09303i

Page 1

WALPOLE MYERS MYERS YE

Para acceder al interesante material complementario del libro visite: www.pearsoneducacion.net/walpole

para ingeniería

WALPOLE

&

MYERS

ESTADÍSTICA

ciencias MYERS

YE

ciencias

piado. Este material destaca las ideas clave, así como los riesgos y peligros del uso de la estadística, de los que debe estar consciente el usuario del libro. • Se incorporó un nuevo capítulo sobre la estadística bayesiana, que incluye material práctico con aplicaciones en muchos campos.

PROBABILIDAD ESTADÍSTICA &

• Hay material nuevo y de repaso al final de cada capítulo, donde resulte apro-

PROBABILIDAD

para ingeniería

En esta octava edición del prestigioso libro de Walpole et al, al igual que en las ediciones anteriores, se conserva el equilibrio entre la teoría y las aplicaciones. Esta obra se apoya en las matemáticas cuando se considera que ello enriquece la labor didáctica. Tal enfoque impide que el material se convierta en una mera colección de herramientas sin fundamentos, y que el usuario sólo sea capaz de aplicarlas dentro de límites muy estrechos. La nueva edición incluye abundantes ejercicios, los cuales desafían al estudiante a utilizar los conceptos del texto, para resolver problemas relacionados con diversas situaciones del campo científico y de la ingeniería. El aumento en la cantidad de ejercicios da como resultado un espectro más amplio de áreas de aplicación, que incluyen la ingeniería biomédica, la bioingeniería, los problemas de negocios, diversos temas de computación y muchos otros. Entre los cambios más destacables de la presente edición se encuentran los siguientes:

OCTAVA EDICIÓN

OCTAVA EDICIÓN

port. Walpole.indd 1

12/12/06 10:09:50 AM


Contenido Prefacio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1

Introduccio ´n a la estadı´stica y al ana ´lisis de datos . . . . 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

2

Probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 2.2 2.3 2.4 2.5 2.6 2.7

WALPOLE PREL.indd vii

Panorama general: Inferencia estadística, muestreo, poblaciones y diseño experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . El papel de la probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedimientos de muestreo; acopio de los datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Medidas de posición: La media y la mediana de una muestra . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Medidas de variabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Datos discretos y continuos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modelado estadístico, inspección científica y diagnósticos gráficos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Métodos gráficos y descripción de datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tipos generales de estudios estadísticos: Diseño experimental, estudio observacional y estudio retrospectivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Espacio muestral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conteo de puntos muestrales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probabilidad de un evento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reglas aditivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probabilidad condicional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reglas multiplicativas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 4 7 11 13 14 17 17 19 20 25 28

31 31 34 38 40 47 48 52 55 58 61 65

11/30/06 9:12:40 PM


viii

Contenido 2.8

3

Variables aleatorias y distribuciones de probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 3.2 3.3 3.4

3.5

4

4.2 4.3 4.4

4.5

77 77 80 84 88 91 101 103 106

Media de una variable aleatoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Varianza y covarianza de variables aleatorias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Medias y varianzas de combinaciones lineales de variables aleatorias . . . . . . . . . . . . . . . . Teorema de Chebyshev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

107 113 115 122 123 131 134 136 138

Algunas distribuciones de probabilidad discreta . . . . . . . 141 5.1 5.2 5.3 5.4 5.5 5.6

5.7

WALPOLE PREL.indd viii

Concepto de variable aleatoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribuciones discretas de probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribuciones continuas de probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribuciones de probabilidad conjunta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68 72 73

Esperanza matemática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.1

5

Regla de Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introducción y motivación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución uniforme discreta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribuciones binomial y multinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución hipergeométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribuciones binomial negativa y geométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución de Poisson y proceso de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

141 141 143 150 152 157 158 161 165 167 169

11/30/06 9:12:40 PM


Contenido

6

Algunas distribuciones continuas de probabilidad . . . . . 171 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10

6.11

7

171 172 176 182 185 187 193 194 197 200 201 202 205 206 209

Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transformaciones de variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Momentos y funciones generadoras de momentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

211 211 219 226

Distribuciones de muestreo fundamentales y descripciones de datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8

8.9

WALPOLE PREL.indd ix

Distribución uniforme continua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Áreas bajo la curva normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aplicaciones de la distribución normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aproximación normal a la binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribuciones gamma y exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aplicaciones de las distribuciones exponencial y gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución chi cuadrada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución logarítmica normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución de Weibull (opcional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Funciones de variables aleatorias (opcional) ................. 211 7.1 7.2 7.3

8

ix

Muestreo aleatorio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Algunos estadísticos importantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Presentación de datos y métodos gráficos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribuciones muestrales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribuciones muestrales de medias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución muestral de S 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribución F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

229 231 234 236 243 244 251 254 257 261 265 266 268

11/30/06 9:12:41 PM


x

9

Contenido

Problemas de estimación de una y dos muestras . . . . . . 269 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14

9.15

Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inferencia estadística . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Métodos clásicos de estimación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Una sola muestra: Estimación de la media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error estándar de una estimación puntual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intervalos de predicción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Límites de tolerancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dos muestras: Estimación de la diferencia entre dos medias . . . . . . . . . . . . . . . . . . . . . . . . . Observaciones pareadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Una sola muestra: Estimación de una proporción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dos muestras: Estimación de la diferencia entre dos proporciones . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Una sola muestra: Estimación de la varianza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dos muestras: Estimación de la razón de dos varianzas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimación de la probabilidad máxima (opcional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

269 269 270 274 280 281 283 285 288 294 297 299 302 304 306 308 310 310 315 315 319

10 Pruebas de hipótesis de una y dos muestras . . . . . . . . . . . 321 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13

WALPOLE PREL.indd x

Hipótesis estadísticas: Conceptos generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prueba de una hipótesis estadística. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pruebas de una y dos colas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Uso de valores P para la toma de decisiones en la prueba de hipótesis . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Una sola muestra: Pruebas con respecto a una sola media (varianza conocida) . . . . . . Relación con la estimación del intervalo de confianza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Una sola muestra: Pruebas sobre una sola media (varianza desconocida) . . . . . . . . . . . . Dos muestras: Pruebas sobre dos medias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elección del tamaño de la muestra para probar medias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Métodos gráficos para comparar medias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Una muestra: Prueba sobre una sola proporción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dos muestras: Pruebas sobre dos proporciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pruebas de una y dos muestras referentes a varianzas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

321 323 332 334 336 338 341 342 345 350 355 357 361 364 366 367 370

11/30/06 9:12:42 PM


Contenido

xi

10.14 10.15 10.16 10.17 10.18

Prueba de la bondad de ajuste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prueba de independencia (datos categóricos) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prueba de homogeneidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prueba para varias proporciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estudio de caso de dos muestras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.19 Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

371 374 377 378 380 383 385 387

11 Regresión lineal simple y correlación . . . . . . . . . . . . . . . . . . . 389 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9

11.10 11.11 11.12

11.13

Introducción a la regresión lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . El modelo de regresión lineal simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Los mínimos cuadrados y el modelo ajustado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propiedades de los estimadores de los mínimos cuadrados . . . . . . . . . . . . . . . . . . . . . . . . . . . Inferencias que conciernen a los coeficientes de regresión . . . . . . . . . . . . . . . . . . . . . . . . . . . . Predicción. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selección de un modelo de regresión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . El enfoque del análisis de varianza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prueba para la linealidad de la regresión: Datos con observaciones repetidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gráficas de datos y transformaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Caso de estudio de regresión lineal simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Correlación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

389 390 394 397 400 402 409 412 414 415 417 423 425 430 432 438 438 443

12 Regresión lineal múltiple y ciertos

modelos de regresión no lineal . . . . . . . . . . . . . . . . . . . . . . . . . . 445

12.1 12.2 12.3 12.4 12.5

WALPOLE PREL.indd xi

Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimación de los coeficientes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modelo de regresión lineal con el empleo de matrices (opcional) . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propiedades de los estimadores de mínimos cuadrados. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inferencias en la regresión lineal múltiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

445 446 449 452 456 458 464

11/30/06 9:12:42 PM


xii

Contenido 12.6

Selección de un modelo ajustado mediante la prueba de hipótesis . . . . . . . . . . . . . . . . . . . .

465

12.7

Caso especial de ortogonalidad (opcional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

469

Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

473

Variables categóricas o indicadoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

474

Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

478

Métodos secuenciales para la selección del modelo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

479

12.8 12.9

12.10 Estudio de los residuos y trasgresión de las suposiciones (verificación del modelo) . . .

485

12.11 Validación cruzada, x1, y otros criterios para la selección del modelo . . . . . . . . . . . . . . . .

490

Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

496

12.12 Modelos especiales no lineales para condiciones no ideales . . . . . . . . . . . . . . . . . . . . . . . . . . .

499

Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

503

12.13 Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

508

13 Experimentos con un solo factor: General . . . . . . . . . . . . . 511 13.1

Técnica del análisis de varianza ...................................................................................

511

13.2

La estrategia del diseño de experimentos.....................................................................

512

13.3

Análisis de varianza de un solo factor: Diseño completamente al azar (ANOVA de un solo factor) .............................................................................................

513

Pruebas para la igualdad de diversas varianzas...........................................................

518

Ejercicios ...............................................................................................................

521

13.5

Comparaciones con un grado de libertad .....................................................................

523

13.6

Comparaciones múltiples .............................................................................................

527

13.7

Comparación de los tratamientos con un control ........................................................

531

Ejercicios ...............................................................................................................

533

13.8

Comparación de un conjunto de tratamientos por bloques..........................................

535

13.9

Diseños por bloques completamente aleatorios ............................................................

537

13.10 Métodos gráficos y comprobación del modelo ..............................................................

544

13.4

13.11 Transformaciones de los datos en el análisis de varianza ............................................

547

13.12 Cuadrados latinos (opcional) .......................................................................................

549

Ejercicios ...............................................................................................................

551

13.13 Modelos de efectos aleatorios .......................................................................................

555

13.14 Potencia de las pruebas del análisis de varianza..........................................................

559

13.15 Estudio de caso ...........................................................................................................

563

Ejercicios ...............................................................................................................

565

Ejercicios de repaso ...............................................................................................

567

13.16 Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos .........................................................................................................

WALPOLE PREL.indd xii

571

11/30/06 9:12:43 PM


Contenido

xiii

14 Experimentos factoriales (dos o más factores) . . . . . . . . . 573 14.1 14.2 14.3 14.4 14.5 14.6

14.7

Introducción ................................................................................................................. Interacción en el experimento de dos factores ............................................................. Análisis de varianza de dos factores ............................................................................ Ejercicios ............................................................................................................... Experimentos con tres factores .................................................................................... Ejercicios ............................................................................................................... Experimentos factoriales de modelos II y III .............................................................. Elección del tamaño de la muestra .............................................................................. Ejercicios ............................................................................................................... Ejercicios de repaso ............................................................................................... Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos .........................................................................................................

573 574 577 587 590 597 600 603 605 607 609

15 Experimentos factoriales 2k y fracciones . . . . . . . . . . . . . . . 611 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13

15.14

Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . El factorial 2k: Cálculo de los efectos y análisis de varianza. . . . . . . . . . . . . . . . . . . . . . . . . . Experimento factorial 2k no replicado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estudio de caso del moldeo por inyección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimentos factoriales en la preparación de la regresión . . . . . . . . . . . . . . . . . . . . . . . . . . . El diseño ortogonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimentos factoriales en bloques incompletos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimentos factoriales fraccionarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Análisis de los experimentos factoriales fraccionarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fracciones superiores y diseños exploratorios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Construcción de diseños con resoluciones III y IV, con 8, 16 y 32 puntos de diseño . . Otros diseños de resolución III con dos niveles; los diseños de Plackett-Burman . . . . . Diseño de parámetros robustos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nociones erróneas y riesgos potenciales; relación con el material de otros capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

611 612 618 619 622 625 631 639 645 647 653 656 657 658 660 661 666 667 669

16 Estadística no paramétrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 16.1 16.2

WALPOLE PREL.indd xiii

Pruebas no paramétricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prueba de rango con signo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

671 676 679

11/30/06 9:12:44 PM


xiv

Contenido 16.3 16.4 16.5 16.6 16.7

Prueba de la suma de rangos de Wilcoxon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prueba de Kruskal-Wallis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pruebas de corridas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Límites de tolerancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coeficiente de correlación de rango . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

681 684 686 687 690 690 693 695

17 Control estadístico de la calidad . . . . . . . . . . . . . . . . . . . . . . . 697 17.1 17.2 17.3 17.4 17.5 17.6

Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Naturaleza de los límites de control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propósitos de la gráfica de control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gráficas de control para variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gráficas de control para atributos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gráficas de control de cusum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios de repaso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

697 699 699 700 713 721 722

18 Estadística bayesiana (opcional) . . . . . . . . . . . . . . . . . . . . . . . . 725 18.1 18.2 18.3

Conceptos bayesianos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inferencias bayesianas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimación bayesiana utilizando el contexto de la teoría de decisión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ejercicios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

725 726 732 734

Bibliografía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

A Tablas y pruebas estadísticas . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 B Respuesta a los ejercicios de repaso impares . . . . . . . . . . . 795 Índice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811

WALPOLE PREL.indd xiv

11/30/06 9:12:45 PM


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.