6 minute read
2.3.2. Khung mạng kim loại hữu cơ
from BÀI GIẢNG VẬT LIỆU MAO QUẢN VÀ ỨNG DỤNG (KHÁI QUÁT, CÁC VẬT LIỆU MAO QUẢN QUAN TRỌNG VÀ ỨNG DỤNG)
loại động cơ trong tương lai và lưu trữ khí cacbonic, một trong những khí chủ yếu gây nên hiệu ứng nhà kính hiện nay. MOFs là những vật liệu xốp có các lỗ nhỏ li ti với cấu trúc giống như hình tổ ong, vì vậy, các phân tử khí có thể khuếch tán vào MOFs và được giữ lại trong các lỗ xốp trong cấu trúc của nó [118]. Một số nghiên cứu công bố gần đây cho biết, với cấu trúc lỗ xốp tự nhiên của MOFs nên chúng được ứng dụng làm chất xúc tác trong một số phản ứng hóa học liên quan đến công nghệ sản xuất vật liệu và dược phẩm. Các trung tâm kim loại của MOFs cũng có khả năng ứng dụng làm xúc tác trong các phản ứng như: phản ứng polime hóa Ziegler-Natta, phản ứng DielAlder, và các phản ứng quang hóa khác. Tùy thuộc vào cấu trúc khung kim loại và cấu tử hữu cơ (organic ligand) mà khả năng ứng dụng của MOFs cũng khác nhau. Một số loại vật liệu MOFs đã được các nhà khoa học trên thế giới chú ý do những khả năng ứng dụng và tính chất đặc trưng của chúng, đó là: MIL-53(Al), MIL-53(Cr), MIL53(Fe), MIL-88(A,B,C,D), MIL-100, MIL-101, HKUST-1, MOF-5, MOF-177, UiO-6.
2.3.2. Khung mạng kim loại - hữu cơ
Advertisement
Phối hợp polyme (CPs) là vật liệu rắn được hình thành bởi một mạng lưới mở rộng của các ion kim loại (hoặc cụm) phối hợp với các phân tử hữu cơ. Định nghĩa này bao gồm một lượng lớn vật liệu có chứa kim loại và các phân tử hữu cơ. Việc nghiên cứu và xem xét lại hiện nay là dành riêng cho một nhóm đặc biệt các CPs gọi là khung kim loại hữu cơ (Metal-Organic Frameworks). Như vậy theo định nghĩa trên, MetalOrganic Frameworks (MOFs) là một phân lớp của "gia đình" CPs. Thuật ngữ “MetalOrganic Frameworks” được định nghĩa bởi Omar Yaghi năm 1995 và nay được sử dụng rộng rãi cho tất cả các vật liệu có sự kết hợp của kim loại và hợp chất hữu cơ để hình thành một cấu trúc không gian ba chiều [119]. Vật liệu MOFs đầu tiên được tổng hợp bởi Tomic năm 1965, từ đó đến nay nhiều nhóm nghiên cứu đã tiến hành tổng hợp và nghiên cứu các đặc trưng của các cấu trúc MOF mới. MOFs thường được tổng hợp từ dung dịch trong điều kiện nhiệt độ và dung môi thích hợp, các dung môi đặc trưng là nước, etanol, metanol, dimethylformamide (DMF) hoặc acetonitrile. Nhiệt độ có thể biến đổi từ nhiệt độ phòng cho đến 2500C. MOFs được hình thành từ quá trình lắp ghép thông qua sự phối hợp của các phối tử hữu cơ với các trung tâm kim loại như ở Hình 61.
Nhóm chức năng
Phối tử hữu cơ Ion kim loại
Hình 61. Cách xây dựng khung MOF chung [120]
Các nhóm chức năng thích hợp cho sự hình thành liên kết phối trí với ion kim loại thường là carboxylates, phosphonates, sulfonates và nitrogen ví dụ như pyridines và imidazoles. Các chất nối hữu cơ được chọn thường có cấu trúc cứng nhắc, vì vậy các vòng thơm là sự lựa chọn tốt hơn là chuỗi alkyl của mạch cacbon. Liên kết phối trí giữa phức đa càng và ion kim loại dẫn đến sự hình thành polyhedra kim loại-phối tử, trong hầu hết các trường hợp là polyhedra kim loại-oxy. Các polyhedra này có thể liên kết với nhau để tạo thành các đơn vị cấu trúc thứ cấp (SBUs), như minh họa ở Hình 62. Đơn vị cấu trúc thứ cấp của HKUST-1 (Hong Kong university, structure 1) bao gồm hai nguyên tử Cu liên kết với bốn nhóm cacboxylat và hai phân tử nước. Đơn vị cấu trúc thứ cấp của MIL-101 và MIL-88 gồm trime Fe liên kết với ion oxy qua µ3 và liên kết với sáu nhóm cacboxylat. Thực tế có bằng chứng về sự hình thành các đơn vị cấu trúc thứ cấp trước khi có sự hình thành tinh thể MOFs và khái niệm mạng lưới hóa học được đưa ra sau khi tổng hợp thành công MOFs.
HKUST-1 Trime FeO6 octahedra của MIL-88 và MIL-101
Hình 62. Đơn vị cấu trúc thứ cấp của vật liệu MOFs [120] Ý tưởng làm thay đổi một số tính chất bề mặt của vật liệu như diện tích mao quản nhỏ, mao quản trung bình, kích thước lỗ, chức năng của một cấu trúc MOF với mạng lưới nhất định đã được đề cập và giải thích lần đầu tiên bởi O. Yaghi và cộng sự [119]. Một loạt các cấu trúc MOFs đồng mạng lưới với MOF-5, zinc-terephthalat với bộ khung hình lập phương được giới thiệu bao gồm 16 loại phân tử chất nối hữu cơ khác nhau về chiều dài và nhóm chức năng được trình bày ở Hình 63.
Hình 63. Chuỗi các MOFs có cấu trúc giống MOF-5 [119]
Từ đó, khái niệm mạng lưới hóa học được sử dụng rộng rãi trong việc nghiên cứu MOFs để thu được các cấu trúc tinh thể có tính chất bề mặt phù hợp với các lĩnh vực ứng dụng khác nhau. Việc sử dụng các chất nối hữu cơ dài có thể dẫn đến sự hình thành các pha liên kết với diện tích bề mặt riêng nhỏ và kích thước lỗ nhỏ hơn. Ảnh hưởng lớn nhất đến việc hình thành mạng lưới là làm giảm đường kính các lỗ xốp, mở ra tiềm năng ứng dụng của vật liệu trong việc cải thiện hấp phụ khí hidro. Những nghiên cứu mới về chức năng hóa bề mặt vật liệu MOFs nhằm thay đổi các tính chất khác nhau của chất nối hữu cơ, tạo được vật liệu có những cấu trúc mới với kích thước lỗ và thể tích tế bào đơn vị lớn hơn bằng cách thêm các chuỗi alkyl, nhóm amino, axit cacboxylic hay hidroxyl đã được các nhà nghiên cứu đưa ra trong quá trình tổng hợp vật liệu [120]. Để giải thích được cấu trúc phức tạp với đơn vị tế bào lớn, nhóm của giáo sư Férey đã phát triển phương pháp gọi là “sự gắn kết tự động của các đơn vị cấu trúc thứ cấp”(AASBUs). Đây là những đơn vị cấu trúc thứ cấp vô cơ và hữu cơ được gắn kết lại để tạo ra những cấu trúc giả tinh thể. Giản đồ XRD của cấu trúc giả tinh thể này được so sánh với giản đồ XRD của cấu trúc thu được từ thực nghiệm. Nếu hai giản đồ này có sự lặp lại tốt thì giả thuyết AASBUs được sử dụng như là điểm khởi đầu cho những lập luận về cấu trúc tinh thể của vật liệu MOFs [120]. Sự lựa chọn chất nối hữu cơ với các nhóm chức năng xác định có thể tổng hợp được cấu trúc vật liệu MOFs với các tính chất riêng biệt như mong muốn. Nhóm của S. Kitagawa đã tập trung vào hướng nghiên cứu này bằng cách điều chỉnh các chất nối hữu cơ sao cho có sự tương tác thích ứng giữa “vật chủ - khách” đối với một ứng dụng cụ thể. Một phương pháp thu hút được sự quan tâm của nhiều nhà khoa học hiện nay là sử dụng chất nối hữu cơ chiral (đối xứng bàn tay) nhằm tạo ra môi trường không đối xứng cho các phân tử “khách” đi vào trong mao quản.