COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 1.
Link ABC: Assume δθ clockwise Then, for point C
δ xC = (125 mm ) δθ and for point D
δ xD = δ xC = (125 mm ) δθ and for point E
250 mm 2 δ xD = δ xD 3 375 mm
δ xE = Link DEFG:
δ xD = ( 375 mm ) δφ
Thus
(125 mm ) δθ = ( 375 mm ) δφ 1 3
δφ = δθ
(
)
100
δ G = 100 2 mm δφ = 3
Then
2 mm δθ
100 100 2 mm δθ cos 45° = mm δθ 3 3
δ yG = δ G cos 45° = Virtual Work:
δ U = 0:
Assume P acts downward at G
( 9000 N ⋅ mm ) δθ − (180 N )(δ xE
mm ) + P (δ yG mm ) = 0
2 100 δθ = 0 9000 δθ − 180 × 125 δθ + P 3 3 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 180.0 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 2.
FA = 20 lb at A
Have
FD = 30 lb
δ y A = (16 in.) δθ
Link ABC:
Link BF:
at D
δ yF = δ yB
δ yB = (10 in.) δθ δ yF = ( 6 in.) δφ = (10 in.) δθ
Link DEFG: or
5 3
δφ = δθ δ yG = (12 in.) δφ = ( 20 in.) δθ d ED =
( 5.5 in.)2 + ( 4.8 in.)2 5
= 7.3 in.
δ D = ( 7.3 in.) δφ = × 7.3 in. δθ 3 δ xD = Virtual Work:
4.8 4.8 5 δD = × 7.3 in. δθ = ( 8 in.) δθ 7.3 7.3 3
Assume P acts upward at G
δ U = 0:
FAδ y A + FDδ xD + Pδ yG = 0
or
( 20 lb ) (16 in.) δθ + ( 30 lb ) (8 in.) δθ + P ( 20 in.) δθ = 0
or
P = − 28.0 lb P = 28.0 lb W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 3.
Link ABC: Assume δθ clockwise Then, for point C
δ xC = (125 mm ) δθ and for point D
δ xD = δ xC = (125 mm ) δθ and for point E
250 mm 2 δ xD = δ xD 3 375 mm
δ xE = Link DEFG:
δ xD = ( 375 mm ) δφ
Thus
(125 mm ) δθ = ( 375 mm ) δφ or
Virtual Work:
δ U = 0:
1 3
δφ = δθ Assume M acts clockwise on link DEFG
( 9000 N ⋅ mm ) δθ − (180 N )(δ xE
mm ) + M δφ = 0
2 1 9000 δθ − 180 ⋅125 δθ + M δθ = 0 3 3 or
M = 18000 N ⋅ mm
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
M = 18.00 N ⋅ m
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 4.
FA = 20 lb at A
Have
at D
FD = 30 lb
Link ABC:
δ y A = (16 in.) δθ
Link BF:
δ yF = δ yB
δ yB = (10 in.) δθ Link DEFG:
δ yF = ( 6 in.) δφ = (10 in.) δθ or
d ED =
5 3
δφ = δθ
( 5.5 in.)2 + ( 4.8 in.)2 5 3
= 7.3 in.
δ D = ( 7.3 in.) δφ = × 7.3 in. δθ δ xD = Virtual Work:
4.8 4.8 5 δD = × 7.3 in. δθ = ( 8 in.) δθ 7.3 7.3 3
Assume M acts
on DEFG
δ U = 0:
FAδ y A + FDδ xD + M δφ = 0
or
( 20 lb ) (16 in.) δθ + ( 30 lb ) (8 in.) δθ + M
or
M = − 336.0 lb ⋅ in.
5 δθ = 0 3 M = 28.0 lb ⋅ ft
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 5.
Assume δθ
δ x A = 10 δθ in.
δ yC = 4 δθ in. δ yD = δ yC = 4 δθ in.
δφ =
δ yD 6
=
2 δθ 3 2
δ xG = 15 δφ = 15 δθ = 10 δθ in. 3 Virtual Work:
δ U = 0:
Assume that force P is applied at A.
δ U = − Pδ x A + 30 δ yC + 60 δ yD + 240 δφ + 80 δ xG = 0 2 − P (10 δθ in.) + ( 30 lb )( 4 δθ in.) + ( 60 lb )( 4 δθ ) + ( 240 lb ⋅ in.) δθ 3 + ( 80 lb )(10 δθ in.) = 0 −10P + 120 + 240 + 160 + 800 = 0 10P = 1320
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 132.0 lb
W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 6.
Note:
(a)
xE = 2 x D
δ xE = 2 δ xD
xG = 3xD
δ xG = 3δ xD
x H = 4 xD
δ xH = 4 δ xD
xI = 5 x D
δ x I = 5 δ xD
Virtual Work:
δ U = 0: FG δ xG − FSPδ xI = 0
( 90 N )( 3δ xD ) − FSP ( 5δ xD ) = 0 or Now
FSP = 54.0 N W
FSP = k ∆xI 54 N = ( 720 N/m ) ∆xI ∆xI = 0.075 m
and
1 4
1 5
δ xD = δ x H = δ x I ∆xH =
4 4 ∆xI = ( 0.075 m ) = 0.06 m 5 5 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∆xH = 60.0 mm
W
COSMOS: Complete Online Solutions Manual Organization System
(b)
Virtual Work:
δ U = 0: FG δ xG + FH δ xH − FSP (δ xI ) = 0
( 90 N )( 3 δ xD ) + ( 90 N )( 4 δ xD ) − FSP ( 5δ xD ) = 0 or Now
FSP = 126.0 N W
FSP = k ∆xI
126.0 N = ( 720 N/m ) ∆xI ∆xI = 0.175 m From Part (a)
∆xH =
4 4 ∆xI = ( 0.175 m ) = 0.140 m 5 5 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∆xH = 140.0 mm
W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 7.
Note:
(a)
xE = 2 x D
δ xE = 2 δ xD
xG = 3xD
δ xG = 3δ xD
xH = 4 xD
δ xH = 4 δ xD
xI = 5 xD
δ xI = 5 δ x D
Virtual Work:
δ U = 0: FE δ xE − FSP δ xI = 0
( 90 N )( 2 δ xD ) − FSP ( 5δ xD ) = 0 or Now
FSP = 36.0 N
FSP = k ∆xI
36 N = ( 720 N/m ) ∆xI ∆xI = 0.050 m and
1 4
1 5
δ xD = δ xH = δ xI ∆xH =
4 4 ∆xI = ( 0.050 m ) = 0.04 m 5 5 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∆xH = 40.0 mm
COSMOS: Complete Online Solutions Manual Organization System
(b)
Virtual Work:
δ U = 0: FD δ xD + FEδ xE − FSPδ xI = 0
( 90 N ) δ xD + ( 90 N )( 2 δ xD ) − FSP ( 5 δ xD ) = 0 or Now
FSP = 54.0 N
FSP = k ∆xI
54 N = ( 720 N/m ) ∆xI ∆xI = 0.075 m
From Part (a)
∆xH =
4 4 ∆xI = ( 0.075 ) = 0.06 m 5 5 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∆xH = 60.0 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 8.
Assume δ y A
δ yA 16 in.
=
δ yC 8 in.
1 2
δ yC = δ y A
;
Bar CFDE moves in translation 1 2
δ yE = δ yF = δ yC = δ y A Virtual Work:
δ U = 0: − P (δ y A in.) + (100 lb )(δ yE in.) + (150 lb )(δ yF in.) = 0 1 1 − P δ y A + 100 δ y A + 150 δ y A = 0 2 2 P = 125 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 125 lb W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 9.
Have
y A = 2l cosθ ;
θ
CD = 2l sin ; 2
δ y A = −2l sin θ δθ θ δ ( CD ) = l cos δθ 2
Virtual Work:
δ U = 0: − Pδ y A − Qδ ( CD ) = 0
θ − P ( −2l sin θ δθ ) − Q l cos δθ = 0 2 Q = 2P
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
sin θ W θ cos 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 10.
Virtual Work: Have
x A = 2l sin θ
δ x A = 2l cosθ δθ and
yF = 3l cosθ
δ yF = −3l sin θ δθ Virtual Work:
δ U = 0: Qδ x A + Pδ yF = 0 Q ( 2l cosθ δθ ) + P ( −3l sin θ δθ ) = 0
Q=
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
3 P tan θ 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 11.
Virtual Work: We note that the virtual work of Ax , Ay and C is zero, since A is fixed and C is ⊥ to δ xC .
Thus:
δ U = 0:
Pδ xD + Qδ yD = 0
xD = 3l cosθ
δ xD = − 3l sin θ δθ
yD = l sin θ
δ yD = l cosθ δθ
P ( − 3l sin θ δθ ) + Q ( l cosθ δθ ) = 0
− 3Pl sin θ + Ql cosθ = 0 Q=
3P sin θ = 3P tan θ cosθ
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Q = 3P tan θ W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 12.
x A = ( a + b ) cosθ
δ x A = − ( a + b ) sin θ δθ
yG = a sin θ
δ yG = a cosθ δθ
Virtual Work: The reactions at A and B are perpendicular to the displacements of A and B hence do no work.
δ U = 0:
T δ x A + W δ yG = 0 T − ( a + b ) sin θ δθ + W ( a cosθ δθ ) = 0
− T ( a + b ) sin θ + Wa cosθ = 0 T =
a W cot θ a+b
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
T =
a W cot θ W a+b
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 13.
yH = 2l sin θ
Note:
l = 600 mm ( length of a link )
Where Then
δ yH = 2l cosθ δθ
Also
1 1 1 W = mg = ( 450 kg ) 9.81 m/s 2 2 2 2
(
)
= 2207.3 N 2
d AF
3 5 = l cosθ + l sin θ 4 4 =
δ d AF =
l 9 + 16sin 2 θ 4 l 16sin θ cosθ δθ 4 9 + 16sin 2 θ
= 4l
Virtual Work:
2
sin θ cosθ 9 + 16sin 2 θ
δθ
1 Fcyl δ d AF − W δ yH = 0 2
δ U = 0:
sin θ cosθ Fcyl 4l δθ − ( 2.2073 kN )( 2l cosθ δθ ) = 0 9 + 16sin 2 θ Fcyl For θ = 30°
sin θ 9 + 16sin 2 θ
Fcyl
= 1.10365 kN
sin 30° 9 + 16sin 2 30°
= 1.10365 kN or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Fcyl = 7.96 kN W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 14.
From solution of Problem 10.13: Fcyl
sin θ 9 + 16sin 2 θ
= 1.10365 kN
Fcyl = 35 kN
Then for
( 35 kN )
sin θ 9 + 16sin 2 θ
= 1.10365 kN
( 31.713 sin θ )2 = 9 + 16sin 2 θ sin 2 θ =
9 989.71 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 5.47° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 15.
yB = a sin θ ⇒ δ yB = a cosθδθ
ABC:
yC = 2a sin θ ⇒ δ yC = 2a cosθδθ CDE: Note that as ABC rotates counterclockwise, CDE rotates clockwise while it moves to the left.
δ yC = aδφ
Then
2a cosθδθ = aδφ
or
δφ = 2 cosθδθ
or Virtual Work:
δ U = 0: − Pδ yB − Pδ yC + M δφ = 0 − P ( a cosθδθ ) − P ( 2a cosθδθ ) + M ( 2cosθδθ ) = 0 or M =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
3 Pa W 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 16.
First note l sin θ +
3 l sin φ = l 2
sin φ =
2 (1 − sin θ ) 3
or Then
2 cos φ δφ = − cosθ δθ 3
or
δφ = −
2 cosθ δθ 3 cos φ =
Now
xC = − l cosθ +
Then
δ xC = l sin θ δθ −
5 + 8sin θ − 4sin 2 θ
3 l cos φ 2 3 l sin φ δφ 2
− 2 cosθ 3 = l sin θ − sin φ δθ 2 3 cos φ
= l ( sin θ + cosθ tan φ ) δθ
= l sin θ +
2cosθ (1 − sin θ )
δθ 5 + 8sin θ − 4sin θ 2
Virtual Work:
δ U = 0: M δθ − Pδ xC = 0 M δθ − Pl sin θ +
2 cosθ (1 − sin θ )
δθ = 0 5 + 8sin θ − 4sin 2 θ or M = Pl sin θ +
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2cosθ (1 − sin θ )
5 + 8sin θ − 4sin 2 θ
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 17.
Have xB = l sin θ
δ xB = l cosθδθ y A = l cosθ
δ y A = − l sin θδθ Virtual Work:
δ U = 0: M δθ − Pδ xB + Pδ y A = 0 M δθ − P ( l cosθδθ ) + P ( − l sin θδθ ) = 0 M = Pl ( sin θ + cosθ )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 18.
xD = l cosθ
Have
δ xD = − l sin θδθ yD = 3l sin θ
δ yD = 3l cosθδθ Virtual Work:
δ U = 0: M δθ − ( P cos β ) δ xD − ( P sin β ) δ yD = 0
M δθ − ( P cos β )( − l sin θδθ ) − ( P sin β )( 3l cosθδθ ) = 0 M = Pl ( 3sin β cosθ − cos β sin θ )
(1)
(a) For P directed along BCD, β = θ Equation (1):
M = Pl ( 3sin θ cosθ − cosθ sin θ ) M = Pl ( 2sin θ cosθ )
M = Pl sin 2θ
(b) For P directed , β = 90° Equation (1):
M = Pl ( 3sin 90° cosθ − cos 90° sin θ ) M = 3Pl cosθ
(c) For P directed Equation (1):
, β = 180° M = Pl ( 3sin180° cosθ − cos180° sin θ )
M = Pl sin θ
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 19.
Analysis of the geometry:
Law of Sines
sin φ sin θ = AB BC sin φ =
AB sin θ BC
(1)
Now
xC = AB cosθ + BC cos φ
δ xC = − AB sin θδθ − BC sin φδφ cos φδφ =
Now, from Equation (1)
δφ =
or
(2)
AB cosθδθ BC
AB cosθ δθ BC cos φ
(3)
From Equation (2)
AB cosθ δθ BC cos φ
δ xC = − AB sin θδθ − BC sin φ or
Then
δ xC = −
AB ( sin θ cos φ + sin φ cosθ ) δθ cos φ
δ xC = −
AB sin (θ + φ ) δθ cos φ continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
δ U = 0: − Pδ xC − M δθ = 0
Virtual Work:
AB sin (θ + φ ) δθ − M δθ = 0 −P − cos φ
M = AB
Thus,
sin (θ + φ ) P cos φ
(4)
For the given conditions: P = 1.0 kip = 1000 lb, AB = 2.5 in., and BC = 10 in.: (a) When
θ = 30°: sin φ = M = ( 2.5 in.)
2.5 sin 30°, 10
sin ( 30° + 7.181° ) cos 7.181°
φ = 7.181°
(1.0 kip ) = 1.5228 kip ⋅ in. = 0.1269 kip ⋅ ft
(b) When
θ = 150°: sin φ = M = ( 2.5 in.)
2.5 sin150°, 10
sin (150° + 7.181° ) cos 7.181°
or M = 126.9 lb ⋅ ft
or M = 81.4 lb ⋅ ft
φ = 7.181°
(1.0 kip ) = 0.97722 kip ⋅ in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 20.
M = AB
From the analysis of Problem 10.19,
sin (θ + φ ) P cos φ
Now, with M = 75 lb ⋅ ft = 900 lb ⋅ in. (a) For θ = 60°
sin φ =
2.5 sin 60°, 10
( 900 lb ⋅ in.) = ( 2.5 in.)
φ = 12.504°
sin ( 60° + 12.504° ) cos12.504°
( P)
P = 368.5 lb
or
P = 369 lb
P = 477 lb
(b) For θ = 120°
sin φ =
2.5 sin120°, 10
( 900 lb ⋅ in.) = ( 2.5 in.) or
φ = 12.504°
sin (120° + 12.504° ) cos12.504°
( P)
P = 476.7 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 21.
Consider a virtual rotation δφ
of link AB.
Then δ B = aδφ Note that δ yB = δ B cosθ = a cosθδφ Disregarding the second-order rotation of link BC,
δ yC = δ yB = a cosθδφ Then δ C =
Virtual Work: δ U = 0:
δ yC a cosθδφ a = = δφ sin θ sin θ tan θ
M δφ − Pδ C = 0
a δφ = 0 M δφ − P tan θ or M tan θ = Pa Thus ( 27 N ⋅ m ) tan30° = P ( 0.45 m ) P = 34.6 N P = 34.6 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
30.0°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 22.
Consider a virtual rotation δφ
of link AB.
Then δ B = a δφ Note that δ yB = δ B cosθ = a cosθ δφ Disregarding the second-order rotation of link BC,
δ yC = δ yB = a cosθ δφ Then δ C =
Virtual Work: δ U = 0:
δ yC a cosθ δφ a = = δφ sin θ sin θ tan θ
M δφ − Pδ C = 0 a δφ = 0 M δφ − P tan θ or M tan θ = Pa Thus M tan 40° = (135 N )( 0.60 m ) M = 96.53 N ⋅ m M = 96.5 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 23.
From geometry
y A = 2l cosθ ,
CD = 2l sin
θ 2
,
δ y A = −2l sin θ δθ
θ δ ( CD ) = l cos δθ 2
Virtual Work:
δ U = 0: − Pδ y A − Qδ ( CD ) = 0
θ − P ( − 2l sin θ δθ ) − Q l cos δθ = 0 2 sin θ θ cos 2
or
Q = 2P
With
P = 60 lb,
( 75 lb ) = 2 ( 60 lb )
Q = 75 lb sin θ θ cos 2
sin θ = 0.625 θ cos 2
or
θ θ 2sin cos 2 2 = 0.625 θ cos 2
θ = 36.42° θ = 36.4° (Additional solutions discarded as not applicable are θ = ± 180°)
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 24.
From the solution to Problem 10.16 M = Pl sin θ +
2cosθ (1 − sin θ )
5 + 8sin θ − 4sin 2 θ
Substituting 13.5 N ⋅ m = ( 60 N )( 0.25 m ) sin θ + or sin θ +
2cosθ (1 − sin θ ) 5 + 8sin θ − 4sin 2 θ
2 cosθ (1 − sin θ )
5 + 8sin θ − 4sin θ 2
= 0.90
Solving numerically
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 57.5°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 25.
OC = r
Geometry
cosθ =
xB =
δ xB =
OC r = OB xB
r cosθ r sin θ δθ cos 2 θ
y A = l cosθ ;
δ y A = − l sin θ δθ
Virtual Work:
δ U = 0: P ( − δ y A ) − Qδ xB = 0 Pl sin θ δθ − Q cos 2 θ =
r sin θ δθ = 0 cos 2 θ
Qr Pl
(1)
Then, with l = 15 in., r = 4.5 in., P = 15 lb, and Q = 30 lb
cos 2 θ = or
( 30 lb )( 4.5 in.) (15 lb )(15 in.)
θ = 39.231°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
= 0.6
θ = 39.2°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 26.
OC = r
Geometry
cosθ =
xB =
δ xB = y A = l cosθ ;
OC r = OB xB
r cosθ r sin θ δθ cos 2 θ
δ y A = − l sin θ δθ
Virtual Work:
δ U = 0: P ( − δ y A ) − Qδ xB = 0 Pl sin θ δθ − Q cos 2 θ =
r sin θ δθ = 0 cos 2 θ
Qr Pl
(1)
Then, with l = 14 in., r = 5 in., P = 75 lb, and Q = 150 lb
cos 2 θ = or
(150 lb )( 5 in.) ( 75 lb )(14 in.)
θ = 32.3115°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
= 0.7143
θ = 32.3°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 27.
We have
x A = ( a + b ) cosθ
δ x A = − ( a + b ) sin θ δθ
yG = a sin θ
δ y A = a cosθ δθ
Virtual Work: The reactions at A and B are perpendicular to the displacements of A and B hence do no work.
δ U = 0: T δ x A + W δ yG = 0 T − ( a + b ) sin θ δθ + W ( a cosθ δθ ) = 0
− T ( a + b ) sin θ + Wa cosθ = 0 or We have
T =
a W cot θ a+b
sin θ =
( 42 in.) BD BD = = AB a + b ( 42 in.) + ( 28 in.)
sin θ = 0.600
θ = 36.87° Thus
T =
( 42 in.) (160 lb ) cot 36.87° 42 in. ( ) + ( 28 in.)
= 127.99 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
T = 128.0 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 28.
Note that
y A = − ( 0.15 m ) tan θ yB = − ( 0.15 m ) tan θ + ( 0.9 m ) sin θ Then
δ y A = − ( 0.15 m ) sec2 θ δθ δ yB = − ( 0.15 m ) sec2 θ δθ + ( 0.9 m ) cosθ δθ Virtual Work:
δ U = 0: Qδ y A + Pδ yB = 0 or (135 N ) − ( 0.15 m ) sec2 θ δθ
+ ( 75 N ) − ( 0.15 m ) sec2 θ δθ + ( 0.9 m ) cosθ δθ = 0 or − 20.25 sec2 θ − 11.25sec2 θ + 67.5cosθ = 0 or − 31.5 + 67.5cos3 θ = 0 cos3 θ = 0.4667 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 39.1°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 29. First note
BC = BD ∴ BCD is isosceles Then ∠BCD = ∠BDC = θ and BE = l sin θ = 2l sin φ or sin φ =
1 sin θ 2
Then cos φ δφ = or δφ =
1 cosθ δθ 2
1 cosθ δθ 2 cos φ
Now
xC = 2l cos φ − l cosθ
xD = 2l cos φ + l cosθ
= l ( 2cos φ − cosθ )
= l ( 2cos φ + cosθ )
Then
δ xC = l ( − 2sin φ δφ + sin θ δθ )
δ xD = l ( − 2sin φ δφ − sin θ δθ )
= l ( sin θ − cosθ tan φ ) δθ
= − l ( sin θ + cosθ tan φ ) δθ
Also
FSP = kxSP = k ( 3l − xD ) = kl 3 − ( 2cos φ + cosθ ) Virtual Work:
δ U = 0: Pδ xC − FSP δ xD = 0
Then P l ( sin θ − cosθ tan φ ) δθ − kl 3 − ( 2 cos φ + cosθ ) l ( sin θ + cosθ tan φ ) δθ = 0
sin θ + cosθ tan φ or P = kl 3 − ( 2cos φ + cosθ ) sin θ − cosθ tan φ tan θ + tan φ = kl 3 − ( 2cos φ + cosθ ) tan θ − tan φ Now sin φ =
1 1 sin θ = sin 25° 2 2
or φ = 12.1991°
N tan 25° + tan12.1991° ∴ P = 1600 ( 0.150 m )( 3 − 2cos12.1991° − cos 25° ) m tan 25° − tan12.1991° or P = 90.9 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 30.
yE =
x x x + = 3 6 2
∴ δ yE =
1 δx 2
Linear Spring: FSP = ks = ( 5000 N/m )( x − 0.30 m ) Virtual Work: δ U = 0
δ U = − FSPδ x + Pδ E = 0 1 − ( 5000 N/m )( x − 0.30 m ) δ x + ( 900 N ) δ x = 0 2 − 5000 x + 1500 + 450 = 0 x = 0.390 m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or x = 390 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 31.
yC =
x 6
Linear Spring:
FSP = ks = ( 5000 N/m )( x − 0.30 m )
Virtual Work:
δU = 0
∴ δ yC =
1 δx 6
δ U = − FSPδ x + Pδ yC = 0 1 − ( 5000 N/m )( x − 0.30 m ) δ x + ( 900 N ) δ x = 0 6 − 5000 x + 1500 + 150 = 0 x = 0.330 m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
or x = 330 mm W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 32.
First note:
yD = ( 250 mm ) sin θ
δ yD = ( 250 mm ) cosθ δθ
x A = 2 ( 300 mm ) cosθ
δ x A = − ( 600 mm ) sin θ ( − δθ )
Also, the spring force
FSP = k x A − ( x A )0 = ( 2.5 N/mm )( 600cosθ − 600 cos 45° )( mm ) = (1500 N )( cosθ − cos 45° )
Virtual Work:
δ U = 0:
or
( 250 N ) δ yD − FSP δ xA = 0 ( 250 N )( 250 mm ) cosθ δθ − (1500 N )( cosθ 5 − 72 tan θ ( cosθ − cos 45° ) = 0
− cos 45° )( 600 mm ) sin θ δθ = 0
Solving numerically
θ = 15.03° and 36.9° W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 33.
From geometry:
xC = 2 (15 in.) cosθ
δ xC = − ( 30 in.) sin θ δθ
yB = (15 in.) sin θ
δ yB = (15 in.) cosθ (δθ )
s = ( 30 − 30cosθ ) in. = 30 (1 − cosθ ) in. FSP = ks = (12.5 lb/in.) 30 (1 − cosθ ) in.
Then
= ( 375 lb )(1 − cosθ ) Virtual Work:
δ U = 0:
Pδ yB + FSP δ xC = 0
or
(150 lb )(15 in.) cosθ δθ
or
2250cosθ − 11250 (1 − cosθ ) sin θ = 0
or
(1 − cosθ ) tan θ
Solving numerically,
+ ( 375 lb )(1 − cosθ ) − ( 30in.) sin θ δθ = 0
= 0.200
θ = 40.22° θ = 40.2° W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 34.
From geometry:
xC = 2 (15 in.) cosθ
δ xC = − ( 30 in.) sin θ δθ
yB = (15 in.) sin θ
δ yB = (15 in.) cosθ δθ
s = ( 30 − 30cosθ ) in. = 30 (1 − cosθ ) in. FSP = ks = (12.5 lb/in.) 30 (1 − cosθ ) in.
Then
= ( 375 lb )(1 − cosθ ) Virtual Work:
δ U = 0:
Pδ yB + FSP δ xC = 0
or
P (15 in.)( cos 25° ) δθ + ( 375 lb )(1 − cos 25° ) − ( 30 in.)( sin 25° ) δθ = 0
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 32.8 lb W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 35.
s = rθ
δ s = r δθ Spring is unstretched at θ = 0°
FSP = ks = k r θ xC = l sin θ
δ xC = l cosθ δθ
Virtual Work:
δ U = 0:
Pδ xC − FSPδ s = 0 P ( l cosθ δθ ) − k r θ ( r δθ ) = 0 or
θ Pl = 2 cosθ kr
( 40 lb )(12 in.) ( 9 lb/in.)( 5 in.)2
Thus or
θ cosθ
=
θ cosθ
= 2.1333
θ = 1.054 rad = 60.39°
θ = 60.4° W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 36.
y A = l sin θ
δ y A = l cosθδθ Spring:
v = CD
Unstretched when
θ =0
so that
v0 =
2l
For θ :
90° + θ v = 2l sin 2
δ v = l cos 45° +
θ
δθ 2
Stretched length:
θ s = v − v0 = 2l sin 45° + − 2l 2 θ F = ks = kl 2sin 45° + − 2 2
Then Virtual Work:
δ U = 0: Pδ y A − F δ v = 0 θ θ Pl cosθ δθ − kl 2sin 45° + − 2 l cos 45° + δθ = 0 2 2 or
P 1 = kl cosθ =
1 cosθ
θ θ θ 2sin 45° + cos 45° + − 2 cos 45° + 2 2 2 θ θ θ 2sin 45° + cos 45° + cosθ − 2 cos 45° + 2 2 2
θ cos 45° + 2 =1− 2 cosθ
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Now, with P = 150 lb, l = 30 in., and k = 40 lb/in.
(150 lb ) ( 40 lb/in.)( 30 in.) or Solving numerically,
θ cos 45° + 2 =1− 2 cosθ θ cos 45° + 2 = 0.61872 cosθ θ = 17.825°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 17.83°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 37.
y A = l sin θ
From geometry:
δ y A = l cosθ δθ xC = l cosθ + l sin θ = l ( cosθ + sin θ )
yC = l sin θ − l cosθ = l ( sin θ − cosθ ) lCD = l
( cosθ
+ sin θ ) + ( sin θ − cosθ ) − ( −1) 2
2
= l 3 + 2sin θ − 2 cosθ
δ lCD = l
cosθ + sin θ δθ 3 + 2sin θ − 2 cosθ
FSP = k ( lCD − l )
and
= kl
(
)
3 + 2sin θ − 2 cosθ − 1
Virtual Work:
δU = 0: δθ
or
P ( l cosθ δθ ) − kl
or
1 −
Pδ y A − FSPδ lCD = 0
(
cosθ + sin θ 3 + 2sin θ − 2cosθ − 1 l δθ = 0 3 + 2sin θ − 2cosθ
)
P (1 + tan θ ) = kl 3 + 2sin θ − 2cosθ 1
=
600 N ( 4000 N/m )( 0.8m )
= 0.1875 Solving numerically
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 10.77° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 38.
yC = ( 375 mm ) tan θ
Have
δ yC = ( 375 mm ) sec2 θ δθ
δ S = ( 75 mm ) δθ FSP = kyC = ( 0.8 N/mm )( 375 mm ) tan θ = ( 300 N ) tan θ Virtual Work:
δ U = 0:
Pδ S − FSPδ yC = 0
( 480 N )( 75 mm ) δθ or
− ( 300 N ) tan θ ( 375 mm ) sec 2 θ δθ = 0
3.125 tan θ sec2 θ = 1
Solving numerically,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 16.41° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 39.
y A = l sin θ
Have
δ y A = l cosθ δθ
Virtual Work:
δ U = 0:
Pδ y A − M δθ = 0 Pl cosθ δθ − Kθ δθ = 0
or Thus
θ cosθ
θ cosθ
θ cosθ
=
Pl K
=
( 2000 N )( 0.25 m ) ( 225 N ⋅ m/rad )
= 2.2222 rad
Solving numerically
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 61.2° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 40.
y A = l sin θ
Have
δ y A = l cosθ δθ
Virtual Work:
δ U = 0:
Pδ y A − M δθ = 0 Pl cosθ δθ − Kθ δθ = 0
or
θ
Then
cosθ
=
θ cosθ
=
Pl K
( 6300 N )( 0.25 m ) = 7 rad ( 225 N ⋅ m/rad )
θ = 7 cosθ
or
Plotting y = θ and y = 7 cosθ in the range 0 ≤ θ ≤
5π reveals three points of intersection, and thus 2
three roots:
Then, for each range
π 0 < θ < 90° 0 < θ < : 2
θ = 1.37333 rad
or
θ = 78.7° W
3π 270° < θ < 360° < θ < 2π : 2
θ = 5.6522 rad
or
θ = 324° W
5π 360° < θ < 450° 2π < θ < : 2
θ = 6.6160 rad
or
θ = 379° W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 41.
d AC = 212 + 7.22 = 22.2 in.
Have
tan φ =
7.2 21
φ = 18.9246°
or
α =θ +φ
Now
By Law of Cosines: 2 d AB = 22.22 + 102 − 2 ( 22.2 )(10 ) cos α
d AB = 592.84 − 444 cos α ( in.)
and
δ d AB =
222sin α δα ( in.) 592.84 − 444cos α
By Virtual Work:
δ U = 0:
Pδ yD − Fcyl δ d AB = 0
222 sin α 592.84 − 444cos α
(120 lb )(8 in.) δα − Fcyl Fcyl =
in. δα = 0
4.3243 592.84 − 444 cos α ( lb ) sin α
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Given data: Thus
θ = 60°, α = 60° + 18.9246° = 78.9246° Fcyl =
4.3243 592.84 − 444cos 78.9246° ( lb ) sin 78.9246°
= 99.270 lb d AB = 592.84 − 444cos 78.9246° = 22.529 in. By Law of Sines: 10 22.529 = sin β sin 78.9246°
or
β = 25.824° Fcyl = 99.3 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
44.7°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 42.
d AC = 212 + 7.22 = 22.2 in.
Have
tan φ =
7.2 21
φ = 18.9246°
or
α =θ +φ
Now
By Law of Cosines: 2 d AB = 22.22 + 102 − 2 ( 22.2 )(10 ) cos α
d AB = 592.84 − 444 cos α ( in.) and
δ d AB =
222sin α δα ( in.) 592.84 − 444cos α
By Virtual Work:
δ U = 0:
Pδ yD − Fcyl δ d AB = 0
222 sin α 592.84 − 444cos α
(120 lb )(8 in.) δα − Fcyl Fcyl =
in. δα = 0
4.3243 592.84 − 444 cos α ( lb ) sin α
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Thus
105 lb =
4.3243 592.84 − 444 cos α ( lb ) sin α
24.28125 sin α = 592.84 − 444cos α
589.5791sin 2 α = 592.84 − 444 cos α
(
)
589.5791 1 − cos 2 α = 592.84 − 444 cos α
cos 2 α − 0.75307 cos α + 0.0055309 = 0 Solving
α = 41.785° and α = 89.575°
θ = α − φ = α − 18.9246° Thus
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 22.9° and θ = 70.7°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 43.
First note
θ + β = 90° α + β = 90°
∴α = θ
and
s = aθ
(length of cord unwound for rotation θ )
Now
yO = a (1 − cosθ ) (Distance O moves down for rotation θ )
and
yP = s + y
or
yP = a θ + a (1 − cosθ ) (Distance P moves down for rotation θ )
Then
δ yP = ( a + a sin θ ) δθ
By the Law of Cosines 2 lSP = ( 4a ) + ( 2a ) − 2 ( 4a )( 2a ) cosθ 2
or
lSP = 2a 5 − 4cosθ
and
δ lSP =
(
FSP = k lSP − ( lSP )0 = k 2a 5 − 4 cosθ − 2a = 2ka
(
2
4a sin θ δθ 5 − 4 cosθ
)
)
5 − 4 cosθ − 1
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
By Virtual Work:
δ U = 0:
Pδ yP − FSPδ lSP = 0 P ( a + a sin θ ) δθ − 2ka
(
4a sin θ 5 − 4cosθ − 1 5 − 4 cosθ
)
δθ = 0
or
P (1 + sin θ ) − sin θ 5 − 4cosθ + sin θ = 0 ka 8
Then
12 lb (1 + sin θ ) − sin θ 5 − 4cosθ + sin θ = 0 8 (15 lb/in.)( 7.5 in.) 1 75 (1 + sin θ ) − sin θ 5 − 4cosθ + sin θ = 0
Solving numerically,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 15.27° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 44.
For Bar ABC:
δα =
δ yC
2a For Bar CD, using Law of Cosines
(where a = 15 in. )
a 2 = lC2 + lD2 − 2lC lD cos 55° Then with a = constant, we have 0 = 2lC δ lC + 2lDδ lD − 2 (δ lC ) lD cos 55° − 2lC (δ lD ) cos 55°
Since
δ lC = − δ yC :
( lC
− lD cos 55° ) δ yC = ( lD − lC cos55° ) δ lD
For the given position of member CD, ∆CDE is isosceles. Thus
lD = a
Then
( 2a cos 55° − a cos 55° ) δ yC
or
δ lD =
and
lC = 2a cos 55°
(
)
= a − 2a cos 2 55° δ yD
cos 55° δ yC 1 − 2cos 2 55°
By Virtual Work:
δ U = 0:
M δα − Pδ lD = 0 cos 55° δ y M C − P δ yC = 0 2 2a 1 − 2 cos 55°
or
P=
M 1 − 2cos 2 55° 2a cos 55°
P=
( 320 lb ⋅ in.) 2 (15 in.)
Thus for given data 1 − 2cos 2 55° = 6.3605 lb cos 55° P = 6.36 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
35° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 45.
We have x A = (10 in.) sin θ + ( 24 in.) cosθ
δ x A = (10 cosθ − 24sin θ ) in. δθ
Law of Cosines:
( CD )2 = ( BC )2 + ( BD )2 − 2 ( BC )( BD ) cosθ = ( 20 in.) + ( 60 in.) − 2 ( 20 in.)( 60 in.) cosθ 2
(
2
) (
)
= 4000 in 2 − 2400 in 2 cos θ = 400 (10 − 6cos θ ) in 2 Differentiating:
(
)
2 ( CD ) δ ( CD ) = 2400 in 2 sin θ δθ
δ ( CD ) =
(1200 in ) 2
20 10 − 6 cos θ in.
sin θ δθ
60 sin θ δ ( CD ) = in. δθ 10 − 6 cosθ
or Virtual Work:
δ U = Pδ x A + FCD δ ( CD ) = 0
( 4000 lb ) (10 cos 60° − 24sin 60° ) in. δθ or
60sin 60° + FCD in. δθ = 0 10 6 cos 60 − °
FCD = 3214.9 lb
FCD = 3.21 kips
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 46.
Triangle ADE:
tan α =
( 2.7 ft ) (1.5 ft )
= 1.800
α = 60.945° AD =
yC = (15 ft ) sin θ
( 2.7 ft ) sin 60.945°
= 3.0887 ft
δ yC = (15 ft ) cosθ δθ
Law of Cosines: BD 2 = AB 2 + AD 2 − 2 ( AB )( AD ) cos (α + θ ) 2
2
= ( 7.2 ft ) + ( 3.0887 ft ) − 2 ( 7.2 ft )( 3.0887 ft ) cos (α + θ ) = 61.38 − 44.4773cos (α + θ ) ft 2
2 ( BD )(δ BD ) = 44.4773 sin (α + θ ) δθ 44.4773 sin (α + θ )
δ BD =
2 ( BD )
δθ ft
Virtual Work:
δ U = 0: − P δ yC + FBD δ BD = 0 44.4773sin (α + θ ) − ( 500 lb )(15 ft ) cosθ δθ + FBD δθ ft = 0 2 ( BD ) cosθ FBD = 337.25 BD lb sin (α + θ ) We have θ = 20°
BD 2 = 61.38 − 44.4773 cos ( 60.945° + 20° )
BD = 7.3743 ft Thus
FBD = 337.25
cos 20° ( 7.3743) lb sin ( 60.945° + 20° )
= 2366.5 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
FBD = 2370
lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 47.
Input work = P δ x Output work = (W sin α ) δ x Efficiency:
η=
W sin αδ x Pδ x
η=
or
ΣFx = 0: P − F − W sin α = 0 ΣFy = 0: N − W cos α = 0
W sin α P
(1)
P = W sin α + F
or
(2)
N = W cos α
or
F = µ N = µW cosα Equation (2): Equation (1):
P = W sin α + µW cosα = W ( sin α + µ cosα )
η=
W sin α W ( sin α + µ cos α )
or
η=
1 1 + µ cot α
If block is to remain in place when P = 0, we know (see page 416) that φ s ≥ α or, since
µ = tan φs , Multiply by cot α :
µ ≥ tan α µ cot α ≥ tan α cot α = 1
Add 1 to each side:
1 + µ cot α ≥ 2
Recalling the expression for η, we find
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
η≤
1 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 48.
xB = l cosθ
Link BC:
δ xB = − l sin θ δθ or δ xB = l sin θ δθ yC = l sin θ
δ yC = l cosθ δθ
δ xB =
Link AB:
1 l δφ 2
1 l δφ = l sin θ δθ 2 δφ = 2sin θ δθ
Thus
Virtual Work:
δ U = 0:
M maxδφ − ( P + µ s N ) δ yC = 0 M max ( 2sin θ δθ ) − ( P + µ s N ) ( l cosθ δθ ) = 0
P + µs N l 2 tan θ Link BC Free-Body Diagram: M max =
+ ΣM B = 0:
N ( l sin θ ) − ( P + µ s N ) l cosθ = 0 N tan θ − P − µ s N = 0
or N =
P tan θ − µ s
Substituting N into relationship for M max :
P+ M max =
µs P Pl ( tan θ − µ s + µ s ) tan θ − µ s l = 2 tan θ 2 tan θ ( tan θ − µ s ) M max =
For µ s ≥ tan θ , we have M max = ∞; the system becomes self-locking.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Pl
2 ( tan θ − µ s )
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 49.
Largest value of M is obtained from the solution of Problem 10.48
M max =
Pl
2 ( tan θ − µ s )
Thus M max =
( 400 N )( 0.500 m ) 2 ( tan 35° − 0.30 )
= 249.87 N ⋅ m M max = 250 N ⋅ m
Smallest value of M occurs when the friction force in Problem 10.48 is directed upward instead of downward. The equations obtained in Problem 10.48 may be used if we replace µ s by − µ s . Thus
M min =
P − µs N l 2 tan θ
N =
P tan θ + µ s
and
M min =
Thus
M min =
Pl
2 ( tan θ + µ s )
( 400 N )( 0.500 m ) 2 ( tan 35° + 0.30 )
= 99.98 N ⋅ m M min = 100.0 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 50.
For the linkage:
ΣM B = 0: − x A +
xA P=0 2
F = µs A = µs
Then:
or
A=
P 2
P 1 = µs P 2 2
x A = 2l sin θ
Now
δ x A = 2l cosθ δθ yF = 3l cosθ
and
δ yF = − 3l sin θ δθ Virtual Work:
δ U = 0:
( Qmax
− F ) δ x A + Pδ yF = 0
1 Qmax − µ s P ( 2l cosθ δθ ) + P ( −3l sin θ δθ ) = 0 2 or
Qmax =
3 1 P tan θ + µ s P 2 2 Qmax =
P ( 3tan θ + µs ) 2
For Qmin , motion of A impends to the right and F acts to the left. We change µ s to − µ s and find
Qmin =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P ( 3tan θ − µ s ) 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 51.
Using the results of Problem 10.50 with
θ = 30°, l = 0.2 m, P = 40 N, and µ s = 0.15 We have
Qmax = =
P ( 3tan θ + µs ) 2
( 40 N ) 2
( 3tan 30° + 0.15)
= 37.64 N Qmax = 37.6 N and
Qmin = =
P ( 3tan θ − µ s ) 2
( 40 N ) 2
( 3tan 30° − 0.15)
= 31.64 N Qmin = 31.6 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 52. Recall Figure 8.9a. Draw force triangle
Q = W tan (θ + φs ) y = x tan θ so that δ y = δ x tan θ Input work = Qδ x = W tan (θ + φs ) δ x Output work = W δ y = W (δ x ) tan θ
η=
Efficiency:
W tan θδ x ; W tan (θ + φs ) δ x
η=
tan θ tan (θ + φs )
From page 432, we know the jack is self-locking if
φs ≥ θ θ + φ s ≥ 2θ
Then
tan (θ + φ s ) ≥ tan 2θ
so that
η=
From above
tan θ tan (θ + φ s )
η≤
It then follows that
tan 2θ =
But
Then
η≤
(
tan θ 1 − tan 2 θ 2 tan θ
tan θ tan 2θ
2 tan θ 1 − tan 2 θ
) = 1 − tan θ
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2
2
∴ η ≤
1 2
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 53.
To determine Ay, consider a vertical displacement δ y A :
Note that δ y A = δ yB = δ yC
δ yC
=
δ yE
=
300 mm 240 mm
δ yE
750 mm
δ yG
360 mm
or δ yE = 2.5 δ y A or δ yG =
360 ( 2.5δ y A ) = 3.75δ y A 240
Virtual Work:
δ U = 0: Ay δ y A + ( 960 N ) δ yB − ( 240 N ) δ yG = 0 Ay δ y A + ( 960 N ) δ y A − ( 240 N )( 3.75 δ y A ) = 0
Ay = − 60 N or A y = 60 N To determine A x , consider a horizontal displacement δ x A : Virtual Work: δ U = 0:
Axδ x A = 0, or Ax = 0
A = 60.0 N
Thus the total force reaction is: To determine M A , consider a counterclockwise rotation δθ A :
Note that
δ yB = 600 δθ A
δ yC = 900 δθ A
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
δ yC
=
δ yE
=
300 mm
240 mm
δ yE
750 mm
δ yG
360 mm
or δ yE =
750 ( 900 δθ A ) = 2250 δθ A 300
or δ yG =
360 ( 2250 δθ A ) = 3375δθ A 240
Virtual Work:
δ U = 0:
M A δθ A + ( 960 N ) δ yB − ( 240 N ) δ yG = 0 M A δθ A + ( 960 N )( 600 δθ A mm ) − ( 240 N )( 3375 δθ A mm ) = 0 M A = 234000 N ⋅ mm, or M = 234 N ⋅ m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 54.
To determine Dy , consider a vertical displacement δ yD :
Note that
δ yD
=
δ yE
=
300 mm
240 mm
δ yE
or
δ yE = 3.5 δ yD
δ yG
or
δ yG =
1050 mm
360 mm
360 ( 3.5δ yD ) = 5.25δ yD 240
Virtual Work:
δ U = 0: Dy δ yD + ( 240 N ) δ yG = 0 Dy δ yD + ( 240 N )( 5.25 δ yD ) = 0
Dy = −1260 N or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
D y = 1.260 kN
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 55.
From the solution of Problem 10.41
Fcyl = 99.270 lb By Virtual Work:
δ U = 0:
Fcyl ( − δ d AB ) − P δ yD = 0
( 99.270 lb )( − δ d AB ) − (120 lb )(1.2 in.) = 0 δ d AB = −1.45059 in. or δ d AB = 1.451 in. ( shorter )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 56.
From Problem 10.46
FBD = 2370 lb as shown.
By Virtual Work: Assume both δ yC and δ BD increase.
δ U = 0:
− ( 500 lb ) δ yC + FBD δ BD = 0 − ( 500 lb )( 2.5 in.) + ( 2370 lb ) δ BD = 0
δ BD = 0.5274 in. Thus δ BD = 0.527 in. Longer
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 57.
Apply vertical load P at C: ΣM B = 0: (12 m ) J y − ( 3 m ) P = 0
Jy =
P 4
ΣFx = 0: J x = 0 ΣFy = 0:
P 3 − FFG = 0 4 5
FFG =
5 P (T) 12
Virtual Work: Remove member FG and replace it with forces FFG and − FFG at pins F and G, respectively. Denoting the virtual displacements of F and G as δ rF and δ rG , respectively, and noting that P and δ yC have the same direction, have by virtual work.
δ U = 0: Pδ yC + FFG ⋅δ rF + ( − FFG ) ⋅δ rG = 0 Pδ yC + FFG δ rF cosθ F − FFG δ rG cosθ G = 0 Pδ yC − FFG (δ rG cosθ G − δ rF cosθ F ) = 0 Where (δ rG cosθ G − δ rF cosθ F ) = δ FG , which is the change in length of member FG. Thus
Pδ yC − FFG δ FG = 0 5 Pδ yC − P ( 30 mm ) = 0 12
δ yC = 12.50 mm or δ yC = 12.50 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 58.
Apply a horizontal load P at C: ΣFx = 0: P − J x = 0 ∴ J x = P ΣM B = 0: (12 m ) J y − ( 2.25 m ) P = 0
Jy = ΣFy = 0:
3 P 16 3 3 P − FFG = 0 16 5
FFG =
5 P (T) 16
Virtual Work: Remove member FG and replace it with forces FFG and − FFG at pins F and G, respectively. Since P and δ xC have the same direction, and since FFG tends to decrease the length FG, have by virtual work.
δ U = 0: P δ xC − FFG δ FG = 0 5 P δ xC − P ( 30 mm ) = 0 16
δ xC = 9.375 mm or δ xC = 9.38 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 59.
Spring:
s = x − 0.3 m yE = −
x x x − =− 3 6 2
Potential Energy:
V =
=
1 2 ks + WyE 2
1 2 x k ( x − 0.3) − W 2 2
For equilibrium:
dV 1 = k ( x − 0.3) − W = 0 dx 2 1 2
( 5000 N/m )( x − 0.3) m − ( 900 N ) = 0 Solving
x = 0.390 m
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x = 390 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 60.
Given:
( xSP )0
= 300 mm
k = 5 kN/m From geometry:
1 x yC = − 3 2
=−
x 6
sSP = x − ( xSP )0
and
= ( x − 0.3) m Potential Energy: V = VSP + VFC
=
1 2 1 k ( x − 0.3) + FC − x 2 6
For equilibrium:
dV = 0: dx
k ( x − 0.3) −
1 FC = 0 6 1 6
( 5000 N/m )( x − 0.3) m − ( 900 N ) = 0 or x = 0.330 m x = 330 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 61.
k = 2.5 kN/m
Given:
( SSP )0 = 0
From geometry:
at
θ = 45°
yD = − ( 0.25 m ) sin θ
( xSP )0 = 2 ( 0.3 m ) cos 45° S SP = ( xSP )0 − x A = ( 0.6 m ) cos 45° − 2 ( 0.3 m ) cosθ = ( 0.6 m )( cos 45° − cosθ ) Potential Energy:
V = VSP + VFD =
For equilibrium:
1 2 2 k ( 0.6 m ) ( cos 45° − cosθ ) − ( 250 N ) − ( 0.25 m ) sin θ 2
dV = 0: dθ k ( 0.36 )( sin θ )( cos 45° − cosθ ) + 62.5cosθ = 0 62.5 N ⋅ m
or
tan θ ( cos 45° − cosθ ) = −
or
tan θ ( cos 45° − cosθ ) = − 0.06944
( 2500 N/m ) ( 0.36 m 2 )
Solving numerically and
θ = 15.03° θ = 36.9°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 62.
k = 12.5 s=0
lb in.
P = 150 lb
when θ = 0
From geometry: yB = − (15 in.) sin θ s = 30 in. − 2 (15 in.) cosθ = ( 30 in.)(1 − cosθ ) Potential Energy:
V = VSP + VP =
1 2 ks + P yB 2
=
1 2 2 k ( 30 in.) (1 − cosθ ) + P − (15 in.) sin θ 2
For equilibrium
dV = 0: dθ or
(
)
k 900 in 2 (1 − cos θ )( sin θ ) − (15 in.) cos θ P = 0
(
)
lb 2 12.5 900 in (1 − cos θ )( sin θ ) − (15 in.)(150 lb ) cos θ = 0 in.
or
11250 (1 − cosθ )( sin θ ) − 2250 cosθ = 0
or
(1 − cosθ ) tan θ
Solving numerically,
= 0.200
θ = 40.22°
θ = 40.2°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 63.
k = 12.5 s=0
lb in.
θ = 25°
when θ = 0°
From geometry:
yB = − (15 in.) sin θ s = 30 in. − 2 (15 in.) cosθ = ( 30 in.)(1 − cosθ )
Potential Energy:
V = VSP + VP =
1 2 ks + P yB 2
=
1 2 2 k ( 30 in.) (1 − cosθ ) + P − (15 in.) sin θ 2
dV = 0: dθ
For equilibrium
(
)
k 900 in 2 (1 − cos θ )( sin θ ) − (15 in.) cos θ P = 0 or
(
)
lb 2 12.5 900 in (1 − cos 25°)( sin 25°) − (15 in.)( cos 25°) P = 0 in. or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 32.8 lb
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 64.
90° + θ v = 2l sin 2
Spring
θ v = 2l sin 45° + 2 Unstretched (θ = 0 )
v0 = 2l sin 45° =
2l
θ s = v − v0 = 2l sin 45° + − 2l 2
Deflection of spring
2
V =
1 2 1 θ ks + Py A = kl 2 2sin 45° + − 2 + P ( −l sin θ ) 2 2 2
θ θ dV = kl 2 2sin 45° + − 2 cos 45° + − Pl cosθ = 0 dθ 2 2 θ θ θ P 2sin 45° + cos 45° + − 2 cos 45° + = cosθ 2 2 2 kl
θ P cosθ − 2 cos 45° + = cosθ 2 kl Divide each member by cosθ
θ cos 45° + 2 P = 1− 2 cosθ kl
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Then with P = 150 lb, l = 30 in. and k = 40 lb/in.
θ cos 45° + 2 150 lb 1− 2 = cosθ 40 lb/in. ( )( 30 in.) = 0.125
or
θ cos 45° + 2 = 0.618718 cosθ
Solving numerically,
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 17.83°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 65.
y A = − l sin θ
From geometry:
( cosθ
lCD = l
+ sin θ ) + 1 − ( cosθ − sin θ ) 2
2
= l 3 + 2sin θ − 2 cosθ
sSP = ( lCD − l ) =l
Potential Energy:
(
)
3 + 2sin θ − 2 cosθ − 1
V = VSP + VP 1 2 = ksSP + Py A 2 2 1 = kl 2 3 + 2sin θ − 2cosθ − 1 + P ( − l sin θ ) 2 dV = 0: dθ cosθ + sin θ 3 + 2sin θ − 2cosθ − 1 − P l cosθ = 0 3 + 2sin θ − 2 cosθ 1 P (1 + tan θ ) = kl 3 + 2sin θ − 2cosθ 600 N = ( 4000 N/m )( 0.8 m ) = 0.1875
(
For equilibrium:
or
kl 2 1 −
)
(
)
Solving numerically
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 10.77°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 66.
From geometry yC = d AC tan θ
d AC = 375 mm
yP = r θ
r = 75 mm
Potential Energy:
V = VSP + VP = =
1 2 kyC − PyP 2
1 2 kd AC tan 2 θ − P r θ 2
For equilibrium:
dV = 0: dθ
2 tan θ sec 2 θ − P r = 0 kd AC
( 0.8 N/mm )( 375 mm )2 tan θ sec2 θ − ( 480 N )( 75 mm ) = 0 3.125 tan θ sec2 θ = 1 Solving numerically
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 16.41°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 67.
125θ = 375φ ,
Since
xC = xD ,
Also
250 xE = ( 250 mm ) φ = θ mm 3
or
φ=
θ 3
Potential Energy:
V = − M θ + Q xE − PyG
= − Mθ +
250 100 Qθ − Pθ 3 3
For Equilibrium:
dV =θ: dθ
−M +
250 100 Q− P=0 3 3
Thus at equilibrium, V is constant and the equilibrium is neutral.
Q.E.D.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 68.
First note
y B = yF
For small θ , φ :
yB = (10 in.)θ yF = ( 6 in.) φ 10θ = 6 φ
Thus
5 3
φ= θ y A = (16 in.)θ
Also
yG = (12 in.) φ = ( 20 in.)θ h + xD ( h = constant ) = h + ( 8 in.)θ xD = ( 4.8 in.) φ = ( 8 in.)θ Potential Energy: V = VFA + VP + VW = − FA y A − PyG + Wyw = − ( 20 lb )(16 in.)θ − P ( 20 in.)θ + ( 30 lb ) − ( h + 8θ ) in. = ( − 320 − 20 P − 240 )θ − 30 h ( lb ⋅ in.)
For equilibrium:
dV =0 dθ
− 320 − 20 P − 240 = 0 V is a constant therefore equilibrium is neutral. Q.E.D.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 69.
Potential Energy: l l V = − W cosθ − W sin θ 2 2 =−
Wl ( cosθ + sin θ ) 2
dV Wl = ( sin θ − cosθ ) dθ 2
For equilibrium: dV = 0: dθ
sin θ − cosθ = 0 tan θ = 1
θ = 45° and θ = −135° d 2V Wl = ( cosθ + sin θ ) 2 dθ 2
Stability:
θ = 45°: θ = −135°:
d 2V Wl = ( 0.707 + 0.707 ) > 0 2 dθ 2 d 2V Wl = ( − 0.707 − 0.707 ) < 0 2 dθ 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Stable Unstable
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 70.
Potential Energy: l l V = − WCD cosθ − WAB sin θ 2 2 = − WCD
l WAB sin θ cosθ + 2 WCD
WAB m AB g 300 = = = 0.6 WCD mCD g 500
But
V = − WCD
Thus
l ( cosθ + 0.6sin θ ) 2
dV l = WCD ( sin θ − 0.6cosθ ) dθ 2 For Equilibrium: dV = 0: dθ
sin θ − 0.6cosθ = 0 tan θ = 0.6
θ = 31.0° and θ = −149.0° Stability:
d 2V l = WCD ( cosθ + 0.6sin θ ) 2 2 dθ
θ = 31.0° :
d 2V l = WCD ( cos 31.0° + 0.6sin 31.0° ) > 0 2 2 dθ Stable
θ = −149.0°: = WCD
2
d V l = WCD cos ( −149.0° ) + 0.6sin ( −149.0° ) 2 2 dθ
l − 0.8572 + 0.6 ( − 0.5150 ) < 0 2 Unstable
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 71.
Let each rod be of length L and weight W. Then the potential energy V is
L L V = W sin θ + W cos 2θ 2 2 Then
dV W = L cosθ − WL sin 2θ dθ 2 For equilibrium
dV W = 0: L cosθ − WL sin 2θ = 0 dθ 2 or
cosθ − 2sin 2θ = 0
Solving numerically or using a computer algebra system, such as Maple, gives four solutions:
θ = 1.570796327 rad = 90.0° θ = −1.570796327 rad = 270° θ = 0.2526802551 rad = 14.4775° θ = 2.888912399 rad = 165.522° Now
1 d 2V = − WL sin θ − 2WL cos 2θ 2 2 dθ
1 = −WL sin θ + 2cos 2θ 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
At θ = 14.4775°
d 2V 1 = −WL sin14.4775° + 2cos 2 (14.4775° ) 2 2 dθ = −1.875WL ( < 0 )
∴ θ = 14.48°, Unstable
At θ = 90°
d 2V 1 = −WL sin 90° + 2 cos180° 2 dθ 2 = 1.5WL ( > 0 )
∴ θ = 90°, Stable
At θ = 165.522°
d 2V 1 = −WL sin165.522° + 2cos ( 2 × 165.522° ) 2 dθ 2 = −1.875WL ( < 0 )
∴ θ = 165.5°, Unstable
At θ = 270°
d 2V 1 = −WL sin 270° + 2cos 540° 2 dθ 2 = 2.5WL ( > 0 )
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∴ θ = 270°, Stable
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 72.
Potential energy
l l V = W cos1.5θ + W cosθ 2 2
W = mg
dV Wl Wl = ( −1.5sin1.5θ ) + ( − sin θ ) dθ 2 2 =−
Wl (1.5sin1.5θ + sin θ ) 2
d 2V Wl = − ( 2.25cos1.5θ + cosθ ) 2 2 dθ For equilibrium
dV = 0: 1.5sin1.5θ + sin θ = 0 dθ
Solutions: One solution, by inspection, is θ = 0, and a second angle less than 180° can be found numerically:
θ = 2.4042 rad = 137.8° Now
d 2V Wl = − ( 2.25cos1.5θ + cosθ ) 2 dθ 2
At θ = 0:
d 2V Wl = − ( 2.25cos 0° + cos 0° ) 2 dθ 2
=− At θ = 137.8°:
Wl ( 3.25) ( < 0 ) 2
∴ θ = 0, Unstable
d 2V Wl 2.25cos (1.5 × 137.8° ) + cos137.8° =− 2 2 dθ
=
Wl ( 2.75) ( > 0 ) 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∴ θ = 137.8°, Stable
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 73.
Potential Energy
V =
1 Kθ 2 − Pl sin θ 2
dV = Kθ − Pl cosθ dθ d 2V = K + Pl sin θ dθ 2
dV K = 0: cosθ = θ dθ Pl
Equilibrium: For
P = 2 kN,
l = 250 mm, cosθ =
K = 225 N ⋅ m/rad
225 N ⋅ m/rad θ ( 2000 N )( 0.25 m )
= 0.450θ Solving numerically, we obtain
θ = 1.06896 rad = 61.247° θ = 61.2° Stability d 2V = ( 225 N ⋅ m/rad ) + ( 2000 N )( 0.25 m ) sin 61.2° > 0 dθ 2 ∴ Stable
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 74.
Potential Energy
V =
1 Kθ 2 − Pl sin θ 2
dV = Kθ − Pl cosθ dθ d 2V = K + Pl sin θ dθ 2 Equilibrium
dV K = 0: cosθ = θ dθ Pl
P = 6.3 kN, l = 250 mm, and K = 225 N ⋅ m/rad
For
cosθ =
225 N ⋅ m/rad θ ( 6300 N )( 0.25 m ) cosθ =
or Solving numerically,
θ 7
θ = 1.37333 rad, 5.652 rad, and 6.616 rad θ = 78.7°, 323.8°, 379.1°
or
Stability At θ = 78.7°:
d 2V = ( 225 N ⋅ m/rad ) + ( 6300 N )( 0.25 m ) sin 78.7° dθ 2
= 1769.5 N ⋅ m > 0 At θ = 323.8°:
d 2V = ( 225 N ⋅ m/rad ) + ( 6300 N )( 0.25 m ) sin 323.8° dθ 2
= − 705.2 N ⋅ m < 0 At θ = 379.1°:
∴ θ = 78.7°, Stable
∴ θ = 324°, Unstable
d 2V = ( 225 N ⋅ m/rad ) + ( 6300 N )( 0.25 m ) sin 379.1° dθ 2
= 740.37 N ⋅ m > 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∴ θ = 379°, Stable
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 75.
ySP = r (θ − θ 0 ) ,
Have
yB = l AB cosθ ,
r = 4 in.,
θ 0 = 20° =
π 9
rad
l AB = 18 in.
Potential Energy: V = =
1 2 kySP + WyB 2 1 2 2 kr (θ − θ 0 ) + Wl AB cosθ 2
dV = kr 2 (θ − θ 0 ) − Wl AB sin θ dθ d 2V = kr 2 − Wl AB cosθ dθ 2
For equilibrium: dV = 0: dθ
( 4.5 lb/in.)( 4 in.)2
π
4
−
π
π
− W (18 in.) sin = 0 9 4
W = 2.4683 lb
W = 2.47 lb
Stability: d 2V π 2 = ( 4.5 lb/in.)( 4 in.) − ( 2.4683 lb )(18 in.) cos 2 4 dθ = 40.6 lb ⋅ in. > 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∴ Stable
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 76.
Have
ySP = r (θ − θ 0 ) ,
r = 4 in.,
yB = l AB cosθ ,
l AB = 18 in.
θ 0 = 20° =
π 9
rad
Potential Energy: 1 2 kySP + WyB 2 1 2 = kr 2 (θ − θ 0 ) + Wl AB cosθ 2
V =
dV = kr 2 (θ − θ 0 ) − Wl AB sin θ dθ d 2V = kr 2 − Wl AB cosθ dθ 2 For equilibrium: dV = 0: dθ
Solving numerically:
( 4.5 lb/in.)( 4 in.)2 θ
−
π
− ( 6.6 lb )(18 in.) sin θ = 0 9
π θ − − 1.65sin θ = 0 9 θ = 1.90680 rad = 109.252°
θ = 109.3° W
Stability: d 2V 2 = ( 4.5 lb/in.)( 4 in.) − ( 6.6 lb )(18 in.) cos109.252° dθ 2 = 111.171 lb ⋅ in. > 0
∴ Stable W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 77.
Note: y = 20 −
(11)2 − ( 20 − x )2 in.
)
(
= 20 − − x 2 + 40 x − 279 in.
Potential Energy: V =
1 1 2 2 k ( x − 7.5 ) + k ( y − 7.5) + WA ( 20 ) + WB y 2 2
(
1 1 2 k ( x − 7.5 ) + k 12.5 − − x 2 + 40 x − 279 2 2 Equilibrium Condition: =
dV = 0: dx
)
2
(
+ 20WA + WB 20 − − x 2 + 40 x − 279
40 − 2 x k ( x − 7.5 ) + k 12.5 − − x 2 + 40 x − 279 − 2 − x 2 + 40 x − 279
)
(
− WB
40 − 2 x 2
2 − x + 40 x − 279
=0
Simplifying, 12.5 k ( x − 20 ) + 12.5k − x 2 + 40 x − 279 + WB ( x − 20 ) = 0 Substituting
k = 1 lb/in.,
WB = 10 lb:
12.5 (1 lb/in.) ( x − 20 ) in. + 12.5 (1 lb/in.)
(
)
− x 2 + 40 x − 279 in. + (10 lb ) ( x − 20 ) in. = 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
)
COSMOS: Complete Online Solutions Manual Organization System
or or
( x − 20 ) +
− x 2 + 40 x − 279 + 0.8 ( x − 20 ) = 0
− x 2 + 40 x − 279 = 1.8 ( 20 − x )
or
− x 2 + 40 x − 279 = ( 36 − 1.8 x )
or
4.24 x 2 − 169.6 x + 1575 = 0 169.6 ±
2
( −169.6 )2 − 4 ( 4.24 )(1575) 2 ( 4.24 )
Then
x=
or
x = 14.6579 in.
Since
x ≤ 20 in.
and
x = 25.342 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
x = 14.66 in. W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 78.
Deflection of spring = s, where
l 2 + y2 − l
s =
ds = dy V =
Potential Energy:
y 2
l − y2 1 2 y ks − W 2 2
dV ds 1 = ks − W dy dy 2
dV =k dy
(
l 2 + y2 − l
= k 1 − Equilibrium Now Then
or Solving numerically,
)
l + y
2
−
1 W 2
y − 1W 2 2 2 l + y l
dV = 0: 1 − dy
(
y 2
y = 1W 2 2 2 k l + y l
)
W = mg = (12 kg ) 9.81 m/s 2 = 117.72 N, l = 0.75 m, and k = 900 N/m
1 −
0.75 m
( 0.75 m )2 1 −
y = 1 (117.72 N ) 2 ( 900 N/m ) + y 2
y = 0.0654 0.5625 + y 2 0.75
y = 0.45342 m y = 453 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 79.
(a)
We note that in U ABC, 1 ∠A = ∠B = 180° − ( 90° + θ ) 2 = 45° −
θ 2
θ Thus AB = 2a cos 45° − 2
θ θ = 2a cos 45° cos + sin 45° sin 2 2 = 2a
= Elongation of Spring:
2 θ θ cos + sin 2 2 2
θ θ 2 a cos + sin 2 2
s = AB − 2 a
θ θ = 2 a cos + sin − 1 2 2 Potential Energy:
V =
1 2 ks − W ( l sin θ ) 2
V =
1 θ θ k 2a 2 cos + sin − 1 − Wl sin θ 2 2 2
( )
2
θ θ θ θ θ θ = ka 2 cos 2 + sin 2 + 1 + 2cos sin − 2cos − 2sin − Wl sin θ 2 2 2 2 2 2 θ θ = ka 2 1 + 1 + sin θ − 2cos − 2sin − Wl sin θ 2 2 θ θ Wl = 2ka 2 1 − cos − sin + ka 2 1 − 2 sin θ 2 2 ka continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
dV θ 1 θ Wl 1 = 2ka 2 sin − cos + ka 2 1 − 2 cosθ 2 2 2 dθ ka 2 θ θ Wl = ka 2 − cos − sin + 1 − 2 cosθ 2 2 ka For Equilibrium:
dV = 0: dθ (b)
cos
θ 2
− sin
θ
Wl = 1 − 2 cosθ 2 ka
(1)
W
Given data:
k = 75 lb/in., a = 10 in., l = 15 in., and W =100 lb cos
Using equation (1):
cos
θ 2
θ 2
− sin
− sin
(100 lb )(15 in.) cosθ = 1 − 2 ( 75 lb/in.)(10 in.)2
θ
θ
Letting
cosθ = cos 2
Then
cos
θ 2
− sin
= 0.8 cosθ
2
θ
− sin 2
2
θ 2
θ 2
:
θ θ θ θ = 0.8 cos − sin cos + sin 2 2 2 2
Which yields cos
θ 2
− sin
θ 2
=0
and
θ
The first equation yields In the second equation let x = cos
2
θ 2
cos
+ sin
θ 2
= 1.25
and the equation becomes
x 2 − 1.25 x + 0.28125 = 0
Solving
x = 0.95572 and x = 0.29428 2
2
= cos −1 0.95572 and
θ 2
θ = 90.0° W
= 45°,
or
θ
θ
x + 1 − x 2 = 1.25
= cos −1 0.29428
θ = 34.2° and θ = 145.8° W Stability: d 2V 1 2 θ θ Wl = ka sin + cos − 2 1 − 2 sin θ 2 2 2 dθ ka 2 =
1 2 θ θ ka sin + cos −1.6sin θ 2 2 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
θ = 34.2°: θ = 90.0°: θ = 145.8°:
d 2V 1 2 = ka ( 0.2940 + 0.9558 − 0.8993) > 0 dθ 2 2 d 2V 1 2 = ka ( 0.707 + 0.707 − 1.6 ) < 0 dθ 2 2 d 2V 1 2 = ka ( 0.9558 + 0.2940 − 0.8993) > 0 dθ 2 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Stable W Unstable W Stable W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 80.
Note:
xSPA = rA sin θ xSPB = xSPA xSP = xSPA + xSPB = 2rA sin θ ,
yBLOCK = rθ , V =
Potential Energy:
=
rA = 150 mm
r = 200 mm
1 2 kxSP − mgyBLOCK 2 1 2 k ( 2rA sin θ ) − mgr θ 2
= 2krA2 sin 2 θ − mgr θ
dV = 2krA2 ( 2sin θ cosθ ) − mgr = 2krA2 sin 2θ − mgr dθ d 2V = 4krA2 cos 2θ 2 dθ
(1)
Equilibrium Condition:
dV = 0: dθ
2krA2 sin 2θ − mgr = 0
(
)
Thus
2 ( 2000 N/m )( 0.15 m ) sin 2θ − m 9.81 m/s 2 ( 0.2 m ) = 0
or
m = 45.872 sin 2θ ( kg )
(a)
From Eq. (2),
with m ≥ 0:
(b)
For Stable equilibrium:
d 2V >0 dθ 2
Then from Eq. (1)
cos 2θ > 0
2
(2) 0 ≤ m ≤ 45.9 kg W
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
0 ≤ θ ≤ 45.0° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 81.
Note:
xSPA = rA sin θ xSPB = xSPA xSP = xSPA + xSPB = 2rA sin θ ,
rA = 150 mm
yBLOCK = r θ , V =
Potential Energy:
=
r = 200 mm
1 2 kxSP − mgyBLOCK 2 1 2 k ( 2rA sin θ ) − mgr θ 2
= 2krA2 sin 2 θ − mgr θ
dV = 2krA2 ( 2sin θ cosθ ) − mgr = 2krA2 sin 2θ − mgr dθ d 2V = 4krA2 cos 2θ dθ 2
(1)
Equilibrium Condition:
dV = 0: dθ
2krA2 sin 2θ − mgr = 0
Thus
2 ( 2000 N/m )( 0.15 m ) sin 2θ − m 9.81 m/s 2 ( 0.2 m ) = 0
or
m = 45.872 sin 2θ ( kg )
(
2
)
(2)
20 = 45.872 sin 2θ Solving
θ = 12.9243°
and
θ = 77.076°
Stability: Using Eq. (1)
θ = 12.9243°:
d 2V = 4krA2 cos ( 2 × 12.9243° ) > 0 dθ 2
θ = 77.076°:
d 2V = 4krA2 cos ( 2 × 77.076° ) < 0 dθ 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∴ θ = 12.92°, Stable W ∴ θ = 77.1°, Unstable W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 82.
(a)
sSP = l cosθ 0 − l cosθ = l ( cosθ 0 − cosθ ) Potential Energy:
V = =
1 2 ksSP − mg ( 2l sin θ ) 2 1 2 2 kl ( cosθ 0 − cosθ ) − 2mgl sin θ 2
dV = kl 2 ( cosθ 0 − cosθ ) sin θ − 2mgl cosθ dθ Equilibrium: dV = 0: dθ
(1)
kl 2 ( cosθ 0 − cosθ ) sin θ − 2mgl cosθ = 0
Since cosθ = 0 is not a solution of the equation, we can divide all terms by kl 2 cosθ and write
( cosθ 0 − cosθ ) tan θ
=
2mg kl
(2)
The spring is unstretched for θ = 0 thus θ 0 = 0 in Eq. (2) and we have
(1 − cosθ ) tan θ
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
=
2mg W kl
COSMOS: Complete Online Solutions Manual Organization System
(b)
For the given data
(1 − cosθ ) tan θ Solving by trial and error:
=
(
2 ( 5 kg ) 9.81 m/s 2
)
(800 N/m )( 0.250 m )
= 0.4905
θ = 51.96°,
θ = 52.0° W
Stability: Differentiating Eq. (1):
d 2V = kl 2 sin 2 θ + cosθ 0 cosθ − cos 2 θ + 2mgl sin θ 2 dθ
(
)
2mg sin θ = kl 2 cosθ 0 cosθ − cos 2θ + kl
(3)
For θ 0 = 0, θ = 51.96°, and the given data
d 2V = kl 2 ( cos 51.96° − cos103.92° + 0.4905sin 51.96° ) dθ 2 = 1.2431 kl 2 > 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 52.0°, Stable W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 83.
(1)
Law of Sines:
yA l = sin ( 90° + β − θ ) sin ( 90° − β ) yA l = cos (θ − β ) cos β yA = l
From Eq. (1):
yB = l
cos (θ − β ) cos β
cos (θ − β ) − l cosθ cos β
Potential Energy:
l cos (θ − β ) cos (θ − β ) − l cosθ − Ql V = − PyB − Qy A = − P cos β cos β sin (θ − β ) sin (θ − β ) dV = − Pl − + l sin θ + Ql dθ cos β cos β
Equilibrium:
dV = 0: dθ
or
( P + Q )( sin θ cos β
( P + Q ) sin (θ
− β ) = P sin θ cos β
− cosθ sin β ) = P sin θ cos β
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Substracting P ( sin θ cos β ) from each member yields
− ( P + Q ) cosθ sin β + Q sin θ cos β = 0 or Given data:
tan θ =
P+Q tan β Q
β = 30°, P = Q = 400 N tan θ =
( 400 N ) + ( 400 N ) ( 400 N )
tan 30°
tan θ = 2 ( 0.57735 ) = 1.1547
θ = 49.1°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 84.
(1)
Law of Sines:
yA l = sin ( 90° + β − θ ) sin ( 90° − β ) yA l = cos (θ − β ) cos β yA = l
From Eq. (1):
yB = l
cos (θ − β ) cos β
cos (θ − β ) − l cosθ cos β
Potential Energy:
cos (θ − β ) cos (θ − β ) − l cosθ − Ql V = − PyB − Qy A = − P l cos β cos β sin (θ − β ) sin (θ − β ) dV = − Pl − + l sin θ + Ql dθ cos β cos β
Equilibrium:
dV = 0: dθ
or
( P + Q )( sin θ cos β
( P + Q ) sin (θ
− β ) = P sin θ cos β
− cosθ sin β ) = P sin θ cos β
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Substracting P ( sin θ cos β ) from each member yields
− ( P + Q ) cosθ sin β + Q sin θ cos β = 0 or Given data:
tan θ =
P+Q tan β Q
P = 100 N, Q = 25 N, β = 30° tan θ =
(100 N ) + ( 25 N ) ( 25 N )
tan 30°
= 5 ( 0.57735 ) = 2.8868
θ = 70.9°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 85.
First note, by Law of Cosines: 2
θ θ θ 2 d 2 = (16 ) + 16 sin − 2 (16 ) 16 sin cos 2 2 2 d = 16 1 + sin 2
θ 2
− sin θ in.
xSP = rA θ
Also note Potential Energy:
V =
1 2 kxSP + WD yD 2
=
1 2 k ( rAθ ) + WD ( yD )0 − (16 − d ) sin 60° 2
=
1 2 2 θ krAθ + WD ( yD )0 − 16 − 16 1 + sin 2 − sin θ 2 2
sin 60°
Equilibrium condition:
dV = 0: dθ
krA2θ
+ 16WD sin 60°
krA2θ + 4WD sin 60°
1 θ θ sin cos − cosθ 2 2 2 1 + sin 2
θ
2
− sin θ
sin θ − 2cosθ 1 + sin
2θ
2
=0
− sin θ
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
=0
COSMOS: Complete Online Solutions Manual Organization System
Substituting,
( 2.5 lb/in.)( 2 in.)2 θ or
θ 1 + sin 2
θ 2
Solving numerically,
1 + sin 2
θ 2
− sin θ + 4 ( 25 lb ) sin 60° ( sin θ − 2cosθ ) = 0
− sin θ + 8.6603 ( sin θ − 2 cosθ ) = 0
θ = 1.08572 rad or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 62.2°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 86.
First note that cable tension is uniform throughout, hence
FSP1 = FSP2 k1x1 = k2 x2
x2 =
k1 6 lb/in. x1 = x1 k2 3 lb/in.
x2 = 2 x1
Now, with C midway between the pulleys,
2d = 16 in. + x1 + x2
d =8+ Then
1 ( x1 + x2 ) 2
y 2 = d 2 − 82 2
1 = 8 + ( x1 + x2 ) − 82 2 1 2 = 8 ( x1 + x2 ) + ( x1 + x2 ) 4 1 2 = 8 ( x1 + 2 x1 ) + ( x1 + 2 x1 ) 4 9 = 24 x1 + x12 in 2 4
( )
1 96 x1 + 9 x12 2 Potential Energy: y=
V =
1 2 1 k1x1 + k2 x22 − Wy 2 2
=
1 2 1 2 1 k1x1 + k2 ( 2 x1 ) − W 96 x1 + 9 x12 2 2 2
=
1 1 ( k1 + 4k2 ) x12 − W 96 x1 + 9 x12 2 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Equilibrium condition:
=0 4 96 x + 9 x 2 1 1
dV = 0: dx1
( k1 + 4k2 ) x1 − W
(
6 + 4 ( 3) lb/in. × ( x1 ) in.
or
18x1 96 x1 + 9 x12 − 600 − 112.5x1 = 0
x1 = 2.7677 in.
Then
y=
)
1 96 x1 + 9 x12 in. − ( 25 lb ) ( 96 + 18 x1 ) in. = 0 4
or
Solving,
96 + 18x1
1 2 96 ( 2.7677 ) + 9 ( 2.7677 ) 2
= 9.1466 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
y = 9.15 in.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 87.
Stretch of Spring s = AB − r
s = 2 ( r cosθ ) − r s = r ( 2cosθ − 1) Potential Energy:
V =
1 2 ks − Wr sin 2θ 2
V =
1 2 2 kr ( 2 cos θ − 1) − Wr sin 2θ 2
W = mg
dV = −kr 2 ( 2 cosθ − 1) 2sin θ − 2Wr cos 2θ dθ Equilibrium
dV = 0: dθ
− kr 2 ( 2cosθ − 1) sin θ − Wr cos 2θ = 0
( 2cosθ
− 1) sin θ
cos 2θ
Now
Then Solving numerically,
=−
(
W kr
)
( 20 kg ) 9.81 m/s2 W = = 0.36333 kr ( 3000 N/m )( 0.180 m ) ( 2cosθ
− 1) sin θ
cos 2θ
= −0.36333
θ = 0.9580 rad = 54.9°
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 54.9°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 88.
Have Then
l AD = 2r sin θ
y A = − LAD sin ( 90° − θ ) − 45°
= − 2r sin θ sin ( 45° − θ ) Also for spring
s = l AB − r
= 2r cosθ − r = r ( 2 cosθ − 1) V = VSP + Vm
Potential Energy:
=
1 2 ks + mgy A 2
=
1 2 2 kr ( 2 cosθ − 1) − 2mgr sin θ sin ( 45° − θ ) 2
For Equilibrium:
dV = 0: dθ
kr 2 ( − 2sin θ )( 2cosθ − 1) − 2mgr cosθ sin ( 45° − θ ) − sin θ cos ( 45° − θ ) = 0 or or
− kr sin θ ( 2 cosθ − 1) − mg sin ( 45° − 2θ ) = 0 sin θ ( 2cosθ − 1) sin ( 45° − 2θ )
(
)
( 20 kg ) 9.81 m/s2 mg =− =− kr ( 3000 N/m )( 0.18 m ) = − 0.36333
Solving numerically
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 46.6°
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 89.
xC = d sin θ
Have
yB = h cosθ
1 V = 2 kxC2 + WyB 2
Potential Energy:
= kd 2 sin 2 θ + Wh cosθ dV = 2kd 2 sin θ cosθ − Wh sin θ dθ
Then
= kd 2 sin 2θ − Wh sin θ d 2V = 2kd 2 cos 2θ − Wh cosθ dθ 2
and
(1)
For equilibrium position θ = 0 to be stable, we must have d 2V = 2kd 2 − Wh > 0 dθ 2
or
kd 2 >
1 Wh 2
(2)
1 d 2V = 0, so that we must determine which is the first derivative that is not Wh, we have 2 dθ 2 equal to zero. Differentiating Equation (1), we write
Note: For kd 2 =
d 3V = −4kd 2 sin 2θ + Wh sin θ = 0 dθ 3
for θ = 0
d 4V = −8kd 2 cos 2θ + Wh cosθ dθ 4 For θ = 0:
d 4V = −8kd 2 + Wh dθ 4
1 d 4V 1 Wh, = −4Wh + Wh < 0, we conclude that the equilibrium is unstable for kd 2 = Wh 4 2 2 dθ and the > sign in Equation (2) is correct. Since kd 2 =
With Equation (2) gives
W = 160 lb, h = 50 in., and d = 24 in. 2
k ( 24 in.) > or
1 (160 lb )( 50 in.) 2
k > 6.944 lb/in.
k > 6.94 lb/in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 90.
Using Equation (2) of problem 10.89 with
h = 30 in.,
k = 4 lb/in.,
kd 2 > or
( 4 lb/in.) d 2
>
and
W = 40 lb
1 Wh 2 1 ( 40 lb )( 30 in.) 2
d 2 > 150 in 2 or
d > 12.247 in. Smallest d = 12.25 in.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Š 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 91.
Consider a small clockwise rotation θ of the plate about its center. Then
V = 2VP + 4VSP
where
a VP = P cosθ 2 = VSP =
and
1 ( Pa cosθ ) 2 1 2 kySP 2 2
d =
Now
= and
a 2 +a 2 a 5 2
θ α = 180° − φ + 90° − 2
θ = 90° − φ − 2 Then
a 5 θ sin α ySP = 2 =
a θ θ 5 sin 90° − φ − 2 2
=
a θ θ 5 cos φ − 2 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
VSP =
and
=
1 a θ k θ 5 cos φ − 2 2 2
2
5 2 2 θ ka θ cos 2 φ − 8 2
∴ V = Pa cosθ +
5 2 2 θ ka θ cos 2 φ − 2 2
Then 5 θ dV = − Pa sin θ + ka 2 2θ cos 2 φ − 8 2 dθ
θ θ 1 + θ 2 − cos φ − sin φ − 2 2 2 = − Pa sin θ +
5 2 θ 1 ka 2θ cos 2 φ − + θ 2 sin ( 2φ − θ ) 2 2 2
5 θ d 2V = − Pa cosθ + ka 2 2 cos 2 φ − 2 2 2 dθ
θ θ 1 − 2θ − cos φ − sin φ − + θ sin ( 2φ − θ ) 2 2 2 −
1 2 θ cos ( 2φ − θ ) 2
= − Pa cosθ + −
5 2 θ 3 ka 2cos 2 φ − + θ sin ( 2φ − θ ) 2 2 2
1 2 θ cos ( 2φ − θ ) 2
1 5 θ θ 3 d 3V = Pa sin θ + ka 2 4 − cos φ − sin φ − + sin ( 2φ − θ ) 3 2 2 2 2 dθ 2 −
3 1 θ cos ( 2φ − θ ) − θ cos ( 2φ − θ ) + θ 2 sin ( 2φ − θ ) 2 2
= Pa sin θ + +
5 2 1 5 ka sin ( 2φ − θ ) − θ cos ( 2φ − θ ) 2 2 2
1 2 θ sin ( 2φ − θ ) 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
When θ = 0,
dV = 0 for all values of P. dθ
For stable equilibrium when θ = 0, require d 2V 5 > 0: − Pa + ka 2 2cos 2 φ > 0 2 2 dθ
(
cos φ =
Now, when θ = 0,
)
a 2
a 5 2
=
1 5
1 ∴ − Pa + 5ka 2 > 0 5 P < ka
or When P = ka ( for θ = 0 ) :
dV =0 dθ d 2V =0 dθ 2 d 3V 5 = ka 2 sin 2φ > 0 ⇒ unstable 3 4 dθ
∴ Stable equilibrium for 0 ≤ P < ka W
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 92.
s=
Spring:
L 2L sin φ = sin θ 3 3
For small values of φ and θ :
φ = 2θ
2L L 1 V = P cos φ + cosθ + ks 2 3 3 2 =
PL 1 2L ( cos 2θ + 2cosθ ) + k sin θ 3 2 3
2
dV PL 2 = ( −2sin 2θ − 2sin θ ) + kL2 sin θ cosθ dθ 3 9 =−
PL 2 ( 2sin 2θ + 2sin θ ) + kL2 sin 2θ 3 9
d 2V PL 4 =− ( 4 cos 2θ + 2cosθ ) + kL2 cos 2θ 2 3 9 dθ When
For stability:
θ = 0:
d 2V 6 PL 4 2 =− + kL 2 3 9 dθ
d 2V 4 > 0: − 2PL + kL2 > 0 2 9 dθ 0≤ P<
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
2 kL W 9
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 93.
From geometry:
xC = − a sin θ = − 2a sin φ For small values of θ , φ
θ = 2φ or φ =
1 θ 2
y A = a cosθ + 3 a cos φ
θ = a cosθ + 3cos 2 For spring:
s = xC = − a sin θ Potential Energy:
V = VSP + VP
=
1 θ 2 k ( − a sin θ ) + Pa cosθ + 3cos 2 2
dV 3 θ = ka 2 cosθ sin θ − Pa sin θ + sin 2 2 dθ d 2V 3 θ = ka 2 − sin 2 θ + cos 2 θ − Pa cosθ + cos 4 2 dθ 2
(
For stable equilibrium:
)
d 2V >0 dθ 2
Then, with θ = 0
3 ka 2 − Pa 1 + > 0 4 or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P<
4 ka 7
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 94.
Consider a small disturbance of the system defined by the angle θ . Have xC = 2a sin θ = a sin φ For small θ :
2θ = φ
Now, the Potential Energy is V =
1 2 kxB + PyE 2
xB = a sin θ
where
yE = yC + yE/C
and
= 2a cosθ + 2a cos φ = 2a ( cosθ + cos 2θ ) Then and
V =
1 2 2 ka sin θ + 2Pa ( cosθ + cos 2θ ) 2
dV 1 = ka 2 ( 2sin θ cosθ ) − 2Pa ( sin θ + 2sin 2θ ) dθ 2 =
1 2 ka sin 2θ − 2Pa ( sin θ + 2sin 2θ ) 2
d 2V = ka 2 cos 2θ − 2Pa ( cosθ + 4 cos 2θ ) dθ 2 For θ = 0 and for stable equilibrium: d 2V >0 dθ 2 or
ka 2 − 2 Pa (1 + 4 ) > 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
P<
or
1 ka 10 ∴ 0≤ P<
Check stability for
P=
ka 10
d 3V = −2ka 2 sin 2θ + 2Pa ( sin θ + 8sin 2θ ) dθ 3 d 4V = −4ka 2 cos 2θ + 2Pa ( cosθ + 16cos 2θ ) dθ 4 Then, with
θ =0
and
P=
ka 10
dV =0 dθ d 2V =0 dθ 2 d 3V =0 dθ 3 d 4V 1 = −4ka 2 + 2 ka ( a )(1 + 16 ) 4 dθ 10
= −0.6ka 2 < 0 ⇒ Unstable
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
1 ka W 10
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 95.
Displacements:
xG = xC = a sin θ
tan φ =
xG a + c − a cosθ
=
a sin θ a + c − a cosθ
=
sin θ c 1 + − cosθ a
Differentiating both sides with respect to θ :
1 dφ = 2 cos φ dθ
For θ = φ = 0:
c cosθ 1 + − cosθ − sin θ ( sin θ ) a 2 c + − 1 cos θ a
c dφ a = a 2 = dθ c c a
Potential Energy:
V = W1 y1 + W2 y2 = m1gb ( cos φ − 1) + m2 ga (1 − cosθ ) dV dφ = − m1gb sin φ + m2 ga sin θ dθ dθ 2 d 2φ d 2V dφ = − − m gb cos φ m gb sin φ 2 + m2 ga cosθ 1 1 dθ 2 dθ dθ
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
(1)
COSMOS: Complete Online Solutions Manual Organization System
For θ = φ = 0, and recalling Eq. (1), 2
d 2V a = − m1gb − 0 + m2 ga 2 dθ c For stability we need
d 2V >0 dθ 2
Thus
m1 < m2
or
m1g
ba 2 < m2 ga c2
c2 ab
The smallest value of m1 for stable equilibrium is thus
m1 = m2
c2 ab
Note: To determine whether the equilibrium is stable when m1 has the exact value we found, we should d 3V d 4V m c2 determine the values of the derivatives and for m1 = 2 . In practice, however we shall want to 4 3 dθ dθ ( ab ) keep m1 below this value.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 96.
A = a sin θ = b sin φ
First note For small values of θ and φ :
aθ = bφ a b
φ= θ V = P ( a + b ) cos φ − 2Q ( a + b ) cosθ a = ( a + b ) P cos θ − 2Q cos θ b a dV a = ( a + b ) − P sin θ + 2Q sin θ dθ b b a2 d 2V a a b = + ( ) − 2 P cos θ + 2Q cosθ 2 dθ b b When θ = 0:
Stability:
a2 d 2V a b = + ( ) − 2 P + 2Q 2 dθ b
d 2V a2 > 0: − P + 2Q > 0 dθ 2 b2 P<2
or With
b2 Q a2
(1)
a2 P 2b 2 P = 600 N, a = 480 mm and b = 400 mm Q>
(2)
2
1 ( 480 mm ) Q> ( 600 N ) = 432 N 2 ( 400 mm )2 Q > 432 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 97.
xB = l sin θ
Have
xC = l sin θ1 + l sin θ 2
yC = l cosθ1 + l cosθ 2
V = PyC + or
1 2 1 2 kxB + kxC 2 2
V = Pl ( cosθ1 + cosθ 2 ) +
1 2 2 2 kl sin θ1 + ( sin θ1 + sin θ 2 ) 2
For small values of θ1 and θ 2 :
sin θ1 ≈ θ1, Then
and
sin θ 2 ≈ θ 2 ,
1 cosθ1 ≈ 1 − θ12 , 2
cos θ 2 ≈ 1 −
1 2 θ2 2
θ2 θ2 1 2 V = Pl 1 − 1 + 1 − 2 + kl 2 θ12 + (θ1 + θ 2 ) 2 2 2 ∂V = − Plθ1 + kl 2 θ1 + (θ1 + θ 2 ) ∂θ1 ∂V = − Plθ 2 + kl 2 (θ1 + θ 2 ) ∂θ 2
∂ 2V = − Pl + 2kl 2 ∂θ12
∂ 2V = − Pl + kl 2 ∂θ 22
∂ 2V = kl 2 ∂θ1∂θ 2 continued
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Stability For
Conditions for stability (see page 583).
∂V ∂V = =0 ∂θ1 ∂θ 2
θ1 = θ 2 = 0:
( condition satisfied )
2
∂ 2V ∂ 2V ∂ 2V <0 − ∂θ12 ∂θ 22 ∂θ1∂θ 2 Substituting,
( kl ) − ( −Pl + 2kl ) ( −Pl + kl ) < 0 2
2
2
k 2l 4 − P 2l 2 + 3Pkl 3 − 2k 2l 4 < 0 P 2 − 3klP + k 2l 2 > 0 Solving, or
3− 5 kl 2
or
P >
P < 0.382kl
or
P > 2.62kl
P<
3+ 5 kl 2
∂ 2V > 0: − Pl + 2kl 2 > 0 ∂θ12 or
P<
1 kl 2
∂ 2V > 0: − Pl + kl 2 > 0 ∂θ 22 or
P < kl
Therefore, all conditions for stable equilibrium are satisfied when 0 ≤ P < 0.382kl
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 98.
From the analysis of Problem 10.97 with l = 400 mm
and
k = 1.25 kN/m
P < 0.382kl = 0.382 (1250 N/m )( 0.4 m ) = 191 N 0 â&#x2030;¤ P < 191.0 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell Š 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 99.
V =
Have
1 1 2 2 k ( aθ 2 ) + k ( a sin θ1 + a sin θ 2 ) + P ( 2a cosθ1 + a cosθ 2 ) 2 2 ∂V = ka 2 ( sin θ1 + sin θ 2 ) cosθ1 − 2Pa sin θ1 ∂θ1
Then
1 = ka 2 sin 2θ1 + cosθ1 sin θ 2 − 2 Pa sin θ1 2 and
∂ 2V = ka 2 ( cos 2θ1 − sin θ1 sin θ 2 ) − 2Pa cosθ1 ∂θ12 ∂ 2V = ka 2 cosθ1 cosθ 2 ∂θ1∂θ 2
Also
∂V = ka 2θ 2 + ka 2 ( sin θ1 + sin θ 2 ) cosθ 2 − Pa sin θ 2 ∂θ 2
1 = ka 2θ 2 + ka 2 sin θ1 cosθ 2 + sin 2θ 2 − Pa sin θ 2 2 and
∂ 2V = ka 2 + ka 2 ( − sin θ1 sin θ 2 + cos 2θ 2 ) − Pa cosθ 2 ∂θ 22
θ1 = θ 2 = 0
When
∂V =0 ∂θ1 ∂ 2V = ka 2 − 2Pa ∂θ12
∂ 2V = ka 2 ∂θ1∂θ 2
∂V =0 ∂θ 2
∂ 2V = ka 2 + ka 2 − Pa = 2ka 2 − Pa ∂θ 22
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
∂V = 0: ∂θ1
Apply Equations 10.24
condition satisfied
∂V = 0: ∂θ 2 2
∂ 2V ∂ 2V ∂ 2V < 0: − ∂θ12 ∂θ 22 ∂θ1∂θ 2
or
2
)(
)
− 2Pa 2ka 2 − Pa < 0
2P 2 − 5kaP + k 2a 2 > 0
or
Also
2
k 2a 2 − 2k 2a 2 + 5kaP − 2 P 2 < 0
Expanding
or
2
k 2a 2 − ( ka − 2P )( 2ka − P ) < 0
or
or
( ka ) − ( ka
condition satisfied
5 − 17 ka 4
and
P < 0.21922ka
and
P<
P >
5 + 17 ka 4
P > 2.2808ka
δ 2V > 0: ka 2 − 2 Pa > 0 δθ12
or
δ 2V > 0: 2ka 2 − Pa > 0 δθ 22
1 ka 2
or
P < 2ka
P<
∴ For stable equilibrium when θ1 = θ 2 = 0: 0 ≤ P < 0.219ka
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 100.
Potential Energy:
V = = Then
1 2 1 2 kx1 + kx2 + Py 2 2 1 1 2 2 k ( a sin θ1 + a sin θ 2 ) + k ( a θ 2 ) + P ( 2a cosθ1 + a cosθ 2 ) 2 2
∂V = ka 2 ( sin θ1 + sin θ 2 ) cosθ1 − 2P a sin θ1 ∂θ1
1 = ka 2 sin 2θ1 + cosθ1 sin θ 2 − 2Pa sin θ1 2 ∂ 2V = ka 2 ( cos 2θ1 − sin θ1 sin θ 2 ) − 2Pa cosθ1 ∂θ12 ∂ 2V = ka 2 cosθ1 cosθ 2 ∂θ1∂θ 2
∂V = ka 2 ( sin θ1 + sin θ 2 ) cosθ 2 + ka 2θ 2 − Pa sin θ 2 ∂θ 2
1 = ka 2 sin θ1 cosθ 2 + sin 2θ 2 + ka 2θ 2 − Pa sin θ 2 2 ∂ 2V = ka 2 ( − sin θ1 sin θ 2 + cos 2θ 2 ) + ka 2 − Pa cosθ 2 ∂θ 22
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
θ1 = θ 2 = 0
When
∂ 2V = ka 2 ∂θ1∂θ 2
∂V =0 ∂θ1
∂V =0 ∂θ 2
∂ 2V = ka 2 − 2 Pa 2 ∂θ1 ∂ 2V = ka 2 + ka 2 − Pa = 2ka 2 − Pa 2 ∂θ 2 Apply Eq. 10.24:
∂V = 0: ∂θ1
Condition satisfied
∂V = 0: ∂θ 2
Condition satisfied
2
∂ 2V ∂ 2V ∂ 2V < 0: − ∂θ12 ∂θ 22 ∂θ1∂θ 2
( ka ) − ( ka 2
2
2
)(
)
− 2Pa 2ka 2 − Pa < 0
k 2a 2 − ( ka − 2P )( 2ka − P ) < 0
k 2a 2 − 2k 2a 2 + 5Pka − 2P 2 < 0 2P 2 − 5P ka + k 2a 2 > 0 5 − 17 ka 4
and
P>
P < 0.21922 ka
and
P > 2.2808 ka
P<
or
∂ 2V >0 ∂θ12
5 + 17 ka 4
or
ka 2 − 2Pa > 0 or
P<
1 ka 2
∂ 2V < 0: ∂θ 22
2ka 2 − Pa > 0 or
P < 2ka
continued Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Thus, for stable equilibrium when θ1 = θ 2 = 0:
0 ≤ P < 0.21922 ka with k = 2 kN/m and a = 350 mm
0 ≤ P < 0.21922 ( 2000 N/m )( 0.35 m ) or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
0 ≤ P < 153.5 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 101.
From sketch
y A = 4 yC
δ y A = 4δ yC
Thus, (a) Virtual Work:
δ U = 0: P=
Pδ y A − F δ yC = 0
1 F 4
F = 300 N:
P=
1 ( 300 N ) = 75 N 4 P = 75.0 N
(b) Free body: Corkscrew
ΣFy = 0:
R+P−F =0
R + 75 N − 300 N = 0 R = 225 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 102.
First note, by the Law of Cosines 2
2
DB 2 = ( 3 ft ) + ( 2 ft ) − 2 ( 3 ft )( 2 ft ) cosθ
( )
= [13 − 12cosθ ] ft 2
DB = 13 − 12 cosθ Then
1 (12 )( sin θ ) δθ 2 13 − 12 cosθ
δ B = δ DB =
6sin θ δθ 13 − 12cosθ
or
δB =
Also
y A = 4.5cosθ
δ y A = −4.5sin θδθ
Then Virtual Work
δ U = 0: − ( 8 kips ) δ y A − FDBδ B = 0 Then
6sin θ −8 ( −4.5sin θ ) δθ − FDB 13 − 12 cosθ
or
FDB = or For
(8)( 4.5sin θ ) 6sin θ
δθ = 0
13 − 12cosθ
FDB = 6 13 − 12cosθ
θ = 70° FDB = 17.895 kips
FDB = 17.90 kips
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 103.
Given:
l AB = 3.6 in. lBC = 1.6 in. lCD = 1.2 in. lDE = 1.6 in.
lEF = 1.6 in. lFG = 4.8 in. Assume δ y A :
δ yC =
(1.6 in.) δ y = 4 δ y ( 3.6 in.) A 9 A 4 9
δ yD = δ yC = δ y A δ yG =
δφ = Virtual Work:
( 4.8 in.) δ y = ( 4.8 in.) 4 δ y = 2 δ y ( 3.2 in.) D ( 3.2 in.) 9 A 3 A δ yD
( 3.2 in.)
=
4 δ yA 9 ( 3.2 in.)
δ U = 0:
( 20 lb ) δ y A + Pδ yG + (180 lb ⋅ in.) δφ = 0 2 4 δ y A + (180 lb ⋅ in.) δ yA = 0 3 9 ( 3.2 in.)
( 20 lb ) δ y A + P Solving
P = − 67.5 lb P = 67.5 lb
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 104.
Given:
l AB = 3.6 in. lBC = 1.6 in. lCD = 1.2 in. lDE = 1.6 in. lEF = 1.6 in. lFG = 4.8 in. Assume δ y A :
δ yC =
(1.6 in.) δ y = 4 δ y ( 3.6 in.) A 9 A
δ yD = δ yC = δφ = Virtual Work:
δ yD
4 δ yA 9
( 3.2 in.)
=
4 5 δ yA = δy 9 ( 3.2 in.) ( 36 in.) A
δ U = 0:
( 20 lb ) δ y A + (180 lb ⋅ in.) δφ + M δ φ = 0 or
5 5 20 δ y A + 180 δ y A + M δ y A = 0 36 36
Solving
M = − 324.0 lb ⋅ in. or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
27.0 lb ⋅ ft
W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 105.
Have
xB = l cosθ
δ xB = −l sin θδθ
(1)
yC = l sin θ
δ yC = l cosθδθ δ xB =
Now
1 lδφ 2
Substituting from Equation (1) −l sin θδθ = or
1 lδφ 2
δφ = −2sin θδθ
Virtual Work:
δ U = 0: M δϕ + Pδ yC = 0 M ( −2sin θδθ ) + P ( l cosθδθ ) = 0 or
M =
1 cosθ Pl 2 sin θ
M =
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
Pl W 2 tan θ
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 106.
yE = l cosθ
δ yE = − l sin θ δθ Spring:
Unstretched length = 2 ( 2 l sin 30° ) = 2 l x = 2 ( 2l sin θ ) = 4 l sin θ
δ x = 4 l cos θ δ θ FSP = k ( x − 2l ) = k ( 4 l sin θ − 2 l )
Virtual Work:
δ U = 0:
P δ yE − FSP δ x = 0
P ( − l sin θ δθ ) − k ( 4 l sin θ − 2l )( 4l cosθ δθ ) = 0
or
− P sin θ − 8kl ( 2sin θ − 1) cosθ = 0
or
P 1 − 2sin θ = 8kl tan θ
We have
P = 40 lb, l = 10 in., and k = 1.5 lb/in.
Thus
( 40 lb ) 1 − 2sin θ = 8 (1.5 lb/in.)(10 in.) tan θ
Solving
θ = 24.98° or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
θ = 25.0° W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 107.
δ xB =
1 l δφ 2
δC =
δ Cx δ xB l δφ = = cosθ cosθ 2cosθ
Virtual Work:
δ U = 0:
M δφ − Q δ C = 0
l M δφ − Q 2cosθ
δφ = 0
or
M =
Ql 2cosθ
Thus
M =
1 ( 40 lb )(1.8 ft ) = 85.18 lb ⋅ ft 2 cos 65°
or
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
M = 85.2 lb ⋅ ft
W
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 108.
Assuming
δ yA it follows
δ yC =
120 δ y A = 1.5δ y A 80
δ yE = δ yC = 1.5δ y A δ yD = δ yG =
180 δ yE = 3 (1.5δ y A ) = 4.5δ y A 60
100 100 δ yE = (1.5δ y A ) = 2.5δ y A 60 60
Then, by Virtual Work
δ U = 0:
( 300 N ) δ y A − (100 N ) δ yD + Pδ yG
=0
300δ y A − 100 ( 4.5δ y A ) + P ( 2.5δ y A ) = 0 300 − 450 + 2.5P = 0 P = +60 N
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
P = 60 N
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 109.
Apply vertical load P at D.
ΣM H = 0: − P (12 m ) + E ( 36 m ) = 0 E= ΣFy = 0:
P 3
3 P FBF − =0 5 3 FBF =
5 P 9
Virtual Work: We remove member BF and replace it with forces FBF and −FBF at pins F and B, respectively. Denoting the virtual displacements ofuuu points B and r F as δ rB and δ rF , respectively, and noting that P and δ D have the same direction, we have Virtual Work:
δ U = 0: Pδ D + FBF ⋅δ rF + ( −FBF ) ⋅δ rB = 0 Pδ D + FBF δ rF cosθ F − FBF δ rB cosθ B = 0
Pδ D − FBF (δ rB cosθ B − δ rF cosθ F ) = 0 where (δ rB cosθ B − δ rF cosθ F ) = δ BF , which is the change in length of member BF. Thus, Pδ D − FBF δ BF = 0
5 Pδ D − P ( 75 mm ) = 0 9
δ D = +41.67 mm δ D = 41.7 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 110.
Apply horizontal load P at D.
ΣM H = 0: P ( 9 m ) − E y ( 36 m ) = 0
Ey = ΣFy = 0:
P 4
3 P FBF − =0 5 4
FBF =
5 P 12
We remove member BF and replace it with forces FBF and −FBF at pins F and B, respectively. Denoting the virtual displacements ofuuu points B and r F as δ rB and δ rF , respectively, and noting that P and δ D have the same direction, we have Virtual Work:
δ U = 0: Pδ D + FBF ⋅δ rF + ( −FBF ) ⋅δ rB = 0 Pδ D + FBF δ rF cosθ F − FBF δ rB cosθ B = 0
Pδ D − FBF (δ rB cosθ B − δ rF cosθ F ) = 0 where (δ rB cosθ B − δ rF cosθ F ) = δ BF , which is the change in length of member BF. Thus,
Pδ D − FBF δ BF = 0
5 Pδ D − P ( 75 mm ) = 0 12
δ D = 31.25 mm
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
δ D = 31.3 mm
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 111.
Potential Energy
l l V = 3.5 kg × 9.81 m/s 2 − sin θ + 1.75 kg × 9.81 m/s2 cosθ 2 2
(
)
(
)
= ( 8.5838 N ) l ( −2sin θ + cosθ ) dV = ( 8.5838 N ) l ( −2cosθ − sin θ ) dθ d 2V = ( 8.5838 N ) l ( 2sin θ − cosθ ) dθ 2 Equilibrium: or Thus
dV = 0: − 2cosθ − sin θ = 0 dθ tan θ = −2
θ = −63.4°
and
116.6°
Stability At θ = −63.4°:
d 2V = ( 8.5838 N ) l 2sin ( −63.4° ) − cos ( −63.4° ) dθ 2 = ( 8.5838 N ) l ( −1.788 − 0.448 ) < 0 ∴ θ = −63.4°, Unstable
At θ = 116.6°:
d 2V = ( 8.5838 N ) l 2sin (116.6° ) − cos (116.6° ) dθ 2 = ( 8.5838 N ) l (1.788 + 0.447 ) > 0 ∴ θ = 116.6°, Stable
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System
Chapter 10, Solution 112.
s = l sin θ + l cosθ − l
Elongation of Spring:
= l ( sin θ + cosθ − 1) Potential Energy:
V = =
1 2 l ks − W sin θ 2 2 1 2 l 2 kl ( sin θ + cosθ − 1) − mg sin θ 2 2
dV 1 = kl 2 ( sin θ + cosθ − 1)( cosθ − sinθ ) − mgl cosθ dθ 2 Equilibrium:
dV = 0: dθ
or
mg =0 cosθ ( sin θ + cosθ − 1)(1 − tan θ ) − 2kl
Now with
W = mg = (125 kg ) 9.81 m/s 2 = 1226.25 N
( sin θ
+ cosθ − 1)( cosθ − sin θ ) −
(
)
l = 320 mm, and k = 15 kN/m, 1226.25 N cosθ ( sin θ + cosθ − 1)(1 − tan θ ) − =0 2 (15000 N/m )( 0.32 m ) or
cosθ ( sin θ + cosθ − 1)(1 − tan θ ) − 0.12773 = 0
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
mg cosθ = 0 2kl
COSMOS: Complete Online Solutions Manual Organization System
By inspection, one solution is Solving numerically:
cosθ = 0
or
θ = 90.0°
θ = 0.38338 rad = 9.6883° and θ = 0.59053 rad = 33.8351°
Stability d 2V 1 = kl 2 ( cosθ − sin θ )( cosθ − sin θ ) + ( sin θ + cosθ − 1)( − sin θ − cosθ ) + mgl sin θ 2 2 dθ
mg = kl 2 1 + sin θ + cosθ − 2sin 2θ 2kl (1226.25 N ) 2 sin θ + cosθ − 2sin 2θ = (15000 N/m )( 0.32 m ) 1 + 2 (15000 N/m )( 0.32 m )
= (1536 N ⋅ m ) [1.12773 sin θ + cosθ − 2sin 2θ ] Thus
At θ = 90°:
d 2V = 1732.2 > 0 dθ 2
∴ θ = 90.0°, Stable
At θ = 9.6883°:
d 2V = 786.4 > 0 dθ 2
∴ θ = 9.69°, Stable
At θ = 33.8351°:
d 2V = − 600.6 < 0 dθ 2
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
∴ θ = 33.8°, Unstable