18 minute read

TÀI LIỆU THAM KHẢO

TÀI LIỆU THAM KHẢO CHUNG 1. Nguyễn Hữu Phú (1998), Hấp phụ và xúc tác trên bề mặt vật liệu vô cơ mao quản, NXB

Khoa học và kỹ thuật, Hà Nội. 2. Tạ Ngọc Đôn (2008), Rây phân tử và vật liệu hấp phụ, Bài giảng dùng cho học viên cao học và nghiên cứu sinh các ngành Hóa học và Công nghệ hóa học, Đại học Bách khoa Hà

Advertisement

Nội. 3. Breck D. W. (1974), Zeolites molecular sieves, John Wiley & Sons, New York. 4. Chen N. Y., Garwood W. E., Dwyer F. G. (1989), Shape selective catalysis in industrial applications, Marcel Dekker, New York. 5. Corma A. (1997), "From microporous to mesoporous molecular sieve materials and their use in catalysis", Chemical Reviews, 97, pp. 2373-2419. 6. Dwyer J., Dewing J., Karim R., Holmes S., Ojo A. F., Garforth A. A., Rawlence D. J. (1991), Zeolite chemistry and catalysis, Elsevier, Amsterdam. 7. Scherzer J. (1989), "Octane-enhancing, zeolitic FCC catalysts: scientific and technical aspects", Catal. Rev. -Sci. Eng., 31(3), pp. 215-354. 8. Szostak R. (1989), Molecular sieves: principle of synthesis and identification, Van

Nostrand Reinhold, New York, pp. 323-327. 9. Tanabe K., Misono M., Ono Y., Hattori H. (1989), "New solid acids and bases", Stud.

Surf. Scie. Catal., Elsevier, Amsterdam, 51. 10. Tao Y., Kanoh H., Abrams L., and Kaneko K., Mesopore-Modified Zeolites: Preparation,

Characterization, and Applications, Chem. Rev., 106, pp. 896−910, 2006. 11. Colin S. C., and Paul A. C., The Hydrothermal Synthesis of Zeolites: History and

Development from the Earliest Days to the Present Time, Chem. Rev., 103 (3), pp. 663702, 2003. 12. Soler-Illia G. J., Sanchez C., Lebeau B., and Patarin J., Chemical Strategies To Design

Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and

Hierarchical Structures, Chem. Rev., 102 (11), pp. 4093-4138, 2002.

TÀI LIỆU THAM KHẢO KẾT QUẢ THỰC NGHIỆM

1 Nguyễn Phi Hùng, Nguyễn Thị Việt Nga, Nguyễn Tiến Trung, Huỳnh Minh Hùng, Nghiên cứu khả năng hấp phụ Pb2+ trong dung dịch nước của các vật liệu chứa zeolit, Tạp chí Hóa học và Ứng dụng, 16(100), tr. 38-42, 2009. 2 Phuong Tran Thi Thu, Tam Truong Thanh, Hung Nguyen Phi, Sung Jin Kim, Vien Vo, Adsorption of Lead from Water by Thiol-functionalized SBA-15 Silicas, Journal of Materials Science, Springer, Vol. 45, No. 11, pp. 2952-2957, 2010. 3 Nguyễn Phi Hùng, Nguyễn Ngọc Khoa Trường, Nguyễn Văn Nghĩa, Phan Thị Bích Hạnh, Nguyễn Minh Thông, Tổng hợp keo bạc có cấu trúc nano trong các dung môi hữu cơ, Tạp chí Hóa học, 49(2ABC), tr. 405-409, 2011. 4 Nguyen P. Hung, Nguyen T. V. Hoan, Nguyen V. Nghia, Synthesis and characterizations of photocatalytic material SBA-15-TiO2, Journal of Nanoscience and Nanotechnology, Scientific & Academic Publishing, USA (in press) 5 Meier W. M. and Olson D. H. (1992), Atlas of zeolite structure types, ButterworthHeinemann.

6 De Araujo A. S., Fernandes Jr. V. J., Fernandes G. J. T. (1997), "Determination of Ca/NaY zeolite acidity by TG and DSC", J. Thermal Analysis, 49, pp. 567-572. 7 Parrillo D. J., Biaglow A., Gorte R. J., White D. (1994), "Quantification of acidity in HZSM-5", Stud. Surf. Scie. Catal., Elsevier, Amsterdam, 84, pp. 701-707. 8 Brondle M., Sauer J. (1998), “Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites”, J. Am. Chem. Soc., 120, pp. 1556-1570. 9 Gaida G. J., Rabo J. A. (1995), "Evolution of chemical and structural concepts of zeolites acidity", Int. Sym. on Zeolites, China. 10 Bosacek V, Beran S., Jirak Z. (1981), "Distribution of protons and cations in sodium H-Y zeolites", J. Physical Chemistry, 85, p. 8856. 11 Rabo J. A. (1984), "Unifying principles in zeolite chemistry and catalysis", Zeo.: Scie. and Tech., NATO ASI series, Martinus Nijhoff Pub., The Hague, pp. 292-315. 12 Trần Thanh Phương (1988), Nghiên cứu ảnh hưởng của độ axit và các yếu tố khác đến hoạt độ và độ lựa chọn của zeolit Y trong phản ứng cracking, Luận án Tiến sĩ Hoá học, TP. Hồ Chí Minh. 13 Hồ Sĩ Thoảng (1974), Nghiên cứu tính axit và hoạt tính xúc tác của các zeolit có hàm lượng SiO2 cao và các chất xúc tác có chứa zeolit, Luận án Tiến sĩ Khoa học Hoá học (bản dịch Tiếng Việt), Matxcơva. 14 Mai Tuyên (1983), Vai trò của cation trong việc xây dựng các trung tâm hoạt động xúc tác trong zeolit Y và cơ chế các phản ứng của hydrocacbon alkyl thơm trên những zeolit loại đó, Luận án Tiến sĩ Khoa học Hoá học (bản dịch Tiếng Việt), Sofia. 15 Weisz P. B., Frilette V. J. (1960), "Intracrystal and molecular shape selective catalysis by zeolite salts", J. Physical Chemistry, 64, p. 382. 16 Derouane E. G. (1984), "Molecular shape-selective catalysis by zeolites", Zeo.: Scie. and Tech., NATO ASI series, Martinus Nijhoff Pub., The Netherlands, pp. 347-371. 17 Frilette V. J., Haag W. O., Lago R. M. (1981), "Catalysis by crystalline aluminosilicates: characterization of intermediate pore-size zeolites by the "Constraint Index", J. Catalysis, 67, p. 218. 18 Breck D. W., Eversole W. G., J. Amer. Chem. Soc., (1956), 78, 5963 19 Breck D. W. (1964), U.S. Patent 3130007. 20 Argauer R. J., Landolt G. R. (1972), U.S. Patent 3702886. 21 Kokotailo G. T., Lawton S. L., Olson D. H., Meier W. M. (1978), "Structure of synthesis zeolite ZSM-5", Nature, 272, p. 438. 22 Feijen E. J. P., Martens J. A., Jacobs P. A. (1994), "Zeolites and their mechanism of synthesis", Stud. Surf. Scie. Catal., Elsevier, Amsterdam, 84, p. 3-21. 23 Jacobs P. A. (1992), in "Zeolite microporous solids: synthesis, structure and reactivity", Zeo.: Scie. and Tech., NATO ASI series, Kluwer Academic Pub., Dordrecht, p. 3. 24 Jacobs P. A., Martens J. A. (1987), Synthesis of high silica aluminosilicate zeolites, Elsevier, Amsterdam.

25 Machado F. J., López C. M., Centeno M. A., Urbina C. (1999), “Template-free synthesis and catalytic behavior of aluminium-rich MFI-type zeolites”, Applied Catalysis A: General, 181, pp. 29-38. 26 Dai F-Y., Suzuki M., Takahashi H., Saito Y. (1989), "Crystallization of pentasil zeolite in the absence of organic templates", Zeolites synthesis, ACS Sym. Ser., 398, pp. 244-256. 27 Shiralkar V. P., Clearfield A. (1989), "Synthesis of the molecular sieve ZSM-5 without the aid of templates", Zeolites, 9, pp. 363-370. 28 Zhdanov S. P., in Flanigen E. M., Sand L. B. (Eds.), “Molecular Sieve Zeolites-I”, ACS Adv. Chem. Ser., (1971), vol. 101, 20. 29 Jansen J. C. (1991), Introduction to zeolite science and practice, Elsevier Science, Amsterdam, p. 77. 30 Đặng Tuyết Phương, Nguyễn Phi Hùng, Nguyễn Hữu Phú, Vai trò của mầm trong quá trình tổng hợp zeolit ZSM-5 không dùng chất tạo cấu trúc, Tạp chí Hóa học, 38(4), tr. 52-56, 2000. 31 Naccache C. (1995), Craquage Catalytique, Cours Spécial de Catalyse Hetérogène Applique au Raffinage, Hanoi. 32 Longi F., Lunsford J. H. (1992), "The development of strong acidity in hexafluorosilicatemodified Y-type zeolites", J. Catalysis, 136, p. 566. 33 Sobrinho E. V., Cardoso D., S-Aguiar E. F., Silva J. G. (1995), “Disproportionation of ethylbenzene over deeply dealuminated Y zeolite”, Applied Catalysis A: General, 127, pp. 157-164. 34 De Kroes B., Groenenboom C. J., O'Connor P. (1986), "New zeolites in FCC", Ketjen Catalysts Symposium, The Netherlands, F1. 35 Trần Thanh Phương, Hồ Sĩ Thoảng, Đặng Thị Nghệ Hà (1982), "Ảnh hưởng của tỷ lệ cation trao đổi Ca2+, La3+ lên hoạt tính xúc tác của zeolit trong phản ứng cracking isooctan", Tạp chí Hoá học, 20(3), tr. 1-4. 36 Eastwood S. C., Drew R. D, Hartzell F. D. (1962), Oil & Gas J., 60, p. 152. 37 Yanik S. J., Demmel E. J., Humphries A. P., Campagna R. J. (1985), Oil & Gas J., 83(19), p. 108. 38 Secor R. B., Van Nordstrand R. A., Pegg D. R. (1977), U.S. Patent 4010116. 39 Ostermaier J. J., Elliott C. H. (1976), U.S. Patent 3957689. 40 Brown S. M., Durante V. A., Reagan W. J., Speronello B. K (1985), U.S. Patent 4493902. 41 Adewuyi Y. G. (1997), “Compositional changes in FCC gasoline products resulting from high-level additions of ZSM-5 zeolite to RE-USY catalyst”, Applied Catalysis A: General, 163, pp. 15-29. 42 Chester A. W., Cormier W. E., Stover W. A (1983), U.S. Patent 4416765. 43 Buchanan J. S. (1998), “Gasoline selective ZSM-5 FCC additives: Model reactions of C6–C10 olefins over steamed 55:1 and 450:1 ZSM-5”, Applied Catalysis A: General, 171, pp. 5764. 44 Buchanan J. S., Adewuyi Y. G. (1996), "Effects of high temperature and high ZSM-5 additive level on FCC olefins yields and gasoline composition", Applied Catalysis A: General, 134, pp. 247-262.

45 De Lasa H. (1984), "Engineering aspects of catalytic cracking", Zeo.: Scie. and Tech., NATO ASI series, Martinus Nijhoff Pub., The Netherlands, pp. 491-514. 46 Nguyễn Hữu Phú, Trần Kim Hoa, Nguyễn Phi Hùng, Lê Minh Cầm, Phạm Lê Hà, Tính chất xúc tác của zeolit có cấu trúc mao quản khác nhau trong phản ứng chuyển hóa hydrocacbon, Tuyển tập Hội nghị NCKH toàn quốc “Ngành dầu khí trước thềm thế kỷ 21”, Tập 2, tr.264-269, NXB Thanh Niên, 2000. 47 Nguyễn Phi Hùng, Phùng Tiến Đạt, Nguyễn Hữu Phú, Về cơ chế phản ứng cracking hydrocacbon trên H-ZSM-5, Tuyển tập Hội nghị Xúc tác - Hấp phụ toàn quốc lần thứ 2, tr. 255-264, Hà Nội, 2001. 48 Chester A. W., Cormier W. E., Stover W. A. (1983), U.S. Patent 4368114. 49 Gladrow E. M., Winter W. E. (1981), U.S. Patent 4287048. 50 Ewards G. C., Gilson J. P., McDaniel C. V. (1988), U.S. Patent 4764269. 51 Pellet R. J., Coughlin P. K., Staniulis M. T., Long G. N., Rabo J. (1988), U.S. Patent 4791083. 52 Aufdembrink B. A., Chester A. W., Herbst J. A., Kresge C. T. (1993), U.S. Patent 5258114. 53 Shipper P. H., Owen H., Herbst J. A., Kirker G. W., Huss A. Jr., Chu F. (1993), U.S. Patent 5179054. 54 Truong Thanh Tam, Nguyen Thi Thanh Thuy, Le Van Hieu, Vo Vien, Synthesis, characterization and catalytic activity of sulfated Zr-SBA-15, The 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN, Ha Long City, Vietnam, 2012. 55 Beck J.S., Vartuli J. C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Scheppard E.W., Mc Cullen C.B., Higgins J.B. and Schlenker J.L., A new family of mesoporous molecular sieves prepared with liquid cystal templates, J. Am. Chem. Soc. 114, pp. 10834-10843 (1992). 56 Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S. (1992), “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, 359, pp. 710-712. 57 On D. T., Giscard D. D., Danumah C., Kaliaguine S. (2003), “Perspectives in catalytic applications of mesostructured materials”, Appl. Catal. A-Gen., 253, pp. 545-602. 58 Stucky G. D., Monnier A., Schüth F., Huo Q., Margolese D., Kumar D., Krishnamurty M., Petroff P., Firouzi A., Janicke M., Chmelka B. F. (1994), “Molecular and atomic arrays in nano- and mesoporous materials synthesis”, Mol. Cryst. Liq. Cryst., 240, pp. 187-200. 59 Whitehurst D. D., Titusville N. J. (1992), “Method to recover organic templates from freshly synthesized molecular sieves”, U. S. Patent No. 5, pp. 143-879. 60 Bagshaw S. A., Prouzet E., Pinnavaia T. J. (1995), “Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants”, Science, 269, pp. 1242-1244. 61 Zhang W., Froeba M., Wang J., Tanev P. T., Wong J., Pinnavaia T. J. (1996), “Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+I-, S+X-I+) and neutral (SoIo) assembly pathways: A comparison of physical properties and catalytic activity for peroxide oxidations, J. Am. Chem. Soc., 118, pp. 9164-9171.

62 Zhang W., Pauly T. R., Pinnavaia T. J. (1997), “Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (SoIo) assembly pathway”, Chem. Mater., 9, pp. 2491-1498. 63 Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D. (1998), “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores”, Science, 279, pp. 548-552. 64 Hoffmann F., Cornelius M., Morell J., and Froba M. (2006), “Silica-Based mesoporous organic-inorganic hybrid materials”, Angew. Chem. Int. Ed., 45, pp. 3216-3251. 65 Steel A., Carr S. W. and Aderson M. W. (1994), “14N-NMR Study of surfactant mesophases in the synthesis of mesopours silicates”, J. Chem. Soc. Commun., pp. 1572-1572. 66 Huo Q., Margolese D. I., Ciesla U., Feng P., Gier T. E., Sieger P., Leon R., Schuth F. and Stucky G. D. (1994), “Generalized synthseis of periodic surfactant/inorganic composite materials”, Nature, 368, pp. 317-321. 67 Shi Y., Li B., Wang P., Dua R., Zhao D., Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle silica hybrid materials, Microporous and Mesoporous Materials, 155(1), pp. 252–257, 2012. 68 Chen C. Y., Davis M. D., Li H. X. (1993), “Studies on mesoporous materials. I. Synthesis and characterization of MCM-41”, Micropor. Mesopor. Mat., 2, pp. 17-26. 69 Kawi S., Lai M. W. (1998), “Supercritical fluid extraction of surfactant template from MCM-41”, Chem. Commun., pp. 1407-1408. 70 Tian B., Liu X., Yu C., Gao F., Luo Q., Xie S., Tu B., Zhao D. (2002), “General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested Mesoporous Silica”, Chem. Commum., pp. 1186-1187. 71 Keene M. T., Denoyel R., Llewellyn P. L. (1998), “Ozone treatment for the removal of surfactant to form MCM-41 type materials”, Chem. Commum., pp. 2203-2204. 72 Xiao L., Li J., Jin H., Xu R. (2006), “Removal of organic templates from mesoporous SBA15 at room temperature using UV/dilute H2O2”, Micropor. Mesopor. Mat., 96, pp. 413-418. 73 Kleitz F., Schmidt W., Schuth F. (2001), “Evolution of Mesoporous Materials during The Calcinations Process: Structure and Chemical Behavior”, Micropor. Mesopor. Mat., 44-45, pp. 95-105. 74 Kleitz F., Schmidt W., Schuth F. (2003), “Calcination Behavior of Surfactant Templated Mesostructured Silica Materials”, Micropor. Mesopor. Mat., 65, pp. 1-29. 75 Root S. E. A., Peussa M., Niinista L. (2001), “Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1HMAS NMR results”, Thermochim. Acta, 379, pp. 201-212. 76 Zaleski R., Wawryszczuk J., Borowka A., Goworek J., Goworek T. (2003), “Temperature changes of the template structure in MCM-41 type materials; positron annihilation studies”, Micropor. Mesopor. Mat., 62, pp. 47-60. 77 Goworek J., Kierys A., Kusak R. (2007), “Isothermal template removal from MCM-41 in hydrogen flow”, Micropor. Mesopor. Mat., 98, pp. 442-448. 78 Kulawid K., Schulz-ekloff G., Rathousky J., Zukal A., Had J. (1995), “Hydroxylation of phenol over Ti-MCM-41 and TS-1”, Collect. Czech. Chem. C., 60 (3), pp. 451-456.

79 Köhn R., Paneva D., Dimitrov M., Tsoncheva T., Mitov I., Minchev C., Fröba M. (2003), “Studies on the state of iron oxide nanoparticles in MCM-41 and MCM-48 silica materials”, Micropor. Mesopor. Mat., 63, pp. 125-137. 80 Martínez F., Calleja G., Melero J. A., Molina R. (2005),“Heterogenous photo-Fenton degradation of phenolic aqueous solution over iron-containing SBA-15 catalyst”, Appl. Catal. B-Environ., 60, pp. 181-190. 81 Tu C.H., Wang A.Q., Zheng M.Y., Wang X.D. and Zhang T., Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation, Applied Catalysis A: General 297(1), pp. 40-47 (2006). 82 Bendahou K., Cherif L., Siffert S., Tidahy H.L., Benassa H., Aboukas A., The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA15 catalysts for total oxidation of toluene, Applied Catalysis A: General 351(1), pp. 82-87 (2008). 83 Selvaraj M., Seshadri K. S., Pandurangan A., Lee T. G. (2005), “Highly selective synthesis of trans-stilbene oxide over mesoporous Mn-MCM-41 and Zr-Mn-MCM-41 molecular sieves”, Micropor. Mesopor. Mat., 79, pp. 261-268. 84 Nguyễn Thị Vương Hoàn, Đặng Tuyết Phương, Nguyễn Hữu Phú, Phân tán kim loại Fe(III) vào mạng cấu trúc của vật liệu SBA-15 bằng phương pháp cấy ghép nguyên tử, Tạp chí hóa học, T47(2A), tr. 314-319, 2009. 85 Aguado J., Arsuaga J.M. and Arencibia A., Adsorption of aqueous mercury(II) on propylthiolfunctionalized mesoporous silica obtained by cocondensation, Ind. Eng. Chem. Res 44, pp. 3665-3671 (2005). 86 Heidari A., Younesi H., Mehraban Z. (2009), “Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica”, Chem. Eng. J., 153, pp. 70-79. 87 Liang X., Xu Y., Sun G., Wang L., Sun Y., Qin X. (2009), “Preparation, characterization of thiol-functionalized silica and application for sorption of Pb2+ and Cd2+”, Colloid. Surface. A, 349, pp. 61-68. 88 Phạm Đình Dũ, Nghiên cứu chức năng hóa vật liệu MCM-41 bằng hợp chất silan chứa nhóm amin hoặc thiol và khảo sát tính chất hấp phụ, Luận án Tiến sĩ Hóa học, Đại học Huế, 2012. 89 Phuong Tran Thi Thu, Hang Tran Dieu, Hung Nguyen Phi, Nga Nguyen Thi Viet, Sung Jin Kim, Vien Vo, Synthesis, Characterization and Phenol Adsorption of Carbonylfunctionalized Mesoporous Silicas, Journal of Porous Materials, ISSN 1380-2224, Springer, Vol. 19, No. 3, pp. 295-300, 2012. 90 Anwander R., Nagl I., Widenmeyer M., Engelhardt G., Groeger O., Palm C., and Ro1ser T. (2000), “Surface characterization and functionalization of MCM-41 silicas via silazane silylation”, J. Phys. Chem., B104, pp. 3532-3544. 91 Stein A., Melde B. J., and Schroden R. C. (2000), “Hybrid Inorganic-Organic mesoporous silicates nanoscopic reactors coming of age”, Adv. Mater., 12, pp. 1403-1419. 92 Athens G. L., Shayib R. M., Chmelka B. F. (2009), “Functionalization of mesostructured inorganic-organic and porous inorganic materials”, Curr. Opin. Colloid In., 14, pp. 281-292.

93 Asefa T., MacLachlan M. J., Coombs N., Ozin G. A. (1999), “Periodic mesoporous organosilicas with organic groups inside the channel walls”, Nature, 402, pp. 867-871. 94 Melde B. J., Holland B. T., Blanford C. F., Stein A. (1999), “Mesoporous sieves with unified hybrid inorganic/organic frameworks”, Chem. Mater., 11, pp. 3302-3308. 95 Kimura T., Saeki S., Sugahara Y., and Kuroda K. (1999), “Organic modification of FSMType mesoporous silicas derived from kanemite by silylation”, Langmuir, 15, pp. 2794-2798. 96 Lim M. H., Blanford C. F., Stein A. (1997), “Synthesis and characterization of a reactive vinyl-functionalized MCM-41: Probing the internal pore structure by a bromination reaction”, J. Am. Chem. Soc., 119, pp. 4090-4091. 97 Rhijn W. M. V., Vos D. E. D., Sels B. F., Bosaert W. D., Jacobs P. A. (1998), “Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions”, Chem. Commun., pp. 317-318. 98 Clark J. H., Macquarrie D. J. (1998), “Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids”, Chem. Commun., pp. 853-860. 99 Brunel D. (1999), “Functionalized micelle-template silicas (MTS) and their use as catalysts for fine chemicals”, Micropor. Mesopor. Mat., 27, pp. 329-334. 100 Diaz J. F., Balkus Jr. K. J., Bedioui F., Kurshev V., Kevan L. (1997), “Synthesis and characterization of cobalt-complex functionalized MCM-41”, Chem. Mater., 9, pp. 61-67. 101 Lim M. H., Stein A. (1999), “Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials”, Chem. Mater., 11, pp. 3285-3295. 102 Shephard D. S., Zhou W., Maschmeyer T., Matters J. M., Roper C. L., Parsons S., Johnson B. F. G., Duer M. J. (1998), “Site-directed surface derivatization of MCM-41: use of highresolution transmission electron microscopy and molecular recognition for determining the position of functionality within mesoporous materials”, Angew. Chem. Int. Ed., 37, pp. 27192723. 103 Juan F. D., Hitzky E. R. (2000), “Selective functionalisation of mesoporous silica”, Adv. Mater., 12, pp. 430-432. 104 Antochshuk V., Jaroniec M. (1999), “Simultaneous modification of mesopores and extraction of template molecules from MCM-41 with trialkylchlorosilanes”, Chem. Commun., pp. 2373-2374. 105 Chen Y., Lim H. Tang Q., Gao Y., Sun T., Yan Q., Yang Y., Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au–Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves, Applied Catalysis A: General, 380(1–2), pp. 55–65, 2010. 106 Lensveld D. (2003), On the preparation and characterisation of MCM-41 supported heterogeneous nickel and molybdenum catalysts, Ponsen & Looijen BV, 7-25. 107 Luo Y., Lin J. (2005), “Synthesis and characterization of Co(II) salen functionalized MCM-41 type hybrid mesoporous silicas and their applications in catalysis for styrene oxidation with H2O2”, Micropor. Mesopor. Mat., 86, pp. 23-30. 108 Parida K. M., Rath D. (2009), “Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction”, J. Mol. Catal. A: Chem., 310, pp. 93-100. 109 Cestari A. R., Vieira E. F. S., Vieira G. S., Costa L. P., Tavares A. M. G., Loh W., Airoldi C. (2009), “The removal of reactive dyes from aqueous solutions using chemically modified

mesoporous solutions in the presence of anionic surfactant-the temperature dependence and a thermodynamic multivariate analysis”, J. Hazard. Mater., 161, pp. 307-316. 110 Qin Q., Ma J., Liu K. (2009), “Adsorption of anionic dyes on ammonium-functionalized MCM-41”, J. Hazard. Mater., 162, pp. 133-139. 111 Aguado J., Arsuaga J. M., Arencibia A., Lindo M., Gascón V. (2009), “Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica”, J. Hazard. Mater., 163, pp. 213-221. 112 Algarra M., Jimenez M. V., Castellon E. R., Lopez A. J., Jimenez J. J. (2005), “Heavy metals removal from electroplating wastewater by amnioproyl-MCM-41”, Chemosphere, 59, pp. 779-789. 113 Delacôte C., Gaslain F. O. M., Lebeau B., Walcarius A. (2009), “Factors affecting the reactivity of thiol-functionalized mesoporpous silica adsorbents toward mercury (II)”, Talanta, 79, pp. 877-886. 114 Wu S., Li F., Xu R., Wei S., Li G. (2010), “Synthesis of thiol-functionalized MCM-41 mesoporous silicas and its application in Cu(II), Pb(II), Ag(I), and Cr(III) removal”, J. Nanopart. Res., 12, pp. 2111-2124. 115 Suzuki T. M., Nakamura T., Fukumoto K., Yamamoto M., Akimoto Y., Yano K. (2008), “Direct synthesis of amino-functionalized monodispersed mesoporous silica spheres and their catalytic activity for nitroaldol condensation”, J. Mol. Catal. A: Chem., 280, pp. 224-232. 116 Josep T., Kumar K. V., Ramaswamy A. V., Halligudi S. B. (2007), “Au-Pt nanoparticles in amine functionalized MCM-41 in hydrogenation reaction”, Catal. Commun., 8, pp. 629-634. 117 Walcarius A., Etienne M., and Lebeau B. (2003), “Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups”, Chem. Mater., 15, pp. 2161-2173. 118 Llewellyn P. L., Bourrelly S., Serre C., Vimont A., Daturi M., Hamon L., De Weireld G., Chang J. S., Hong D. Y., Hwang Y. K., Jhung S. H., Férey G. (2008), “High Uptakes of CO2 and CH4 in Mesoporous Metal-Organic Frameworks MIL-100 and MIL-101”, Langmuir, 24, pp. 7245-7250. 119 Yaghi O. M., O'Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., Kim J. (2003), “Reticular Synthesis and the Design of New Materials”, Nature, 423, pp. 705-714. 120 Peter K. (2009), Controlling the Surface Growth of Metal-Organic Frameworks, Munich Ludwig Maximilians University, Munich.

This article is from: