Chapter 8 Counter

Page 1

Chapter 8 Counter

Asynchronous (Ripple) Counter Synchronous Counter


Objectives

• At the end of this chapter, students should be able to:• Differentiate between asynchronous counter and synchronous counter. . • Design an asynchronous counter. • Design a synchronous counter. • Analyse a synchronous counter.

10/9/2012

RA/Sept2013-Jan2014

2


Counters

• Flip-flops are wired together to form binary counters. • They are used to measure the frequency of a signal and are used in digital clock. • Counters characteristics: – Modulus of counter - the maximum number of counts to complete the counting cycles. – Can count either up or down. – Can operate asynchronously (ripple) or synchronously. – Free running or self stopping.

10/9/2012

RA/Sept2012-Jan2013

3


Asynchronous (Ripple) Counter • Also known as ripple counter. • Example: Modulo-4 or mod-4 counter. • A counter that counts from 00 to 11 (0 to 3) is called modulo-4 or mod4 counter. • The modulus of a counter is the number of counts the counter goes through. • Note that each flip-flop is in its toggle mode. • Each flip-flop output drives the CLK input of the next flip-flop. 1 J

Clock pulse

10/9/2012

SET

Q

A

1 K Q CLR

RA/Sept2012-Jan2013

1 J SET Q

A

B

B

1 K CLR Q

4


Asynchronous (Ripple) Counter • The clock pulse is applied to the clock of flip-flop A. • The output of flip-flop A is connected to the clock of flip-flop B. • Flip-flop A will toggle (change to its opposite state) each time a clock pulse make a transition. • The output of flip-flop A will acts as the clock for flip-flop B, and so the output B will toggle each time A goes from transition. • The counting sequence is 00, 01, 10, 11. CLK

0

1

2

3

4

5

6

7

8

9

B A AB

10/9/2012

00

01

10

11

00

RA/Sept2012-Jan2013

01

10

11

00

01

5


Synchronous Counter • •

Synchronous counters can be designed to produce special purpose count sequences of nonconsecutive numbers (0, 2, 4,6). Excitation table Present Next J State (PS) State (NS)

K

Mode

0

0

0

x

Hold (00) or Reset (01)

0

1

1

x

Toggle(11) or Set (10)

1

0

x

1

Toggle (11) or Reset (01)

1

1

x

0

Hold (00) or Set (10)

0X

X0 1X 0

1 X1

10/9/2012

RA/Sept2012-Jan2013

6


Design a Synchronous Counter Example:

Design a synchronous counter t0 count the following sequence: 0, 1, 2,3,0…. Draw the state transition diagram 0 1 2 3 Steps: 1

2

Derive the excitation table

Present State

Next State

JK

PS

A

B

NS

A’

B’

JA

KA

JB

KB

0

0

0

1

0

1

O

x

1

x

1

0

1

2

1

0

1

x

x

1

2

1

0

3

1

1

x

0

1

x

3

1

1

0

0

0

x

1

x

1

10/9/2012

RA/Sept2012-Jan2013

0X

X0 1X 0

1 X1

7


Synchronous Counter 3

Simplify the JK expressions using Karnaugh map

A

A

B

B

1

A

x

B

x

x

B

x

JA = B

1

KA= B

A

A

B

1

1

B

x

x

JB = 1 10/9/2012

A

A

A

B

x

x

B

1

1

KB = 1 RA/Sept2012-Jan2013

8


Synchronous Counter 4

Draw the synchronous counter circuit A

B 1

J

SET

Q

J

SET

Q

K

CLR

Q

K

CLR

Q

JA = B KA = B

10/9/2012

JB = 1 KB = 1

RA/Sept2012-Jan2013

9


Synchronous Counter Analysis Analyse the following synchronous counter circuit. A

B

C 1

1

SET

Q

J

SET

Q

J

SET

Q

K

CLR

Q

K

CLR

Q

K

CLR

Q

Identify the J and K expressions

JA = ? KA = ? 10/9/2012

J

JB = ? KB = ?

JC = ? KC = ?

RA/Sept2012-Jan2013

10


Synchronous Counter Analysis 2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

PS

A

B

C

0

0

0

0

1

0

0

1

2

0

1

0

3

0

1

1

4

1

0

0

5

1

0

1

6

1

1

0

7

1

1

1

Next State NS A’ B’ C’

RA/Sept2012-Jan2013

JK JA

KA

JB

KB

JC

KC

11


Synchronous Counter Analysis 2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

PS

A

B

C

0

0

0

1

0

2

Next State NS A’ B’ C’

JK JA

KA

JB

KB

JC

KC

0

0

0

0

0

1

1

0

1

0

0

1

1

1

1

0

1

0

0

0

0

0

1

1

3

0

1

1

1

1

1

1

1

1

4

1

0

0

0

0

0

0

1

1

5

1

0

1

0

0

1

1

1

1

6

1

1

0

0

0

0

0

1

1

7

1

1

1

1

1

1

1

1

1

RA/Sept2012-Jan2013

12


Synchronous Counter Analysis Input

2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

CLOCK

PS

A

B

C

0

0

0

0

1

0

0

2

0

3

Output

J

K

Q

Mode

0

0

Q

Hold

0

1

0

Reset

1

0

1

Set

1

1

Q

Toggle

Next State

JK

NS A’ B’ C’

JA

KA

JB

KB

JC

KC

0

0

0

0

1

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

1

0

1

1

1

1

1

1

1

1

4

1

0

0

0

0

0

0

1

1

5

1

0

1

0

0

1

1

1

1

6

1

1

0

0

0

0

0

1

1

7

1

1

1

1

1

1

1

1

1

1

0

0

RA/Sept2012-Jan2013

1

13


Synchronous Counter Analysis Input

2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

CLOCK

J

K

Q

Mode

0

0

Q

Hold

0

1

0

Reset

1

0

1

Set

1

1

Q

Toggle

Next State

PS

A

B

C

0

0

0

0

1

0

0

1

0

0

1

2

0

1

2

0

1

3

0

4

Output

JK

NS A’ B’ C’

JA

KA

JB

KB

JC

KC

1

0

0

0

0

1

1

0

0

0

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

5

1

0

1

0

0

1

1

1

1

6

1

1

0

0

0

0

0

1

1

7

1

1

1

1

1

1

1

1

1

RA/Sept2012-Jan2013

14


Synchronous Counter Analysis Input

2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

CLOCK

J

K

Q

Mode

0

0

Q

Hold

0

1

0

Reset

1

0

1

Set

1

1

Q

Toggle

Next State

PS

A

B

C

0

0

0

0

1

0

0

1

0

0

1

2

0

2

0

1

0

3

0

3

0

1

4

1

5

Output

JK

NS A’ B’ C’

JA

KA

JB

KB

JC

KC

1

0

0

0

0

1

1

1

0

0

0

1

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

0

1

1

1

1

6

1

1

0

0

0

0

0

1

1

7

1

1

1

1

1

1

1

1

1

RA/Sept2012-Jan2013

15


Synchronous Counter Analysis Input

2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

CLOCK

J

K

Q

Mode

0

0

Q

Hold

0

1

0

Reset

1

0

1

Set

1

1

Q

Toggle

Next State

PS

A

B

C

0

0

0

0

1

0

0

1

0

0

1

2

0

2

0

1

0

3

3

0

1

1

4

4

1

0

5

1

6 7

Output

JK

NS A’ B’ C’

JA

KA

JB

KB

JC

KC

1

0

0

0

0

1

1

1

0

0

0

1

1

1

1

0

1

1

0

0

0

0

1

1

1

0

0

1

1

1

1

1

1

0

0

0

0

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

RA/Sept2012-Jan2013

16


Synchronous Counter Analysis Input

2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

CLOCK

J

K

Q

Mode

0

0

Q

Hold

0

1

0

Reset

1

0

1

Set

1

1

Q

Toggle

Next State

PS

A

B

C

0

0

0

0

1

0

0

1

0

0

1

2

0

2

0

1

0

3

3

0

1

1

4

1

0

0

5

1

0

6

1

7

1

Output

JK

NS A’ B’ C’

JA

KA

JB

KB

JC

KC

1

0

0

0

0

1

1

1

0

0

0

1

1

1

1

0

1

1

0

0

0

0

1

1

4

1

0

0

1

1

1

1

1

1

5

1

0

1

0

0

0

0

1

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

RA/Sept2012-Jan2013

17


Synchronous Counter Analysis Input

2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

CLOCK

J

K

Q

Mode

0

0

Q

Hold

0

1

0

Reset

1

0

1

Set

1

1

Q

Toggle

Next State

PS

A

B

C

0

0

0

0

1

0

0

1

0

0

1

2

0

2

0

1

0

3

3

0

1

1

4

1

0

5

1

6 7

Output

JK

NS A’ B’ C’

JA

KA

JB

KB

JC

KC

1

0

0

0

0

1

1

1

0

0

0

1

1

1

1

0

1

1

0

0

0

0

1

1

4

1

0

0

1

1

1

1

1

1

0

5

1

0

1

0

0

0

0

1

1

0

1

6

1

1

0

0

0

1

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

RA/Sept2012-Jan2013

18


Synchronous Counter Analysis Input

2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

CLOCK

J

K

Q

Mode

0

0

Q

Hold

0

1

0

Reset

1

0

1

Set

1

1

Q

Toggle

Next State

PS

A

B

C

0

0

0

0

1

0

0

1

0

0

1

2

0

2

0

1

0

3

3

0

1

1

4

1

0

5

1

6 7

Output

JK

NS A’ B’ C’

JA

KA

JB

KB

JC

KC

1

0

0

0

0

1

1

1

0

0

0

1

1

1

1

0

1

1

0

0

0

0

1

1

4

1

0

0

1

1

1

1

1

1

0

5

1

0

1

0

0

0

0

1

1

0

1

6

1

1

0

0

0

1

1

1

1

1

1

0

7

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

RA/Sept2012-Jan2013

19


Synchronous Counter Analysis Input

2

Derive the excitation table.

JA = BC KA =BC

JB = C KB = C

JC = 1 KC = 1

Present State

10/9/2012

CLOCK

J

K

Q

Mode

0

0

Q

Hold

0

1

0

Reset

1

0

1

Set

1

1

Q

Toggle

Next State

PS

A

B

C

0

0

0

0

1

0

0

1

0

0

1

2

0

2

0

1

0

3

3

0

1

1

4

1

0

5

1

6 7

Output

JK

NS A’ B’ C’

JA

KA

JB

KB

JC

KC

1

0

0

0

0

1

1

1

0

0

0

1

1

1

1

0

1

1

0

0

0

0

1

1

4

1

0

0

1

1

1

1

1

1

0

5

1

0

1

0

0

0

0

1

1

0

1

6

1

1

0

0

0

1

1

1

1

1

1

0

7

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

RA/Sept2012-Jan2013

20


Synchronous Counter Analysis

3

Draw the state transition diagram

0

10/9/2012

1

2

3

4

5 6

RA/Sept2012-Jan2013

7

21


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.