What makes a park popular ? A quantitative urban study using machine learning tools

Page 1

Data.Encoding.AIA.23.Lora.Georgios.Ziqi Whatmakesaparkpopular? Aquantitativeurbanstudyusingmachinelearningtools

Everyoneofuscanthinkofaparkintheircitythatisvery crowded andanotheronethatisalways desert.

Why?Isitrelatedtothedesignofthepark?

Design Problem Statement
ParcdelaCiutadella ParcoSempione ParcoPortello Barcelona Milano

Public parks are vital urban assets.

Their popularity depends on features like facilities,diversity, safety, and accessibility.

Leveraging data on these features can help formulate strategies to improve lesser-used parks,  increasing public engagement in urban spaces.

Design Research Scope

array(['Firenze','Rotterdam',  'Utrecht','Lille',  'Venezia','Napoli','Toulouse',  'Bologna','Lisboa','Porto',  'Wien','Lyon','Stuttgart',  'Geneva','Kyiv',  'FrankfurtamMain',  'Marseille','Dublin',  'Strasbourg','Bordeaux',  'Nantes','Warszawa',  'Praha','Krakovia','Granada', 'ACoruña','Sevilla','Barcelona',  'Hamburg','Amsterdam',  'Luxembourg','Liverpool',  'Manchester','Munchen',  'Berlin','Paris','Bristol',  'Birmingham','Madrid',  'London','Milano','Roma']

Data Collection

tags_to_fetch=

[{'natural':'tree'}, {'amenity':'bench'},

{'amenity':'fountain'},

{'amenity':'drinking_water'},

{'historic':'memorial'},

{'amenity':'bicycle_parking', {'amenity':'bicycle_rental'}, {'amenity':'waste_basket'}, {'amenity':'playground'}, {'amenity':'artwork'}, {'amenity':'pcnic_site'}, {'amenity':'restaurant'}, {'amenity':'bar'}, {'amenity':'toilets'}, {'highway':'footway'}, {'landuse':'grass'}, {'natural':'wood'}]

Data Collection

“Wonderfulparkfreeofcharge.Beautiful  monumentsandpicturesquebuildings.  Worthcominghereforacalm walk. Dogs arenotallowedunfortunately.Alsoagood  spotformakingphotos.Manylocalsspend  timehereaswell.Theparkissurroundedby  many cafessoyoucaneasyafterfinda  placetositandhaveasmallsnack”.

params={ 'input':search_query,  'inputtype':'textquery', 'fields':'name, Rating, User_ratings_total,place_id', 'key':api_key }

Data Collection
footway bikerental bikeparking trees toilets green_cover playground picnic_site monument memorial museum waste_basket sculpture fountain drinking_water restaurant bench bar MOVE NATURE CHILL DISCOVER EAT recyicling URBANFEATURES URBANCIRCULATION CULTURALCONTEXT VEGETATION% 7000 PARKS 11000 PARKS0 ratings  Data Processing

NEWINDEXES

ShannonDiversity

ShapeDeviation

Threshold/outliresFiltering

AMENITIES
rating reviews sentiment
rating_total rating_time POPULARITY
RATINGS
Data Processing

HydePark

CHILL

shapeDeviation:0.8

amenitiesDiversity:0.7

weighted_rating:4.7

VillaBorghese

Têted'Or

Buttes-Chaumont

shapeDeviation:0.9

amenitiesDiversity:0.5

weighted_rating:4.9

shapeDeviation:0.6

amenitiesDiversity:0.7

weighted_rating:4.2

shapeDeviation0.4

amenitiesDiversity:0.3

weighted_rating:4.4

Vondelpark

CHILL

shapeDeviation:0.8

amenitiesDiversity:0.7

weighted_rating:4.6

ParcoSempione

CHILL

shapeDeviation:0.8

amenitiesDiversity:0.7

weighted_rating:4.1

Vigelandsanlegget

JardinduLuxembourg

shapeDeviation:0.7

amenitiesDiversity:0.7

weighted_rating:4.2

shapeDeviation:0.8

amenitiesDiversity0.5

weighted_rating:4.8

7000parks
Data Overview
DISCOVER MOVE NATURE DISCOVER DISCOVER

RandomForest Nocorrelation

DecisionTree Nocorrelation

Methodology Range 7000 PARKS K-MeansClustering XGBoost
NoiseOutliersRemoval 3000 PARKS PCA SentimentSampling PCA K-MeansClustering K-MeansClustering ANNRegression t-SNE UMAP ANNRegression
Nocorrelation Nocorrelation Nocorrelation

DirectlyKmeans:gotmixedresult

hue=weighted_rating

hue=reviews_count

hue=sentiment

LinearRegression:failureresult

XGBoost:failureresult

DecisionTree+RandomForest:failure

Data Analysis
y_test y_pred R^2=0.04528628492573994 R^2=-0.14861465286651643 predictreviews_count predictsentiment_score R^2=0.0076508871167839665 R^2=-0.1670350444354125 predictweighted_rating R^2=0.017000163897048504 R^2=-0.17162525064360912
y_test y_pred predictreviews_count predictsentiment_score predictweighted_rating
Correlation Matrix Phases 7000 PARKS 3000 PARKS

Pairplot

Pairpoltbasedonsomecategories,butnottoomuchdiscover.'huebasedonlabeling'

ANNRegression: sentiment_score(Y)

X-X correlati on X-Y correlati on considerreviews_count(Y)andsentiment_score(Y),  weighted_rating(Y)haslessrelation.

Wemainlyuse pairplottrytofindthecorrelationtoY,and  helpidentifywhichYwewillconsiderinourmodel.

Data Analysis
Data Analysis
Data Analysis
3000 PARKS PCA ANNonPCAs
10000 epochs 10 PCAs 10000 epochs 5 PCAs
K-means
K-means
1000 PARKS SentimentSampling PCA K-meansClustering
t-SNE UMAP
7000 PARKS
K-meansClustering
Cluster Structure

ParcDalamau

ParcoAldoMoro

ParcoSandroPertini

GreenbankPark

shapeDeviation:0.5

amenitiesDiversity:0.3

yearofconstruction:1943

sentiment:0.99

weighted_rating:4.1

avg_review_time:4:29:04PM

shapeDeviation:0.53

amenitiesDiversity:0.5

yearofconstruction:1949

sentiment:0.95

weighted_rating:4.1

avg_review_time:2:27:53PM

shapeDeviation:0.36

amenitiesDiversity:0.7

yearofconstruction:2010

sentiment:0.98

weighted_rating:3.9

avg_review_time:15:38:40PM

shapeDeviation:0.37

amenitiesDiversity:0.77

yearofconstruction:1997

sentiment:0.99

weighted_rating:3.9

avg_review_time:14:41:01PM

Data Reconstruction
3000parks
CHILL
MOVE NATURE
MOVE

Parco25Novembre

CHILL

shapeDeviation:0.5

amenitiesDiversity:0.55

yearofconstruction:1884

sentiment:0.97

weighted_rating:3.7

avg_review_time:11:24:46AM  PM

BruceCastlePark

CHILL

shapeDeviation:0.5

amenitiesDiversity:0.55

yearofconstruction:1892

sentiment:0.97

weighted_rating:4.3

avg_review_time:18:15:56PM

NeuSteinhof

CHILL

shapeDeviation:0.62

amenitiesDiversity:0.44

yearofconstruction:1904

sentiment:0.99

weighted_rating:4.3

avg_review_time:12:52:29PM

GarenneLemot

CHILL

shapeDeviation:0.38

amenitiesDiversity:0.55

yearofconstruction:1827

sentiment:0.98

weighted_rating:4.3

avg_review_time:5:20:08PM

Data Reconstruction

Parco4Aprile

NATURE

shapeDeviation:0.52

amenitiesDiversity:0.52

yearofconstruction:1965

sentiment:0.99

weighted_rating:4.1

avg_review_time:2:27:53PM

Pauluspark

shapeDeviation:0.44

amenitiesDiversity:0.52

yearofconstruction:1905

sentiment:0.99

weighted_rating:4.2

avg_review_time:2:14:19PM

ParkSielecki

shapeDeviation:0.52

amenitiesDiversity:0.22

yearofconstruction:1965

sentiment:0.98

weighted_rating:4.3

avg_review_time:2:27:53PM

Data Reconstruction
CHILL MOVE

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.