Chapter 1 Number System and Codes

Page 1

Chapter 1 Number System and Codes Decimal Binary Octal Hexadecimal Binary Coded Decimal (BCD)


Objectives

• At the end of this chapter, students should be able to:– Differentiate between decimal, binary, octal, hexadecimal and BCD. – Convert number between bases.

10/9/2012

RA/Sept2013-Jan2014

2


Types of Number Systems

Decimal

Hexa decimal

Number Systems

Binary

Octal

10/9/2012

RA/Sept2012-Jan2013

3


List of Numbers/Symbols

10/9/2012

Type

Base

Numbers/Symbols

Decimal

10

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Binary

2

0, 1

Octal

8

0, 1, 2, 3, 4, 5, 6, 7

Hexadecimal

16

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

RA/Sept2012-Jan2013

4


Common Number Systems

10/9/2012

Binary

Octal

Decimal

Hexadecimal

0

0

0

0

1

1

1

1

10

2

2

2

11

3

3

3

100

4

4

4

101

5

5

5

110

6

6

6

111

7

7

7

1000

10

8

8

1001

11

9

9

1010

12

10

A

1011

13

11

B

1100

14

12

C

1101

15

13

D

1110

16

14

E

1111

17RA/Sept2012-Jan201315

F

5


Conversion Among Bases

10/9/2012

RA/Sept2012-Jan2013

6


Decimal

Binary

Decimal - Binary Technique: – Divide the decimal number by 2, keep track of the remainder. – First remainder is the Least Significant Bit (LSB). Eg. 8710 = _________ 2 2 2 2 2 2 2 2

87 43 21 10 5 2 1

43 21 10 5 2 1 0

remainder 1 remainder 1 remainder 1 remainder 0 remainder 1 remainder 0 remainder 1

LSB (Least Significant Bit)(right-most bit)

MSB (Most Significant Bit)(left-most bit)

Therefore, 8710 = 10101112 Binary – Decimal Technique: – Multiply each hexadecimal number by 2n, where n is the weight of the bit. – The weight is the position of the bit, starting from 0 on the right. (LSB) – Then, sum the results. MSB LSB Description Eg. 10101112 = _________ 10 6 5 4 3 2 1 0 2 1

2 0

2 1

2 0

2 1

2 1

2 1

Bit Weights Binary Number

= 1*26 + 1*24 + 1*22 + 1*21 + 1*20 = 64 + 16 + 4 + 2 + 1 = 8710

10/9/2012

Therefore, 10101112 = 87RA/Sept2012-Jan2013 10

7


Decimal

Octal

Decimal - Octal Technique: – Divide the decimal number by 8, keep track of the remainder. – First remainder is the Least Significant bit (LSB). Eg. 26610 = _________ 8 8 266 8 33 8 4

33 4 0

remainder 2 remainder 1 remainder 4

LSB (Least Significant Bit)(right-most digit) MSB (Most Significant Bit)(left-most digit)

Therefore, 26610 = 4128 Octal – Decimal Technique: – Multiply each octal number by 8n, where n is the weight of the digit. – The weight is the position of the digit, starting from 0 on the right. (LSD) – Then, sum the results. MSD LSD Description Eg. 4128 = _________ 10 82 4

81 1

80 2

Bit Weights Octal Number

4128 = (4 x 82 ) + (1 x 81) + (2 x 80) = 256 + 8 + 2 = 26610

10/9/2012

Therefore, 4128RA/Sept2012-Jan2013 = 26610

8


Decimal

Hexadecimal

Decimal - Hexadecimal Technique: – Divide the decimal number by 16, keep track of the remainder. – First remainder is the Least Significant Digit (LSD). Eg. 42310 = _________ 16 16 423 16 26 16 0

26 1 0

remainder 7 remainder 10 remainder 1

LSD (Least Significant Digit)(right-most digit) MSD (Most Significant Digit)(left-most digit)

Therefore, 42310 = 1A716 Hexadecimal – Decimal Technique: – Multiply each hexadecimal number by 16n, where n is the weight of the digit. – The weight is the position of the digit, starting from 0 on the right. (LSD) – Then, sum the results. MSD LS Description Eg. 1A716 = _________ 10 162 1

Therefore, 1A716 = 42310 10/9/2012

= = =

161 A

D 160 7

(1 x 162 ) + 256 + 42310.

RA/Sept2012-Jan2013

Hex Digit Weights Hex Number (10 x 161) + (7 x 160) 160 + 7

9


Decimal

BCD

Decimal - BCD

Technique: Replace each decimal digit (0 – 9) with a 4-bit BCD code. Eg. 87410 = _________ BCD MSD 8 1000

7 0111

LSD

Description

4 0100

Decimal Number BCD Code

Therefore, 87410 = 100001110100BCD BCD – Decimal

Technique: Replace each 4 bits BCD digit with a decimal number. Eg. 0001100101111000BCD = _________ 10 MSD 0001 1

1001 9

0111 7

LSD

Description

1000 8

BCD Code Decimal Number

Decimal

BCD

0

0000

1

0001

2

0010

3

0011

4

0100

5

0101

6

0110

7

0111

8

1000

9

1001

Therefore, 0001100101111000BCD = 197810 10/9/2012

RA/Sept2012-Jan2013

10


Binary

Octal

Binary - Octal

Technique: - Group bits in threes, starting from right (LSB). - Then, convert to octal. MSD

Eg. 110101102 = _________ 8

011 3

LSD Description 010 2

110 6

Binary number Octal number

Therefore, 110101102 = 3268 Octal – Binary

Technique: - Replace each octal digit with 3-bit binary number. MSD

Eg. 4728 = _________ 2

4 100

LSD Description 7 111

2 010

Octal number Binary number

Therefore, 4728 = 1001110102 10/9/2012

RA/Sept2012-Jan2013

11


Binary

Hexadecimal

Binary - Hexadecimal

Technique: - Group bits in fours, starting from right (LSB). - Then, convert to hexadecimal. MSD

Eg. 101111110101102 = _________ 16

0010 2

1111 F

1101 D

LSD

Description

0110 6

Binary Number Hex Number

Therefore, 101111110101102 = 2FD616 Hexadecimal – Binary

Technique: - Replace each octal digit with 4-bit binary number. MSD

Eg. 1A716 = _________ 2

1 0001

LSD A 1010

Description

7 Hex Number 0110 Binary Number

Therefore, 1A716 = 0001101001112 10/9/2012

RA/Sept2012-Jan2013

12


Octal

Hexadecimal

Octal - Hexadecimal

Technique: - Use binary as an intermediary. 1 Eg. 174.368 = _________ 16

001

7

4

.

3

111

100

.

011

C

.

7

7

Description Octal number

6

110 Binary number 8 Hexadecimal number

Therefore, 174.368 = 7C.7816 Hexadecimal - Octal

Technique: - Use binary as an intermediary. Eg. 7C.7816 = _________ 8

Therefore, 7C.7816 = 174.368

10/9/2012

7

C

.

7

0111

1100

.

0111

4

.

3

1

RA/Sept2012-Jan2013

7

8

Description Hexadecimal number

1000 Binary number 6

0 Octal number

13


Base Conversion with the Remainder Method Decimal - Binary

Eg. Convert 23.37510 to base 2. Technique: 1.

10/9/2012

Start by converting the integer portion:

RA/Sept2012-Jan2013

14


Base Conversion with the Multiplication Method 2. Then, convert the fraction:

(Take 0)

(Take 1)

(Take 1)

Putting it all together, 23.37510 = 10111.0112

10/9/2012

RA/Sept2012-Jan2013

15


Fractions Binary - Decimal

Technique: – Multiply each binary number by 2-n, where -n is the weight of the bit for fraction starting from left to right. . – Then, sum the results. Eg. 1010.012 = _________ 10 1010.012 = 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20 + 0 x 2-1 + 1 x 2-2 = 10 + 0.25 = 10.25 10 Therefore, 1010.012 = 10.2510

10/9/2012

RA/Sept2012-Jan2013

16


Fractions Octal – Decimal

Technique: – Multiply each octal number by 8-n, where -n is the weight of the bit for fraction starting from left to right. . – Then, sum the results. Eg. 46.38 = _________ 10 46.38 = 4 x 81 + 6 x 80 + 3 x 8-1 = 38 + 0.375 = 38.375 10 Therefore, 46.38 = 38.37510

10/9/2012

RA/Sept2012-Jan2013

17


Fractions Hexadecimal - Decimal

Technique: – Multiply each hexadecimal number by 16-n, where -n is the weight of the bit for fraction starting from left to right. . – Then, sum the results. Eg. A7.0F16 = _________ 10 A7.0F16 = 10 x 161 + 7 x 160 + 0 x 16-1 + 15 x 16-2 = 167 + 0.059 = 167.059 10 Therefore, A7.0F16 = 167.05910

10/9/2012

RA/Sept2012-Jan2013

18


BCD

Binary,Octal, Hexadecimal

BCD – Binary, Octal, Hexadecimal

Technique: – First, convert the BCD number to decimal. – Then, convert the decimal number to the indicated base . Eg. 01011000BCD = _________ 8 01011000BCD = 5810 = 728 Therefore, 01011000BCD = 728 Binary, Octal, Hexadecimal - BCD

Technique: – First, convert the indicated base to decimal. – Then, convert the decimal number to BCD. Eg. E216 = _________ BCD E216 = 22610 = 001000100110BCD Therefore, E2 16 = 001000100110BCD 10/9/2012

RA/Sept2012-Jan2013

19


Test Yourself 1. Convert the following number to the indicated base/code. No. 1.

Binary

Octal

Decimal

Hexadecimal

10101112

2.

BACA16

3. 4. 5.

BCD

10010011BCD 3248 69410

2. Convert the following number to the indicated base/code. a) 11101.112 to decimal. b) FED.4716 to octal. c) 01101001BCD to binary. d) 7548 to BCD. e) 152.2510 to hexadecimal.

10/9/2012

RA/Sept2012-Jan2013

20


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.