅ P = 0, NC = 80 lb + P 5 21 21
For Pmax slip of C impends to right, FC = µ s NC FC =
or ΣFx = 0:
11 16 44 P = 44 lb + P 80 lb + 20 21 105
3 20 ⋅ P − FC = 0, 5 21
12 44 P = 44 lb + P 21 105 Pmax = 288.75 lb
∴ equilibrium 236 ≤ P ≤ 289 W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 46. φ s = tan −1 µ s = tan −1 ( 0.4 ) = 21.801°, slip impends at wedge/block wedge/wedge and block/incline FBD Block:
R2 530 lb = sin 41.801° sin 46.398°
R2 = 487.84 lb
FBD Wedge:
P 487.84 lb = sin 51.602° sin 60.199° P = 441 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 47. φ s = tan −1 µ s = tan −1 ( 0.40 ) = 21.801°, and slip impends at wedge/lower block, wedge/wedge, and upper block/incline interfaces. FBD Upper block and wedge: R2 530 lb = sin 41.801° sin 38.398° R2 = 568.76 lb
FBD Lower wedge:
P 568.76 lb = sin 51.602° sin 68.199° P = 480 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 48.
(
)
WD = (18 kg ) 9.81 m/s 2 = 176.58 N Fs = kx = ( 3.5 kN/m )( 0.1 m ) = 0.35 kN = 350 N
φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.0362° FBD Lever:
ΣM C = 0:
( 0.3 m )( 350 N ) − ( 0.4 m )(176.58 N ) − ( 0.525 m ) RA cos 4.0362° + ( 0.05 m ) RA sin 4.0362° = 0 RA = 66.070 N
ΣFx = 0:
ΣFy = 0:
( 66.07 N ) sin 4.0362° + Cx = 0,
Cx = − 4.65 N
( 66.07 N ) cos 4.0362° − 350 N − 176.58 N = 0
FBD Wedge:
P 66.070 N = sin18.072° sin 75.964° P = 21.1 lb (a) (b)
P = 21.1 lb C x = 4.65 N C y = 461 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 49.
(
)
WD = (18 kg ) 9.81 m/s 2 = 176.58 N Fs = kx = ( 3.5 kN/m )( 0.1 m ) = 0.35 kN = 350 N
φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.0362° FBD Lever:
ΣM C = 0:
( 0.3 m )( 350 N ) − ( 0.4 m )(176.58 N ) − ( 0.525 m ) RA cos 24.036° − ( 0.05 m ) RA sin 24.036° = 0 RA = 68.758 N
ΣFx = 0: ΣFy = 0:
C x − ( 68.758 N ) sin 24.036° = 0,
Cx = 28.0 N
C y − 350 N − 176.58 N + ( 68.758 N ) cos 24.036° = 0 C y = 464 N
FBD Wedge: P 68.758 N = sin 38.072° sin 75.964°
(a) (b)
P = 43.7 N
C x = 28.0 N C y = 464 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 50. For steel/steel contact,
φ s1 = tan −1 µ s1 = tan −1 ( 0.3) = 16.6992°
For steel/concrete interface, φ s2 = tan −1 µ s2 = tan −1 ( 0.6 ) = 30.964°
FBD Plate CD: ΣFy = 0:
N − 90 kN = 0,
F = µ s1 N = 0.3 ( 90 kN ) = 27 kN
Impending slip: ΣFx = 0:
F = 90 kN
F − Q = 0,
Q = F = 27 kN
FBD Top wedge assuming impending slip between wedges: ΣFy = 0:
Rw = 100.74 kN
Rw cos 26.699° − 90 kN = 0,
ΣFx = 0:
P − 27 kN − (100.74 kN ) sin 26.699° = 0
P = 72.265 kN,
(a)
P = 72.3 kN
(b)
Q = 27.0 kN
To check above assumption; note that bottom wedge is a two-force member so the reaction of the floor on that wedge is Rw, at 26.699° from the vertical. This is less than φ s2 = 30.964°, so the bottom wedge doesn’t slip on the concrete.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 51. For steel/steel contact, φ s1 = tan −1 µ s1 = tan −1 ( 0.30 ) = 16.6992° For steel/concrete contact, φ s2 = tan −1 µ s2 = tan −1 ( 0.60 ) = 30.964°
FBD Plate CD and top wedge: Q = 90 kN tan 26.6992° = 45.264 kN Rw =
90 kN = 100.741 kN cos 26.6992°
FBD Bottom wedge: slip impends at both surfaces
P 100.714 kN = sin 57.663° sin 59.036°
(a)
P = 99.3 kN
(b)
Q = 45.3 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 52. FBD Wedge:
φ s = tan −1 µ s = tan −1 ( 0.4 ) = 21.801° By symmetry RB = RC ΣFy = 0:
2RC sin ( 29.801° ) − P = 0,
P = 0.9940 RC
FBD Block C: RC 175 lb , = sin 41.801° sin18.397 lb
P = 367.3 lb
(a)
P = 367 lb
b) Note: That increasing friction between B and the incline will mean that block B will not slip, but the above calculations will not change.
(b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 367 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 53. FBD Block C:
φ s = tan −1 µ s = tan −1 ( 0.4 ) = 21.8014° ΣFx = 0:
RACx − RCFx = 0
ΣFy = 0: so
RCFy − RACy − 175 lb = 0
RCFy RCFx
−
RACy RACx
=
175 lb RACx
cot ( 20° + φ ) − cot ( 32.2° ) > 0
φ < 12.2° < φ s = 21.8° so block C does not slip (or impend)
FBD Block B: (a) φ B = tan −1 µ B = tan −1 ( 0.4 ) = 21.8014° RB 175 lb , = sin 41.8014° sin 46.3972°
RB = 161.083 lb
(b) φ B = tan −1 µ B = tan −1 ( 0.6 ) = 30.9638° RB 175 lb , = sin 50.9638° sin 37.2330°
RB = 224.65 lb
FBD Wedge: P RB = , sin 59.6028° sin 52.1986°
(a)
RB = 161.083 lb,
(b)
RB = 224.65 lb,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 1.09163 RB P = 175.8 lb P = 245 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 54. Since vertical forces are equal and µ s ground > µ s wood, assume no impending motion of board. Then there will be impending slip at all wood/wood contacts, φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900°
FBD Top wedge: R1 =
8 kN = 8.4758 kN cos19.29° R1 P = sin 52.710° cos 56.580° P = 8.892 kN
To check assumption, consider
FBD wedges + board: F1 = µ1 8 kN = 0.35 ( 8 kN ) = 2.8 kN
ΣFy = 0:
NG − 8 kN = 0,
NG = 8 kN
FG max = µG NG = ( 0.6 )( 8 kN ) = 4.8 kN
ΣFx = 0:
FG − F1 = 0,
FG = F1 = 2.8 kN FG < FG max ,
OK
∴ P = 8.89 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 55. Assume no impending motion of board on ground. Then there will be impending slip at all wood/wood interfaces.
FBD Top wedge: Wedge is a two-force member so R 2 = − R1 and θ = 2φs = 2 tan −1 µ s = 2 tan −1 ( 0.35 )
θ = 38.6°
To check assumption, consider
FBD wedges + board: F1 = µ1 8 kN = 0.35 ( 8 kN ) = 2.8 kN
ΣFy = 0:
NG − 8 kN = 0,
NG = 8 kN
FG max = µG NG = ( 0.6 )( 8 kN ) = 4.8 kN
ΣFx = 0:
FG − F1 = 0,
FG = F1 = 2.8 kN FG < FG max ,
OK
∴ P = 8.89 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 56. FBD Cylinder: Slip impends at B
φ SC = tan −1 ( 0.35 ) = 19.2900° ΣM A = 0:
r RC cos (12° + 19.29° ) −
4r W =0 3π
RC = 0.49665, W = 124.163 lb
FBD Wedge:
φ SF = tan −1 µ SF = tan −1 ( 0.50 ) = 26.565° P 124.163 lb = sin 58.855° sin 63.435° P = 117.5 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 57. FBD tip of screwdriver:
φs = tan −1 µ s = tan −1 ( 0.12 ) = 6.8428° by symmetry R1 = R2
ΣFy = 0:
2R1 sin ( 6.8428° + 8° ) − 3.5 N = 0 R1 = R2 = 6.8315 N
If P is removed quickly, the vertical components of R1 and R2 vanish, leaving the horizontal components
H1 = H 2 = ( 6.8315 N ) cos14.8428° = 6.6035 N Side forces = 6.60 N This is only instantaneous, since 8° > φ s , so the screwdriver will be forced out.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 58.
As the plates are moved, the angle θ will decrease. (a)
φ s = tan −1 µ s = tan −1 0.2 = 11.31°. As θ decreases, the minimum angle at the contact approaches 12.5° > φs = 11.31°, so the wedge will slide up and out from the slot.
(b)
φ s = tan −1 µ s = tan −1 0.3 = 16.70°. As θ decreases, the angle at one contact reaches 16.7°. (At this time the angle at the other contact is 25° − 16.7° = 8.3° < φ s ) The wedge binds in the slot.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 59. FBD Wedge:
φ s = tan −1 µ s = tan −1 ( 0.35 ) = 19.2900° by symmetry R1 = R2 ΣFy = 0:
2 R1 sin 22.29° − 60 lb = 0 R2 = 79.094 lb
When P is removed, the vertical component of R1 and R2 will vanish, leaving the horizontal components H1 = H 2 = ( 79.094 lb ) cos 22.29°
= 73.184 lb Final forces H1 = H 2 = 73.2 lb Since these are at 3° ( < φs ) from the normal, the wedge is self-locking and will remain in place.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 60. FBD Cylinder:
(
)
W = ( 80 kg ) 9.81 m/s 2 = 784.8 N
ΣM G = 0:
FA − FB = 0,
ΣM D = 0:
dN B − dN A + rW = 0,
so
N A > NB,
FA = FB
(1) N A = NB +
W 3
(2)
FA max > FB max
∴ slip impends first at B. FB = µ s N B = 0.25 N B ΣM A = 0: ( r cos 30° ) N B − ( r sin 30° )W − r (1 + sin 30° )( 0.25 N B ) = 0 r = note d = tan 30
N B = 1.01828W = 799.15 N
3r
FB = 0.25 N B = 199.786 N
From (2) above, N A = 799.15 N +
784.8 N = 1252.25 N 3
From (1), FA = FB = 199.786 N
ΣFy = 0:
FBD Wedge:
NC − (1252.25 N ) cos10° + 199.786 N sin10° = 0 NC = 1198.53 N
Impending slip FC = µ s NC = 0.25 (1198.53 N ) = 299.63 N
ΣFx = 0:
P − 299.63 N − (199.786 N ) cos10°
− (1252.25 N ) sin10° = 0
P = 714 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
20.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 61. FBD Cylinder:
(
)
W = ( 80 kg ) 9.81 m/s 2 = 784.8 N For impending slip at B, ΣM A = 0:
FB = µ sB N B = 0.30 N B
( r cos 30° ) N B − r (1 + sin 30° )( 0.30 N B ) − r sin 30°W = 0
N B = 1.20185W = 943.21 N FB = 0.30 N B = 0.36055W ΣM G = 0: ΣFx = 0:
r ( FA − FB ) = 0,
FA = FB = 0.36055W
N A sin 30° + FA cos30° − N B = 0 NA =
− ( 0.36055W ) cos30° + 1.20185W sin 30°
N A = 1.77920W For minimum µ A , slip impends at A, so
µ A min =
FA 0.36055W = = 0.2026 N A 1.77920W
µ A min = 0.203
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 62. FBD plank + wedge:
(8 ft ) N B − (1.5 ft )( 48 lb/ft )( 3 ft )
ΣM A = 0:
− ( 2 ft )
1 ( 48 lb/ft )( 3 ft ) 2
5 1 − 3 + ft ( 96 lb/ft )( 5 ft ) = 0 3 2
N B = 185 lb ΣFy = 0:
48 + 96 NW + 185 lb − lb/ft ( 3ft ) 2 +
1 ( 96 lb/ft )( 5 ft ) = 0 2 NW = 271 lb
Since NW > N B , and all µ s are equal, assume slip impends at B and between wedge and floor, and not at A. Then FW = µ s NW = 0.45 ( 271 lb ) = 121.95 lb FB = µ s N B = 0.45 (185 lb ) = 83.25 lb ΣFx = 0:
P − 121.95 lb − 83.25 lb = 0,
P = 205.20 lb
Check Wedge for assumption
271 lb − RA cosθ = 0
ΣFy = 0: ΣFx = 0: so tan θ =
205.2 lb − 121.95 lb − RA sin θ = 0
83.25 = 0.3072 < µ s + tan 9° 271 so no slip here ∴ (a)
(b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 205 lb
impending slip at B
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 63. FBD plank + wedge:
ΣM A = 0:
(8 ft ) N B − (1.5 ft )( 48 lb/ft )( 3 ft ) 1 ( 48 lb/ft )( 3 ft ) 2 5 − 3 + ft ( 96 lb/ft )( 5 ft ) = 0 3
− ( 2 ft )
NW = 185 lb
ΣFy = 0:
48 + 96 N A + 185 lb − lb/ft ( 3ft ) 2 1 − ( 96 lb/ft )( 5 ft ) = 0 2 N A = 271 lb
Since N A > NW , and all µ s are equal, assume impending slip at top and bottom of wedge and not at A. Then FW = µ s NW = 0.45 (185 N )
FW = 83.25 lb FBD Wedge:
φ s = tan −1 µ s = tan −1 ( 0.45 ) = 24.228° ΣFy = 0:
185 lb − RB cos ( 24.228° + 9° ) = 0 RB = 221.16 lb
ΣFx = 0:
( 221.16 lb ) sin 33.228° + 83.25 lb − P = 0 P = 204.44 lb
Check assumption using plank/wedge FBD ΣFx = 0: FA + FW − P = 0,
FA = 204.44 lb − 83.25 lb = 121.19 lb
FA max = µ s N A = 0.45 ( 271 lb ) = 121.95 lb
FA < FA max , OK
∴ (a) (b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 204 lb
no impending slip at A
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 64.
(
)
(
)
WA = (10 kg ) 9.81 m/s 2 = 98.1 N, WB = ( 50 kg ) 9.81 m/s 2 = 490.5 N Slip must impend at all surfaces simultaneously, F = µ s N FBD I: A + B
ΣFy = 0:
N B − 150 N − 98.1 N − 490.5 N = 0,
impending slip:
FBD II: A
N B = 738.6 N
FB = µ s N B = ( 738.6 N ) µ s N A = ( 738.6 N ) µ s
ΣFx = 0:
N A − FB = 0,
ΣFy′ = 0:
FAB + ( 738.6µ s ) N sin 20° − (150 N + 98.1 N ) cos 20° = 0 FAB = 233.14 − ( 252.62 ) µ s N
ΣFx′ = 0:
( 738.6µ s ) N cos 20° − (150 N + 98.1 N ) sin 20° − N AB = 0 N AB = 84.855 + ( 694.06 ) µ s N
µs =
FAB 233.14 − 252.62µ s = N AB 84.855 + 694.06µ s
µ s2 = 0.48623µ s − 0.33591 = 0
µ s = − 0.24312 ± 0.62850 Positive root
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ s = 0.385
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 65.
(
)
(
)
WA = (10 kg ) 9.81 m/s 2 = 98.1 N, WB = ( 50 kg ) 9.81 m/s 2 = 490.5 N Slip impends at all surfaces simultaneously FBD I: A + B
ΣFx = 0: ΣFy = 0:
N A − FB = 0,
N A = FB = µ s N B
(1)
FA − (150 N + 98.1 N + 490.5 N ) + N B = 0
µ s N A + N B = 738.6 N Solving (1) and (2) N B = FBD II: B
ΣFx′ = 0:
FB =
738.6 µ s N 1 + µ s2
N AB + ( 490.5 N ) cos 70° − N B cos 70° − FB sin 70° = 0 N AB =
ΣFy′ = 0:
738.6 N , 1 + µ s2
(2)
738.6 N ( cos 70° + µ s sin 70° ) − ( 490.5 N ) cos 70° (1) 1 + µ s2
−FAB − ( 490.5 N ) sin 70° + N B sin 70° − FB cos 70° = 0 FAB =
738.6 N ( sin 70° − µs cos 70° ) − ( 490.5 N ) sin 70° = 0 1 + µ s2
Setting FAB = µ s N AB ,
µ s3 − 6.8847µ s2 − 2.0116µ s + 1.38970 = 0 Solving numerically, µ s = − 0.586, 0.332, 7.14 Physically meaningful solution:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ s = 0.332
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 66. FBD jack handle:
See Section 8.6 ΣM C = 0:
aP − rQ = 0 or P =
r Q a
FBD block on incline:
(a)
Raising load
Q = W tan (θ + φ s )
P=
r W tan (θ + φs ) a continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
PROBLEM 8.66 CONTINUED (b)
Lowering load if screw is self-locking ( i.e.: if φs > θ )
Q = W tan (φs − θ ) P= (c)
r W tan (φs − θ ) a
Holding load is screw is not self-locking ( i.e: if φs < θ )
Q = W tan (θ − φs ) P=
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
r W tan (θ − φ s ) a
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 67. FBD large gear:
ΣM C = 0:
(12 in.)W
− 7.2 kip ⋅ in. = 0,
W = 0.600 kips = 600 lb
Block on incline:
θ = tan −1
0.375 in. = 2.2785° 2π (1.5 in.)
φ s = tan −1 µ s = tan −1 0.12 = 6.8428° Q = W tan (θ + φ s ) = ( 600 lb ) tan 9.1213° = 96.333 lb FBD worm gear:
r = 1.5 in. ΣM B = 0:
(1.5 in.)( 96.333 lb ) − M
=0
M = 144.5 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 68. FBD large gear:
ΣM C = 0:
(12 in.)W
− 7.2 kip ⋅ in. = 0
W = 0.600 kips = 600 lb
Block on incline:
θ = tan −1
0.375 in. = 2.2785° 2π (1.5 in.)
φ s = tan −1 µ s = tan −1 0.12 = 6.8428° Q = W tan (φ s − θ ) = ( 600 lb ) tan 4.5643° = 47.898 lb FBD worm gear:
r = 1.5 in. ΣM B = 0:
M − (1.5 in.)( 47.898 lb ) = 0 M = 71.8 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 69. Block/incline analysis:
θ = tan −1
0.125 in. = 2.4238° 2.9531 in.
φ s = tan −1 ( 0.35 ) = 19.2900°
Q = 47250 tan ( 21.714° ) = 18.816 lb Couple =
d 0.94 in. (18.516 lb ) = 8844 lb ⋅ in. Q= 2 2 Couple = 7.37 lb ⋅ ft
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 70. FBD joint D:
FAD = FCD
By symmetry:
ΣFy = 0: 2FAD sin 25° − 4 kN = 0
FAD = FCD = 4.7324 kN FBD joint A:
FAE = FAD
By symmetry:
ΣFx = 0: FAC − 2 ( 4.7324 kN ) cos 25° = 0
FAC = 8.5780 kN Block and incline A:
θ = tan −1
2 mm = 4.8518° π ( 7.5 mm )
φ s = tan −1 µ s = tan −1 0.15 = 8.5308°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
PROBLEM 8.70 CONTINUED
Q = ( 8.578 kN ) tan (13.3826° ) = 2.0408 kN Couple at A:
M A = rQ 7.5 = mm ( 2.0408 kN ) 2 = 7.653 N ⋅ m
By symmetry: Couple at C:
M C = 7.653 N ⋅ m Total couple M = 2 ( 7.653 N ⋅ m )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
M = 15.31 N ⋅ m
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 71. FBD joint D:
By symmetry:
FAD = FCD ΣFy = 0: 2FAD sin 25° − 4 kN = 0
FAD = FCD = 4.7324 kN FBD joint A:
By symmetry:
FAE = FAD ΣFx = 0: FAC − 2 ( 4.7324 kN ) cos 25° = 0
FAC = 8.5780 kN Block and incline at A:
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
PROBLEM 8.71 CONTINUED θ = tan −1
2 mm = 4.8518° π ( 7.5 mm )
φ s = tan −1 µ s = tan −1 0.15
φ s = 8.5308°
φ s − θ = 3.679° Q = ( 8.5780 kN ) tan 3.679° Q = 0.55156 kN Couple at A: M A = Qr 7.5 mm = ( 0.55156 kN ) 2 = 2.0683 N ⋅ m By symmetry:
Couple at C : M C = 2.0683 N ⋅ m Total couple M = 2 ( 2.0683 N ⋅ m )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
M = 4.14 N ⋅ m
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 72. FBD lower jaw:
By symmetry B = 540 N ΣFy = 0:
− 540 N + A − 540 N = 0,
A = 1080 N
(a) since A > B when finished, adjust A first when there will be no force Block/incline at B:
(b) θ = tan −1
4 mm = 6.0566° 12π mm
φ s = tan −1 µ s = tan −1 ( 0.35) = 19.2900°
Q = ( 540 N ) tan 25.3466° = 255.80 N Couple = rQ = ( 6 mm )( 255.80 N ) = 1535 N ⋅ mm
M = 1.535 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 73. FBD lower jaw:
By symmetry B = 540 N ΣFy = 0:
− 540 N + A − 540 N = 0,
A = 1080 N
since A > B, A should be adjusted first when no force is required. If instead, B is adjusted first, Block/incline at A:
θ = tan −1
4 mm = 6.0566° 12π mm
φ s = tan −1 µ s = tan −1 ( 0.35) = 19.2900°
Q = (1080 N ) tan 25.3466° = 511.59 N Couple = rQ = ( 6 mm )( 511.59 N ) = 3069.5 N ⋅ mm
M = 3.07 N ⋅ m Note that this is twice that required if A is adjusted first.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 74. Block/incline:
θ = tan −1
0.25 in. = 2.4302° 1.875π in.
φ s = tan −1 µ s = tan −1 ( 0.10 ) = 5.7106°
Q = (1000 lb ) tan ( 8.1408° ) = 143.048 lb Couple = rQ = ( 0.9375 in.)(143.048 lb ) = 134.108 lb ⋅ in.
M = 134.1 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 75. FBD Bucket:
(
) 0.30 ) = 0.05172 m
rf = r sin φ s = r sin tan −1 µ s
(
= ( 0.18 m ) sin tan −1 ΣM A = 0:
(1.6 m + 0.05172 m ) T − ( 0.05172 m )W
=0
T = 0.031314W kN = 0.031314 ( 50 Mg ) 9.81 Mg
= 15.360 kN
T = 15.36 kN !
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 76. FBD Windlass:
(
rf = rb sin φs = rb sin tan −1 µ s
(
)
)
= (1.5 in.) sin tan −1 0.5 = 0.67082 in.
ΣM A = 0:
( 8 − 0.67082 ) in. P − ( 5 + 0.67082 ) in. 160 lb = 0
P = 123.797 lb P = 123.8 lb
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 77. FBD Windlass:
(
rf = r sin φs = r sin tan −1 µ s
(
)
)
= (1.5 in.) sin tan −1 0.5 = 0.67082 in.
ΣM A = 0:
( 8 + 0.67082 ) in. P − ( 5 + 0.67082 ) in. (160 lb ) = 0 P = 104.6 lb
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 78. FBD Windlass:
(
rf = r sin φs = r sin tan −1 µ s
(
)
)
= (1.5 in.) sin tan −1 0.50 = 0.67082 in.
ΣM A = 0:
( 8 + 0.67082 ) in. P − ( 5 − 0.67082 ) in. (160 lb ) = 0 P = 79.9 lb
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 79. FBD Windlass:
(
rf = r sin φs = r sin tan −1 µ s
(
)
)
= (1.5 in.) sin tan −1 0.50 = 0.67082 in.
ΣM A = 0:
( 8 − 0.67082 ) in. P − ( 5 − 0.67082 ) in. (160 lb ) = 0 P = 94.5 lb
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 80. (a) FBD lever (Impending CW rotation): ΣM C = 0:
( 0.2 m + rf ) ( 75 N ) − ( 0.12 m − rf ) (130 N ) = 0 rf = 0.0029268 m = 2.9268 mm sin φs =
rf rs
* −1 rf −1 2.9268 mm µ s = tan φs = tan sin = tan sin 18 mm rs
= 0.34389
µ s = 0.344 (b) FBD lever (Impending CCW rotation):
( 0.20 m − 0.0029268 m )( 75 N )
ΣM D = 0:
− ( 0.12 m + 0.0029268 m ) P = 0 P = 120.2 N
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 81. Pulley FBD’s:
rp = 30 mm
Left:
(
rf = raxle sin φk = raxle sin tan −1 µ k
)
*
(
= ( 5 mm ) sin tan −1 0.2
)
= 0.98058 mm Left: ΣM C = 0:
Right:
( rp − rf ) ( 600 lb ) − 2rpTAB = 0 TAB =
or
30 mm − 0.98058 mm ( 600 N ) = 290.19 N 2 ( 30 mm ) TAB = 290 N
ΣFy = 0:
290.19 N − 600 N + TCD = 0 TCD = 309.81 N
or
TCD = 310 N
Right:
( rp + rf ) TCD − ( rp − rf ) TEF
ΣM G = 0: or
TEF =
=0
30 mm + 0.98058 mm ( 309.81 N ) = 330.75 N 30 mm − 0.98058 mm TEF = 331 N
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 82. Pulley FBDs: Left:
rp = 30 mm
(
rf = raxle sin φk = raxle sin tan −1 µ k
)
*
(
= ( 5 mm ) sin tan −1 0.2
)
= 0.98058 mm
( rp + rf ) ( 600 N ) − 2rpTAB = 0
ΣM C = 0:
30 mm + 0.98058 mm ( 600 N ) = 309.81 N 2 ( 30 mm )
TAB =
or
TAB = 310 N
ΣFy = 0:
Right:
TAB − 600 N + TCD = 0 TCD = 600 N − 309.81 N = 290.19 N
or
TCD = 290 N
( rp − rf ) TCD − ( rp + rf ) TEF
ΣM H = 0:
TEF =
or
=0
30 mm − 0.98058 mm ( 290.19 N ) 30 mm + 0.98058 mm TEF = 272 N
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 83. FBD link AB: Note: That AB is a two-force member. For impending motion, the pin forces are tangent to the friction circles. r θ = sin −1 f 25 in. where
(
rf = rp sin φs = rp sin tan −1 µ s
)
*
(
)
= (1.5 in.) sin tan −1 0.2 = 0.29417 in. Then
θ = sin −1
0.29417 in. = 1.3485° 12.5 in. (b)
Rvert = R cosθ
θ = 1.349°
Rhoriz = R sin θ
Rhoriz = Rvert tan θ = ( 50 kips ) tan1.3485° = 1.177 kips (a) Rhoriz = 1.177 kips
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 84. FBD gate:
(
)
(
)
W1 = 66 kg 9.81 m/s 2 = 647.46 N W2 = 24 kg 9.81 m/s 2 = 235.44 N
(
rf = rs sin φs = rs sin tan −1 µ s
(
)
)
= ( 0.012 m ) sin tan −1 0.2 = 0.0023534 m ΣM C = 0:
( 0.6 m − rf )W1 + ( 0.15 m − rf ) P − (1.8 m + rf )W2 = 0 P=
(1.80235 m )( 235.44 N ) − ( 0.59765 m )( 647.46 N ) ( 0.14765 m )
= 253.2 N P = 253 N !
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 85. It is convenient to replace the ( 66 kg ) g and ( 24 kg ) g weights with a single combined weight of
( 90 kg ) ( 9.81 m/s2 ) = 882.9 N,
located at a distance x =
right of B.
(
rf = rs sin φs = rs sin tan −1 µ s
)
*
(1.8 m )( 24 kg ) − ( 0.6 m )( 66 kg ) 90 kg
(
= ( 0.012 m ) sin tan −1 0.2
= 0.04 m to the
)
= 0.0023534 m FBD pulley + gate:
α = tan −1 β = sin −1
rf OB
= sin −1
0.04 m = 14.931° 0.15 m
OB =
0.0023534 m = 0.8686° 0.15524 m
0.15 = 0.15524 m cos α then
θ = α + β = 15.800°
P = W tan θ = 249.8 N P = 250 N !
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 86. FBD gate:
( ) = 24 kg ( 9.81 m/s ) = 235.44 N
W1 = 66 kg 9.81 m/s 2 = 647.46 N W2
2
(
rf = rs sin φs = rs sin tan −1 µ s
(
)
*
)
= ( 0.012 m ) sin tan −1 0.2 = 0.0023534 m ΣM C = 0:
( 0.6 m + rf )W1 + ( 0.15 m + rf ) P − (1.8 m − rf )W2 = 0 P=
(1.79765 m )( 235.44 N ) − ( 0.60235 m )( 647.46 N ) 0.15235 m
= 218.19 N P = 218 N !
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 87. It is convenient to replace the ( 66 kg ) g and ( 24 kg ) g weights with a single weight of
( 90 kg )( 9.81 N/kg ) = 882.9 N,
(1.8 m )( 24 kg ) − ( 0.15 m )( 66 kg )
located at a distance x =
90 kg
= 0.04 m to the
right of B. FBD pulley + gate:
(
rf = rs sin φs = rs sin tan −1 µ s
)
*
(
= ( 0.012 m ) sin tan −1 0.2
)
rf = 0.0023534 m
α = tan −1 β = sin −1
rf OB
= sin −1
0.04 m = 14.931° 0.15 m
OB =
0.0023534 m = 0.8686° 0.15524 m
0.15 m = 0.15524 m cos α then
θ = α − β = 14.062°
P = W tan θ = 221.1 N P = 221 N !
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 88. FBD Each wheel:
(
rf = raxle sin φ = raxle sin tan −1 µ
ΣFx = 0:
P − R sin θ = 0 4 R cosθ −
ΣFy = 0:
)
W =0 4
∴ tan θ = sin θ =
but
P W rf rw
P = W tanθ
or =
raxle sin tan −1 µ rw
(
)
(a) For impending motion, use µ s = 0.12 sin θ =
0.5 in. sin tan −1 0.12 5 in.
(
)
θ = 0.68267°
P = W tan θ = ( 500 lb ) tan ( 0.68267° ) P = 5.96 lb (b) For constant speed, use µ k = 0.08
sin θ =
1 sin tan − 1 0.08 10
(
)
θ = 0.45691°
P = ( 500 lb ) tan ( 0.45691° ) P = 3.99 lb
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 89. FBD Each wheel:
For equilibrium (constant speed) the two forces R and
W must be equal 2
and opposite, tangent to the friction circle, so rf sin θ = where θ = tan −1 ( slope ) rw
(
)
sin tan −1 0.03 =
rw = (12.5 mm )
(
rB sin tan −1 µ k
( sin ( tan
rw
)
) = 49.666 mm 0.03)
sin tan −1 0.12 −1
d w = 99.3 mm
NOTE FOR PROBLEMS 8.75–8.89
(
)
Note to instructors: In this manual, the simplification sin tan −1 µ ≈ µ is NOT used in the solution of journal bearing and axle friction problems. While this approximation may be valid for very small values of µ , there is little if any reason to use it, and the error may be significant. For example, in Problems 8.76–8.79, µ s = 0.50, and the error made by using the approximation is about 11.8%.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 90. FBD
(8 in.) Q − M
ΣM O = 0:
= 0,
Q=
M 8 in.
but, from equ. 8.9,
M =
2 2 7 in. µk WR = ( 0.60 )(10.1 lb ) 3 3 2
= 14.14 lb so,
Q=
14.14 , 8
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Q = 1.768 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 91. 2 R3 − R13 1 D23 − D13 µ s P 22 µ = P s 3 3 R2 − R12 D22 − D12
Eqn. 8.8 gives
M =
so
1 M = ( 0.15 )( 80 kg ) 9.81 m/s 2 3
(
( 0.030 m )3 − ( 0.024 m )3 ) ( 0.030 m )2 − ( 0.024 m )2
M = 1.596 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 92.
Let the normal force on ∆A be ∆N , and
∆N k = r ∆A
∆F = µ∆N , ∆M = r ∆F
As in the text The total normal force
2π R k P = lim Σ∆N = ∫ 0 ∫ 0 rdr dθ ∆A → 0 r
(
R
)
P = 2π ∫ 0 kdr = 2π kR The total couple
or
P 2π R
k 2π R M worn = lim Σ∆M = ∫ 0 ∫ 0 r µ rdr dθ ∆A → 0 r R
M worn = 2πµ k ∫ 0 rdr = 2πµ k
R2 P R2 = 2πµ 2 2π R 2
or
M worn =
1 µ PR 2
Now
M new =
2 µ PR 3
Thus
k =
M worn = M new
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
[Eq. (8.9)] 1 2 2 3
µ PR 3 = = 75% µ PR 4
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 93.
Let normal force on ∆A be ∆N , and
∆N k = ∆A r
∆F = µ∆N , ∆M = r ∆F
As in the text The total normal force P is
2π R k P = lim Σ∆N = ∫ 0 ∫ R 2 rdr dθ 1 r ∆A → 0
P = 2π ∫R 2 kdr = 2π k ( R2 − R1 ) R
k =
or
1
P 2π ( R2 − R1 )
k 2π R M worn = lim Σ∆M = ∫ 0 ∫R 2 r µ rdr dθ ∆A → 0 r 1
The total couple is
R2 R1
M worn = 2πµ k ∫
( rdr ) = πµ k (
R22
−
R12
)=
2π ( R2 − R1 )
M worn =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(
πµ P R22 − R12
)
1 µ P ( R2 + R1 ) 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 94.
Let normal force on ∆A be ∆N , and
∆A = r ∆s∆φ
∆N = k ∆A
so
∆N = k, ∆A ∆s =
∆r sin θ
where φ is the azimuthal angle around the symmetry axis of rotation ∆Fy = ∆N sin θ = kr ∆r ∆φ P = lim Σ∆Fy
Total vertical force
∆A → 0
2π
P = ∫0
(
(∫
R2 krdr R1
P = π k R22 − R12
Friction force
)
) dφ = 2π k ∫
R2 rdr R1
or
k =
Total couple
M = 2π
(
− R12
)
∆F = µ∆N = µ k ∆A ∆M = r ∆F = r µ kr
Moment
π
P R22
∆r ∆φ sin θ
2π R µ k M = lim Σ∆M = ∫ 0 ∫R 2 r 2dr dφ ∆A → 0 1 sin θ
µ k R2 2 2 πµ P r dr = ∫ R1 2 sin θ 3 sin θ π R2 − R32
(
)
M =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(R
3 2
− R33
)
2 µ P R23 − R13 3 sin θ R22 − R12
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 95. If normal force per unit area (pressure) of the center is PO , then as a function
r of r, P = PO 1 − R r 2π R ΣFN = W = ∫ PdA = ∫ 0 ∫ 0 PO 1 − rdrdθ R 2 R3 R2 2π R W = PO ∫ 0 d P − = θ 2 π O 3R 6 2
so PO =
3W π R2
For slipping, dF = µk ( PdA)
r 2π R Moment = ∫ rdF = µk PO ∫ 0 ∫ 0 r 1 − rdrdθ R 3 R4 R3 2π R d P = µ k PO ∫ 0 − = θ 2 πµ k O 4 R 12 3
so M = 2πµ k ΣM O = 0:
3W R3 1 = µ k WR π R 2 12 2
(8 in.) Q − M
=0
1 7 in. 0.6 )(10.1 lb ) ( M 2 2 Q= = 8 in. (8 in.) Q = 1.326 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 96. FBD pipe:
θ = sin −1
0.025 in. + 0.0625 in. = 1.00257° 5 in.
P = W tan θ for each pipe, so also for total P = ( 2000 lb ) tan (1.00257° ) P = 35.0 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 97. FBD disk:
tan θ = slope = 0.02 b = r tan θ = ( 60 mm )( 0.02 ) b = 1.200 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 98. FBD wheel:
r = 230 mm b = 1 mm
θ = sin −1
b r
b P = W tan θ = W tan sin −1 for each wheel, so for total r
(
)
1 P = (1000 kg ) 9.81 m/s 2 tan sin −1 230 P = 42.7 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 99. FBD wheel:
(
)
rf = raxle sin φ = raxle sin tan −1 µ , rw =
rf sin θ
+
b tan θ
For small θ , sin θ
tan θ , so tan θ
R cosθ −
ΣFy = 0:
rf + b rw
W =0 4
− R sin θ +
ΣFx = 0:
P =0 4
P W
Solving: tan θ =
so P = W tan θ = W (a) For impending slip, use µ s ,
µs or µk
rf + b rw
0.5 in. −1 rf = sin tan 0.12 = 0.029786 in. 2
(
so P = ( 500 lb )
)
0.02986 in. + 0.25 in. = 55.96 lb 2.5 in. P = 56.0 lb
(b) For constant speed, use µ k ,
0.5 in. −1 rf = sin tan 0.08 = 0.019936 in. 2
so P = ( 500 lb )
(
( 0.019936 + 0.25) in. 2.5 in.
)
= 53.99 lb P = 54.0 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 100. FBD wheel: For equilibrium (constant speed), R and
W are equal and opposite 2
and tangent to the friction circle as shown
(
)
(
rf = raxle sin tan −1 µk = (12.5 mm ) sin tan −1 0.12
)
rf = 1.48932 mm From diagram, rw = For small θ , sin θ
tan θ = slope
rw =
rf sin θ
+
b tan θ
tan θ , so rw
rf + b tan θ
1.48932 mm + 1.75 mm = 107.977 mm 0.03 d w = 216 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 101. β = 4π rad
Two full turns of rope → (a)
µ s β = ln
µs =
T2 T1
or
µs =
1
β
ln
T2 T1
1 20 000 N = 0.329066 ln 4π 320 N
µ s = 0.329 (b)
β = =
1
µs
ln
T2 T1
1 80 000 N ln 0.329066 320 N = 16.799 rad
β = 2.67 turns
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 102. FBD A:
(
)
WA = (10 kg ) 9.81 m/s 2 = 98.1 N
ΣFx = 0:
TA − WA sin 30° = 0,
TA =
WA 2
FBD B:
ΣFx′ = 0:
WB sin 30° − TB = 0,
TB =
WB 2
(a) Motion of B impends up incline and mB = 8 kg
TA = eµs β , TB
µs = =
1
β
1
β
ln
ln
TA 1 W = ln A TB β WB
mA 3 10 kg = ln π 8 kg mB
From hint, β is not dependent on shape of support
µ s = 0.21309 µ s = 0.213 (b) For maximum mB , motion of B impend down incline
TB = eµs β , TA
TB = TAe
0.21309
π 3
= 1.250TA
∴ WB = 1.25WA and mB = 1.25 mA = 1.25 (10 kg )
mB max = 12.50 kg
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 103. FBD A:
ΣFx = 0:
TA − WA sin 30° = 0,
TA =
WA 2
FBD B:
ΣFx′ = 0:
WB sin 30° − TB = 0,
TB =
WB 2
For mB min , motion of B impends up incline π
And
But
0.50 TA = e 3 = 1.68809 TB
m A WA T = = A = 1.68809 mB WB TB so mB min = 5.9238 kg
From hint, β is not dependent on shape of C For mB max , motion of B impends down incline π
so
0.50 mB W T µ = B = B = e s β = e 3 = 1.68809 mA WA TA
so mB max = 16.881 kg For equilibrium
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5.92 kg ≤ mB ≤ 16.88 kg
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 104.
β = 1.5 turns = 3π rad For impending motion of W up
P = We µs β = (1177.2 N ) e(
0.15 )3π
= 4839.7 N
For impending motion of W down − 0.15 3π P = We− µs β = (1177.2 N ) e ( )
= 286.3 N
For equilibrium
286 N ≤ P ≤ 4.84 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 105. Horizontal pipe:
Contact angles β H =
Vertical pipe
π
Contact angle βV = π
2
µ sH = 0.25
µ sV = 0.2
For P to impend downward,
(
)
(
)
µ π µ π µ π µ π P = e sH 2 Q = e sH 2 e µsV π R = e sH 2 e µsV π e sH 2 (100 lb ) π µ +µ Pmax = e ( sH sV ) (100 lb ) = (100 lb ) e0.45π = 411.12 lb
For 100 lb to impend downward, the ratios are reversed, so
100 lb = Pe0.45π ,
Pmin = 24.324 lb So, for equilibrium,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
24.3 lb ≤ P ≤ 411 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 106. Horizontal pipe
Vertical pipe
π
Contact angles β H =
Contact angle βV = π
2
µ sH = 0.30
µ sV = ?
For Pmin , the 100 lb force impends downward, and µ 100 lb = e
sH
π
2
R = e µ
sH
π
2
(
eµ
sV
π
)Q = e
µ s π π2
(
eµ
sV
π
) e
µ sH π2
P
π 0.30 + µ sV ) 100 lb = e ( ( 20 lb ) , so eπ ( 0.30 + µsV ) = 5
(a) For Pmax the force P impends downward, and the ratios are reversed,
so
Pmax = 5 (100 lb ) = 500 lb
(b) π ( 0.30 + µ sV ) = ln 5
µ sV =
1
π
ln 5 − 0.30 = 0.21230
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ sV = 0.212
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 107. FBD motor and mount: Impending belt slip: cw rotation
T2 = T1e µs β = T1e0.40π = 3.5136 T1 ΣM D = 0:
(12 in.)(175 lb ) − ( 7 in.) T2 − (13 in.) T1 = 0 2100 lb = ( 7 in.)( 3.5136 ) + 13 in. T1
T1 = 55.858 lb,
T2 = 3.5136 T1 = 196.263 lb
FBD drum at B:
ΣM B = 0:
M B − ( 3 in.)(196.263 lb − 55.858 lb ) = 0 M B = 421 lb ⋅ in.
r = 3 in.
(Compare to 857 lb ⋅ in. using V-belt, Problem 8.130)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 108. FBD motor and mount: Impending belt slip: ccw rotation
T1 = T2e µs β = T2e0.40π = 3.5136 T2 ΣM D = 0:
(12 in.)(175 lb ) − (13 in.) T1 − ( 7 in.) T2
=0
2100 lb = (13 in.)( 3.5136 ) + 7 in. T2 = 0 T2 = 39.866 lb,
T1 = 3.5136 T2 = 140.072 lb
FBD drum at B:
ΣM B = 0:
( 3 in.)(140.072 lb − 39.866 lb ) − M B
=0
M B = 301 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 109. FBD lower portion of belt:
ΣFy = 0:
48 N − N D = 0,
N D = 48 N
Slip on both platen and wood
FD = µkD N D = 0.10 ( 48 N ) = 4.8 N FE = µkE N E = ( 48 N ) µ kE FBD Drum A (assume free to rotate)
ΣFx = 0:
TA − TB − 4.8 N − µ kE ( 48 N ) = 0 TB = TA + 4.8 N + µ kE ( 48 N )
(1)
ΣM A = 0:
rA (TA − TT ) = 0,
(2)
ΣM B = 0:
M B + r (TT − TB ) = 0
TT = TA
FBD Drive drum B
TB = TT +
2.4 N ⋅ m = TT + 96 N 0.025 N
Impending slip on drum, TB = TT e µs β = TT e0.35π so TT + 96 N = TT e0.35π , TT = 47.932 N
TB = 143.932 N From (2) above, TA = TT , so
(a)
Tmin lower = 47.9 N
From (1) above, 143.932 N = 47.932 N + 4.8 N + µkE ( 48 N ) So
(b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ kE = 1.900
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 110. FBD Flywheel:
( 0.225 m )(TB − TA ) − 12.60 N ⋅ m = 0
ΣM C = 0:
TB − TA = 56 N,
TB = TA + 56 N
Also, since the belt doesn’t change length, the additional stretch in spring B equals the decrease in stretch of spring A. Thus the increase in TB equals the decrease in TA. Thus TB + TA = ( 70 N + ∆T ) + ( 70 N − ∆T ) = 140 N
(TA + 56 N ) + TA
= 140 N,
TA = 42 N
TB = 42 N + 56 N = 98 N (a)
TA = 42.0 N
TB = 98.0 N For slip TB = TAe µk β , or µ k =
µk =
1
π
ln
1
β
ln
TB TA
98 = 0.2697 42 (b)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ k = 0.230
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 111. FBD Flywheel: Slip of belt: TB = TA e µk β = TA e0.20π Also, since the belt doesn’t change length, the increase in stretch of spring B equals the decrease in stretch of spring A. Therefore the increase in TB equals the decrease in TA , and the sum is unchanged, so TA + TB = 80 N + 80 N = 160 N
(
)
∴ TA 1 + e0.20π = 160 N, so TA = 55.663 N TB = 104.337 N
(a)
TA = 55.7 N TB = 104.3 N
ΣM C = 0:
( 0.225 m )(TB
− TA ) − M C = 0
M C = ( 0.225 m )(104.337 N − 55.663 N ) (b) M C = 10.95 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 112. FBD Lever:
ΣM E = 0:
( 60 mm )( 240 N ) − ( 40 mm ) FBD cos 30° = 0
FBD = 415.69 N FBD Drum: Belt slip:
T2 = T1 e µk β
= ( 415.69 N ) e
0.25( 5.5851)
= 1679.44 N
ΣM C = 0:
r (T2 − T1 ) − M = 0
( 0.08 m )(1679.44 N − 415.69 N ) − M
=0
M = 101.1 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 113. FBD Drum: (a) With M E = 125 lb ⋅ ft
ΣM E = 0:
( 7 in.) (TA − TC ) − (125 lb ⋅ ft ) = 0
TA − TC = 214.29 lb Belt slip: TA = TC e µk β = TC e
( )
0.30 76π
= 3.0028 TC
so 2.0028 TC = 214.9 lb,
TC = 106.995 lb
TA = 321.28 lb FBD Lever:
ΣM B = 0: P=
(15 in.) P + ( 2 in.) TC − ( 7.5 in.) TA = 0
(1)
( 7.5 in.)( 321.28 lb ) − ( 2 in.)(106.995 lb ) 17 in.
P = 129.2 lb
(b) With M E = 125 lb ⋅ ft , the drum analysis will be reversed, and will yield TA = 106.995 lb,
TC = 321.28 lb Eqn. (1) will remain the same, so
P=
( 7.5 in.)(106.995 lb ) − ( 2 in.)( 321.28 lb ) 17 in.
P = 9.41 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 114. FBD Lever: If brake is self-locking, no force P is required
( 2 in.) TC − ( 7.5 in.) TA = 0
ΣM B = 0:
TC = 3.75 TA For impending slip on drum: TC = TA e µs β
∴ e µs β = 3.75, or µ s = With β =
1
β
ln 3.75
7π , 6
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ s = 0.361
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 115. FBD Lever:
ΣM B = 0:
( 40 mm ) TC − (100 mm ) TA = 0,
TC = 2.5 TA
FBD Drum: (a) For impending slip ccw: TC = Tmax = 4.5 kN so
TA =
TC = 1.8 kN 2.5
M D + ( 0.16 m )(1.8 kN − 4.5 kN ) = 0
ΣM D = 0:
M D = 0.432 kN ⋅ m M D = 432 N ⋅ m (b) For impending slip ccw, TC = TA e µs β or µ s =
1
β
ln
TC 3 ln 2.5 = 0.21875 = TA 4π
µ s = 0.219
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 116. (a) For minimum mC with blocks at rest, impending slip of A is down/left. Note: φs = tan −1 µ s = tan −1 0.30 = 16.7° < 30°, so mC min > 0 FBD A:
(
)
WA = ( 6 kg ) 9.81 m/s 2 = 58.86 N ΣFy = 0:
N A − WA cos 30° = 0,
N A = WA cos 30°
Impending slip: FA = µ s N A = 0.30WA cos 30°
ΣFx = 0:
TA + FA − WA sin 30° = 0, TA = WA ( sin 30° − 0.30 cos 30° ) = 14.1377 N
FBD Drum: If blocks don’t move, belt slips on drum, so 0.2 0.87266 ) 14.1377 N = TA = TC e µk β = TC e ( = 1.19069 TC
so
TC = 11.8735 N
FBD C:
ΣFy′ = 0:
NC − WC cos 20° = 0,
NC = WC cos 20°
Impending slip: FC = µ s NC = 0.30WC cos 20°
ΣFx′ = 0:
0.30WC cos 20° + WC sin 20° − 11.8735 N = 0
WC = 19.0302 N,
mC =
WC = 1.93988 kg 9.81 m/s 2 mC = 1.940 kg continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
(b) For motion of A to impend up/right FBD A: As in part (a) N A = WA cos 30°, FA = 0.30WA cos 30°
ΣFx = 0:
TA − WA ( sin 30° + 0.30cos 30° ) = 0 TA = 44.722 N
Also, as in part (a) TA = TC e µk β = 1.19069 TC , so TC =
44.722 N 1.19069
TC = 37.560 N
FBD C: As in part (a) FC = 0.30WC cos 20°
ΣFx′ = 0:
WC ( sin 20° − 0.30cos 20° ) − 37.560 N = 0
WC = 624.83 N,
mC =
WC = 63.69 kg 9.81 m/s 2 mC = 63.7 kg
(c) For uniform motion of A up and B down, and minimum mC , there will be impending slip of the rope on the drum. FBD A is same as in (b) but FA = µk N A = 0.20WA cos30° and
ΣFx = 0:
TA − WA ( sin 30° + 0.20cos 30° ) = 0,
TA = 39.625 N
Drum analysis, with impending slip, TA = TC e µs β 39.625 N = TC e
0.30( 0.87266 )
= 1.29926 TC
or TC = 30.498 N FBD C is same as in (b), but FC = µ k NC = 0.20WC cos 20° and
ΣFx′ = 0:
WC ( sin 20° − 0.20 cos 20° ) − TC = 0 WC =
30.498 N = 197.933 N, 0.154082
mC =
197.934 N 9.81 m/s 2 mC = 20.2 kg
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 117. Geometry and force rotation: Let
EBC = α = cos −1
50 mm = 60° = 100 mm
s DBE , FAE , GAE
Then contact angles are β B = 360° − 120° = 240° = upper cylinder, and β A = 30° =
π 6
4π rad for cord on 3
rad for each cord
contact on lower cylinder. Let the force in section FC = TF Let the force in section DG = TG With A fixed and the cord moving,
TG = We µk β A = We
( )
0.25 π6
= 1.13985W
For maximum W, slip impends on drum B, so
TB = TF e µs β B or TF = TG e− µs β B TF = 1.13985We
( )
−0.30 43π
= 0.32441W
For slip at F
W1 = TF e µk β A = 0.32441We
( )
0.25 π6
= 0.36978W
so W = 2.7043W1 and m = 2.7043 in.
= 2.7043 ( 75 kg ) m = 203 kg
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 118. Geometry and force notation:
Note: θ = sin −1
βC = β D =
π 2
π r = 30° = rad, so contact angles are: 2r 6
+
π 6
=
2π , 3
βE = π
(a) For all pulleys locked, slip impends at all contacts If WA impends downward, T1 = (16 lb ) e µs β E , T2 = T1e µs β D , WA = T2e µ s βC 0.20( 73π ) µ β +β +β so WA = (16 lb ) e s ( C D E ) = (16 lb ) e = 69.315 lb
If WA impends upward all ratios are inverted, so WA = (16 lb ) e
( )
−0.20 73π
= 3.6933 lb For equilibrium,
3.69 lb ≤ WA ≤ 69.3 lb W
(b) If pulley D is free to rotate, T1 = T2 while the other ratios remain as in (a) 0.20( 53π ) µ β +β For WA impending down WA = (16 lb ) e s ( C E ) = (16 lb ) e
WA = 45.594 lb For WA impending upward, WA = (16 lb ) e
( )
−0.2 53π
= 5.6147 lb For equilibrium
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
5.61 lb ≤ WA ≤ 45.6 lb W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 119. Geometry and force notation:
θ = sin −1
r π = 30° = , so contact angles are: 2r 6
βC = β D =
π 2
+
π 6
=
2π , 3
βE = π
(a) D and E fixed, so slip on these surfaces. For maximum N A , slip impends on pulley C
WA = T2e µs βC , and T1 = T2e µk β D ,
(16 lb ) = T1e µk β E
WA = (16 lb ) e
so
− µk ( β E + β D ) µ s βC
e
= (16 lb ) e
( )e0.20( 23π )
−0.15 53π
= 11.09 lb
(b) C and D fixed, so slip there. For maximum WA , slip impends on E so T1 = (16 lb ) e µs β E , T1 = T2e µk β D , T2 = WAe µk βC so WA = (16 lb ) e µs β E e
− µk ( βC + β D )
= (16 lb ) e0.20π e
( )
−0.15 43π
= 16 lb WA = 16.00 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 120. Geometry and force notation:
θ = sin −1
5 in. π = 30° = rad, so contact angles are: 10 in. 6
βC = π −
π 6
=
5π π π 2π = , βD = + , 6 2 6 3
βE =
π 2
(a) All pulleys locked with impending slip at all. If WA impends upward, T1 = WAe µs βC ,
T2 = T1e µs β D , WA = (16 lb ) e
(16 lb ) = T2e µs β E , − µ s ( βC + β D + β E )
so
= (16 lb ) e
(
)
−0.20 56 + 46 + 63 π
WA = 4.5538 lb
If WA impends downward all ratios are inverted so WA = (16 lb ) e
+0.20( 2π )
= 56.217 lb 4.55 lb ≤ WA ≤ 56.2 lb
For equilibrium, (b) Pulley D is free to rotate so T1 = T2 , other ratios are the same If WA impends upward, WA = (16 lb ) e
− µ s ( βC + β E )
= (16 lb ) e
( )
−0.20 43π
WA = 6.9229 lb
If WA impends downward, ratios are inverted, WA = (16 lb ) e
( )
+0.20 43π
WA = 36.979 lb For equilibrium
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
6.92 lb ≤ WA ≤ 37.0 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 121. Geometry and force notation:
θ = sin −1
βC = π −
5 in. π = 30° = rad, so contact angles are: 10 in. 6
π 6
=
5π π π 2π = , βD = + , 6 2 6 3
βE =
π 2
(a) D and E fixed, so slip at these surfaces, For maximum WA , slip impends on C.
WA = T1e µs βC , T2 = T1e µk β D , 16 lb = T2e µk β E so WA = (16 lb ) e
= (16 lb ) e
− µ k ( β D + β E ) µ s βC
e
( ) e0.20( 56π )
−0.15 76π
= 15.5866 lb WA max = 15.59 lb
(b) C and D fixed, so slip at these surfaces—impending slip on E
T1 = WAe µk βC , T2 = T1e µk β D , so WA = (16 lb ) e
− µk ( βC + β D ) µ s β E e
T2 = (16 lb ) e µs β E = (16 lb ) e
( ) e0.20( π2 )
−0.15 32π
WA = 10.8037 lb,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
WA max = 10.80 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 122. FBD drum B:
ΣM B = 0:
( 0.02 m )(TA − T ) − 0.30 N ⋅ m = 0 TA − T =
0.30 N ⋅ m = 15 N 0.02 m
Impending slip: TA = Te µs β = Te0.40π
(
)
Solving; T e0.40π − 1 = 15 N
T = 5.9676 N If C is free to rotate P = T Pmin = 5.97 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 123. FBD drum B:
ΣM B = 0:
( 0.02 m )(TA − T ) − 0.3 N ⋅ m = 0 TA − T = 15 N
Impending slip:
(
TA = Te µs β B = Te0.40π
)
Solving, T e0.40π − 1 = 15 N
T = 5.9676 N If C is frozen, tape must slip there, so
P = Te µk βC = ( 5.9676 N ) e
( )
0.30 π2
= 9.5599 N Pmin = 9.56 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 124. FBD pin B: T1 = T2
(a) By symmetry: 2 ΣFy = 0: B − 2 T =0 2 1
Drum:
or
B=
2T1 =
2T2
(1)
For impending rotation : T3 > T1 = T2 > T4 , so T3 = Tmax = 5.6 kN
(
−0.25 π4 + π6
Then
T1 = T3e− µs β L = ( 5.6 kN ) e
or
T1 = 4.03706 kN = T2
and
T4 = T2e− µs β R = ( 4.03706 kN ) e
or
T4 = 2.23998 kN
)
( )
−0.25 34π
ΣM F = 0: M 0 + r (T4 − T3 + T2 − T1 ) = 0 or
M 0 = ( 0.16 m )( 5.6 kN − 2.23998 kN ) = 0.5376 kN ⋅ m
Lever:
M 0 = 538 N ⋅ m (b) Using Equation (1) B=
2T1 =
2 ( 4.03706 kN )
= 5.70927 kN ΣM D = 0:
( 0.05 m )( 5.70927 kN ) − ( 0.25 m ) P = 0 P = 1.142 kN
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 125. FBD pin B: T1 = T2
(a) By symmetry: 2 ΣFy = 0: B − 2 T1 = 0 2
FBD Drum:
or
B=
(1)
2T1
For impending rotation : T4 > T2 = T1 > T3 , so T4 = Tmax = 5.6 kN
( )
−0.25 34π
Then
T2 = T4e− µ s β R = ( 5.6 kN ) e
or
T2 = 3.10719 kN = T1
and
T3 = T1e− µs β L = ( 3.10719 kN ) e
or
T3 = 2.23999 kN
(
−0.25 π4 + π6
)
ΣM F = 0: M 0 + r (T2 − T1 + T3 − T4 ) = 0 M 0 = (160 mm )( 5.6 kN − 2.23999 kN ) = 537.6 N ⋅ m
FBD Lever:
M 0 = 538 N ⋅ m (b) Using Equation (1) B=
2T1 =
2 ( 3.10719 kN )
B = 4.3942 kN ΣM D = 0:
( 0.05 m )( 4.3942 kN ) − ( 0.25 m ) P = 0 P = 879 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 126. FBD wrench:
Note: EC =
( 0.2 m ) , sin 65°
EA = EC − 0.03 m
θ = 65° so β = 295° = 5.1487 rad
ΣM E = 0:
0.20 m 0.20 m − 0.03 m F − cos 65° − 0.03 m T = 0 sin 65° sin 65° T = 3.01408F
ΣFx = 0:
N sin 65° + F cos 65° − T = 0
Impending slip: N =
sin 65° , so F = + cos 65° = T µs µs
F
or
sin 65°
µs
+ cos 65° = 3.01408
µ s = 0.3497 Must still check slip of belt on pipe
FBD small portion of belt at A: ΣFn = 0:
N1 − N 2 = 0
Impending slip, both sides: F1 = µ s N1, so
F2 = µ s N 2
F1 = F2 = F
ΣFt = 0:
2 F − TA = 0, TA = 2F
Impending slip of belt on pipe: T = TAe µs β or µ s =
1
β
ln
T 1 3.01408 = = 0.0797 ln 2F 5.1487 2
Above controls, so for self-locking, need
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ s = 0.350
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 127. FBD wrench Note: EC =
( 0.20 m ) , sin 75°
EA = EC − 0.03 m
θ = 75° so β = 285° = 4.9742 rad ΣM E = 0:
0.20 m 0.20 m − 0.03 m F − cos 75° − 0.03 m T = 0 sin 75° sin 75° T = 7.5056 F
ΣFx = 0:
N sin 75° + F cos 75° − T = 0
Impending slip: N =
sin 75° , so F = + cos 75° = T = 7.5056 F µs µs
F
sin 75°
µs
+ cos 75° = 7.5056
µ s = 0.1333 Must still check impending slip of belt on pipe
FBD small portion of belt at A ΣFn = 0:
N1 − N 2 = 0
Impending slip F1 = µ s N1,
F2 = µ s N 2
F1 = F2 = F
so ΣFt = 0:
2 F − TA = 0, TA = 2 F
Impending slip of belt on pipe T = TAe µ s β or µ s =
1
β
ln
T 1 7.5056 = = 0.2659 ln 2F 4.9742 2
This controls, so for self locking,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ s min = 0.267
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 128.
ΣFn = 0:
∆θ ∆N − T + (T + ∆T ) sin =0 2
∆N = ( 2T + ∆T ) sin
or
ΣFt = 0:
∆θ (T + ∆T ) − T cos − ∆F = 0 2
or
∆F = ∆T cos
Impending slipping:
∆F = µ s ∆N
So
In limit as
So
and
∆T cos
∆θ 2
∆θ 2
∆θ ∆θ sin ∆θ = µ s 2T sin + µ s ∆T 2 2 2
∆θ → 0: dT = µ sTdθ ,
or
dT = µ s dθ T
dT
T2 β ∫ T1 T = ∫ 0 µ s dθ ;
ln
T2 = µs β T1 or T2 = T1e µs β
Note: Nothing above depends on the shape of the surface, except it is assumed to be a smooth curve.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 129. Small belt section: Side view:
ΣFy = 0: ΣFx = 0:
2
∆N α ∆θ sin − T + (T + ∆T ) sin =0 2 2 2
∆θ (T + ∆T ) − T cos − ∆F = 0 2 ∆F = µ s ∆N ⇒ ∆T cos
Impending slipping:
In limit as ∆θ → 0:
End view:
dT =
µ sTdθ α sin
So
dT µs = dθ α T sin 2
or
2 dT
∆θ 2T + ∆T ∆θ = µs sin α 2 2 sin 2
µ
T2 β s ∫ T1 T = α ∫ 0 dθ sin
2
or
or
ln
T2 µβ = s α T1 sin 2 T2 = T1e
µ s β /sin α2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 130. FBD motor and mount: Impending belt slip, cw rotation µs β
T2 = T1e
sin α2
( 0.40π )
T2 = T1e sin18° = 58.356T1
ΣM D = 0:
(12 in.)(175 lb ) − (13 in.) T1 − ( 7 in.) T2
=0
2100 lb = 13 in. + ( 7 in.)( 58.356 ) T1 T1 = 4.9823 lb,
T2 = 58.356T1 = 290.75 lb
FBD drum at B:
ΣM B = 0:
M B + ( 3 in.)( 4.9823 lb − 290.75 lb ) = 0 M B = 857 lb ⋅ in.
(Compare to 421 lb ⋅ in. using flat belt, Problem 8.107)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 131. Geometry:
θ = sin −1
2 in. = 7.1808° = 0.12533 rad 16 in.
β A = π − 2θ = 2.8909 rad Since β B > β A , impending slip on A will control the maximum couple transmitted FBD A:
ΣM A = 0:
60 lb ⋅ in. + ( 2 in.)(T1 − T2 ) = 0 T2 − T1 = 30 lb µs β
Impending slip: T2 = T1e
sin α2
( 0.35)( 2.8909 ) so T1 e sin18° − 1 = 30 lb T1 = 1.17995 lb T2 = 31.180 lb FBD B:
ΣFx = 0:
P − ( 31.180 lb + 1.17995 lb ) cos 7.1808° = 0 P = 32.1 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 132. FBD block:
ΣFn = 0:
N − (1000 N ) cos 30° − ( 200 N ) sin 30° = 0 N = 966.03 N
Assume equilibrium:
ΣFt = 0:
F + ( 200 N ) cos 30° − (1000 N ) sin 30° = 0 F = 326.8 N = Feq.
But
Fmax = µ s N = ( 0.3) 966 N = 290 N Feq. > Fmax
and
impossible ⇒ Block moves
F = µk N = ( 0.2 )( 966.03 N )
Block slides down
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
F = 193.2 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 133. FBD block (impending motion to the right)
φ s = tan −1 µ s = tan −1 ( 0.25 ) = 14.036°
P W = sin φs sin (θ − φ s )
sin (θ − φs ) =
(a)
W sin φs P
W = mg
(
)
( 30 kg ) 9.81 m/s 2 m = 30 kg: θ − φ s = sin −1 sin14.036° 120 N
= 36.499°
∴ θ = 36.499° + 14.036° (b)
m = 40 kg: θ − φs = sin
or θ = 50.5°
(
( 40 kg ) 9.81 m/s 2
−1
120 N
) sin14.036°
= 52.474° ∴ θ = 52.474° + 14.036°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or θ = 66.5°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 134. FBDs Top block:
(a) Note: With the cable, motion must impend at both contact surfaces. ΣFy = 0:
N1 − 40 lb = 0
F1 = µ s N1 = 0.4 ( 40 lb ) = 16 lb
Impending slip: ΣFx = 0:
Bottom block:
ΣFy = 0:
T − F1 = 0
T − 16 lb = 0
N 2 − 40 lb − 60 lb = 0
Impending slip:
T = 16 lb
N 2 = 100 lb
F2 = µ s N 2 = 0.4 (100 lb ) = 40 lb
ΣFx = 0:
FBD blocks:
N1 = 40 lb
− P + 16 lb + 16 lb + 40 lb = 0
P = 72.0 lb (b) Without the cable, both blocks will stay together and motion will impend only at the floor. ΣFy = 0: Impending slip: ΣFx = 0:
N − 40 lb − 60 lb = 0
N = 100 lb
F = µ s N = 0.4 (100 lb ) = 40 lb 40 lb − P = 0
P = 40.0 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 135. FBD ladder:
Motion impends at both A and B, so FA = µ s N A ΣM A = 0:
NB =
or
a W =0 2
lN B −
ΣFx = 0:
FA +
ΣFy = 0:
2.5W 13
5 12 FB − NB = 0 13 13
NA −
l = 19.5 ft
a 7.5 ft W = W 2l 39 ft
2.5 W 13
µs N A +
a = 7.5 ft
NB =
or
FB = µ s N B = µ s
Then
a 5 = l 13
FB = µ s N B
and
12.5
(13)
µ sW −
30
(13)2
W =0
( 30 − 12.5µs )
W
(13)
NA − W +
2
2
µs
12 5 FB + NB = 0 13 13
30 − 12.5µ s W + 30µ s + 12.5 =W 2 µs (13)
b 12 = l 13
or
µ s2 − 5.6333µ s + 1 = 0 µ s = 2.8167 ± 2.6332
or
µ s = 0.1835
and
µ s = 5.45
The larger value is very unlikely unless the surface is treated with some “non-skid” material. In any event, the smallest value for equilibrium is µ s = 0.1835
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 136. FBD window:
(
)
T = ( 2 kg ) 9.81 m/s 2 = 19.62 N =
ΣFx = 0:
N A − ND = 0
FA = µ s N A
Impending motion: ΣM D = 0:
(
W = ( 4 kg ) 9.81 m/s
NA =
) = 39.24 N ΣFy = 0:
N A = ND
FD = µ s N D
( 0.36 m )W − ( 0.54 m ) N A − ( 0.72 m ) FA W =
2
W 2
=0
3 N A + 2µ s N A 2 2W 3 + 4µ s
FA − W + T + FD = 0 FA + FD = W − T =
Now Then
W 2
FA + FD = µ s ( N A + N D ) = 2µ s N A W 2W = 2µ s 2 3 + 4µ s
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
µ s = 0.750 W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 137. FBD Collar:
Stretch of spring x = AB − a =
a −a cosθ
a 1 − a = (1.5 kN/m )( 0.5 m ) − 1 Fs = k θ θ cos cos 1 = ( 0.75 kN ) − 1 = ( 750 N )( sec θ − 1) θ cos Fs cosθ − W + N = 0
ΣFy = 0:
W = N + ( 750 N ) (1 − cosθ )
or Impending slip:
F = µ s N (F must be +, but N may be positive or negative)
Fs sin θ − F = 0
ΣFx = 0: or
F = Fs sin θ = ( 750 N )( tan θ − sin θ )
(a) θ = 20°:
F = ( 750 N )( tan 20° − sin 20° ) = 16.4626 N
Impending motion: (Note: for
N =
F
µs
16.4626 N = 41.156 N 0.4
=
N < 41.156 N, motion will occur, equilibrium for
N > 41.156)
W = N + ( 750 N )(1 − cos 20° ) = N + 45.231 N
But
So equilibrium for W ≤ 4.07 N and W ≥ 86.4 N W (b) θ = 30°:
F = ( 750 N )( tan 30° − sin 30° ) = 58.013 N
Impending motion:
N =
F
µs
=
58.013 = 145.032 N 0.4
W = N + ( 750 N )(1 − cos 30° ) = N ± 145.03 N = −44.55 N ( impossible ) , 245.51 N Equilibrium for W ≥ 246 N W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 138. FBD pin C:
FAB = P sin10° = 0.173648P FBC = P cos10° = 0.98481P ΣFy = 0: FBD block A:
N A − W − FAB sin 30° = 0 N A = W + 0.173648P sin 30° = W + 0.086824P
or ΣFx = 0:
FA − FAB cos 30° = 0 FA = 0.173648P cos30° = 0.150384P
or
FA = µ s N A
For impending motion at A: NA =
Then
FA
µs
: W + 0.086824 P =
0.150384 P 0.3
P = 2.413W
or ΣFy = 0:
N B − W − FBC cos 30° = 0 N B = W + 0.98481P cos30° = W + 0.85287 P
FBD block B:
ΣFx = 0:
FBC sin 30° − FB = 0 FB = 0.98481P sin 30° = 0.4924 P FB = µ s N B
For impending motion at B: Then or
NB =
FB
µs
: W + 0.85287 P =
0.4924P 0.3
P = 1.268W
Thus, maximum P for equilibrium
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Pmax = 1.268W W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 139. φs = tan −1 µ s = tan −1 0.25 = 14.036° FBD block A:
R2 750 lb = sin104.036° sin16.928° R2 = 2499.0 lb FBD wedge B:
P 2499.0 = sin 73.072° sin 75.964°
P = 2464 lb P = 2.46 kips
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 140. Block on incline:
θ = tan −1
0.1 in. = 3.0368° 2π ( 0.3 in.)
φs = tan −1 µ s = tan −1 0.12 = 6.8428°
Q = ( 500 lb ) tan 9.8796° = 87.08 lb Couple on each side
M = rQ = ( 0.3 in.)( 87.08 lb ) = 26.12 lb ⋅ in. Couple to turn = 2M = 52.2 lb ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 141. FBD pulley:
ΣFy = 0:
R − 103.005 N − 49.05 N − 98.1 N = 0 R = 250.155 N
ΣM O = 0:
( 0.12 m )(103.005 N − 98.1 N ) − rf ( 250.155 N ) = 0 rf = 0.0023529 m = 2.3529 mm
φ s = sin −1
µ s = tan φs = tan sin −1
rf rs
rf −1 2.3529 mm = tan sin rs 30 mm
µ s = 0.0787 W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 142. FBD wheel:
ΣM E = 0:
M E = ( 7.5 in.)(T2 − T1 )
or
FBD lever:
ΣM C = 0:
Impending slipping:
So
( 4 in.)(T1 + T2 ) − (16 in.)( 25 lb ) = 0 T1 + T2 = 100 lb
or
or
− M E + ( 7.5 in.)(T2 − T1 ) = 0
T2 = T1e µs β T2 = T1e
( )
0.25 32π
= 3.2482T1
T1 (1 + 3.2482 ) = 100 lb T1 = 23.539 lb
and
M E = ( 7.5 in.)( 3.2482 − 1)( 23.539 lb ) = 396.9 lb ⋅ in. M E = 397 lb ⋅ in. W
Changing the direction of rotation will change the direction of M E and will switch the magnitudes of T1 and T2 . The magnitude of the couple applied will not change. W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 8, Solution 143. FBD block:
ΣFn = 0:
NC − ( 200 lb ) cos 30° = 0; N = 100 3 lb
ΣFt = 0:
TC − ( 200 lb ) sin 30° ∓ FC = 0 TC = 100 lb ± FC
FBD Drum:
(1)
where the upper signs apply when FC acts (a) For impending motion of block , FC
, and
(
)
FC = µ s NC = 0.35 100 3 lb = 35 3 lb
(
)
TC = 100 − 35 3 lb
So, from Equation (1):
TC = WAe µk β
But belt slips on drum, so
−0.25( WA = 100 − 35 3 lb e
(
)
2π 3
) WA = 23.3 lb W
and FC = µ s NC = 35 3 lb
(b) For impending motion of block , FC From Equation (1): Belt still slips, so
(
)
TC = 100 + 35 3 lb −0.25( WA = TC e− µk β = 100 + 35 3 lb e
(
)
2π 3
)
WA = 95.1 lb W continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
PROBLEM 8.143 CONTINUED (c) For steady motion of block , FC
, and FC = µk NC = 25 3 lb
(
)
T = 100 + 25 3 lb.
Then, from Equation (1):
Also, belt is not slipping on drum, so −0.35( WA = TC e− µ s β = 100 + 25 3 lb e
(
)
2π 3
)
WA = 68.8 lb W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.