اﻟﻔﺻل اﻟﺳﺎدس ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن
٤٦٥
) (١-٦ﻣﻘدﻣــﺔ:
Introduction
ذﻛرﻧﺎ ﻣﻣﺎ ﺳﺑق ان اﺧﺗﺑﺎر tواﻟذي ﯾﺧص اﻟﻔرق ﺑﯾن ﻣﺗوﺳطﻲ ﻣﺟﺗﻣﻌﯾن وذﻟك ﺗﺣت ﺷروط ﻣﻌﯾﻧﮫ .ﻓﻲ ﻛﺛﯾر ﻣن اﻷﺣﯾﺎن ﯾﺣﺗﺎج اﻟﺑﺎﺣث إﻟﻰ ﻣﻘﺎرﻧﺔ ﻣﺗوﺳطﺎت ﺛﻼﺛﺔ ﻣﺟﺗﻣﻌﺎت ﻓﺄﻛﺛر .ﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل إذا ﻛﺎن ﻟدﯾﻧﺎ أرﺑﻊ طرق ﻟﻠﺗﻌﻠﯾم A , B , C , Dﯾﺣوي اﻟواﺣد ﻣﻧﮭﺎ ﻛل اﻷطﻔﺎل اﻟذﯾن ﯾﺗﻠﻘون ﺗﻌﻠﯾﻣﮭم ﺑﺈﺣدى ھذه اﻟطرق واﻟﻣطﻠوب ﻣﻘﺎرﻧﺔ ﻣﺗوﺳطﺎت اﻟﻣﻌرﻓﺔ اﻟﻣﻛﺗﺳﺑﺔ ﻓﻲ ﻛل ﻣن اﻟطرق اﻟﻣﺧﺗﻠﻔﺔ .ﯾﻣﻛن اﺳﺗﺧدام اﺧﺗﺑﺎر tﻟﻣﻘﺎرﻧﺔ ﻣﺗوﺳطﻲ ﻣﺟﺗﻣﻌﯾن ﻟﻛل زوج ﻣن اﻟﻣﺟﺗﻣﻌﺎت اﻷرﺑﻌﺔ ، أي اﺳﺗﺧدام اﺧﺗﺑﺎر tﻟﻣﻘﺎرﻧﺔ اﻟطرﯾﻘﺔ Aﺑﺎﻟطرﯾﻘﺔ Bﺛم اﺳﺗﺧداﻣﮫ ﻣرة أﺧري ﻟﻣﻘﺎرﻧﺔ اﻟطرﯾﻘﺔ A ﺑﺎﻟطرﯾﻘﺔ Cوھﻛذا ،إﻻ أن ھذه اﻟطرﯾﻘﺔ ﻟﮭﺎ ﻣﺷﺎﻛل ﻛﺛﯾرة ﻣﻧﮭﺎ : )أ( ﻏﯾر ﻋﻣﻠﯾﺔ ﺣﯾث ﯾزداد ﻋدد اﻟﻣﻘﺎرﻧﺎت ﺑﺳرﻋﺔ ﻛﻠﻣﺎ زاد ﻋدد اﻟﻣﺟﺗﻣﻌﺎت . )ب( زﯾﺎدة اﺣﺗﻣﺎل اﻟوﻗوع ﻓﻲ ﺧطﺄ ﻣن اﻟﻧوع اﻷول أي رﻓض ﻓرض اﻟﻌدم وھو ﺻﺣﯾﺢ. ﻟﺣﺳ ن اﻟﺣ ظ ﻓﺈﻧ ﮫ ﯾﻣﻛ ن اﻟﺗﻐﻠ ب ﻋﻠ ﻰ اﻟﻣﺷ ﺎﻛل اﻟﺳ ﺎﺑﻘﺔ ،وﻣﺷ ﺎﻛل أﺧ رى ،ﺑﺎﺳ ﺗﺧدام اﺧﺗﺑ ﺎر إﺣﺻ ﺎﺋﻲ ﯾﺳﻣﻰ ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن واﻟذي ﯾﻌﺗﺑر واﺣد ﻣن أﻛﺛر اﻟط رق اﻹﺣﺻ ﺎﺋﯾﺔ اﺳ ﺗﺧداﻣﺎ .ﺳ وف ﻧوﺿ ﺢ أﺳ ﻠوب ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن ﺑﺎﻟﻣﺛ ﺎل اﻟﺗ ﺎﻟﻲ .إذا أﺟرﯾ ت ﺗﺟرﺑ ﺔ زراﻋﯾ ﺔ ﻟدراﺳ ﺔ ﺗ ﺄﺛﯾر اﻷوﻗ ﺎت اﻟﻣﺧﺗﻠﻔ ﺔ ﻟﻠزراﻋ ﺔ ) ﻓﺑراﯾر – ﻣ ﺎرس – ﻧ وﻓﻣﺑر – أﻛﺗ وﺑر( ﻋﻠ ﻰ إﻧﺗﺎﺟﯾ ﮫ ﻣﺣﺻ ول اﻟﻘﺻ ب وإذا ﻛ ﺎن اھﺗﻣﺎﻣﻧ ﺎ ھ و اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم أن ﻣﺗوﺳ ط إﻧﺗﺎﺟﯾ ﺔ ﻣﺣﺻ ول اﻟﻘﺻ ب واﺣ د ﻟﻸوﻗ ﺎت اﻟﻣﺧﺗﻠﻔ ﺔ .ﯾﻌﺗﻣ د أﺳ ﻠوب ﺗﺣﻠﯾ ل اﻟﺗﺑﺎﯾن ،ﻓﻲ ھذه اﻟﺣﺎﻟﺔ ،ﻋﻠ ﻰ ﺗﺟزﺋ ﺔ اﻻﺧ ﺗﻼف اﻟﻛﻠ ﻲ ﻟﻠﻣﺷ ﺎھدات إﻟ ﻰ ﻣﻛ وﻧﯾن ﻟﮭﻣ ﺎ ﻣﻌﻧ ﻲ ﯾﺳ ﺗﺧدﻣﺎن ﻓﻲ ﻗﯾﺎس اﻟﻣﺻﺎدر اﻟﻣﺧﺗﻠﻔﺔ ﻟﻼﺧﺗﻼف .اﻟﻣﻛون اﻷول ﯾﻘﯾس اﻻﺧﺗﻼف اﻟ ذي ﯾرﺟ ﻊ إﻟ ﻰ ﺧط ﺄ اﻟﺗﺟرﺑ ﺔ واﻟﺛﺎﻧﻲ ﯾﻘﯾس اﻻﺧﺗﻼف اﻟذي ﯾرﺟﻊ إﻟﻰ ﺧطﺄ اﻟﺗﺟرﺑﺔ ﺑﺎﻹﺿﺎﻓﺔ إﻟﻰ اﻻﺧﺗﻼف اﻟذي ﯾرﺟﻊ إﻟ ﻰ أوﻗ ﺎت اﻟزراﻋ ﺎت اﻷرﺑﻌ ﺔ .ﻋﻧ دﻣﺎ ﯾﻛ ون ﻓ رض اﻟﻌ دم ﺻ ﺣﯾﺢ ،أي أن ﻣﺗوﺳ ط إﻧﺗﺎﺟﯾ ﺔ ﻣﺣﺻ ول اﻟﻘﺻ ب واﺣ دة ﻟﻸوﻗ ﺎت اﻟﻣﺧﺗﻠﻔ ﺔ ،ﻓ ﺈن ﻛ ﻼ ﻣ ن اﻟﻣﻛ وﻧﯾن ﺳ وف ﯾﻣ دوﻧﻧﺎ ﺑﺗﻘ دﯾرﯾن ﻣﺳ ﺗﻘﻠﯾن ﻟﺧط ﺄ اﻟﺗﺟرﺑ ﺔ، وﻋﻠﻰ ذﻟك ﯾﻌﺗﻣد اﺧﺗﺑﺎرﻧﺎ ﻋﻠﻰ اﻟﻣﻘﺎرﻧﺔ ﺑﯾن اﻟﻣﻛوﻧﯾن ﺑﺎﺳﺗﺧدام ﺗوزﯾﻊ .F ﺑﻔ رض أن اھﺗﻣﺎﻣﻧ ﺎ ﺳ وف ﯾﻛ ون ﻓ ﻲ ﻣﻘﺎرﻧ ﺔ ﻣﺗوﺳ ط إﻧﺗﺎﺟﯾ ﺔ ﻣﺣﺻ ول اﻟﻘﺻ ب ﻋﻧ د أوﻗ ﺎت ﻣﺧﺗﻠﻔﺔ ﻟﻠزراﻋﺔ وﺑﺎﺳﺗﺧدام ﺛﻼﺛﺔ طرق ﻟﻠزراﻋﺔ ) .( 1, 2, 3اھﺗﻣﺎﻣﻧﺎ ﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﺳوف ﯾﻛ ون ﻓ ﻲ اﺧﺗﺑﺎر ﻣﺎ إذا ﻛﺎن اﻻﺧﺗﻼف ﻓﻲ إﻧﺗﺎﺟﯾﺔ ﻣﺣﺻول اﻟﻘﺻب ﯾرﺟ ﻊ إﻟ ﻰ اﻟﻔ روق ﻓ ﻲ ﻣواﻋﯾ د اﻟزراﻋ ﺔ أو اﻟﻔروق ﻓﻲ طرق اﻟزراﻋﺔ أو رﺑﻣﺎ اﻟﻔروق ﻓﻲ ﻛﻼھﻣﺎ .ﯾﻌﺗﻣد ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن ،ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ،ﻋﻠ ﻰ ﺗﺟزﺋﺔ اﻻﺧﺗﻼف اﻟﻛﻠﻲ ﻹﻧﺗﺎﺟﯾﺔ ﻣﺣﺻول اﻟﻘﺻب إﻟﻰ ﺛﻼﺛﺔ ﻣﻛوﻧﺎت ،اﻷول ﯾﻘﯾس ﺧط ﺄ اﻟﺗﺟرﺑ ﺔ ﻓﻘ ط واﻟﺛﺎﻧﻲ ﯾﻘﯾس ﺧطﺄ اﻟﺗﺟرﺑﺔ ﺑﺎﻹﺿﺎﻓﺔ إﻟﻰ أي اﺧﺗﻼف ﯾرﺟﻊ إﻟ ﻰ ﻣواﻋﯾ د اﻟزراﻋ ﺔ اﻟﻣﺧﺗﻠﻔ ﺔ ،واﻟﺛﺎﻟ ث ﯾﻘﯾس ﺧطﺄ اﻟﺗﺟرﺑﺔ ﺑﺎﻹﺿ ﺎﻓﺔ إﻟ ﻰ أي اﺧ ﺗﻼف ﯾرﺟ ﻊ إﻟ ﻰ ط رق اﻟزراﻋ ﺔ اﻟﻣﺧﺗﻠﻔ ﺔ .وﻋﻠ ﻰ ذﻟ ك ﻓ ﺈن ﻣﻘﺎرﻧ ﺔ اﻟﻣﻛ ون اﻷول ﺑﺎﻟﺛ ﺎﻧﻲ ﺳ وف ﯾﻣ دﻧﺎ ﺑﺎﺧﺗﺑ ﺎر اﻟﻔ رض أن ﻣﺗوﺳ ط إﻧﺗﺎﺟﯾ ﺔ ﻣﺣﺻ ول اﻟﻘﺻ ب واﺣدة ﻋﻧد ﻣواﻋﯾد اﻟزراﻋﺔ اﻟﻣﺧﺗﻠﻔﺔ .ﺑﻧﻔس اﻟﺷﻛل ﯾﻣﻛن اﺧﺗﺑﺎر اﻟﻔرض أن ﻣﺗوﺳ ط إﻧﺗﺎﺟﯾ ﺔ ﻣﺣﺻ ول اﻟﻘﺻب واﺣد ﻟطرق اﻟزراﻋﺔ اﻟﻣﺧﺗﻠﻔﺔ ﻋن طرﯾق ﻣﻘﺎرﻧﺔ اﻟﻣﻛون اﻷول ﺑﺎﻟﺛﺎﻟث. إذا ﺻﻧﻔت اﻟﻣﺷﺎھدات وﻓﻘﺎ ً ﻟﺻﻔﺔ )ﺧﺎﺻﯾﺔ( واﺣدة ﻣﺛل اﻻﺧﺗﻼف ﻓ ﻲ ط رق اﻟزراﻋ ﺔ أو اﻟﺟ ﻧس أو اﻟﻌﻣ ر ...اﻟ ﺦ ﻓﺳ وف ﯾﻛ ون ﻟ دﯾﻧﺎ ﺗﺻ ﻧﯾف أﺣ ﺎدي . one-way classificationأﻣ ﺎ إذا ﺻ ﻧﻔت اﻟﻣﺷ ﺎھدات وﻓﻘ ﺎ ﻟﺻ ﻔﺗﯾن ﻣﺛ ل أﺻ ﻧﺎف اﻟﻘﻣ ﺢ وأﻧ واع اﻷﺳ ﻣدة ﻓﺳ وف ﯾﻛ ون ﻟ دﯾﻧﺎ ﺗﺻ ﻧﯾف ﺛﻧ ﺎﺋﻲ .two-way classificationﻓﻲ اﻟﺑﻧود اﻟﺗﺎﻟﯾﺔ ﺳوف ﻧﺗﻧﺎول طرق ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻓﻲ ﻛﻼ اﻟﺗﺻﻧﯾﻔﯾن.
) (٢-٦اﻟﺗﺻﻧﯾف اﻷﺣﺎدي:
One-way Classification ٤٦٦
ﺑﻔرض أن ﻋﯾﻧﺎت ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم nﺗم اﺧﺗﯾﺎرھﺎ ﻣن kﻣن اﻟﻣﺟﺗﻣﻌﺎت .ﺳوف ﻧﻔﺗرض أن اﻟﻣﺟﺗﻣﻌﺎت اﻟﺗﻲ ﻋددھﺎ kﻣﺳﺗﻘﻠﺔ وﺗﺗﺑﻊ ﺗوزﯾﻌﺎت طﺑﯾﻌﯾﺔ ﺑﻣﺗوﺳطﺎت μ1 ,μ 2 ,,μ Kوﺗﺑﺎﯾن ﻣﺷﺗرك . 2اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم : H 0 : 1 2 ... k ﺿد اﻟﻔرض اﻟﺑدﯾل: واﺣد ﻋﻠﻰ اﻷﻗل ﻣن iﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲ H1 : ﺑﻔرض أن xijﺗرﻣز ﻟﻠﻣﺷﺎھدة رﻗم jاﻟﻣﺧﺗﺎرة ﻣ ن اﻟﻣﺟﺗﻣ ﻊ رﻗ م iوأن اﻟﻣﺷ ﺎھدات ﺗ م ﺗرﺗﯾﺑﮭ ﺎ ﻓ ﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﺣﯾث Ti .ﺗرﻣز ﻟﻣﺟﻣوع ﻛل اﻟﻣﺷ ﺎھدات ﻓ ﻲ اﻟﻌﯾﻧ ﺔ اﻟﻣﺧﺗ ﺎرة ﻣ ن اﻟﻣﺟﺗﻣ ﻊ رﻗ م iو x i .ﺗرﻣز ﻟﻣﺗوﺳط ﻛل اﻟﻣﺷﺎھدات ﻓﻲ اﻟﻌﯾﻧﺔ اﻟﻣﺧﺗ ﺎرة ﻣ ن اﻟﻣﺟﺗﻣ ﻊ رﻗ م iو T..ﺗرﻣ ز ﻟﻣﺟﻣ وع ﻛ ل اﻟﻣﺷﺎھدات اﻟﺗﻲ ﻋددھﺎ nkو x ..ﺗرﻣز ﻟﻣﺗوﺳط ﻛل اﻟﻣﺷﺎھدات اﻟﺗﻲ ﻋددھﺎ . nk اﻟﻣﺟﺗﻣﻌﺎت …2 …i x 21.... xi1...
x11
x 22.... xi2 ... x k2
x12
x 2n .... x in ... x kn
x1n
ﯾﻣﻛ ن k x k1
1
T..
Tk.
T2....
T1.
اﻟﻣﺟﻣوع
x ..
x 2.... x i.... x k.
x1.
اﻟﻣﺗوﺳط
Ti....
اﻟﺗﻌﺑﯾر ﻋن ﻛل ﻣﺷﺎھدة وﻓﻘﺎ ً ﻟﻠﻧﻣوذج اﻟرﯾﺎﺿﻲ اﻟﺗﺎﻟﻲ:
xij i ij , ﺣﯾ ث ijﯾﻘ ﯾس اﻧﺣ راف اﻟﻣﺷ ﺎھدة رﻗ م jﻓ ﻲ اﻟﻌﯾﻧ ﺔ رﻗ م iﻋ ن ﻣﺗوﺳ ط اﻟﻣﺟﺗﻣ ﻊ رﻗ م .iوﺑوﺿ ﻊ i iﺣﯾث : k
i ,
i 1 k
ﻓﺈﻧﮫ ﯾﻣﻛن ﻛﺗﺎﺑﺔ اﻟﻧﻣوذج أﻋﻼه ﻋﻠﻰ اﻟﺷﻛل :
xij i ij k
ﺗﺣت ﺷ رط أن i 0ﺣﯾ ث iﺗﻌﺑ ر ﻋ ن ﺗ ﺄﺛﯾر اﻟﻣﺟﺗﻣ ﻊ رﻗ م . iوﺑﺎﺳ ﺗﻌﻣﺎل اﻟﻧﻣ وذج اﻷﺧﯾ ر i 1
ﯾﺻﺑﺢ ﻓرض اﻟﻌدم H 0 : 1 2 ... k ﻣﻛﺎﻓﺊ ﻟﻠﻔرض: ٤٦٧
H 0 : 1 2 ... k 0
ﺿد اﻟﻔرض اﻟﺑدﯾل: واﺣد ﻋﻠﻰ اﻷﻗل ﻣن iﻻ ﯾﺳﺎوى ﺻﻔرا ً H1 : 2
اﺧﺗﺑﺎرﻧ ﺎ ﺳ وف ﯾﻌﺗﻣ د ﻋﻠ ﻰ ﻣﻘﺎرﻧ ﺔ ﺗﻘ دﯾرﯾن ﻣﺳ ﺗﻘﻠﯾن ﻟﺗﺑ ﺎﯾن اﻟﻣﺟﺗﻣ ﻊ . ﯾ ﺗم اﻟﺣﺻ ول ﻋﻠ ﻰ اﻟﺗﻘدﯾرﯾن ﺑﺗﺟزﺋﮫ اﻻﺧﺗﻼف اﻟﻛﻠﻲ ﻟﻠﻣﺷﺎھدات إﻟﻰ ﻣﻛوﻧﯾن .ﻣن اﻟﻣﻌ روف أن اﻟﺗﺑ ﺎﯾن ﻟﻛ ل اﻟﻣﺷ ﺎھدات ﻣﺟﺗﻣﻌﮫ ﻓﻲ ﻋﯾﻧﺔ واﺣدة ﻣن اﻟﺣﺟم nkﯾﻌطﻰ ﻣن اﻟﺻﯾﻐﺔ: 2
k n
) (x ij x..
i 1 j1
s2
, nk 1 اﻟﺑﺳ ط ﻓ ﻲ اﻟﺻ ﯾﻐﺔ اﻟﺳ ﺎﺑﻘﺔ ﯾﺳ ﻣﻰ ﻣﺟﻣ وع اﻟﻣرﺑﻌ ﺎت اﻟﻛﻠ ﻲ )SSTO (total sum of squares واﻟذي ﯾﻘﯾس اﻻﺧﺗﻼف اﻟﻛﻠﻲ ﻟﻠﻣﺷﺎھدات ﺣﯾث : SSTO = SSC + SSE ﺣﯾ ث SSCﯾرﻣزﻟﻣﺟﻣ وع اﻟﻣرﺑﻌ ﺎت ﻟﻣﺗوﺳ طﺎت اﻻﻋﻣ دة و SSEﯾرﻣزﻟﻣﺟﻣ وع اﻟﻣرﺑﻌ ﺎت ﻟﻣﺗوﺳطﺎت ﻟﻠﺧطﺎ .ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠﻲ ﯾﻔﺿل ان ﯾﺣﺳب ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ :
x ij2 CF ،
k n i 1 j1
SSTO
ﺣﯾث
T..2 CF nk ﯾﺳﻣﻲ ﻣﻌﺎﻣل اﻟﺗﺻﺣﯾﺢ correction factor وﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳطﺎت اﻷﻋﻣدة sum of squares for columns meansھو :
CF
k 2 Ti. i 1
n
SSC
وﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﺧطﺄ error sum of squaresﯾﺣﺳب ﻣن اﻟﺻﯾﻐﺔ ﻟﺗﺎﻟﯾﺔ : SSE = SSTO -SSC أﯾﺿﺎ ﺗﺟزئ درﺟﺎت اﻟﺣرﯾﺔ اﻟﻛﻠﯾﺔ ﻛﻣﺎ ﯾﻠﻲ : nk-1= k-1 + k (n-1). ﻋ ﺎدة ﯾﺷ ﺎر ﻟﻣﺟﻣ وع اﻟﻣرﺑﻌ ﺎت ﻟﻣﺗوﺳ طﺎت اﻷﻋﻣ دة ﻣ ن ﻗﺑ ل ﻛﺛﯾ ر ﻣ ن اﻟﻣ ؤﻟﻔﯾن ﺑﻣﺟﻣ وع اﻟﻣرﺑﻌﺎت ﻟﻠﻣﻌﺎﻟﺟﺎت . treatment sum of squaresوھذه اﻟﺗﺳﻣﯾﺔ ﺗرﺟ ﻊ إﻟ ﻰ اﻟﺣﻘﯾﻘ ﺔ أن kﻣ ن اﻟﻣﺟﺗﻣﻌﺎت اﻟﻣﺧﺗﻠﻔﺔ ﻏﺎﻟﺑ ﺎ ً ﻣ ﺎ ﺗﺻ ﻧف ﺗﺑﻌ ﺎ ً ﻟﻣﻌﺎﻟﺟ ﺎت ﻣﺧﺗﻠﻔ ﺔ وﻋﻠ ﻲ ذﻟ ك ﻓ ﺈن اﻟﻣﺷ ﺎھدات = xij ;(j ) 1,2,…,nﺗﻣﺛ ل nﻣ ن اﻟﻣﺷ ﺎھدات اﻟﻣﻘﺎﺑﻠ ﺔ ﻟﻠﻣﻌﺎﻟﺟ ﺔ رﻗ م . iاﻵن ﻛﻠﻣ ﺔ ﻣﻌﺎﻟﺟ ﺔ ﺗﺳ ﺗﺧدم أﻛﺛ ر ﻟﺗوﺿﯾﺢ اﻟﺗﺻﻧﯾﻔﺎت اﻟﻣﺧﺗﻠﻔﺔ ﺳواء أﺳﻣدة ﻣﺧﺗﻠﻔﺔ أو ﻣﺻﺎﻧﻊ ﻣﺧﺗﻠﻔﺔ أو ﻣﻧﺎطق ﻣﺧﺗﻠﻔﺔ ﻓﻲ ﻣدﯾﻧ ﺔ ﻣ ﺎ أو ﻣﺣﻠﻠﯾن ﻣﺧﺗﻠﻔﯾن. ٤٦٨
ﻣﺗوﺳط ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳط اﻻﻋﻣدة ﯾﻌطﻲ ﻣن اﻟﺻﯾﻐﺔ : SSC MSC . k 1 ﻣﺗوﺳط ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﺧطﺎ ﯾﻌطﻲ ﻣن اﻟﺻﯾﻐﺔ :
SSE . )k (n 1
MSE
اﻟﻧﺳﺑﺔ:
MSC , MSE ھ ﻲ ﻗﯾﻣ ﺔ ﻟﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ Fﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ Fﺑ درﺟﺎت ﺣرﯾ ﺔ ) 1 k 1, 2 k(n 1ﻋﻧ دﻣﺎ H 0ﺻ ﺣﯾﺢ .ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ﻣﻧطﻘ ﺔ اﻟ رﻓض ) F f (1, 2ﺣﯾ ث ) f (1 , 2ﺗﺳ ﺗﺧرج ﻣ ن ﺟ دول ﺗوزﯾ ﻊ Fﻓ ﻲ ﻣﻠﺣ ق ) (٤ﻋﻧ د = 0.05أو ﻓ ﻲ ﻣﻠﺣ ق ) (٥ﻋﻧ د . = 0.01إذا وﻗﻌت fﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض . H 0 ﻋ ﺎدةً اﻟﺣﺳ ﺎﺑﺎت ﻓ ﻲ ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن ﺗﻠﺧ ص ﻓ ﻲ ﺟ دول ﯾﺳ ﻣﻲ ﺟ دول ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن Analysis of ) Varianceﻋﺎدة ﯾﺳﻣﻰ ( ANOVAواﻟﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : f
f اﻟﻣﺣﺳوﺑﺔ
ﻣﺗوﺳط اﻟﻣرﺑﻌﺎت
MSC MSE
SSC k 1 SSE MSE )k (n 1 MSC
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت SSC
درﺟﺎت اﻟﺣرﯾﺔ
ﻣﺻدر اﻻﺧﺗﻼف
k-1
ﻣﺗوﺳطﺎت اﻷﻋﻣدة
SSE
)k(n-1
SSTO
nk-1
اﻟﺧطﺄ اﻟﻛﻠﻲ
ﻣﺛﺎل)( ١ -٦ اﻟﺑﯾﺎﻧﺎت ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﺗﻣﺛ ل اﻟط ول ) ﻣﻘ ﺎس ﺑﺎﻟﺳ ﻧﺗﯾﻣﺗر ( ﻟﻧﺑﺎﺗ ﺎت ﺗ م زراﻋﺗﮭ ﺎ ﻓ ﻲ ﺛﻼﺛ ﺔ أوﺳ ﺎط ﻣﺧﺗﻠﻔﺔ 5 ) A, B, Cﻧﺑﺎﺗﺎت ﻓﻲ ﻛل وﺳ ط ( .أوﺟ د ﺟ دول ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن وأﺧﺗﺑ ر ﻓ رض اﻟﻌ دم أن 1 2 3وذﻟك ﻋﻧد ﻣﺳﺗوي ﻣﻌﻧوﯾﺔ .=0.05 12 15 13
15 18 10
18 22 8
14 18 12
٤٦٩
10 16 15
A B C
اﻷوﺳﺎط
اﻟﺣــل: اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم :
H 0 : 1 2 3 ﺿد اﻟﻔرض اﻟﺑدﯾل: واﺣد ﻋﻠﻲ اﻷﻗل ﻣن iﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲ H1 : 0.05 f.05 (2,12) = 3.89واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ Fﻓ ﻲ ﻣﻠﺣ ق ) (٤ﻋﻧ د درﺟ ﺎت ﺣرﯾ ﺔ . 1 2, 2 12ﻣﻧطﻘﺔ اﻟرﻓض . F > 3.89
x ij2 CF
k n i 1 j 1
SSTO
(216) 2 10 14 ... 10 13 15 3304 3110.4 193.6, 2
2
2
2
k
2 Ti
SSC i 1
CF n 692 892 582 (216)2 5 15 3209.2 3110.4 98.8. ﺗﻠﺧص اﻟﻧﺗﺎﺋﺞ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : fاﻟﻣﺣﺳوﺑﺔ *6.25316
ﻣﺗوﺳط اﻟﻣرﺑﻌﺎت 49.4 7.9
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت 98.8 94.8 193.6
درﺟﺎت اﻟﺣرﯾﺔ 2 12 14
ﻣﺻدر اﻻﺧﺗﻼف ﻣﺗوﺳطﺎت اﻷﻋﻣدة اﻟﺧطﺄ اﻟﻛﻠﻲ
وﺑﻣ ﺎ أن (6.25316) fﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟ رﻓض ﻓﺈﻧﻧ ﺎ ﻧ رﻓض H 0وﻧﻌﺗﺑ ر أن ھﻧ ﺎك ﻓروﻗ ﺎ ً ﻣﻌﻧوﯾ ﺔ ﺑﯾن ﻣﺗوﺳطﺎت اﻷوﺳﺎط اﻟﻣﺧﺗﻠﻔﺔ .اﻟﻧﺟﻣﺔ * ﺗﻌﻧﻲ أن اﻟﻔرق ﻣﻌﻧوي ﻋﻧد . 0.05 اﻵن ﺑﻔ رض أن اﻟﻌﯾﻧ ﺎت اﻟﺗ ﻲ ﻋ ددھﺎ kذات أﺣﺟ ﺎم ) n1, n2, …,nKﻋ دم ﺗﺳ ﺎوى ﺣﺟ وم اﻟﻌﯾﻧ ﺎت( k
ﺣﯾث . N n i i 1
درﺟﺎت اﻟﺣرﯾﺔ ﺳوف ﺗﺻﺑﺢ ) (N-1ﻟﻣﺟﻣوع اﻟﻣرﺑﻌ ﺎت اﻟﻛﻠﯾ ﺔ SSTOو ) (k-1ﻟﻣﺟﻣ وع ﻣرﺑﻌ ﺎت ﻣﺗوﺳطﺎت اﻷﻋﻣدة SSCو N-1-(k-1) = N-kﻟﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺄ.
٤٧٠
وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ . اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت =0.05 0.05 a={{10,14,18,15,12.},{16,18,22,18,15.},{15,12,8,10,13.}} {{10,14,18,15,12.},{16,18,22,18,15.},{15,12,8,10,13.}} f[x_]:=Apply[Plus,x] h[x_]:=Length[x] k=h[a] 3 m=Table[h[a[[i]]],{i,1,k}] {5,5,5} n=f[m] 15 xy=Map[f,a] {69.,89.,58.} xp=xy/m {13.8,17.8,11.6} f[xy] 216. cf=((%)^2)/n 3110.4 x1=xy^2 {4761.,7921.,3364.} x2=x1/m {952.2,1584.2,672.8} sbet=f[x2] 3209.2 sbet=sbet-cf 98.8 xx=Map[f,a^2] {989.,1613.,702.} xx1=f[xx] 3304. ssto=xx1-cf 193.6 sser=ssto-sbet 94.8 k1=k-1 2 msb=sbet/k1 49.4 n1=n-1 14 sx=n1-k1 12 ٤٧١
msse=sser/sx 7.9 f1=msb/msse 6.25316 rt2=List[" df "," ss "," mss "," f "] { df , ss , mss , f } rt3=List[k1,sbet,msb,f1] {2,98.8,49.4,6.25316} rt4=List[sx,sser,msse,"-"] {12,94.8,7.9,-} rt5=List[n1,ssto,"-","-"] {14,193.6,-,-} a11=TableHeadings->{{ S.V,bet,within,total},{ANOVA}} TableHeadings{{S.V,bet,within,total},{ANOVA}} uu1=TableForm[{rt2,rt3,rt4,rt5},a11]
S.V bet within total
ANOVA df 2 12 14
ss 98.8 94.8 193.6
mss 49.4 7.9
<<Statistics`ContinuousDistributions`
f 6.25316
ff1=Quantile[FRatioDistribution[k1,sx],1-] 3.88529 If[f1>ff1,Print["RjectHo"],Print["AccpetHo"]] RjectHo
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ ﻣﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ ﻣﻦ اﻻﻣﺮ =0.05 اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ وھﻰa a={{10,14,18,15,12.},{16,18,22,18,15.},{15,12,8,10,13.}} (١- ٦) وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﺨﺎﺻﺔ ﺑﻤﺜﺎل
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر uu1=TableForm[{rt2,rt3,rt4,rt5},a11]
: ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم
H 0 : 1 2 3 :ﺿد اﻟﻔرض اﻟﺑدﯾل ٤٧٢
H1 : ﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲi واﺣد ﻋﻠﻲ اﻷﻗل ﻣن اﻟﺟدوﻟﯾﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰf ff1=Quantile[FRatioDistribution[k1,sx],1-]
اﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣرf f1=msb/msse
اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر If[f1>ff1,Print["RjectHo"],Print["AccpetHo"]]
واﻟﻣﺧرج ھو Reject H0
اى رﻓض ﻓرض اﻟﻌدم
( ٢ -٦)ﻣﺛﺎل Mathematica ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺎﺳﺗﺧدام اﻟﺑرﻧﺎﻣﺞ اﻟﺟﺎھز اﻟﺗﺎﻟﻰ واﻟﻣﻛﺗوب ﺑﻠﻐﺔ . وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت Off[General::spell1] <<Statistics`DataManipulation` <<Statistics`NormalDistribution` Clear[oneWayAnova,all,true] oneWayAnova::usage="oneWayAnova[dataset,catvar,quanvar] performs a one-way ANOVA comparing the categorical variable catvar to the quantitative variable quanva."; Options[oneWayAnova]={categories->all,means->true}; categories::usage="categories is an option for various statistical algorithms that specifies which values of the categorical variable (catvar) to use."; means::usage="means is an option for oneWayAnova that specifies if the means for the groups are displayed. The default is that means are displayed; if means->false is included, group means are not displayed."; oneWayAnova[dataset_,catvar_,quanvar_,opts___Rule]:=Module[{ k,r,n,data,groups,cats,responses,total,sqmeans,sumsqmeans,c, sst,dft,ssg,dfg,msg,sse,dfe,mse,fratio,pvalue,meantable,anov atable}, data=DropNonNumeric[Column[dataset,{quanvar,catvar}]]; all=Union[Map[#[[2]]&,data]]; cats=categories /. {opts} /. Options[oneWayAnova]; groups=Table[Column[Select[data,#[[2]]==cats[[i]]&],1], {i,1,Length[cats]}]; k=Length[groups]; ٤٧٣
n=groups//Flatten//Length; responses=Map[Apply[Plus,#]&,groups]; total=Apply[Plus,groups//Flatten]; squares=Apply[Plus,groups^2//Flatten]; sqmeans=responses^2.Table[1/Length[groups[[i]]],{i,1,Le ngth[groups]}]; sumsqmeans= Apply[Plus,sqmeans]; c=total^2/n; sst=squares-c; dft=n-1; ssg=sumsqmeans-c; dfg=k-1; msg=ssg/dfg; sse=sst-ssg; dfe=dft-dfg; mse=sse/dfe; fratio=msg/mse; pvalue=1-CDF[FRatioDistribution[dfg,dfe],fratio]; meantable=Table[{cats[[i]],Length[groups[[i]]],Apply[Pl us,groups[[i]]]/Length[groups[[i]]]//N},{i,1,Length[cats]}]; meantable=Join[{{"Group","Number","Mean"}},meantable]; anovatable={{"Source","Sum of Squares","DF","Mean Squares","Fratio","Pvalue"},{"Groups",ssg,dfg,ssg/dfg,fratio,pvalue},{"Error",ss e,dfe,sse/dfe,"",""},{"Total",sst,dft,"","",""}}//N; true={"ANOVA Table\n",TableForm[anovatable],"Means\n",TableForm[meantable ]}; false={"ANOVA Table\n",TableForm[anovatable]}; toprint=means/. {opts} /. Options[oneWayAnova]; Print[TableForm[toprint]]; {MSE->mse,DFE->dfe}; ] dataset1={{1,10},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18}, {2,22},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13}}; oneWayAnova[dataset1,1,2]
٤٧٤
ANOVA Table Pvalue 0.0137854
Fratio 6.25316
DF 2. 12. 14.
Mean Squares 49.4 7.9
Sum of Squares 98.8 94.8 193.6
Source Groups Error Total Means
Mean 13.8 17.8 11.6
Number 5 5 5
Group 1 2 3
وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ : اوﻻ :اﻟﻣدﺧﻼت اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ dataset1وھﻰ dataset1={{1,10},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18}, {2,22},{2,18},{2, ;}}15},{3,15},{3,12},{3,8},{3,10},{3,13 وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﺨﺎﺻﺔ ﺑﻤﺜﺎل )(٢- ٦
ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر ]oneWayAnova[dataset1,1,2 ﻛﻤﺎ ﯾﻌﻄﻰ ھﺬا اﻻﻣﺮ ﺟﺪول ﯾﺤﺘﻮى ﻋﻠﻰ رﻗﻢ اﻟﻤﻌﺎﻟﺠﺔ واﻟﻤﺘﻮﺳﻂ وﻋﺪد اﻟﻤﺸﺎھﺪات ﻟﻜﻞ ﻣﻌﺎﻟﺠﺔ. وﻣن اﻟﺟدول ﻓﺈن P=0137854وﺑﻣﺎ ان p .05ﻓﺈﻧﻧﺎ ﻧرﻓض ﻓرض اﻟﻌدم
H 0 : 1 2 3
) (١-٢-٦اﺧﺗﺑﺎرات ﺗﺟﺎﻧس ﻋدة ﺗﺑﺎﯾﻧﺎت : Test for the Equality of Several Variances ھﻧﺎك اﻓﺗراﺿﺎت أﺳﺎﺳﯾﺔ وﺿرورﯾﺔ ﻹﺟراء ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن وھم :أن اﻟﻣﺟﺗﻣﻌﺎت اﻟﺗﻲ ﻋددھﺎ k ﻣﺳﺗﻘﻠﺔ وﺗﺗﺑﻊ ﺗوزﯾﻌﺎت طﺑﯾﻌﯾﺔ ﺑﻣﺗوﺳطﺎت 1 , 2 ,..., kوﺗﺑﺎﯾن ﻣﺷﺗرك . 2 ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم : H 0 : σ12 σ 22 ... σ 2k ﺿد اﻟﻔرض اﻟﺑدﯾل : اﻟﺗﺑﺎﯾﻧﺎت ﻟﯾﺳت ﻛﻠﮭﺎ ﻣﺗﺳﺎوﯾﺔ H1 : ٤٧٥
واﺧﺗﺑﺎرModified Levene's و اﺧﺗﺑﺎرBartlett ھﻧﺎك ﻋدة طرق ﻻﺟراء ذﻟك ﻣﻧﮭﺎ اﺧﺗﺑﺎر ودون اﻟدﺧول ﻓﻰ ﺗﻔﺎﺻﯾل ھذه اﻟطرقHetetogeneity of Coefficients of Variation ﺳوف ﻧﻘدم ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻻﺟراء ھذه اﻻﺧﺗﺑﺎرات ﻣﻊ ﺷرح ﻛﯾﻔﯾﺔ ﺗﻔﺳﯾر اﻟﻧﺗﺎﺋﺞ ﻟﻛل طرﯾﻘﺔ وذﻟك ﻣن : ﺧﻼل اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ
(٣-٦)ﻣﺛﺎل وﺗﻐذي ﻋﻠﯾﮭﺎ أرﺑﻌﺔ ﻣﺟﻣوﻋﺎت ﻣن اﻷطﻔﺎلA, B, C, D ﺑﻔرض أن أرﺑﻌﺔ أﻧواع ﻣن اﻟﻔﯾﺗﺎﻣﯾﻧﺎت .ﻣﺗﺷﺎﺑﮭﯾن ﺗﻣﺎﻣﺎ ً ) أرﺑﻌﺔ ﻋﯾﻧﺎت ﻋﺷواﺋﯾﺔ ( وﻛﺎﻧت اﻟزﯾﺎدة ﻓﻲ وزن ﻛل ﻣﺟﻣوﻋﺔ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ
اﻟﻔﯾﺗﺎﻣﯾﻧﺎت A 2 3 3
B 2 1 2 3
C 4 5 4 4
D 4 3 2 3
:اﻟﺣــل : اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم
H0 : 12 22 32 42 : ﺿد اﻟﻔرض اﻟﺑدﯾل
H1 : اﻟﺗﺑﺎﯾﻧﺎت ﻟﯾﺳت ﻛﻠﮭﺎ ﻣﺗﺳﺎوﯾﺔ . =0.01 وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت bartlettVariance Off[General::spell1] <<Statistics`DescriptiveStatistics` <<Statistics`ContinuousDistributions` Clear[bartlettVariance] bartlettVariance[data_]:=Module[{nus,s2,ss,sp2,b,c,bc,f1,f2, a,bcprime,dist,pvalue}, nus=Map[Length,data]-1; s2=Map[Variance,data]; ss=Table[nus[[i]]s2[[i]],{i,1,Length[data]}]; sp2=Apply[Plus,ss]/Apply[Plus,nus]; b=Log[sp2] Apply[Plus,nus]Sum[nus[[i]]Log[s2[[i]]],{i,1,Length[data]}]; c=1+1/(3 (Length[data]-1))(Apply[Plus,1/nus]1/Apply[Plus,nus])//N; bc=b/c; ٤٧٦
f1=Length[data]-1; f2=(Length[data]+1)/(c-1)^2; a=f2/(2-c+2/f2); bcprime=f2 bc c/(f1(a-bc c)); dist=FRatioDistribution[f1,f2]; pvalue=1-CDF[dist,bcprime]; Print["Bartlett/Box Test for Heterogeneity of Variance"]; {SampleVariances->s2,TestStatistic>bcprime,PValue->pvalue,Distribution->dist}//TableForm ]
leveneVariance groupedOneWayAnova Off[General::spell1] <<Statistics`DataManipulation` <<Statistics`NormalDistribution` Clear[groupedOneWayAnova] groupedOneWayAnova[groups_,variances_]:=Module[{k,r,n,respon ses,total,squares,data,sqmeans,sumsqmeans,c,sst,dft,ssg,dfg, msg,sse,dfe,mse,fratio,pvalue,meantable,anovatable}, k=Length[groups]; n=groups//Flatten//Length; responses=Map[Apply[Plus,#]&,groups]; total=Apply[Plus,groups//Flatten]; squares=Apply[Plus,groups^2//Flatten]; sqmeans=responses^2.Table[1/Length[groups[[i]]],{i,1,Le ngth[groups]}]; sumsqmeans= Apply[Plus,sqmeans]; c=total^2/n; sst=squares-c; dft=n-1; ssg=sumsqmeans-c; dfg=k-1; msg=ssg/dfg; sse=sst-ssg; dfe=dft-dfg; mse=sse/dfe; fratio=msg/mse; pvalue=1-CDF[FRatioDistribution[dfg,dfe],fratio]; {SampleVariances->variances,TestStatistic>fratio,PValue->pvalue,Distribution>FRatioDistribution[dfg,dfe]} ] Clear[leveneVariance] leveneVariance[dataset_]:=Module[{medians,variances,d,i,j,gr oups}, ٤٧٧
medians=Map[Median,dataset]; variances=Map[Variance,dataset]; d[i_,j_]:=Abs[dataset[[i,j]]-medians[[i]]]; groups=Table[d[i,j],{i,1,Length[dataset]},{j,1,Length[d ataset[[i]]]}]; Print["Modified Levene's Test for Heterogeneity of Variance"]; groupedOneWayAnova[groups,variances]//TableForm ]
coefficientsOfVariation Off[General::spell1] <<Statistics`DataManipulation` <<Statistics`NormalDistribution` Clear[coefficientsOfVariation] coefficientsOfVariation[dataset_]:=Module[{means,variances,s tnddevs,vs,nus,vp,chi2,dist,pvalue}, means=Map[Mean,dataset]; variances=Map[Variance,dataset]; stnddevs=Map[StandardDeviation,dataset]; vs=Table[stnddevs[[i]]/means[[i]],{i,1,Length[dataset]} ]; nus=Map[Length,dataset]-1; vp=Sum[nus[[i]]vs[[i]],{i,1,Length[dataset]}]/Apply[Plu s,nus]; chi2=(Sum[nus[[i]] (vs^2)[[i]],{i,1,Length[dataset]}]Sum[nus[[i]]vs[[i]],{i,1,Length[dataset]}]^2/Apply[Plus,nus] )/(vp^2 (0.5+vp^2)); dist=ChiSquareDistribution[Length[dataset]-1]; pvalue=1-CDF[dist,chi2]; Print["Test for Heterogeneity of Coefficients of Variation"]; {CoeffsOfVar->vs,TestStatistic->chi2,PValue>pvalue,Distribution->dist}//TableForm ] pig={{2,3.,3},{2.,1,2,3},{4.,5,4,4},{4.,3,2,3}}; bartlettVariance[pig] Bartlett/Box Test for Heterogeneity of Variance SampleVariances 0.333333, 0.666667, 0.25, 0.666667 TestStatistic 0.284557 PValue 0.836518 Distribution FRatioDistribution3, 203.975 ٤٧٨
leveneVariance[pig] Modified Levene's Test for Heterogeneity of Variance SampleVariances 0.333333, 0.666667, 0.25, 0.666667 TestStatistic 0.196748 PValue 0.896426 Distribution FRatioDistribution3, 11 coefficientsOfVariation[pig] Test for Heterogeneity of Coefficients of Variation CoeffsOfVar 0.216506, 0.408248, 0.117647, 0.272166 TestStatistic 3.49948 PValue 0.320829 Distribution ChiSquareDistribution3
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ وھﻰpig pig={{2,3.,3},{2.,1,2,3},{4.,5,4,4},{4.,3,2,3}} (٣-٦) وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﺨﺎﺻﺔ ﺑﺎﻟﻤﺜﺎل
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ : اﺧﺗﺑﺎر ﻓرض اﻟﻌدم
H0 : 12 22 32 42 : ﺿد اﻟﻔرض اﻟﺑدﯾل
H1 : اﻟﺗﺑﺎﯾﻧﺎت ﻟﯾﺳت ﻛﻠﮭﺎ ﻣﺗﺳﺎوﯾﺔ ﻣن ﺧﻼل اﻻﻣر اﻟﺗﺎﻟﻰBartlett وذﻟك ﺑﺎﺳﺗﺧدام اﺧﺗﺑﺎر=0.01 وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ bartlettVariance[pig]
ﺣﯾث اﻟﻣﺧرج ھو Bartlett/Box Test for Heterogeneity of Variance SampleVariances 0.333333, 0.666667, 0.25, 0.666667 TestStatistic 0.284557 PValue 0.836518 Distribution FRatioDistribution3, 203.975 ﺣﯾث Sample Variances ﯾﻌطﻰ ﺗﺑﺎﯾﻧﺎت اﻟﻌﯾﻧﺔ ﻟﻠﻣﻌﺎﻟﺟﺎت ﻛﻣﺎ ﯾﻌطﻰ اﻻﺣﺻﺎء اﻟﻣﻘدر ﻣن ﺧﻼل TestStatistic ﻣنpو ٤٧٩
Pvalue p وﺑﻣﺎ ان ﻗﯾﻣﺔ
=0.01 ﻓﺈﻧﻧﺎ ﻧﻘﺑل ﻓرض اﻟﻌدم وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ.01 اﻛﺑر ﻣن ﺳوف ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰModified Levene's و ﺑﺎﺳﺗﺧدام اﺧﺗﺑﺎر leveneVariance[pig]
ﺣﯾث اﻟﻣﺧرج ھو Modified Levene's Test for Heterogeneity of Variance SampleVariances 0.333333, 0.666667, 0.25, 0.666667 TestStatistic 0.196748 PValue 0.896426 Distribution FRatioDistribution3, 11 ﺣﯾث Sample Variances ﯾﻌطﻰ ﺗﺑﺎﯾﻧﺎت اﻟﻌﯾﻧﺔ ﻟﻠﻣﻌﺎﻟﺟﺎت ﻛﻣﺎ ﯾﻌطﻰ اﻻﺣﺻﺎء اﻟﻣﻘدر ﻣن ﺧﻼل TestStatistic اﯾﺿﺎ ﻣنp Pvalue p وﺑﻣﺎ ان ﻗﯾﻣﺔ
=0.01 ﻓﺈﻧﻧﺎ ﻧﻘﺑل ﻓرض اﻟﻌدم وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ.01 اﻛﺑر ﻣن و ﺑﺎﺳﺗﺧدام اﺧﺗﺑﺎر ﺳوف ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰHetetogeneity of Coefficients of Variation coefficientsOfVariation[pig]
ﺣﯾث اﻟﻣﺧرج ھو Test for Heterogeneity of Coefficients of Variation CoeffsOfVar 0.216506, 0.408248, 0.117647, 0.272166 TestStatistic 3.49948 PValue 0.320829 Distribution ChiSquareDistribution3 ﺣﯾث اﻻﺣﺻﺎء اﻟﻣﻘدرﻧﺣﺻل ﻋﻠﯾﮫ ﻣن ﺧﻼل TestStatistic اﯾﺿﺎ ﻣنp Pvalue p وﺑﻣﺎ ان ﻗﯾﻣﺔ
=0.01 ﻓﺈﻧﻧﺎ ﻧﻘﺑل ﻓرض اﻟﻌدم وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ.01 اﻛﺑر ﻣن .وﻟﻠﻌﻠم ﻓﺈن ھﻧﺎك ﻣﺧرﺟﺎت اﺧري ﻻ داﻋﻰ ﻟذﻛرھﺎ
٤٨٠
) (٢-٢-٦اﺧﺗﺑﺎر ﻧﯾوﻣن -ﻛﻠز ﻟﻠﻣدى اﻟﻣﺗﻌدد: Multiple Range Test إذا ﻛﺎﻧ ت ﻗﯾﻣ ﺔ fاﻟﻣﺣﺳ وﺑﺔ ﻣ ن ﺟ دول ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن ﻏﯾ ر ﻣﻌﻧوﯾ ﺔ ﻓﮭ ذا ﯾ دل ﻋﻠ ﻰ أن اﻟﻔ روق ﺑ ﯾن ﻣﺗوﺳطﺎت اﻟﻣﻌﺎﻟﺟ ﺎت ﻟﯾﺳ ت ﻓ روق ﺣﻘﯾﻘﯾ ﺔ وإﻧﻣ ﺎ ﺗﻌ زى ﻟﻣﺟ رد اﻟﺻ دﻓﺔ ،وﺑﺎﻟﺗ ﺎﻟﻲ ﻓﺈﻧﻧ ﺎ ﻧﻘﺑ ل ﻓ رض اﻟﻌدم . H 0 : 1 2 ... kإذا ﻛﺎﻧت ﻗﯾﻣﺔ fﻣﻌﻧوﯾﺔ ﻓﮭذا ﯾ دل ﻋﻠ ﻰ أن ﺑﻌ ض اﻟﻔ روق ﺑ ﯾن ﻣﺗوﺳطﺎت اﻟﻣﻌﺎﻟﺟﺎت أو ﻛﻠﮭﺎ ﻣﻌﻧوﯾﺔ ،وﻟﻛن ھذا اﻻﺧﺗﺑﺎر ﻻ ﯾوﺿ ﺢ ﻟﻧ ﺎ أي ﻣ ن ھ ذه اﻟﻔ روق ﻣﻌﻧوﯾ ﺔ ،وﻟذﻟك ﻓﺈن اﻟﺑﺎﺣث ﻻ ﺑ د أن ﯾﺟ ري ﻋ دة ﻣﻘﺎرﻧ ﺎت ﺑ ﯾن ھ ذه اﻟﻣﺗوﺳ طﺎت وھ ذا ﻣ ﺎ ﯾﺳ ﻣﻰ ﺑﺎﻟﻣﻘﺎرﻧ ﺎت اﻟﻣﺗﻌددة .ھﻧﺎك ﻋدة ط رق ﺗﺳ ﺗﺧدم ﻟﮭ ذا اﻟﻐ رض .ﺳ وف ﺗﻘﺗﺻ ر دراﺳ ﺗﻧﺎ ﻓ ﻲ ھ ذا اﻟﺑﻧ د ﻋﻠ ﻰ اﺧﺗﺑ ﺎر ﻧﯾ وﻣن ﻟﻠﻣﻘﺎرﻧ ﺎت اﻟﻣﺗﻌ ددة .ﯾ ﺗﻠﺧص اﺧﺗﺑ ﺎر ﻧﯾ وﻣن ﻓ ﻲ إﯾﺟ ﺎد ﻋ دة ﻓ روق ﻣﻌﻧوﯾ ﺔ ذات ﻗ ﯾم ﻣﺗزاﯾ دة واﻟﺗﻲ ﺗﺗوﻗف ﺣﺟﻣﮭﺎ ﻋﻠﻰ ﻣدي اﻟﺑﻌد ﺑﯾن اﻟﻣﺗوﺳطﺎت ﺑﻌد ﺗرﺗﯾﺑﮭﺎ. وﺗﺗﻠﺧص ﺧطوات ﺗﻧﻔﯾذھﺎ ﻋﻠﻰ اﻟﻧﺣو اﻟﺗﺎﻟﻲ : )أ( ﻧرﺗب ﻣﺗوﺳطﺎت اﻟﻣﻌﺎﻟﺟﺎت ﺗﻧﺎزﻟﯾﺎ ً.
MSE )ب( ﻧوﺟد اﻟﺧط ﺄ اﻟﻣﻌﯾ ﺎري ﻟﻠﻣﺗوﺳ ط n
s x ﺣﯾ ث MSEھ و ﻣﺗوﺳ ط ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت
اﻟﺧطﺄ واﻟذي ﯾﻌﺗﺑر ﺗﻘدﯾر ﻟﻠﺗﺑﺎﯾن ، 2وﻧﺣﺻ ل ﻋﻠﯾ ﮫ ﻣ ن ﺟ دول ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن .وإذا ﻛﺎﻧ ت أﺣﺟ ﺎم اﻟﻌﯾﻧ ﺎت ﻟﻠﻣﻌﺎﻟﺟ ﺎت ﻏﯾ ر ﻣﺗﺳ ﺎوﯾﺔ ﻓ ﺈن اﺧﺗﺑ ﺎر ﻧﯾ وﻣن ﯾﺳ ﻣﺢ ﺑﺎﺳ ﺗﺑدال nﻓ ﻲ ﺻ ﯾﻐﺔ s xﺑﺎﻟوﺳ ط اﻟﺗواﻓﻘﻲ ﻟﻠﻘﯾم n1, n2, …, nkﺣﯾث اﻟوﺳط اﻟﺗواﻓﻘﻲ :
k 1 1 1 ... n1 n 2 nk
~ n
ﺗﺣت ﺷرط أن أﺣﺟ ﺎم اﻟﻌﯾﻧ ﺎت ﺗﻛ ون ﻣﺗﻘﺎرﺑ ﺔ ﻣ ن ﺑﻌﺿ ﮭﺎ .ھ ذا وﯾﻣﻛ ن اﺳ ﺗﺑدال nﻓ ﻲ ﺻ ﯾﻐﺔ s x ﺑﺎﻟﻘﯾﻣﺔ n .ﺣﯾث :
2 1 1 )n (1) n (k
n.
و أن : ) = n(1ﺣﺟم اﻟﻌﯾﻧﺔ اﻟﻣﻘﺎﺑل ﻷﺻﻐر ﻣﺗوﺳط ﻋﯾﻧﺔ . ) = n(kﺣﺟم اﻟﻌﯾﻧﺔ اﻟﻣﻘﺎﺑل ﻷﻛﺑر ﻣﺗوﺳط ﻋﯾﻧﺔ . )ج( ﺗﺳﺗﺧرج ﻗﯾم ) ) q( p, ﺗﺳﻣﻰ أﻗل ﻣدي ﻣﻌﻧوي ﻗﯾﺎﺳﻲ least significant studentized (rangeﻣن ﺟ دول ﻧﯾ وﻣن ﻟﻠﻣ دى اﻟﻣﻌﻧ وي ﻓ ﻲ ﻣﻠﺣ ق ) (٩ﺣﯾ ث p = 2, 3,…, kو ھﻲ ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ و ھﻲ درﺟﺎت ﺣرﯾﺔ .MSE )د( ﻧﺣﺳب ﻗﯾﻣﺔ أﻗل ﻣدى ﻣﻌﻧوي Rp least significant rangeوذﻟك ﺑﺎﻟﻧﺳﺑﺔ ﻟﻛل p = 2,3, …, kﻋﻠﻰ اﻟﻧﺣو اﻟﺗﺎﻟﻲ :
R p q (p, )s x , p 2,3,..., k. ٤٨١
)ھـ( ﻧﻘﺎرن اﻟﻔ روق ﺑ ﯾن ﻣﺗوﺳ طﺎت اﻟﻣﻌﺎﻟﺟ ﺎت وﻧﺑ دأ ﺑﻣﻘﺎرﻧ ﺔ اﻟﻔ رق ﺑ ﯾن أﻛﺑ ر ﻣﺗوﺳ ط وأﻗ ل ﻣﺗوﺳ ط ﺑﺎﻟﻘﯾﻣﺔ Rkﺛم ﻧﻘﺎرن اﻟﻔرق ﺑﯾن أﻛﺑر ﻣﺗوﺳط وﺛ ﺎﻧﻲ أﺻ ﻐر ﻣﺗوﺳ ط ﺑﺎﻟﻘﯾﻣ ﺔ Rk-1وﻧواﺻل ھ ذه k اﻟﻌﻣﻠﯾ ﺔ وإﻟ ﻰ أن ﺗ ﺗم ﻣﻘﺎرﻧ ﺔ ﻛ ل اﻷزواج وﻋ ددھﺎ . k(k 1) / 2إذا ﻛ ﺎن اﻟﻔ رق 2 اﻟﻣﺣﺳوب ﺑﯾن ﻣﺗوﺳطﯾن ﯾﺳﺎوى أو أﻋﻠﻰ ﻣن Rpﻓﯾﻛون ذﻟك اﻟﻔرق ﻣﻌﻧوﯾﺎ. ﺗﻠﺧص ﻧﺗﺎﺋﺞ اﻻﺧﺗﺑﺎر ﺑوﺿﻊ ﺧطوط ﻣﺷﺗرﻛﺔ ﺗﺣت اﻟﻣﺗوﺳطﺎت اﻟﺗﻲ ﻟ م ﺗﻛ ن ﻓروﻗﮭ ﺎ ﻣﻌﻧوﯾ ﺔ ، ﻣﻊ اﻹﺑﻘﺎء ﻋﻠﻰ ﺗرﺗﯾب اﻟﻣﺗوﺳطﺎت ﺗﻧﺎزﻟﯾﺎ.
ﻣﺛﺎل)(٤-٦ ﻟﺗوﺿﯾﺢ طرﯾﻘﺔ ﻧﯾوﻣن ﻟﻠﻣدى اﻟﻣﺗﻌدد ﻓﺳوف ﻧﺳﺗﺧدم اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ وﻧﺗﺑﻊ اﻟﺧطوات اﻟﺗﺎﻟﯾﺔ :
اﻟﺣــل: ﻧرﺗب ﻣﺗوﺳطﺎت اﻟﻣﻌﺎﻟﺟﺎت اﻟﺗﺎﻟﯾﺔ ﺗﻧﺎزﻟﯾﺎ ً ﻓﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ : C 2.25
A 3.75
B 7.00
D 9.43
اﻟﻣﺗوﺳط
)ب( ﻣن ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن اﻟﺧﺎص ﺑﮭذا اﻟﻣﺛﺎل ﻓ ﺈن MSE = 3.298ﺑ درﺟﺎت ﺣرﯾ ﺔ 20
MSE .ﻧوﺟ د اﻟﺧط ﺄ اﻟﻣﻌﯾ ﺎري ﻟﻠﻣﺗوﺳ ط n
s x وﺑﻣ ﺎ أن أﺣﺟ ﺎم اﻟﻣﻌﺎﻟﺟ ﺎت ﻏﯾ ر ﻣﺗﺳ ﺎوﯾﺔ ﻓﺈﻧﻧ ﺎ
ﻧﺣﺳب اﻟوﺳط اﻟﺗواﻓﻘﻲ ﻟﻠﻘﯾم n1, n2, …, nkﻛﺎﻵﺗﻲ : k n 1 1 1 1 n1 n 2 n 3 n 4 4 4 5.5721 , 1 1 1 1 .7178571 4 5 8 7 MSE 3.298 MSE 3.298,SX 0.7693. n 5.5721 ﯾﻣﻛن ﺗﻠﺧﯾص اﻟﻧﺗﺎﺋﺞ ﻟﻠﺣﺳﺎﺑﺎت اﻟﺳﺎﺑﻘﺔ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﺣﯾث ﻗﯾم ) q 0.05 (p,20ﺗﺳﺗﺧرج ﻣن ﺟدول ﻧﯾوﻣن -ﻛﻠز ﻓﻲ ﻣﻠﺣق ) (٥ﺣﯾث . p 2,3,4, 20 اﻟﻘﯾم ) R p , q 0.05 (p, 20ﻣﻌطﺎه ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : 4 3.96 3.05
3 3.58 2.75
2 2.95 2.27 ٤٨٢
p
)q 0.05 (p, 20 Rp
ﯾﻣﻛن ﺗﻠﺧﯾص اﻟﻧﺗﺎﺋﺞ اﻟﺳﺎﺑﻘﺔ ﻋﻠﻲ اﻟﻧﺣو اﻟﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : B A C p 7.00 3.75 2.25 Rp 3.05 2.75 2.27
4 3 2
*7.18 *4.75 1.5 -
*5.68 *3.25 -
*2.43 -
D 9.43 -
اﻟﺗرﺗﯾب اﻟﻣﺗوﺳط اﻟﻣﻌﺎﻟﺟﺔ 9.43 7.00 3.75 2.25
ﺣﯾث وﺿﻌت ﻛل اﻟﻔروق اﻟﻣﻣﻛﻧﮫ ﺑﯾن اﻟﻣﺗوﺳطﺎت داﺧل اﻟﺟدول وﺗﻣ ت ﻣﻘﺎرﻧﺗﮭ ﺎ ﺑﻘ ﯾم R pاﻟﻣﻧﺎﺳ ﺑﺔ. ﯾﺗﺿﺢ ﻣن اﻟﺟدول اﻟﺳﺎﺑق أن اﻟﻔروق ﻋﻠﻰ ﻛل ﻗطر ﻗﯾﻣﮫ ﻣن اﻋﻠ ﻰ اﻟﯾﺳ ﺎر إﻟ ﻰ اﻋﻠ ﻰ اﻟﯾﻣ ﯾن ﻟﮭ ﺎ ﻧﻔ س ﻗﯾﻣﺔ . pﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل اﻟﻔروق 2.43 , 3.25 , 1.5ﺗﻘﻊ ﻋﻠ ﻰ ﻗط ر واﺣ د وﻟﮭ ﺎ . p 2اﻟﻘﯾﻣ ﺔ اﻟﺣرﺟﮫ ﻟﮭذه اﻟﻔروق ھﻰ أﺧر ﻗﯾﻣﺔ ﻓﻰ اﻟﻌﻣود اﻷﺧﯾر ) . (2.27اﯾﺿ ﺎ اﻟﻔ روق 5.68 , 4.75ﺗﻘﻌ ﻊ ﻋﻠ ﻰ ﻗط ر واﺣ د وﻟﮭ ﺎ p 3وﺗﻘ ﺎرن ﺑﺎﻟﻘﯾﻣ ﺔ ) 2.75اﻟﻘﯾﻣ ﺔ اﻟﺛﺎﺑﺗ ﺔ ﻓ ﻰ اﻟﻌﻣ ود اﻷﺧﯾ ر( .أﺧﯾ را اﻟﻔ رق 7.18ﯾﻘ ﺎرن ﻋﻧ د p 4ﺑﺎﻟﻘﯾﻣ ﺔ اﻟﺣرﺟ ﺔ 3.05وھ ﻰ اﻟﻘﯾﻣ ﺔ اﻻوﻟ ﻰ ﻓ ﻰ اﻟﻌﻣ ود اﻻﺧﯾ ر. اﻟﻧﺟﻣﺔ * ﻓﻰ اﻟﺟدول ﺗدل ﻋﻠﻰ ﻓرق ﻣﻌﻧوى وذﻟك ﻋﻧد اﺳ ﺗﺧدام . 0.05ﻟﻠﺳ ﮭوﻟﺔ ﯾﻣﻛ ن ﺗﻠﺧ ﯾص ﻧﺗﺎﺋﺞ اﻟﺟدول اﻟﺳﺎﺑق وذﻟك ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ .ﻧﻼﺣظ أﻧﻧﺎ ﻟ م ﻧرﺻ د ﻗﯾﻣ ﺔ ﻟﻠﻔ رق ﺑ ﯾن أي اﻟﻣﺗوﺳ طﯾن ﻣوﺿﻊ اﻟﻣﻘﺎرﻧﺔ ﻛﻣﺎ ﻛﻧﺎ ﻧﻔﻌل ﻣن ﻗﺑل ﺑل رﺻدﻧﺎ ﻓﻘط ﻧﺟﻣﺔ. 4 2 1 3 4 * * * 2 * * 1 3 ﺑﺎﻻﺿﺎﻓﺔ ﻻﺧﺗﺑﺎر ﻧﯾوﻣن ھﻧﺎك ﻋدة طرق ودون اﻟدﺧول ﻓﻰ ﺗﻔﺎﺻﯾل ھذه اﻟطرق ﺳوف ﻧﻘدم ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻟذﻟك ﻣﻊ ﺷرح ﻛﯾﻔﯾﺔ ﺗﻔﺳﯾر اﻟﻧﺗﺎﺋﺞ ﻟﻛل طرﯾﻘﺔ .
ﻣﺛﺎل)(٥-٦ ﺑﺈﺳﺗﺧدام ﺑﯾﺎﻧﺎت اﻟﻣﺛﺎل ) (١-٦ﺳوف ﻧﺳﺗﺧدم اﻟطرﯾﻘﺔ اﻻوﻟﻰ واﻟﻣﺳﻣﺎه mcmTukeyPairs وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ : ]Off[General::spell1 `<<Statistics`DataManipulation `<<Statistics`ContinuousDistributions Ptrng-Preliminaries Ptrng mcmTukeyPairs ]Clear[mcmTukeyPairs,all ٤٨٣
mcmTukeyPairs::usage="mcmTukeyPairs[dataset,catvar,quanvar,a lpha,options] performsm ultiple pairwise comparisons using the Tukey-Kramer Procedure."; Options[mcmTukeyPairs]={categories->all}; categories::usage="categories is an option for various statistical algorithms that specifies which values of the categorical variable (catvar) to use.";
٤٨٤
m c m T u k e y P a i r s d a t a s e t _ , c a t v a r _ , q u a n v a r _ , _ , o p t s _ _ _ R u l e : M o d u l e i , d a t a , c a t s , g r o u p s , p a i r s , m u s , k , n , r e s p o n s e s , t o t a l , s q u a r e s , s q m e a n s , s u m s q m e a n s , m e a n s , n s , c , s s t , d f t , s s g , d f g , m s g , s s e , d f e , m s e , p r i m e , t a l p h a , m e a n d i f f e r e n c e s , l e f t , r i g h t , t o p r i n t , l 2 , l 3 , q a l p h a n u k , d a t a D r o p N o n N u m e r i c C o l u m n d a t a s e t , q u a n v a r , c a t v a r ; a l l U n i o n M a p # 2 & , d a t a ; c a t s c a t e g o r i e s . o p t s . O p t i o n s m c m T u k e y P a i r s ; g r o u p s T a b l e C o l u m n S e l e c t d a t a , # 2 c a t s i & , 1 , i , 1 , L e n g t h c a t s ; p a i r s F l a t t e n T a b l e c a t s i , c a t s j , j , 2 , L e n g t h c a t s , i , 1 , j 1 , 1 ; m u s T a b l e pairs i,1 pairs i,2 , i , 1 , L e n g t h p a i r s ; k L e n g t h g r o u p s ; n g r o u p s F l a t t e n L e n g t h ; r e s p o n s e s M a p A p p l y P l u s , # & , g r o u p s ; t o t a l A p p l y P l u s , g r o u p s F l a t t e n ; s q u a r e s A p p l y P l u s , g r o u p s ^ 2 F l a t t e n ; s q m e a n s r e s p o n s e s ^ 2 . T a b l e 1 L e n g t h g r o u p s i , i , 1 , L e n g t h g r o u p s ; s u m s q m e a n s A p p l y P l u s , s q m e a n s ; m e a n s T a b l e r e s p o n s e s i L e n g t h g r o u p s i , i , 1 , L e n g t h g r o u p s ; n s T a b l e L e n g t h g r o u p s i , i , 1 , L e n g t h g r o u p s ; c t o t a l ^ 2 n ; s s t s q u a r e s c ; d f t n 1 ; s s g s u m s q m e a n s c ; d f g k 1 ; m s g s s g d f g ; s s e s s t s s g ; d f e d f t d f g ; m s e s s e d f e ; q a l p h a n u k q t r 1 , d f e , k ; m e a n d i f f e r e n c e s F l a t t e n T a b l e m e a n s i m e a n s j , 1 n s i 1 n s j , j , 2 , L e n g t h m e a n s , i , 1 , j 1 , 1 ; l e f t i _ : m e a n d i f f e r e n c e s i , 1 q a l p h a n u k S q r t m s e 2 m e a n d i f f e r e n c e s i , 2 ; r i g h t i _ : m e a n d i f f e r e n c e s i , 1 q a l p h a n u k S q r t m s e 2 m e a n d i f f e r e n c e s i , 2 ; t o p r i n t T a b l e p a i r s i , 1 , " , " , p a i r s i , 2 , m e a n d i f f e r e n c e s i , 1 , l e f t i , " " , m u s i , " " , r i g h t i , I f l e f t i 0 r i g h t i , " N o " , " Y e s " , i , 1 , L e n g t h p a i r s ; t o p r i n t J o i n " " , " i , j " , " " , " Y i Y j" , " " , " " , " C o n f i d e n c e I n t e r v a l " , " " , " " , " S i g n i f i c a n t D i f f e r e n c e " , t o p r i n t ; P r i n t " M u l t i p l e P a i r w i s e C o m p a r i s o n s u s i n g t h e T u k e y K r a m e r P r o c e d u r e . " ; P r i n t T a b l e F o r m t o p r i n t , T a b l e A l i g n m e n t s C e n t e r , T a b l e S p a c i n g 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ; l 2 " T h e f a m i l y w i s e c o n f i d e n c e l e v e l i s a t l e a s t " , 1 0 0 1 , " p e r c e n t . " ; P r i n t T a b l e F o r m l 2 , T a b l e S p a c i n g 1 , 1 ; l 3 " T h e f a m i l y w i s e l e v e l o f s i g n i f i c a n c e i s a t m o s t " , 1 0 0 , " p e r c e n t . " ; P r i n t T a b l e F o r m l 3 , T a b l e S p a c i n g 1 , 1 ;
٤٨٥
dataset1={{1,10.},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18} ,{2,22.},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13.}}; mcmTukeyPairs[dataset1,1,2,0.05] Multiple Pairwise Comparisons using the Tukey-Kramer Procedure. i,j YiYj ConfidenceInterval SignificantDifference
1 , 2 4. 8.80637 12 1 , 3 2.2 2.60637 13 2 , 3 6.2 1.39363 23 The familywise confidence level is
0.80637 No 7.00637 No 11.0064 Yes at least 95. percent.
The familywise level of significance is at most 5. percent.
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت: اوﻻ اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ وھﻰdataset1 dataset1={{1,10.},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18} ,{2,22.},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13.}};
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ ﺳوف ﻧﺳﺗﺧدم اﻻﻣر mcmTukeyPairs[dataset1,1,2,0.05]
: وذﻟك ﻟﻠﺣﺻول ﻋﻠﻰ اﻟﻣﺧرج اﻟﺗﺎﻟﻰ Multiple Pairwise Comparisons using the Tukey-Kramer Procedure.
i,j YiYj Confidence Interval Significant Difference 1 , 2 4. 8.80637 1 2 0.80637 No 1 , 3 2.2 2.60637 1 3 7.00637 No 2 , 3 6.2 1.39363 2 3 11.0064 Yes The familywise confidence level is at least 95. percent. The familywise level of significance is at most 5. percent.
ﯾوﺿ ﺢ اﻟﻌﻣ ود اﻻﺧﯾ ر ﻋ دم وﺟ ود ﻓ رق. واﻟ ذى ﯾﺣﺗ وى ﻋﻠ ﻰ ﻓﺗ رات ﺛﻘ ﺔ ﻟﻠﻔ رق ﺑ ﯾن ﻛ ل ﻣﺗوﺳ طﯾن ﻣﻌﻧ وى ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ اﻻوﻟ ﻰ واﻟﺛﺎﻧﯾ ﺔ واﻻوﻟ ﻰ واﻟﺛﺎﻟﺛ ﺔ واﯾﺿ ﺎ وﺟ ود ﻓ رق ﻣﻌﻧ وى ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ . اﻟﺛﺎﻧﯾﺔ واﻟﻣﻌﺎﻟﺟﺔ اﻟﺛﺎﻟﺛﺔ
(٦-٦)ﻣﺛﺎل ٤٨٦
( ﺳوف ﻧﺳﺗﺧدم اﻟطرﯾﻘﺔ اﻟﺛﺎﻧﯾﺔ واﻟﻣﺳﻣﺎه١-٦) ﺑﺈﺳﺗﺧدام ﺑﯾﺎﻧﺎت اﻟﻣﺛﺎل mcmBonferroniPairs وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ ﻟﮭذه اﻟطرﯾﻘﺔ Off[General::spell1] <<Statistics`DataManipulation` <<Statistics`NormalDistribution` Clear[mcmBonferroniPairs,all] mcmBonferroniPairs::usage="mcmBonferroniPairs[dataset,catvar ,quanvar,alpha,options] performsm ultiple pairwise comparisons using the Bonferroni inequality."; Options[mcmBonferroniPairs]={categories->all}; categories::usage="categories is an option for various statistical algorithms that specifies which values of the categorical variable (catvar) to use."; m
c
m
M
a
o
l
B _ d
o , u
n
r m m r
e e s i d C
s a e g a o U a p r b i a a
l
F
r
e
T
a
s
s
b i
i
1 F
l T
a a
l t r
i
g
h
e a
T
J
t o
"
t t t a
a o b m m I i o i
e p
e
p n , h t l n c t O t g o a l , p i l t j m u s i , L e n
T
k
f o
l
r t
r s
o s
o _
i
n ,
n _
,
s
i _ d
r u B
i l o
n t n
t i f
p e
l r
e r
b a
l b
e l
F e
o S
r p
m a
" 1
T 0
h 0
e
l
P
3 " r
r
s
e ,
c
o
f
a
c l m
P n r t i 2 i
d
: a
a i r w i i i n e i n t o p r i n n g
a
t
s
,
t
a
s g
e r
t o
_ u
, p
c s
a
t
,
v
p
a
a i
r
_
r
,
s
q
,
m
u
a
u
n
s
v
,
a k
r ,
_
,
n
,
,
1
,
;
e
,
,
n
t
l , T
y
i
a
b
a o a
m s b
i t l
l " e
y , F
w
f m T
1
s q
e u
a
t
, 1
,
e r F
c o
C l T
o i a 1
m t b ,
p y l
a . e
1
r " A
,
i
s ;
l 1
i ,
o
g
n
n 1
s
m
u
e 1
,
n ,
s
t
i
s 1
n
g
,
t
1
h
C 1
,
e
e ,
n
t
e
1
r
,
;
r
P
i l a
P M
a T
a u t
e
n r t
p
P T
P R a
s , t o t a l , s q u a r e s , s q m e a n s , s u m s q m e a n s , s , c , s s t , d f t , s s g , d f g , m s g , s s e , d f e , i m e , t a l p h a , m e a n d i f f e r e n c e s , l e f t , t , o p r i n t , l 2 , l 3 , a D r o p N o n N u m e r i c u m n d a t a s e t , q u a n v a r , c a t v a r ; i o n M a p # 2 & , d a t a ; s c a t e g o r i e s . o p t s . i o n s m c m B o n f e r r o n i P a i r s ; u p s e C o l u m n S e l e c t d a t a , # 2 c a t s i & 1 , L e n g t h c a t s ; r s t e n T a b l e c a t s i , c a t s j , , 2 , L e n g t h c a t s , i , 1 , j 1 , 1 ; T a b l e , p a i r s i , 1 p a i r s i , 2 1 , L e n g t h p a i r s ; g t h g r o u p s ; n g r o u p s F l a t t e n L e n g t h ; r e s p o n s e s M a p A p p l y P l u s , # & , g r o u p s ; t o t a l A p p l y P l u s , g r o u p s F l a t t e n ; s q u a r e s A p p l y P l u s , g r o u p s ^ 2 F l a t t e n s q m e a n s p o n s e s ^ 2 . T a b l e 1 L e n g t h g r o u p s i , i , 1 , L e n g t h g r o u p s ; u m s q m e a n s A p p l y P l u s , s q m e a n s ; m e a n s l e r e s p o n s e s i L e n g t h g r o u p s i , , 1 , L e n g t h g r o u p s ; n s T a b l e L e n g t h g r o u p s i , , 1 , L e n g t h g r o u p s ; c t o t a l ^ 2 n ; s s t s q u a r e s c ; d f t n 1 ; s s g s u m s q m e a n s c ; d f g k 1 ; m s g s s g d f g ; s s e s s t s s g ; d f e d f t d f g ; m s e s s e d f e ; p r i m e k k 1 ; t a l p h a Q u a n t i l e S t u d e n t T D i s t r i b u t i o n d f p r i m e ; m e a n d i f f e r e n c e s t t e n b l e m e a n s i m e a n s j , 1 n s i 1 n s j , j , 2 , L e n g t h m e a n s i , 1 , j 1 , 1 ; f t i _ : m e a n d i f f e r e n c e s i , 1 l p h a S q r t m s e m e a n d i f f e r e n c e s i , 2 ; i _ : m e a n d i f f e r e n c e s i , 1 l p h a S q r t m s e m e a n d i f f e r e n c e s i , 2 ; p r i n t l e p a i r s i , 1 , " , " , p a i r s i , 2 , e a n d i f f e r e n c e s i , 1 , l e f t i , " " , u s i , " " , r i g h t i , f l e f t i 0 r i g h t i , " N o " , " Y e s " , , 1 , L e n g t h p a i r s ; p r i n t n " " , " i , j " , " " , " Y Y j " , " " , " " , i " C o n f i d e n c e I n t e r v a l " , " " , " " , " S i g n i f i c a n t D i f f e r e n c e " , t o p r i n t ;
w "
i p l
s e e
c e r
o n m
l , 3
e
n t
f i d e n c e . " ; l 2 , T a b l
l e
e S
v p
e a
l c
i i
n
s
a
g
t
l
1
e ,
a
s 1
t
"
,
;
T i
h a n
e t t
i 1
o
s e 0 0 r m
l
v "
,
e l p e r T a b
o f c e n l e S
s i g n i f t . " ; p a c i n g
i
c
a
n
c 1
e ,
i 1
s
;
dataset1={{1,10.},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18} ,{2,22.},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13.}}; mcmBonferroniPairs[dataset1,1,2,0.05] Multiple Pairwise Comparisons using the Bonferroni inequality.
i,j YiYj Confidence Interval Significant Difference 1 , 2 4. 8.9409 1 2 0.940899 No 1 , 3 2.2 2.7409 1 3 7.1409 No 2 , 3 6.2 1.2591 2 3 11.1409 Yes ٤٨٧
The familywise confidence level is at least 95. percent. The familywise level of significance is at most 5. percent.
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ وھﻰdataset1 dataset1={{1,10.},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18} ,{2,22.},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13.}};
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ ﺳوف ﻧﺳﺗﺧدم اﻻﻣر mcmBonferroniPairs[dataset1,1,2,0.05]
: وذﻟك ﻟﻠﺣﺻول ﻋﻠﻰ اﻟﻣﺧرج اﻟﺗﺎﻟﻰ Multiple Pairwise Comparisons using the Bonferroni inequality. i,j YiYj Confidence Interval Significant Difference
1 , 2 4. 8.9409 12 1 , 3 2.2 2.7409 13 2 , 3 6.2 1.2591 23 The familywise confidence level is
0.940899 7.1409 11.1409
No No Yes at least 95. percent.
The familywise level of significance is at most 5. percent.
ﯾوﺿ ﺢ اﻟﻌﻣ ود اﻻﺧﯾ ر ﻋ دم وﺟ ود ﻓ رق. واﻟ ذى ﯾﺣﺗ وى ﻋﻠ ﻰ ﻓﺗ رات ﺛﻘ ﺔ ﻟﻠﻔ رق ﺑ ﯾن ﻛ ل ﻣﺗوﺳ طﯾن ﻣﻌﻧ وى ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ اﻻوﻟ ﻰ واﻟﺛﺎﻧﯾ ﺔ واﻻوﻟ ﻰ واﻟﺛﺎﻟﺛ ﺔ واﯾﺿ ﺎ وﺟ ود ﻓ رق ﻣﻌﻧ وى ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ . اﻟﺛﺎﻧﯾﺔ واﻟﻣﻌﺎﻟﺟﺔ اﻟﺛﺎﻟﺛﺔ
(٧-٦)ﻣﺛﺎل ( ﺳوف ﻧﺳﺗﺧدم اﻟطرﯾﻘﺔ اﻟﺛﺎﻟﺛﺔ واﻟﻣﺳﻣﺎه١-٦) ﺑﺈﺳﺗﺧدام ﺑﯾﺎﻧﺎت اﻟﻣﺛﺎل mcmDunnSidakPairs وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ ﻟﮭذه اﻟطرﯾﻘﺔ Off[General::spell1] <<Statistics`DataManipulation` <<Statistics`NormalDistribution` Clear[mcmDunnSidakPairs,all] mcmDunnSidakPairs::usage="mcmDunnSidakPairs[dataset,catvar,q uanvar] performs selected Multiple comparisons using the Dunn-Sidak inequality."; Options[mcmDunnSidakPairs]={categories->all};
٤٨٨
categories::usage="categories is an option for various statistical algorithms that specifies which values of the categorical variable (catvar) to use."; m
c
m
M
a
o
l
D _ d
u , u
n
r m m r
e e s i d C
s a e g a o U a p r b i a a
l
F
r
e
s s
p i u
b i
l ,
i
,
T
a
S
i
p
t
, m i
s i u e
o p
1 r t ,
s e
1 t n r t s s o n , m s m e 1 n 1 c s d s d m s d m
l T
a a
l t r
i
g
h
e a
t
t b 1 i f l
m e e
, t p
i l p l e u f , p n " "
h _
p r e a s
h i
C S
o i
n t n
t i n
l S
e i
a T
b a
l b
e l
F e
o S
r p
m a
" 1
T 0
h 0
e
p
l
P
3 " r
S
t
a
s
,
s
e
t
_
,
c
a
s
,
t
v
h
l a
a
r
_
,
q
u
a
n
v
a
r
_
,
t
g
r
o
u
p
,
t
e c
r
i
n
t
f m T
a o a
m s b
i t l
f
P
a
s q u a r e s , s q d f t , s s g , d t a l p h a , m e a n d i f f t , l 2 , l 3 , o n N u m e r i c s e t , q u a n v a r , c a # 2 & , d a t a o r i e s . o p t s D u n n S i d a k P a i r s ;
P a i r a k i r i n t t o p r i n g 2 i l y w , " T a b
d P
d : a
l
s
,
e t
c s
t
d
a ;
t
a
,
#
p
a
m f
e g e
t
i
r
s
,
m
u
s
,
k
,
n
,
a n s , s u m s q m e a n s , , m s g , s s e , d f e , r e n c e s , l e f t ,
v
a
r
;
;
.
2
c
a
t
s
i
T a b l e c a t s i , c a t s j , L e n g t h c a t s , i , 1 , j 1 , 1 ; b l e , p a i r s i , 1 p a i r s i , 2 , e n g t h p a i r s ; h g r o u p s ; g r o u p s F l a t t e n L e n g t h ; e s p o n s e s M a p A p p l y P l u s , # & , g r o u p s o t a l A p p l y P l u s , g r o u p s F l a t t e n ; q u a r e s A p p l y P l u s , g r o u p s ^ 2 F l a t t e q m e a n s s e s ^ 2 . T a b l e 1 L e n g t h g r o u p s i , 1 , L e n g t h g r o u p s ; q m e a n s A p p l y P l u s , s q m e a n s ; e a n s r e s p o n s e s i L e n g t h g r o u p s i , , L e n g t h g r o u p s ; s T a b l e L e n g t h g r o u p s i , , L e n g t h g r o u p s ; t o t a l ^ 2 n ; s t s q u a r e s c ; f t n 1 ; s g s u m s q m e a n s c ; f g k 1 ; s g s s g d f g ; s e s s t s s g ; f e d f t d f g ; s e s s e d f e ; p r i m e 1 1 ^ 1 k k 1 2 a l p h a Q u a n t i l e S t u d e n t T D i s t r i b u t i o n r i m e ; e a n d i f f e r e n c e s n m e a n s i m e a n s j , n s i 1 n s j , j , 2 , L e n g t h m e a 1 , j 1 , 1 ; i _ : m e a n d i f f e r e n c e s i , 1 a S q r t m s e m e a n d i f f e r e n c e s i , 2 ; : m e a n d i f f e r e n c e s i , 1 a S q r t m s e m e a n d i f f e r e n c e s i , 2 ; n t p a i r s i , 1 , " , " , p a i r s i , 2 , d i f f e r e n c e s i , 1 , l e f t i , " " , i , " " , r i g h t i , e f t i 0 r i g h t i , " N o " , " Y e s " , , L e n g t h p a i r s ; n t " " , " i , j " , " " , " Y Y j " , " " , " " , i n f i d e n c e I n t e r v a l " , " " , " " , g n i f i c a n t D i f f e r e n c e " , t o p r i n t ;
i l u
T
c
s
&
,
1
,
a L
r u D
u t
P M
R a
,
"
n l i
_ d
n
J
1
s
t o
r
a
T
r
i
e ,
t t a
a o b m m I i o i
p t l
a
t
T
g
P
l a
_ , e
n r t
2
k
s , t o s , c , p i m e , o p r i n D r o p N n d a t a o n M a p c a t e g n s m c m s C o l u m n , L e n g t
i s
t a u
a _
n ,
t
1 F
d s
o s
e
p n , h t l n c t O t g o a l , p i l t j m u s i , L e n
T
k
n o
l
a
1
c l m
w n
i e
s q
e u
a
t
, 1
,
e r F
c o
C l
o i
m t
p y
a .
r "
i
s ;
o
n
s
u
s
i
n
g
t
h
;
n
;
2 d
; f
e
n
s
,
,
e
i
n
i p l
s e e
T
a 1
c e r
o n m
l , 3
e
b ,
n t
l
e 1
A ,
l 1
i ,
g
n 1
f i d e n c e . " ; l 2 , T a b l
m
e 1
, l e
e S
n , v p
t
s 1
e a
, l
c
1 i
i
n
C 1
, s
e ,
a
g
n
t
e
1
t
1
r
l
e ,
,
a
; s
1
t
"
,
;
T i
h a n
e t t
l " e
y , F
w
i 1
o
s e 0 0 r m
l
v "
,
e l p e r T a b
o f c e n l e S
s i g n i f t . " ; p a c i n g
i
c
a
n
c 1
e ,
i 1
s
;
dataset1={{1,10.},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18} ,{2,22.},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13.}}; mcmDunnSidakPairs[dataset1,1,2,0.05] Multiple Pairwise Comparisons using the Dunn-Sidak inequality.
i,j YiYj Confidence Interval Significant Difference 1 , 2 4. 8.9246 1 2 0.924596 No 1 , 3 2.2 2.7246 1 3 7.1246 No 2 , 3 6.2 1.2754 2 3 11.1246 Yes The familywise confidence level is at least 95. percent. The familywise level of significance is at most 5. percent.
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ وھﻰdataset1 dataset1={{1,10.},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18} ,{2,22.},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13.}};
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ ﺳوف ﻧﺳﺗﺧدم اﻻﻣر mcmDunnSidakPairs[dataset1,1,2,0.05]
: وذﻟك ﻟﻠﺣﺻول ﻋﻠﻰ اﻟﻣﺧرج اﻟﺗﺎﻟﻰ ٤٨٩
Multiple Pairwise Comparisons using the Dunn-Sidak inequality. i,j YiYj ConfidenceInterval Significant Difference
1 , 1 , 2 , The
2 4. 8.9246 12 0.924596 No 3 2.2 2.7246 13 7.1246 No 3 6.2 1.2754 23 11.1246 Yes familywise confidence level is at least 95. percent.
The familywise level of significance is at most 5. percent.
ﯾوﺿ ﺢ اﻟﻌﻣ ود اﻻﺧﯾ ر ﻋ دم وﺟ ود ﻓ رق. واﻟ ذى ﯾﺣﺗ وى ﻋﻠ ﻰ ﻓﺗ رات ﺛﻘ ﺔ ﻟﻠﻔ رق ﺑ ﯾن ﻛ ل ﻣﺗوﺳ طﯾن ﻣﻌﻧ وى ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ اﻻوﻟ ﻰ واﻟﺛﺎﻧﯾ ﺔ واﻻوﻟ ﻰ واﻟﺛﺎﻟﺛ ﺔ واﯾﺿ ﺎ وﺟ ود ﻓ رق ﻣﻌﻧ وى ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ . اﻟﺛﺎﻧﯾﺔ واﻟﻣﻌﺎﻟﺟﺔ اﻟﺛﺎﻟﺛﺔ
(٨-٦)ﻣﺛﺎل ( ﺳوف ﻧﺳﺗﺧدم اﻟطرﯾﻘﺔ اﻟراﺑﻌﺔ واﻟﻣﺳﻣﺎه١-٦) ﺑﺈﺳﺗﺧدام ﺑﯾﺎﻧﺎت اﻟﻣﺛﺎل mcmScheffePairs وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ ﻟﮭذه اﻟطرﯾﻘﺔ Off[General::spell1] <<Statistics`DataManipulation` <<Statistics`NormalDistribution` Clear[mcmScheffePairs,all] mcmScheffePairs::usage="mcmScheffePairs[dataset,catvar,quanv ar,,options] performs multiplem pairwise comparisons using the Scheffe procedure."; Options[mcmScheffePairs]={categories->all}; categories::usage="categories is an option for various statistical algorithms that specifies which values of the categorical variable (catvar) to use.";
٤٩٠
m
c
m o o
M
a
l
S p d
c t u
h s l
r m m t
e e s o d C
s a e p a o U a p r b i a a
p n , r t l n c t O t g o a l , p i l t j m u s i , L e n
l
T
F
k
r
e
s s
p i u
b i
l ,
i
,
T
a
n , t
i a u
t l
T
e a
"
m e e
h _
P M
r u S b a
l b
e l
F e
" 1
T 0
h 0
e
p r e a s
h i
n
l 1
r
o L
i
C S n t h
o i t i e
i r s d e : d a t a ,
l e
u n
m g
l
P
3 " r
m l o s
e
a
s
e
t
s
,
, t
, n
, u ,
N t
a
a
l
3 n e #
t
c s
t
_
,
a
t
v
s
,
a
r
_
e g
e
r q
i u
o
p
a
m
r
c
p
2
g
u
s q u a r e s , s q m d f t , s s g , d f d i f f e r e n c e s ,
n
v d
r
q
u
s
,
a
n
v
m
a n s , , m s g l e f t ,
a r , c a t v a t a ; o p t s . r s ;
i h
e e
s f
f
e
& . P
,
r c
a
i
S
e t
c s
d
a ;
t
l a
t
h
e c
i ,
, i
a
u
r
s
_
,
, k
,
_ n
, ,
s u m s q m e a n s , , s s e , d f e , r i g h t ,
c a
o S
n t
T a b l e c a t s L e n g t h c a t s b l e p a i r s i , , e n g t h p a i r s h g r o u p s ; g r o u p s F l a e s p o n s e s M a p o t a l A p p l y P l q u a r e s A p p l y q m e a n s s e s ^ 2 . T a b l e 1 1 , L e n g t h g r o u p q m e a n s A p e a n s r e s p o n s e s i , L e n g t h g r o u p s s T a b l e L e n g t , L e n g t h g r o u p s t o t a l ^ 2 n ; s t s q u a r e s c f t n 1 ; s g s u m s q m e a n s f g k 1 ; s g s s g d f g ; s e s s t s s g ; f e d f t d f g ; s e s s e d f e ; a l p h a k 1 Q u a n t i l e ; e a n d i f f e r e n c e s n m e a n s i n s i 1 n s 1 , j 1 , 1 ; i _ : m e a n d i f f a S q r t m s e m e a n : m e a n d i f f e r a S q r t m s e m e a n n t p a i r s i , 1 d i f f e r e n c e s i i , " " , r i g h e f t i 0 r i g , L e n g t h p a i r s n t " " , " i , j " , " " , n f i d e n c e I n t e r g n i f i c a n t D i f
a L
a
,
#
a
2
r
;
c
1
, i ,
c
a
a
t
1
p
r
s
,
i
i
j 1
j
s
,
2
a
,
,
t
s
i
&
,
1
,
,
L
s p
e
l
y
;
;
t t e n L e n g t h ; A p p l y P l u s , # & , u s , g r o u p s F l a t P l u s , g r o u p s ^ 2
1
,
L
e
h
g
g t h g ; P l u s ,
n
n ; r ;
g
t
o
u
h p
g
o
s
q
r
s
r
u
p
m
o
i
a
n
s
;
i
e
u
i
p
g r o u p t e n ; F l a t t
s
s
,
u
t
s
;
e
n
1
,
;
,
,
;
c
F
;
R
a
e j
a
t
i
o
D
i
s
t
r
i
j
, 2
,
b
i
o
n
k
d
f
e
m
e d e
,
r i n
d
n
e f c
n f e
i
f
s
,
c e
e r
s f
e
"
Y a e
" e
Y , n
i e 1 e
c ,
n
c
, s
"
"
j
" c
N
o
, "
e
t
h
m
,
2
;
i
,
2
;
e
n
e
a
n
s
,
,
i , ,
"
" " , " " , , t
, "
"
g
i
L 1
s
p a i r s l e f t i
i
l r
,
n i
e
" , " , , 1 , t i , h t i , ;
v f
j
s e
r
Y
"
"
o
2
"
e
s
"
, ,
"
,
,
p
r
i
n
t
;
p f
l f
e e
o S
r p
m a
f
a
c l m
P p r t i 2 i
a i r w i r o c e d i n t o p r i n n g
n
t
l , T
y
i
a
b
a o a
m s b
i t l
l " e
y , F
w
f m T
1
s u
e r
e
t
, 1
,
e r F
c o
C . T
o " a 1
m
p ;
b ,
l
a
e 1
r
A ,
i
l 1
s
i ,
o
g
n
n 1
s
m
u
e 1
,
n ,
s
t
i
s 1
n
g
,
t
1
h
C 1
,
e
e ,
n
t
e
1
r
,
;
r
P
a
a s
,
P T
t
T
a l
s , t o s , c , p h a , l 2 , r o p N d a t a M a p a t e g m c m
n
2
, t p
c s
, s e
a T
t o
a o b m m I i o i
n n s C
i l p l e u f , p n " " i l c
J
t t t a
, D
n
o p
1 t n r t s s o n , m s m e 1 n 1 c s d s d m s d m t
t 1
t
g
t b 1 i f l
h
a
a a
e n l
o
1
r
P u ,
s
m
r t ,
l T
e R i
n
i s i u e
q
g
f _
o s
F
i
f _
S
l t r
e _ e
w "
i p l
s e e
c e r
o n m
l , 3
e
n t
f i d e n c e . " ; l 2 , T a b l
l e
e S
v p
e a
l c
i i
n
s
a
g
t
l
1
e ,
a
s 1
t
"
,
;
T i
h a n
e t t
i 1
o
s e 0 0 r m
l
v "
,
e l p e r T a b
o f c e n l e S
s i g n i f t . " ; p a c i n g
i
c
a
n
c 1
e ,
i 1
s
;
dataset1={{1,10.},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18} ,{2,22.},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13.}}; mcmScheffePairs[dataset1,1,2,0.05] Multiple Pairwise Comparisons using the Scheffe procedure.
i,j YiYj Confidence Interval 1 , 2 4. 8.95531 1 2 1 , 3 2.2 2.75531 1 3 2 , 3 6.2 1.24469 2 3 The familywise confidence level is at
Significant Difference 0.955306 No 7.15531 No 11.1553 Yes least 95. percent.
The familywise level of significance is at most 5. percent.
اﻟﻣدﺧﻼت:اوﻻ اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ وھﻰdataset1 dataset1={{1,10.},{1,14},{1,18},{1,15},{1,12.},{2,16},{2,18} ,{2,22.},{2,18},{2, 15},{3,15},{3,12},{3,8},{3,10},{3,13.}};
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ ﺳوف ﻧﺳﺗﺧدم اﻻﻣر mcmScheffePairs[dataset1,1,2,0.05]
: وذﻟك ﻟﻠﺣﺻول ﻋﻠﻰ اﻟﻣﺧرج اﻟﺗﺎﻟﻰ Multiple Pairwise Comparisons using the Bonferroni inequality.
٤٩١
Significant Difference 0.955306 No 7.15531 No 11.1553 Yes least 95. percent.
i,j YiYj Confidence Interval 1 , 2 4. 8.95531 1 2 1 , 3 2.2 2.75531 1 3 2 , 3 6.2 1.24469 2 3 The familywise confidence level is at
The familywise level of significance is at most 5. percent.
واﻟ ذى ﯾﺣﺗ وى ﻋﻠ ﻰ ﻓﺗ رات ﺛﻘ ﺔ ﻟﻠﻔ رق ﺑ ﯾن ﻛ ل ﻣﺗوﺳ طﯾن .ﯾوﺿ ﺢ اﻟﻌﻣ ود اﻻﺧﯾ ر ﻋ دم وﺟ ود ﻓ رق ﻣﻌﻧ وى ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ اﻻوﻟ ﻰ واﻟﺛﺎﻧﯾ ﺔ واﻻوﻟ ﻰ واﻟﺛﺎﻟﺛ ﺔ واﯾﺿ ﺎ وﺟ ود ﻓ رق ﻣﻌﻧ وى ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ اﻟﺛﺎﻧﯾﺔ واﻟﻣﻌﺎﻟﺟﺔ اﻟﺛﺎﻟﺛﺔ .
) (٣-٦اﻟﺗﺻﻧﯾف اﻟﺛﻧﺎﺋﻲ ،ﻣﺷﺎھدة واﺣدة ﻓﻲ ﻛل ﺧﻠﯾﺔ: Two-Way Classification, Single Observation Per Cell ﻗد ﺗﺻﻧف ﻓﺋﺔ ﻣن اﻟﻣﺷﺎھدات ﺗﺑﻌﺎ ً ﻟﺻﻔﺗﯾن ﻣﻌﺎ .ﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛ ﺎل ﻋﻧ دﻣﺎ ﯾرﻏ ب اﻟﺑﺎﺣ ث ﻓ ﻲ ﻣﺟ ﺎل اﻟزراﻋﺔ ﻓﻲ دراﺳﺔ ﺗﺄﺛﯾر اﻟطرق اﻟﻣﺧﺗﻠﻔﺔ ﻟﻠزراﻋﺔ ) ﺛﻼﺛﺔ طرق ( وﻛذﻟك اﻷوﻗ ﺎت اﻟﻣﺧﺗﻠﻔ ﺔ ﻟﻠزراﻋ ﺔ ) ﻣ ﺎرس وﻓﺑراﯾ ر وﻧ وﻓﻣﺑر وأﻛﺗ وﺑر ( ﻋﻠ ﻰ إﻧﺗﺎﺟﯾ ﺔ ﻣﺣﺻ ول اﻟﻘﺻ ب .اﻟﻣﺷ ﺎھدات ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﯾﻣﻛن وﺿﻌﮭﺎ ﻓﻲ ﺟدول ﻣن ﺛﻼﺛﺔ ﺻﻔوف وأرﺑﻌﺔ أﻋﻣدة ﺣﯾث ﺗﻣﺛل اﻟﺻ ﻔوف ط رق اﻟزراﻋ ﺔ 1, 2, 3وﺗﻣﺛل اﻷﻋﻣدة أوﻗﺎت اﻟزراﻋﺔ ) ﻣﺎرس وﻓﺑراﯾر وﻧ وﻓﻣﺑر وأﻛﺗ وﺑر ( .ﯾطﻠ ق ﻋﻠ ﻰ ﺗﻘﺎطﻊ أي ﺻ ف ﻣ ﻊ أي ﻋﻣ ود ﺑﺎﻟﺧﻠﯾ ﺔ وﻛ ل ﺧﻠﯾ ﺔ ﺗﺣﺗ وي ﻋﻠ ﻰ ﻣﺷ ﺎھدة واﺣ دة .ﻋﻣوﻣ ﺎ ً ،ﻓ ﻲ ﺣﺎﻟ ﺔ اﻟﺗﺻ ﻧﯾف اﻟﺛﻧ ﺎﺋﻲ ﻟﻣﺷﺎھدة واﺣدة ﯾﻣﻛن وﺿﻊ اﻟﻣﺷﺎھدات ﻓ ﻲ ﺟ دول ﯾﺗﻛ ون ﻣ ن rﻣ ن اﻟﺻ ﻔوف و cﻣ ن اﻷﻋﻣ دة ﻛﻣ ﺎ ھو ﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﺣﯾث أن x ijﺗرﻣز ﻟﻠﻣﺷﺎھدة ﻓﻲ اﻟﺻف رﻗ م iواﻟﻌﻣ ود رﻗ م . jﺳ وف ﻧﻔﺗرض أن x ijﻗﯾم ﻟﻣﺗﻐﯾرات ﻋﺷواﺋﯾﺔ ﻣﺳ ﺗﻘﻠﺔ ﻟﮭ ﺎ ﺗوزﯾﻌ ﺎت طﺑﯾﻌﯾ ﺔ ﺑﻣﺗوﺳ ط ijوﺗﺑ ﺎﯾن ﻣﺷ ﺗرك . 2ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ Ti.و x i.ﺗرﻣ ز ﻟﻠﻣﺟﻣ وع واﻟﻣﺗوﺳ ط ﻋﻠ ﻰ اﻟﺗ واﻟﻲ ﻟﻛ ل اﻟﻣﺷ ﺎھدات ﻓ ﻲ اﻟﺻ ف رﻗ م iو T.jو x. jﺗرﻣ ز ﻟﻠﻣﺟﻣ وع واﻟﻣﺗوﺳ ط ﻟﻛ ل اﻟﻣﺷ ﺎھدات ﻓ ﻲ اﻟﻌﻣ ود رﻗ م jو x .. ,T..ﺗرﻣز ﻟﻠﻣﺟﻣوع واﻟﻣﺗوﺳط ﻋﻠﻰ اﻟﺗواﻟﻲ ﻟﻛ ل اﻟﻣﺷ ﺎھدات اﻟﺗ ﻲ ﻋ ددھﺎ . rcاﻟﻣﺗوﺳ ط ﻟﻣﺗوﺳ طﺎت اﻟﻣﺟﺗﻣﻌ ﺎت ﻟﻠﺻف رﻗم ، i. ، iﯾﻌرف ﻛﺎﻵﺗﻲ :
٤٩٢
c
ij
j1
. اﻟﻣﺗوﺳط
اﻟﻣﺟﻣوع
x1. x 2.
T1. T2.
xi.
Ti.
x r.
Tr.
c
T.. x..
c
…
i. اﻟﺻف
اﻷﻋﻣــدة … 2 j
1
x11 x12 x1 j x1c
1
x 21
2
x 22 x 2 j x 2c
x i1 x i 2 x ij x r1 x r 2 x rj
x ic x rc
T.2 T. j T.c x.c
x.j
T.1
x.1 x.2
i r اﻟﻣﺟﻣوع اﻟﻣﺗوﺳط
وﺑﻧﻔس اﻟﺷﻛل ،اﻟﻣﺗوﺳط ﻟﻣﺗوﺳطﺎت اﻟﻣﺟﺗﻣﻌﺎت ﻟﻠﻌﻣود رﻗم jو . jﯾﻌرف ﻛﺎﻵﺗﻲ : r
ij
.j i 1
. r واﻟﻣﺗوﺳط ﻟﻣﺗوﺳطﺎت اﻟﻣﺟﺗﻣﻌﺎت اﻟﺗﻲ ﻋددھﺎ ، ، rcﯾﻌرف ﻛﺎﻵﺗﻲ :
.
r c ij i 1 j1
rc
ﻟﺗﻘدﯾر ﻣﺎ إذا ﻛﺎن ﺟزء ﻣن اﻻﺧﺗﻼف ﺑﯾن اﻟﻣﺷﺎھدات ﯾرﺟﻊ إﻟﻰ اﻻﺧﺗﻼف ﺑ ﯾن اﻟﺻ ﻔوف ،ﻓﺈﻧﻧ ﺎ ﻧﺧﺗﺑ ر ﻓرض اﻟﻌدم: H '0 : μ1. μ 2. μ r . μ,
ﺿد اﻟﻔرض اﻟﺑدﯾل :
واﺣد ﻋﻠﻰ اﻷﻗل ﻣن μ i.ﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲ H1 : : وﺑﻧﻔس اﻟﺷﻛل ﻟﺗﻘدﯾر ﻣﺎ إذا ﻛﺎن ﺟزء ﻣن اﻻﺧ ﺗﻼف ﺑ ﯾن اﻟﻣﺷ ﺎھدات ﯾرﺟ ﻊ إﻟ ﻰ اﻷﻋﻣ دة ،ﻓﺈﻧﻧ ﺎ ﻧﺧﺗﺑ ر ﻓرض اﻟﻌدم :
H '0' : .1 .2 .c ﺿد اﻟﻔرض اﻟﺑدﯾل :
٤٩٣
واﺣد ﻋﻠﻰ اﻷﻗل ﻣن . jﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲH1" : ﯾﻣﻛن ﻛﺗﺎﺑﺗﮫ ﻛل ﻣﺷﺎھدة ﻋﻠﻰ اﻟﺷﻛل : xij ij ij ﺣﯾ ث ijﯾﻘ ﯾس اﻧﺣ راف ﻗﯾﻣ ﺔ اﻟﻣﺷ ﺎھدة x ijﻋ ن ﻣﺗوﺳ ط اﻟﻣﺟﺗﻣ ﻊ . ijاﻟﺷ ﻛل اﻟﻣﻔﺿ ل واﻟﺷ ﺎﺋﻊ اﻻﺳ ﺗﺧدام ﻟﮭ ذه اﻟﻣﻌﺎدﻟ ﺔ ) أو اﻟﻧﻣ وذج ( ﯾﻣﻛ ن اﻟﺣﺻ ول ﻋﻠﯾ ﮫ ﺑوﺿ ﻊ ij i jﺣﯾ ث iﺗرﻣز ﻟﺗﺄﺛﯾر اﻟﺻف رﻗ م iو jﺗرﻣ ز ﻟﺗ ﺄﺛﯾر اﻟﻌﻣ ود رﻗ م . jﺳ وف ﻧﻔﺗ رض أن ﺗ ﺄﺛﯾر اﻟﺻ ﻔوف واﻷﻋﻣ دة ﺗﺟﻣﯾﻌ ﻲ ) additiveﺳ وف ﻧﺷ رح ذﻟ ك ﺑﺎﻟﺗﻔﺻ ﯾل ﻓ ﻲ اﻟﺑﻧ د اﻟﺗ ﺎﻟﻲ ( .وﻋﻠ ﻰ ذﻟ ك ﯾﻣﻛ ن إﻋﺎدة ﻛﺗﺎﺑﺔ x ijﻋﻠﻰ اﻟﺷﻛل :
x ij i j ij ، وذﻟك ﺗﺣت اﻟﻘﯾود اﻟﺗﺎﻟﯾﺔ : c
r
j1
i 1
i 0 , j 0 وﻋﻠﻰ ذﻟك : c
) ( i j i ,
j1
c
i.
r
) ( i j j,
r
.j i 1
اﻵن اﺧﺗﺑﺎر ﻓرض اﻟﻌدم : H0 : 1. 2. r. ,
ﺿد اﻟﻔرض اﻟﺑدﯾل :
واﺣد ﻋﻠﻰ اﻷﻗل ﻣن i.ﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲH1 : ﯾﻛﺎﻓﺊ اﺧﺗﺑﺎر ﻓرض اﻟﻌدم :
H'0 : 1 2 ... r 0 ﺿد اﻟﻔرض اﻟﺑدﯾل :
واﺣد ﻋﻠﻰ اﻷﻗل ﻣن iﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : وﺑﻧﻔس اﻟﺷﻛل اﺧﺗﺑﺎر ﻓرض اﻟﻌدم : H0 : .1 .2 .c ﺿد اﻟﻔرض اﻟﺑدﯾل :
واﺣد ﻋﻠﻰ اﻷﻗل ﻣن . jﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲ H1 : ﯾﻛﺎﻓﺊ اﺧﺗﺑﺎر ﻓرض اﻟﻌدم :
H0 : 1 2 ... c 0 ٤٩٤
ﺿد اﻟﻔرض اﻟﺑدﯾل :
واﺣد ﻋﻠﻰ اﻷﻗل ﻣن jﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠﻲ ھو : r
c
SSTO x ij2 CF, i 1 j1
ﺣﯾث :
T..2 rc
CF
وﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳطﺎت اﻟﺻﻔوف sum of squares for rows means :ھو : r
2 Ti.
CF, ،
c
SSR i 1
وﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳطﺎت اﻷﻋﻣدة ھو : c
2 T.j
j1
CF,
r
، وﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺄ ھو SSEﺣﯾث :
SSC
SSTO SSR SSC SSE ,
ﻋﻣﻠﯾ ﺎ ً أوﻻ ﻧﺣﺳ ب SSTOو SSRو SSCﺛ م ﻧﺣﺻ ل ﻋﻠ ﻰ SSEﺑط رح ﻛ ل ﻣ ن SSRو SSCﻣن . SSTأي أن . SSE = SSTO – SSR – SSC ﻣﺗوﺳط ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳطﺎت اﻟﺻﻔوف ﯾﻌطﻰ ﻛﺎﻵﺗﻲ :
SSR . r 1
MSR
ﻣﺗوﺳط ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳطﺎت اﻟﺻﻔوف ﯾﻌطﻰ ﻛﺎﻵﺗﻲ :
SSC . c 1
MSC
ﻣﺗوﺳط ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳطﺎت اﻻﻋﻣدة ﯾﻌطﻰ ﻛﺎﻵﺗﻲ :
SSE , )(r 1)(c 1 ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم H 0ﻓﺈﻧﻧﺎ ﻧﺣﺳب اﻟﻧﺳﺑﺔ : ٤٩٥
MSE
MSR MSE
f1
ﺳوف ﻧرﻓض ﻓرض اﻟﻌدم ،ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ،ﻋﻧدﻣﺎ : F1 f (r 1, (r 1)(c 1)) . ﺑﻧﻔس اﻟﺷﻛل ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم H 0ﻓﺈﻧﻧﺎ ﻧﺣﺳب اﻟﻧﺳﺑﺔ :
MSC . MSE
f2
ﺳوف ﻧرﻓض ﻓرض اﻟﻌدم ،ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ، ﻋﻧدﻣﺎ : F2 f (c 1,(r 1)(c 1)) درﺟﺎت اﻟﺣرﯾﺔ اﻟﺧﺎﺻﺔ ﺑـ SSEھﻲ: (r 1)(c 1).
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻓﻲ ﺣﺎﻟﺔ اﻟﺗﺻﻧﯾف اﻟﺛﻧﺎﺋﻲ ﺑﻣﺷﺎھدة واﺣدة ﻟﻛل ﺧﻠﯾﺔ ﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : fاﻟﻣﺣﺳوﺑﺔ
MSR MSE MSC f2 MSE f1
ﻣﺗوﺳط ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت
درﺟﺎت اﻟﺣرﯾﺔ
r 1
SSR r 1 SSC MSC c 1 SSE MSE )(r 1)(c 1 MSR
SSR SSC SSE SST
c 1 )( r 1)(c 1 rc 1
ﻣﺻدر اﻻﺧﺗﻼف ﻣﺗوﺳطﺎت اﻟﺻﻔوف ﻣﺗوﺳطﺎت اﻷﻋﻣدة اﻟﺧطﺄ اﻟﻣﺟﻣوع
ﻣﺛﺎل)(٩-٦ ﺗﻌطﻲ اﻟﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ اﻟدرﺟﺎت اﻟﺗﻲ ﺣﺻل ﻋﻠﯾﮭﺎ ﺳﺗﺔ ﻣن اﻟطﻠب ﻓﻲ ﺛﻼﺛﺔ ﻣﻘررات واﻟﻣطﻠوب):أ( ھل ھﻧﺎك ﺗﻔﺎوت ﻓﻲ ﻣﻘدرة اﻟطﻠﺑﺔ ؟ )ب( ھل ھﻧﺎك ﺗﻔﺎوت ﻓﻲ ﺻﻌوﺑﺔ اﻟﻣﻘررات ) اﺳﺗﺧدم ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ .( =0.05
اﻟﻠﻐﺔ اﻟﻔرﻧﺳﯾﺔ 15 14 12 14 12 9
اﻟﻣﻘرر اﻟﻠﻐﺔ اﻹﻧﺟﻠﯾزﯾﺔ 18 16 17 19 12 13
اﻟرﯾﺎﺿﯾﺎت 14 12 16 15 10 11 ٤٩٦
اﻟطﺎﻟب 1 2 3 4 5 6
اﻟﺣــل: ﻓروض اﻟﻌدم ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻲ : )أ( H0 : α1 α 2 ... α 6 0
)ب( H0 : 1 2 3 0 اﻟﻔروض اﻟﺑدﯾﻠﺔ ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻲ : )أ( ﻋﻠﻰ اﻷﻗل واﺣد ﻣن iﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : )ب( ﻋﻠﻰ اﻷﻗل واﺣد ﻣن jﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : f.05(5,10)=3.33واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ Fﻓ ﻲ ﻣﻠﺣ ق ) (٤ﺑ درﺟﺎت ﺣرﯾ ﺔ . 1 5 , 2 10أﯾﺿﺎ . f.05(2,10) = 4.1ﻣﻧطﻘﺔ اﻟرﻓض : )أ( F1 > 3.33 )ب( F2 > 4.1 6
3
SSTO x ij2 CF i 1 j1
(249)2 14 12 ... 12 9 18 = 3571 – 3444.5 = 126.5, 2
2
2
2
6
2 T i.
CF
c
SSR i 1
47 2 422 452 482 342 332 (249) 2 3 18 = 3515.67 – 3444.5 = 71.17,
CF
3 2 T. j j1
r
SSC
782 952 762 (249)2 6 18 = 3480.83 – 3444.5 = 36.33. ﻓﯾﻣﺎ ﯾﻠﻰ ﻓﻲ ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن : fاﻟﻣﺣﺳوﺑﺔ f1=7.492 f2= 9.561
ﻣﺗوﺳط اﻟﻣرﺑﻌﺎت 14.234 18.165
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت 71.17 36.33 ٤٩٧
درﺟﺎت اﻟﺣرﯾﺔ 5 2
ﻣﺻدر اﻻﺧﺗﻼف ﻣﺗوﺳطﺎت اﻟﺻﻔوف ﻣﺗوﺳطﺎت اﻷﻋﻣدة
1.9
19 126.5
10 17
اﻟﺧطﺄ اﻟﻛﻠـﻲ
ﺑﻣ ﺎ أن f1 7.492ﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟ رﻓض ﻧ رﻓض H 0أي أن ھﻧ ﺎك ﺗﻔ ﺎوت ﻓ ﻲ ﻣﻘ درة اﻟطﻠﺑ ﺔ.أﯾﺿ ﺎ ﺑﻣ ﺎ أن f 2 9.561ﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟ رﻓض ﻧ رﻓض H0أي أن ھﻧ ﺎك ﺗﻔ ﺎوت ﻓ ﻲ ﺻﻌوﺑﺔ اﻟﻣﻘررات . ﺳوف ﯾﺗم اﺳﺗﺧدام ] [Mathematica 5.0ﻓﻲ ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺣﯾث : ﻣﺻ در اﻷﺧ ﺗﻼف ﺗﻌﻧ ﻲ ) ، (S.Vﻣﺗوﺳ طﺎت اﻟﺻ ﻔوف ﺗﻌﻧ ﻰ ) ، (Aﻣﺗوﺳ طﺎت اﻷﻋﻣ دة ﺗﻌﻧ ﻲ )، (Bاﻟﺧط ﺄ ﺗﻌﻧ ﻲ )، (errorاﻟﻛﻠ ﻲ ﺗﻌﻧ ﻲ ) ، (totalدرﺟ ﺎت اﻟﺣرﯾ ﺔ ﺗﻌﻧ ﻲ ) ، (dfﻣﺟﻣ وع اﻟﻣرﺑﻌﺎت ﺗﻌﻧﻲ ) ، (ssﻣﺗوﺳط اﻟﻣرﺑﻌﺎت ﺗﻌﻧﻲ ) f ، (mssاﻟﻣﺣﺳوﺑﺔ ﺗﻌﻧﻲ ).(f ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . =0.05 0.05 a={{14,18,15.},{12,16,14.},{16,17,12.}, }}{15,19,14.},{10,12,12.},{11,13.,9 }{{14,18,15.},{12,16,14.},{16,17,12.},{15,19,14.},{10,12,12. }},{11,13.,9 ]Dimensions[a }{6,3 ]]b=N[Transpose[a {{14.,12.,16.,15.,10.,11.},{18.,16.,17.,19.,12.,13.},{15.,14 }}.,12.,14.,12.,9. ]f[x_]:=Apply[Plus,x ]g[x_]:=Length[x ]]]na=g[a[[1 3 ]]]nb=g[b[[2 6 k1=na-1 2 k2=nb-1 5 N1=na*nb 18 ]xxx=Flatten[a }{14,18,15.,12,16,14.,16,17,12.,15,19,14.,10,12,12.,11,13.,9 ]xx2=f[xxx ٤٩٨
249. sxx22=f[xxx^2] 3571. cf=(xx2^2)/N1 3444.5 x1=Map[f,a] {47.,42.,45.,48.,34.,33.} aaaa1=f[x1^2]/na 3515.67 aaaa=aaaa1-cf 71.1667 ssa=aaaa/k2 14.2333 xx2=Map[f,b] {78.,95.,76.} bbb1=f[xx2^2]/nb 3480.83 bbbb=bbb1-cf 36.3333 sbb=bbbb/k1 18.1667 tot=sxx22-cf 126.5 sser=tot-aaaa-bbbb 19. v1=N1-1-k1-k2 10 msser=sser/v1 1.9 v1=N1-1-k1-k2 10 ff1=ssa/msser 7.49123 ff2=sbb/msser 9.5614 rt2=List[" df "," ss "," mss "," f "] { df , ss , mss , f } rt1=List[k2,aaaa,ssa,ff1] {5,71.1667,14.2333,7.49123} rt3=List[k1,bbbb,sbb,ff2] {2,36.3333,18.1667,9.5614} rt9=List[v1,sser,msser,"-"] {10,19.,1.9,-} rr9=List[N1-1,tot,"_","_"] {17,126.5,_,_} a11=TableHeadings->{{ S.V,A,B,error,total},{ANOVA}} ٤٩٩
}}TableHeadings{{S.V,A,B,error,total},{ANOVA ]uu1=TableForm[{rt2,rt1,rt3,rt9,rr9},a11
f 7.49123 9.5614
_
mss 14.2333 18.1667 1.9 _
ss 71.1667 36.3333 19. 126.5
ANOVA df 5 2 10 17
S.V A B error total
`<<Statistics`ContinuousDistributions ]f1=Quantile[FRatioDistribution[k2,v1],1- 3.32583 ]]"If[ff1>f1,Print["RjectHo"],Print["AccpetHo RjectHo
]f2=Quantile[FRatioDistribution[k1,v1],1- 4.10282 ]]"If[ff2>f2,Print["RjectHo"],Print["AccpetHo RjectHo وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ : اوﻻ :اﻟﻣدﺧﻼت ﻣﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ ﻣﻦ اﻻﻣﺮ =0.05
اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ aوﻫﻰ a={{14,18,15.},{12,16,14.},{16,17,12.}, }}{15,19,14.},{10,12,12.},{11,13.,9 وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﻴﺎﻧﺎت اﻟﺨﺎﺻﺔ ﻓﻰ ﻣﺜﺎل ) (٩-٦ﺣﻴﺚ ﻳﺘﻢ ادﺧﺎل اﻟﺒﻴﺎﻧﺎت ﺻﻒ ﺻﻒ. ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر ]=TableForm[{rt2,rt1,rt3,rt9,rr9},a11 ﻓروض اﻟﻌدم ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻲ : )أ( H0 : α1 α 2 ... α 6 0
)ب( H0 : 1 2 3 0 اﻟﻔروض اﻟﺑدﯾﻠﺔ ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻲ : )أ( ﻋﻠﻰ اﻷﻗل واﺣد ﻣن iﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : )ب( ﻋﻠﻰ اﻷﻗل واﺣد ﻣن jﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : ) f.05 (5,10واﻟﻣﺳﺗﺧرﺟﺔ ﻋﻧد درﺟﺎت ﺣرﯾﺔ 1 5, 2 10ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]f1=Quantile[FRatioDistribution[k2,v1],1- f1اﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر ff1=ssa/msser
اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر ٥٠٠
If[ff1>f1,Print["RjectHo"],Print["AccpetHo"]]
واﻟﻣﺧرج ھو Reject H0
.اى رﻓض ﻓرض اﻟﻌدم أي أن ھﻧﺎك ﺗﻔﺎوت ﻓﻲ ﻣﻘدرة اﻟطﻠﺑﺔ اﯾﺿﺎ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ1 2, 2 10 واﻟﻣﺳﺗﺧرﺟﺔ ﻋﻧد درﺟﺎت ﺣرﯾﺔf.05 (2,10) f2=Quantile[FRatioDistribution[k1,v1],1-] اﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣرf 2 ff2=sbb/msser
اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر If[ff2>f2,Print["RjectHo"],Print["AccpetHo"]]
واﻟﻣﺧرج ھو Reject H0
اى رﻓض ﻓرض اﻟﻌدم أي أن ھﻧﺎك ﺗﻔﺎوت ﻓﻲ ﺻﻌوﺑﺔ اﻟﻣﻘررات
(١٠-٦)ﻣﺛﺎل : ﺳوف ﻧﻘدم ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻟﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق Off[General::spell1]; <<Statistics`NormalDistribution` <<Statistics`DataManipulation` twoWayAnova - Data entered as Matrix twoWayANOVAarray - Data entered as an array Model I Model II Model III Model IV Model IV modelFour[twoLists_]:=Module[{a,b,n,capN,sumOfVals, sumOfValsSq,sumOverA,sqValsA,factorASumOfSq,sumOverB,sq ValsB,factorBSumOfSq,c,totalSS,totalDF,sumOverColumnAndSquar e,flatList,num,cellsSS,cellsDF,withinCellsSS,withinCellsDF,f actorADF,factorBDF,ACrossBinteractionSS,ACrossBinteractionDF ,factorAMS,factorBMS,ACrossBMS,withinCellsMS,fA,pA,fB,pB,fAB ,pAB,cd,lineOne,lineTwo,lineFour,lastLine}, a=Length[twoLists]; b=Length[twoLists[[1]]]; n=Length[twoLists[[1,1]]]; capN=a b n;
٥٠١
sumOfVals=Sum[twoLists[[i,j,l]],{i,1,a},{j,1,b},{l,1,n} ]; sumOfValsSq=Sum[twoLists[[i,j,l]]^2,{i,1,a},{j,1,b},{l, 1,n}]; sumOverA=Table[Sum[twoLists[[i,j,l]],{j,1,b},{l,1,n}],{ i,1,a}]; sqValsA=Table[sumOverA[[i]]^2,{i,1,Length[sumOverA]}]; factorASumOfSq=Apply[Plus,sqValsA]/(b n)-c; sumOverB=Table[Sum[twoLists[[i,j,l]],{i,1,a},{l,1,n}],{ j,1,b}]; sqValsB=Table[sumOverB[[j]]^2,{j,1,Length[sumOverB]}]; factorBSumOfSq=Apply[Plus,sqValsB]/(a n)-c; c=sumOfVals^2/capN; totalSS=sumOfValsSq-c; totalDF=a b-1; sumOverColumnAndSquare[v_]:=Sum[v[[k]],{k,1,Length[v]}] ^2; flatList=Flatten[twoLists,1]; num=Map[sumOverColumnAndSquare,flatList]; cellsSS=Apply[Plus,num]/n-c; cellsDF=a b-1; withinCellsSS=totalSS-cellsSS; withinCellsDF=(a-1)(b-1); factorADF=a-1; factorBDF=b-1; ACrossBinteractionDF=factorADF factorBDF; factorAMS=factorASumOfSq/factorADF; factorBMS=factorBSumOfSq/factorBDF; SSAB=totalSS-factorASumOfSq-factorBSumOfSq; MSAB=SSAB/ACrossBinteractionDF; withinCellsMS=withinCellsSS/withinCellsDF; fA=factorAMS/MSAB; pA=1CDF[FRatioDistribution[factorADF,ACrossBinteractionDF ],fA]; fB=factorBMS/MSAB; pB=1CDF[FRatioDistribution[factorBDF,withinCellsDF ],fB]; cd=N[(totalSS-withinCellsSS)/totalSS]; Print["Analysis of Variance Table"]; lineOne={"Factor A",factorASumOfSq//N,factorADF,factorAMS//N,fA//N,pA//N}; ٥٠٢
r A r B
lineTwo={"Factor B",factorBSumOfSq//N,factorBDF,factorBMS//N,fB//N,pB//N}; lineFour={"Error",SSAB//N,withinCellsDF,MSAB//N," "," "}; lastLine={"Total",totalSS//N,totalDF," "," "," "}; Print[TableForm[{lineOne,lineTwo,lineFour,lastLine},Tab leHeadings->{None,{"Source","Sum of Squares","DF","Mean Squares","Fratio","P-value"}}]]; ] temperature={{{14.},{12},{16},{15},{10},{11}},{{18},{16.},{1 7},{19},{12},{13}},{{15.},{14},{12},{14},{12},{9}}}; twoWayAnova[temperature,model->singleValuePerCell] Analysis of Variance Table
Sum of Squares 36.3333 71.1667 19. 126.5
DF 2 5 10 17
Mean Squares 18.1667 14.2333 1.9
Fratio 9.5614 7.49123
Pvalue 0.00477347 0.0036498
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ : وھﻰtemperature اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ temperature={{{14.},{12},{16},{15},{10},{11}},{{18},{16.},{1 7},{19},{12},{13}},{{15.},{14},{12},{14},{12},{9}}};
.(١٠-٦) وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﻴﺎﻧﺎت اﻟﺨﺎﺻﺔ ﻓﻰ ﻣﺜﺎل اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر twoWayAnova[temperature,model->singleValuePerCell] واﻟﻣﺧرج ھو
Analysis of Variance Table
Source Factor A Factor B Error Total
Sum of Squares 36.3333 71.1667 19. 126.5
DF 2 5 10 17
Mean Squares 18.1667 14.2333 1.9
Fratio 9.5614 7.49123
Pvalue 0.00477347 0.0036498
. ﺗﻣﺛل اﻟﺻﻔوفB ھﻧﺎ ﺗﻣﺛل اﻻﻋﻣدة وA : ﻣﻠﺣوظﺔ
٥٠٣
) (٤-٦اﻟﺗﺻﻧﯾف اﻟﺛﻧﺎﺋﻲ ،ﻋدة ﻣﺷﺎھدات ﻟﻛل ﺧﻠﯾﺔ: Two-Way Classification , Several Observations Per Cell ﻟﻠﺗوﺿ ﯾﺢ ﻟﮭ ذه اﻟطرﯾﻘ ﺔ وﺑ ﺎﻟرﺟوع إﻟ ﻰ اﻟﺗﺟرﺑ ﺔ اﻟزراﻋﯾ ﺔ اﻟﺧﺎﺻ ﺔ ﺑدراﺳ ﺔ ﺗ ﺄﺛﯾر اﻷوﻗ ﺎت اﻟﻣﺧﺗﻠﻔ ﺔ ﻟﻠزراﻋ ﺔ ) ﻓﺑراﯾ ر – ﻣ ﺎرس – أﻛﺗ وﺑر – ﻧ وﻓﻣﺑر ( وط رق اﻟزراﻋ ﺔ اﻟﻣﺧﺗﻠﻔ ﺔ 1, 2, 3وﺑﻔ رض أن ﻧﺗﯾﺟ ﺔ اﻟﺗﺟرﺑ ﺔ أوﺿ ﺣت أﻧ ﮫ ﻋﻧ د وﻗ ت اﻟزراﻋ ﺔ ﻓﺑراﯾ ر ﻛ ﺎن أﻋﻠ ﻲ ﻣﺗوﺳ ط ﻟﻣﺣﺻ ول اﻟﻘﺻ ب ﻋﻧ د اﺳ ﺗﺧدام اﻟطرﯾﻘ ﺔ 1وأﻗ ل ﻣﺗوﺳ ط ﻟﻣﺣﺻ ول اﻟﻘﺻ ب ﻋﻧ د اﺳ ﺗﺧدام اﻟطرﯾﻘ ﺔ 2ﺑﯾﻧﻣ ﺎ ﻋﻧ د وﻗ ت اﻟزراﻋ ﺔ ﻣ ﺎرس ﻛ ﺎن أﻋﻠ ﻲ ﻣﺗوﺳ ط ﻟﻣﺣﺻ ول اﻟﻘﺻ ب ﻋﻧ د اﺳ ﺗﺧدام اﻟطرﯾﻘ ﺔ 2واﻗ ل ﻣﺗوﺳ ط ﻟﻣﺣﺻ ول اﻟﻘﺻ ب ﻋﻧ د اﺳ ﺗﺧدام اﻟطرﯾﻘ ﺔ . 1ھ ذه اﻟﺧﺎﺻ ﯾﺔ ﺗﻌ رف ﺑﺎﻟﺗﻔﺎﻋ ل ﺑ ﯾن أوﻗ ﺎت اﻟزراﻋ ﺔ وطرق اﻟزراﻋﺔ وھﻲ ﺗﻛﺷف ﻋﻣﺎ إذا ﻛﺎن ﻷوﻗﺎت اﻟزراﻋﺔ آﺛﺎر ﻣﺧﺗﻠﻔﺔ ﻋﻠ ﻰ ط رق اﻟزراﻋ ﺔ .ﻛﻣ ﺎ ﻻ ﯾﻛ ون ﻟﻠﺗﻔﺎﻋ ل أﺛ ر إذا اﺗﺿ ﺢ أن ط رق اﻟزراﻋ ﺔ ﻣوﺿ ﺢ اﻟﺑﺣ ث ﻣﺗﻧ ﺎظرة ﻟ دي اﻷوﻗ ﺎت اﻟﻣﺧﺗﻠﻔ ﺔ ﻟﻠزراﻋﺔ . ﻻﺧﺗﺑ ﺎر اﻟﻔ روق ﺑ ﯾن اﻟﺻ ﻔوف واﻷﻋﻣ دة ﻋﻧ دﻣﺎ ﻻ ﯾﺗﺣﻘ ق اﻟﺷ رط اﻟﺗﺟﻣﯾﻌ ﻲ ،أي ﻓ ﻲ وﺟ ود ﺗﻔﺎﻋ ل interactionﺑﯾن اﻟﺻﻔوف واﻷﻋﻣدة وﻟﻠﺣﺻول ﻋﻠﻰ اﻟﺻ ﯾﻎ اﻟﻌﺎﻣ ﺔ ﻟﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﺳوف ﻧﻔﺗرض اﻟﺣﺎﻟﺔ اﻟﺗ ﻲ ﺗﻛ ون ﻓﯾﮭ ﺎ ﻋ دد اﻟﻣﺷ ﺎھدات ) اﻟﻣﻛ ررات ( replicationsﻓ ﻲ ﻛ ل ﺧﻠﯾ ﺔ ﺗﺳ ﺎوي . nﺑﻔ رض أن اﻟﻣﺷ ﺎھدات اﻟﺗ ﻲ ﺳ وف ﻧﺣﺻ ل ﻋﻠﯾﮭ ﺎ ﻣ ن اﻟﺗﺟرﺑ ﺔ ،ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ،ﯾﻣﻛ ن ﺗرﺗﯾﺑﮭﺎ ﻓﻲ ﺟدول ،ﻣﺛل اﻟﺟدول اﻟﺗﺎﻟﻰ ،واﻟذي ﯾﺗﻛون ﻣن rﻣن اﻟﺻﻔوف و cﻣ ن اﻷﻋﻣ دة .وﻛ ل ﺧﻠﯾ ﺔ ﺗﺣﺗ وي ﻋﻠ ﻰ nﻣ ن اﻟﻣﺷ ﺎھدات .ﺑﻔ رض أن xijkﺗرﻣ ز ﻟﻠﻣﺷ ﺎھدة رﻗ م kﻓ ﻲ اﻟﺻ ف رﻗ م i واﻟﻌﻣود رﻗم . jاﻟﻣﺷﺎھدات اﻟﺗﻲ ﻋددھﺎ rcnﻣوﺿﺣﺔ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ . اﻟﻣﺗوﺳط
اﻟﻣﺟﻣوع
x ..2
T1..
x ..1
T2..
c x1c1 x1c2 . . . x1cn x2c1 x2c2 . . . x2cn . . . xrc1 xrc2
.
.
.
.
اﻷﻋﻣـــدة 2 . . x121 x122 . . . . . x12n x221 x222 . . . . . x22n . . . . . xr21 xr22 ٥٠٤
اﻟﺻﻔوف 1 x111 x112 . . . x11n x211 x212 . . . x21n . . . xr11 xr12
1
2
. . .
. . .
x ..r
Tr..
.
.
.
xrcn x ...
…T
T.c. x .2.
. . . xr2n
xr1n
T.2.
T.1.
x .1.
. . .
r
x .c.
اﻟﻣﺟﻣوع اﻟﻣﺗوﺳط
اﻟﻣﺷﺎھدات ﻓﻲ اﻟﺧﻠﯾﺔ رﻗم ijﺗﻣﺛل ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م nﻣ ن ﻣﺟﺗﻣ ﻊ ﯾﻔﺗ رض أﻧ ﮫ ﯾﺗﺑ ﻊ ﺗوزﯾﻌ ﺎ ً طﺑﯾﻌﯾﺎ ً ﺑﻣﺗوﺳط ijوﺗﺑﺎﯾن . 2ﻛل اﻟﻣﺟﺗﻣﻌﺎت اﻟﺗﻲ ﻋددھﺎ rcﯾﻔﺗرض أن ﻟﮭﺎ ﺗﺑ ﺎﯾن ﻣﺷ ﺗرك 2 .ﺑﻘﯾﺔ اﻟرﻣوز اﻟﻣﻔﯾدة ،ﺑﻌﺿﮭﺎ ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق ،ﯾﻣﻛن ﺗوﺿﯾﺣﮭﺎ ﻛﺎﻵﺗﻲ: = Tij.ﻣﺟﻣوع اﻟﻣﺷﺎھدات ﻓﻲ اﻟﺧﻠﯾﺔ رﻗم i,j = Ti..ﻣﺟﻣوع اﻟﻣﺷﺎھدات ﻓﻲ اﻟﺻف رﻗم i = T.j.ﻣﺟﻣوع اﻟﻣﺷﺎھدات ﻓﻲ اﻟﻌﻣود رﻗم j … = Tﻣﺟﻣوع ﻛل اﻟﻣﺷﺎھدات اﻟﺗﻲ ﻋددھﺎ rcn = xij.ﻣﺗوﺳط ﻛل اﻟﻣﺷﺎھدات ﻓﻲ اﻟﺧﻠﯾﺔ رﻗم ij = x i..ﻣﺗوﺳط ﻛل اﻟﻣﺷﺎھدات ﻓﻲ اﻟﺻف رﻗم i = x.j.ﻣﺗوﺳط ﻛل اﻟﻣﺷﺎھدات ﻓﻲ اﻟﻌﻣود رﻗم j = x ...ﻣﺗوﺳط ﻛل اﻟﻣﺷﺎھدات اﻟﺗﻲ ﻋدد ھﺎ rcn ﻛل ﻣﺷﺎھدة ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق ﯾﻣﻛن ﻛﺗﺎﺑﺗﮭﺎ ﻋﻠﻰ اﻟﺷﻛل : xijk ij ijk , ﺣﯾث ijﯾﻘﯾس اﻧﺣراف ﻗﯾﻣ ﺔ اﻟﻣﺷ ﺎھدة xijkﻋ ن ﻣﺗوﺳ ط اﻟﻣﺟﺗﻣ ﻊ .ﺑﻔ رض أن ()ijﯾرﻣ ز ﻟﺗ ﺄﺛﯾر اﻟﺗﻔﺎﻋل ﻟﻠﺻف iﻣﻊ اﻟﻌﻣود رﻗم jو iﯾرﻣز ﻟﺗﺄﺛﯾر اﻟﺻف رﻗ م iو jﯾرﻣ ز ﻟﺗ ﺄﺛﯾر اﻟﻌﻣ ود رﻗ م j و ﺗﻣﺛل اﻟﻣﺗوﺳط ﻟﻛل اﻟﻣﺗوﺳطﺎت ﻓﺈن :
μij μ αi β j (αβ)ij وﻋﻠﻰ ذﻟك:
x ijk i j ()ij ijk , ﺗﺣت اﻟﻘﯾود اﻟﺗﺎﻟﯾﺔ : c
r
c
r
j1
i 1
j1
i 1
i 0, j 0, ()ij 0, ()ij 0 اﻟﻔروض اﻟﺛﻼﺛﺔ ﺳوف ﻧﺧﺗﺑرھﺎ ﻛﺎﻟﺗﺎﻟﻲ : )أ( : 1 2 ... r 0, ﻋﻠﻰ اﻷﻗل واﺣد ﻣن iﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 :
H '0
)ب( H "0 : 1 2 ... c 0, ٥٠٥
ﻋﻠﻰ اﻷﻗل واﺣد ﻣن jﻻ ﯾﺳﺎوي ﺻﻔرا ً H1:
)ج( H0 : ()11 ()12 ... () rc 0, ﻋﻠﻰ اﻷﻗل واﺣد ﻣن ()ijﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : ﻛل اﺧﺗﺑﺎر ﻣن اﻻﺧﺗﺑﺎرات اﻟﺳﺎﺑﻘﺔ ﯾﻌﺗﻣد ﻋﻠﻰ ﺣﺳﺎب ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﺗﺎﻟﯾﺔ : ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠﻲ ھو : n
r
c
SSTO x ijk 2 CF , i 1 j1 k 1
ﺣﯾث : 2 ...
T rcn
) CF ﻣﻌﺎﻣل اﻟﺗﺻﺣﯾﺢ (
وﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳطﺎت اﻟﺻﻔوف ھو :
CF,
2 r Ti.. i 1
cn
SSR
وﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻣﺗوﺳطﺎت اﻷﻋﻣدة ھو :
CF,
2 c T. j. j1
rn
SSC
وﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﺗﻔﺎﻋل ﺑﯾن اﻟﺻﻔوف واﻷﻋﻣدة ھو : c
2 T.j.
j1
Ti..2
c
r
2 Tij.
i 1
r
i 1 j1
CF ، n cn rn وﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﺧطﺄ SSEﯾﻣﻛن اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ SSE= SSTO – SSR – SSC – SS(RC). أﯾﺿﺎ ﺗﺟزأ درﺟﺎت اﻟﺣرﯾﺔ إﻟﻰ :
SS(RC)
rcn 1 (r 1) (c 1) ( r 1)(c 1) rc( n 1). اﻵن ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ اﻟﻘﯾم اﻟﺗﺎﻟﯾﺔ :
SSR SSC , MSC , r 1 c 1 )SS(RC SSE MS(RC) , MSE . )(r 1)(c 1 )rc(n 1 ﻻﺧﺗﺑﺎر اﻟﻔرض H 0ﻧﺣﺳب اﻟﻧﺳﺑﺔ : MSR f1 , MSE MSR
٥٠٦
واﻟﺗﻲ ﺗﻣﺛل ﻗﯾﻣﺔ ﻟﻠﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ F1واﻟ ذي ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ Fﺑ درﺟﺎت ﺣرﯾ ﺔ )( r 1), rc( n 1 ﻋﻧ دﻣﺎ ﺗﻛ ون H 0ﺻ ﺣﯾﺢ .ﻧ رﻓض ، H 0ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ، ﻋﻧ دﻣﺎ )). F1 f ((r 1), rc(n 1ﺑﻧﻔس اﻟﺷﻛل ﻻﺧﺗﺑﺎر اﻟﻔرض H 0ﻧﺣﺳب اﻟﻧﺳﺑﺔ : MSC f2 MSE واﻟﺗﻲ ﺗﻣﺛل ﻗﯾﻣﺔ ﻟﻠﻣﺗﻐﯾر اﻟﻌﺷواﺋﻲ F2واﻟذي ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ Fﺑ درﺟﺎت ﺣرﯾ ﺔ )(c 1), rc( n 1 ﻋﻧ دﻣﺎ ﺗﻛ ون H 0ﺻ ﺣﯾﺢ .ﻧ رﻓض ، H 0ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ، ﻋﻧ )) . F2 f ((c 1), rc(n 1أﺧﯾرا ً ﻻﺧﺗﺑﺎر اﻟﻔرض H 0ﻓﺈﻧﻧﺎ ﻧﺣﺳب اﻟﻧﺳﺑﺔ:
دﻣﺎ
)MS(RC MSE واﻟ ذي ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ Fﺑ درﺟﺎت ﺣرﯾ ﺔ واﻟﺗ ﻲ ﺗﻣﺛ ل ﻗﯾﻣ ﺔ ﻟﻠﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ F3 H ﺻﺣﯾﺢ .ﻧرﻓض ، H 0ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ) ( r 1)(c 1), rc( n 1ﻋﻧدﻣﺎ ﺗﻛون 0 ،ﻋﻧدﻣﺎ )). F3 f ((r 1)(c 1), rc(n 1 f3
أﻣﺎ SSEﻓﯾﻣﻛن اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ اﻟﺣﺳﺎﺑﺎت ﻓﻲ ﻣﺷﻛﻠﺔ ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ،ﻓ ﻲ اﻟﺗﺻ ﻧﯾف اﻟﺛﻧﺎﺋﯾ ﺔ ﺑﻌ دة ﻣﺷ ﺎھدات ﻓ ﻲ ﻛ ل ﺧﻠﯾ ﺔ ،ﻣوﺿ ﺣﺔ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ . fاﻟﻣﺣﺳوﺑﺔ ﺎت ﻣﺻدر اﻻﺧﺗﻼف ﻣﺟﻣ وع درﺟ ﻣﺗوﺳط اﻟﻣرﺑﻌﺎت اﻟﻣرﺑﻌﺎت اﻟﺣرﯾﺔ r-1 SSR SSR ﻣﺗوﺳطﺎت MSR MSR f1 اﻟﺻﻔوف r 1 MSE c-1 SSC ﻣﺗوﺳطﺎت اﻷﻋﻣدة SSC MSC MSC f2 c 1 MSE اﻟﺗﻔﺎﻋـل )SS(RC (r-1)(c-1) SS(RC) MS(RC) )MS(RC f (r 1)(c )1 3 اﻟﺧطـﺄ MSE )rc(n-1 SSE SSE MSE )rc(n 1 rcn-1 SSTO اﻟﻛﻠـﻲ
ﻣﺛﺎل)(١١-٦ اﺳﺗﺧدﻣت ﺛﻼﺛﺔ ﻣﺳﺗوﯾﺎت ﻣن ﻣﺑﯾد ﻣﺎ ﻟﻣﻘﺎوﻣﺔ ﺛﻼﺛﺔ أﺟﻧﺎس ﻣن ﺣﺷرة Drosophila .Pseudoobscuraﺗﻌطﻲ اﻟﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﻣﻌدﻻت اﻟوﻓﯾﺎت ﺧﻼل ﻓﺗرة ﻣن اﻟزﻣن . وﺗﻌﺗﻣد اﻟﺗﺟرﺑﺔ ﻋﻠﻰ ﺧﻣﺳﺔ ﻣﺷﺎھدات ﻓﻲ ﻛل ﺧﻠﯾﺔ. اﻟﻣطﻠوب ) :أ( اﺧﺗﺑﺎر ﻣﻌﻧوﯾﺔ اﻟﻔروق ﺑﯾن ﻣﺳﺗوﯾﺎت اﻟﻣﺑﯾد. )ب( اﺧﺗﺑﺎر ﻣﻌﻧوﯾﺔ اﻟﻔروق ﺑﯾن اﻷﺟﻧﺎس اﻟﻣﺧﺗﻠﻔﺔ ﻣن اﻟﺣﺷرات ٥٠٧
)ج( اﻟﺗﻔﺎﻋل ﺑﯾن ﻣﺳﺗوﯾﺎت اﻟﻣﺑﯾد و اﻷﺟﻧﺎس )ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ .(=0.05
a3
اﻟﺟﻧـس a2
a1
37, 43, 57, 60, 66 59,51,53,62,71
58,53,50,35,30 63,59,54,38,38
60,55,52,38,31 44,37,54,57,65
2
51,80,68,71,55
63,44,46,66,71
46,51,63,66,74
3
اﻟﻣﺳﺗوي 1
اﻟﺣــل: ﻓروض اﻟﻌدم ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻲ : H0 : α1 α2 α3 0, )أ (
H0 : 1 2 3 0, H0 : ()11 ()12 ... ()33 0,
)ب( ) ج( اﻟﻔروض اﻟﺑدﯾﻠﺔ ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻲ : ﻋﻠﻰ اﻷﻗل واﺣد ﻣن iﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : )أ ( ﻋﻠﻰ اﻷﻗل واﺣد ﻣن jﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : )ب( )ج( ﻋﻠﻰ اﻷﻗل واﺣد ﻣن ( ) ijﻻ ﯾﺳﺎوي ﺻﻔرً H1:
f.05 (2,36) 3.23و =0.05اﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول ﺗوزﯾﻊ Fﻓ ﻲ ﻣﻠﺣ ق ) .(٤ﻣﻧطﻘ ﺔ اﻟ رﻓض F1 . > 3.23 f.05(2, 36) ~ 3.23ﻣﻧطﻘﺔ اﻟرﻓض F2 > 3.23 f.05(4, 36) ~ 2.61ﻣﻧطﻘﺔ اﻟرﻓض F3 > 2.61 اﻟﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق ﯾﻣﻛن ﺗﻠﺧﯾﺻﮭﺎ ﻓﻲ ﺟدول اﻟﺗﺎﻟﻰ .اﻵن : 2
x ijk CF
n
r
c
j1
k 1
SSTO i 1
(2445) 2 60 55 ... 71 55 45 139307 132845 6462, 2
2
2
c
2 Ti..
CF
SSC i 1 cn
٥٠٨
2
c
2 T.j.
CF
j1
rn
Ti..2
c
r
i 1
cn
r
2 Tij.
i 1 j1
n
SS(RC)
2362 2262 ... 3252 134058.33 5 133341.93 132845 11.74, )SSE SSTO SSR SSC SS(RC 6462 1213.33 496.93 11.74 4740. اﻟﺟﻧـس اﻟﻣﺟﻣوع 725 805 915 2445
a3 263 296 325 884
a2 226 252 290 768
a1 236 257 300 793
اﻟﻣﺳﺗوي 1 2 3 اﻟﻣﺟﻣوع
ﻓﯾﻣﺎ ﯾﻠﻰ ﺟدول اﻟﺗﺑﺎﯾن :
fاﻟﻣﺣﺳوﺑﺔ f1=4.608 f2= 1.887 f3= 0.022
ﻣﺗوﺳط اﻟﻣرﺑﻌﺎت 606.665 248.465 2.935 131.666
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت 1213.33 496.93 11.74 4740 6462
درﺟﺎت اﻟﺣرﯾﺔ 2 2 4 36 44
ﻣﺻدر اﻻﺧﺗﻼف ﻣﺗوﺳطﺎت اﻟﺻﻔوف ﻣﺗوﺳطﺎت اﻷﻋﻣدة اﻟﺗﻔﺎﻋـل اﻟﺧطـﺄ اﻟﻛﻠـﻲ
ﻣن ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﻣﻛن اﺳﺗﻧﺗﺎج : )أ( ﻧرﻓض H0ﻷن f1ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ،أي أن ھﻧﺎك ﻓروق ﻣﻌﻧوﯾﺔ ﺑﯾن ﺑﻣﺳﺗوﯾﺎت اﻟﻣﺑﯾد. )ب( ﻧﻘﺑل H 0ﻷن f2ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ،أي أﻧﮫ ﻻ ﯾوﺟد ﻓروق ﻣﻌﻧوﯾﺔ ﺑﯾن اﻷﺟﻧﺎس. )ج( ﻧﻘﺑ ل H 0ﻷن f3ﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟﻘﺑ ول ،أي أﻧ ﮫ ﻻ ﯾوﺟ د ﺗﻔﺎﻋ ل ﺑ ﯾن ﻣﺳ ﺗوﯾﺎت اﻟﻣﺑﯾ د و أﺟﻧﺎس اﻟﺣﺷرة. ﺳوف ﯾﺗم اﺳﺗﺧدام ] [Mathematica 5.0ﻓﻲ ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺣﯾث :
٥٠٩
ﻣﺻ در اﻷﺧ ﺗﻼف ﺗﻌﻧ ﻲ ) ، (S.Vﻣﺗوﺳ طﺎت اﻟﺻ ﻔوف ) ، (Aﻣﺗوﺳ طﺎت اﻷﻋﻣ دة ﺗﻌﻧ ﻲ )B (،اﻟﺧطﺄ ﺗﻌﻧﻲ ) ، (errorﺗﻌﻧ ﻰ) (ABاﻟﺗﻔﺎﻋ ل ،اﻟﻛﻠ ﻲ ﺗﻌﻧ ﻲ ) ، (totalدرﺟ ﺎت اﻟﺣرﯾ ﺔ ﺗﻌﻧ ﻲ )، (df ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﺗﻌﻧﻲ ) (ssﺗﻌﻧﻰ ﻣﺗوﺳط اﻟﻣرﺑﻌﺎت ﺗﻌﻧﻲ ) f ، (mssاﻟﻣﺣﺳوﺑﺔ ﺗﻌﻧﻲ )(f وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . =0.05 0.05 {a={{{60.,55,52,38,31},{58.,53,50,35,30},{37,43,57.,60,66}}, {44,37,54,57,65},{63.,59.,54,38,38},{59,51,53,62,71}},{{46,5 }}}1,63,66,74},{63,44,46.,66,71},{51,80,68,71,55 {{{60.,55,52,38,31},{58.,53,50,35,30},{37,43,57.,60,66}},{{4 4,37,54,57,65},{63.,59.,54,38,38},{59,51,53,62,71}},{{46,51, }}}63,66,74},{63,44,46.,66,71},{51,80,68,71,55 ]dd=Dimensions[a }{3,3,5 ]]p=dd[[1 3 ]]q=dd[[2 3 ]]n=dd[[3 5 k1=q-1 2 k2=p-1 2 N1=n*p*q 45 k4=n-1 4 v1=N1-1-k1-k2-k4 36 ]b=Flatten[a {60.,55,52,38,31,58.,53,50,35,30,37,43,57.,60,66,44,37,54,57 ,65,63.,59.,54,38,38,59,51,53,62,71,46,51,63,66,74,63,44,46. },66,71,51,80,68,71,55 ]b=Flatten[a {60.,55,52,38,31,58.,53,50,35,30,37,43,57.,60,66,44,37,54,57 ,65,63.,59.,54,38,38,59,51,53,62,71,46,51,63,66,74,63,44,46. },66,71,51,80,68,71,55 0000 0 ]g[x_]:=Length[x ]f[x_]:=Apply[Plus,x ٥١٠
x1=f[b] 2445. x2=f[b^2] 139307. cf=x1^2./N1 132845. tot=x2-cf 6462. xx=Table[f[a[[i,j]]],{i,1,p},{j,1,q}] {{236.,226.,263.},{257,252.,296},{300,290.,325}} Flatten[xx] {236.,226.,263.,257,252.,296,300,290.,325} xx3=f[%^2] 672835. xx4=%/n 134567. a3=Map[f,xx] {725.,805.,915.} sa=f[a3^2]/(n*q) 134058. aaaa=sa-cf 1213.33 ssa=aaaa/k1 606.667 ww=Transpose[xx] {{236.,257,300},{226.,252.,290.},{263.,296,325}} a33=Map[f,ww] {793.,768.,884.} sb=N[f[a33^2]/(q*n)] 133342. bbbb=sb-cf 496.933 sbb=bbbb/k2 248.467 sser=x2-xx4 4740. msse=sser/v1 131.667 ss12ab=tot-aaaa-bbbb-sser 11.7333 abss=ss12ab/k4 2.93333 ff1=ssa/msse 4.60759 ff2=sbb/msse 1.88709 ff3=abss/msse ٥١١
0.0222785 rt2=List[" df "," ss "," mss "," f "] { df , ss , mss , f } rt1=List[k1,aaaa,ssa,ff1] {2,1213.33,606.667,4.60759} rt3=List[k2,bbbb,sbb,ff2] {2,496.933,248.467,1.88709} rt5=List[k4,ss12ab,abss,ff3] {4,11.7333,2.93333,0.0222785} {k4,ss12ab,abss,ff4} rt9=List[v1,sser,msse,"-"] {36,4740.,131.667,-} rr9=List[N1-1,tot,"_","_"] {44,6462.,_,_} a11=TableHeadings->{{ S.V,A,B,AB,error,total},{ANOVA}} TableHeadings{{S.V,A,B,AB,error,total},{ANOVA}} uu1=TableForm[{rt2,rt1,rt3,rt5,rt9,rr9},a11]
S.V A B AB error total
ANOVA df 2 2 4 36 44
ss 1213.33 496.933 11.7333 4740. 6462.
mss 606.667 248.467 2.93333 131.667 _
f 4.60759 1.88709 0.0222785
_
<<Statistics`ContinuousDistributions` f1=Quantile[FRatioDistribution[k1,v1],1-] 3.25945 If[ff1>f1,Print["RjectHo"],Print["AccpetHo"]] RjectHo
f2=Quantile[FRatioDistribution[k2,v1],1-] 3.25945 If[ff2>f2,Print["RjectHo"],Print["AccpetHo"]] AccpetHo
f3=Quantile[FRatioDistribution[k4,v1],1-] 2.63353 If[ff3>f3,Print["RjectHo"],Print["AccpetHo"]] AccpetHo
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ ﻣﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ ﻣﻦ اﻻﻣﺮ =0.05
وﻫﻰa اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ ٥١٢
{a={{{60.,55,52,38,31},{58.,53,50,35,30},{37,43,57.,60,66}}, {44,37,54,57,65},{63.,59.,54,38,38},{59,51,53,62,71}},{{46,5 }}}1,63,66,74},{63,44,46.,66,71},{51,80,68,71,55
وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﻴﺎﻧﺎت اﻟﺨﺎﺻﺔ ﻓﻰ ﻣﺜﺎل ) (١١-٦ﺣﻴﺚ ﻳﺘﻢ ادﺧﺎل اﻟﺒﻴﺎﻧﺎت ﺻﻒ ﺻﻒ. ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر ]uu1=TableForm[{rt2,rt1,rt3,rt5,rt9,rr9},a11
ﻓروض اﻟﻌدم ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻲ : H0 : α1 α2 α3 0, )أ (
H0 : 1 2 3 0, H0 : ()11 ()12 ... ()33 0,
)ب( ) ج( اﻟﻔروض اﻟﺑدﯾﻠﺔ ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻲ : ﻋﻠﻰ اﻷﻗل واﺣد ﻣن iﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : )أ ( ﻋﻠﻰ اﻷﻗل واﺣد ﻣن jﻻ ﯾﺳﺎوي ﺻﻔرا ً H1 : )ب( )ج( ﻋﻠﻰ اﻷﻗل واﺣد ﻣن ( ) ijﻻ ﯾﺳﺎوي ﺻﻔرً H1:
) f.05 (2,36واﻟﻣﺳﺗﺧرﺟﺔ ﻋﻧد درﺟﺎت ﺣرﯾﺔ 1 2, 2 36ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]f1=Quantile[FRatioDistribution[k1,v1],1-
f1اﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر ff1=ssa/msse
اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر ]]"If[ff1>f1,Print["RjectHo"],Print["AccpetHo
واﻟﻣﺧرج ھو Reject H0
اى رﻓض ﻓرض اﻟﻌدم. اﯾﺿﺎ ) f.05 (2,36واﻟﻣﺳﺗﺧرﺟﺔ ﻋﻧد درﺟﺎت ﺣرﯾﺔ 1 2, 2 10ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]f2=Quantile[FRatioDistribution[k2,v1],1-
f 2اﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر ff2=sbb/msse
اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر ]]"If[ff2>f2,Print["RjectHo"],Print["AccpetHo
واﻟﻣﺧرج ھو AccpetHo
اى ﻗﺑول ﻓرض اﻟﻌدم . ) f.05 (4,36واﻟﻣﺳﺗﺧرﺟﺔ ﻋﻧد درﺟﺎت ﺣرﯾﺔ 1 4, 2 36ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]]"If[ff3>f3,Print["RjectHo"],Print["AccpetHo ٥١٣
اﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣرf3 ff3=abss/msse
اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر If[ff3>f3,Print["RjectHo"],Print["AccpetHo"]]
واﻟﻣﺧرج ھو AccpetHo
. اى ﻗﺑول ﻓرض اﻟﻌدم
(١٢-٦)ﻣﺛﺎل : ﺳوف ﻧﻘدم ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻟﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق Off[General::spell1]; <<Statistics`NormalDistribution` <<Statistics`DataManipulation` twoWayAnova - Data entered as Matrix ] twoWayANOVAarray - Data entered as an array Model I Model II Model III Model IV modelFour[twoLists_]:=Module[{a,b,n,capN,sumOfVals, sumOfValsSq,sumOverA,sqValsA,factorASumOfSq,sumOverB,sq ValsB,factorBSumOfSq,c,totalSS,totalDF,sumOverColumnAndSquar e,flatList,num,cellsSS,cellsDF,withinCellsSS,withinCellsDF,f actorADF,factorBDF,ACrossBinteractionSS,ACrossBinteractionDF ,factorAMS,factorBMS,ACrossBMS,withinCellsMS,fA,pA,fB,pB,fAB ,pAB,cd,lineOne,lineTwo,lineFour,lastLine}, a=Length[twoLists]; b=Length[twoLists[[1]]]; n=Length[twoLists[[1,1]]]; capN=a b n; sumOfVals=Sum[twoLists[[i,j,l]],{i,1,a},{j,1,b},{l,1,n} ]; sumOfValsSq=Sum[twoLists[[i,j,l]]^2,{i,1,a},{j,1,b},{l, 1,n}]; sumOverA=Table[Sum[twoLists[[i,j,l]],{j,1,b},{l,1,n}],{ i,1,a}]; sqValsA=Table[sumOverA[[i]]^2,{i,1,Length[sumOverA]}]; factorASumOfSq=Apply[Plus,sqValsA]/(b n)-c;
٥١٤
sumOverB=Table[Sum[twoLists[[i,j,l]],{i,1,a},{l,1,n}],{ j,1,b}]; sqValsB=Table[sumOverB[[j]]^2,{j,1,Length[sumOverB]}]; factorBSumOfSq=Apply[Plus,sqValsB]/(a n)-c; c=sumOfVals^2/capN; totalSS=sumOfValsSq-c; totalDF=a b-1; sumOverColumnAndSquare[v_]:=Sum[v[[k]],{k,1,Length[v]}] ^2; flatList=Flatten[twoLists,1]; num=Map[sumOverColumnAndSquare,flatList]; cellsSS=Apply[Plus,num]/n-c; cellsDF=a b-1; withinCellsSS=totalSS-cellsSS; withinCellsDF=(a-1)(b-1); factorADF=a-1; factorBDF=b-1; ACrossBinteractionDF=factorADF factorBDF; factorAMS=factorASumOfSq/factorADF; factorBMS=factorBSumOfSq/factorBDF; SSAB=totalSS-factorASumOfSq-factorBSumOfSq; MSAB=SSAB/ACrossBinteractionDF; withinCellsMS=withinCellsSS/withinCellsDF; fA=factorAMS/MSAB; pA=1CDF[FRatioDistribution[factorADF,ACrossBinteractionDF ],fA]; fB=factorBMS/MSAB; pB=1CDF[FRatioDistribution[factorBDF,withinCellsDF ],fB]; cd=N[(totalSS-withinCellsSS)/totalSS]; Print["Analysis of Variance Table"]; lineOne={"Factor A",factorASumOfSq//N,factorADF,factorAMS//N,fA//N,pA//N}; lineTwo={"Factor B",factorBSumOfSq//N,factorBDF,factorBMS//N,fB//N,pB//N}; lineFour={"Error",SSAB//N,withinCellsDF,MSAB//N," "," "}; lastLine={"Total",totalSS//N,totalDF," "," "," "}; Print[TableForm[{lineOne,lineTwo,lineFour,lastLine},Tab leHeadings->{None,{"Source","Sum of Squares","DF","Mean Squares","Fratio","P-value"}}]]; ]
٥١٥
diskDrive={{{60.,55,52,38,31},{58.,53,50,35,30},{37.,43,57,6 0,66}},{{44.,37,54,57,65},{63.,59,54,38,38},{59,51,53,62,71. }},{{46.,51,63,66,74},{63.,44,46,66,71.},{51.,80,68,71,55}}} ; twoWayAnova[diskDrive] Analysis of Variance Table
Source Factor A Factor B A B Interaction Error Total
Sum of Squares 1213.33 496.933 11.7333 4740. 6462.
DF 2 2 4 36 44
Mean Squares 606.667 248.467 2.93333 131.667
Fratio 4.60759 1.88709 0.0222785
Pvalue 0.016532 0.166197 0.998986
twoWayAnova[diskDrive,model->random] Analysis of Variance Table
Source Factor A Factor B A B Interaction Error Total
Sum of Squares 1213.33 496.933 11.7333 4740. 6462.
DF 2 2 4 36 44
Mean Squares 606.667 248.467 2.93333 131.667
Fratio 206.818 84.7045 0.0222785
Pvalue 0.0000917325 0.000532079 0.998986
twoWayAnova[diskDrive,model->mixed] Analysis of Variance Table
Source Factor A Factor B A B Interaction Error Total
Sum of Squares 1213.33 496.933 11.7333 4740. 6462.
DF 2 2 4 36 44
Mean Squares 606.667 248.467 2.93333 131.667
Fratio 206.818 1.88709 0.0222785
Pvalue 0.0000917325 0.166197 0.998986
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ : اوﻻ اﻟﻣدﺧﻼت
اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ diskDrive : وھﻰ diskDrive={{{60.,55,52,38,31},{58.,53,50,35,30},{37.,43,57,6 0,66}},{{44.,37,54,57,65},{63.,59,54,38,38},{59,51,53,62,71. }},{{46.,51,63,66,74},{63.,44,46,66,71.},{51.,80,68,71,55}}} ; ٥١٦
وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﻴﺎﻧﺎت اﻟﺨﺎﺻﺔ ﻓﻰ ﻣﺜﺎل ).(١٢-٦ ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر ]twoWayAnova[diskDrive اﻟﻣﺧرج ھو
Analysis of Variance Table
Pvalue 0.016532 0.166197 0.998986
Fratio 4.60759 1.88709 0.0222785
DF 2 2 4 36 44
Mean Squares 606.667 248.467 2.93333 131.667
Sum of Squares 1213.33 496.933 11.7333 4740. 6462.
Source Factor A Factor B A B Interaction Error Total
) (٥-٦ﺑﻌض ﺗﺻﺎﻣﯾم اﻟﺗﺟﺎرب اﻟﺑﺳﯾطﺔ : طرﯾﻘﺔ ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن اﻟﺗﻲ ﺗﻧﺎوﻟﻧﺎھﺎ ﻓﻲ اﻟﺑﻧود اﻟﺳﺎﺑﻘﺔ ﺗطﺑق ﺑﻌد اﻟﺣﺻول ﻋﻠﻰ اﻟﺑﯾﺎﻧﺎت اﻟﺧﺎﺻﺔ ﺑﺗﺟرﺑﺔ ﺗم اﺟراﺋﮭﺎ .ﻓﻲ ﺑﻌض اﻻﺣﯾﺎن ،ﻟﻠﺣﺻول ﻋﻠﻰ أﻓﺿل اﻟﻣﻌﻠوﻣﺎت اﻟﻣﻣﻛﻧﺔ ،ﻓﺈن اﻟﺗﺟرﺑﺔ ﻻﺑد أن ﯾﺧطط ﻟﮭﺎ ﻗﺑل اﺟراﺋﮭﺎ .وھذا ھو ﻣﺎ ﯾﻌرف ﺑﺗﺻﻣﯾم اﻟﺗﺟﺎرب .ﻓﻲ اﻟﺑﻧد اﻟﺗﺎﻟﻲ ﺳوف ﻧﻧﺎﻗش ﺑﻌض اﻻﻣﺛﻠﺔ اﻟﻣﮭﻣﺔ ﻓﻲ ﺗﺻﻣﯾم اﻟﺗﺟﺎرب.
) (١-٥-٦ﺗﺻﻣﯾم و ﺗﺣﻠﯾل اﻟﺗﺟﺎرب ذات اﻟﻌﺎﻣل اﻟواﺣد :اﻟﺗﺻﻣﯾم اﻟﺗﺎم ﻟﻠﺗﻌﺷﯾﺔ : Design and Analysis of Single Factor Experiments: Completely Randomized Design ﯾﻌﺗﺑر اﻟﺗﺻﻣﯾم اﻟﺗﺎم ﻟﻠﺗﻌﺷﯾﺔ )اﻟﺗﺻﻣﯾم اﻟﻛﺎﻣل اﻟﻌﺷ واﺋﻲ( ﻣ ن اﺑﺳ ط اﻟﺗﺻ ﺎﻣﯾم اﻟﺗﺟرﯾﺑﯾ ﺔ ﻣ ن ﺣﯾ ث ﺗﻌﯾﯾن اﻟوﺣدات اﻟﺗﺟرﯾﺑﯾﺔ ﻋﻠﻰ اﻟﻣﻌﺎﻟﺟﺎت ،ﻣﺳﺗوﯾﺎت اﻟﻌﺎﻣ ل ﻣوﺿ ﻊ اﻟدراﺳ ﺔ ،وﺗﺣﻠﯾ ل اﻟﺑﯾﺎﻧ ﺎت ﺣﯾ ث ﯾﻌﺗﺑر اﻷﺳﺎس ﻟﺑﻧﺎء ﺗﺻﺎﻣﯾم ﺗﺟرﯾﺑﯾﺔ أﻛﺛر ﺗﻌﻘﯾدا .إن اﻟﮭدف اﻷﺳﺎﺳﻲ ﻣن ھ ذا اﻟﺗﺻ ﻣﯾم ھ و اﺧﺗﺑ ﺎر ﻣ ﺎ إذا ﻛﺎﻧت ﻣﺗوﺳطﺎت ﻣﺟﺗﻣﻌﺎت اﻟﻣﻌﺎﻟﺟ ﺎت ﻣﺗﺳ ﺎوﯾﺔ أم ﻻ؟ وذﻟ ك ﻟﺗﺟرﺑ ﺔ ذات ﻋﺎﻣ ل واﺣ د ،وﻟﮭ ﺎ ﻋ دة ﻣﺳﺗوﯾﺎت .ﯾﺷﺗرط ﻓﻲ ھ ذا اﻟﺗﺻ ﻣﯾم أن ﺗﻛ ون اﻟوﺣ دات ﻣﺗﺟﺎﻧﺳ ﺔ ﺗﻣﺎﻣ ﺎ ،وﯾﻧطﺑ ق ذﻟ ك ﻋﻠ ﻰ اﻟﺗﺟ ﺎرب اﻟﻣﻌﻣﻠﯾﺔ ﻛﺗﺟﺎرب اﻟطﺑﯾﻌﺔ ،واﻟﻛﯾﻣﯾﺎء ﺣﯾث ﺗﻘﺳم ﻛﻣﯾﺔ ﻣن ﻣ ﺎدة اﻟﺗﺟرﺑ ﺔ ﺑﻌ د ﺧﻠطﮭ ﺎ ﺟﯾ دا إﻟ ﻰ ﻋﯾﻧ ﺎت ﺻﻐﯾرة ﺗﺟرب ﻋﻠﯾﮭ ﺎ اﻟﻣﻌﺎﻟﺟ ﺎت اﻟﻣﺧﺗﻠﻔ ﺔ .أﻣ ﺎ ﻓ ﻲ اﻟﺗﺟ ﺎرب اﻟﺗ ﻲ ﺗﻧﺗﻣ ﻲ إﻟ ﻰ اﻟﻧ واﺣﻲ اﻻﻗﺗﺻ ﺎدﯾﺔ أو اﻟزراﻋﯾ ﺔ أو اﻟﺗﺟﺎرﯾ ﺔ ﻓ ﻼ ﯾﻼﺋﻣﮭ ﺎ ھ ذا اﻟﺗﺻ ﻣﯾم ﺣﯾ ث ﺗﻛ ون اﻟوﺣ دات اﻟﺗﺟرﯾﺑﯾ ﺔ ﻏﯾ ر ﻣﺗﺟﺎﻧﺳ ﺔ )اﻟﺷﺧص أو اﻟﻌﺎﺋﻠﺔ أو اﻟﻣﺧزون… اﻟﺦ ( ،وﺗﺳﺗﺧدم ﺗﺻﺎﻣﯾم أﺧرى. وﻓﯾﻣﺎ ﯾﻠﻲ أﻣﺛﻠﺔ ﻟﺗﺟﺎرب اﺳﺗﺧدم ﻓﯾﮭﺎ اﻟﺗﺻﻣﯾم اﻟﺗﺎم ﻟﻠﺗﻌﺷﯾﺔ: )أ( ﺗﺟرﺑﺔ ﻟدراﺳﺔ ﺗﺄﺛﯾر ﺧﻣس أﻧواع ﻣن اﻟﺑﻧزﯾن ﻋﻠﻰ ﻛﻔﺎءة ﻋﻣل ﺳﯾﺎرة ).(mpg ٥١٧
)ب( ﺗﺟرﺑ ﺔ ﻟدراﺳ ﺔ ﺗ ﺄﺛﯾر أرﺑﻌ ﺔ أﻧ واع ﻣﺧﺗﻠﻔ ﺔ ﻣ ن اﻟﻣﺣﺎﻟﯾ ل اﻟﺳ ﻛرﯾﺔ )ﺟﻠوﻛ وز ،ﻓرﻛﺗ وز، ﺳﻛروز ،ﺧﻠﯾط ﻣن اﻟﺛﻼﺛﺔ ( ﻋﻠﻰ ﻧﻣو اﻟﺑﻛﺗﯾرﯾﺎ. )ج( ﺗﺟرﺑﺔ ﻟدراﺳﺔ اﻟﻛﻣﯾﺎت اﻟﻣﺧﺗﻠﻔﺔ ﻣن دواء ﻣﮭدئ ﻋﻠﻰ ﺷﻔﺎء ﻣرﯾض ﯾﻌﺎﻧﻲ ﻣرض ﻧﻔﺳﻲ. )د( ﺗﺟرﺑﺔ ﻟدراﺳﺔ ﺗ ﺄﺛﯾر أرﺑﻌ ﺔ أﻧ واع ﻣ ن اﻟﺗﻐطﯾ ﺔ ﻋﻠ ﻰ اﻟﻘ وة اﻟﺗوﺻ ﯾﻠﯾﺔ ﻟﺻ ﻣﺎﻣﺎت اﻟﺗﻠﯾﻔزﯾ ون.ﻓ ﻲ اﻟﺗﺟرﺑ ﺔ )أ( اﻟﻌﺎﻣ ل ﻣوﺿ ﻊ اﻟدراﺳ ﺔ ھ و اﻟﺑﻧ زﯾن ،وﻟ ﮫ ﺧﻣﺳ ﺔ ﻣﺳ ﺗوﯾﺎت ﻣﺧﺗﻠﻔ ﺔ .ﻓ ﻲ اﻟﺗﺟرﺑ ﺔ )ب( اﻟﻌﺎﻣل ھو اﻟﺳﻛر وﻟﮫ أرﺑ ﻊ ﻣﺳ ﺗوﯾﺎت ) أو ﺧﻣﺳ ﺔ وذﻟ ك ﻋﻧ د اﺳ ﺗﻌﻣﺎل ﻣﺣﻠ ول ﻣراﻗﺑ ﺔ ﻻ ﯾﺣﺗ وي ﻋﻠ ﻰ أي ﺳ ﻛرﯾﺎت ( .ﻓ ﻲ اﻟﺗﺟرﺑ ﺔ )ج( ،ﻣ ﺛﻼ ،اﻟﻌﺎﻣ ل ﻛﻣ ﻰ واﻟﻣﺳ ﺗوﯾﺎت ﺗﺗﻣﺛ ل ﻓ ﻲ اﻟﺗﺻ ﻧﯾﻔﺎت اﻟﻣﻣﻛﻧ ﺔ ﻣ ن اﻟﻌﺎﻣ ل .ﻓ ﻲ اﻟﺗﺟرﺑ ﺔ )د( اﻟﻌﺎﻣ ل ﯾﻣﺛ ل اﻷﻧ واع اﻟﻣﺧﺗﻠﻔ ﺔ ﻣ ن اﻷﻏطﯾ ﺔ وھو ﻋﺎﻣل وﺻﻔﻰ. ﻣزاﯾﺎ اﻟﺗﺻﻣﯾم:
ﯾﻣﻛن اﺳﺗﺧدام أي ﻋدد ﻣن اﻟﻣﻌﺎﻟﺟﺎت. ﯾﻣﻛن اﺧﺗﻼف ﺣﺟم اﻟﻌﯾﻧﺔ ﻣن ﻣﻌﺎﻟﺟﺔ إﻟﻰ أﺧرى. ﺳﮭوﻟﺔ اﻟﺗﺣﻠﯾل اﻹﺣﺻﺎﺋﻲ. ﻻ ﯾﺳﺑب ﻓﻘدان أي ﻣﺷﺎھدة ﻣﺷﺎﻛل ﻓﻲ اﻟﺗﺣﻠﯾل اﻹﺣﺻﺎﺋﻲ. ﯾﻌﺗﻣد ھذا اﻟﺗﺻﻣﯾم ﻋﻠﻰ ﻋدد ﻗﻠﯾل ﻣن اﻟﻔروض ﺑﺧﻼف اﻟﺗﺻﺎﻣﯾم اﻟﺗﺟرﯾﺑﯾﺔ اﻷﺧرى.
ﻣﺛﺎل)(١٣-٦ وﺿﻊ اﻣﺗﺣﺎن ﻟﻣﺟﻣوﻋﺎت ﻣن 26طﺎﻟب ﻻﺧﺗﺑﺎر اﻟذﻛﺎء واﻟﻘدرة ﻋﻠﻰ اﻟﺗرﻛﯾز .واﻟﻧﺗﺎﺋﺞ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : )أ( أوﺟد ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻟﮭذه اﻟﺗﺟرﺑﺔ. )ب( ھل ﺗوﺟد ﻓروق ﺑﯾن ﻣﺗوﺳطﺎت اﻟﻣﻌﺎﻟﺟﺎت ﻋﻧد . 0.01 اﻟﻣﺟﻣوع
D 120 109 112
C 119 97 128 116 130 150 114
B 109 121 113 112 130
A 127 119 138
26 2934 337596
E 94 96 101 72 103 105 103 96 8 770 74896
7 854 105806
5 585 68735
3 384 49334
3 341 38825
104188
68445
49152
334657.83
74112.5
38760.33
ni Ti. 2 xij j
٥١٨
Ti.2 / ni
اﻟﺣــل: )ا( ﻟﻠﺣﺻول ﻋﻠﻰ ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻧﺗﺑﻊ اﻵﺗﻲ: = (2934)² / 26 = 331090.62
T..2 / N
)(1
(2) x ij2 = 337596 (3) (Ti.2 / ni ) = 334657.83. ﺗﺣﺳب ﻣﺟﺎﻣﯾﻊ اﻟﻣرﺑﻌﺎت SSTO, SSTC, SSEﻛﺎﻟﺗﺎﻟﻲ :
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠﻲ ﺳﯾﻛون: SSTO = (2) - (1) = 6505.39 , ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﻣﻌﺎﻟﺟﺎت ﺳﯾﻛون: ,
SSC = (3) - (1) = 3567.22
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﺧطﺄ ﺳﯾﻛون: SSE = SSTO - SSC = 2938.17 . ﺗﻠﺧص اﻟﻧﺗﺎﺋﺞ ﻓﻲ ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن اﻟﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : ) f (1 , 2
fاﻟﻣﺣﺳوﺑﺔ
)= 4.37 f 0.01 (4, 21
6.37
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت
ﻣﺗوﺳط اﻟﻣرﺑﻌﺎت 891.81
SSC = 3567.22
139.91
SSE = 2938.17 SSTO = 6505.39
ﻣﺻدر اﻻﺧﺗﻼف اﻟﻣﻌﺎﻟﺟﺎت
درﺟﺎت اﻟﺣرﯾﺔ k-1 = 4
اﻟﺧطﺄ
N-k= 21
N-1 = 25
اﻟﻛﻠﻲ
)ب( ﻣ ن اﻟﺟ دول اﻟﺳ ﺎﺑق وﺑﻣ ﺎ أن ﻗﯾﻣ ﺔ Fاﻟﻣﺣﺳ وﺑﺔ ﺗزﯾ د ﻋ ن اﻟﻘﯾﻣ ﺔ اﻟﺟدوﻟﯾ ﺔ ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﮫ 0.01ﻟذﻟك ﺗرﻓض H 0ﻋﻧد 0.01وﻧﺳﺗﺧﻠص ﻣن ھ ذه اﻟﺗﺟرﺑ ﺔ أن ھﻧ ﺎك ﻓ روق ﻣﻌﻧوﯾ ﺔ ﺑﯾن ﻣﺗوﺳطﺎت اﻟذﻛﺎء واﻟﻘدرة ﻋﻠﻰ اﻟﺗرﻛﯾز ﺑﯾن اﻟﻣﺟﻣوﻋﺎت اﻟﻣﺧﺗﻠﻔﺔ. ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . =0.01 0.01 a={{127,119,138.},{109,121,113.,112,130.},{119.,97,128,116 }},130,150,114},{120,109.,112},{94,96,101.,72,103,105,103,96 {{127,119,138.},{109,121,113.,112,130.},{119.,97,128,116,130 }},150,114},{120,109.,112},{94,96,101.,72,103,105,103,96 ]f[x_]:=Apply[Plus,x ٥١٩
h[x_]:=Length[x] k=h[a] 5 m=Table[h[a[[i]]],{i,1,k}] {3,5,7,3,8} n=f[m] 26 xy=Map[f,a] {384.,585.,854.,341.,770.} xp=xy/m {128.,117.,122.,113.667,96.25} f[xy] 2934. cf=((%)^2)/n 331091. x1=xy^2 {147456.,342225.,729316.,116281.,592900.} x2=x1/m {49152.,68445.,104188.,38760.3,74112.5} sbet=f[x2] 334658. sbet=sbet-cf 3567.22 xx=Map[f,a^2] {49334.,68735.,105806.,38825.,74896.} xx1=f[xx] 337596. ssto=xx1-cf 6505.38 sser=ssto-sbet 2938.17 k1=k-1 4 msb=sbet/k1 891.804 n1=n-1 25 sx=n1-k1 21 msse=sser/sx 139.913 f1=msb/msse 6.37401 rt2=List[" df "," ss "," mss { df , ss , mss , f } rt3=List[k1,sbet,msb,f1] ٥٢٠
","
f
"]
{4,3567.22,891.804,6.37401} rt4=List[sx,sser,msse,"-"] {21,2938.17,139.913,-} rt5=List[n1,ssto,"-","-"] {25,6505.38,-,-} a11=TableHeadings->{{ S.V,bet,within,total},{ANOVA}} TableHeadings{{S.V,bet,within,total},{ANOVA}} uu1=TableForm[{rt2,rt3,rt4,rt5},a11]
S.V bet within total
ANOVA df 4 21 25
ss 3567.22 2938.17 6505.38
mss 891.804 139.913
<<Statistics`ContinuousDistributions` ff1=Quantile[FRatioDistribution[k1,sx],1-] 4.36882 If[f1>ff1,Print["RjectHo"],Print["AccpetHo"]] RjectHo
f 6.37401
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ ﻣﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ ﻣﻦ اﻻﻣﺮ =0.05 اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰa (١٣- ٦) ﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﺨﺎﺻﺔ ﺑﺎﻟﻤﺜﺎل
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر uu1=TableForm[{rt2,rt3,rt4,rt5},a11]
: ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم
H 0 : 1 2 3 :ﺿد اﻟﻔرض اﻟﺑدﯾل H1 : ﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲi واﺣد ﻋﻠﻲ اﻷﻗل ﻣن اﻟﺟدوﻟﯾﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰf ff1=Quantile[FRatioDistribution[k1,sx],1-]
اﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣرf f1=msb/msse
اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر If[f1>ff1,Print["RjectHo"],Print["AccpetHo"]]
واﻟﻣﺧرج ھو Reject H0
اى رﻓض ﻓرض اﻟﻌدم ٥٢١
) (٢-٥-٦ﺗﺻﻣﯾم اﻟﻘطﺎﻋﺎت اﻟﻛﺎﻣﻠﺔ اﻟﻌﺷواﺋﯾﺔ )ﺗﺟﺎرب ذات اﻟﻌﺎﻣل اﻟواﺣد( : Randomized complete blocks design: Single – factor experiments. إﺣ دى اﻟط رق اﻟ ﺗﺣﻛم اﻟﻣﺑﺎﺷ ر ﻓ ﻲ اﻟﺧط ﺄ ،أو ﺗﻘﻠﯾ ل اﻟﺧط ﺄ اﻟﺗﺟرﯾﺑ ﻲ ،وھ و ﺗﺟﻣﯾ ﻊ وﺣ دات اﻟﺗﺟرﺑﺔ ﻓﻲ ﻣﺟﻣوﻋﺎت أو ﻣﺎﯾﺳﻣﻰ اﻟﻘطﺎﻋ ﺎت وھ ذه اﻟﻘطﺎﻋ ﺎت ﺗﺗﺻف ﺑﺗﺟ ﺎﻧس ذاﺗﯾ ﺎ ً أي أن اﻟوﺣ دات اﻟﺗﺟرﯾﺑﯾ ﺔ اﻟﺗ ﻲ ﺗﺷ ﻛل اﻟﻘط ﺎع ﺗﻛ ون وﺣ دات ﻣﺗﺟﺎﻧﺳ ﺔ أو ﻗرﯾﺑ ﮫ ﻣ ن اﻟﺗﺟ ﺎﻧس وﻻ ﯾﺷ ﺗرط أن ﺗﻛ ون اﻟﻘطﺎﻋﺎت ﻣﺗﺷﺎﺑﮭﮫ ﻓﯾﻣﺎ ﺑﯾﻧﮭﺎ ﻣن ﻧﺎﺣﯾﺔ اﻟﺗﺟﺎﻧس ﻓﻘد ﺗﻛون ﻣﺧﺗﻠﻔﺔ . وﯾ ﺗم ﺗﻌ ﯾن اﻟﻣﻌﺎﻟﺟ ﺎت ﻋﻠ ﻰ اﻟﻘط ﺎع ﺑطرﯾﻘ ﮫ ﻋﺷ واﺋﯾﺔ .وإذا ﻛ ﺎن ﻋ دد اﻟوﺣ دات اﻟﺗﺟرﯾﺑﯾ ﺔ داﺧ ل ﻛ ل ﻗط ﺎع ﯾﺳ ﺎوي ﻋ دد اﻟﻣﻌﺎﻟﺟ ﺎت اﻟﻣﺳ ﺗﺧدﻣﺔ ﻓ ﺎن اﻟﺗﺻ ﻣﯾم ﯾﺳ ﻣﻰ ﺗﺻ ﻣﯾم ﻗطﺎﻋ ﺎت ﻛﺎﻣﻠ ﺔ اﻟﻌﺷ واﺋﯾﺔ complete blocks designﺣﯾ ث ﻋ دد اﻟﻘطﺎﻋ ﺎت ،و ﻟ ﯾﻛن ،nﯾﺳ ﺎوي ﻋ دد اﻟﺗﻛ رارات اﻟﻣﻘ ررة ﻣن ﻗﺑل اﻟﻘﺎﺋم ﻋﻠﻰ اﻟﺗﺟرﺑﺔ . وھﻧﺎك ﻣﺟﺎﻻت ﻛﺛﯾرة ﺗﺳﺗﺧدم ﺗﺻﻣﯾم اﻟﻘطﺎﻋﺎت اﻟﻌﺷواﺋﯾﺔ: ﻓﻔﻲ ﻣﺟ ﺎل ﻋﻠ م اﻟﺣﯾ وان ﻗ د ﯾﻛ ون اﻟﻘط ﺎع ﻋﺑ ﺎرة ﻋ ن ﻣﺟﻣوﻋ ﮫ ﻣ ن اﻟﺣﯾواﻧ ﺎت ﺣدﯾﺛ ﺔ اﻟ وﻻدة ﻣ ن وﻟ ده واﺣ ده .وﯾ راد دراﺳ ﺔ ﺗ ﺄﺛﯾر أﻧ واع ﻣﺧﺗﻠﻔ ﺔ ﻣ ن اﻟﺧﻠط ﺎت اﻟﻐذاﺋﯾ ﺔ ﻋﻠ ﻰ زﯾ ﺎدة اﻟ وزن ﻟﮭ ذه اﻟﺣﯾواﻧﺎت. وﻓﻲ اﻟﺗﺟﺎرب اﻟزراﻋﯾﺔ ﻗد ﯾﻛون اﻟﻘطﺎع ﻋﺑﺎرة ﻋن ﻗطﻌﺔ ارض ﻣﺗﺟﺎﻧﺳﺔ ﻣ ن ﻧﺎﺣﯾ ﺔ درﺟ ﺔ اﻟﺧﺻ وﺑﺔ وﻣواﺻﻔﺎت اﻟﺗرﺑﺔ . وﻓﻲ ﻣﺟﺎل اﻟﺻﻧﺎﻋﺔ ﻗد ﯾﻛون اﻟﻘطﺎع ﺳﯾﺎرة ﯾوزع ﻋﻠﻰ ﻋﺟﻼﺗﮭﺎ أرﺑﻌﺔ أﻧ واع ﻣ ن اﻻﯾط ﺎرات ﺑطرﯾﻘ ﺔ ﻋﺷواﺋﯾﺔ وذﻟك ﻟﻠوﺻول إﻟﻰ أﻓﺿل ﻣﻘﺎرﻧﮫ ﻣن اﻻﯾطﺎرات وذﻟك ﻟﯾﺗﺧذ اﻟﻘﺎﺋم ﻋﻠﻰ اﻟﺗﺟرﺑ ﺔ ﻗ رار ﺑﺷ ﺎن أي اﻷﻧواع ﯾﻛون ﺟزﺋﮭﺎ اﻟﻣﻼﻣس ﻟﻸرض اﻗل اﺳﺗﮭﻼك ﻣ ن ﻏﯾرھ ﺎ ﺑﻌ د ﻗط ﻊ ﻋ دد ﻣﻌ ﯾن ﻣ ن اﻷﻣﯾ ﺎل ﺣﯾث اﻟﺗﻐﯾ ر اﻟﻣﻘ ﺎس ھ و اﻟﻔ رق ﻓ ﻲ ﺳ ﻣك اﻻﯾط ﺎر ﺑ ﯾن وﻗ ت اﺳ ﺗﺧداﻣﮫ ﻓ ﻲ ﻋﺟﻠ ﺔ اﻟﺳ ﯾﺎرة وﺑﯾﻧ ﮫ ﺑﻌ د إﻛﻣﺎل اﻟﻣﺳﺎﻓﺔ اﻟﻣﻘررة .وﯾﻛون اﻟﻌﺎﻣل اﻟوﺣﯾد اﻟذي ﯾﺟب اﻻھﺗﻣﺎم ﺑﮫ ھو ﻧوع اﻻﯾطﺎر . ﻣزاﯾﺎ اﻟﺗﺻﻣﯾم : ﺗؤدي ﻋﻣﻠﯾﺔ اﻟﺗﺟﻣﯾﻊ إﻟﻰ ﻗطﺎﻋﺎت ﻟﺗﺣﺳﯾن اﻟﻧﺗﺎﺋﺞ ﺑﺧﻠف اﻟﺗﺻﻣﯾم اﻟﺗﺎم ﻟﺗﻌﯾﺷﮫ. ﯾﻣﻛن اﺳﺗﺧدام أي ﻋدد ﻣن اﻟﻣﻌﺎﻟﺟﺎت وأي ﻋدد ﻣن اﻟﺗﻛرارات . ﺳﮭوﻟﺔ اﻟﺗﺣﻠﯾل اﻹﺣﺻﺎﺋﻲ ﻧﺳﺑﯾﺎ ً. ﯾﻣﻛن إﻏﻔﺎل ﻣﻌﺎﻟﺟﺔ أو ﻗطﺎع ﻷي ﺳﺑب ﻣن اﻷﺳﺑﺎب ﻣ ن اﻟﺗﺣﻠﯾ ل اﻹﺣﺻ ﺎﺋﻲ ﻣ ﻊ ﻋ دم ﺗﻌﻘﯾ د اﻟﻌﻣﻠﯾ ﺎت اﻟﺣﺳﺎﺑﯾﺔ . ﻋﯾوب اﻟﺗﺻﻣﯾم : إن ﻓﻘدان أي ﻣﺷﺎھدة داﺧل اﻟﻘطﺎع ﺗؤدي إﻟﻰ ﺣﺳﺎﺑﺎت إﺿﺎﻓﯾﺔ . اﻟﺣﺎﺟﺔ إﻟﻰ اﻟﻌدﯾد ﻣن ﻓروض اﻟﻧﻣوذج اﻟرﯾﺎﺿﻲ .
ﻣﺛﺎل)(١٤-٦ ﻓﻲ دراﺳﺔ ﻻﺧﺗﺑﺎر ﺗﺄﺛﯾر دواﺋﯾﯾن A , Bﻋﻠﻰ ﻋدد lymphocyteﻓﻲ دم اﻟﻔﺋران وذﻟك ﺑﻣﻘﺎرﻧﺔ A,Bﻣﻊ ﻣﻌﺎﻟﺟﺔ اﻟﻣراﻗﺑﺔ .Pوﺑﺈﺟراء اﻟﺗﺟرﺑﺔ ﺑﺎﺳﺗﺧدام ﺗﺻﻣﯾم اﻟﻘطﺎﻋﺎت اﻟﻛﺎﻣﻠﺔ اﻟﻌﺷواﺋﯾﺔ ﺣﯾث n=7, k=3وﻗد ﺗم ﺗوزﯾﻊ اﻟﻣﻌﺎﻟﺟﺎت ﻋﺷواﺋﯾﺎ ً ﻋﻠﻰ ﻛل ﻗطﺎع ﻛﻣﺎ ﺗم ﺣﺳﺎب ﻋدد lymphocyte ﺑﺎﻷﻟف ﻟﻛل ﻣﻠﻠﯾﻣﺗر ﻣﻛﻌب ﻣن اﻟدم وﻧﺗﺎﺋﺞ اﻟﺗﺟرﺑﺔ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : ٥٢٢
اﻟﻘطﺎﻋﺎت
Yi 38.8 45.4 37.4 T.. 121.6
7 5.5 6.8 5.4 17.7
5 3.5 5.5 3.9 12.9
6 7.6 9.0 7.0 23.6
4 5.8 6.4 5.6 17.8
اﻟﻣﻌﺎﻟﺟﺎت 3 7.0 6.9 6.5 20.4
2 4.0 4.8 3.9 12.7
1 5.4 6.0 5.1 16.5
P A B
x. j
اﻟﺣــل: ﻹﯾﺟﺎد ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻧﺗﺑﻊ اﻵﺗﻲ:
T..2 (121.6)2 704.12 nk 21
(1)
(2) y ij2 741.36 2 2 2 2 ) Ti. (38.8) (45.4) (37.4 709.33 n 7 2 T. j (16.5)2 (12.7)2 (23.6)2 (17.7) 2 (4) k 3 734.4.
(3)
وﻋﻠﻰ ذﻟك ﻓﺈن SST , SSTr , SSBL, SSEﯾﺗم ﺣﺳﺎﺑﮭم ﻛﺎﻟﺗﺎﻟﻲ: ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠﻲ ﺳﯾﻛون: SSTO = (2) - (1) = 37.2 , ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﻣﻌﺎﻟﺟﺎت )اﻟﺻﻔوف( ﺳﯾﻛون: SSTR = (3) - (1) = 5.21 , SSBL= (4) - (1) = 30.28 , ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﻘطﺎﻋﺎت )اﻻﻋﻣدة( ﺳﯾﻛون: SSBC= (4) - (1) = 30.28 , ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻟﻠﺧطﺄ ﺳﯾﻛون: SSE = SSTO – [ SSTR + SSBC] = 1.71. ﺗﻠﺧص اﻟﻧﺗﺎﺋﺞ ﻓﻲ ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن اﻟﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : ) f (1 , 2
fاﻟﻣﺣﺳوﺑﺔ
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت
ﻣﺗوﺳط ٥٢٣
درﺟﺎت
ﻣﺻدر
)= 6.93 f 0.01 (2,12
**18.57
اﻟﻣرﺑﻌﺎت 2.60
5.21 30.28 1.71
0.14
اﻻﺧﺗﻼف اﻟﻣﻌﺎﻟﺟﺎت اﻟﻘطﺎﻋﺎت
اﻟﺣرﯾﺔ 2 6
اﻟﺧطﺄ
12
20 37.2 ﻣ ن اﻟﺟ دول اﻟﺳ ﺎﺑق وﺑﻣ ﺎ أن ﻗﯾﻣ ﺔ Fاﻟﻣﺣﺳ وﺑﺔ ﺗزﯾ د ﻋ ن اﻟﻘﯾﻣ ﺔ اﻟﺟدوﻟﯾ ﺔ ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﮫ 0.01ﻟذﻟك ﺗرﻓض H 0ﻋﻧد 0.01وﻧﺳﺗﺧﻠص ﻣن ھذه اﻟﺗﺟرﺑﺔ أن ھﻧﺎك ﻓروق ﻣﻌﻧوﯾﺔ ﺑﯾن ﻣﺗوﺳطﺎت ﻣﺟﺗﻣﻌﺎت. ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . =0.01 0.01 {a={{5.4,4,7.,5.8,3.5,7.6,5.5},{6,4.8,6.9,6.4,5.5,9,6.8}, }}5.1,3.9,6.5,5.6,3.9,7,5.4 {{5.4,4,7.,5.8,3.5,7.6,5.5},{6,4.8,6.9,6.4,5.5,9,6.8},{5.1,3 }}.9,6.5,5.6,3.9,7,5.4 ]Dimensions[a }{3,7 ]]b=N[Transpose[a {{5.4,6.,5.1},{4.,4.8,3.9},{7.,6.9,6.5},{5.8,6.4,5.6},{3.5,5 }}.5,3.9},{7.6,9.,7.},{5.5,6.8,5.4 ]f[x_]:=Apply[Plus,x ]g[x_]:=Length[x ]]]na=g[a[[1 7 ]]]nb=g[b[[2 3 k1=na-1 6 k2=nb-1 2 N1=na*nb 21 ]xxx=Flatten[a {5.4,4,7.,5.8,3.5,7.6,5.5,6,4.8,6.9,6.4,5.5,9,6.8,5.1,3.9,6. }5,5.6,3.9,7,5.4 ]xx2=f[xxx 121.6 ]sxx22=f[xxx^2 ٥٢٤
اﻟﻛﻠﻲ
741.36 cf=(xx2^2)/N1 704.122 x1=Map[f,a] {38.8,45.4,37.4} aaaa1=f[x1^2]/na 709.337 aaaa=aaaa1-cf 5.21524 ssa=aaaa/k2 2.60762 xx2=Map[f,b] {16.5,12.7,20.4,17.8,12.9,23.6,17.7} bbb1=f[xx2^2]/nb 734.4 bbbb=bbb1-cf 30.2781 tot=sxx22-cf 37.2381 sser=tot-aaaa-bbbb 1.74476 v1=N1-1-k1-k2 12 msser=sser/v1 0.145397 v1=N1-1-k1-k2 12 ff1=ssa/msser 17.9345 rt2=List[" df "," ss "," mss "," f "] { df , ss , mss , f } rt1=List[k2,aaaa,ssa,ff1] {2,5.21524,2.60762,17.9345} rt3=List[k1,bbbb,"_","_"] {6,30.2781,_,_} rt9=List[v1,sser,msser,"-"] {12,1.74476,0.145397,-} rr9=List[N1-1,tot,"_","_"] {20,37.2381,_,_} a11=TableHeadings->{{ S.V,A,B,error,total},{ANOVA}} TableHeadings{{S.V,A,B,error,total},{ANOVA}} uu1=TableForm[{rt2,rt1,rt3,rt9,rr9},a11]
٥٢٥
f 17.9345 _
_
mss 2.60762 _ 0.145397 _
ss 5.21524 30.2781 1.74476 37.2381
ANOVA df 2 6 12 20
S.V A B error total
`<<Statistics`ContinuousDistributions ;=0.01 ]f1=Quantile[FRatioDistribution[k2,v1],1- 6.92661 ]]"If[ff1>f1,Print["RjectHo"],Print["AccpetHo RjectHo
اوﻻ :اﻟﻣدﺧﻼت ﻣﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ ﻣﻦ اﻻﻣﺮ =0.01 اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ aوھﻰ {a={{5.4,4,7.,5.8,3.5,7.6,5.5},{6,4.8,6.9,6.4,5.5,9,6.8}, }}5.1,3.9,6.5,5.6,3.9,7,5.4 وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﺨﺎﺻﺔ ﺑﺎﻟﻤﺜﺎل )(١٤-٦
ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر ]uu1=TableForm[{rt2,rt1,rt3,rt9,rr9},a11
ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم :
H 0 : 1 2 3 ﺿد اﻟﻔرض اﻟﺑدﯾل: واﺣد ﻋﻠﻲ اﻷﻗل ﻣن iﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲ H1 : fاﻟﺟدوﻟﯾﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]f1=Quantile[FRatioDistribution[k2,v1],1-
fاﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر ff1=ssa/msser
اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر ]]"If[ff1>f1,Print["RjectHo"],Print["AccpetHo
Reject H0
اى رﻓض ﻓرض اﻟﻌدم
) (٣-٥-٦ﺗﺻﻣﯾم اﻟﻣرﺑﻊ اﻟﻼﺗﯾﻧﻲ :ﺗﺟﺎرب ذات ﻋﺎﻣل واﺣد ٥٢٦
إن ﺗﺻ ﻣﯾم اﻟﻘطﺎﻋ ﺎت اﻟﻛﺎﻣﻠ ﺔ اﻟﻌﺷ واﺋﯾﺔ ﯾﮭ دف إﻟ ﻰ ﺗﺻ ﻐﯾر ﺧط ﺄ اﻟﺗﺟرﺑ ﺔ وذﻟ ك ﺑﺈزاﻟ ﺔ واﺣ د ﻣ ن ﻣﺻ ﺎدر اﻻﺧ ﺗﻼف )اﻟﻘطﺎﻋ ﺎت(٠ھﻧ ﺎك ﺗﺻ ﻣﯾم أﺧ ر ﻟ ﮫ أھﻣﯾ ﺔ ﻓ ﻲ اﻟ ﺗﺣﻛم ﻓ ﻲ ﻣﺻ درﯾن ﻟﻼﺧ ﺗﻼف واﻟﻣﺳ ﻣﻰ ﺑ ﺎﻟﻣرﺑﻊ اﻟﻼﺗﯾﻧ ﻲ٠ﻓ ﻲ ھ ذا اﻟﺗﺻ ﻣﯾم ﯾ ﺗم ﺗﺟﻣﯾ ﻊ اﻟوﺣ دات اﻟﺗﺟرﯾﺑﯾ ﺔ اﻟﻐﯾ ر ﻣﺗﺟﺎﻧﺳ ﺔ ﻓ ﻲ ﻣﺟﻣوﻋ ﺎت ﺗﺿ م وﺣ دات ﻣﺗﺟﺎﻧﺳ ﺔ أو ﻗرﯾﺑ ﺔ ﻣ ن اﻟﺗﺟ ﺎﻧس وھ ذا اﻟﺗﺟﻣﯾ ﻊ ﯾﻛ ون ﻓ ﻲ اﺗﺟ ﺎھﯾن وﯾﺳ ﻣﻰ اﺣدھﻣﺎ اﺗﺟﺎه اﻟﺻﻔوف وﯾﺳﻣﻰ اﻷﺧر اﺗﺟﺎه اﻷﻋﻣدة وﻣﻌﻧﻰ ذﻟك إن ﻛل ﺻف وﻛ ل ﻋﻣ ود ﻣ ﺎ ھ و إﻟ ﻰ ﻣﺟﻣوﻋ ﺔ أو ﻗط ﺎع أو ﻣﻛ رر ﻛﺎﻣ ل٠ﻓ ﻲ ھ ذا اﻟﺗﺻ ﻣﯾم ﺗ وزع اﻟﻣﻌﺎﻟﺟ ﺎت اﻟﻣ راد دراﺳ ﺔ ﺗﺄﺛﯾرھ ﺎ ﻓ ﻲ اﻟﺗﺟرﺑﺔ ﻋﻠﻰ اﻟوﺣدات اﻟﺗﺟرﯾﺑﯾﺔ ﺗﺑﻌﺎ ﻟﻠﺷرطﯾن اﻟﺗﺎﻟﯾﯾن: أ -ﻋدد اﻟﻣﻌﺎﻟﺟﺎت = ﻋدد اﻟﺻﻔوف = ﻋدد اﻻﻋﻣده٠ ب -ﻛل ﻣﻌﺎﻟﺟﮫ ﺗظﮭر ﻣرة واﺣدة ﻓﻲ اﻟﺻف أو اﻟﻌﻣود٠ ﻋﺎدة ﯾﺷﺎر إﻟﻰ ﺗﺻﻣﯾم اﻟﻣرﺑ ﻊ اﻟﻼﺗﯾﻧ ﻲ وﻓﻘ ﺎ ﻟرﺗﺑﺗ ﮫ ﻓﺣﯾﻧﻣ ﺎ ﻧﻘ ول ﺗﺻ ﻣﯾم ﻣرﺑ ﻊ ﻻﺗﯾﻧ ﻲ 4×4ﻓﮭ ذا ﯾﻌﻧ ﻲ إن ﻋ دد اﻟﻣﻌﺎﻟﺟ ﺎت اﻟداﺧﻠ ﺔ ﻓ ﻲ اﻟﺗﺟرﺑ ﺔ ھ ﻲ أرﺑﻌ ﺔ ﻣﻌﺎﻟﺟ ﺎت واﻟﻣﺳ ﺎوﯾﺔ ﻟﻌ دد اﻟﺻ ﻔوف وﻋ دد اﻷﻋﻣ دة .وﺣﯾﻧﻣ ﺎ ﻧﻘ ول ﻣرﺑ ﻊ ﻻﺗﯾﻧ ﻲ 5×5ﻓﮭ ذا ﯾﻌﻧ ﻲ إن ﻋ دد اﻟﻣﻌﺎﻟﺟ ﺎت ﺧﻣﺳ ﺔ واﻟﻣﺳ ﺎوﯾﺔ ﻟﻌ دد اﻟﺻ ﻔوف وﻋ دد اﻷﻋﻣ دة .ﻓﻌﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل ﺑﻔ رض إﻧﻧ ﺎ ﻧﮭ ﺗم ﺑﺈﻧﺗﺎﺟﯾ ﺔ أرﺑﻌ ﺔ أﻧ واع ﻣ ن اﻟﻘﻣ ﺢ A,B,C,Dوذﻟك ﺑﺎﺳﺗﺧدام أرﺑﻌﺔ أﻧواع ﻣن اﻷﺳﻣدة ) 1,2,3,4اﻟﺻﻔوف( وذﻟك ﺧ ﻼل أرﺑﻌ ﺔ ﻓﺗ رات زﻣﻧﯾﺔ ) 1,2,3,4اﻷﻋﻣدة( ٠اھﺗﻣﺎﻣﻧﺎ ھﻧﺎ ﺳوف ﯾﻛ ون ﻓ ﻲ دراﺳ ﺔ ﻋﺎﻣ ل واﺣ د ﻓﻘ ط وھ و ﻧ وع اﻟﻘﻣ ﺢ. ﻧﻼﺣظ ﻣن اﻟﺟدول اﻟﺗﺎﻟﻰ ﻣرﺑﻊ ﻻﺗﯾﻧﻲ 4×4ﺣﯾ ث ﻛ ل ﻣﻌﺎﻟﺟ ﺔ ظﮭ رت ﻣ رة واﺣ دة ﺑﺎﻟﺿ ﺑط ﻓ ﻲ ﻛ ل ﺻ ف وﻛ ل ﻋﻣ ود ٠ﺑﺎﺳ ﺗﺧدام ﻣﺛ ل ھ ذه اﻟﺗرﺗﯾﺑ ﺎت اﻟﻣﺗوازﻧ ﺔ وﺑﺎﺳ ﺗﺧدام ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن ﯾﻣﻛﻧﻧ ﺎ ﻓﺻ ل اﻻﺧ ﺗﻼف اﻟ ذي ﯾرﺟ ﻊ إﻟ ﻰ اﺧ ﺗﻼف اﻷﺳ ﻣدة أو اﺧ ﺗﻼف اﻟﺳ ﻧوات ﻣ ن ﻣﺟﻣ وع اﻟﻣرﺑﻌ ﺎت اﻟﻛﻠ ﻰ وﺑﺎﻟﺗﺎﻟﻲ اﻟﺣﺻول ﻋﻠﻰ اﺧﺗﺑﺎر أﻛﺛ ر دﻗ ﺔ ﻟﻼﺧ ﺗﻼف ﻓ ﻲ اﻹﻧﺗﺎﺟﯾ ﺔ ﻟﻸﻧ واع اﻷرﺑﻌ ﺔ ﻣ ن اﻟﻘﻣ ﺢ ٠ﻋﻧ دﻣﺎ ﯾﻛون ھﻧﺎك ﺗﻔﺎﻋل ﺑﯾن أي ﻣن ﻣﺻﺎدر اﻻﺧﺗﻼف ﻓﺎن ﻗﯾﻣﺔ Fﻓﻲ ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن ﺗﻛ ون ﻏﯾ ر ﺻ ﺣﯾﺣﺔ ، وﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﻓﻠن ﯾﻛون ﺗﺻﻣﯾم اﻟﻣرﺑﻊ اﻟﻼﺗﯾﻧﻲ ھو اﻟﺗﺻﻣﯾم اﻟﻣﻧﺎﺳب. 4
3
2
1
D C B A
C B A D
B A D C
A D C B
اﻷﻋﻣدة اﻟﺻﻔوف 1 2 3 4
ﻓﯾﻣﺎ ﯾﻠﻲ ﻋدة إﺷﻛﺎل ﻟﻣرﺑﻌﺎت ﻻﺗﯾﻧﯾﺔ. C B A
ﻣرﺑﻊ ﻻﺗﯾﻧﻲ 3×3 B A C
ﻣرﺑﻊ ﻻﺗﯾﻧﻲ 4×4 ٥٢٧
A C B
A B D C
B E A D C
B A C D
C D B A
ﻣرﺑﻊ ﻻﺗﯾﻧﻲ 5×5 E C C D B E A B D A
D C A B
A B D C E
D A C E B
ﻣن اﻟطﺑﯾﻌﻲ إن ﺗﻛون اﻟﻣرﺑﻌﺎت اﻟﻼﺗﯾﻧﯾﺔ اﻟﻛﺑﯾ رة اﻟرﺗﺑ ﺔ ﻗﻠﯾﻠ ﺔ اﻻﺳ ﺗﺧدام ﺣﺗ ﻰ إن اﻟﻣرﺑﻌ ﺎت ﻣ ن رﺗﺑ ﺔ اﻛﺑ ر ﻣ ن 12 ×12ﺗﻛ ون ﻏﯾ ر ﻋﻣﻠﯾ ﺔ وﻏﯾ ر ﻣﺳ ﺗﺧدﻣﺔ .ﺑﯾﻧﻣ ﺎ اﻷﻛﺛ ر اﺳ ﺗﺧداﻣﺎ ھ ﻲ اﻟﻣرﺑﻌ ﺎت اﻟﺗ ﻲ رﺗﺑﺗﮭﺎ ﺗﻘﻊ ﻓﻲ اﻟﻣدى 5×5و . 8×8 ھذا اﻟﺗﺻﻣﯾم ﺷﺎﺋﻊ اﻻﺳﺗﺧدام ﻓﻲ : -١اﻟﺗﺟﺎرب اﻟزراﻋﯾﺔ ﺣﯾث ﯾوﺟد ﻣﺻدرﯾن ﻟﻼﺧﺗﻼف ﻣﺛ ل اﻟﺧﺻ وﺑﺔ واﻟﻣﯾ ل أو ﺧﺻ وﺑﺗﻲ ﻣﺧﺗﻠﻔﺗ ﯾن ٠وﻗد ﺗﻣﺛل اﻟﺻﻔوف إﺷراف ﻋدد ﻣن اﻷﺷﺧﺎص ذو ﺧﺑرات ﻣﺗﺑﺎﯾﻧ ﺔ ﻓ ﻲ اﻟزراﻋ ﺔ واﻷﻋﻣ دة ﺗﻣﺛ ل أﺻﻧﺎﻓﺎ ﻣﺧﺗﻠﻔﺔ ﻓﻲ اﻟﺣﻘول. -٢اﻟﺗﺟﺎرب اﻟﻛﯾﻣﺎﺋﯾﺔ ﻓﻘد ﯾﺗوﻗﻊ اﻟﺑﺎﺣث ﻓﻲ ﺑﻌ ض اﻷﺣﯾ ﺎن اﻻﺧ ﺗﻼف ﻓ ﻲ اﻻﺳ ﺗﺟﺎﺑﺔ واﻟﺗ ﻲ ﺗﻧ ﺗﺞ ﻣ ن اﺧﺗﻼف ﻓﻲ أﯾﺎم اﻟﺗﺣﻠﯾل واﻟﺗرﺗﯾب ﻓﻲ اﻟﺗﺣﻠﯾل ﺧﻼل اﻟﯾوم اﻟواﺣد. -٣ﻓﻲ ﺗﺟ ﺎرب اﺧﺗﺑ ﺎر أﻧ واع ﻣﺧﺗﻠﻔ ﺔ ﻣ ن اﻹط ﺎرات)أرﺑﻌ ﺔ أﻧ واع ﻋﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل( ﻓ ﺎن اﺳ ﺗﮭﻼك اﻹطﺎرات اﻷﻣﺎﻣﯾﺔ ﻟﺳﯾﺎرة ﻣﻌﯾﻧﺔ ﯾﺧﺗﻠف ﻋن اﺳﺗﮭﻼك اﻹطﺎرات اﻟﺧﻠﻔﯾ ﺔ وﻛ ذﻟك ﯾﺧﺗﻠ ف اﺳ ﺗﮭﻼك اﻹط ﺎر ﻣ ن ﺟﺎﻧ ب إﻟ ﻰ أﺧ ر ٠ﺑﺎﺳ ﺗﺧدام ﺗﺻ ﻣﯾم اﻟﻣرﺑ ﻊ أﻻﺗﯾﻧ ﻲ ﯾﻣﻛ ن إن ﯾﺳ ﺗﺧدم ﻛ ل ﻧ وع ﻣ ن اﻹطﺎرات ﻣرة واﺣدة ﻓﻲ ﻛل ﺳﯾﺎرة )اﻟﺻﻔوف( وﻣرة واﺣ دة ﻓ ﻲ ﻛ ل ﻣوﻗ ﻊ ﻣ ن اﻟﻣواﻗ ﻊ اﻟﻣﺧﺗﻠﻔ ﺔ إﻣﺎﻣﻲ أﯾﺳر،ﺧﻠﻔﻲ أﯾﺳر ،أﻣﺎﻣﻲ أﯾﻣن ،ﺧﻠﻔﻲ أﯾﻣن)اﻷﻋﻣدة(٠ -٤ﻓﻲ اﻟدراﺳ ﺎت اﻟﺗﺳ وﯾﻘﯾﺔ-ﻣ ﺛﻼ-إذا ﻛ ﺎن ﻣﺗوﻗﻌ ﺎ إن اﻻﺧ ﺗﻼف ﻓ ﻲ ﺣﺟ م اﻟﻣﺑﯾﻌ ﺎت ﺑﺣﺳ ب اﻷﯾ ﺎم أو اﻟﻔروع أو أﻗﺳﺎم اﻟﻣؤﺳﺳﺔ وأﺳﻠوب اﻹﻋﻼن أو طرﯾﻘ ﺔ ﻋ رض اﻟﺳ ﻠﻌﺔ٠وﻋﻠ ﻰ ذﻟ ك ﯾﻣﻛ ن اﻋﺗﺑ ﺎر اﻷﯾﺎم ﺗﻣﺛل اﻟﺻﻔوف وﻓروع اﻟﻣؤﺳﺳﺔ ﺗﻣﺛل اﻻﻋﻣدة٠ -٥ﻓ ﻲ اﻟﻣﺟ ﺎﻻت اﻟطﺑﯾ ﺔ ﺣﯾ ث اﻟﺻ ﻔوف ﺗﻣﺛ ل اﻟﻣﺳﺗﺷ ﻔﯾﺎت واﻷﻋﻣ دة ﺗﻣﺛ ل اﻷدوﯾ ﺔ واﻟﺣ روف ﺗﻣﺛ ل اﻹﻣراض اﻟﻣﺧﺗﻠﻔﺔ )اﻟﻣﻌﺎﻟﺟﺎت اﻟﻣﺧﺗﻠﻔﺔ(. -٦وﻓﻲ اﻟﻣﺟﺎﻻت اﻟﻧﻔﺳﯾﺔ ﺣﯾث اﻟﺻﻔوف ﺗﻣﺛل ﻣﺟﺎﻣﯾﻊ ﻣﺧﺗﻠﻔﺔ ﻣ ن اﻷﺷ ﺧﺎص واﻷﻋﻣ دة ھ ﻲ ﺗرﺗﯾ ب اﻟﻛﺷف ﻋﻠﯾﮭم إﻣﺎ اﻟﺣروف ﻓﺗﻣﺛل اﻟﻣﻌﺎﻟﺟﺎت اﻟﻣﺧﺗﻠﻔﺔ. -٧ﻓﻲ اﻟﺗﺟﺎرب اﻟﺗﻲ ﺗﺟرى ﻋﻠﻰ اﻟﺣﯾواﻧﺎت ﻓ ﺈن اﻟﺻ ﻔوف ﺗﻣﺛ ل اﻟواﻟ دات إﻣ ﺎ اﻷﻋﻣ دة ﻓﮭ ﻲ إﺣﺟ ﺎم اﻟﺣﯾواﻧﺎت وﺗﻣﺛل اﻟﺣروف اﻟﻣﻌﺎﻟﺟﺎت اﻟﻣﺧﺗﻠﻔﺔ. وﻣن أھم ﻋﯾوب ھذا اﻟﺗﺻﻣﯾم: ٥٢٨
ﺗﺳﺎوى ﻋدد ﻛل ﻣن اﻟﺻﻔوف واﻷﻋﻣدة واﻟﻣﻌﺎﻟﺟﺎت ﯾﻘﻠ ل ﻣ ن درﺟ ﺎت اﻟﺣرﯾ ﺔ ﻟﻠﺧط ﺄ اﻟﺗﺟرﯾﺑ ﻲ ﻋﻧ دﻣﺎ ﯾﻛ ون ﻟ دﯾﻧﺎ ﻋ دد ﻗﻠﯾل ﻣ ن اﻟﻣﻌﺎﻟﺟ ﺎت واﻟﻌﻛ س ﺻ ﺣﯾﺢ ﻋﻧ دﻣﺎ ﯾ زداد ﻋ دد اﻟﻣﻌﺎﻟﺟ ﺎت ﻓ ﺈن ذﻟ ك ﯾ ؤدي إﻟ ﻰ أن درﺟ ﺎت اﻟﺣرﯾ ﺔ ﻟﻠﺧط ﺄ ﺗﻛ ون اﻛﺑ ر ﻣ ن اﻟ ﻼزم .ﻓﻌﻠ ﻲ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل ﻻ ﺗوﺟ د درﺟ ﺎت ﺣرﯾﺔ ﻟﺗﻘدﯾر اﻟﺧطﺄ ﻓﻲ اﻟﻣرﺑﻊ اﻟﻼﺗﯾﻧﻲ 2 2ﺑﯾﻧﻣﺎ ﯾﻌط ﻲ اﻟرﺗﺑ ﺔ 3 x 3درﺟﺗ ﻲ ﺣرﯾ ﺔ ﻟﺗﻘ دﯾر اﻟﺧط ﺄ واﻟﻣرﺑﻊ 4 4ﯾﻌطﻲ ﺳﺗﺔ درﺟﺎت ﺣرﯾﺔ اﻟﺧطﺄ. ﻋﻣﻠﯾﮫ أﻟﺗﻌﯾﺷﮫ أﻛﺛر ﺗﻌﻘﯾدا ﻣﻣﺎ أﺗﺑﻊ ﻓﻲ ﺗﺻﻣﯾم اﻟﻘطﺎﻋﺎت اﻟﻛﺎﻣﻠﺔ اﻟﻌﺷواﺋﯾﺔ. ﻓﻘدان اﺣد اﻟﻣﺷﺎھدات ﯾؤدى إﻟﻰ ﺣﺳﺎﺑﺎت إﺿﺎﻓﯾﺔ.
ﻣﺛﺎل)(١٥-٦ اﺟري إﺣدى اﻟﻣﺣﻼت اﻟﺗﺟﺎرﯾﺔ دراﺳﺔ اﺳﺗطﻼﻋﯾﮫ ﻋﻠﻲ ﺗﺄﺛﯾر اﻷﺳﻌﺎر ﻋﻠﻲ اﻟﻣﺑﯾﻌﺎت ﻷﺣد اﻟﻣﻧﺗﺟﺎت اﻟﺻﻧﺎﻋﯾﺔ وﻟﻣﺎ ﻛﺎن ﺗﻐﯾﯾر اﻟﺳﻌر ﻋدة ﻣرات داﺧل ﻓرع واﺣد ﻗد ﯾﻛون ﻟﮫ ﺗﺄﺛﯾر ﺳﻠﺑﻲ ﻋﻠﻲ اﻟﻣﺳﺗﮭﻠﻛﯾن ﻓﻘد رؤى اﺳﺗﺧدام ﺳﻌر واﺣد داﺧل اﻟﻔرع اﻟواﺣد وان ﻛﺎن اﻟﺳﻌر ﻗد ﯾﺧﺗﻠف ﻣن ﻓرع ﻷﺧر .ھذا وﻗد ﺗﻘرر إﺟراء اﻟدراﺳﺔ ﻟﻣدة ﺳﺗﺔ ﺷﮭور واﺷﺗرك ﻓﯾﮭﺎ 16ﻓرﻋﺎ .وﻋﻣﻼ ﻋﻠﻲ ﺗﺧﻔﯾض اﻟﺧطﺄ اﻟﺗﺟرﯾﺑﻲ ﻓﻘد ﺗم اﺧﺗﯾﺎر اﻟﻔروع ﺑﺈﺣﺟﺎم ﻣﺑﯾﻌﺎت ﻣﺧﺗﻠﻔﺔ وﻓﻲ ﻣواﻗﻊ ﺟﻐراﻓﯾﮫ ﻣﺧﺗﻠﻔﺔ ھذا وﻗد ﺗم ﺗﺣدﯾد ﻣﺳﺗوﯾﺎت اﻷﺳﻌﺎر ﻋﻠﻲ اﻟﻧﺣو اﻟﺗﺎﻟﻲ: A :1.79$ , B :1.69$ , C :1.59$ , D :1.49$ ﯾﻌطﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ اﻟﻣﺑﯾﻌﺎت ﺑﻣﺋﺎت اﻟدوﻻرات ﺧﻼل ﻓﺗرة اﻟﺳﺗﺔ ﺷﮭور . اﻟﻣطﻠـوب ) :أ( أوﺟد ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻟﮭذه اﻟﺗﺟرﺑﺔ. )ب( اﺧﺗﺑر ﻣﺎ إذا ﻛﺎﻧت ھﻧﺎك ﻓروق ﺑﯾن اﻟﻣﻌﺎﻟﺟﺎت )اﻟﻣﺑﯾﻌﺎت(. اﻟﻣوﻗﻊ اﻟﺟﻐراﻓـﻲ
Ti..
اﻟﺷﻣﺎل اﻟﺷرﻗﻲ 5.3 6.4 9.8 11.5 33
B: 1.1 A: 1.4 C: 2.8 D: 3.4 8.7
اﻟﺷﻣﺎل اﻟﻐرﺑﻲ C: 1.5 D: 1.9 B: 2.2 A: 2.5 8.1
ﺣﺟم اﻟﻣﺑﯾﻌﺎت
اﻟﺟﻧوب اﻟﺷرﻗﻲ A: 1.0 B: 1.6 D: 2.7 C: 2.9 8.2
اﻟﺟﻧوب اﻟﻐرﺑﻲ D: 1.7 C: 1.5 A: 2.1 B: 2.7 8
اﻟﺣــل: ﻣن اﻟﺟدول اﻟﺳﺎﺑق ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ : D 1.7 1.9 2.7
B 1.1 1.6 2.2
C 1.5 1.5 2.8 ٥٢٩
A 1.0 1.4 2.1
) (١اﻷﻗل )(٢ )(٣ ) (٤اﻷﻛﺑر
T.j.
3.4 9.7 ﻓﯾﻣﺎ ﯾﻠﻰ ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن : fاﻟﻣﺣﺳوﺑﺔ ) f (1 , 2
2.9 8.7
ﻣﺗوﺳط اﻟﻣرﺑﻌﺎت
2.7 7.6
ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت 6.28 0.08 1.08 0.12 7.56
f 0.01 (3,6) 9.78
18
0.36 0.02
2.5 Y..k 7.0
درﺟﺎت اﻟﺣرﯾﺔ 3 3 3 6 15
ﻣﺻدر اﻻﺧﺗﻼف اﻟﺻﻔوف اﻻﻋﻣدة اﻟﻣﻌﺎﻟﺟﺎت اﻟﺧطﺄ اﻟﻛﻠﻰ
ﻣن اﻟﺟدول اﻟﺳﺎﺑق ﻓﺈن ﻗﯾﻣﺔ fاﻟﻣﺣﺳ وﺑﺔ أﻛﺑ ر ﻣ ن اﻟﻘﯾﻣ ﺔ اﻟﺟدوﻟﯾ ﺔ وھ ذا ﯾﻌﻧ ﻰ وﺟ ود ﻓ روق ﻣﻌﻧوﯾ ﺔ ﺑﯾن ﻣﺗوﺳطﺎت اﻟﻣﻌﺎﻟﺟﺎت ﻋﻧد . 0.01 ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . =0.01 0.01 b={{1.7,1,1.5,1.1},{1.5,1.6,1.9,1.4}, }}{2.1,2.7,2.2,2.8},{2.7,2.9,2.5,3.4 {{1.7,1,1.5,1.1},{1.5,1.6,1.9,1.4},{2.1,2.7,2.2,2.8},{2.7,2. }}9,2.5,3.4 ]a=Transpose[b {{1.7,1.5,2.1,2.7},{1,1.6,2.7,2.9},{1.5,1.9,2.2,2.5},{1.1,1. }}4,2.8,3.4 c={{1,1.4,2.1,2.5},{1.1,1.6,2.2,2.7}, }}{1.5,1.5,2.8,2.9},{1.7,1.9,2.7,3.4 {{1,1.4,2.1,2.5},{1.1,1.6,2.2,2.7},{1.5,1.5,2.8,2.9},{1.7,1. }}9,2.7,3.4 ]f[x_]:=Apply[Plus,x ]g[x_]:=Length[x ]x1=Map[f,a }{8.,8.2,8.1,8.7 ]xx1=Map[f,b }{5.3,6.4,9.8,11.5 ]xx2=Map[f,c }{7.,7.6,8.7,9.7 ]x2=Map[f,a^2 }{16.84,19.26,16.95,22.57 ٥٣٠
n=g[a[[1]]] 4 w3=n*n 16 cf=(f[x1]^2)/w3 68.0625 st=f[x2]-cf 7.5575 f[x1^2]/n 68.135 rrw=%-cf 0.0725 f[xx1^2]/n 74.335 ccw=%-cf 6.2725 f[xx2^2]/n 69.135 sttw=%-cf 1.0725 se=st-rrw-ccw-sttw 0.14 w1=n-1 3 w3=w3-1 15 w4=w3-3w1 6 msw=sttw/w1 0.3575 msee=se/w4 0.0233333 f1=msw/msee 15.3214 rt2=List[" df "," ss "," mss { df , ss , mss , f } rt1=List[w1,sttw,msw,f1] {3,1.0725,0.3575,15.3214} rt3=List[w1,rrw,"-","-"] {3,0.0725,-,-} rt9=List[w1,ccw,"-","-"] {3,6.2725,-,-} rr9=List[w4,se,msee,"_"] {6,0.14,0.0233333,_} rr10=List[w3,st,"_","_"] {15,7.5575,_,_} ٥٣١
","
f
"]
}}a11=TableHeadings->{{ S.V,treat,A,B,error,total},{ANOVA }}TableHeadings{{S.V,treat,A,B,error,total},{ANOVA ]uu1=TableForm[{rt2,rt1,rt3,rt9,rr9,rr10},a11
f 15.3214
mss 0.3575
_ _
0.0233333 _
ss 1.0725 0.0725 6.2725 0.14 7.5575
ANOVA df 3 3 3 6 15
S.V treat A B error total
`<<Statistics`ContinuousDistributions ]ff1=Quantile[FRatioDistribution[w1,w4],1- 9.77954 ]]"If[f1>ff1,Print["RjectHo"],Print["AccpetHo RjectHo
وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ : اوﻻ :اﻟﻣدﺧﻼت ﻣﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ ﻣﻦ اﻻﻣﺮ =0.01 اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ bوھﻰ b={{1.7,1,1.5,1.1},{1.5,1.6,1.9,1.4}, }}{2.1,2.7,2.2,2.8},{2.7,2.9,2.5,3.4 وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﺨﺎﺻﺔ ﺑﻤﺜﺎل ).(١٥- ٦ اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ cوھﻰ c={{1,1.4,2.1,2.5},{1.1,1.6,2.2,2.7}, }}{1.5,1.5,2.8,2.9},{1.7,1.9,2.7,3.4
وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﻤﻮﺟﻮدة ﻓﻰ اﻟﺠﺪول اﻟﺨﺎص ﺑﺎﻟﻤﻌﺎﻟﺠﺎت واﻟﻤﺸﺘﻖ ﻣﻦ اﻟﺠﺪول اﻻول. ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت
ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر ]uu1=TableForm[{rt2,rt1,rt3,rt9,rr9,rr10},a11
ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم :
H 0 : 1 2 3 ﺿد اﻟﻔرض اﻟﺑدﯾل: واﺣد ﻋﻠﻲ اﻷﻗل ﻣن iﯾﺧﺗﻠف ﻋن اﻟﺑﺎﻗﻲ H1 : fاﻟﺟدوﻟﯾﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]ff1=Quantile[FRatioDistribution[w1,w4],1- ٥٣٢
fاﻟﻣﺣﺳوﺑﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر ff1=ssa/msser
واﻟﺗﻰ ﺗﺧﺗﻠف ﻗﻠﯾﻼ ﻋن اﻟﻣﺣﺳوﺑﺔ ﯾدوﯾﺎ وذﻟك ﻧﺗﯾﺟﺔ ﻟﻌﻣﻠﯾﺔ اﻟﺗﻘرﯾب. اﻟﻘرار اﻟذى ﯾﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر ]]"If[f1>ff1,Print["RjectHo"],Print["AccpetHo
Reject H0
اى رﻓض ﻓرض اﻟﻌدم ﻣﻠﺣوظﺔ B :ھﻰ اﻟﺻﻔوف و Aھﻰ اﻻﻋﻣدة.
٥٣٣
اﻟﻔﺻل اﻟﺳﺎﺑﻊ اﻻﺧﺗﺑﺎرات اﻟﻼﻣﻌﻠﻣﯾﺔ
٥٣٤
) (١-٧ﻣﻘدﻣــﺔ
Introduction
ﺗﻌﺗﻣد اﻟطرق اﻟﻣﺳﺗﺧدﻣﺔ ﻓﻲ اﺧﺗﺑﺎرات اﻟﻔروض وﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن وﺗﺣﻠﯾل اﻻﻧﺣدار وﺗﺣﻠﯾل اﻻرﺗﺑﺎط ) اﻟطرق اﻟﻣﻌﻠﻣﯾﺔ ،( parametric methodsواﻟﺗﻲ ﺳﺑق ﻣﻧﺎﻗﺷﺗﮭﺎ ﻓﻲ اﻟﻔﺻول اﻟﺳﺎﺑﻘﺔ، ﻋﻠﻰ ﻋدد ﻣن اﻟﻔروض .ﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ﯾﺷﺗرط ﻓﻲ اﻻﺧﺗﺑﺎر اﻟذي ﯾﺧص ﻣﺗوﺳط ﻣﺟﺗﻣﻊ ) اﺧﺗﺑﺎر ( tأن اﻟﻣﺟﺗﻣﻊ اﻟذي اﺧﺗﯾرت ﻣﻧﮫ اﻟﻌﯾﻧﺔ ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً وذﻟك ﻋﻧدﻣﺎ ﯾﻛون ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ﻏﯾر ﻣﻌروف وﺣﺟم اﻟﻌﯾﻧﺔ ﺻﻐﯾر .أﯾﺿﺎ ﻓﻲ ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺷﺗرط أن اﻟﻣﺟﺗﻣﻌﺎت اﻟﺗﻲ اﺧﺗﯾرت ﻣﻧﮭﺎ اﻟﻌﯾﻧﺎت ﺗﺗﺑﻊ ﺗوزﯾﻌﺎت طﺑﯾﻌﯾﺔ وﺗﺑﺎﯾﻧﺎﺗﮭﺎ ﻣﺗﺳﺎوﯾﺔ .اﻻﺧﺗﺑﺎرات اﻟﺳﺎﺑﻘﺔ ﺳوف ﺗﻛون ﻏﯾر ﻣﺟدﯾﺔ إذا ﻟم ﺗﺗﺣﻘق اﻟﺷروط اﻟﺧﺎﺻﺔ ﺑﮭﺎ ،وﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﺗﻛون اﻻﺧﺗﺑﺎرات اﻟﻼﻣﻌﻠﻣﯾﺔ ھﻲ اﻟﺑدﯾل .ﻋﻣوﻣﺎ ً ﺗﺳﺗﺧدم اﻻﺧﺗﺑﺎرات اﻟﻼﻣﻌﻠﻣﯾﺔ ﻓﻲ اﻷﺣوال اﻵﺗﯾﺔ : ﻋﻧدﻣﺎ ﺗﻛون اﻟﺷروط اﻟﻼزﻣﺔ ﻟﻼﺧﺗﺑﺎر اﻟﻣﻌﻠﻣﻲ ﻏﯾر ﻣﺳﺗوﻓﺎة . )أ( )ب( ﻋﻧدﻣﺎ ﯾدور ﻓرض اﻟﻌدم واﻟﻔرض اﻟﺑدﯾل ﻋﻠﻰ أﺷﯾﺎء وﺻﻔﯾﺔ وﻟﯾﺳت ﻋﻠﻰ ﻣﻌﻠﻣﺔ ﻣﺟﺗﻣﻊ ﻛﻣﺎ ﻓﻲ اﺧﺗﺑﺎر ﺟودة اﻟﺗوﻓﯾق واﻟذي ﺳوف ﺗﺗﻧﺎوﻟﮫ ﻓﻲ اﻟﺑﻧد اﻟﺗﺎﻟﻲ .أﯾﺿﺎ ﻋﻧد اﻟرﻏﺑﺔ ﻓﻲ ﻋﻣل ﻣﻘﺎرﻧﺔ ﺑﯾن ﻣﺟﺗﻣﻌﯾن أو اﻛﺛر وذﻟك ﺑﺎﻻﻋﺗﻣﺎد ﻋﻠﻰ ﻋﯾﻧﺎت ﻋﺷواﺋﯾﺔ ﻣﺧﺗﺎرة ﻣن ھذه اﻟﻣﺟﺗﻣﻌﺎت دون اﻟﺗﻌرف ﻋﻠﻰ اﻟﺗوزﯾﻌﺎت اﻻﺣﺗﻣﺎﻟﯾﺔ أو اﻟﺗﻌرض ﻟﮭﺎ . )ج( ﻋﻧدﻣﺎ ﯾﻛون ﻣﻘﯾﺎس اﻟﺑﯾﺎﻧﺎت وﺻﻔﻲ أو ﺗرﺗﯾﺑﻲ . )د( ﻋﻧد اﻟﺣﺎﺟﺔ ﻟﻠوﺻول إﻟﻰ ﻗرار ﺳرﯾﻊ ﺑدون اﺳﺗﺧدام اﻵﻻت اﻟﺣﺎﺳﺑﺔ أو اﻟﺣﺎﺳﺑﺎت اﻹﻟﻛﺗروﻧﯾﺔ . ﺑﻌض ﻣﻣﯾزات اﻟطرق اﻟﻼﻣﻌﻠﻣﯾﺔ )أ( ﻓرص ﻋدم اﻟدﻗﺔ ﻗﻠﯾﻠﺔ ﻋﻧد ﺗطﺑﯾﻘﮭﺎ وذﻟك ﻻﻋﺗﻣﺎدھﺎ ﻋﻠﻰ اﻗل ﻗدر ﻣن اﻟﻔروض . )ب( ﻟﺑﻌض اﻟطرق اﻟﻼﻣﻌﻠﻣﯾﺔ ،اﻟﻌﻣﻠﯾﺎت ﺗﺗم ﺑﺳرﻋﺔ ﻟذﻟك ﻓﺈﻧﮭﺎ ﺗوﻓر اﻟوﻗت وﺧﺻوﺻﺎ ً ﻋﻧد ﻋدم ﺗوﻓر اﻵﻻت اﻟﺣﺎﺳﺑﺔ . )ج( ﺗﻼﺋم ﻛﺛﯾر ﻣن اﻟﺑﺎﺣﺛﯾن ﻓﻲ ﻣﺟﺎل ﻋﻠم اﻟﻧﻔس واﻻﺟﺗﻣﺎع ﻷن ﻣﻌظم اﻟﺑﯾﺎﻧﺎت اﻟذﯾن ﯾﺗﻌﺎﻣﻠون ﻣﻌﮭﺎ ﺗﻛون ﻣن اﻟﻧوع اﻟوﺻﻔﻲ أو اﻟﺗرﺗﯾﺑﻲ . )د( ﺗﻼﺋم اﻟﺑﺎﺣﺛﯾن اﻟذﯾن ﻟدﯾﮭم أدﻧﻰ ﻣﻌﻠوﻣﺎت ﻓﻲ ﻣﺟﺎل اﻟرﯾﺎﺿﯾﺎت واﻹﺣﺻﺎء وذﻟك ﻟﺳﮭوﻟﺔ اﻟﻣﻔﺎھﯾم واﻟطرق اﻟﻼﻣﻌﻠﻣﯾﺔ . ﺑﻌض ﻋﯾوب اﻟطرق اﻟﻼﻣﻌﻠﻣﯾﮫ )أ( وﻻن اﻟﻌﻣﻠﯾﺎت اﻟﻣﺳﺗﺧدﻣﺔ ﻓﻲ ﻣﻌظم اﻻﺧﺗﺑﺎرات اﻟﻼﻣﻌﻠﻣﯾﺔ ﺑﺳﯾطﺔ وﺳرﯾﻌﺔ ﻓﺈﻧﮭﺎ ﺗؤدى إﻟﻰ ﻓﻘد ﻓﻲ اﻟﻣﻌﻠوﻣﺎت اﻟﻣوﺟودة ﻓﻲ اﻟﺑﯾﺎﻧﺎت ﻛﻣﺎ ھو اﻟﺣﺎل ﻋﻧد ﺗﺣوﯾل اﻟﺑﯾﺎﻧﺎت إﻟﻰ رﺗب ،وھذا ﯾؤدى إﻟﻰ ﻓﻘد ﻛﺑﯾر ﻓﻲ اﻟدﻗﺔ . )ب( ﺑﻌض اﻟطرق اﻟﻼﻣﻌﻠﻣﯾﺔ ﺗﻛون ﻣﻌﻘدة .
) (١-٧اﺧﺗﺑﺎر ﻣرﺑﻊ ﻛﺎى ﻟﻼﺳﺗﻘﻼل ٥٣٥
The Chi-square Test of Independent ﻓﻲ ﻛﺛﯾر ﻣن اﻷﺣﯾﺎن ﯾرﻏب اﻟﺑﺎﺣث ﻓﻲ اﻟﺗﻌرف ﻋﻣﺎ إذا ﻛﺎﻧت ھﻧ ﺎك ﻋﻼﻗ ﺔ ﺑ ﯾن ﺻ ﻔﺗﯾن ﻣ ن ﺻﻔﺎت ﻣﺟﺗﻣﻊ ﻣﺎ .ﻓﻌﻠﻲ ﺳﺑﯾل اﻟﻣﺛ ﺎل ﻗ د ﯾرﻏ ب ﻣﺳ ﺋول اﻟﺗﻐذﯾ ﺔ ﻓ ﻲ ﻣدرﺳ ﺔ ﻣ ﺎ ﻓ ﻲ اﻟﺗﻌ رف ﻋﻣ ﺎ إذا ﻛﺎﻧت اﻟﺣﺎﻟﺔ اﻟﻐذاﺋﯾﺔ ﻟﻠطﺎﻟب ﻟﮭﺎ ﻋﻼﻗﺔ ﺑﻛﻔﺎءﺗﮫ اﻟﺗﻌﻠﯾﻣﯾ ﺔ .أﯾﺿ ﺎ ﻗ د ﯾرﻏ ب ﺑﺎﺣ ث ﻓ ﻲ ﻣﺟ ﺎل اﻟوراﺛ ﺔ ﻓﻲ اﻟﺗﻌرف ﻋﻣﺎ إذا ﻛﺎﻧت ھﻧﺎك ﻋﻼﻗﺔ ﺑﯾن ﻟون اﻟﺷﻌر وﻟون اﻟﻌﯾﻧﯾن … اﻟﺦ . ﻹﺟ راء اﻻﺧﺗﺑ ﺎر ﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م nﻣ ن اﻟﻣﺟﺗﻣ ﻊ ﻣوﺿ ﻊ اﻟدراﺳ ﺔ .ﺗﺻ ﻧف ﻣﺷﺎھدات ھ ذه اﻟﻌﯾﻧ ﺔ ﺣﺳ ب ﻣﺳ ﺗوﯾﺎت ﻛ ل ﻣ ن اﻟﺻ ﻔﺗﯾن ﻣوﺿ ﻊ اﻟدراﺳ ﺔ ﻓ ﻲ ﺟ دول ﻣ زدوج ﯾﺳ ﻣﻰ ﺟدول اﻟﺗواﻓ ق . contingency tableﺑﻔ رض أن A1, A 2 ,..., A kﺗرﻣ ز ﻟﻣﺳ ﺗوﯾﺎت اﻟﺻ ﻔﺔ Aو B1 , B2 ,..., B kﺗرﻣ ز ﻟﻣﺳ ﺗوﯾﺎت اﻟﺻ ﻔﺔ Bﻓ ﺈن ﺟ دول اﻟﺗواﻓ ق ﯾﻛ ون ﻋﻠ ﻰ اﻟﺷ ﻛل اﻟﻣوﺿ ﺢ ﻓ ﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ،ﺣﯾث أن Oijﺗرﻣز ﻟﻌدد اﻟﻣﺷﺎھدات اﻟﺗﻲ ﯾﺗ وﻓر ﻓﯾﮭ ﺎ اﻟﻣﺳ ﺗوى A iﻣ ن اﻟﺻ ﻔﺔ Aو اﻟﻣﺳﺗوى B jﻣن اﻟﺻﻔﺔ Bﺣﯾ ث i 1,2,...,rو . j 1,2,...,cأﯾﺿ ﺎ niﺗرﻣ ز ﻟﻌ دد اﻟﻣﺷ ﺎھدات c
اﻟﺗ ﻲ ﯾﺗ وﻓر ﻓﯾﮭ ﺎ اﻟﻣﺳ ﺗوى A iﻣ ن اﻟﺻ ﻔﺔ Aأي أن . n i. Oijأﯾﺿ ﺎ n. jﺗرﻣ ز ﻟﻌ دد j1
r
اﻟﻣﺷﺎھدات اﻟﺗﻲ ﯾﺗوﻓر ﻓﯾﮭﺎ اﻟﻣﺳﺗوى B jﻣن اﻟﺻﻔﺔ Bأي أن . n j. Oijوﻋﻠﻰ ذﻟك : i 1
r
r
c
c
i 1
j1
n.j ni. Oij . j1 i 1
ﯾﺣﺗوي ﺟدول اﻟﺗواﻓق ﻋﻠﻰ ﺧﺎﻧﺎت ) ﺧﻼﯾﺎ ( ﻋددھﺎ ) (r x cﺧﻠﯾﺔ. اﻟﻣﺟﻣوع n1.
n 2. n r.
… Bc ... O1c
B2
B1
O11 O12 O 21 O 22 ... O 2c O r 2 ... O rc
O r1
n 2.
n1.
nc.
A1 A2 Ar
n ﻓرض اﻟﻌدم واﻟﻔرض اﻟﺑدﯾل ﺳوف ﯾﻛوﻧﺎن ﻋﻠﻰ اﻟﺷﻛل : : H 0اﻟﻣﺗﻐﯾرﯾن ﻣﺳﺗﻘﻠﯾن . : H1اﻟﻣﺗﻐﯾرﯾن ﻏﯾر ﻣﺳﺗﻘﻠﯾن . ﯾﻌﺗﻣد اﺧﺗﺑﺎر ﻣرﺑ ﻊ ﻛ ﺎي ﻟﻼﺳ ﺗﻘﻼل ﻋﻠ ﻰ ﻣﻘﺎرﻧ ﺔ اﻟﺗﻛ رارات اﻟﻣﺷ ﺎھدة ﺑ ﺎﻟﺗﻛرارات اﻟﻣﺗوﻗﻌ ﺔ ﻓﻲ ﻛل ﺧﻠﯾﺔ ﻋﻧدﻣﺎ H 0ﺻﺣﯾﺢ . وﯾﻣﻛن ﺣﺳﺎب اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌﺔ ﻛﺎﻟﺗﺎﻟﻲ : n i. n .j E ij ,i 1, 2,..., r, ; j 1,2,...,c. n ٥٣٦
...
ﺑﺎﻓﺗراض أن H0ﺻﺣﯾﺢ ﻓﺈن :
.
(Oij Eij ) 2 Eij
c
r
2
j1 i 1
ﻗﯾﻣ ﺔ ﻟﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ X2ﺗﻘرﯾﺑ ﺎ ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ 2ﺑ درﺟﺎت ﺣرﯾ ﺔ ) (r 1)(c 1ﺣﯾ ث rﻋ دد
اﻟﺻﻔوف و cﻋدد اﻷﻋﻣدة ﻓﻲ ﺟ دول اﻟﺗواﻓ ق .ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض X2 2 2 ﺣﯾ ث ﺗﺳ ﺗﺧرج ﻣ ن ﺟ دول ﺗوزﯾ ﻊ 2ﻓ ﻲ ﻣﻠﺣ ق ) (٣ﺑ درﺟﺎت ﺣرﯾ ﺔ ) . (r 1)(c 1إذا
وﻗﻌت 2ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض . H0 وﯾﺟب ان ﯾﻛون ﻋدد اﻟﻣﺷﺎھدات ﻓﻰ ﻛل ﺧﻠﯾﺔ ﻻ ﯾﻘل ﻋن .5
ﻣﺛﺎل)(١-٧ ﻟدراﺳﺔ اﻟﻌﻼﻗ ﺔ ﺑ ﯾن ﻟ ون ﺷ ﻌر اﻟ زوج واﻟزوﺟ ﺔ ﻗ ﺎم ﺑﺎﺣ ث ﺑﺈﺧﺗﯾ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م ) 500زوج وزوﺟﺔ( وﺗم ﺳؤاﻟﮭم واﻟﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : اﻟﻣﺟﻣوع 50 150 150 150 500
اﻟزوج ﺑﻧﻰ 20 50 52 78 200
أﺳود 10 50 60 30 150
اﻟزوﺟﺔ أﺻﻔر 10 40 25 25 100
أﺣﻣر 10 10 13 17 50
أﺣﻣر اﺻﻔر اﺳود ﺑﻧﻰ اﻟﻣﺟﻣوع
اﻟﻣطﻠ وب اﺧﺗﺑ ﺎر ﻣ ﺎ إذا ﻛﺎﻧ ت ھﻧ ﺎك ﻋﻼﻗ ﺔ ﺑ ﯾن ﻟ ون ﺷ ﻌر اﻟ زوج واﻟزوﺟ ﺔ أم ﻻ ؟ وذﻟ ك ﻋﻧ د ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05
اﻟﺣــل: : H0ﻟون ﺷﻌر اﻟزوج وﻟون ﺷﻌر اﻟزوﺟﺔ ﻣﺳﺗﻘﻠﯾن. : H1ﻟون ﺷﻌر اﻟزوج وﻟون ﺷﻌر اﻟزوﺟﺔ ﻏﯾر ﻣﺳﺗﻘﻠﯾن. اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌﺔ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ :
٥٣٧
اﻟزوﺟﺔ أﺣﻣر اﺻﻔر اﺳود ﺑﻧﻰ اﻟﻣﺟﻣوع
اﻟزوج أﺣﻣر 5 15 15 15 50
أﺻﻔر 10 30 30 30 100 2
c
r
اﻟﻣﺟﻣوع أﺳود 15 45 45 45 150
ﺑﻧﻰ 20 50 60 150 60 150 60 150 200 500 : ﻣن اﻟﺟدوﻟﯾن اﻟﺳﺎﺑﻘﯾن ﻓﺈن
(Oij Eij )2
j1 i 1
E ij
32.56. 2 16.919 ﻓﺈن 0.05 ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ) ﻓﻲ ﻣﻠﺣ ق2 واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول ﺗوزﯾﻊ.05
اﻟﻣﺣﺳ وﺑﺔ ﺗﻘ ﻊ ﻓ ﻲ 2 وﺑﻣﺎ أنX2 > 16.919 ﻣﻧطﻘﺔ اﻟرﻓض. 3 × 3 = 9 ( ﺑدرﺟﺎت ﺣرﯾﺔ٣ . H0 ﻣﻧطﻘﺔ اﻟرﻓض ﻓﺈﻧﻧﺎ ﻧرﻓض وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ . اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت Off[General::spell1]; <<Statistics`DataManipulation` <<Statistics`NormalDistribution` Options[npmChiSquareTest]={mthd->chiSquare}; npmChiSquareTest[freqList_,opts___]:=Module[{c,r,rVals,cVals ,n,fHat,fHatTable,sqDiff,cs,pVal}, mtype=mthd/. {opts} /. Options[npmChiSquareTest]; c=Length[freqList[[1]]]; r=Length[freqList]; rowTotal[i_]:=Sum[freqList[[i,j]],{j,1,c}]; rVals=Table[rowTotal[i],{i,1,r}]; colTotal[j_]:=Sum[freqList[[i,j]],{i,1,r}]; cVals=Table[colTotal[j],{j,1,c}]; n=Apply[Plus,rVals]; fHat[i_,j_]:=rVals[[i]] cVals[[j]]/n; fHatTable=Table[fHat[i,j],{i,1,r},{j,1,c}]//N; sqDiff=Table[(freqList[[i,j]]fHatTable[[i,j]])^2/fHatTable[[i,j]],{i,1,r},{j,1,c}]; cs=Apply[Plus,Flatten[sqDiff]]; pVal=1-CDF[ChiSquareDistribution[(r-1)(c-1)],cs]; ٥٣٨
Print["Title: Chi Square Test"]; Print["Distribution: ChiSquare[",(r-1)(c-1),"]"]; Print["PValue: ",pVal]; If[mtype==ExpectedFrequencies,Print[TableForm[fHatTable ]]]; lessThanFiveQ[x_]:=If[x<5,True,False]; tfTable=Table[lessThanFiveQ[fHatTable[[i,j]]],{i,1,r},{ j,1,c}]; If[MemberQ[Flatten[tfTable],True]==True,Print[TableForm [fHatTable]]]; ] npmChiSquareTest[{{10,10,10,20},{10,40,50,50},{13,25,60,52}, {17,25,30,78}},mthd->ExpectedFrequencies] Title: Chi Square Test Distribution: ChiSquare[ 9 ] PValue: 0.000159554
5. 15. 15. 15.
10. 30. 30. 30.
15. 45. 45. 45.
20. 60. 60. 60.
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ﺗﺪﺧﻞ ﻣﺤﺘﻮﯾﺎت ﺟﺪول اﻟﺘﻮاﻓﻖ ﻣﻦ ﺧﻼل اﻻﻣﺮ اﻟﺘﺎﻟﻰ npmChiSquareTest[{{10,10,10,20},{10,40,50,50},{13,25,60,52}, {17,25,30,78}},mthd->ExpectedFrequencies] ﺣﯿﺚ ﺗﺪﺧﻞ ﺻﻒ ﺻﻒ واﻟﻤﺨﺮج ﻟﮭﺬا اﻻﻣﺮ ھﻮ Title: Chi Square Test Distribution: ChiSquare[ 9 ] PValue: 0.000159554
5. 15. 15. 15.
10. 30. 30. 30.
15. 45. 45. 45.
20. 60. 60. 60.
9 واﻟﺬى ﯾﻮﺿﺢ ان اﺣﺼﺎء ھﺬا اﻻﺧﺘﺒﺎر ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ﻣﺮﺑﻊ ﻛﺎى ﺑدرﺟﺎت ﺣرﯾﺔ ﻛﻤﺎ ﯾﺤﺘﻮى اﻟﻤﺨﺮج ﻋﻠﻰ ﻗﯿﻤﺔ وھﻰ p-value
PValue:
0.000159554
اﯾﺿ ﺎ ﻣ ن اﻻﻣ ر اﻟﺳ ﺎﺑق ﯾ ﺗم اﻟﺣﺻ ول ﻋﻠ ﻰ. ﻧ رﻓض ﻓ رض اﻟﻌ دم 0.05 وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌﺔ وھﻰ
٥٣٩
15. 45. 45. 45.
20. 60. 60. 60.
5. 15. 15. 15.
10. 30. 30. 30.
إذا ﻛﺎن ﻟﻛل ﻣن اﻟﺻﻔﺗﯾن A , Bﻣﺳﺗوﯾﺎن ﻓﻘط ﻓﺈن اﻟﺟدول اﻟﻧ ﺎﺗﺞ ﯾﺗﻛ ون ﻣ ن ﺻ ﻔﯾن وﻋﻣ ودﯾن )أي أرﺑ ﻊ ﺧﻼﯾ ﺎ ( .ﯾﺳ ﻣﻰ اﻟﺟ دول اﻟﻧ ﺎﺗﺞ ﺟ دول اﻻﻗﺗ ران) .(2×2اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﯾﻣﺛ ل ﺟ دول اﻗﺗران. ﻋدد درﺟﺎت اﻟﺣرﯾﺔ اﻟﺗﻲ ﺗرﺗﺑط ﺑﺟدول اﻻﻗﺗران ﺳوف ﺗﺳﺎوى اﻟواﺣد اﻟﺻﺣﯾﺢ.
اﻟﺻﻔﺔ اﻷوﻟﻰ
اﻟﺻﻔﺔ اﻟﺛﺎﻧﯾﺔ B2
B1
ab
b
a
A1
cd
d
c
A2
n
bd
ﯾﻣﻛن اﺳﺗﺧدام ﺻﯾﻐﺔ ﺑﺳﯾطﺔ ﻟﺣﺳﺎب ﻗﯾﻣﺔ
a c 2
ﻛﺎﻟﺗﺎﻟﻲ :
n(ad bc)2 . )(a c)(b d)(c d)(a b 2
ﻣﺛﺎل)(٢-٧ ﻟدراﺳﺔ اﻟﻌﻼﻗﺔ ﺑﯾن اﻟﻧ وم ﻟ ﯾﻼ ً واﻟﺗ دﺧﯾن اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن 56ﺷﺧﺻ ﺎ ً واﻟﺑﯾﺎﻧ ﺎت ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : اﻟﺗدﺧﯾن اﻟﻧــوم اﻟﻣﺟﻣوع ﻻ
ﻧﻌم
36
16
20
20 56
14 30
6 26
ﻧﻌم ﻻ اﻟﻣﺟﻣوع
اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻣﺎ إذا ﻛﺎﻧت اﻟﻧوم ﻟﯾﻼ ً واﻟﺗدﺧﯾن ﻣﺳﺗﻘﻠﯾن ام ﻻ وذﻟك ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ . 0.05
٥٤٠
اﻟﺣــل: : H 0اﻟﻣﺗﻐﯾرﯾن ﻣﺳﺗﻘﻠﯾن . : H1اﻟﻣﺗﻐﯾرﯾن ﻏﯾر ﻣﺳﺗﻘﻠﯾن . ﻣن اﻟﺟدول اﻟﺳﺎﺑق ﻓﺈن : n(ad bc)2 )(a c)(b d)(c d)(a b 2
56[(20)(14) (16)(6)]2 3.376 . )(26)(30)(20)(36 2 ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05ﻓﺈن 3.843 .05واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول ﺗوزﯾﻊ 2ﻓ ﻲ ﻣﻠﺣ ق ) ٣
( ﺑدرﺟﺎت ﺣرﯾﺔ واﺣدة .ﻣﻧطﻘﺔ اﻟرﻓض . X2 > 3.843وﺑﻣﺎ أن 2ﺗﻘﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟﻘﺑ ول ﻧﻘﺑ ل . H0 ﺳﺑق أن ذﻛرﻧﺎ أن اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌﺔ ﻓﻲ ﻛل ﺧﻠﯾﺔ ﯾﺟ ب أن ﻻ ﯾﻘ ل ﻋ ن 5وإذا ﺣ دث وﻛ ﺎن أﺣد اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌﺔ أﻗل ﻣن 5ﻓﺈﻧﻧﺎ ﻧﻘوم ﺑدﻣﺞ اﻟﺗﻛ رارات .وﻋﻠ ﻰ أي ﺣ ﺎل ﻓ ﺈن ھ ذه اﻟطرﯾﻘ ﺔ ﻻ ﺗﺳﺗﺧدم ﻓﻲ ﺣﺎﻟﺔ ﺟدول اﻻﻗﺗران .وﻗد أﻗﺗرح ) Yates (1934ﺗﺻﺣﯾﺣﺎ ً ﯾﺳﺗﺧدم ﻓﻲ ﺣﺎﻟ ﺔ ﻣ ﺎ إذا ﻛ ﺎن أﺣد اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌ ﺔ أﻗ ل ﻣ ن . 5وﺑﺎﺳ ﺗﺧدام اﻟﺗﺻ ﺣﯾﺢ ﯾﺻ ﺑﺢ ﻗﯾﻣ ﺔ اﻹﺣﺻ ﺎء اﻟ ذي ﯾﻌﺗﻣ د ﻋﻠﯾ ﮫ ﻗراراﻧﺎ ھو : n n(| ad bc | )2 2 2 )(a c)(b d)(c d)(a b ﺑﺗطﺑﯾق ﺗﺻﺣﯾﺢ Yatesﻋﻠﻰ اﻟﺑﯾﺎﻧﺎت ﻓﻲ ﺟدول اﻟﺳﺎﺑق ﻓﺈن ﻗﯾﻣﺔ اﻹﺣﺻﺎء ﺗﺻﺑﺢ : 56 56[ (20)(14) (16)(6) ]2 2 2 )(26)(30)(20)(36 2.427. ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05ﻓﺈﻧﻧﺎ ﻧﺣﺻ ل إﻟ ﻰ ﻧﻔ س اﻻﺳ ﺗﻧﺗﺎج اﻟ ذي ﺣﺻ ﻠﻧﺎ ﻋﻠﯾ ﮫ ﺑ دون ﺗﺻ ﺣﯾﺢ ،أي إﻧﻧﺎ ﻧﻘﺑل . H 0 ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﻧﻔس اﻟﺑرﻧﺎﻣﺞ اﻟﺧﺎص ﺑﺎﻟﻣﺛﺎل ) (١-٧وﺳوف ﻧﻛﺗﻔﻰ ھﻧﺎ ﺑﺗوﺿﯾﺢ اﻟﻣدﺧﻼت واﻟﻣﺧرﺟﺎت . ﺗﺪﺧﻞ ﻣﺤﺘﻮﯾﺎت ﺟﺪول اﻻﻗﺘﺮان ﻣﻦ ﺧﻼل اﻻﻣﺮ اﻟﺘﺎﻟﻰ ]npmChiSquareTest[{{20,16},{6,14}},mthd->ExpectedFrequencies ﺣﯿﺚ ﺗﺪﺧﻞ ﺻﻒ ﺻﻒ واﻟﻤﺨﺮج ﻟﮭﺬا اﻻﻣﺮ ھﻮ Title: Chi Square Test ] Distribution: ChiSquare[ 1 PValue: 0.0661543
19.2857 10.7143 ٥٤١
16.7143 9.28571
واﻟﺬى ﯾﻮﺿﺢ ان اﺣﺼﺎء ھﺬا اﻻﺧﺘﺒﺎر ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ﻣﺮﺑﻊ ﻛﺎى ﻛﻤﺎ ﯾﺤﺘﻮى اﻟﻤﺨﺮج ﻋﻠﻰ ﻗﯿﻤﺔ وھﻰ p-value
0.0661543
PValue:
وﺑﻣ ﺎ ان اﻟﻘﯾﻣ ﺔ اﻛﺑ ر ﻣ ن 0.05ﻧﻘﺑ ل ﻓ رض اﻟﻌ دم .اﯾﺿ ﺎ ﻣ ن اﻻﻣ ر اﻟﺳ ﺎﺑق ﯾ ﺗم اﻟﺣﺻ ول ﻋﻠ ﻰ اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌﺔ وھﻰ 19.2857 10.7143
16.7143 9.28571
) (٢- ٧اﺧﺗﺑﺎر ﻣرﺑﻊ ﻛﺎي ﻟﻠﺗﺟﺎﻧس The Chi-square Test of Homogeneity ﺑﻔرض أن ﻟدﯾﻧﺎ ﻣﺟﺗﻣﻌﺎت ﻋددھﺎ rوﺟﻣﯾﻌﮭﺎ ﻣﺗﻣﺎﺛﻠﺔ ﻣن ﺣﯾث اﻟﺗﺻﻧﯾف وﺑﻔرض أن cھﻲ ﻋدد ﻓﺋﺎت اﻟﺗﺻﻧﯾف ﻓﻲ ﻛل ﻣﺟﺗﻣﻊ .ﺑﻔرض أن Pj|iﯾرﻣز ﻟﻧﺳﺑﺔ ﻣﺷﺎھدات اﻟﻣﺟﺗﻣﻊ رﻗم iاﻟﺗﻲ ﺗﻘﻊ ﻓﻲ اﻟﻔﺋﺔ رﻗم . jﯾﻣﻛن ﺗﻣﺛﯾل ھذه اﻟﻣﺟﺗﻣﻌﺎت ﺑﺎﻟﺟدول اﻟﺗﺎﻟﻰ .
ﻓﺋﺎت اﻟﺗﺻﻧﯾف 2 … j … c P2|1 ... Pj|1 ... Pc|1
1 P1|1
1
P2|2 ... Pj|2 ... Pc|2
P1|2
2
1
P2|i ... Pj|i
P1|i
P2|r ... Pj|r ... Pc|r
P1|r
1
P2 Pj Pc
1 1 1
Pc|i
...
اﻟﻣﺟﺗﻣﻊ
i r
P1
ﻋﻧدﻣﺎ ﺗﻛون اﻟﻧﺳب Pj|iﻣﺟﮭوﻟﺔ ﻓﺈﻧﻧﺎ ﻧرﻏب ﻓﻲ ﻣﻌرﻓﺔ ﻣﺎ إذا ﻛﺎﻧت اﻟﻣﺟﺗﻣﻌﺎت اﻟﺗﻲ ﻋددھﺎ r ﻣﺗﺟﺎﻧﺳﺔ أي إﻧﻧﺎ ﻧرﻏب ﻓﻲ اﺧﺗﺑﺎر ﻓرض اﻟﻌدم : H 0 : Pj|1 Pj|2 .... Pj|r Pj ; j 1, 2,....c.
٥٤٢
ﻹﺟراء اﻻﺧﺗﺑﺎر ﻓﺈﻧﻧﺎ ﻧﺧﺗﺎر ﻋﯾﻧ ﺎت ﻋﺷ واﺋﯾﺔ ﻋ ددھﺎ rواﺣ دة ﻣ ن ﻛ ل ﻣﺟﺗﻣ ﻊ وأﺣﺟﺎﻣﮭ ﺎ ھ ﻲ n1 ,n 2 ,..., n rﻋﻠﻰ أن ﺗﻛون اﻟﻌﯾﻧﺎت اﻟﻌﺷواﺋﯾﺔ ﻣﺳﺗﻘﻠﺔ ﻋن ﺑﻌﺿﮭﺎ اﻟﺑﻌض .ﺑﻔﺣ ص ﻣﺷ ﺎھدات ھ ذه اﻟﻌﯾﻧﺎت ووﺿﻊ ﻛل ﻣﺷﺎھدة ﺣﺳب ﺗﺻﻧﯾﻔﮭﺎ ﻧﺣﺻل ﻋﻠﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ:
… c
… j
1
2
O11 O12 ... O1 j ... O1c
n1 n2
O 21 O 22 ... O 2 j ... O 2 c
ni
Oi1 O i 2 ... Oij
O ic
nr
O r1 O r 2 ... O rj ... O rc
N
… n. j … n.c
c
ﺣﯾث n i Oijو j1
n .2
n .1
r
c
r
i 1
j1
i 1
اﻟﻣﺟﺗﻣﻊ 1 2 i r
اﻟﻣﺟﻣوع
n.j Oijو . n n i n.j
إذا ﻛﺎن ﻓرض اﻟﻌدم ﺻﺣﯾﺢ ﻓﺈن : 2
.
) (Oij Eij Eij
r
c
2 j1 i 1
ھ ﻲ ﻗﯾﻣ ﺔ ﻟﻠﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ X2اﻟ ذي ﺗﻘرﯾﺑ ﺎ ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ 2ﺑ درﺟﺎت ﺣرﯾ ﺔ ). (r 1)(c 1 ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ﻧﺗﺑﻊ اﻟﺧط وات اﻟﺗ ﻲ اﺳ ﺗﺧدﻣﻧﺎھﺎ ﻓ ﻲ اﺧﺗﺑ ﺎر ﻣرﺑ ﻊ ﻛ ﺎي ﻟﻼﺳﺗﻘﻼل . ٥٤٣
ﻣﺛﺎل)(٣-٧ ﻗﺎﻣت ﺷرﻛﺔ ﻟﻠﻣﯾﺎه اﻟﻐﺎزﯾﺔ ﺑدراﺳﺔ ﻟﻣﻌرﻓﺔ ﻣ ﺎ إذا ﻛ ﺎن ھﻧ ﺎك اﺧ ﺗﻼف ﺑ ﯾن ﺷ راﺋﺢ ﻣﺧﺗﻠﻔ ﺔ ﻣ ن اﻟﻣﺟﺗﻣ ﻊ ﻣ ن ﻧﺎﺣﯾ ﺔ اﻟﺗﻔﺿ ﯾل ﻟﺛﻼﺛ ﺔ أﻧ واع ﻣ ن اﻟﻣﺷ روﺑﺎت .اﺳ ﺗﺧدﻣت ﻟﮭ ذه اﻟدراﺳ ﺔ أرﺑ ﻊ ﻋﯾﻧ ﺎت ﻣﺳ ﺗﻘﻠﺔ واﻟﻧﺗ ﺎﺋﺞ ﻣﻌط ﺎة ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ .اﺳ ﺗﺧدم اﺧﺗﺑ ﺎر ﻣرﺑ ﻊ ﻛ ﺎى ﻟﻠﺗﺟ ﺎﻧس ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم : H 0 :اﻟﻣﺟﺗﻣﻌﺎت اﻷرﺑﻌﺔ ﻣﺗﺳﺎوﯾﯾن ﻓﻲ ﺗﻔﺿﯾل اﻟﻣﺷروب. ﺿد اﻟﻔرض اﻟﺑدﯾل : H1 :اﻟﻣﺟﺗﻣﻌﺎت اﻷرﺑﻌﺔ ﻏﯾر ﻣﺗﺳﺎوﯾﯾن ﻓﻲ ﺗﻔﺿﯾل اﻟﻣﺷروب. وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05 اﻟﻌﯾﻧﺎت اﻷرﺑﻌﺔ ﻧوع اﻟﻣﺷروب اﻟﻣﺟﻣوع 100 200 47 300 647
C
B
A
5 20 17 100 142
20 130 25 100 275
75 50 5 100 230
رﺑﺎت اﻟﺑﯾوت رﺟﺎل اﻷﻋﻣﺎل ﻋﻣﺎل طﻠﺑﺔ اﻟﻣﺟﻣوع
اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌﺔ ﺗم ﺣﺳﺎﺑﮭﺎ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ :
اﻟﻣﺟﻣوع 100 200 47.01 300 647.01
C 21.95 43.89 10.32 65.84 142
ﻧوع اﻟﻣﺷروب B 42.50 85.01 19.98 127.51 275
ﻧﺣﺳب ﻗﯾﻣﺔ اﻹﺣﺻﺎء ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ :
٥٤٤
اﻟﻌﯾﻧﺎت اﻷرﺑﻌﺔ A 35.55 71.10 16.71 106.65 230.01
رﺑﺎت اﻟﺑﯾوت رﺟﺎل اﻷﻋﻣﺎل ﻋﻣﺎل طﻠﺑﺔ اﻟﻣﺟﻣوع
(Oij Eij )2 E ij
r
c
2
j1 i 1
149.72. 2 ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ 0.05ﻓ ﺈن 12.592 .05واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ 2ﻓ ﻲ ﻣﻠﺣ ق
) (٣ﻋﻧد درﺟﺎت ﺣرﯾﺔ . r c 3 2 6ﻣﻧطﻘﺔ اﻟرﻓض . X 2 12.592وﺑﻣﺎ أن 2ﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض . H 0 ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﻧﻔس اﻟﺑرﻧﺎﻣﺞ اﻟﺧﺎص ﺑﺎﻟﻣﺛﺎل ) (١-٧وﺳوف ﻧﻛﺗﻔﻰ ھﻧﺎ ﺑﺗوﺿﯾﺢ اﻟﻣدﺧﻼت واﻟﻣﺧرﺟﺎت . ﺗﺪﺧﻞ ﻣﺤﺘﻮﯾﺎت اﻟﺠﺪول ﻣﻦ ﺧﻼل اﻻﻣﺮ اﻟﺘﺎﻟﻰ npmChiSquareTest[{{75,20,5},{50,130,20},{5,25,17},{100,100,1 ]00}},mthd->ExpectedFrequencies ﺣﯿﺚ ﺗﺪﺧﻞ ﺻﻒ ﺻﻒ واﻟﻤﺨﺮج ﻟﮭﺬا اﻻﻣﺮ ھﻮ Title: Chi Square Test ] Distribution: ChiSquare[ 6 PValue: 0.
21.9474 43.8949 10.3153 65.8423
42.5039 85.0077 19.9768 127.512
35.5487 71.0974 16.7079 106.646
واﻟﺬى ﯾﻮﺿﺢ ان اﺣﺼﺎء ھﺬا اﻻﺧﺘﺒﺎر ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ﻣﺮﺑﻊ ﻛﺎى ﺑدرﺟﺎت ﺣرﯾﺔ 6 ﻛﻤﺎ ﯾﺤﺘﻮى اﻟﻤﺨﺮج ﻋﻠﻰ ﻗﯿﻤﺔ وھﻰ p-value
0.
PValue:
وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن 0.05ﻧ رﻓض ﻓ رض اﻟﻌ دم .اﯾﺿ ﺎ ﻣ ن اﻻﻣ ر اﻟﺳ ﺎﺑق ﯾ ﺗم اﻟﺣﺻ ول ﻋﻠ ﻰ اﻟﺗﻛرارات اﻟﻣﺗوﻗﻌﺔ وھﻰ : 21.9474 43.8949 10.3153 65.8423
42.5039 85.0077 19.9768 127.512
35.5487 71.0974 16.7079 106.646
ﻣﺛﺎل)(٤-٧ ٥٤٥
اﺧﺗﯾرت ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن 30ﻓردا ً ﻓﻰ ﺟﺎﻣﻌﺔ ﻣﺎ وﺗم ﺗﺻﻧﯾﻔﮭم ﺗﺑﻌﺎ ً ﻟﻠﺟ ﻧس وﻋ دد ﺳ ﺎﻋﺎت ﻣﺷﺎھدة اﻟﺗﻠﯾﻔزﯾون ﻓﻰ ﺧ ﻼل أﺳ ﺑوع .اﻟﺑﯾﺎﻧ ﺎت اﻟﺗ ﻰ ﺗ م اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ ﻣﻌط ﺎه ﻓ ﻲ اﻟﺟ دول اﻟﺗﺎﻟﻰ : اﻟﻣﺷﺎھدة اﻟﺟﻧس اﻧﺛﻰ
ذﻛر
9 7
5 9
اﻛﺛر ﻣن 25ﺳﺎﻋﮫ أﻗل ﻣن 25ﺳﺎﻋﮫ
اﺳ ﺗﺧدم اﺧﺗﺑ ﺎر ﻣرﺑ ﻊ ﻛ ﺎى ﻟﻠﺗﺟ ﺎﻧس ﻻﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم : H 0 :اﻟﻣﺟﺗﻣﻌ ﯾن ﻣﺗﺳ ﺎوﯾﯾن ﻓ ﻲ اﻟﻣﺷﺎھدة ﺿد اﻟﻔرض اﻟﺑدﯾل : H1 :اﻟﻣﺟﺗﻣﻌﯾن ﻏﯾر ﻣﺗﺳﺎوﯾﯾن ﻓﻲ اﻟﻣﺷﺎھدة وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05 ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . ;]Off[General::spell1 `<<Statistics`NormalDistribution ;}Options[npmChiSquare2x2Test]={mthd->uncorrected npmChiSquare2x2Test[fqlist_,opts___]:=Module[{r,c,n,prod,p1H at,p2Hat,fhat,det,fHatTab,minfHat,p,f}, mtype=mthd/. {opts} /. ;]Options[npmChiSquare2x2Test ;]]f11=fqlist[[1,1 ;]]f12=fqlist[[1,2 ;]]f21=fqlist[[2,1 ;]]f22=fqlist[[2,2 ;r[1]=f11+f12 ;r[2]=f21+f22 ;c[1]=f11+f21 ;c[2]=f12+f22 ;n=f11+f12+f21+f22 ;]prod=r[1]*r[2]*c[1]*c[2 ;p1Hat=f11/c[1]//N ;p2Hat=f12/c[2]//N ;fhat[i_,j_]:=r[i]*c[j]/n ;det=f11*f22-f12*f21 ٥٤٦
fHatTab=Table[fhat[i,j]//N,{i,1,2},{j,1,2}]//Flatten; minfHat=Min[fHatTab]; findMult[f_,minfHat_]:=Module[{}, k=1; While[0.5*k<Abs[f-minfHat],k=k+1]; 0.5*(k-1)]; subloop[x_,y_,z_,w_,minfHat_]:=Module[{p,d}, p=Position[fHatTab,minfHat]; f={x,y,z,w}[[p[[1,1]]]]; If[f<=2*minfHat,d=findMult[f,minfHat],d=Abs[fminfHat]-0.5]; n^3*d^2/prod]; If[mtype==uncorrected,cs=n*(det^2)/prod]; If[mtype==yates,cs=n*(Abs[det]-n/2)^2/prod]; If[mtype==haber,cs=subloop[f11,f12,f21,f22,minfHat]]; twotail=1-CDF[ChiSquareDistribution[1],cs]//N; If[mtype==uncorrected,corr=None]; If[mtype==yates,corr=Yates]; If[mtype==haber,corr=Haber]; Print["Title: Chi Square Test"]; Print["Distribution: Chi Square"]; Print["Sample Proportions: ",p1Hat,", ", p2Hat]; Print["Correction: ",corr]; Print["Two-Sided P-Value: ",twotail]; If[mtype==ExpectedFrequencies,Print["Expected Frequencies: ",Table[fhat[i,j]//N,{i,1,2},{j,1,2}]//TableForm]]; If[minfHat<5,Print["Expected Frequencies: ",Table[fhat[i,j]//N,{i,1,2},{j,1,2}]//TableForm]]] npmChiSquare2x2Test[{{5,9},{9,7}}] Title: Chi Square Test Distribution: Chi Square Sample Proportions: 0.357143 , 0.5625 Correction: None Two-Sided P-Value:
0.260679
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ﺗﺪﺧﻞ ﻣﺤﺘﻮﯾﺎت اﻟﺠﺪول ﻣﻦ ﺧﻼل اﻻﻣﺮ اﻟﺘﺎﻟﻰ npmChiSquare2x2Test[{{5,9},{9,7}}] ﺣﯿﺚ ﺗﺪﺧﻞ ﺻﻒ ﺻﻒ واﻟﻤﺨﺮج ﻟﮭﺬا اﻻﻣﺮ ھﻮ Title: Chi Square Test Distribution: Chi Square Sample Proportions: 0.357143 , Correction: None Two-Sided P-Value: 0.260679 ٥٤٧
0.5625
واﻟﺬى ﯾﻮﺿﺢ ان اﺣﺼﺎء ھﺬا اﻻﺧﺘﺒﺎر ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ﻣﺮﺑﻊ ﻛﺎى ﻛﻤﺎ ﯾﺤﺘﻮى اﻟﻤﺨﺮج ﻋﻠﻰ ﻗﯿﻤﺔ وھﻰ p-value
0.260679
Two-Sided P-Value:
وذﻟك ﻻﺧﺗﺑ ﺎر ﻣ ن ﺟ ﺎﻧﺑﯾن وﺑﻣ ﺎ ان اﻟﻘﯾﻣ ﺔ اﻛﺑ ر ﻣ ن 0.05ﻧﻘﺑ ل ﻓ رض اﻟﻌ دم .اﻳﻀـﺎ ﻳﺤﺘـﻮى
اﻟﻤﺨﺮج ﻋﻠﻰ ﻧﺴﺒﺔ اﻟﺬﻛﻮر اﻟـﺬﻳﻦ ﻳﺸـﺎﻫﺪون اﻟﺘﻠﻔﺰﻳـﻮن اﻛﺛ ر ﻣ ن 25ﺳ ﺎﻋﮫ واﻳﻀـﺎ ﻧﺴـﺒﺔ اﻻﻧـﺎث اﻟـﺬﻳﻦ ﻳﺸـﺎﻫﺪون
اﻟﺘﻠﻔﺰﻳﻮن اﻛﺛر ﻣن 25ﺳﺎﻋﮫ و ﻫﻤﺎ ﻋﻠﻰ اﻟﺘﻮاﻟﻰ
0.5625
0.357143 ,
Sample Proportions:
) (٣ -٧اﺧﺗﺑﺎر اﻹﺷﺎرة ﻟﻌﯾﻧﺔ واﺣدة The One – sample Sign Test ﯾﺳﺗﺧدم اﺧﺗﺑﺎر اﻹﺷﺎرة ﻛﺑدﯾل ﻻﺧﺗﺑﺎر tاﻟﺧﺎص ﺑﻣﺗوﺳط ﻣﺟﺗﻣﻊ وذﻟك ﻋﻧد ﻋدم اﻟﺗﺣﻘ ق ﻣ ن أن اﻟﻣﺟﺗﻣﻊ اﻟذي اﺧﺗﺑرت ﻣﻧﺔ اﻟﻌﯾﻧﺔ ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً وﺣﺟم اﻟﻌﯾﻧﺔ أﻗل ﻣن . 30 ﺗﺗﻛ ون اﻟﺑﯾﺎﻧ ﺎت اﻟﻼزﻣ ﺔ ﻟﻠﺗﺣﻠﯾ ل ﻣ ن ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م nﻣ ن اﻟﻣﺷ ﺎھدات x1, x 2 ,..., x nواﻟﻣﺧﺗﺎرة ﻣن ﻣﺟﺗﻣﻊ ﻣﺗﺻل وﺳ ﯾطﮫ ﻣﺟﮭ ول .ﻓ ﻲ اﻟﺣﻘﯾﻘ ﺔ إذا ﻛ ﺎن اﻟﺗوزﯾ ﻊ ﻣﺗﻣﺎﺛ ل ﻓﺈن اﻟوﺳﯾط ﯾﺳﺎوى اﻟوﺳط اﻟﺣﺳﺎﺑﻲ ﻟﻠﻣﺟﺗﻣﻊ وﯾﻣﻛن اﺳﺗﺧدام اﺧﺗﺑﺎر اﻹﺷﺎرة ﻛﺎﺧﺗﺑ ﺎر ﻟﻠﻣﺗوﺳ ط . ﻓرض اﻟﻌدم واﻟﻔرض اﻟﺑدﯾل ﺳوف ﯾﻛوﻧﺎن ﻋﻠﻰ اﻟﺷﻛل : H0 : M M0 , H0 : M M0. ﻹﺟ راء اﻻﺧﺗﺑ ﺎر ﻧﺣﺳ ب اﻟﻘﯾﻣ ﺔ kواﻟﺗ ﻲ ﺗﻣﺛ ل ﻋ دد اﻹﺷ ﺎرات اﻟﺳ ﺎﻟﺑﺔ ﻟﻠﻔ روق (x i M 0 ),i 1, 2,..., nوإذا وﺟ دت ﻣﺷ ﺎھدة ﺗﺳ ﺎوى اﻟوﺳ ﯾط ﻧﮭﻣﻠﮭ ﺎ وﻻ ﻧﺄﺧ ذھﺎ ﻓ ﻲ اﻻﻋﺗﺑ ﺎر . ﺑﻔ رض أن H 0ﺻ ﺣﯾﺢ ﻓ ﺈن kﺗﻣﺛ ل ﻗﯾﻣ ﺔ ﻟﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ ) إﺣﺻ ﺎء ( Kﻟ ﮫ ﺗوزﯾ ﻊ ذي اﻟﺣ دﯾن ﺑﻣﻌﺎﻟم p 0.5 n,ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ﻧرﻓض H 0إذا ﻛﺎن :
P(K k n,0.5) . . ﻟﻠﻔرض اﻟﺑدﯾل H 0 :M M 0ﻧرﻓض H 0إذا ﻛﺎن : P(K k n,0.5) . . ﺣﯾث kﺗﻣﺛل ﻋدد اﻹﺷﺎرات اﻟﻣوﺟﺑﺔ. ﻟﻠﻔرض اﻟﺑدﯾل H 0 :M M 0ﻧرﻓض H 0إذا ﻛﺎن : . 2 ﺣﯾث kﺗﻣﺛل ﻋدد اﻹﺷﺎرات اﻟﻣوﺟﺑ ﺔ أو اﻟﺳ ﺎﻟﺑﺔ أﯾﮭﻣ ﺎ اﻗ ل ﻟﻠﻔ روق (x i M 0 ) , i 1, 2,..., n . P(K k n,0.5)
ﻣﺛﺎل)(٥-٧ ٥٤٨
ﯾﻌط ﻰ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ اﻟ دﺧول اﻟﺳ ﻧوﯾﺔ ) ﺑ ﺎﻵﻻف اﻟ دوﻻرات ( ﻟﻌﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن 21 ﻋﺿ و ھﯾﺋ ﺔ ﺗ درﯾس ﺑﺈﺣ دى اﻟﺟﺎﻣﻌ ﺎت واﻟﻣطﻠ وب اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم H 0 : M 25.1ﺿ د اﻟﻔ رض اﻟﺑ دﯾل H1 : M 25.1 :ﺑﺎﺳ ﺗﺧدام ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ . 0.05 25.1
26.7
25.2
24.1
23.6
22.2
19.9
19.4
14.0
12.9
11.1
50.6
50.5
40.1
38.9
34.8
33.9
32.2
30.7
29.6
28.1
اﻟﺣــل: ﻟﺣﺳﺎب ﻋدد اﻹﺷﺎرات اﻟﺳﺎﻟﺑﺔ kﻧﺣدد إﺷﺎرات اﻟﻔروق ﺑ ﯾن ﻣﺷ ﺎھدات اﻟﻌﯾﻧ ﺔ واﻟوﺳ ﯾط ﺣﯾ ث وﺟ دت ﻛﺎﻵﺗﻲ : --------++0++++++++++ وﺣﯾث أن ﻟدﯾﻧﺎ ﻣﺷﺎھدة ﺗﺳﺎوى ﺻﻔر وﺑﻌد اﺳﺗﺑﻌﺎدھﺎ ﯾﺻﺑﺢ ﺣﺟم اﻟﻌﯾﻧﺔ ھو 20ﻣﺷﺎھدة .أي أن ﻋدد اﻹﺷﺎرات اﻟﺳﺎﻟﺑﺔ . k 8ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05ﻧرﻓض H 0إذا ﻛﺎﻧت :
P(K k n,0.5) . ﻧﺣﺳب : 8
P(K 8 20,0.5) b(x;20,0.5) 0.252 , x 0
ﺣﯾث 0.252ﺗﺳﺗﺧرج ﻣن ﺟدول ذي اﻟﺣدﯾن ﻓﻲ ﻣﻠﺣق ) (٧ﻋﻧد n 20و . p 0.5ﺑﻣﺎ أن 0.252أﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0 ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . ;]Off[General::spell1 `<<Statistics`DiscreteDistributions f[y_,m0_]:=Module[{}, ]]]If[y<m0,-1,If[y>m0,1,0 ;}Options[npmSignTest]={sided->2 npmSignTest[data_,m0_,opts___]:=Module[{m,n,signs,s,equalNum ber,tail,med,pval}, ;]m=Length[data ;]signs=Map[f[#,m0]&,data ;]s=Count[signs,1 ;]equalNumber=Count[signs,0 ;n=m-equalNumber ;]tail=sided/. {opts} /. Options[npmSignTest If[s<=n/2,pval=N[CDF[BinomialDistribution[n,1/2],s]],pv ;]]]al=1-N[CDF[BinomialDistribution[n,1/2],s ;]If[tail==2,pval=2*pval ٥٤٩
med=Median[data]//N; Print["Title: Sign Test"]; Print["Estimate: Sample Median -> ",med]; Print["Test Statistic: Number of Pluses is ",s]; Print["Distribution: BinomialDistribution[",n,",1/2]"]; Print[tail," - sided p-value -> ",pval]];
grades={11.1,12.9,14,19.4,19.9,22.2,23.6,24.1,25.2,26.7,25.1 ,28.1,29.6,30.7,32.2,33.9,34.8,38.9,40.1,50.5,50.6}; npmSignTest[grades,25.1] Title: Sign Test Estimate: Sample Median -> 26.7 Test Statistic: Number of Pluses is 12 Distribution: BinomialDistribution[ 20 ,1/2] 2 - sided p-value -> 0.263176 npmSignTest[grades,25.1,sided->1] Title: Sign Test Estimate: Sample Median -> 26.7 Test Statistic: Number of Pluses is 12 Distribution: BinomialDistribution[ 20 ,1/2] 1
- sided p-value ->
0.131588
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت: اوﻻ
وھﻰgrades اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎه grades={11.1,12.9,14,19.4,19.9,22.2,23.6,24.1,25.2,26.7,25.1 ,28.1,29.6,30.7,32.2,33.9,34.8,38.9,40.1,50.5,50.6} (٥-٧) وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﺨﺎﺻﺔ ﺑﺎﻟﻤﺜﺎل : ﺛﺎﻧﯾﺎ اﻟﻣﺧرﺟﺎت ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ npmSignTest[grades,25.1]
واﻟﻤﺨﺮج ھﻮ Title: Sign Test Estimate: Sample Median -> 26.7 Test Statistic: Number of Pluses is 12 Distribution: BinomialDistribution[ 20 ,1/2] 2 - sided p-value -> 0.263176
ﺣﯿﺚ اﻟوﺳﯾط ﻟﻠﻌﯾﻧﺔ ھو Estimate: Sample Median ->
26.7
وﻋدد اﻻﺷﺎرات اﻟﻣوﺟﺑﺔ ھو Test Statistic: Number of Pluses is ٥٥٠
12
واﻟﺗﻰ ﺗﻌﻧﻰ ان ﻋدد اﻻﺷﺎرات اﻟﺳﺎﻟﺑﺔ ھو 8واﻟﺗﻰ ﺣﺻﻠن ﻋﻠﯾﮭﺎ ﻋﻧد ﺣل اﻟﻣﺛﺎل ﯾدوﯾﺎ وذﻟك ﺑﻌد اﺳﺗﺑﻌﺎد ﻣﺷﺎھدة واﺻﺑﺢ ﺣﺟم اﻟﻌﯾﻧﺔ ھو 20ﻣﺷﺎھدة. وﻗﯾﻣﺔ p-valueھﻰ 0.263176
>- sided p-value -
2
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0اﻣﺎ إذا ﻛﺎن اﻻﺧﺗﺑﺎر اﻟﻌدم H 0 : M 25.1ﺿد اﻟﻔرض اﻟﺑدﯾل ﻣن ﺟﺎﻧب واﺣد اى اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض H1 : M 25.1 : ﻓﺈﻧﻧﺎ ﻧﺳﺗﺧدم اﻻﻣر ]npmSignTest[grades,25.1,sided->1
واﻟﻤﺨﺮج ھﻮ Title: Sign Test Estimate: Sample Median -> 26.7 Test Statistic: Number of Pluses is 12 ]Distribution: BinomialDistribution[ 20 ,1/2 0.131588
>- sided p-value -
1
وﻗﯾﻣﺔ p-valueھﻰ 0.131588
>- sided p-value -
1
وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0وﻣﻣﺎ ﯾﺟد اﻻﺷﺎرة إﻟﯾﮫ اﻧﮫ إذا ﻛﺎن اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم H 0 : M 25.1ﺿد اﻟﻔرض اﻟﺑدﯾل H1 : M 25.1 :ﻓﺈن ﻗﯾﻣﺔ p -valueﺳوف ﺗﻛون 1- pوذﻟك ﻻن اﻟوﺳﯾط ﻟﻠﻌﯾﻧﺔ اﻛﺑر ﻣن . 25.1
) (٤ -٧اﺧﺗﺑﺎر إﺷﺎرة اﻟرﺗب The Signed – ranks Test ﯾﻌﺗﻣد اﺧﺗﺑﺎر اﻹﺷﺎرة ﻟﻌﯾﻧﺔ واﺣ دة ﻋﻠ ﻰ اﻟﻔ رق ﺑ ﯾن ﻗ ﯾم ﻣﺷ ﺎھدات اﻟﻌﯾﻧ ﺔ واﻟوﺳ ﯾط اﻟﻣﻔﺗ رض ﻣ ﻊ إﻏﻔ ﺎل ﻗﯾﻣ ﺔ اﻟﻔ روق واﻟ ذي ﯾ ؤدى إﻟ ﻰ أﺿ ﻌﺎف اﻻﺧﺗﺑ ﺎر .ﻟ ذﻟك أﻗﺗ رح اﻟﻌ ﺎﻟم Wilcoxon ﺗﺑﺎرا ً ﻻﻣﻌﻠﻣﯾﺎ ً آﺧ ر أطﻠ ق ﻋﻠﯾ ﮫ أﺳ ﻣﮫ ﯾﻌﺗﻣ د ﻋﻠ ﻰ إﺷ ﺎرة اﻟﻔ رق وﻗﯾﻣ ﺔ اﻟﻔ رق ﺣﯾ ث ﯾﻌط ﻰ وزﻧ ﺎ ً إﺧ أﻛﺑر ﻟﻺﺷﺎرة اﻟﺗﻲ ﺗﺻﺎﺣب ﻓرﻗﺎ ً ﻛﺑﯾرا ً واﻟﻌﻛس ﺻﺣﯾﺢ .ﯾﺷﺗرك ھذا اﻻﺧﺗﺑﺎر ﻣﻊ اﺧﺗﺑ ﺎر اﻹﺷ ﺎرة ﻓ ﻲ أﻧﮫ ﯾﻣﻛن أن ﯾﺳﺗﺧدم ﻛﺎﺧﺗﺑﺎر ﻟﻠﻣﺗوﺳط ﻋﻧدﻣﺎ ﯾﻛون اﻟﻣﺟﺗﻣﻊ ﻣوﺿﻊ اﻟدراﺳﺔ ﻣﺗﻣﺎﺛل . ﺗﺗﻛون اﻟﺑﯾﺎﻧﺎت اﻟﻼزﻣ ﺔ ﻟﻠﺗﺣﻠﯾ ل ﻣ ن ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م nﻣ ن اﻟﻣﺷ ﺎھدات اﻟﻣﺳ ﺗﻘﻠﺔ x1, x 2 ,..., x nواﻟﻣﺧﺗ ﺎرة ﻣ ن ﻣﺟﺗﻣ ﻊ ﻣﺗﺻ ل .ﻓ رض اﻟﻌ دم واﻟﻔ رض اﻟﺑ دﯾل ﺳ وف ﯾﻛوﻧ ﺎن ﻋﻠ ﻰ اﻟﺷﻛل : H0 : M M0 , H1 : M M 0 . ﻟﺣﺳﺎب ﻗﯾﻣﺔ اﻹﺣﺻﺎء اﻟذي ﯾﻌﺗﻣد ﻋﻠﯾﮫ ﻗرارﻧﺎ ،ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ، ﻧﺗﺑﻊ اﻟﺧطوات اﻟﺗﺎﻟﯾﺔ : ٥٥١
)أ(
ﻧﺣدد إﺷﺎرة وﻗﯾﻣﺔ اﻟﻔروق . Di (x i M 0 ) ; i 1, 2,..., n
)ب(
إذا ﻛﺎن اﻟﻔرق ﻣﺳﺎوﯾﺎ ً ﻟﻠﺻﻔر ﺗﺳ ﺗﺑﻌد اﻟﻣﺷ ﺎھدة ﻣ ن اﻟﺗﺣﻠﯾ ل وﯾﻌ دل ﺣﺟ م اﻟﻌﯾﻧ ﺔ ﺑط رح ﻋ دد ﯾﺳﺎوى ﻋدد اﻟﻣﺷﺎھدات اﻟﺗﻲ ﺗﺳﺎوي اﻟوﺳﯾط .
)ج(
ﻧﮭﻣل إﺷﺎرة اﻟﻔروق ﻣؤﻗﺗﺎ ً وﻧرﺗب اﻟﻔروق ﺗﺻﺎﻋدﯾﺎ ً ﺑﻣﻌﻧﻰ آﺧ ر ﻧﻌط ﻰ رﺗ ب ﻟﻠﻘ ﯾم Diأي اﻟﻘ ﯾم اﻟﻣطﻠﻘ ﺔ ﻟﻠﻔ روق وإذا ﻛ ﺎن ھﻧ ﺎك ﻓ روق ﻣﺗﺳ ﺎوﯾﺔ ،أي ﺗ داﺧﻼت ، tiesﻓﺈﻧﻧ ﺎ ﻧﻌطﯾﮭ ﺎ ﻣﺗوﺳط اﻟرﺗب اﻟﺗﻲ ﻛﺎﻧت ﺳﺗﺄﺧذھﺎ ﻟو أﻧﮭﺎ ﻛﺎﻧت ﻣﺧﺗﻠﻔﺔ .
)د(
ﺗﻌ ﺎد اﻹﺷ ﺎرات إﻟ ﻰ اﻟرﺗ ب اﻟﻣﻧ ﺎظرة وﻧوﺟ د ﻣﺟﻣ وع رﺗ ب اﻹﺷ ﺎرات اﻟﺳ ﺎﻟﺑﺔ وﻧرﻣ ز ﻟ ﮫ ﺑﺎﻟرﻣز t وﻧوﺟ د ﻣﺟﻣ وع رﺗ ب اﻹﺷ ﺎرات اﻟﻣوﺟﺑ ﺔ وﻧرﻣ ز ﻟ ﮫ ﺑ ﺎﻟرﻣز t وﯾﻣﻛ ن إﯾﺟ ﺎد ﻛ ل ﻣﻧﮭﻣﺎ ﺑدﻻﻟﺔ اﻵﺧر ﻣن اﻟﻌﻼﻗﺔ :
)n(n 1 t. 2
t
ﻧﺣﺳب ﻣﺟﻣوع اﻟرﺗب اﻟﺳﺎﻟﺑﺔ أو ﻣﺟﻣوع اﻟرﺗب اﻟﻣوﺟﺑﺔ أﯾﮭﻣﺎ اﻗل وﻧرﻣز ﻟﮫ ﺑﺎﻟرﻣز tأي أن: t min(t , t ) .
واﻟﺗ ﻲ ﺗﻣﺛ ل ﻗﯾﻣ ﺔ ﻹﺣﺻ ﺎء .ﯾﺳ ﺗﺧدم اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ ق ) (٨ﻻﺳ ﺗﺧراج اﻟﻘ ﯾم اﻟﺣرﺟ ﺔ ﻟﮭ ذا اﻹﺣﺻﺎء ﻟﻌﯾﻧﺎت ﻣن اﻟﺣﺟم 3وﺣﺗﻰ اﻟﺣﺟم 25وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب أو ﺟ ﺎﻧﺑﯾن .ﺳ ﻧرﻣز ﻟﻠﻘ ﯾم اﻟﺟدوﻟﯾﺔ ﺑﺎﻟرﻣز ) d(n, ) , d(n, ﻋﻧدﻣﺎ ﯾﻛون اﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧ ب أو ﺟ ﺎﻧﺑﯾن ﻋﻠ ﻰ اﻟﺗ واﻟﻲ. ﻟﻠﺑ دﯾل H 0 : M M 0و ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ﻧ رﻓض H 0إذا ﻛ ﺎن ) . t d(n, ﻟﻠﻔ رض اﻟﺑدﯾل H 0 : M M 0اھﺗﻣﺎﻣﻧ ﺎ ﺳ وف ﯾﻛ ون ﻓ ﻲ ﻣﺟﻣ وع اﻟرﺗ ب اﻟﺳ ﺎﻟﺑﺔ . t ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ﻧ رﻓض H0إذا ﻛ ﺎن ) . t d(n, ﻟﻠﻔ رض اﻟﺑ دﯾل H 0 : M M 0اھﺗﻣﺎﻣﻧ ﺎ ﺳ وف ﯾﻛون ﻓﻲ ﻣﺟﻣوع اﻟرﺗب اﻟﻣوﺟﺑﺔ . t ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ﻧرﻓض H 0إذا ﻛ ﺎن )t d(n, . ٥٥٢
ﻣﺜﺎل)(٦-٧
اﺧﺗﯾرت ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن 15ﺷﺧﺻﺎ ً ﻣﻣن ﯾﻣﺗﻠﻛون ﻣﻧزﻻ ً ﻓ ﻲ ﻣدﯾﻧ ﺔ ﻣ ﺎ .وﻗ د ﺗ م ﺳ ؤاﻟﮭم ﻋن ﻣﻘدار اﻟزﯾﺎدة ﻓﻲ ﻓﺎﺗورة اﻟﺿراﺋب اﻟﺳ ﻧوﯾﺔ ﺑﺎﻟ دوﻻر .اﻟﺑﯾﺎﻧ ﺎت اﻟﺗ ﻲ ﺗ م اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ ﻣﻌط ﺎة ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ اﻟﻣطﻠ وب اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم H1 : M 500ﺿ د اﻟﻔ رض اﻟﺑدﯾل H1 : M 500ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05 Diﻣﻀﺮوﺑﺎً ﰲ إﺷﺎرة Di
رﺗﺐ Di
)Di ( xi 500
ﻣﻘﺪار اﻟﺰﻳﺎدة
-8 +13 -14 -11 +4 --6 -3 +2 -5 -12 +7 -1 -10 +9
8 13 14 11 4 ﻳﺴﺘﺒﻌﺪ 6 3 2 5 12 7 1 10 9
-5.6 +10.8 -12.5 -6.8 +2.6 0 -4.1 -1.8 +1.6 -2.7 -8.0 +4.3 -0.8 -6.5 +5.8
494.4 510.8 487.5 493.2 502.6 500.0 495.9 498.2 501.6 497.3 492.0 504.3 499.2 493.5 505.8
اﻟﺣــل: ﻣن ا ﻟﺟدول اﻟﺳﺎﺑق وﻣن اﻟﻌﻣود اﻷﺧﯾر ) ﻋﻠﻰ اﻟﯾﻣﯾن ( ﻧﺣﺳب ﻣﺟﻣوع اﻟرﺗب اﻟﺳﺎﻟﺑﺔ
ﻧﺣﺻل ﻋﻠﻰ اﻟﻘﯾم اﻟﺳﺎﻟﺑﺔ واﻟﻣوﺟﺑﺔ ﻛﺎﻟﺗﺎﻟﻲ : t 8 14 11 6 3 5 12 1 10 70, t 13 4 2 7 9 35. ٥٥٣
. n 14 وﺣﯾث أن ھﻧﺎك ﻓرق ﻣﺳﺎوﯾﺎ ً ﻟﻠﺻﻔر ﻓﺈﻧﻧﺎ ﻧﮭﻣﻠﮫ وﻧﻌدل ﺣﺟم اﻟﻌﯾﻧﺔ ﺗﺑﻌﺎ ً ﻟذﻟك أي أن t min(t , t ) 35 . ﻣ نn 14 وﻋﻧ د 0.049 ﺣﯾ ثd(14,0.049) 22 ﻓ ﺈن 0.05 ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ . H 0 ﻧﻘﺑل22 أﻛﺑر ﻣنt 35 ( وﺑﻣﺎ أن٨ ) اﻟﺟدول ﻓﻲ ﻣﻠﺣق ( ﻟﺗﻘ دﯾر اﻟﻣﻌﻧوﯾ ﺔ٨) ﻓﺈﻧﻧ ﺎ ﻻ ﻧﺳ ﺗطﯾﻊ اﺳ ﺗﺧدام اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ ق، 25 أﻛﺑ ر ﻣ نn ﻋﻧ دﻣﺎ ﺗﻛ ون .ﻟﻠﻘﯾﻣﺔ اﻟﻣﺣﺳوﺑﺔ ﻟﻺﺣﺻﺎء : ﻟﻠﻌﯾﻧﺎت اﻟﻛﺑﯾرة ﻓﺈن n(n 1) t 4 t* . n(n 1)(2n 1) 24 ﻟﻼﺧﺗﺑ ﺎرات ﻣ ن ﺟﺎﻧ ب واﺣ د. اﻟذي ﺗﻘرﯾﺑﺎ ﯾﺗﺑﻊ اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲT* ﺗﻣﺛل ﻗﯾﻣﺔ ﻟﻺﺣﺻﺎء . ﺣﺳب اﻟﻔرض اﻟﻣﺳﺗﺧدمt أوt ﺑﺎﻟﻘﯾﻣﺔt * ﻓﻲ ﺻﯾﻐﺔt ﻓﺈﻧﮫ ﯾﻣﻛن اﺳﺗﺑدال وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ . اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت Off[General::spell1]; <<Statistics`DataManipulation` <<Statistics`NormalDistribution` f[y_,m0_]:=Module[{}, If[y<m0,-1,If[y>m0,1,0]]] d[y_,m0_]:=y-m0 Clear[findTieNumber] findTieNumber[x_,list3_]:=Module[{m,list2}, m=1; list2=Frequencies[list3]; While[!MatchQ[x,list2[[m,2]]],m=m+1]; list2[[m,1]]] Clear[rank] rank[j_,xlist_]:=Module[{k,flag,xsort,num2}, k=1; flag=0; xsort=Sort[xlist]; While[xlist[[j]]!=xsort[[k]],k=k+1]; num2=findTieNumber[xlist[[j]],xlist]; Sum[val,{val,k,k+num2-1}]/num2//N] tsig[list1_]:=Module[{tsum,fcount,n}, n=Length[list1]; fcount=Frequencies[list1]; Sum[fcount[[j,1]]^3fcount[[j,1]],{j,1,Length[fcount]}]] removeZeros[x_]:=If[x!=0,AppendTo[newlist,x]] greaterQ[x_]:=If[x>0,AppendTo[bigger,x]] ٥٥٤
largeSampleZ[n_,t_,ts_]:=Module[{numer,one}, numer=t-n(n+1)/4; one=n(n+1)(2n+1)/24; numer/ Sqrt[one-ts/48]//N] largeSamplePValue[n_,t_,ts_]:=Module[{z}, z=largeSampleZ[n,t,ts]; CDF[NormalDistribution[0,1],z]//N] t-probability Clear[n,p] n[k_,n1_]:=1 /; k===0 && n1===0 n[k_,n1_]:=0 /; k!=0 && n1===0 n[k_,n1_]:=0 /; k<0 n[k_,n1_]:=0 /; k>n1(n1+1)/2 n[k_,n1_]:=n[k,n1]=n[k,n1-1]+n[k-n1,n1-1] p[t_,n1_]:=Sum[n[k,n1]/(2^n1),{k,0,t}]//N Body of Program Options[npmSignedRanksTest]={sided->2};
٥٥٥
npmSignedRanksTestdata_, m0_, opts___ : Moduledlist, addNonzeros, total, nonZeroList, absList, n1, absRank, plusRanks, tPlus, tsum, pval, tail, med, dlist Mapd#, m0 &, data; newlist 0; addNonzeros MapremoveZeros# &, dlist; total LengthaddNonzeros; nonZeroList DropaddNonzerostotal, 1; n1 LengthnonZeroList; absList Map Abs, nonZeroList; absRank Tablerankk, absList, k, 1, n1; signedRanks TableSignnonZeroListj absRankj, j, 1, n1; bigger 0; MapgreaterQ, signedRanks; plusRanks Dropbigger, 1; tPlus ApplyPlus, plusRanks; tNeg n1n1 1 2 tPlus; t MintPlus, tNeg; intGreater Ceilingt; intLess Floort; tsum tsigabsList; Ifn1 30, pval largeSamplePValuen1, t, tsum, pval pintLess, n1 pintGreater, n1 2; tail sided . opts . OptionsnpmSignedRanksTest; Iftail 2, pval 2 pval; med Mediandata N; Print ٥٥٦ Test"; "Title: Wilcoxon SignedRanks Print"Sample Median ", med; Print"Test Statistics: T ", tPlus, " T ", tNeg, " T ", t; Printtail, " sided PValue ", pval
grades={494.4,510.8,487.5,493.2,502.6,500,495.9,498.2,501.6, ;}497.3,492,504.3,499.2,493.5,505.8 ]npmSignedRanksTest[grades,500 Title: Wilcoxon Signed-Ranks Test Sample Median -> 498.2 Test Statistics: T 35. T 70. T 35. 2 - sided PValue -> 0.295776
وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ : اوﻻ :اﻟﻣدﺧﻼت
اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎه gradesوھﻰ grades={494.4,510.8,487.5,493.2,502.6,500,495.9,498.2,501.6, }497.3,492,504.3,499.2,493.5,505.8 وﺗﺤﺘﻮى ﻋﻠﻰ اﻟﺒﯿﺎﻧﺎت اﻟﺨﺎﺻﺔ ﺑﺎﻟﻤﺜﺎل )(٦-٧ ﺛﺎﻧﯾﺎ اﻟﻣﺧرﺟﺎت : ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]npmSignedRanksTest[grades,500
واﻟﻤﺨﺮج ھﻮ T 35.
Title: Wilcoxon Signed-Ranks Test Sample Median -> 498.2 Test Statistics: T 35. T 70. 0.295776
>- sided PValue -
2
ﺣﯿﺚ اﻟوﺳﯾط ﻟﻠﻌﯾﻧﺔ ھو 498.2
>Sample Median -
ﻣﺟﻣوع اﻟرﺗب اﻟﻣوﺟﺑﺔ و ﻣﺟﻣوع اﻟرﺗب اﻟﺳﺎﻟﺑﺔ و t min(t , t ) 35ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن Test Statistics: T 35. T 70. T 35. ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05وﺑﻣﺎ ان ﻗﯾﻣﺔ p-valueھﻰ 0.295776
>- sided PValue -
2
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0
) (٥-٧اﺧﺗﺑﺎرات ﺗﺗﻌﻠق ﺑﻣﻌﻠﻣﺔ اﻟﻧﺳﺑﺔ Tests Concerning Proportion Parameter ﺗﻌﺗﺑر اﻟﻧﺳﺑﺔ ﻓﻲ اﻟﻣﺟﺗﻣﻊ ﻣن أھم اﻟﻣﻌﺎﻟم اﻟﺗﻲ ﺗدور ﺣوﻟﮭﺎ ﺗﺳﺎؤﻻت ﻛﺛﯾرة،أﺣﯾﺎﻧﺎ ً ﻧرﯾد أن ﻧﺧﺗﺑر ھل اﻟﻧﺳﺑﺔ ﻓﻲ اﻟﻣﺟﺗﻣﻊ ﺗﺳﺎوي ﻣﻘدارا ً ﻣﻌﯾﻧﺎ ً أم ﻻ؟ وأﺣﯾﺎﻧﺎ ً ﻧرﯾد ﺗﻘدﯾر ھذه اﻟﻧﺳﺑﺔ .ﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﯾﻛون اﻟﻣﺟﺗﻣﻊ ﻣﻘﺳم إﻟﻰ ﻗﺳﻣﯾن وھو ﻣﺎ ﺳﻧﻌﺎﻟﺟﮫ ھﻧﺎ اﻣﺎ إذا ﻛﺎن اﻟﻣﺟﺗﻣﻊ ﻣﻘﺳم ﻷﻛﺛر ﻣن ﻗﺳﻣﯾن ﻓﻘد ﺗم ﻣﻌﺎﻟﺟﺗﮫ ﻣن ﻗﺑل ﺑﺈﺧﺗﺑﺎر ﻣرﺑﻊ ﻛﺎي ﻟﻠﺗﺟﺎﻧس إذا ﻛﺎن اﻟﻣﺟﺗﻣﻊ ﻣﻘﺳم إﻟﻰ ﻗﺳﻣﯾن ﻓﺈﻧﻧﺎ ﺳﻧﺳﺗﺧدم اﺧﺗﺑﺎر ذي اﻟﺣدﯾن The Binomial Testوھو ﯾﻌﺗﻣد ﻋﻠﻰ ﻣﺎ ﯾﺳﻣﻰ ﺑﺗوزﯾﻊ ذي اﻟﺣدﯾن. ٥٥٧
ﻧﻔرض أﻧﻧﺎ ﻣﮭﺗﻣﯾن ﺑظﺎھرة ﻣﻘﺳﻣﺔ إﻟﻰ ﻗﺳﻣﯾن وأن اﺣﺗﻣﺎل ﻧﺟﺎح ھذه اﻟظﺎھرة ﺛﺎﺑت وﯾرﻣز ﻟﮫ ﺑﺎﻟرﻣز pواﺣﺗﻣﺎل اﻟﻔﺷل ھو qوأن . p q 1ﻣن اﻷﻣﺛﻠﺔ ﻋﻠﻰ ذﻟك أﻧﮫ ﻓﻲ دراﺳﺎت اﻟﺳوق ﯾﻛون أﺣﯾﺎﻧﺎ ً ﻣن اﻟﻣﻔﯾد ﻣﻌرﻓﺔ ﻧﺳﺑﺔ اﻟﻌﺎﺋﻼت اﻟذﯾن ﯾﻣﻠﻛون أﺟﮭزة ﺗﻛﯾﯾف وﻣن اﻷﺷﯾﺎء اﻟﮭﺎﻣﺔ أﯾﺿﺎ ً ﻣﻌرﻓﺔ ﻧﺳﺑﺔ اﻷطﻔﺎل اﻟذﯾن طﻌﻣوا ﺿد ﻣرض ﻣﻌﯾن أو ﻧﺳﺑﺔ اﻷﺷﺧﺎص اﻟذﯾن ﯾؤﯾدون ﻗرارا ً ﺳﯾﺎﺳﯾﺎ ً ﻣﻌﯾﻧﺎ ً...أﻟــﺦ .ﻧﻔرض أﻧﻧﺎ أﺧذﻧﺎ ﻋﯾﻧﺔ ﻣن اﻟﺣﺟم nوأن اﻟﻣﺟﺗﻣﻊ اﻟﻣﺳﺣوﺑﺔ ﻣﻧﮫ اﻟﻌﯾﻧﺔ ﻣﻘﺳم إﻟﻰ ﻗﺳﻣﯾن c1 ,c 2ﺑﺣﯾث ﺗﻛون pھﻲ ﻧﺳﺑﺔ ﻋﻧﺎﺻر اﻟﺟزء q ، c1ھﻲ ﻧﺳﺑﺔ ﻋﻧﺎﺻر اﻟﺟزء . c2إذا ﻓرﺿﻧﺎ أن ﻋدد اﻟﻌﻧﺎﺻر ﻓﻲ اﻟﻌﯾﻧﺔ اﻟﺗﻲ ﺗﻧﺗﻣﻲ إﻟﻰ اﻟﺟزء c1ھو xوأن ﻋدد اﻟﻌﻧﺎﺻر ﻓﻲ اﻟﻌﯾﻧﺔ اﻟﺗﻲ ﺗﻧﺗﻣﻲ إﻟﻰ اﻟﺟزء c2ھو ) . (n xﻟﺣﺳﺎب أﯾﺔ اﺣﺗﻣﺎﻻت ﻓﻲ اﻟﻌﯾﻧﺔ ﻓﺈﻧﻧﺎ ﻧﺳﺗﺧدم ﺗوزﯾﻊ ذي اﻟﺣدﯾن اﻵﺗﻲ: n x 0,1,2,...,n. f (x) p x q n x , x ﻋﻠﻰ أﺳﺎس أن q , pھﻲ ﻧﺳﺑﺔ اﻟﻧﺟﺎح واﻟﻔﺷل ﻋﻠﻰ اﻟﺗواﻟﻲ ﻓﻲ اﻟﻌﯾﻧﺔ .اﻵن ﻧرﯾد أن ﻧﺧﺗﺑر ﻓرﺿﺎ ً ﺣول ﻣﻌﻠﻣﺔ اﻟﻣﺟﺗﻣﻊ pﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ﻧﻔرض أن اﻟﻧﺳﺑﺔ ﻓﻲ اﻟﻣﺟﺗﻣﻊ ﻣﺟﮭوﻟﺔ وﺗﺳﺎوي p 0ﻓﮭل ﯾﻣﻛن اﺧﺗﺑﺎر ذﻟك اﻟﻔرض؟ ﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﻧﻔﺗرض أن ﻟدﯾﻧﺎ ﻣﺗﻐﯾر ﻟﮫ ﺣﺎﻟﺗﯾن ھﻣﺎ ﻧﺟﺎح وﻓﺷل وﯾﺗﻛرر nﻣن اﻟﻣرات اﻟﻣﺳﺗﻘﻠﺔ وﻋﻠﯾﮫ ﯾﻛون اﺣﺗﻣﺎل اﻟﻧﺟﺎح ﺛﺎﺑت وﻛذﻟك اﺣﺗﻣﺎل اﻟﻔﺷل .ﻟﻧﻔرض أن sﺗﻣﺛل ﻋدد ﺣﺎﻻت اﻟﻧﺟﺎح ﻓﺈن ﻧﺳﺑﺔ اﻟﻧﺟﺎح ﻓﻲ اﻟﻌﯾﻧﺔ ﺗﺣﺳب ﻛﺎﻵﺗﻲ: pˆ s / n. ﻓﻰ ھذه اﻟﺣﺎﻟﺔ ﯾﻛون ﻟدﯾﻧﺎ ﺛﻼث أزواج ﻣن اﻟﻔروض ﻛﺎﻵﺗﻲ: . H 0 : p p 0 , H1 : p p0 اﻟﻔرض : A . H 0 : p p 0 , H1 : p p 0 اﻟﻔرض : B . H 0 : p p0 , H1 : p p 0 اﻟﻔرض : C ﺳﻧرﻣز ﻹﺣﺻﺎﺋﻲ اﻻﺧﺗﺑﺎر ﺑﺎﻟرﻣز ) (sواﻟذى ﯾﻣﺛل ﻋدد ﺣﺎﻻت اﻟﻧﺟﺎح ﻓﻲ اﻟﻌﯾﻧﺔ وﺳﯾﻛون اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻲ اﻟذي ﯾﺗﺣﻛم ﻓﻲ اﻟرﻓض أو اﻟﻘﺑول ھو ﺗوزﯾﻊ ذي اﻟﺣدﯾن.ﺗﺧﺗﻠف ﻗواﻋد اﻟﺣﻛم ﻟﻛل زوج ﻣن اﻟﻔروض اﻟﺳﺎﺑﻘﺔ ﻛﺎﻵﺗﻲ: اﻟﻔرض : Aاﻻﺧﺗﺑﺎر ﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﻣن طرﻓﯾن ﻣﻌﻧﻰ ذﻟك أﻧﮫ ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ﯾﻛون اﻹﺣﺗﻣﺎل ﻓﻲ ﻛل طرف ھو / 2وﺑﺎﺳﺗﺧدام ﻣﻠﺣق ) (٧ﻧﺳﺗﺧرج s1 , s 2واﻟﺗﻲ ﺗﺣﻘق اﻟﻣﻌﺎدﻟﺗﯾن اﻟﺗﺎﻟﯾﺗﯾن: P(X s1 n, p0 ) / 2,
P(X s 2 n, p0 ) / 2. ﯾﻘﺑل ﻓرض اﻟﻌدم إذا ﻛﺎﻧت sاﻟﻣﺣﺳوﺑﺔ ﻣﺣﺻورة ﻣﺎ ﺑﯾن s1 , s 2وﻧرﻓض ﻓﯾﻣﺎ ﻋدا ذﻟك. اﻟﻔرض : Bوﻧﺣدد ﻗﯾﻣﺔ s1اﻟﺗﻲ ﺗﺣﻘق اﻟﻣﻌﺎدﻟﺔ اﻟﺗﺎﻟﯾﺔ : P(x s1 n,p0 ) , ﻧرﻓض ﻓرض اﻟﻌدم إذا ﻛﺎﻧت sاﻟﻣﺣﺳوﺑﺔ أﻛﺑر ﻣن s1واﻟﻌﻛس ﺻﺣﯾﺢ اﻟﻔرض : Cﺑﻧﻔس اﻷﺳﻠوب ﺗﺣﺳب ﻗﯾﻣﺔ s1اﻟﺗﻲ ﺗﺣﻘق اﻟﻣﻌﺎدﻟﺔ: P(x s1 n,p0 ) , ٥٥٨
وﻧرﻓض ﻓرض اﻟﻌدم إذا ﻛﺎﻧت sأﻛﺑر ﻣن . s1 ﻋﻧدﻣﺎ ﺗﻛﺑر nﻛﺑﯾرا ً ﻛﺎﻓﯾﺎ ً ﺑﺷرط أن ﺗﻛون pﺑﻌﯾدة ﻋن اﻟواﺣد اﻟﺻﺣﯾﺢ أو اﻟﺻﻔر ﻓﺈﻧﮫ ﯾﻣﻛن اﺳﺗﺧدام اﻟﺗﻘرﯾب ﻟﻠﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ﺣﯾث وﺟد أن : Z (s np0 ) / np0 (1 p0 ), ﯾﺗﺑﻊ اﻟﺗوزﯾﻎ اﻟطﺑﯾﻌﻲ اﻟﻣﻌﯾﺎري .ﺣﯾث : s1 np0 z np0 (1 p0 ), ﻋﻧدﻣﺎ ﯾﻛون اﻻﺧﺗﺑﺎر ﻣن اﻟطرﻓﯾن ﺑﺎﺳﺗﺧدام z / 2اﻟﻣوﺟﺑﺔ ﻧﺢ ﺳب s1وﺑﺎﺳﺗﺧدام z / 2اﻟﺳﺎﻟﺑﺔ ﻧﺣﺳب s2وﻧﻘﺑل ﻓرض اﻟﻌدم إذا وﻗﻌت sﺑﯾن . s1 , s 2ﻓﻲ ﺣﺎﻟﺔ اﺧﺗﺑﺎر اﻟﻔرض Bﺗﺳﺗﺧدم z اﻟﻣوﺟﺑﺔ وﻧرﻓض ﻓرض اﻟﻌدم إذا ﻛﺎﻧت sأﻛﺑر ﻣن s1وﻋﻧد اﺧﺗﺑﺎر اﻟﻔرض Cﺗﺳﺗﺧدم z اﻟﺳﺎﻟﺑﺔ وﻧرﻓض ﻓرض اﻟﻌدم إذا ﻛﺎﻧت sاﻟﻣﺣﺳوﺑﺔ أﻗل ﻣن . s1
ﻣﺛﺎل)(٧-٧ اﺧﺗﺑر اﻟﻔروض اﻟﺗﺎﻟﯾﺔ: H1 : p 0.6 n 400, وذﻟك ﻋﻧد ﻣﺳﺗوى . 0.05
H1 : p 0.6,
H0 : p 0.6,
اذا ﻛ ﺎن s 228
اﻟﺣــل: ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . `<<Statistics`DiscreteDistributions upperPSum[n_,p0_,s_]:=Module[{k}, ;]bdist=BinomialDistribution[n,p0 ;]upbound=PDF[bdist,s ;]onetail=CDF[bdist,s ;twotail=onetail ;k=n While[And[PDF[bdist,k]<=upbound,k>s],twotail=twotail+PD ;]F[bdist,k];k=k-1 ;]twotail=Min[twotail,1 ]}{onetail,twotail lowerPSum[n_,p0_,s_]:=Module[{k}, ;]bdist=BinomialDistribution[n,p0 ٥٥٩
upbound=PDF[bdist,s]; onetail=1-CDF[bdist,s]; twotail=onetail; k=0; While[PDF[bdist,k]<=upbound,twotail=twotail+PDF[bdist,k ];k=k+1]; Min[twotail,1]; {onetail,twotail}] npmBinomialPValue[n_,p0_,s_]:=Module[{bdist,pvals,pHat}, bdist=BinomialDistribution[n,p0]; pHat=s/n; If[pHat<=p0,pvals=upperPSum[n,p0,s]]; If[pHat>p0,pvals=lowerPSum[n,p0,s]]; Print["One-Sided PValue -> ",pvals[[1]]]; Print["Two-Sided PValue -> ",pvals[[2]]]] npmBinomialPValue[400,0.6,228] One-Sided PValue -> 0.120488 Two-Sided PValue -> 0.22109
ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ npmBinomialPValue[400,0.6,228]
ﻧﺣﺻل ﻋﻠﻰ اﻟﻣﺧرج اﻟﺗﺎﻟﻰ
One-Sided PValue -> 0.120488 Two-Sided PValue -> 0.22109
ھﻰp-value وﻗﯾﻣﺔ 0.05 ﻻﺧﺘﺒﺎر ﻣﻦ ﺟﺎﻧﺒﯿﻦ وﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ Two-Sided PValue ->
0.22109
H 0 ﻓﺈﻧﻧﺎ ﻧﻘﺑل0.05 وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 228 ھﻰp-value وﻗﯾﻣﺔpˆ .57 .6 ﻻﺧﺘﺒﺎر ﻣﻦ ﺟﺎﻧﺐ واﺣﺪ وﺑﻤﺎ ان 400 One-Sided PValue ->
0.120488
. H1 : p 0.6 وﻋﻠﻰ ذﻟك ﻧﻘﺑل ﻓرض اﻟﻌدم وﻧرﻓض اﻟﻔرض اﻟﺑدﯾل 0.05 وھﻲ اﻛﺒﺮ ﻣﻦ
٥٦٠
) (٦-٧اﺧﺗﺑﺎر اﻟدورات Test Runs ﯾﻔﯾ د ھ ذا اﻻﺧﺗﺑ ﺎر ﻓ ﻲ ﻣﺟ ﺎﻻت ﻛﺛﯾ رة ﻣﻧﮭ ﺎ اﻟﻣﺷ ﺎﻛل اﻟﺑﯾوﻟوﺟﯾ ﺔ .ﻓﻘ د ﯾرﻏ ب ﺑﺎﺣ ث ﻣ ﺎ ﻓ ﻲ ﻣﻌرﻓﺔ ﻣﺎ إذا ﻛ ﺎن ﻋ دد ﺣ ﺎﻻت اﻹﺻ ﺎﺑﺔ ﺑﻣ رض اﻟﻣﻼرﯾ ﺎ ،ﻣ ﺛﻼ ً ،ﯾﺗﻐﯾ ر ﻋﺷ واﺋﯾﺎ ً ﻣ ن ﺳ ﻧﺔ إﻟ ﻲ ﺳ ﻧﺔ أﺧ رى أم أن ھﻧ ﺎك ﻋواﻣ ل ﻏﯾ ر ﻋﺷ واﺋﯾﺔ ﺗ ؤدى إﻟ ﻰ ﻧﻘ ص أو زﯾ ﺎدة ﻋ دد ﺣ ﺎﻻت اﻹﺻ ﺎﺑﺔ ﺑﮭ ذا اﻟﻣرض .ﻹﺟراء اﻻﺧﺗﺑﺎر ﻧﻔﺗرض أن ﻟدﯾﻧﺎ ﻣﺗﺗﺎﺑﻌﺔ ﻣن اﻟﻣﺷﺎھدات اﻟﻣﺳ ﺟﻠﺔ ﺗﺑﻌ ﺎ ً ﻟﺗرﺗﯾ ب ﺣ دوﺛﮭﺎ وأن اﻟﻣﺷﺎھدات ﯾﻣﻛن ﺗﻘﺳﯾﻣﮭﺎ إﻟﻲ ﻧوﻋﯾن ) ﻟﯾﻛن . ( a , bﯾﻌﺗﻣد ھذا اﻻﺧﺗﺑ ﺎر ﻋﻠ ﻰ ﻣﺗﻐﯾ ر ﯾطﻠ ق ﻋﻠﯾ ﮫ أﺳ م اﻟ دورة runﺣﯾ ث ﺗﻌ رف ﺑﺄﻧﮭ ﺎ ﻣﺟﻣوﻋ ﺔ اﻷﺣ داث اﻟﻣﺗﺷ ﺎﺑﮭﺔ اﻟﺗ ﻲ ﯾﺳ ﺑﻘﮭﺎ أو ﯾﺗﺑﻌﮭ ﺎ ﻧ وع آﺧ ر ﻣﺧﺎﻟﻔﺎ ﻣن اﻷﺣداث أو ﻻ ﯾﺗﺑﻌﮭﺎ أو ﻻ ﯾﺳﺑﻘﮭﺎ أﯾﺔ أﺣداث .ﻋدد اﻹﺣداث ﻓ ﻲ اﻟ دورة ﯾطﻠ ق ﻋﻠﯾﮭ ﺎ ط ول اﻟدورة ) ﯾﻣﻛن أن ﺗﺣﺗوى اﻟدورة ﻋﻠﻰ ﺣدث واﺣد( .ﺑﻔرض أن ﻟدﯾﻧﺎ اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾ ﺔ واﻟﺗ ﻲ ﺗ م ﺗوﻟﯾ دھﺎ ﻋﻠﻰ اﻟﺣﺎﺳب اﻵﻟﻲ . 0.1, 0.4, 0.2, 0.8, 0.6, 0.9, 0.3, 0.4, .01, 0.2 ﺑﻔ رض أن aﺗﻣﺛ ل اﻟ رﻗم اﻟ ذي أﻗ ل ﻣ ن 0.5و bﺗﻣﺛ ل اﻟ رﻗم اﻟ ذي أﻛﺑ ر ﻣ ن 0.5واﻟﺗ ﻲ ﺗﻌط ﻰ اﻟﻣﺗﺗﺎﺑﻌﺔ : aaaa
bbb
aaa
ﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﻟدﯾﻧﺎ ﺛ ﻼث دورات .ﺳ وف ﻧرﻣ ز ﻟﻌ دد اﻟ دورات ﺑ ﺎﻟرﻣز ، rأي أن . r 3أﯾﺿ ﺎ n1ﺳ وف ﺗرﻣ ز ﻟﻌ دد ﻗ ﯾم aو n2ﺳ وف ﺗرﻣ ز ﻟﻌ دد ﻗ ﯾم . bﻓ رض اﻟﻌ دم واﻟﻔ رض اﻟﺑ دﯾل ﺳ وف ﯾﻛوﻧﺎن ﻋﻠﻰ اﻟﺷﻛل : H 0اﻟﻧوﻋﺎن ﯾﻘﻌﺎن ﺑﻌﺷواﺋﯾﺔ . : H1اﻟﻧوﻋﺎن ﻻ ﯾﻘﻌﺎن ﺑﻌﺷواﺋﯾﺔ . ﺑﻔ رض أن H 0ﺻ ﺣﯾﺢ ﻓ ﺈن r ھ ﻲ ﻗﯾﻣ ﺔ ﻟﻺﺣﺻ ﺎء . R اﻟﻘ ﯾم اﻟﺣرﺟ ﺔ اﻟﺳ ﻔﻠﻲ ﻟﻺﺣﺻ ﺎء R ﺗﺳﺗﺧرج ﻣ ن اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ ق ) (٩واﻟﻘ ﯾم اﻟﺣرﺟ ﺔ اﻟﻌﻠﯾ ﺎ ﻟﻺﺣﺻ ﺎء Rﺗﺳ ﺗﺧرج ﻣ ن اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ ق ) (١٠وذﻟ ك ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ . n1 ,n 2 , 0.05ﻟ ﺗﻛن r1اﻟﻘﯾﻣ ﺔ اﻟﺳ ﻔﻠﻲ و r2اﻟﻘﯾﻣ ﺔ اﻟﻌﻠﯾ ﺎ ﻋﻧ د ، n1 ,n 2 , 0.05ﻣﻧطﻘ ﺔ اﻟ رﻓض ﺳ وف ﺗﻛ ون R r2أو . R r1إذا وﻗﻌ ت اﻟﻘﯾﻣﺔ rﻓﻲ ﻣﻧطﻘ ﺔ اﻟ رﻓض ﻧ رﻓض . H 0ﻟﻠﻔ رض اﻟﺑ دﯾل : H1اﻟﻧوﻋ ﺎن ﻻ ﯾﻘﻌ ﺎن ﺑﻌﺷ واﺋﯾﺔ ﻟوﺟ ود ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض . R r2ﻟﻠﻔ رض اﻟﺑ دﯾل : H1 ﻋ دد ﻛﺑﯾ ر ﻣ ن اﻟ دورات وﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ 2 ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض اﻟﻧوﻋﺎن ﻻ ﯾﻘﻌﺎن ﺑﻌﺷواﺋﯾﺔ ﻟوﺟود ﻋدد ﻗﻠﯾل ﻣن اﻟدورات وﻟﻣﺳﺗوى ﻣﻌﻧوﯾ ﺔ 2 . R r1إذا ﻛﺎﻧ ت n1 , n 2أﻛﺑ ر ﻣ ن ) 20ﻛﻠﯾﮭﻣ ﺎ أو أﯾﮭﻣ ﺎ ( ﻓ ﺈن اﻟﺟ دوﻻن ﻓ ﻲ ﻣﻠﺣ ق ) (٩و ) (١٠ﻻ ﯾﺻﻠﺣﺎن ﻟﻼﺳﺗﺧدام و ﻟﻘد وﺟد ﺑﺎﻟﺑرھﺎن أن: 2n n r 1 2 1 n1 n 2 z . ) 2n1n 2 (2n1n 2 n1 n 2 )(n1 n 2 ) 2 (n1 n 2 1 ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻲ Zﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ. ٥٦١
ﻣﺛﺎل)(٨-٧ إذا ﻛ ﺎن ﻟ دﯾﻧﺎ 34ﺷﺧﺻ ﺎ وﺑﻔ رض أن Mﺗرﻣ ز ﻟﻠ ذﻛر و Fﺗرﻣ ز ﻟﻸﻧﺛ ﻰ وﻛﺎﻧ ت اﻟﻧﺗ ﺎﺋﺞ ﻛﺎﻵﺗﻲ : FF MMMMMMMMM FF M FF MMMMMMMMM FFFFF MMM F
اﻟﻣطﻠوب ﺗﺣدﯾد ھل اﻟﻌﯾﻧﺔ ﻋﺷواﺋﯾﺔ أم ﻻ ؟ وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05 اﻟﺣــل: : H0اﻟﻌﯾﻧﺔ ﻋﺷواﺋﯾﺔ. : H1اﻟﻌﯾﻧﺔ ﻏﯾر ﻋﺷواﺋﯾﺔ. ﻣن ﺑﯾﺎﻧﺎت اﻟﻌﯾﻧﺔ ﻧﺟد أن : ) n 2 22 , r 9ﻋدد ( Mو ) n1 12ﻋدد ( Fوﺑﻣﺎ أن n 20ﻓﺈﻧﻧﺎ ﻧﺳﺗﺧدم اﻟﺗﻘرﯾب اﻟطﺑﯾﻌﻲ وﻋﻠﻰ ذﻟك : 2n n r 1 2 1 n1 n 2 z ) 2n1n 2 (2n1n 2 n1 n 2 )(n1 n 2 ) 2 (n1 n 2 1
2(12)(22) 9 1 12 22 ]2(12)(22)[2(12)(22) 12 22 )(12 22) 2 (12 22 1 9 16.529 2.879. 6.8373702 ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05و z.025 = 1.96واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق ) . (١ﻣﻧطﻘﺔ اﻟرﻓض Z > 1.96أو Z < - 1.96وﺑﻣﺎ أن z 2.579ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض . H 0 ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . ;]Off[General::spell1 `<<Statistics`NormalDistribution `<<Statistics`DataManipulation ]]dropVals[x_]:=If[x!=med,AppendTo[newlist,x f[y_,m0_]:=Module[{}, ]]If[y<m0,0,1 findFirstOne[dlist_]:=Module[{}, ;k=1 ;]While[dlist[[k]]!=1,k=k+1 ٥٦٢
k] findFirstZero[dlist_]:=Module[{}, k=1; While[dlist[[k]]!=0,k=k+1]; k] findRunOnes[datalist_]:=Module[{runList,runLength}, newVals=datalist; pos=findFirstOne[newVals]; runList=TakeWhile[newVals,equalOneQ]; runLength=Length[runList]; Drop[newVals,{pos,pos+runLength-1}]] findRunZeros[datalist_]:=Module[{runList,runLength}, newVals=datalist; pos=findFirstZero[newVals]; runList=TakeWhile[newVals,equalZeroQ]; runLength=Length[runList]; Drop[newVals,{pos,pos+runLength-1}]] firstQ[dlist_]:=If[dlist[[1]]==1,1,0] pairsOnesFirst[datalist_]:=Module[{}, temp=findRunOnes[datalist]; sumOneRuns=sumOneRuns+1; If[Length[temp]>0,temp=findRunZeros[temp]]; sumZeroRuns=sumZeroRuns+1; ] pairsOnesFirst[datalist_]:=Module[{}, temp=findRunOnes[datalist]; sumOneRuns=sumOneRuns+1; If[Length[temp]>1,temp=findRunZeros[temp]]; sumZeroRuns=sumZeroRuns+1; If[Length[temp]==1,temp={}]] pairsZerosFirst[datalist_]:=Module[{}, temp=findRunZeros[datalist]; sumZeroRuns=sumZeroRuns+1; If[Length[temp]>1,temp=findRunOnes[temp]]; sumOneRuns=sumOneRuns+1; If[Length[temp]==1,temp={}]] oneFirstLoop[dlist_]:=Module[{}, temp=dlist; While[Length[temp]>1,Do[pairsOnesFirst[temp]]]; If[Length[temp]==1,sumOneRuns=sumOneRuns+1]] zeroFirstLoop[dlist_]:=Module[{}, temp=dlist; While[Length[temp]>1,Do[pairsZerosFirst[temp]]]; If[Length[temp]==1,sumZeroRuns=sumZeroRuns+1]] pairOrder[zerosAndOnes_]:=If[firstQ[zerosAndOnes]==1,oneFirs tLoop[zerosAndOnes],zeroFirstLoop[zerosAndOnes]] ٥٦٣
p1[rVal_]:=Module[{fac1,fac2}, fac1=1/Binomial[n1+n2,n1]; fac2=2*Binomial[n1-1,rVal/2-1]*Binomial[n21,rVal/2-1]; fac1*fac2//N] p2[rVal_]:=Module[{fac1,fac2,fac3}, fac1=1/Binomial[n1+n2,n1]; fac2=Binomial[n1-1,(rVal-1)/2]*Binomial[n21,(rVal-3)/2]; fac3=Binomial[n1-1,(rVal-3)/2]*Binomial[n21,(rVal-1)/2]; fac1*(fac2+fac3)//N] pCalc[rVal_]:=Module[{}, psum=0; rtemp=rVal; While[rtemp>=2,psum=psum+prob[rtemp];rtemp--]; psum2=psum; If[tail==2,psum=upperPSum[rVal]]; psum] pCalcRMax[rVal_]:=Module[{}, psum=0; rtemp=rVal; While[rtemp<=rmax,psum=psum+prob[rtemp];rtemp++]; psum2=psum; If[tail==2,psum=lowerPSum[rVal]]; psum] prob[kVal_]:=Module[{}, If[EvenQ[kVal],p1[kVal],p2[kVal]]] upperPSum[rVal_]:=Module[{k}, upbound=prob[rVal]; twotail=psum2; k=rmax; While[And[prob[k]<=upbound,k>rVal],twotail=twotail+prob [k];k=k-1]; twotail=Min[twotail,1]; twotail] lowerPSum[rVal_]:=Module[{k}, upbound=prob[rVal]; twotail=psum2; k=2; While[And[prob[k]<=upbound,k<rVal],twotail=twotail+prob [k];k=k+1]; Min[twotail,1]; twotail] pNormal[rVal_]:=Module[{}, ٥٦٤
muSubR=2*n1*n2/(n1+n2)+1; numer=2*n1*n2*(2*n1*n2-n1-n2); denom=(n1+n2)^2*(n1+n2-1); sigSubRSquare=numer/denom; zStat=(rVal-muSubR)/Sqrt[sigSubRSquare]; dist=NormalDistribution[0,1]; psum=1-CDF[dist,Abs[zStat]]//N; If[tail==2,psum=2*psum]; psum] diff[i_,zeroOneList_]:=If[Abs[zeroOneList[[i+1]]zeroOneList[[i]]]==1,True,False] Convert to Zero's and One's convertToZerosAndOnes[datalist_]:=Module[{}, newlist={0}; med=Median[datalist]; addNonMed=Map[dropVals[#]&,datalist]; total=Length[addNonMed]; nonMedList=Drop[addNonMed[[total]],1]; Map[f[#,med]&,datalist]] Options[npmRunsTest]={sided->2,method->exact}; npmRunsTest[zeroOneList_,opts___]:=Module[{}, tail=sided/. {opts} /. Options[npmRunsTest]; mtype=method/. {opts} /. Options[npmRunsTest]; n1=Count[zeroOneList,0]; n2=Count[zeroOneList,1]; tfTable= Table[diff[i,zeroOneList],{i,1,Length[zeroOneList]-1}]; r=Count[tfTable,True]+1; rCompVal=2*n1*n2/(n1+n2)+1; rmax=Min[n1+n2,2*Min[n1,n2]+1]; If[mtype==exact,If[r<=rCompVal,pval=pCalc[r],pval=pCalc RMax[r]]]; If[mtype==approx,pval=pNormal[r]]; Print["Number of Runs -> ",r]; If[tail==2,Print["Two-Sided PValue -> ",pval]]; If[tail==1,Print["One-Sided PValue -> ",pval]]] dropVals[x_]:=If[x!=med,AppendTo[newlist,x]] f[y_,m0_]:=Module[{}, If[y<m0,0,1]] convertToZerosAndOnes[datalist_]:=Module[{}, newlist={0}; med=Median[datalist]; addNonMed=Map[dropVals[#]&,datalist]; total=Length[addNonMed]; nonMedList=Drop[addNonMed[[total]],1]; Map[f[#,med]&,datalist]] ٥٦٥
ZeroOnes={0,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,1,1,1, }0,0,0,0,0,1,1,1,0 {0,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0 },1,1,1,0 ]npmRunsTest[ZeroOnes Number of Runs -> 9 Two-Sided PValue -> 0.00547009 ]npmRunsTest[ZeroOnes,method->approx Number of Runs -> 9 Two-Sided PValue -> 0.00398311 ]npmRunsTest[ZeroOnes,sided->1 Number of Runs -> 9 One-Sided PValue -> 0.00364762
وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ : اوﻻ :اﻟﻣدﺧﻼت
وﺑﻣﺎ ان اﻟﺑﯾﺎﻧﺎت وﺻﻔﯾﺔ ﻓﺳوف ﻧﺣول ھذه اﻟﺑﯾﺎﻧﺎت إﻟﻰ 0او 1ﺣﯾث ﯾﻌطﻰ 0إﻟﻰ F )ﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل( وﺗﻌطﻰ 1إﻟﻰ Mﻓﻧﺣﺻل ﻋﻠﻰ اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎه ZeroOnesوھﻰ : ZeroOnes={0,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,1,1,1, }0,0,0,0,0,1,1,1,0
ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]npmRunsTest[ZeroOnes
واﻟﻣﺧرج ھو 0.00547009
Number of Runs -> 9 >Two-Sided PValue -
r ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻛﺎﻟﺗﺎﻟﻰ Number of Runs -> 9
ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05وﻗﯾﻣﺔ p-valueھﻰ 0.00547009
>Two-Sided PValue -
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧرﻓض . H 0 وﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ ]npmRunsTest[ZeroOnes,sided->1
واﻟﻣﺧرج ھو 0.00364762 r ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻛﺎﻟﺗﺎﻟﻰ Number of Runs -> 9
ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05وﻗﯾﻣﺔ p-valueھﻰ ٥٦٦
Number of Runs -> 9 >One-Sided PValue -
>One-Sided PValue -
0.00364762
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧرﻓض . H0
وﺑﻣﺎ أن n 20ﻓﺈﻧﻧﺎ ﻧﺳﺗﺧدم اﻟﺗﻘرﯾب اﻟطﺑﯾﻌﻲ و ﻧﺣﺻل ﻋﻠﻰ اﻟﻣﺧرﺟﺎت ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]npmRunsTest[ZeroOnes,method->approx
واﻟﻣﺧرج ھو 0.00398311
Number of Runs -> 9 >Two-Sided PValue -
r ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻛﺎﻟﺗﺎﻟﻰ Number of Runs -> 9
ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05وﻗﯾﻣﺔ p-valueھﻰ 0.00398311
>Two-Sided PValue -
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧرﻓض . H0
ﻣﺛﺎل)(٩-٧ ﻧﻔ رض أن ﻟ دﯾﻧﺎ ﻋﯾﻧ ﮫ ﻣ ن ٢٢ﺷ ﺧص وﻛﻧ ﺎ ﻧرﻣ ز ﻟﻠﺷ ﺧص اﻟ ذﻛر ﻓ ﻲ اﻟﻌﯾﻧ ﺔ ﺑ ﺎﻟرﻣز )واﺣ د ( وﻟﻸﻧﺛﻰ ﺑﺎﻟرﻣز )ﺻﻔر( وﻛﺎﻧت ﻟدﯾﻧﺎ اﻟﻧﺗﺎﺋﺞ اﻵﺗﯾﺔ: 000
1111
000
111
0
11111
000
اﻟﻣطﻠوب ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05ﺗﺣدﯾد ھل اﻟﻌﯾﻧﺔ ﻋﺷواﺋﯾﺔ أم ﻻ ؟
اﻟﺣــل: ﻓرض اﻟﻌدم H0اﻟﻌﯾﻧﺔ ﻋﺷواﺋﯾﺔ ،اﻟﻔرض اﻟﺑدﯾل H1اﻟﻌﯾﻧﺔ ﻏﯾر ﻋﺷواﺋﯾﺔ. ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﻧﻔس اﻟﺑرﻧﺎﻣﺞ اﻟﺧﺎص ﺑﺎﻟﻣﺛﺎل اﻟﺳﺎﺑق وذﻟك ﺑﺷرح اﻟﻣدﺧﻼت واﻟﻤﺨﺮﺟﺎت ﻟﮭﺬا اﻟﺒﺮﻧﺎﻣﺞ }ZeroOnes={0,0,0,1,1,1,1,1,0,1,1,1,0,0,0,1,1,1,1,0,0,0 }{0,0,0,1,1,1,1,1,0,1,1,1,0,0,0,1,1,1,1,0,0,0 ]npmRunsTest[ZeroOnes Number of Runs -> 7 Two-Sided PValue -> 0.0437519 ]npmRunsTest[ZeroOnes,method->approx Number of Runs -> 7 Two-Sided PValue -> 0.0304864 ]npmRunsTest[ZeroOnes,sided->1 Number of Runs -> 7 One-Sided PValue -> 0.0241724
اوﻻ :اﻟﻣدﺧﻼت
٥٦٧
اﻟﻘﺎﺋﻣﺔ
اﻟﻣﺳﻣﺎه ZeroOnesوھﻲ: }ZeroOnes={0,0,0,1,1,1,1,1,0,1,1,1,0,0,0,1,1,1,1,0,0,0 }{0,0,0,1,1,1,1,1,0,1,1,1,0,0,0,1,1,1,1,0,0,0
ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]npmRunsTest[ZeroOnes
و اﻟﻣﺧرج ھو 0.0437519
Number of Runs -> 7 >Two-Sided PValue -
r ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻟﻣﺧرج Number of Runs -> 7
ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05وﻗﯾﻣﺔ p-valueھﻰ 0.0437519
>Two-Sided PValue -
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧرﻓض . H0 وﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ ]npmRunsTest[ZeroOnes,sided->1
و اﻟﻣﺧرج ھو 0.0241724
Number of Runs -> 7 >One-Sided PValue -
وﺑﻣﺎ أن n 20ﻓﺈﻧﻧﺎ ﻧﺳﺗﺧدم اﻟﺗﻘرﯾب اﻟطﺑﯾﻌﻲ و ﻧﺣﺻل ﻋﻠﻰ اﻟﻣﺧرﺟﺎت ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]npmRunsTest[ZeroOnes,method->approx
واﻟﻣﺧرج ھو 0.0304864
Number of Runs -> 7 >Two-Sided PValue -
ﺣﯾث r 7ﺣﯾث ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻛﺎﻟﺗﺎﻟﻰ 7
>Number of Runs -
ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05وﻗﯾﻣﺔ p-valueھﻰ 0.0304864
>Two-Sided PValue -
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧرﻓض . H0
ﻣﺛﺎل)(١٠-٧ ﺑﻔرض أن ﻟدﯾﻧﺎ اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ : 47.93,49.34,39.43,26.89,31.45,41.94,40.72,46.24,38.19,21.94 ,30.08,26.89,18.48,34.65,20.23,21.96,15.41,23.46,52.95,19.4 ,29.72,21.26,27.25,34.79,38.35,38.92,35.87,28.49 اﻟﻣطﻠوب ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05ﺗﺣدﯾد ھل ٥٦٨ اﻟﻌﯾﻧﺔ ﻋﺷواﺋﯾﺔ أم ﻻ ؟
:اﻟﺣــل . اﻟﻌﯾﻧﺔ ﻏﯾر ﻋﺷواﺋﯾﺔH1 اﻟﻌﯾﻧﺔ ﻋﺷواﺋﯾﺔ واﻟﻔرض اﻟﺑدﯾلH 0 ﻓرض اﻟﻌدم وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ . اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت Off[General::spell1]; <<Statistics`NormalDistribution` <<Statistics`DataManipulation` dropVals[x_]:=If[x!=med,AppendTo[newlist,x]] f[y_,m0_]:=Module[{}, If[y<m0,0,1]] findFirstOne[dlist_]:=Module[{}, k=1; While[dlist[[k]]!=1,k=k+1]; k] findFirstZero[dlist_]:=Module[{}, k=1; While[dlist[[k]]!=0,k=k+1]; k] findRunOnes[datalist_]:=Module[{runList,runLength}, newVals=datalist; pos=findFirstOne[newVals]; runList=TakeWhile[newVals,equalOneQ]; runLength=Length[runList]; Drop[newVals,{pos,pos+runLength-1}]] findRunZeros[datalist_]:=Module[{runList,runLength}, newVals=datalist; pos=findFirstZero[newVals]; runList=TakeWhile[newVals,equalZeroQ]; runLength=Length[runList]; Drop[newVals,{pos,pos+runLength-1}]] firstQ[dlist_]:=If[dlist[[1]]==1,1,0] pairsOnesFirst[datalist_]:=Module[{}, temp=findRunOnes[datalist]; sumOneRuns=sumOneRuns+1; If[Length[temp]>0,temp=findRunZeros[temp]]; sumZeroRuns=sumZeroRuns+1; ] pairsOnesFirst[datalist_]:=Module[{}, temp=findRunOnes[datalist]; sumOneRuns=sumOneRuns+1; If[Length[temp]>1,temp=findRunZeros[temp]]; sumZeroRuns=sumZeroRuns+1; ٥٦٩
If[Length[temp]==1,temp={}]] pairsZerosFirst[datalist_]:=Module[{}, temp=findRunZeros[datalist]; sumZeroRuns=sumZeroRuns+1; If[Length[temp]>1,temp=findRunOnes[temp]]; sumOneRuns=sumOneRuns+1; If[Length[temp]==1,temp={}]] oneFirstLoop[dlist_]:=Module[{}, temp=dlist; While[Length[temp]>1,Do[pairsOnesFirst[temp]]]; If[Length[temp]==1,sumOneRuns=sumOneRuns+1]] zeroFirstLoop[dlist_]:=Module[{}, temp=dlist; While[Length[temp]>1,Do[pairsZerosFirst[temp]]]; If[Length[temp]==1,sumZeroRuns=sumZeroRuns+1]] pairOrder[zerosAndOnes_]:=If[firstQ[zerosAndOnes]==1,oneFirs tLoop[zerosAndOnes],zeroFirstLoop[zerosAndOnes]] p1[rVal_]:=Module[{fac1,fac2}, fac1=1/Binomial[n1+n2,n1]; fac2=2*Binomial[n1-1,rVal/2-1]*Binomial[n21,rVal/2-1]; fac1*fac2//N] p2[rVal_]:=Module[{fac1,fac2,fac3}, fac1=1/Binomial[n1+n2,n1]; fac2=Binomial[n1-1,(rVal-1)/2]*Binomial[n21,(rVal-3)/2]; fac3=Binomial[n1-1,(rVal-3)/2]*Binomial[n21,(rVal-1)/2]; fac1*(fac2+fac3)//N] pCalc[rVal_]:=Module[{}, psum=0; rtemp=rVal; While[rtemp>=2,psum=psum+prob[rtemp];rtemp--]; psum2=psum; If[tail==2,psum=upperPSum[rVal]]; psum] pCalcRMax[rVal_]:=Module[{}, psum=0; rtemp=rVal; While[rtemp<=rmax,psum=psum+prob[rtemp];rtemp++]; psum2=psum; If[tail==2,psum=lowerPSum[rVal]]; psum] prob[kVal_]:=Module[{}, If[EvenQ[kVal],p1[kVal],p2[kVal]]] upperPSum[rVal_]:=Module[{k}, ٥٧٠
upbound=prob[rVal]; twotail=psum2; k=rmax; While[And[prob[k]<=upbound,k>rVal],twotail=twotail+prob [k];k=k-1]; twotail=Min[twotail,1]; twotail] lowerPSum[rVal_]:=Module[{k}, upbound=prob[rVal]; twotail=psum2; k=2; While[And[prob[k]<=upbound,k<rVal],twotail=twotail+prob [k];k=k+1]; Min[twotail,1]; twotail] pNormal[rVal_]:=Module[{}, muSubR=2*n1*n2/(n1+n2)+1; numer=2*n1*n2*(2*n1*n2-n1-n2); denom=(n1+n2)^2*(n1+n2-1); sigSubRSquare=numer/denom; zStat=(rVal-muSubR)/Sqrt[sigSubRSquare]; dist=NormalDistribution[0,1]; psum=1-CDF[dist,Abs[zStat]]//N; If[tail==2,psum=2*psum]; psum] diff[i_,zeroOneList_]:=If[Abs[zeroOneList[[i+1]]zeroOneList[[i]]]==1,True,False] Convert to Zero's and One's convertToZerosAndOnes[datalist_]:=Module[{}, newlist={0}; med=Median[datalist]; addNonMed=Map[dropVals[#]&,datalist]; total=Length[addNonMed]; nonMedList=Drop[addNonMed[[total]],1]; Map[f[#,med]&,datalist]] Options[npmRunsTest]={sided->2,method->exact}; npmRunsTest[zeroOneList_,opts___]:=Module[{}, tail=sided/. {opts} /. Options[npmRunsTest]; mtype=method/. {opts} /. Options[npmRunsTest]; n1=Count[zeroOneList,0]; n2=Count[zeroOneList,1]; tfTable= Table[diff[i,zeroOneList],{i,1,Length[zeroOneList]-1}]; r=Count[tfTable,True]+1; rCompVal=2*n1*n2/(n1+n2)+1; ٥٧١
rmax=Min[n1+n2,2*Min[n1,n2]+1]; If[mtype==exact,If[r<=rCompVal,pval=pCalc[r],pval=pCalc RMax[r]]]; If[mtype==approx,pval=pNormal[r]]; Print["Number of Runs -> ",r]; If[tail==2,Print["Two-Sided PValue -> ",pval]]; If[tail==1,Print["One-Sided PValue -> ",pval]]] dropVals[x_]:=If[x!=med,AppendTo[newlist,x]] f[y_,m0_]:=Module[{}, If[y<m0,0,1]] convertToZerosAndOnes[datalist_]:=Module[{}, newlist={0}; med=Median[datalist]; addNonMed=Map[dropVals[#]&,datalist]; total=Length[addNonMed]; nonMedList=Drop[addNonMed[[total]],1]; Map[f[#,med]&,datalist]] totalpayrolls={47.93,49.34,39.43,26.89,31.45,41.94,40.72,46. 24,38.19,21.94,30.08,26.89,18.48,34.65,20.23,21.96,15.41,23. 46,52.95,19.4,29.72,21.26,27.25,34.79,38.35,38.92,35.87,28.4 9}; ZeroOnes=convertToZerosAndOnes[totalpayrolls] {1,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1,1,1,0} npmRunsTest[ZeroOnes] Number of Runs -> 10 Two-Sided PValue -> 0.0824696 npmRunsTest[ZeroOnes,method->approx] Number of Runs -> 10 Two-Sided PValue -> 0.0541266 npmRunsTest[ZeroOnes,sided->1] Number of Runs -> 10 One-Sided PValue -> 0.0412348
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت: اوﻻ
وھﻰtotalpayrolls ﻧدﺧل اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎه totalpayrolls={47.93,49.34,39.43,26.89,31.45,41.94,40.72,46. 24,38.19,21.94,30.08,26.89,18.48,34.65,20.23,21.96,15.41,23. 46,52.95,19.4,29.72,21.26,27.25,34.79,38.35,38.92,35.87,28.4 9}; : ﺛﺎﻧﯾﺎ اﻟﻣﺧرﺟﺎت .ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻛﻤﺎ ﻓﻰ اﻟﻤﺜﺎل اﻟﺴﺎﺑﻖ ( ( اﺧﺗﺑﺎر اﻹﺷﺎرة ﻟﻌﯾﻧﺗﯾن ﻣرﺗﺑطﺗﯾن ) ﻋﯾﻧﺔ ﻣزدوﺟﺔ٨-٧ ) ٥٧٢
The Sign –Test for Two Related Sample ﯾﻣﻛن ﺗﻌدﯾل اﺧﺗﺑﺎر اﻹﺷﺎرة ﻟﻌﯾﻧﺔ واﺣدة واﺳﺗﺧداﻣﮫ ﻓﻲ ﺣﺎﻟﺔ اﻟﻌﯾﻧﺗﯾن اﻟﻣرﺗﺑطﺗﯾن ﻋﻧدﻣﺎ ﻻﯾﺗﺣﻘق اﻻﻋﺗدال .ﺑﻔرض أن ﻟدﯾﻧﺎ nﻣن أزواج اﻟﻣﺷﺎھدات اﻟﻣﺳﺗﻘﻠﺔ (xi , yi ) ; i 1,2,...,nﻓﺈﻧﻧﺎ ﻧﺳﺗﺑدل ﻛل زوج ﻣن اﻟﻣﺷﺎھدات ﺑﺈﺷﺎرة ﻣوﺟﺑﺔ إذا ﻛﺎﻧت اﻟﻣﺷﺎھدة اﻷوﻟﻲ أﻛﺑر ﻣن اﻟﻣﺷﺎھدة اﻟﺛﺎﻧﯾﺔ وﺑﺈﺷﺎرة ﺳﺎﻟﺑﺔ إذا ﻛﺎﻧت اﻟﻣﺷﺎھدة اﻷوﻟﻰ أﺻﻐر ﻣن اﻟﻣﺷﺎھدة اﻟﺛﺎﻧﯾﺔ وﻧﮭﻣل اﻟزوج اﻟذي ﻓﯾﮫ اﻟﻣﺷﺎھدات ﻣﺗﺳﺎوﯾﺗﺎن .ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم H 0 : D 0 ﺿد اﻟﻔرض اﻟﺑدﯾل H1 : D 0أو اﻟﻔرض اﻟﺑدﯾل H1 : D 0أو اﻟﻔرض اﻟﺑدﯾل H1 : D 0ﻧﺗﺑﻊ ﻧﻔس اﻟﺧطوات اﻟﻣﺑﯾﻧﺔ ﻓﻲ اﺧﺗﺑﺎر اﻻﺷﺎرة ﻟﻌﯾﻧﺔ واﺣدة .
ﻣﺛﺎل)(١١-٧ ﯾﻌطﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ ﻛﻣﯾﺔ ﻣرﻛب ﻓﻲ دم ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن 21ﺣﯾوان ﻗﺑل وﺑﻌد إﻋطﺎﺋﮭم دواء ﻟﺗدﻋﯾم اﻟﻧﻘص ﻓﻲ دورة ﻣﺎ .اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم H 0 : D 0ﺿد اﻟﻔرض اﻟﺑدﯾل H1 : D 0وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05 اﻟﺣﯾوان ﻗﺑل xi ﺑﻌد yi إﺷﺎرة ) (x i yi 0 + + + + + + + + + + -
2.5 1.2 2.9 3.1 3.1 1.1 1.5 4.1 2.1 2.4 1.3 2.8 3.5 3.6 1.1 1.6 4.2 2.2 2.5 1.3 1.3
2.6 1.5 2.9 2.0 2.3 1.5 1.6 3.1 1.4 2.5 1.4 2.9 2.4 2.1 1.3 1.7 3.2 1.5 2.1 1.1 1.5 ٥٧٣
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
:اﻟﺣــل ( ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑقxi , yi ) ; i 1,2,...,n إ ِﺷﺎرات اﻟﻔروق ﺑﯾن أزواج اﻟﻣﺷﺎھدات ﻓﺈن ﻋدد اﻹﺷﺎرات اﻟﻣوﺟﺑﺔn 20 وﺑﻌد إھﻣﺎل اﻟﻔرق اﻟﻣﺳﺎوي ﻟﻠﺻﻔر وﺗﻌدﯾل ﺣﺟم اﻟﻌﯾﻧﺔ إﻟﻰ : إذا ﻛﺎﻧت 0.05 ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔH 0 ﻧرﻓض. k 10 P(K k n,0.5) . : ﻧﺣﺳب 10
P(K 10 20,0.5) b(x;20,0.5) 0.588. x 0
وﺑﻣﺎ. p 0.5 , n 20 ( ﻋﻧد١) ﺗﺳﺗﺧرج ﻣن ﺟدول ذي اﻟﺣدﯾن ﻓﻲ ﻣﻠﺣق0.588 ﺣﯾث أن اﻟﻘﯾﻣﺔ . H 0 ﻓﺈﻧﻧﺎ ﻧﻘﺑل0.05 أﻛﺑر ﻣن0.588 أن وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ . اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت Off[General::spell1]; <<Statistics`DiscreteDistributions` f[y_,m0_]:=Module[{}, If[y<m0,-1,If[y>m0,1,0]]] Options[npmSignTest]={sided->2}; npmSignTest[data_,m0_,opts___]:=Module[{m,n,signs,s,equalNum ber,tail,med,pval}, m=Length[data]; signs=Map[f[#,m0]&,data]; s=Count[signs,1]; equalNumber=Count[signs,0]; n=m-equalNumber; tail=sided/. {opts} /. Options[npmSignTest]; If[s<=n/2,pval=N[CDF[BinomialDistribution[n,1/2],s]],pv al=1-N[CDF[BinomialDistribution[n,1/2],s]]]; If[tail==2,pval=2*pval]; med=Median[data]//N; Print["Title: Sign Test"]; Print["Estimate: Sample Median -> ",med]; Print["Test Statistic: Number of Pluses is ",s]; Print["Distribution: BinomialDistribution[",n,",1/2]"]; Print[tail," - sided p-value -> ",pval]]; ٥٧٤
women={2.5,1.2,2.9,3.1,3.1,1.1,1.5,4.1,2.1,2.4,1.3,2.8,3.5,3 .6,1.1,1.6,4.2,2.2,2.5,1.3,1.3}; men={2.6,1.5,2.9,2,2.3,1.5,1.6,3.1,1.4,2.5,1.4,2.9,2.4,2.1,1 .3,1.7,3.2,1.5,2.1,1.1,1.5}; df[i_,list1_,list2_]:=list1[[i]]-list2[[i]] diffTable=Table[df[i,women,men],{i,1,Length[women]}] {-0.1,-0.3,0.,1.1,0.8,-0.4,-0.1,1.,0.7,-0.1,-0.1,0.1,1.1,1.5,-0.2,-0.1,1.,0.7,0.4,0.2,-0.2} npmSignTest[diffTable,0] Title: Sign Test Estimate: Sample Median -> 0. Test Statistic: Number of Pluses is 10 Distribution: BinomialDistribution[ 20 ,1/2] 2 - sided p-value -> 1.1762 npmSignTest[diffTable,0,sided1] Title: Sign Test Estimate: Sample Median -> 0. Test Statistic: Number of Pluses is 10 Distribution: BinomialDistribution[ 20 ,1/2] 1 - sided p-value -> 0.588099
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ
اﻟﺗﺎﻟﯾﺗﺎن
women واﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎهwomen اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎه women={2.5,1.2,2.9,3.1,3.1,1.1,1.5,4.1,2.1,2.4,1.3,2.8,3.5,3 .6,1.1,1.6,4.2,2.2,2.5,1.3,1.3}; men={2.6,1.5,2.9,2,2.3,1.5,1.6,3.1,1.4,2.5,1.4,2.9,2.4,2.1,1 .3,1.7,3.2,1.5,2.1,1.1,1.5};
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ npmSignTest[diffTable,0]
واﻟﻤﺨﺮج ھﻮ Title: Sign Test Estimate: Sample Median -> 0. Test Statistic: Number of Pluses is 10 Distribution: BinomialDistribution[ 20 ,1/2] 2 - sided p-value -> 1.1762
ﺣﯿﺚ اﻟوﺳﯾط ﻟﻠﻌﯾﻧﺔ ھو Estimate: Sample Median ->
0.
وﻋدد اﻻﺷﺎرات اﻟﻣوﺟﺑﺔ ھو Test Statistic: Number of Pluses is
10
ھﻰp-value وﻗﯾﻣﺔ 2
- sided p-value ->
1.1762 ٥٧٥
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0اﻣﺎ إذا ﻛﺎن اﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد اى اﻟﻣطﻠوب اﺧﺗﺑﺎر H 0 : D 0ﺿد اﻟﻔرض اﻟﺑدﯾل H1 : D 0او ) H1 : D 0وﻟﻠﻌﻠم اﻟﺑرﻧﺎﻣﺞ ﻻ ﯾﺣدد ھل اﻟﺧﺗﺑﺎر ﻣن اﻟﯾﻣﯾن او ﻣن اﻟﯾﺳﺎر( وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05 ﻓﺈﻧﻧﺎ ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ ]npmSignTest[diffTable,0,sided1
واﻟﻣﺧرج ھو Title: Sign Test Estimate: Sample Median -> 0. Test Statistic: Number of Pluses is 10 ]Distribution: BinomialDistribution[ 20 ,1/2 1 - sided p-value -> 0.588099
وﻗﯾﻣﺔ p-valueھﻰ 0.588099
>- sided p-value -
1
وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0
) (٩ -٧اﺧﺗﺑﺎر Mann – Whitney – Wilcoxon ﯾﺷﺗرط ﻓﻲ اﺧﺗﺑﺎر tاﻟ ذي ﯾﺧ ص اﻟﻔ رق ﺑ ﯾن ﻣﺗوﺳ طﻲ ﻣﺟﺗﻣﻌ ﯾن ،اﻟ ذي ﺗﻧﺎوﻟﻧ ﺎه ﻓ ﻲ اﻟﻔﺻ ل اﻟﺳﺎدس ،أن اﻟﻣﺟﺗﻣﻌﯾن اﻟﻠذﯾن اﺧﺗرﻧﺎ ﻣﻧﮭﻣ ﺎ اﻟﻌﯾﻧﺗ ﯾن ﯾﺗﺑﻌ ﺎن ﺗوزﯾﻌ ﺎ ً طﺑﯾﻌﯾ ﺎ ً .ﻋﻧ دﻣﺎ ﻻ ﯾﺗ وﻓر ھ ذا اﻟﺷرط ﻓﺈن اﺧﺗﺑﺎر Mann-Whitneyﯾﻛون اﻟﺑدﯾل . ﺗﺗﻛ ون اﻟﺑﯾﺎﻧ ﺎت اﻟﻼزﻣ ﺔ ﻟﻠﺗﺣﻠﯾ ل ﻣ ن ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م n1ﻣ ن اﻟﻣﺷ ﺎھدات x1, x 2 ,..., x nﻣن اﻟﻣﺟﺗﻣ ﻊ اﻷول اﻟﻣﺗﺻ ل .أﯾﺿ ﺎ ﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ أﺧ رى ﻣ ن اﻟﺣﺟ م n 2 ﻣن اﻟﻣﺷﺎھدات y1, y2 ,..., yn 2ﻣن اﻟﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻲ اﻟﻣﺗﺻل وﯾﺷﺗرط أن ﺗﻛون اﻟﻌﯾﻧﺗ ﯾن ﻣﺳ ﺗﻘﻠﺗﯾن. ﻓرض اﻟﻌدم واﻟﻔرض اﻟﺑدﯾل ﺳوف ﯾﻛوﻧﺎن ﻋﻠﻰ اﻟﺷﻛل : : H 0اﻟﻣﺟﺗﻣﻌﯾن ﻟﮭﻣﺎ ﻧﻔس اﻟﺗوزﯾﻊ . : H1ﻗﯾم xsﺗﺗﺟﮫ ﻷن ﺗﻛون أﺻﻐر ﻣن ﻗﯾم . ys ﻹﺟ راء اﻻﺧﺗﺑ ﺎر ﻧﻘ وم ﺑ دﻣﺞ ﻣﺷ ﺎھدات اﻟﻌﯾﻧﺗ ﯾن ﻣﻌ ﺎ ﻓ ﻲ ﻋﯾﻧ ﺔ واﺣ دة ﺛ م ﻧﻘ وم ﺑﺗرﺗﯾ ب اﻟﻣﺷﺎھدات ﺗﺻ ﺎﻋدﯾﺎ ً ﻓﻧﻌط ﻲ اﻟرﺗﺑ ﺔ 1ﻷﺻ ﻐر ﻣﺷ ﺎھدة واﻟرﺗﺑ ﺔ 2ﻟﻠﻣﺷ ﺎھدة اﻟﺗ ﻲ ﺗﻠﯾﮭ ﺎ ﻓ ﻲ اﻟﻌﯾﻧ ﺔ وھﻛ ذا ﺣﺗ ﻰ اﻟﻣﺷ ﺎھدة اﻷﺧﯾ رة واﻟﺗ ﻲ ﺗﻣﺛ ل أﻛﺑ ر ﻗﯾﻣ ﺔ ﺣﯾ ث ﺗﻌط ﻰ اﻟرﺗﺑ ﺔ . n1 n 2إذا ظﮭ رت ﻣﺷﺎھدات ﻣﺗﺳﺎوﯾﺔ ﻓﻲ اﻟﻌﯾﻧﺔ ) ﺗداﺧﻼت ( ﻓﺈﻧﻧﺎ ﻧرﺗب اﻟﻣﺷﺎھدات ﻛﻣﺎ ﻟو أﻧﮭﺎ ﻟﯾﺳ ت ﻓﯾﮭ ﺎ ﻣﺷ ﺎھدات ﻣﺗﺳﺎوﯾﺔ ﻓﻲ اﻟﻌﯾﻧﺔ ﺛم ﻧﺣﺳب اﻟوﺳط اﻟﺣﺳﺎﺑﻲ ﻟرﺗ ب اﻟﻣﺷ ﺎھدات ﻓ ﻲ ﻓﺋ ﺔ اﻟﻣﺷ ﺎھدات اﻟﻣﺗﺳ ﺎوﯾﺔ ﻓ ﻲ اﻟﻘﯾﻣﺔ وﻧﻌﺗﺑر اﻟوﺳط اﻟﺣﺳﺎﺑﻲ رﺗﺑﺔ ﻟﻛل ﻣﺷﺎھدة ﻓﻲ اﻟﻔﺋﺔ .ﻧﺣﺳب اﻟﻘﯾﻣﺔ : )n (n 1 w s 1 1 , 2 ﺣﯾث sﺗﻣﺛل ﻣﺟﻣوع اﻟرﺗ ب ﻟﻠﻌﯾﻧ ﺔ اﻟﻣﺧﺗ ﺎرة ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻷول و wﻗﯾﻣ ﺔ ﻟﻺﺣﺻ ﺎء Wوذﻟ ك ﺗﺣت ﻓرض أن H 0ﺻﺣﯾﺢ .ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض W w ﺣﯾ ث w ھ ﻲ ٥٧٦
اﻟﻘﯾﻣ ﺔ اﻟﺣرﺟ ﺔ ﻟﻺﺣﺻ ﺎء Wوﺗﺳ ﺗﺧرج ﻣ ن اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ ق ) (١١ﻋﻧ د n1 , n2وﻣﺳ ﺗوﯾﺎت ﻣﻌﻧوﯾ ﺔ ﻣﺧﺗﻠﻔ ﺔ .ﻟﻠﻔ رض اﻟﺑ دﯾل : H0ﻗ ﯾم xsﺗﺗﺟ ﮫ ﻷن ﺗﻛ ون أﻛﺑ ر ﻣ ن ﻗ ﯾم ysﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟرﻓض W w1ﺣﯾث w1ﺗﺣﺳب ﻛﺎﻟﺗﺎﻟﻲ : w1 n1n 2 w , ﻟﻠﻔ رض اﻟﺑ دﯾل : H1اﻟﻣﺟﺗﻣﻌ ﺎن ﯾﺧﺗﻠﻔ ﺎن ﺑﺎﻟﻧﺳ ﺑﺔ ﻟﻠﻣوﻗ ﻊ ،ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض W w أو 2
1
W w ﺣﯾث : 2
n1n 2 w . 2
2
w
1
ﻣﺛﺎل)(١٢-٧ ﯾﻌط ﻰ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ أزﻣﻧ ﺔ اﻟﻔﺷ ل ﻟﻧ وﻋﯾن ﻣ ن اﻷﺟﮭ زة اﻹﻟﻛﺗروﻧﯾ ﺔ واﻟﻣطﻠ وب اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم : H0اﻟﻣﺟﺗﻣﻌ ﯾن ﻟﮭﻣ ﺎ ﻧﻔ س اﻟﺗوزﯾ ﻊ ﺿ د اﻟﻔ رض اﻟﺑ دﯾل : H1اﻟﻣﺟﺗﻣﻌ ﯾن ﻟﯾس ﻟﮭﻣﺎ ﻧﻔس اﻟﺗوزﯾﻊ ) ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ .( 0.05 7 120 14 62 47 225 71 246 21 x 23 261 87 y 55 320 56 104 220 239 47 246 176 182 33
اﻟﺣــل: ﻣن اﻟﺟدول اﻟﺗﺎﻟﻰ ﯾﺗم ﺣﺳﺎب ﻣﺟﻣوع اﻟرﺗب ﻟﻠﻌﯾﻧﺔ اﻷوﻟﻲ وھﻲ . s 124 x 87 12
x 71 11 y 320 23
x 62 10 x 261 22
y Y 55 56 8 9 x Y 246 246 20.5 20.5
x 47 6.5 y 239 19
y 47 6.5 x 225 18
x 23 4 y 182 16
y 33 5 y 220 17
x 21 3 y 176 15
x 14 2 x 120 14
وﻋﻠﻰ ذﻟك ﻓﺈن : )n1 (n1 1 2 )12(12 1 124 2 124 78 46. w s
ﻣن اﻟﺟدول ﻓﻲ ﻣﻠﺣق ) (١١ﻓﺈن w 0.025 34ﻋﻧد n 2 11, n1 12وﺑﻣﺎ أن : w n1n 2 w , 2
2
٥٧٧
1
x 7 1 y 104 13
اﻟرﺗب اﻟرﺗب
ﻓﺈن : w 0.975 (12)(11) 34 98 . ﻣﻧطﻘ ﺔ اﻟ رﻓض W 98أو W 34وﺑﻣ ﺎ أن w 46ﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟﻘﺑ ول ﻧﻘﺑ ل . H 0 ﻋﻧدﻣﺎ n 2 ,n1أﻛﺑ ر ﻣ ن 20ﻓﺈﻧﻧ ﺎ ﻻ ﻧﺳ ﺗطﯾﻊ اﺳ ﺗﺧدام اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ ق ) (١١وﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﯾﻣﻛن ﺣﺳﺎب اﻟﻘﯾﻣﺔ : nn w 1 2 2 z . (n1n 2 )(n1 n 2 1) /12
واﻟﺗﻲ ﺗﻣﺛل ﻗﯾﻣﺔ ﻟﻠﻣﺗﻐﯾر اﻟﻌﺷواﺋﻲ Zوھو ﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ وذﻟ ك ﺗﺣ ت ﻓ رض أن H 0ﺻﺣﯾﺢ . ﺑﺎﻟﻧﺳﺑﺔ ﻟﻣﺷﻛﻠﺔ اﻟﺗداﺧﻼت واﻟﺗﻲ ﻗد ﺗﺣ دث داﺧل ﻛ ل ﻣﺟﻣوﻋ ﺔ أو ﺑ ﯾن ﻗ ﯾم اﻟﻣﺟﻣ وﻋﺗﯾن ﻓﻘ د ﺗ م إﺛﺑﺎت أن اﻟﺗداﺧﻼت داﺧل اﻟﻣﺟﻣوﻋﺔ ﻟﯾس ﻟﮭﺎ ﺗﺄﺛﯾر ﻋﻠﻰ ﻗﯾﻣﺔ اﻹﺣﺻﺎء وﻟﻛ ن وﺟ ود ﺗ داﺧﻼت ﺑ ﯾن اﻟﻣﺟﻣ وﻋﺗﯾن ﯾ ؤﺛر ﻋﻠ ﻰ اﻟﻧﺗ ﺎﺋﺞ .ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﻻ ﺑ د ﻣ ن ﻋﻣ ل ﺗﺻ ﺣﯾﺢ ﻟﻘﯾﻣ ﺔ zﺑﻔ رض أن u ﺗرﻣز ﻟﻌدد اﻟﺗداﺧﻼت ﻟرﺗب ﻣﻌطﺎة ﻓﺈن ﻣﻌﺎﻣل اﻟﺗﺻﺣﯾﺢ ﻟﻠﺗداﺧﻼت ﯾﺣﺳب ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ : )n1n 2 (u 3 u , )12(n1 n 2 )(n1 n 2 1 واﻟﺗﻲ ﺗطرح ﻣن اﻟﻣﻘﺎم ﻓﻲ ﺻﯾﻐﺔ zﺗﺣت اﻟﺟذر .وﻋﻠﻰ ذﻟك اﻟﻣﻘﺎم ﻓﻲ ﺻﯾﻐﺔ zﯾﺻﺑﺢ :
)(n1n 2 )(n1 n 2 1 )n1n 2 (u 3 u . 12 )12(n1 n 2 )(n1 n 2 1
ﻣﺛﺎل)(١٣-٧ ﻟﻣﻘﺎرﻧﺔ اﻟﻘﻠوﯾﺔ ﻓﻰ ﺑرﻛﺗﯾن )ﻣﻘﺎﺳﺔ ﺑﺎﻟﻣﻠﯾﺟرام ﻟﻛل ﻟﺗر( أﺧذت ﻋﯾﻧﺗﯾن ﻣن اﻟﺣﺟم 5ﻣ ن ﻛ ل ﺑرﻛﺔ .أﺳﺗﺧدم اﺧﺗﺑﺎر Wilcoxonﻟﺗﻘدﯾر ﻣﺎ إذا ﻛﺎن ھﻧ ﺎك ﻓ رق ﻣﻌﻧ وى ﻓ ﻰ اﻟﻘﻠوﯾ ﺔ ﺑ ﯾن اﻟﺑرﻛﺗﯾن: 102 116 122 112 104 اﻟﺑرﻛﺔ 1 108 117 115 120 105 اﻟﺑرﻛﺔ 2
اﻟﺣــل: w .250 3اﻟﻣﺳﺗﺧرﺟﮫ ﻣن اﻟﺟدول ﻓﻰ ﻣﻠﺣق ) (١١ﻋﻧد n1 5 ,
٥٧٨
n2 5 ,
وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ وﻟﻠﻌﻠﻢ ﻓﺈن اﻟﺒﺮﻧﺎﻣﺞ ﯾﺼﻠﺢ ﻓﻘﻂ ﻋﻨﺪ ﻋﺪم وﺟﻮد ﺗﺪاﺧﻼت. اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت
list1={102,116,122,112,104}; list2={108,117,115,120,105}; Off[General::spell1]; <<Statistics`DataManipulation` <<Statistics`NormalDistribution` rank[j_,xlist_]:=Module[{}, k=1; flag=0; xsort=Sort[xlist]; poslist=Position[xsort,xlist[[j]]]; k=poslist[[1,1]]; m=Length[poslist]; Sum[val,{val,k,k+m-1}]/m//N] reorder[list1_,list2_]:=Module[{len1,len2,newlist}, len1=Length[list1]; len2=Length[list2]; If[len1<=len2,newlist={list1,list2},newlist={list2,list 1}]; newlist] w-probability Clear[n,p] n[k_,n1_,n2_]:=1 /; k===n1*(n1+1)/2 && n2===0 n[k_,n1_,n2_]:=0 /;k!=n1*(n1+1)/2 && n2===0 n[k_,n1_,n2_]:=1 /; k===0 && n1===0 n[k_,n1_,n2_]:=0 /; k!=0 && n1===0 n[k_,n1_,n2_]:=0 /; k<n1*(n1+1)/2 n[k_,n1_,n2_]:=0 /; k>n1*(n1+2*n2+1)/2 n[k_,n1_,n2_]:=n[k,n1,n2]=n[k,n1,n2-1]+n[k-n1-n2,n1-1,n2] p[w_,n1_,n2_]:=Sum[n[k,n1,n2]/Binomial[n1+n2,n1],{k,n1*(n1+1 )/2,w}]//N Other Functions exactCalc[w_]:=Module[{}, If[w<=mn,onetail=p[w,n1,n2],onetail=1-p[w,n1,n2]]; If[tail==1,val=onetail,val=Min[2*onetail,1]]; val] normalApprox[w_,both_]:=Module[{fcount,tsum,numer,one,two,zS tat,dist,onetail,val}, u=w-(n1*(n1+1)/2); ٥٧٩
fcount=Frequencies[both]; tsum=Sum[fcount[[j,1]]^3fcount[[j,1]],{j,1,Length[fcount]}]; numer=u-n1*n2/2; one=n1*n2*(n1+n2+1)/12; two=n1*n2*tsum/(12*(n1+n2)*(n1+n2-1)); zStat=numer/Sqrt[one-two]; dist=NormalDistribution[0,1]; onetail=1-CDF[dist,Abs[zStat]]; If[tail==1,val=onetail,val=2*onetail]; N[val]] Options[npmMannWhitneyTest]={sided->2,mthd->approx}; Clear[npmMannWhitneyTest] npmMannWhitneyTest[list1_,list2_,opts___]:=Module[{}, tail=sided/. {opts} /. Options[npmMannWhitneyTest]; mtype=mthd/. {opts} /. Options[npmMannWhitneyTest]; sortList=reorder[list1,list2]; n1=Length[sortList[[1]]]; n2=Length[sortList[[2]]]; m1=Median[sortList[[1]]]//N; m2=Median[sortList[[2]]]//N; min=n1*(n1+1)/2; max=n1*(n1+2*n2+1)/2; mn=n1*(n1+n2+1)/2; var=n1*n2*(n1+n2+1)/12; both=Join[sortList[[1]],sortList[[2]]]; rank1=Table[{both[[k]],rank[k,both]},{k,1,Length[both]} ]; wTestStat=Sum[rank1[[j,2]],{j,1,Length[sortList[[1]]]}] ; u=wTestStat-(n1*(n1+1)/2); If[mtype==approx,pval=normalApprox[wTestStat,both]]; If[mtype==exact,pval=exactCalc[wTestStat]]; Print["Title: Mann-Whitney Test"]; Print["Sample Medians: ", m1,", ",m2]; Print["Test Statistic: ",u]; If[mtype==approx,Print["Distribution: Normal Approximation"]];If[mtype==exact,Print["Distribution: Exact"]]; Print[tail," - Sided PValue -> ",pval]] npmMannWhitneyTest[list1,list2] Title: Mann-Whitney Test ٥٨٠
Sample Medians: 112. , 115. Test Statistic: 10. Distribution: Normal Approximation 2 - Sided PValue -> 0.601508 npmMannWhitneyTest[list1,list2,mthd->exact] Title: Mann-Whitney Test Sample Medians: 112. , 115. Test Statistic: 10. Distribution: Exact 2
- Sided PValue ->
0.690476
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ : ﻗﺎﺋﻣﺔ ﺧﺎﺻﺔ ﺑﺎﻟﻣﺟﻣوﻋﺔ اﻻوﻟﻰ list1={102,116,122,112,104};
: ﻗﺎﺋﻣﺔ ﺧﺎﺻﺔ ﺑﺎﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ list2={108,117,115,120,105};
: ﺛﺎﻧﯾﺎ اﻟﻣﺧرﺟﺎت ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ npmMannWhitneyTest[list1,list2]
واﻟﻤﺨﺮج ھﻮ Title: Mann-Whitney Test Sample Medians: 112. , 115. Test Statistic: 10. Distribution: Normal Approximation 2 - Sided PValue -> 0.601508
ﺣﯿﺚ اﻟوﺳﯾط ﻟﻠﻌﯾﻧﺔ اﻻوﻟﻰ واﻟﺛﺎﻧﯾﺔ ﻋﻠﻰ اﻟﺗواﻟﻰ ھﻰ Sample Medians:
112. ,
115.
ﺑﺎﺳﺗﺧدام اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ ھوw واﻻﺣﺻﺎء Test Statistic: 10. Distribution: Normal Approximation
ھﻰp-value وﻗﯾﻣﺔ 2
- Sided PValue ->
0.601508
. H 0 ﻓﺈﻧﻧﺎ ﻧﻘﺑل0.05 وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن
اﻟﻣﺿﺑوط ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ﻣﻊ اﻟﻣﺧرجw واﻻﺣﺻﺎء npmMannWhitneyTest[list1,list2,mthd->exact] Title: Mann-Whitney Test Sample Medians: 112. , 115. Test Statistic: 10. Distribution: Exact 2
- Sided PValue ->
0.690476
Kruskal – Wallis ( اﺧﺗﺑﺎر١٠-٧) ٥٨١
ﯾﻌﺗﺑ ر اﺧﺗﺑ ﺎر Kruskal – Wallisﻣ ن أﻛﺛ ر اﻻﺧﺗﺑ ﺎرات اﻟﻼﻣﻌﻠﻣﯾ ﺔ ﺷ ﯾوﻋﺎ ً ﻹﺟ راء ﺗﺣﻠﯾ ل اﻟﺗﺑﺎﯾن ﻓﻲ ﺣﺎﻟﺔ اﻟﺗﺻﻧﯾف اﻷﺣﺎدي .ﺗﺗﻛون اﻟﺑﯾﺎﻧﺎت اﻟﻼزﻣ ﺔ ﻟﻠﺗﺣﻠﯾ ل ﻣ ن kﻣ ن اﻟﻌﯾﻧ ﺎت اﻟﻌﺷ واﺋﯾﺔ ﻣن اﻟﺣﺟم n1, n 2 ,...,n kﻋﻠﻰ أن ﺗﻛون اﻟﻣﺷﺎھدات ﻣﺳﺗﻘﻠﺔ ﺳواء ﺑﯾن أو داﺧل اﻟﻣﻌﺎﻟﺟﺎت ﻛﻣ ﺎ أن اﻟﻣﺟﺗﻣﻌ ﺎت اﻟﺗ ﻲ اﺧﺗﯾ رت ﻣﻧﮭ ﺎ اﻟﻌﯾﻧ ﺎت ﺗﻛ ون ﻣ ن اﻟﻧ وع اﻟﻣﺗﺻ ل .ﻓ رض اﻟﻌ دم واﻟﻔ رض اﻟﺑ دﯾل ﺳوف ﯾﻛوﻧﺎن ﻋﻠﻰ اﻟﺷﻛل : : H 0اﻟﺗوزﯾﻌﺎت ﻟﻠﻣﺟﺗﻣﻌﺎت اﻟﺗﻲ ﻋددھﺎ kﻣﺗطﺎﺑﻘﺔ . : H1اﻟﺗوزﯾﻌﺎت ﻟﻠﻣﺟﺗﻣﻌﺎت اﻟﺗﻲ ﻋددھﺎ kﻟﯾس ﻟﮭﺎ ﻧﻔس اﻟوﺳﯾط . ﻓﻲ ھذا اﻻﺧﺗﺑﺎر ﻧﻘوم ﺑدﻣﺞ ﻣﺷﺎھدات اﻟﻌﯾﻧﺎت ﻓﻲ ﻋﯾﻧﺔ واﺣدة وإﻋطﺎء رﺗ ب ﻟﮭ ذه اﻟﻣﺷ ﺎھدات ﺣﯾ ث R iﺗرﻣ ز إﻟ ﻰ ﻣﺟﻣ وع اﻟرﺗ ب ﻟﻠﻣﺷ ﺎھدات اﻟﺗ ﻲ ﺗﻧﺗﻣ ﻲ إﻟ ﻰ اﻟﻣﺟﻣوﻋ ﺔ رﻗ م iواﻟﺗ ﻲ ﻋ دد k
ﻣﺷﺎھداﺗﮭﺎ niﺣﯾث أن N n iﺗﻣﺛل اﻟﻌدد اﻟﻛﻠ ﻲ ﻟﻠﻣﺷ ﺎھدات اﻟﻧﺎﺗﺟ ﺔ ﻣ ن kﻣ ن اﻟﻌﯾﻧ ﺎت . i 1
ﻗﯾﻣﺔ اﻹﺣﺻﺎء اﻟذي ﯾﻌﺗﻣد ﻋﻠﯾﮫ ﻗرارﻧﺎ ھو : 2
k 12 1 n i (N 1) h R i , N(N 1) i 1 n i 2 واﻟﺗ ﻲ ﯾﻣﻛ ن ﺗﺑﺳ ﯾطﮫ ﺑﺎﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ : k R2 12 i h 3(N 1). N(N 1) i 1 n i ﺣﯾ ث أن hھ و ﻗﯾﻣ ﺔ ﻟﻺﺣﺻ ﺎء Hﺑ ﺎﻓﺗراض أن H 0ﺻ ﺣﯾﺢ .ﺗﺳ ﺗﺧرج اﻟﻘ ﯾم اﻟﺣرﺟ ﺔ ﻟﻺﺣﺻ ﺎء Hﻣن اﻟﺟدول ﻓﻲ ﻣﻠﺣق ) (١٢ﻋﻧد ﻣﺳﺗوﯾﺎت ﻣﺧﺗﻠﻔﺔ ﻣن اﻟﻣﻌﻧوﯾ ﺔ ﺑﺷ رط أن n i 5,i 1, 2,3 .إذا ﻛﺎﻧت اﻟﻘﯾﻣﺔ اﻟﻣﺣﺳوﺑﺔ اﻛﺑر ﻣن اﻟﻘﯾﻣﺔ اﻟﺣرﺟﺔ ﻧرﻓض ﻓ رض اﻟﻌ دم .إذا ﻛ ﺎن ﻋ دد اﻟﻌﯾﻧ ﺎت أو ﻋ دد اﻟﻣﺷ ﺎھدات داﺧ ل ﻛ ل ﻋﯾﻧ ﺔ ﻏﯾ ر ﻣﺗ وﻓر ﻓ ﻲ اﻟﺟ دول ﻓﻘ د وﺟ د ﺑﺎﻟﺑرھ ﺎن أن Hﺗﻘرﯾﺑ ﺎ ً ﺗﺗﺑ ﻊ 2ﺗﺣ ت ﺷ رط أن ﻋ دد اﻟﻣﺷ ﺎھدات ﻓ ﻲ ﻛ ل ﻋﯾﻧ ﺔ ﻻ ﺗﻘ ل ﻋ ن 5أي أن ﺗوزﯾ ﻊ
. n i 5,i 1, 2,..., kﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض X2 2ﺣﯾ ث أن 2 ﺗﺳﺗﺧرج ﻣن ﺟدول ﺗوزﯾﻊ 2ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ودرﺟ ﺎت ﺣرﯾ ﺔ . k 1ﻧ رﻓض H 0إذا وﻗﻌت hاﻟﻣﺣﺳوﺑﺔ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض. ﻓﻲ ﺣﺎﻟﺔ وﺟود ﺗداﺧﻼت ﻻ ﺑد ﻣن ﺗﺻﺣﯾﺢ اﻹﺣﺻﺎء Hإﻟﻰ اﻹﺣﺻﺎء H ﺣﯾث : H ) (u 3i u i H , C 1 C N3 N ﺣﯾث uiھو ﻋدد اﻟﻘﯾم ﻓﻲ ﻛل ﻓﺋﺔ ﺑﮭﺎ ﻗﯾم ﻣﺗﺳﺎوﯾﺔ و Nھﻲ اﻟﻘﯾﻣﺔ اﻟﻧﺎﺗﺟ ﺔ ﻣ ن دﻣ ﺞ اﻟﻌﯾﻧ ﺎت اﻟﺗ ﻲ k
ﻋددھﺎ kأي أن . N n iﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض H 2ﺣﯾث: i 1
٥٨٢
2
2
ﺗﺳ ﺗﺧرج ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ﻓ ﻲ ﻣﻠﺣ ق ) (٣ﺑ درﺟﺎت ﺣرﯾ ﺔ . k 1إذا وﻗﻌ ت h اﻟﻣﺣﺳوﺑﺔ ) (h hﻓﻲ ﻣﻧطﻘ ﺔ اﻟ رﻓض ﻧ رﻓض . H0إذا ﻛﺎﻧ ت اﻟﻘﯾم اﻟﻣﺗداﺧﻠ ﺔ ﻗﻠﯾﻠ ﺔ ﻓ ﻲ اﻟﻌﯾﻧ ﺎت ﻓﺈن H ﺗﻘﺗرب ﻣن . H
ﻣﺛﺎل)(١٤-٧ ﻓﻲ دراﺳﺔ ﻋﻠﻰ ﻧوع ﻣﻌﯾن ﻣن اﻟطﺣﺎﻟب ﻓﻲ ﺑﺣﯾرة ﺻﻐﯾرة ﻗﺎم ﺑﺎﺣث ﺑﻣﻘﺎرﻧ ﺔ اﻟﻧﺳ ﺑﺔ اﻟﻣﺋوﯾ ﺔ ﻟﻌ دد اﻟطﺣﺎﻟ ب ﻣ ن ﻧ وع ﻣ ﺎ ﻓ ﻲ ﻣﻧطﻘ ﺔ ﻣﺣ ددة ﺧ ﻼل ﻓﺻ ل اﻟرﺑﯾ ﻊ وﻣﻧﺗﺻ ف اﻟﺻ ﯾف وآﺧ ر اﻟﺧرﯾ ف واﻟﺑﯾﺎﻧﺎت ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : 9.6 11.2 11.6 11.7 12.8 12.9 15.8 22.7 24.6 32.5اﻟرﺑﯾﻊ % 32.8
26.4
25.6
24.6
21.1
9.6
9.2
7.6
7.6
4.8
11.7
11.3
10.7
10.2
9.5
8.8
8.0
7.1
6.5
5.4آﺧر اﻟﺧرﯾف %
ﻣﻧﺗﺻف اﻟﺻﯾف %
اﻟﺣــل: اﻟﻧﺗﺎﺋﺞ اﻟﻼزﻣﺔ ﻟﺣﺳﺎب hﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ Ri
11.5 15 17 18.5 20 21 22 24 25.5 29 203.5 اﻟرﺑﯾﻊ 1 5.5 5.5 9 11.5 23 25.5 27 28 30 166 ﻣﻧﺗﺻف اﻟﺻﯾف 2 3 4 7 8 10 13 14 16 18.5 95.5 آﺧر اﻟﺧرﯾف 2 2 R1 R 2 R 32 12 h ) 3(N 1 N(N 1) n1 n 2 n 3
12 203.52 1662 95.52 3(31) 7.759. 30(31) 10 10 10 وﻟوﺟود ﺗداﺧﻼت ﻻﺑد ﻣن ﺗﺣوﯾل hإﻟﻰ . hﻧﺣﺳب u 3 uﻟﻛل ﺗداﺧل ﺛم ﻧﺣﺳب ) (u3 uﻛﺎﻟﺗﺎﻟﻲ : (8 2) (8 2) (8 2) (8 2) 24 . ﻣﻌﺎﻣل اﻟﺗﺻﺣﯾﺢ ﯾﺣﺳب ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ :
٥٨٣
)(u 3 u 1 3 N N 24 1 0.9991, 27000 30 وﻋﻠﻰ ذﻟك :
7.759 7.76599. 0.9991 2 .05 5.992واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ 2ﻓ ﻲ ﻣﻠﺣ ق ) (٣ﻋﻧ د درﺟ ﺎت ﺣرﯾ ﺔ . k 1 3 1 2ﻣﻧطﻘ ﺔ اﻟ رﻓض . X2 > 5.992وﺑﻣ ﺎ أن h 7.76599ﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟرﻓض ﻧرﻓض . H 0 h
ﻣﺛﺎل)(١٥-٧ اﺳﺗﺧدﻣت ﺛﻼﺛﺔ ط رق ﺗﻌﻠﯾﻣﯾ ﺔ ﻣﺧﺗﻠﻔ ﺔ ﻟﺗﻌﻠ ﯾم ﺛﻼﺛ ﺔ ﻣﺟﻣوﻋ ﺎت ﻣﺗﺷ ﺎﺑﮭﺔ ﻣ ن اﻟطﻠﺑ ﺔ وﻛﺎﻧ ت درﺟﺎت اﻻﻣﺗﺣﺎن اﻟﻧﮭﺎﺋﻲ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ اﻟﻣﺟﻣوﻋﺔ A 20 37 39 41 45 53
48
46
43
اﻟﻣﺟﻣوﻋﺔ B
44
38
31
اﻟﻣﺟﻣوﻋﺔ C
ھل ﺗوﺟد ﻓروق ﻣﻌﻧوﯾﺔ ﺑﯾن اﻟطرق اﻟﺛﻼﺛﺔ ؟وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05
اﻟﺣــل: : H0ﺗوزﯾﻌﺎت اﻟﻣﺟﺗﻣﻌﺎت اﻟﺛﻼﺛﺔ اﻟﺗﻲ اﺧﺗﯾرت ﻓﯾﮭﺎ اﻟﻌﯾﻧﺎت اﻟﺛﻼﺛﺔ ﻣﺗطﺎﺑﻘﺔ . : H1ﺗوزﯾﻌﺎت اﻟﻣﺟﺗﻣﻌﺎت اﻟﺛﻼﺛﺔ ﻟﯾس ﻟﮭﺎ ﻧﻔس اﻟوﺳﯾط. ﻟﻠﺣﺻول ﻋﻠﻰ اﻟﻘﯾﻣﺔ hﺗم دﻣﺞ اﻟﺛﻼث ﻋﯾﻧﺎت ﻣﻌﺎ ووﺿﻊ رﺗب ﻟﻠﻌﯾﻧﺔ اﻟﻣﺷﺗرﻛﺔ وﺗﺣدﯾد رﺗب ﻛل ﻋﯾﻧﺔ واﻟﻧﺗﺎﺋﺞ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ.
Ri 24 40 14
9
6 12
اﻟرﺗــب 3 5 10 11 4 8
وﻋﻠﻰ ذﻟك ﻓﺈن ﻗﯾﻣﺔ hھﻲ :
٥٨٤
1 7 2
A B C
h
k R 12 i 3(N 1) N(N 1) i 1 n i
R12 R 22 R 32 12 3(N 1) N(N 1) n1 n 2 n 3 1 242 402 142 3(13) 13 5 4 3 1 .580.53 39 13 44.66 39 5.66. ) واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ قH اﻟﻘﯾﻣ ﺔ اﻟﺣرﺟ ﺔ ﻟﻺﺣﺻ ﺎء 0.05 ﻟﻣﺳﺗوى ﻣﻌﻧوﯾ ﺔ وﺑﻣ ﺎH 5.6308 ﻣﻧطﻘ ﺔ اﻟ رﻓض. n1 5 , n 2 4 , n 3 3 ﻋﻧ د5.6308 ( ھ ﻲ١٢ . H 0 ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓضh 5.66 أن وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ . اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت Off[General::spell1]; <<Statistics`DataManipulation` <<Statistics`NormalDistribution` rank[j_,xlist_]:=Module[{}, k=1; flag=0; xsort=Sort[xlist]; poslist=Position[xsort,xlist[[j]]]; k=poslist[[1,1]]; m=Length[poslist]; Sum[val,{val,k,k+m-1}]/m//N] Options[npmKruskalWallisTest]={mthd->approx};
٥٨٥
npmKruskalWallisTestsamples_, opts___ : Moduleflag, mtype mthd . opts . OptionsnpmKruskalWallisTest; flag 1; medianVals Map Median, samples; all Flattensamples; rank1 Tableallk, rankk, all, k, 1, Lengthall; n Lengthall; niVals MapLength, samples; k LengthniVals; totali_ : SumniValsj, j, 1, i; tj_, vals_ : Tablevalsi, i, totalj 1 1, totalj 1 niValsj; withRanks Tabletj, rank1, j, 1, LengthniVals; rankIm_ : SumwithRanksm, j, 2, j, 1, LengthwithRanks m; rankVals TablerankIj, j, 1, k; h N 12 nn 1SumrankValsj ^2 niValsj, j, 1, k 3n 1; approxPValh_ : Modulefcount, tsum, fcount Frequenciesall; tsum Sumfcountj, 1^3 fcountj, 1, j, 1, Lengthfcount; c N1 tsum n^3 n; hc h c; 1 ٥٨٦ k 1, hc; CDFChiSquareDistribution If And mtype exact, MaxniVals 5, flag 500; If mtype approx, pval approxPValh; If And mtype exact, flag 1,
altposition[h_,statTab_]:=Module[{}, diff[x_]:=Abs[h-x]; lessThanQ[x_]:=If[x<0.0005,True,False]; statVals=Transpose[statTab][[1]]; chopdfList=Map[diff,statVals]//Chop; tfTable=Map[lessThanQ,chopdfList]; posSet=Position[tfTable,True]] heat1={20,37,39,41,45}; heat2={43,46,48,53}; heat3 ={31,38,44}; threeheats={heat1,heat2,heat3}; npmKruskalWallisTest[threeheats,mthd->exact] Title: Kruskal Wallis Test Sample Medians: {39,47,38} Test Statistic: 5.65641 Distribution: Exact PValue -> exactCalc[5.65641] npmKruskalWallisTest[threeheats] Title: Kruskal Wallis Test Sample Medians: {39,47,38} Test Statistic: 5.65641 Distribution: Chi Square PValue ->
0.0591189
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ : ﻗﺎﺋﻣﺔ ﺧﺎﺻﺔ ﺑﺎﻟﻣﺟﻣوﻋﺔ اﻻوﻟﻰ heat1={20,37,39,41,45};
: ﻗﺎﺋﻣﺔ ﺧﺎﺻﺔ ﺑﺎﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ heat2={43,46,48,53};
: ﻗﺎﺋﻣﺔ ﺧﺎﺻﺔ ﺑﺎﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻟﺛﺔ heat3 ={31,38,44};
: ﺛﺎﻧﯾﺎ اﻟﻣﺧرﺟﺎت ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ npmKruskalWallisTest[threeheats]
واﻟﻣﺧرج ھو Title: Kruskal Wallis Test Sample Medians: {39,47,38} Test Statistic: 5.65641 Distribution: Chi Square PValue ->
0.0591189
٥٨٧
ﺣﯿﺚ اﻟوﺳﯾط ﻟﻠﻌﯾﻧﺔ اﻻوﻟﻰ واﻟﺛﺎﻧﯾﺔ واﻟﺛﺎﻟﺛﺔ ھﻣﺎ ﻣن }{39,47,38
Sample Medians:
واﻻﺣﺻﺎء اﻟﻣﻘدر ﺑﺎﺳﺗﺧدام ﺗوزﯾﻊ ﻣرﺑﻊ ﻛﺎى ھو 5.65641
Test Statistic:
وﻗﯾﻣﺔ p-valueھﻰ 0.0591189
>PValue -
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0ﯾﻼﺣظ ان اﻟﻘرار ھﻧﺎ ﯾﺧﺗﻠف ﻋن اﻟذى ﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﯾدوﯾﺎ وﻗد ﯾرﺟﻊ ذﻟك اﻟﻰ ﻋﻣﻠﯾﺔ اﻟﺗﻘرﯾب.
) (١١-٧اﺧﺗﺑﺎر ﻓرﯾدﻣﺎن ﻟﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻟﻠرﺗب ﻓﻲ اﺗﺟﺎھﯾن: ھو اﺧﺗﺑﺎر ﻻ ﻣﻌﻠﻣﻲ ﯾﻧﺎظر اﻻﺧﺗﺑﺎر اﻟﻣﻌﻠﻣﻲ ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻓﻲ اﺗﺟﺎھﯾن ،ﻧﻘوم ﻓﯾﮫ ﺑﺎﻟﺣﺳﺎﺑﺎت ﺑﺎﺳﺗﺧدام اﻟرﺗب اﻟﺗﻲ ﺗﻌطﻰ ﻟﻠﻣﺷﺎھدات ﻓﻲ ﻛل ﻗطﺎع. اﻟطرﯾﻘﺔ اﻟﻣﻘدﻣﺔ ﺑواﺳطﺔ ﻓرﯾدﻣﺎن ﯾﻣﻛﻧﻧﺎ اﺳﺗﺧداﻣﮭﺎ ﻋﻧدﻣﺎ ﯾﻛون ﻣن ﻏﯾر اﻟﻣرﻏوب ﻓﯾﮫ اﺳﺗﺧدام اﻻﺧﺗﺑﺎر اﻟﻣﻌﻠﻣﻲ ﻟﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻓﻲ اﺗﺟﺎھﯾن ،ﻣﺛﻼ ﻗد ﻻ ﯾرﻏب اﻟﺑﺎﺣث ﻓﻲ ﻓرض أن ﻣﺟﺗﻣﻌﺎت اﻟﻌﯾﻧﺎت ﺗﺗوزع طﺑﯾﻌﯾﺎ ،وھو ﺷرط اﻻﺳﺗﺧدام اﻟﺻﺣﯾﺢ ﻟﻼﺧﺗﺑﺎر اﻟﻣﻌﻠﻣﻲ ،أو رﺑﻣﺎ ﺗﻛون اﻟرﺗب ھﻲ اﻟﺗﺣﻠﯾل اﻟوﺣﯾد اﻟﻣﺗوﻓر.
اﻟﺷروط: /١ﻧﻔرض أن ﻟدﯾﻧﺎ ﺗﺻﻣﯾم ﻗطﺎﻋﺎت ﻛﺎﻣﻠﺔ اﻟﻌﺷواﺋﯾﺔ ﺗﺣﺗوي ﻋﻠﻰ bﻋﯾﻧﺔ ﻣﺳﺗﻘﻠﺔ ﺑﺎﻟﺗﺑﺎدل )ﻗطﺎﻋﺎت( ﺣﺟﻣﮭﺎ ، kﺗﻛون اﻟﺑﯾﺎﻧﺎت ﻣﻌروﺿﺔ ﻛﻣﺎ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ،ﺣﯾث اﻟرﻣز Xijﯾﻣﺛل اﻟﻣﺷﺎھد ة رﻗم jﻓﻲ اﻟﺻف رﻗم ، iوﺗﻣﺛل اﻷﻋﻣدة اﻟﻣﻌﺎﻟﺟﺎت أﻣﺎ اﻟﺻﻔوف ﻓﺗﻣﺛل اﻟﻘطﺎﻋﺎت ،وﻏﺎﻟﺑﺎ ﻣﺎ ﺗوﺿﻊ ﻓﻲ اﻟﺻﻔوف ﺑﻌض اﻟﻣﻌﺎﻟم ﻏﯾر اﻟﻣﮭﻣﺔ ﻣﺛل اﻟزﻣن ،وﯾﻛون اھﺗﻣﺎﻣﻧﺎ ھو اﻟﻔرق ﺑﯾن اﻷﻋﻣدة وﺳﻧﮭﻣل اﻟﻔرق ﺑﯾن اﻟﺻﻔوف ،وﻧﻔرض أن اﻟﻣﻌﺎﻟﺟﺎت ﺗﺗوزع ﻋﺷواﺋﯾﺎ داﺧل ﻛل ﻗطﺎع وﯾﻛون ھدﻓﻧﺎ ﻣﻌرﻓﺔ ھل ھﻧﺎك ﻓرق ﺑﯾن اﻟﻣﻌﺎﻟﺟﺎت أم ﻻ ،وإن وﺟد ﻧﺳﺗﺧدم أﺳﻠوب اﻟﻣﻘﺎرﻧﺎت اﻟﻣﺗﻌددة ﻟﻣﻌرﻓﺔ أي اﻟﻣﻌﺎﻟﺟﺎت اﻟﺳﺑب ﻓﻲ وﺟود ھذا اﻟﻔرق،وﺗﻌﺑﯾر اﻟﻣﻌﺎﻟﺟﺎت ﻟﮫ ﻣﻌﻧﻰ ﻋﺎم ﺟدا: رﺑﻣﺎ ﻧﻌﻧﻲ ﺑﮫ ﻣﻌﺎﻟﺟﮫ ﺑﺎﻟﻣﻌﻧﻰ اﻟﻌﺎدي ﻟﻠﻛﻠﻣﺔ ،أو رﺑﻣﺎ ﻧﻌﻧﻲ ﺑﮫ ﺑﻌض اﻟﺣﺎﻻت اﻷﺧرى ﻣﺛل اﻟﺣﺎﻟﺔ اﻻﺟﺗﻣﺎﻋﯾﺔ ،اﻻﻗﺗﺻﺎدﯾﺔ أو اﻟﻣﺳﺗوى اﻟﺗﻌﻠﯾﻣﻲ. /٢ﯾﺟب أن ﯾﻛون اﻟﻣﺗﻐﯾر اﻟﻣﮭم )ﺗﺣت اﻟدراﺳﺔ( ﻣﺗﺻل. /٣ﯾﺟب أن ﻻ ﯾوﺟد ﺗﻔﺎﻋل ﺑﯾن اﻟﻘطﺎﻋﺎت واﻟﻣﻌﺎﻟﺟﺎت)ﺑﯾن اﻟﺻﻔوف واﻷﻋﻣدة(. /٤اﻟﻣﺷﺎھدات داﺧل ﻛل ﻗطﺎع ﻣن اﻟﻣﻣﻛن أن ﺗﺣول إﻟﻰ رﺗب ﺗﺻﺎﻋدﯾﺔ. k
…
j
….
3
2
1
اﻟﻣﻌﺎﻟﺟﺔ اﻟﻘطﺎع
٥٨٨
x1k x 2k x 3k
x ik
x1j x2 j x3j
x13 x 23 x 33
x12 x 22 x 32
x11 x 21 x 31
x i3
x i2
x i1
x b3
x b2
x b1
1 2 3 . .
x ij
x
bk x bj ﻹﺟراء اﻻﺧﺗﺑﺎر ﻧﺿﻊ اﻟﻔروض اﻟﺗﺎﻟﯾﺔ :
i . . b
: H 0ﺗﺄﺛﯾر اﻟﻣﻌﺎﻟﺟﺎت داﺧل اﻟﻘطﺎﻋﺎت ﻣﺗﻣﺎﺛل. : H1ﻋﻠﻰ اﻷﻗل واﺣد ﻣن اﻟﻣﻌﺎﻟﺟﺎت ﯾﻣﯾل إﻟﻰ إﻋطﺎء ﻗﯾم أﻛﺑر ﻣن ﻣﻌﺎﻟﺟﮫ أﺧرى ﻋﻠﻰ اﻷﻗل).ﺗﺄﺛﯾر اﻟﻣﻌﺎﻟﺟﺎت ﻏﯾر ﻣﺗطﺎﺑق(. اﻟﺧطوة اﻷوﻟﻰ ﻓ ﻲ ﺣﺳ ﺎب إﺣﺻ ﺎﺋﻲ اﻻﺧﺗﺑ ﺎر ھ ﻲ ﺗﺣوﯾ ل اﻟﻣﺷ ﺎھدات اﻷﺻ ﻠﯾﺔ إﻟ ﻰ رﺗ ب )ھ ذه اﻟﺧطوة ﺑﺎﻟطﺑﻊ ﻟﯾﺳت ﺿرورﯾﺔ إذا ﻛﺎﻧت اﻟﻣﺷﺎھدات اﻷﺻﻠﯾﺔ رﺗﺑﺎ (. إذا ﻛ ﺎن H 0ﺻ ﺣﯾﺢ أي أن ﻛ ل اﻟﻣﻌﺎﻟﺟ ﺎت ﻟﮭ ﺎ ﺗ ﺄﺛﯾر ﻣﺗط ﺎﺑق ﻓ ﺄن اﻟرﺗﺑ ﺔ اﻟﺗ ﻲ ﺗظﮭ ر ﻓ ﻲ ﻋﻣ ود ﻣﻌﯾن ﺗﻛون ﻣﺟرد ﺻدﻓﺔ ،ﺑﻧﺎء ﻋﻠﻰ ھذا ﻓﺈﻧ ﮫ ﻋﻧ دﻣﺎ H 0ﺻ ﺣﯾﺢ ﻻ رﺗ ب ﺻ ﻐﯾرة وﻻ ﻛﺑﯾ رة ﯾﺟ ب أن ﺗﻣﯾ ل إﻟ ﻰ اﻟظﮭ ور ﻓ ﻲ ﻋﻣ ود ﻣﻌ ﯾن ،وھ ذا ﯾﻌﻧ ﻲ أن اﻟرﺗ ب ﻓ ﻲ أي ﻗط ﺎع ﯾﺟ ب أن ﺗﻛ ون ﻣوزﻋ ﺔ ﻋﺷواﺋﯾﺎ ﻋﻠﻰ اﻷﻋﻣدة )اﻟﻣﻌﺎﻟﺟ ﺎت ( ،أﻣ ﺎ إذا ﻛ ﺎن H 0ﺧ ﺎطﻰء ﻓﻧﺗوﻗ ﻊ اﻧﻌ دام ﻟﻠﻌﺷ واﺋﯾﺔ ﻓ ﻲ اﻟﺗوزﯾ ﻊ ،ﻓﺈذا ﻛﺎﻧت إﺣدى اﻟﻣﻌﺎﻟﺟﺎت أﻓﺿل ﻣن ﻏﯾرھﺎ ﻓﺈﻧﻧﺎ ﻧﺗوﻗﻊ رﺗب ﻛﺑﯾرة ﻟﮭذه اﻟﻣﻌﺎ ﻟﺟﺔ )اﻟﻌﻣود( . اﻟﺧط وة اﻟﺛﺎﻧﯾ ﺔ ﻓ ﻲ ﺣﺳ ﺎب إﺣﺻ ﺎﺋﻲ اﻻﺧﺗﺑ ﺎر ھ ﻲ إﯾﺟ ﺎد ﻣﺟ ﺎﻣﯾﻊ اﻟرﺗ ب ﻓ ﻲ ﻛ ل ﻋﻣ ود وﯾرﻣ ز ﻟﻣﺟﻣوع اﻟرﺗب ﻓﻲ اﻟﻌﻣود رﻗم iﺑﺎﻟرﻣز ، R iإذا ﻛﺎﻧ ت H 0ﺻ ﺣﯾﺣﺔ ﻧﺗوﻗ ﻊ أن ﺗﻛ ون اﻟﻣﺟ ﺎﻣﯾﻊ إﻟ ﻰ ﺣد ﻣﺎ ﻣﺗﻘﺎرﺑﺔ ﻓﻲ اﻟﺣﺟم ،ﺣﯾث أن اﻟﺗﻘﺎرب ﯾﺟﻌﻠﻧﺎ ﻧﺳﺗطﯾﻊ إرﺟﺎع اﻟﻔ رق ﻟﻠﺻ دﻓﺔ ،ﺑﯾﻧﻣ ﺎ ﻋﻧ دﻣﺎ ﯾﻛ ون اﺣد اﻟﻣﺟﺎﻣﯾﻊ ﻣﺧﺗﻠف ﻣﺎ ﻓﯾﮫ اﻟﻛﻔﺎﯾ ﺔ ﻓ ﻲ اﻟﺣﺟ م ﻋﻠ ﻰ اﻷﻗ ل ﻋ ن أﺣ د اﻟﻣﺟ ﺎﻣﯾﻊ اﻷﺧ رى ،ﻓﺈﻧﻧ ﺎ ﻧ رﻓض إرﺟ ﺎع اﻻﺧ ﺗﻼف ﻟﻠﺻ دﻓﺔ وﺣ دھﺎ ،ﻣﻣ ﺎ ﯾﻌﻧ ﻲ أن ھﻧ ﺎك ﺳ ﺑب آﺧ ر ﻟﻼﺧ ﺗﻼف أي أن ﻓ رض اﻟﻌ دم ﺧﺎطﺊ. اﻻﺧﺗﻼف ﻓﻲ اﻟﺣﺟم ﺑﯾن ﻣﺟﺎﻣﯾﻊ اﻟرﺗب ﺑدرﺟﺔ ﻛﺎﻓﯾﺔ ﯾﻌطﻲ ارﺗﻔﺎﻋﺎ ﻓ ﻲ ﻗﯾﻣ ﺔ إﺣﺻ ﺎﺋﻲ اﻻﺧﺗﺑ ﺎر ﺑدرﺟﺔ ﻛﺑﯾرة ﻛﻔﺎﯾﺔ أﯾﺿﺎ ﻣﻣﺎ ﯾﺳﺑب ﻓﻲ رﻓض . H 0 ﺻﯾﻐﺔ إﺣﺻﺎﺋﻲ اﻻﺧﺗﺑﺎر ھﻲ : k 12 2 R j 3b(k 1). bk(k 1) j1
٥٨٩
2r
ﻋﻧدﻣﺎ ﺗﻛون ﻛﻼ ﻣن bو kﺻﻐﯾرة ﻧﻘﺎ رن اﻟﻘﯾﻣ ﺔ اﻟﻣﺣﺳ وﺑﺔ 2rﻣ ﻊ اﻟﻘﯾﻣ ﺔ اﻟﺣرﺟ ﺔ اﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن اﻟﺟدول اﻟﺧﺎص ﺑﺎﺧﺗﺑﺎر ﻓرﯾ دﻣﺎن ﺑﻣﻌﻠوﻣﯾ ﺔ ﻛ ل ﻣ ن bو kو ، ﻓ ﺈذا ﻛﺎﻧ ت اﻟﻘﯾﻣ ﺔ اﻟﻣﺣﺳ وﺑﺔ أﻛﺑ ر 2 ﻣن أو ﺗﺳﺎوي اﻟﻘﯾﻣﺔ اﻟﺟدوﻟﯾﺔ ، rﻓﺈﻧﻧﺎ ﻧرﻓض H 0ﻋﻧد ﻣﺳﺗو ى ﻣﻌﻧوﯾﺔ . ﻋﻧدﻣﺎ ﻻ ﺗﺷﻣل ﺟداول ﻓرﯾدﻣﺎن ﻋﻠ ﻰ ﻗﯾﻣ ﺔ kو bأﺣ دھﻣﺎ أو ﻛﻼھﻣ ﺎ ﻓﺈﻧﻧ ﺎ ﻧﺳ ﺗﺧدم ﺟ داول ﻣرﺑ ﻊ ﻛ ﺎي
ﻹﯾﺟ ﺎد اﻟﻘﯾﻣ ﺔ اﻟﺣرﺟ ﺔ ﻋﻧ د درﺟ ﺔ ﺣرﯾ ﺔ) (k-1وﻧ رﻓض H0ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ إذا ﻛﺎﻧ ت 2r 2 (1ﺑدرﺟﺎت ﺣرﯾﺔ ).(k-1 اﻟﻣﺣﺳوﺑﺔ ﻣن اﻟﺑﯾﺎﻧﺎت أﻛﺑر ﻣن أو ﺗﺳﺎوي اﻟﻘﯾﻣﺔ اﻟﺟدوﻟﯾﺔ ﻟـ )
ﻋﻧدﻣﺎ ﺗظﮭر اﻟﺗداﺧﻼت ﯾﻣﻛﻧﻧﺎ ﺗﻌدﯾل إﺣﺻﺎﺋﻲ اﻻﺧﺗﺑﺎر ﻟﯾﺄﺧذ اﻟﺗداﺧﻼت ﻓ ﻲ اﻟﺣﺳ ﺎب ﻣﻣ ﺎ ﯾ ؤدي b Ti 1 ﺣﯾ ث أن إﻟ ﻰ ﺗﺣﺳ ﯾن اﻟﻧﺗ ﺎﺋﺞ ودﻗ ﺔ اﻻﺧﺗﺑ ﺎر ،وﯾﻛ ون ذﻟ ك ﺑﻘﺳ ﻣﺔ 2ﻋﻠ ﻰ 2 )i 1 bk(k 1 3
، Ti ti t iو = t iﻋدد اﻟﻣﺷﺎھدات اﻟﻣﺗداﺧﻠﺔ ﻟرﺗﺑﺔ ﻣﻌﯾﻧﺔ ﻓﻲ اﻟﻘط ﺎع رﻗ م ) iﻣ ﻊ ﻣﻼﺣظ ﺔ أﻧﻧﺎ ﻧﮭﺗم ﺑﺎﻟﺑﯾﺎﻧﺎت اﻟﻣﺗداﺧﻠﺔ ﻓﻲ اﻟﻘطﺎع ﻓﻘط( . وﻷن اﻟﺗﺻﺣﯾﺢ ﻓﻲ ﺣﺎﻟﺔ اﻟﺗداﺧﻼت ﯾﺟﻌل اﻟﻘﯾﻣﺔ اﻟﻣﺣﺳوﺑﺔ أﻛﺑر ﻓﻼ ﯾﻛون ﻣن اﻟﺿروري ﺗﺻﺣﯾﺢ ﻗﯾﻣﺔ إﺣﺻﺎﺋﻲ اﻻﺧﺗﺑﺎر ﻋﻧدﻣﺎ ﺗﻛون ﻛﺑﯾرة ﺑدرﺟﺔ ﻛﺎﻓﯾﺔ ﺗﺳﺑب رﻓض ﻓرض اﻟﻌدم. ﻋﻧد رﻓض ﻓرض اﻟﻌ دم وﻗﺑ ول اﻟﻔ رض اﻟﺑ دﯾل ﻓ ﺈن ھ دﻓﻧﺎ ھ و ﺗﺣدﯾ د أي اﻟﻣﻌﺎﻟﺟ ﺎت ھ ﻲ اﻟﺳ ﺑب ﻓ ﻲ وﺟ ود ھ ذا اﻟﻔ رق وﻟﮭ ذا ﻧﺟ ري اﺧﺗﺑ ﺎر اﻟﻣﻘﺎرﻧ ﺎت اﻟﻣﺗﻌ ددة ،ﺣﯾ ث أن اﻟﺣ د اﻷﻋﻠ ﻰ ﻟﻠﻔ رق ﺑ ﯾن ﻣﺟﺎﻣﯾﻊ اﻟرﺗب ھو:
)bk(k 1 , 6
z
ﺣﯾث أن zھﻲ اﻟﻘﯾﻣﺔ اﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ: 1 . )k(k 1
ﻣﺛﺎل)(١٦-٧ طﺑﻘت ﺛﻼث طرق ﻟﻔﺣص ﻣﻘدار ﺧﻣﯾ رة اﻟﻧﺷ ﺎ ﻋﻠ ﻰ ﻋ دة ﻣرﺿ ﻰ ﻣﺻ ﺎﺑون ﺑﺈﻟﺗﮭ ﺎب اﻟﺑﻧﻛرﯾ ﺎس وﻛﺎﻧت اﻟﻧﺗﺎﺋﺞ ﻛﻣﺎ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ،وﻧرﻏب ﻓﻲ ﻣﻌرﻓﺔ ﻣﺎ إذا ﻛﺎﻧت ھذه اﻟﺑﯾﺎﻧ ﺎت ﺗﺷ ﯾر إﻟ ﻰ اﺧﺗﻼف ﺑﯾن اﻟطرق اﻟﺛﻼﺛﺔ أم ﻻ. A B C طرﯾﻘﺔ اﻟﻔﺣص اﻟﺷﺧص 6120 2410 2210 2060 1400 249 224 208 227
3210 1040 647 570 445 156 155 99 70
٥٩٠
4000 1600 1600 1200 840 352 224 200 184
1 2 3 4 5 6 7 8 9
اﻟﺣــل: : H 0اﻟطرق اﻟﺛﻼﺛﺔ ﺗﻌطﻲ ﻧﺗﺎﺋﺞ ﻣﺗطﺎﺑﻘﺔ. : H1ﯾوﺟد ﻋﻠﻰ اﻷﻗل ﻣﻌﺎﻟﺟﺔ ﻣﺧﺗﻠﻔﺔ. اﻷﺷﺧﺎص ﻓﻲ ھذا اﻟﻣﺛﺎل ھم اﻟﻘطﺎﻋﺎت إذن ، b 9ﺣﯾث إﻧﻧﺎ ﻧﺟري اﻟﻔﺣص ﻟﻛل ﺷﺧص ﺑﺛﻼﺛﺔ طرق إذن ﻟدﯾﻧﺎ ، k 3ﻋﻧدﻣﺎ ﻧﺳﺗﺑدل اﻟﻘﯾﺎﺳﺎت اﻷﺻﻠﯾﺔ اﻟﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق ﺑرﺗﺑﺗﮭﺎ ﻧﺣﺻل ﻋﻠﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ. A B C طرﯾﻘﺔ اﻟﻔﺣص اﻟﺷﺧص 1 2 1 3 2 2 1 3 3 2 1 3 4 2 1 3 5 2 1 3 6 3 1 2 7 2.5 1 2.5 8 2 1 3 9 2 1 3 R A 19.5 R B 9 R C 25.5 إذن ﯾﺻﺑﺢ ﻟدﯾﻧﺎ إﺣﺻﺎﺋﻲ اﻻﺧﺗﺑﺎر) ﺑدون ﺗﺻﺣﯾﺢ اﻟﺗداﺧﻼت(:
12 ((19.5)2 92 (25.5)2 ) 3(9)(3 1) 15.5. )9(3)(3 1 وﺑﻣﻘﺎرﻧﺔ ھذه اﻟﻘﯾﻣﺔ ﻣﻊ اﻟﻘﯾﻣﺔ اﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟداول ﻣرﺑﻊ ﻛﺎي ﻋﻧد درﺟﺔ ﺣرﯾﺔ ) (2وھﻲ 5.992 ﻋﻧد 0.05ﻧﺟد أن اﻟﻘﯾﻣﺔ اﻟﻣﺣﺳوﺑﺔ أﻛﺑر ﻣن اﻟﻘﯾﻣﺔ اﻟﺟدوﻟﯾﺔ ،ﻣﻣﺎ ﯾﻌﻧﻲ إﻧﻧﺎ ﻧرﻓض ﻓرض اﻟﻌدم وﻧﺳﺗﻧﺗﺞ أن طرق اﻟﺗﺣﻠﯾل اﻟﺛﻼﺛﺔ ﻻ ﺗﻌطﻲ ﻧﻔس اﻟﻧﺗﺎﺋﺞ. وﻟﻣﻌرﻓﺔ أي اﻟﻣﻌﺎﻟﺟﺎت ھﻲ اﻟﺳﺑب ﻓﻲ وﺟود ھذا اﻟﻔرق ﻧﻘوم ﺑﺎﻻﺗﻲ: ﺣﯾث أن ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ 0.01ﻓﺈن: 0.01 1 0.02, k(k 1) )3(2 وﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻧﺟد أن z 2.05وﺑﺎﻟﺗﺎﻟﻲ ﯾﻛون اﻟﺣد اﻷﻋﻠﻰ ھو: 2r
)2 bk(k 1) / 6 = 2.05 9(3)(4
8.697. 6 ﻧﺣﺳب اﻟﻔروق اﻟﻣطﻠﻘﺔ ﺑﯾن ﻣﺟﺎﻣﯾﻊ اﻟرﺗب وھﻲ:
R A R B 10.5. R A RC 6 R B R C 16.5 ﻧﺟد أن اﻟﻔرق ﺑﯾن اﻟﻣﻌﺎﻟﺟﺔ اﻷوﻟﻰ واﻟﺛﺎﻧﯾﺔ أﻛﺑر ﻣن اﻟﺣد اﻷﻋﻠﻰ ،وﻛ ذﻟك اﻟﻔ رق ﺑ ﯾن اﻟﻣﻌﺎﻟﺟ ﺔ اﻟﺛﺎﻧﯾ ﺔ واﻟﺛﺎﻟﺛﺔ أﯾﺿﺎ أﻛﺑر ﻣن اﻟﺣد اﻷﻋﻠﻰ ،وﻟﻛن ﻻﯾوﺟد ﻓرق ﺑﯾن اﻟطرﯾﻘﺔ . C , A ٥٩١
وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ . اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت Off[General::spell1]; <<Statistics`DataManipulation` <<Statistics`NormalDistribution` <<DiscreteMath`Combinatorica` rank[j_,xlist_]:=Module[{}, k=1; flag=0; xsort=Sort[xlist]; poslist=Position[xsort,xlist[[j]]]; k=poslist[[1,1]]; m=Length[poslist]; Sum[val,{val,k,k+m-1}]/m//N] Options[npmFriedmanTest]={mthd->chiSquare}; npmFriedmanTest[blocks_,opts___]:=Module[{}, mtype=mthd/. {opts} /. Options[npmFriedmanTest]; flag=1; b=Length[blocks]; k=Length[blocks[[1]]]; pairOfVals={k,b}; possiblePairs={{3,2},{3,3},{3,4},{3,5},{3,6},{3,7},{3,8 },{3,9},{3,10},{3,11},{3,12},{3,13},{3,14},{3,15},{4,2},{4,3 },{4,4},{4,5},{4,6},{4,7},{4,8},{5,3}}; tSumsForLists[vec_]:=Sum[vec[[j,1]]^3vec[[j,1]],{j,1,Length[vec]}]; If[And[MemberQ[possiblePairs,pairOfVals]==False,mtype== exact],flag=200]; If[flag==200,Print["The values of k = ",k," and b = ",b," exceed the limitations of this procedure to compute an exact PValue. An appromimate value may be determined using the Chi Square Distribution or F Distribution."]]; If[k==2,Print["For two treatments (k=2) use the Sign Test or Wilcoxon Signed-Ranks Test."]]; If[k==2,flag=100]; If[b==2,Print["For two blocks (b=2) use an analysis based on the Spearman rank correlation coefficient."]]; If[b==2,flag==100]; If[flag<100,trans=Transpose[blocks]]; If[flag<100,medianVals=Map[Median,trans]//N]; If[flag<100,allVals=Flatten[blocks]]; If[flag<100,fcount=Map[Frequencies,blocks]];
٥٩٢
If[flag<100,tb=Table[tSumsForLists[fcount[[i]]],{i,1,Le ngth[fcount]}]]; If[flag<100,tsum=Sum[tb[[j]],{j,1,Length[fcount]}]]; rankBlock[blk_]:=Table[{blk[[k]],rank[k,blk]},{k,1,Leng th[blk]}]; If[flag<100,rankBlockTable=Table[rankBlock[blocks[[j]]] ,{j,1,b}]]; rowTotal[i_]:=Sum[rankBlockTable[[j,i,2]],{j,1,Length[r ankBlockTable]}]; If[flag<100,rTotals=Table[rowTotal[i],{i,1,Length[rankB lockTable[[1]]]}]]; If[And[flag<100,mtype==exact],testStat=12/(b k(k+1))*Sum[rTotals[[j]]^2,{j,1,Length[rTotals]}]-3 b(k+1)]; If[And[flag<100,mtype==exact],pVal=exactTable[testStat, k,b]]; If[And[flag<100,mtype==chiSquare],testStat=(12/(b k(k+1)) Sum[rTotals[[j]]^2,{j,1,Length[rTotals]}]-3 b(k+1))/(1-tsum/(b(k^3-k)))]; fcStat:=Module[{chisq}, chisq=(12/(b k(k+1)) Sum[rTotals[[j]]^2,{j,1,Length[rTotals]}]-3 b(k+1))/(1tsum/(b(k^3-k))); (b-1) chisq/(b(k-1)-chisq)]; If[And[flag<100,mtype==Fdist],testStat=fcStat]; If[And[flag<100,mtype==chiSquare],pVal=1CDF[ChiSquareDistribution[k-1],testStat]]; If[And[flag<100,mtype==Fdist],pVal=1CDF[FRatioDistribution[k-1,(k-1)(b-1)],testStat]]; If[flag<100,Print["Title: Friedman Test"]]; If[flag<100,Print["Sample Medians: ",medianVals]]; If[flag<100,Print["Test Statistic: ",testStat]]; If[And[flag<100,mtype==exact],Print["Distribution: Exact"]]; If[And[flag<100,mtype==chiSquare],Print["Distribution: ChiSquare[",k-1,"]"]]; If[And[flag<100,mtype==Fdist],Print["Distribution: FRatioDistribution[",(k-1)*(b-1),"]"]]; If[flag<100,Print["PValue: ",pVal]]] exactTable[t_,k_,b_]:=Module[{wStat}, ٥٩٣
wStat=t/(b (k-1)); If[And[k==3,b==2],tb=tabk3b2]; If[And[k==3,b==3],tb=tabk3b3]; If[And[k==3,b==4],tb=tabk3b4]; If[And[k==3,b==5],tb=tabk3b5]; If[And[k==3,b==6],tb=tabk3b6]; If[And[k==3,b==7],tb=tabk3b7]; If[And[k==3,b==8],tb=tabk3b8]; If[And[k==3,b==9],tb=tabk3b9]; If[And[k==3,b==10],tb=tabk3b10]; If[And[k==3,b==11],tb=tabk3b11]; If[And[k==3,b==12],tb=tabk3b12]; If[And[k==3,b==13],tb=tabk3b13]; If[And[k==3,b==14],tb=tabk3b14]; If[And[k==3,b==15],tb=tabk3b15]; If[And[k==4,b==2],tb=tabk4b2]; If[And[k==4,b==3],tb=tabk4b3]; If[And[k==4,b==4],tb=tabk4b4]; If[And[k==4,b==5],tb=tabk4b5]; If[And[k==4,b==6],tb=tabk4b6]; If[And[k==4,b==7],tb=tabk4b7]; If[And[k==4,b==8],tb=tabk4b8]; If[And[k==5,b==3],tb=tabk5b3]; eps=10^-3;check[x_,tab_,m_]:=If[Abs[Chop[xtab[[m,1]]]]<eps,True,False]; tfTab=Table[check[wStat,tb,m],{m,1,Length[tb]}]; If[MemberQ[tfTab,True],pos=Position[tfTab,True][[1,1]], pos=Length[tfTab]]; tb[[pos,2]]] Exact Tables emotions={{4000,3210,6120},{1600,1040,2410},{1600,647,2210}, {1200,570,2060},{840,445,1400},{352,156,249},{224,155,224},{ 200,99,208},{184,70,227}}; npmFriedmanTest[emotions] Title: Friedman Test Sample Medians: {840.,445.,1400.} Test Statistic: 15.9429 Distribution: ChiSquare[ 2 ] PValue: 0.000345186 npmFriedmanTest[emotions,mthd->exact] Title: Friedman Test Sample Medians: {840.,445.,1400.} Test Statistic: 15.5 Distribution: Exact PValue: 0. npmFriedmanTest[emotions,mthd->Fdist] ٥٩٤
Title: Friedman Test }Sample Medians: {840.,445.,1400. Test Statistic: 62. ] Distribution: FRatioDistribution[ 16 PValue: 2.91029 108
وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ : اوﻻ :اﻟﻣدﺧﻼت ﻗﺎﺋﻣﺔ ﺧﺎﺻﺔ ﺑﺎﻟﻣﺟﻣوﻋﺔ اﻻوﻟﻰ : ;}heat1={20,37,39,41,45
ﻗﺎﺋﻣﺔ ﺧﺎﺻﺔ ﺑﺎﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ : ;}heat2={43,46,48,53
ﻗﺎﺋﻣﺔ ﺧﺎﺻﺔ ﺑﺎﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻟﺛﺔ : ;}heat3 ={31,38,44
ﺛﺎﻧﯾﺎ :اﻟﻣﺧرﺟﺎت ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ]npmKruskalWallisTest[threeheats
واﻟﻤﺨﺮج ھﻮ Title: Kruskal Wallis Test }Sample Medians: {39,47,38 Test Statistic: 5.65641 Distribution: Chi Square 0.0591189
>PValue -
ﺣﯿﺚ اﻟوﺳﯾط ﻟﻠﻌﯾﻧﺔ اﻻوﻟﻰ واﻟﺛﺎﻧﯾﺔ واﻟﺛﺎﻟﺛﺔ ھﻣﺎ }{39,47,38
Sample Medians:
5.65641
Test Statistic:
واﻻﺣﺻﺎء اﻟﻣﻘدر ﺑﺎﺳﺗﺧدام ﺗوزﯾﻊ ﻣرﺑﻊ ﻛﺎى ھو وﻗﯾﻣﺔ p-valueھﻰ 0.0591189
>PValue -
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧرﻓض . H 0 وﺑﻧﻔس اﻟطرﯾﻘﺔ ﯾﻣﻛن ﺗﻔﺳﯾر اﻻواﻣر اﻻﺧرى واﻟﺗﻰ ﺗﺷرح طرق اﺧرى .
)(١٢-٧اﺧﺗﺑﺎر ﻛوﻛران ﻟﻠﻌﯾﻧﺎت اﻟﻣرﺗﺑطﺔ اﺧﺗﺑ ﺎر ﻛ وﻛران ﯾﺗﻌﻠ ق ﺑ ﺄﻛﺛر ﻣ ن ﻋﯾﻧﺗ ﯾن ﻏﯾ ر ﻣﺳ ﺗﻘﻠﺗﯾن ،وﻣ ن اﻟﻧﺎﺣﯾ ﺔ اﻟﻌﻣﻠﯾ ﺔ ﯾﺻ ﻌب ﻋﻠ ﻰ اﻟﺑﺎﺣ ث أن ﯾﺣﻘ ق ﺷ رط اﻻﺳ ﺗﻘﻼل ﺑ ﯾن وداﺧ ل اﻟﻣﻌﺎﻟﺟ ﺎت وﯾﻛ ون أﺳ ﮭل ﻟ ﮫ أن ﺗﻛ ون ﻟدﯾ ﮫ وﺣ دات ﻣﺗﺷﺎﺑﮭﺔ ﺗﻣﺎﻣﺎ ً ﻓﯾﻣﺎ ﺑﯾﻧﮭﺎ وﯾﺗم ﺗﻘﺳﯾﻣﮭﺎإﻟﻰ ﻣﺟﻣوﻋﺎت وﯾﺳﺗﺧدم ﻓﻲ ﻛل ﻣﺟﻣوﻋﺔ ﻣﻌﺎﻟﺟ ﺔ ﻣﺧﺗﻠﻔ ﺔ وﺑﻌ د اﻧﺗﮭ ﺎء اﻟﺗﺟرﺑ ﺔ ﻧﺑﺣ ث ﻋ ن ﺗ ﺄﺛﯾر اﻟﻣﻌﺎﻟﺟ ﺎت ھ ل ھ و ﻣﺧﺗﻠ ف أو ﻣﺗﺳ ﺎوي ،ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﺷ رط ﻻﺳﺗﻘﻼل ﯾﻛون ﻏﯾ ر ﻣﺗﺣﻘ ق واﻟﻧﺗ ﺎﺋﺞ ﻓ ﻲ ﺣﺎﻟﺗﻧ ﺎ ھ ذه ﺗﺗﺷ ﺎﺑﮫ ﻣ ﻊ ﺗﺻ ﻣﯾم اﻟﻘطﺎﻋ ﺎت اﻟﻛﺎﻣﻠ ﺔ اﻟﻌﺷ واﺋﯾﺔ
٥٩٥
ﺣﯾث ﺗﻣﺛل ﻓﯾﮭﺎ اﻷﻋﻣدة اﻟﻣﻌﺎﻟﺟ ﺎت وﯾﻣﺛ ل اﻟﺻ ﻔوف ﻣﺟﻣوﻋ ﺎت ﻣ ن اﻟﻌﯾﻧ ﺎت اﻟﻐﯾ ر ﻣﺳ ﺗﻘﻠﺔ وﻏﺎﻟﺑ ﺎ ً ﻣ ﺎ ﺗﺿﻊ ﻓﻲ اﻟﺻﻔوف ﺑﻌض اﻟﻣﻌﺎﻟم اﻟﻐﯾر ﻣﮭﻣﺔ ﻣﺛل ﻋﺎﻣل اﻟزﻣن) ،اﻟﯾوم ،اﻟﺷﮭر ،اﻟﺳﻧﺔ(. ﻋﻧدﻣﺎ ﯾﻛون ﻟدﯾﻧﺎ ﺗﺻﻣﯾم اﻟﻘطﺎﻋﺎت اﻟﻛﺎﻣﻠﺔ اﻟﻌﺷواﺋﯾﺔ وﻋﻧدﻣﺎ ﺗﻛون وﺣدة اﻟﻘﯾ ﺎس اﺳ ﻣﯾﺔ ﻓﺈﻧ ﮫ ﯾﻣﻛ ن اﺧﺗﺑﺎر ھل ھﻧﺎك ﻓرﻗﺎ ً ﺑﯾن اﻟﻣﻌﺎﻟﺟﺎت أم ﻻ وذﻟك ﺑﺎﺳﺗﺧدام اﺧﺗﺑﺎر ﻛوﻛران .وﯾﺟرى اﻻﺧﺗﺑﺎر ﻛﺎﻟﺗﺎﻟﻲ: ﯾﺟب ﺗﻘﺳم اﻟوﺣدات إﻟﻰ أﻋﻣدة وﺻﻔوف وﻋﻠﯾﻧﺎ ﻓرض أن اﻟﻣﺗﻐﯾر ﻣﺳ ﺗﻣر وأن اﻟﻣﺷ ﺎھدات ﻓ ﻲ ﻛ ل ﻗطﺎع ﻗﺎﺑﻠﺔ ﻟﻠﺗﺣوﯾل إﻟﻰ رﺗب ﺗﺻ ﺎﻋدﯾﺔ وأن ﻻ ﯾﻛ ون ھﻧ ﺎك ﺗﻔﺎﻋ ل ﺑ ﯾن اﻟﺻ ﻔوف واﻷﻋﻣ دة ﺑﺎﻹﺿ ﺎﻓﺔ إﻟ ﻰ أن اﻟﺑﯾﺎﻧ ﺎت ﻓ ﻲ ﻛ ل ﻣﻌﺎﻟﺟ ﺔ ﺗﻘ ﺎس ﺑﻣﻘﯾ ﺎس اﺳ ﻣﻲ )ﺻ ﻔر أو واﺣ د( وﺳ ﻧرﻣز ﻟﻣﺟﻣ وع اﻟﺻ ف واﻟﻌﻣود رﻗم iﺑﺎﻟرﻣز Ci ، R iﻋﻠﻰ اﻟﺗواﻟﻲ. ﻣﺟﻣوع اﻟﺻﻔوف
R1
C x1C
R2
x 2C
R3
x 3C
. .
.... ..... ..... ..... ..... .....
اﻟﻣﻌﺎﻟﺟﺔ 3 x13
2 x12
1 x11
1
x 23
x 22
x 21
2
x 33
x 32
x 31
3
.
.
.
.
. .
. .
. . .
xr2
x r1
r
C2
C1
ﻣﺟﻣوع اﻷﻋﻣدة
.
. x r3 x rc اﻟﻣﺟﻣوع R r C3 CC اﻹﺟﻣﺎﻟﻲ N ﻓرض اﻟﻌدم : H 0اﻟﻣﻌﺎﻟﺟﺎت ﻣﺗﺳﺎوﯾﺔ اﻟﺗﺄﺛﯾر. اﻟﻔرض اﻟﺑدﯾل : H1اﻟﻣﻌﺎﻟﺟﺎت ﻟﯾس ﻟﮭﺎ ﻧﻔس اﻟﺗﺄﺛﯾر. ﺗﺣﺳب اﻟﻘﯾﻣﺔ اﻟﺗﺎﻟﯾﺔ :
اﻟﻌﯾﻧﺔ
C
C(C 1) C2J (C 1)N 2 J 1
. R 2I
r
Q
CN I 1
ﺣﯾث N R i Ci ﺑﺎﺳ ﺗﺧدام ﺟ دول ﻣرﺑ ﻊ ﻛ ﺎي وﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ﻧﺳ ﺗﺧرج ﻗﯾﻣ ﺔ ﺟدوﻟﯾ ﮫ وﻧ رﻓض اﻟﻌ دﻣﻲ إذا ﻛﺎﻧت اﻟﻣﺣﺳوﺑﺔ أﻛﺑر ﻣن اﻟﺟدوﻟﯾﮫ. ﻧﻼﺣظ أن ﻗﯾم داﻟﺔ اﻻﺧﺗﺑﺎر ﺗﻌﺗﻣد ﻋﻠﻰ ﻣﺟﻣ وع اﻷﻋﻣ دة )أي ﻣﺟﻣ وع اﻟﻌﻧﺎﺻ ر اﻟﺗ ﻲ ﻛ ل ﻣﻧﮭ ﺎ (1 وھ ذا ﯾﻌﻧ ﻲ أن اﻟﻘ ﯾم اﻟﺻ ﻔرﯾﺔ ﻻ ﺗ دﺧلﻓ ﻲ اﻟﺣﺳ ﺎﺑﺎت ،ﻟ ذا إذا ﻛ ﺎن ھﻧ ﺎك ﻗطﺎﻋ ﺎ ً ﻛ ﺎﻣﻼ ً ﻛﻠ ﮫ أﺻ ﻔﺎر ﻓﺳ وف ﯾﻠﻐ ﻰ ﺗ ﺄﺛﯾر ھ ذا اﻟﻘط ﺎع )اﻟﺻ ف( ﻛﻠﯾ ﺔ ،وﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﺗﺣﺳ ب ﻗﯾﻣ ﺔ p-valueﺑﺎﺳ ﺗﺧدام اﻟﺗوزﯾﻊ اﻟﻣﺿﺑوط وذﻟك ﻓﻲ ﺣﺎﻟﺔ اﻟﺟداول اﻟﺗﻲ ﺗﺣﺗوي ﻋﻠﻰ ﺻﻔوف وأﻋﻣدة ﻗﻠﯾﻠﺔ. أﻣﺎ إذا ﻛﺎن r c 24و r 4ﻓﺈﻧﮫ ﻗﯾﻣﺔ p-valueﻣﻣﻛن أن ﺗﻘرب ﻋن طرﯾق ﺗوزﯾﻊ ﻣرﺑ ﻊ ﻛ ﺎي ﺑدرﺟﺔ ﺣرﯾﺔ .c-1 ٥٩٦
ﻣﺛﺎل)(١٧-٧ ﻧﻔرض أن ﻟدﯾﻧﺎ أرﺑﻌﺔ ﻣﻌﺎﻟﺟﺎت X,Y,J,Kﻣوزﻋﮫ ﻋﻠﻰ ﺳﺗﺔ ﻗطﺎﻋﺎت: X Y J K اﻟﺟﻣوع 1 3 2 3 2 1 12
0 1 1 1 1 0 4
0 1 0 0 0 0 1
0 1 0 1 0 0 2
1 0 1 1 1 1 5
1 2 3 4 5 6
اﻟﻣﺟﻣوع
ﺑﺎﺳﺗﺧدام اﺧﺗﺑﺎر ﻛوﻛران اﺧﺗﺑر: ﻓرض اﻟﻌدم : H 0اﻟﻣﻌﺎﻟﺟﺎت ﻟﮭﺎ ﻧﻔس اﻟﺗﺄﺛﯾر واﻟﻔرض اﻟﺑدﯾل : H1ﺗوﺟد ﻣﻌﺎﻟﺟﺔ واﺣدة ﻋﻠﻰ اﻷﻗل ﻣﺧﺗﻠﻔﺔ.
اﻟﺣــل: 4(4 1)(52 12 22 42 ) (4 1)(12) 2 120 Q 6. 20 ) 4(12) (12 32 22 32 22 12 ﺣﯾث ) (12ھﻲ ﻋدد ﻣرات ﺗﻛرار اﻟﻌﻧﺻر ).(1 وﺣﯾث أن ﺣﺎﺻل ﺿرب اﻟﺻﻔوف ﺑﺎﻷﻋﻣدة ﯾﺳﺎوى 24و ﺑﻣﻘﺎرﻧﮫ اﻟﻘﯾﻣﺔ اﻟﻣﺣﺳوﺑﺔ ﻟـ Qﻣﻊ اﻟﻘﯾﻣﺔ اﻟﺟدوﻟﯾﺔ ﻋﻧد درﺟﺎت ﺣرﯾﺔ ، 3 1 4وﻣﺳﺗوى ﻣﻌﻧوﯾﺔ 0.05وھﻰ 7.815وﺑﻣﺎ أن اﻟﻘﯾﻣﺔ اﻟﻣﺣﺳوﺑﺔ اﺻﻐر ﻣن اﻟﺟدوﻟﯾﮫ ﻓﺈﻧﻧﺎ ﻧﻘﺑل ﻓرض اﻟﻌدم أى أن اﻟﻣﻌﺎﻟﺟﺎت ﻛﻠﮭﺎ ﻟﮭﺎ ﻧﻔس اﻟﺗﺄﺛﯾر.
ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ Mathematicaوﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . ;]Off[General::spell1 `<<Statistics`NormalDistribution `<<Statistics`DataManipulation `<<DiscreteMath`Combinatorica ;}Options[npmCochransQTest]={mthd->approx npmCochransQTest[freqList_,opts___]:=Module[{r,rVals,temp}, ;]mtype=mthd/. {opts} /. Options[npmCochransQTest ;flag=1 ;]]]c=Length[freqList[[1 If[c<3,Print["This procedure does not work for less than three treatments (columns). For two treatments, ;]]"use the the McNemar Test. ;]If[c<3,flag=100 ٥٩٧
If[flag<100,temp={}]; addterm[i_]:=If[And[Sum[freqList[[i,j]],{j,1,c}]>0,Sum[ freqList[[i,j]],{j,1,c}]<c],AppendTo[temp,freqList[[i]]]]; If[flag<100,Table[addterm[i],{i,1,Length[freqList]}]]; If[flag<100,r=Length[temp]]; rowTotal[i_,numList_]:=Sum[numList[[i,j]],{j,1,c}]; If[flag<100,rVals=Table[rowTotal[i,temp],{i,1,r}]]; colTotal[j_,numList_]:=Sum[numList[[i,j]],{i,1,r}]; If[flag<100,cVals=Table[colTotal[j,temp],{j,1,c}]]; If[flag<100,n=Apply[Plus,rVals]]; If[flag<100,qStat=(c(c1)Sum[cVals[[j]]^2,{j,1,c}]-(c-1)n^2)/(c nSum[rVals[[i]]^2,{i,1,r}])//N]; If[c==3,pVal=c3test[temp,c,qStat,mtype]]; If[c==4,pVal=c4test[temp,c,qStat,mtype]]; If[c>4,pVal=1-CDF[ChiSquareDistribution[c1],qStat]]; If[flag<100,Print["Title: Cochran Q Test"]]; If[flag<100,Print["Test Statistic: ",qStat]]; If[flag<100,Print["Column Totals: ",cVals]]; If[And[flag<100,mtype==exact],Print["Distribution: Exact"]]; If[And[flag<100,mtype==approx],Print["Distribution: Chi Square[",c-1,"]"]]; If[flag<100,Print["PValue: ",pVal]] ]; c3test[tempList_,c_,qStat_,mtype_]:=Module[{p}, If[mtype==approx,p=1-CDF[ChiSquareDistribution[c1],qStat]]; If[mtype==exact,p=cochranExact3[tempList,qStat]]; p ]; c4test[tempList_,c_,qStat_,mtype_]:=Module[{p}, If[mtype==approx,p=1CDF[ChiSquareDistribution[c-1],qStat]]; If[mtype==exact,p=cochranExact4[tempList,qStat]]; p]; cochranExact3[modList_,q_]:=Module[{}, tmptotals={0,0}; ٥٩٨
cntQ[i_,k_,numList_]:=If[Sum[numList[[k,j]],{j,1,c}]==i ,tmptotals[[i]]=tmptotals[[i]]+1]; Table[cntQ[i,k,modList],{k,1,Length[modList]},{i,1,c1}]; {n1,n2}={tmptotals[[1]],tmptotals[[2]]}; compList=Table[Compositions[tmptotals[[i]],3],{i,1,c1}]; allCombs=Table[{compList[[1,i]],compList[[2,j]]},{i,1,L ength[compList[[1]]]},{j,1,Length[compList[[2]]]}]; flatList=Flatten[allCombs,1]; pValForComb3[v_,n1_,n2_]:=Module[{n1Vals,n2Vals,p1,p2}, n1Vals=v[[1]]; n2Vals=v[[2]]; p1=n1!/(3^n1Product[n1Vals[[i]]!,{i,1,Length[n1Vals]}]); p2=n2!/(3^n2 Product[n2Vals[[i]]!,{i,1,Length[n2Vals]}]); N[p1 p2]]; qValForComb3[v_,c_,n1_,n2_]:=Module[{}, one=Sum[(v[[1,j]]-v[[2,j]])^2,{j,1,c}]1/3*(n1-n2)^2; 6*one/(2(n1+n2))//N]; qValTab=Map[qValForComb3[#,c,n1,n2]&,flatList]; qValsList=Intersection[qValTab]; pValTab=Map[pValForComb3[#,n1,n2]&,flatList]; pAndqTable=Table[{qValTab[[i]],pValTab[[i]]},{i,1,Lengt h[qValTab]}]; places=Map[Position[qValTab,#]&,qValsList]; flatPlaces=Table[places[[i]]//Flatten,{i,1,Length[place s]}]; tabWithQandPVal=Table[{qValsList[[i]],Sum[pValTab[[flat Places[[i,k]]]],{k,1,Length[flatPlaces[[i]]]}]},{i,1,Length[ flatPlaces]}]; ij=Position[tabWithQandPVal,q]; Sum[tabWithQandPVal[[k,2]],{k,ij[[1,1]],Length[tabWithQ andPVal]}]] cochranExact4[modList_,q_]:=Module[{}, tmptotals={0,0,0}; ٥٩٩
cntQ[i_,k_,numList_]:=If[Sum[numList[[k,j]],{j,1,4}]==i ,tmptotals[[i]]=tmptotals[[i]]+1]; Table[cntQ[i,k,modList],{k,1,Length[modList]},{i,1,3}]; {n1,n2,n3}={tmptotals[[1]],tmptotals[[2]],tmptotals[[3] ]}; compList1=Compositions[n1,4]; compList2=Compositions[n2,6]; compList3=Compositions[n3,4]; comboTab=Table[{compList1[[i]],compList2[[j]],compList3 [[k]]},{i,1,Length[compList1]},{j,1,Length[compList2]},{k,1, Length[compList3]}]; flatComboTab=Flatten[comboTab,1]; flat2Tab=Flatten[flatComboTab,1]; qAndpValForComb4[v_,c_,n1_,n2_,n3_]:=Module[{n1Vals,n2V als,n3Vals,p1,p2,p3}, n1Vals=v[[1]]; n2Vals=v[[2]]; n3Vals=v[[3]]; cVal[1]=n1Vals[[1]]+n2Vals[[1]]+n2Vals[[2]]+n2Vals[[3]]+n3n3Vals[[1]]; cVal[2]=n1Vals[[2]]+n2Vals[[1]]+n2Vals[[4]]+n2Vals[[5]] +n3-n3Vals[[2]]; cVal[3]=n1Vals[[3]]+n2Vals[[2]]+n2Vals[[4]]+n2Vals[[6]] +n3-n3Vals[[3]]; cVal[4]=n1Vals[[4]]+n2Vals[[3]]+n2Vals[[5]]+n2Vals[[6]] +n3-n3Vals[[4]]; n=n1+2 n2+3 n3; p1=n1!/(4^n1Product[n1Vals[[i]]!,{i,1,Length[n1Vals]}]); p2=n2!/(6^n2 Product[n2Vals[[i]]!,{i,1,Length[n2Vals]}]); p3=n3!/(4^n3Product[n3Vals[[i]]!,{i,1,Length[n3Vals]}]) ; p=N[p1 p2 p3]; q4=(12 Sum[cVal[i]^2,{i,1,4}]-3 n^2)/(3 n1+4 n2+3 n3)//N; {q4,p}]; ٦٠٠
qAndpTab4=Map[qAndpValForComb4[#,c,n1,n2,n3]&,flat2Tab] ; qVals=Transpose[qAndpTab4][[1]]; qValsList=Intersection[qVals]; pValTab=Transpose[qAndpTab4][[2]]; places=Map[Position[qVals,#]&,qValsList]; flatPlaces=Table[places[[i]]//Flatten,{i,1,Length[place s]}]; tabWithQandPVal=Table[{qValsList[[i]],Sum[pValTab[[flat Places[[i,k]]]],{k,1,Length[flatPlaces[[i]]]}]},{i,1,Length[ flatPlaces]}]; ij=Position[tabWithQandPVal,q]; Sum[tabWithQandPVal[[k,2]],{k,ij[[1,1]],Length[tabWithQ andPVal]}]] predictions={{1,0,0,0},{0,1,1,1},{1,0,0,1},{1,0,1,1},{1,0,0, 1},{1,0,0,0}}; npmCochransQTest[predictions,mthd->approx] Title: Cochran Q Test Test Statistic: 6. Column Totals: {5,1,2,4} Distribution: Chi Square[ 3 ] PValue: 0.11161 npmCochransQTest[predictions,mthd->exact] Title: Cochran Q Test Test Statistic: 6. Column Totals: {5,1,2,4} Distribution: Exact PValue: 0.145833
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ ﺣﯾث ﺗدﺧل اﻟﺑﯾﺎﻧﺎت ﺻف ﺻف ﻛﺎﻟﺗﺎﻟﻰpredictions اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎه predictions={{1,0,0,0},{0,1,1,1},{1,0,0,1},{1,0,1,1},{1,0,0, 1},{1,0,0,0}};
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ﻋﻧد اﺳﺗﺧدام ﺗوزﯾﻊ ﻣرﺑﻊ ﻛﺎى ﻣﻊ اﻟﻣﺧرﺟﺎت npmCochransQTest[predictions,mthd->approx]
واﻟﻣﺧرج ھو Title: Cochran Q Test Test Statistic: 6. Column Totals: {5,1,2,4} Distribution: Chi Square[ 3 ] ٦٠١
0.11161
PValue:
واﻻﺣﺻﺎء اﻟﻣﻘدر ﺑﺎﺳﺗﺧدام ﺗوزﯾﻊ ﻣرﺑﻊ ﻛﺎى ھو 6.
Test Statistic:
وﻗﯾﻣﺔ p-valueھو 0.11161
PValue:
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0 ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ وﺑﺎﺳﺗﺧدام اﻟطرﯾﻘﺔ اﻟﻣﺿﺑوطﺔ ﻧﺣﺻل ﻋﻠﻰ اﻻﺣﺻﺎء اﻟﻣﻘدر ]npmCochransQTest[predictions,mthd->exact
واﻟﻣﺧرج ھو Title: Cochran Q Test Test Statistic: 6. }Column Totals: {5,1,2,4 Distribution: Exact PValue: 0.145833
واﻻﺣﺻﺎء اﻟﻣﻘدر ھو 6.
Test Statistic:
وﻗﯾﻣﺔ p-valueھو 0.145833
PValue:
وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0
) (١٣-٧اﺧﺗﺑﺎرات ﺣول اﻻرﺗﺑﺎط ﻓﻲ ﻛﺛﯾر ﻣن اﻷﺣﯾﺎن ﯾﻛون ﻟدﯾﻧﺎ ﻣﺟﺗﻣﻊ ﻣﺎ وﻧﻛون ﻣﮭﺗﻣﯾن ﺑﻣﺗﻐﯾرﯾن ﻓﻲ ذﻟك اﻟﻣﺟﺗﻣﻊ وﯾﻛون اھﺗﻣﺎﻣﻧﺎ ﺑﻣﻌرﻓﺔ ھل ھﻧﺎك ﻋﻼﻗﺔ ﺑﯾﻧﮭﻣﺎ أم ﻻ ،وإن وﺟدت ﻣﺎ ﻧوﻋﮭﺎ ،وإذا أردﻧﺎ اﺧﺗﺑﺎر ﺑﻌض اﻟﻔروض اﻟﺗﻲ ﺗدور ﺣول اﻟﻌﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن وﻛﺎﻧت وﺣدة اﻟﻘﯾﺎس ﻟﻠﻣﺗﻐﯾرﯾن ﺑﻔﺗرة ﻋﻠﻰ اﻷﻗل و ﺗوزﯾﻊ اﻟﻣﺟﺗﻣﻊ اﻟﻣﺳﺣوب ﻣﻧﮫ اﻟﻌﯾﻧﺗﯾن ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﺛﻧﺎﺋﻲ ﻓﺈﻧﮫ ﯾﻣﻛن ﺣﺳﺎب ﻣﻌﺎﻣل ارﺗﺑﺎط ﺑﯾرﺳون ﻻﺧﺗﺑﺎر اﻟﻔروض اﻟﺗﻲ ﺗدور ﺣول ﻣﻌﺎﻣل اﻷرﺗﺑﺎط ،وﻟﻛن إذا ﻟم ﺗﺳﺗوﻓﻰ ھذه اﻟﺷروط ﻓﻼ ﯾﻣﻛن إﺟراء ھذا اﻻﺧﺗﺑﺎر ،ﻟﻌﻼج ھذه اﻟﻣﺷﻛﻠﺔ ﻧﺟري اﺧﺗﺑﺎرات ﻻﻣﻌﻠﻣﯾﺔ ﺗﻌﺗﻣد ﻋﻠﻰ اﻟرﺗب ﻣﺛل اﺧﺗﺑﺎر ﺳﺑﯾرﻣﺎن أو ﻛﻧدال وﺑذﻟك ﯾﻣﻛن اﻟﺗﻌﺎﻣل ﻣﻊ اﻟﺑﯾﺎﻧﺎت ذات وﺣدة ﻗﯾﺎس أﻗل ﻣن ﻓﺗرة،ﻛﺄن ﺗﻛون ﺗرﺗﯾﺑﯾﺔ أو أﺳﻣﯾﺔ ،وﻣﻊ أن ﻗﯾﻣﺔ ﻣﻌﺎﻣل اﻻرﺗﺑﺎط ﻓﻲ اﻻﺧﺗﺑﺎرﯾن ﺗﺗراوح ﺑﯾن 1و -1ﻓﺈﻧﻧﺎ ﻻ ﻧﺗوﻗﻊ ﻓﻲ ﺟﻣﯾﻊ اﻟﺣﺎﻻت ﺗﺳﺎوي ﻗﯾﻣﺗﯾﮭﻣﺎ ﻟﻧﻔس اﻟﺑﯾﺎﻧﺎت ،ﻻﺧﺗﻼف اﻻﺳﺎﻟﯾب اﻟﻣﺳﺗﺧدﻣﺔ ﻓﻲ ﺣﺳﺎب ﻛل ﻣﻧﮭﻣﺎ.
ﻣﻌﺎﻣل ارﺗﺑﺎط ﺳﺑﯾرﻣﺎن ﻟﻠرﺗب The Spearman Rank Correlation Coefficient ﺗﻧﺎوﻟﻧ ﺎ ﻣ ن ﻗﺑ ل اﺧﺗﺑ ﺎرات اﻟﻔ روض اﻟﺗ ﻲ ﺗﺧ ص ﻣﻌﺎﻣ ل ارﺗﺑ ﺎط اﻟﻣﺟﺗﻣ ﻊ ﺗﺣ ت ﻓ رض أن X , Yﻣﺗﻐﯾ رﯾن ﻋﺷ واﺋﯾﯾن ﻟﮭﻣ ﺎ ﺗوزﯾ ﻊ طﺑﯾﻌ ﻲ ﺛﻧ ﺎﺋﻲ .ﻓ ﻲ ﺣﺎﻟ ﺔ ﻋ دم ﺗﺣﻘ ق اﻟﺷ رط اﻟﺳ ﺎﺑق ﻓﺈﻧ ﮫ ﯾﻣﻛﻧﻧﺎ اﺳﺗﺧدام ﻣﻌﺎﻣل ﺳﺑﯾرﻣﺎن ﻛﺈﺣﺻ ﺎء ﻻﺧﺗﺑ ﺎر ﻋ دم وﺟ ود ﻋﻼﻗ ﺔ ) ارﺗﺑ ﺎط( ﺑ ﯾن اﻟﻣﺗﻐﯾ رﯾن X , .Yأﯾﺿﺎ ﯾﻣﻛﻧﻧﺎ اﺳﺗﺧدام ﻣﻌﺎﻣل ﺳﺑﯾرﻣﺎن ﻛﻣﻘﯾﺎس وﺻ ﻔﻰ ﻟﻘ وة اﻻرﺗﺑ ﺎط ﺑ ﯾن ﻣﺗﻐﯾ رﯾن X , Yﻋﻧ دﻣﺎ ٦٠٢
ﺗﻛون اﻟﺑﯾﺎﻧ ﺎت ﻓ ﻲ اﻟﻌﯾﻧ ﺔ ﻏﯾ ر ﻣﺗ وﻓرة ﻓ ﻲ ﺷ ﻛل ﺑﯾﺎﻧ ﺎت رﻗﻣﯾ ﺔ وﻟﻛ ن ﯾﻣﻛ ن ﺗﻌﯾ ﯾن رﺗ ب ﻟﮭ ﺎ .ﻹﺟ راء اﻻﺧﺗﺑﺎر ﻧﺗﺑﻊ اﻵﺗﻲ : ﺗﺧﺗﺎر ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟ م nﻣ ن أزواج اﻟﻣﺷ ﺎھدات اﻟرﻗﻣﯾ ﺔ أو اﻟوﺻ ﻔﯾﺔ .ﻛ ل زوج )أ( ﻣن اﻟﻣﺷﺎھدات ﯾﻣﺛل ﻗراءﺗﯾن ﻣﺄﺧوذﺗﯾن ﻋﻠﻰ ﻧﻔس اﻟﻣﻔردة واﻟﻣﺳﻣﺎة وﺣدة اﻻﻗﺗ ران unit of . associationأﯾﺿﺎ ﻗ د ﺗﻣﺛ ل اﻟﺑﯾﺎﻧ ﺎت ﻣﺷ ﺎھدات ﻣ ﺄﺧوذة ﻣ ن ﻣﺟﺗﻣ ﻊ ﺛﻧ ﺎﺋﻲ .ﺳ وف ﻧرﻣز ﻷزواج اﻟﻣﺷﺎھدات ﻛﺎﻟﺗﺎﻟﻲ ) . (x1, y1 ),(x 2 , y 2 ),...,(x n , y n )ب( ﻧرﺗب ﻗﯾم اﻟﻣﺷﺎھدات ﻓﻲ اﻟﻌﯾﻧﺔ واﻟﺗﺎﺑﻌﺔ ﻟﻠﻣﺗﻐﯾر Xﺗﺻﺎﻋدﯾﺎ )أو ﺗﻧﺎزﻟﯾ ﺎ( وﺗﻌط ﻲ رﺗﺑ ﺔ ﻟﻛ ل ﻗﯾﻣﺔ ﻣﺷﺎھدة ﺑﺎﻟﻧﺳﺑﺔ ﻟﻛل ﻗﯾم اﻟﻣﺷﺎھدات اﻷﺧرى .ﺳوف ﻧرﻣ ز ﻟرﺗﺑ ﺔ اﻟﻣﺷ ﺎھدة رﻗ م xi ، i ،ﺑ ﺎﻟرﻣز ) . r(x iﻋﻧ دﻣﺎ r(x i ) 1ﻓﮭ ذا ﯾﻌﻧ ﻰ أن xiﺗﻣﺛ ل أﻗ ل ﻗﯾﻣ ﺔ ﻣﺷ ﺎھدة ﻣ ن ﻗ ﯾم اﻟﻣﺗﻐﯾر Xﻓﻲ اﻟﻌﯾﻧﺔ . )ج( ﻧرﺗب ﻗﯾم اﻟﻣﺷﺎھدات ﻓﻲ اﻟﻌﯾﻧﺔ واﻟﺗﺎﺑﻌﺔ ﻟﻠﻣﺗﻐﯾ ر Yﺗﺻ ﺎﻋدﯾﺎ ً )أو ﺗﻧﺎزﻟﯾ ﺎ ً( وﺗﻌط ﻰ رﺗﺑ ﺔ ﻟﻛ ل ﻗﯾﻣﺔ ﻣﺷﺎھدة ﺑﺎﻟﻧﺳﺑﺔ ﻟﻛل ﻗﯾم اﻟﻣﺷﺎھدات اﻷﺧرى .ﺳوف ﻧرﻣز ﻟرﺗﺑﺔ اﻟﻣﺷ ﺎھدة رﻗ م ، yi ، j ﺑ ﺎﻟرﻣز ) . r(yiﻋﻧ دﻣﺎ r(yi ) 1ﻓﮭ ذا ﯾﻌﻧ ﻰ أن yiﺗﻣﺛ ل أﻗ ل ﻗﯾﻣ ﺔ ﻣﺷ ﺎھدة ﻣ ن ﻗ ﯾم اﻟﻣﺗﻐﯾر Yﻓﻲ اﻟﻌﯾﻧﺔ . )ح( ﻋﻧد ﺣدوث ﺗداﺧﻼت ﻧﻌطﻰ ﻣﺗوﺳط اﻟرﺗب اﻟﻣﺗﺗﺎﻟﯾﺔ ﺑدﻻ ً ﻣن اﻟرﺗﺑﺔ ﻛﺎﻟﻣﻌﺗﺎد . )خ( إذا ﻛﺎﻧت اﻟﺑﯾﺎﻧﺎت وﺻﻔﯾﺔ ﺑﺈﻣﻛﺎﻧﻧﺎ ﺗﺣوﯾﻠﮭﺎ إﻟﻲ رﺗب . ﻗﯾﻣﺔ اﻹﺣﺻﺎء اﻟذي ﯾﻌﺗﻣد ﻋﻠﯾﮫ ﻗرارﻧﺎ ھو ﻣﻌﺎﻣل ارﺗﺑﺎط ﺳﺑﯾرﻣﺎن واﻟذي ﯾﺣﺳ ب ﻣ ن اﻟﺻ ﯾﻐﺔ اﻟﺗﺎﻟﯾ ﺔ : 6d i2 rs 1 , )n(n 2 1 ﺣﯾث: 2 2 d i r(x i) r(yi ) . ﻟﻛل زوج ﻣن اﻟﻣﺷﺎھدات وﻋﻧدﻣﺎ ﺗﻛون رﺗﺑﺔ xﻧﻔس رﺗﺑﺔ ) yارﺗﺑﺎط ﺗﺎم طردي ( ،ﻓ ﺈن ﻛل اﻟﻔ روق diﺳ وف ﺗﺳ ﺎوى ﺻ ﻔر وﻋﻠ ﻰ ذﻟ ك . rs 1إذا ﻛﺎﻧ ت رﺗﺑ ﺔ ﻛ ل ﻣﺗﻐﯾ ر داﺧ ل ﻛ ل زوج ﻣ ن اﻟﻣﺷﺎھدات ﻋﻛس اﻵﺧر ) ارﺗﺑﺎط ﺗﺎم ﻋﻛﺳﻲ ( ،أي إذا ﻛﺎن : [r(x) 1,r(y) n],[r(x) 2,r(y) n 1],...,[r(x) n,r(y) 1]. وذﻟ ك ﻷزواج اﻟﻣﺷ ﺎھدات اﻟﺗ ﻲ ﻋ ددھﺎ nﻓ ﺈن . rs 1ﻋﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل إذا ﻛ ﺎن ﻟ دﯾﻧﺎ أزواج اﻟﻣﺷﺎھدات اﻟﺗﺎﻟﯾﺔ : ﻓﺈن اﻟرﺗب ﺗﺻﺑﺢ : 1
2
3
r(x i ) : 4
4
3
2
r(yi ) :1
ﺗﻛون (x i , yi ) : (12,5),(11,6),(10,7),(9,8) :ﺳوف di2وﻋﻠﻰ ذﻟك
(3)2 (1)2 (1)2 (3)2 20, ٦٠٣
وﺑﺎﻟﺗﻌوﯾض ﻓﻲ ﻣﻌﺎدﻟﺔ ﺳﺑﯾرﻣﺎن ﻓﺈن : rs 1 [(6)(20) /(4)(15) 1 2 1. ﻣﻌﺎﻣل ارﺗﺑﺎط ﺳﺑﯾرﻣﺎن ﻻ ﯾﻣﻛن أن ﯾزﯾد ﻋن +1وﻻ ﯾﻣﻛ ن أن ﯾﻘل ﻋن . –1ﻓ رض اﻟﻌ دم واﻟﻔ رض اﻟﺑدﯾل ﺳوف ﯾﻛوﻧﺎن ﻋﻠﻰ اﻟﺷﻛل : : H 0اﻟﻣﺗﻐﯾرﯾن ﻣﺳﺗﻘﻠﯾن . : H1ﺗوﺟد ﻋﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن ﻓﻲ ﻧﻔس اﻻﺗﺟﺎه أو اﻻﺗﺟﺎه اﻟﻣﻌﺎﻛس . ﺑﻔرض أن H 0ﺻﺣﯾﺢ ﻓﺈن rsﺗﻣﺛل ﻗﯾﻣﺔ ﻟﻺﺣﺻﺎء R sاﻟذي ﻟﮫ ﺗوزﯾﻊ اﺣﺗﻣﺎﻟﻲ .اﻟﻘﯾم اﻟﺣرﺟﺔ rs,* ﻟﻺﺣﺻﺎء R sﺗﺳﺗﺧرج ﻣن اﻟﺟدول ﻓﻲ ﻣﻠﺣق ) (١٣ﻟﻌﯾﻧﺎت ﻣن اﻟﺣﺟم 4وﺣﺗﻰ اﻟﺣﺟم 30 ﻋن ﻣﺳﺗوﯾﺎت ﻣﺧﺗﻠﻔﺔ ﻣن اﻟﻣﻌﻧوﯾﺔ .ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض R s rs, / 2أو . R s rs, / 2إذا وﻗﻌت rs
ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻓﺈﻧﻧﺎ ﻧرﻓض . H 0ﻟﻠﻔرض اﻟﺑدﯾل : H1ﺗوﺟد
ﻋﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن ﻓﻲ ﻧﻔس اﻻﺗﺟﺎه ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض R s rs, وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . ﻟﻠﻔرض اﻟﺑدﯾل : H1ﺗوﺟد ﻋﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن ﻓﻲ اﺗﺟﺎه ﻣﻌﺎﻛس ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض R s rs, وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . اﻟﻘ رارات اﻟﺳ ﺎﺑﻘﺔ ﺗﺳ ﺗﺧدم ﻋﻧ دﻣﺎ ﻻ ﯾﻛ ون ھﻧ ﺎك ﺗ داﺧل أو أن ﯾﻛ ون ﻋ ددھﺎ ﺻ ﻐﯾرا ً .ﻋﻧ دﻣﺎ ﯾﻛ ون ھﻧ ﺎك ﺗ داﺧل و إذا ﻛ ﺎن ﻋ ددھﺎ ﻛﺑﯾ را ً ) اﻟﻌ دد اﻟﺻ ﻐﯾر ﻟﻠﺗ داﺧﻼت ﻻ ﯾ ؤﺛر ﻋﻠ ﻰ ( rsﻓﯾﺟ ب إﺟ راء ﺗﺻ ﺣﯾﺢ ﻋﻠ ﻰ rsوﻧﺣﺗ ﺎج ﺟ داول ﺧﺎﺻ ﺔ ﻹﺟ راء اﻻﺧﺗﺑ ﺎر ﺳ وف ﻻ ﻧﺗﻌ رض ﻟﮭ ﺎ .ﻋﻧ دﻣﺎ ﯾﻛون ﺣﺟم اﻟﻌﯾﻧﺔ ﻛﺑﯾرا ً ) أﻛﺑر ﻣن (30ﻓﺈﻧﻧﺎ ﻻ ﻧﺳﺗطﯾﻊ اﺳﺗﺧدام اﻟﺟداول وﻟﻛن ﺗم إﺛﺑﺎت أن :
z rs / n 1. ﻗﯾﻣ ﺔ ﻟﻠﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ Zواﻟ ذي ﺗﻘرﯾﺑ ﺎ ً ﯾﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ وذﻟ ك ﺑ ﺎﻓﺗراض أن H 0 ﺻﺣﯾﺢ . ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم H 0 : 0ﻋﻧ دﻣﺎ n 10ﻓ ﺈن t rs n 2 / 1 rsﻗﯾﻣ ﺔ ﻣ ن ﻗ ﯾم ﻣﺗﻐﯾ ر ﻋﺷ واﺋﻰ ﯾﺗﺑ ﻊ ﺗوزﯾﻊ Tﺑدرﺟﺎت ﺣرﯾﺔ n 2
٦٠٤
ﻣﺛﺎل)(١٨-٧ ﻟدراﺳﺔ اﻟﻌﻼﻗﺔ ﺑﯾن اﻟﮭﯾﻣوﺟﻠ وﺑﯾن ) Xﻣﻘﺎﺳ ﺎ ً ( mg/100 mlوﻋ دد ﻛ رات اﻟ دم اﻟﺣﻣ راء Yﺑﺎﻟﻣﻠﯾون ﻟﻛل ﻣﻠﻠﯾﻣﺗر ﻣﻛﻌب ،اﺧﺗﯾرت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن 12ذﻛ ر ﺑ ﺎﻟﻎ ﻣ ن ﻣﺟﺗﻣ ﻊ ﻣ ﺎ وﺗم ﻗﯾﺎس ﺗرﻛﯾزات اﻟﮭﯾﻣوﺟﻠ وﺑﯾن وﻋ دد ﻛرات اﻟ دم اﻟﺣﻣ راء ﻟﻛ ل ﻣﻔ ردة واﻟﺑﯾﺎﻧ ﺎت ﻣﻌط ﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ : d d2 اﻟﺷﺧص اﻟﮭﯾﻣوﺟﻠوﺑﯾن ﻛرات اﻟدم اﻟﺣﻣراء x رﺗب x y رﺗب y 1 15.2 7.5 5.1 9 -1.5 2.25 2 16.4 12 5.4 11 1 1 3 14.2 2 4.5 4 -2 4 4 13.0 1 4.2 1 0 0 5 14.5 3 4.3 2.5 0.5 0.25 6 16.1 11 6.1 12 -1 1 7 15.2 7.5 5.2 10 -2.5 6.25 8 14.8 5 4.3 2.5 2.5 6.25 9 15.7 10 4.7 6 4 16 10 14.9 6 4.8 7.5 -1.5 2.25 11 15.6 9 4.6 5 4 16 12 14.7 4 4.8 7.5 -3.5 12.25 اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم : H 0اﻟﻣﺗﻐﯾرﯾن ﻣﺳﺗﻘﻠﯾن ﺿد اﻟﻔرض اﻟﺑدﯾل : H1ﺗوﺟد ﻋﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن ﻓﻲ ﻧﻔس اﻻﺗﺟﺎه أو اﻻﺗﺟﺎه اﻟﻣﻌﺎﻛس وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05
اﻟﺣــل: di2 67.5وﻋﻠﻰ ذﻟك ﻓﺈن :
6di2 rs 1 )n(n 2 1 )6(67.5 1 )12(144 1 1 0.2360139 0.763986.
٦٠٥
( ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ١٣) واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ قrs 0.5804 وﺑﻣ ﺎ أن. R s 0.5804 أوR s 0.5804 ﻣﻧطﻘ ﺔ اﻟ رﻓضn 12 , 0.025 2 . H 0 ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓضrs 0.763986 وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطواتMathematica ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ . اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت Off[General::spell1] <<Statistics`MultiDescriptiveStatistics` <<Statistics`NormalDistribution` oppbavg={15.2,16.4,14.2,13,14.5,16.1,15.2,14.8,15.7,14.9,15. 6,14.7}; winpct={5.1,5.4,4.5,4.2,4.3,6.1,5.2,4.3,4.7,4.8,4.6,4.8}; SpearmanRankCorrelation[oppbavg,winpct]//N 0.762743 rank[j_,xlist_]:=Module[{}, k=1; flag=0; xsort=Sort[xlist]; While[xlist[[j]]!=xsort[[k]],k=k+1]; m=k; If[m==Length[xlist],flag=1]; If[flag<1,While[xsort[[m]]==xsort[[m+1]],m=m+1]]; num1=m; num2=m-k+1; Sum[val,{val,k,num1}]/num2//N] n=Length[oppbavg] 12 rank1=Table[rank[num,oppbavg],{num,1,n}] {7.5,12.,2.,1.,3.,11.,7.5,5.,10.,6.,9.,4.} rank2=Table[rank[num,winpct],{num,1,n}] {9.,11.,4.,1.,2.5,12.,10.,2.5,6.,7.5,5.,7.5} rexact=Correlation[rank1,rank2] 0.762743 tval=Sqrt[n-2] rexact/Sqrt[1-rexact^2] 3.7297 2(1-CDF[StudentTDistribution[n-2],Abs[tval]]) 0.00391228
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ y ﻟﻘﯾمwinpct و اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎهx ﻟﻘﯾمoppbavg اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎه
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ ﻣﻌﺎﻣل ﺳﺑﯾرﻣﺎن ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ SpearmanRankCorrelation[oppbavg,winpct]//N ٦٠٦
واﻟﻣﺧرج ھو 0.762743
وﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ﻧﺣﺻل ﻋﻠﻰ رﺗب x ]}rank1=Table[rank[num,oppbavg],{num,1,n واﻟﻤﺨﺮج ھﻮ }{7.5,12.,2.,1.,3.,11.,7.5,5.,10.,6.,9.,4.
وﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ﻧﺣﺻل ﻋﻠﻰ رﺗب y ]}rank2=Table[rank[num,winpct],{num,1,n واﻟﻤﺨﺮج ھﻮ }{9.,11.,4.,1.,2.5,12.,10.,2.5,6.,7.5,5.,7.5
ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم H 0 : 0ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ )]]2(1-CDF[StudentTDistribution[n-2],Abs[tval
واﻟﻣﺧرج ھو 0.00391228
واﻟذى ﯾﻣﺛل ﻗﯾﻣﺔ p-value وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻗل ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧرﻓض . H0 ﻣﺛﺎل) (١٩-٧
ﯾﻌطﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ ﺗﻘدﯾرات 10طﻼب ﻓﻲ ﻛل ﻣن اﻹﺣﺻﺎء واﻟرﯾﺎﺿﯾﺎت . ﺟﯾد
ﺟﯾد
ﻣﻣﺗﺎز
ﺟﯾد
ﻣﻣﺗﺎز
ﺟﯾد ﺟدا
ﺟﯾد ﺟدا
ﻣﻣﺗﺎز
ﻣﻘﺑول
ﺟﯾد ﺟدا
ﺟﯾد
ﻣﻘﺑول
ﺟﯾد
ﺟﯾد ﺟدا
ﺟﯾد
ﺟﯾد ﺗﻘدﯾرات اﻟرﯾﺎﺿﯾﺎت
ﺟﯾد ﺟدا ﺟﯾد
ﺟﯾد ﺟدا ً
ﻣﻘﺑول
ﺗﻘدﯾرات اﻹﺣﺻﺎء
أﺧﺗﺑر ﻓرض اﻟﻌدم : H0اﻟﻣﺗﻐﯾرﯾن ﻣﺳﺗﻘﻠﯾن . ﺿد اﻟﻔرض اﻟﺑدﯾل : : H1ﺗوﺟد ﻋﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن ﻓﻲ ﻧﻔس اﻻﺗﺟﺎه . وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ . 0.05
اﻟﺣــل: ﺳ وف ﯾ ﺗم ﺣ ل ھ ذا اﻟﻣﺛ ﺎل ﺑﺈﺳ ﺗﺧدام ﻧﻔ س اﻟﺑرﻧ ﺎﻣﺞ اﻟﺧ ﺎص ﺑﺎﻟﻣﺛ ﺎل اﻟﺳ ﺎﺑق وﺳ وف ﻧﻛﺗﻔ ﻰ ھﻧ ﺎ ﺑﺗوﺿ ﯾﺢ اﻟﻣ دﺧﻼت واﻟﺧرﺟ ﺎت .وﺑﻣ ﺎ ان اﻟﺑﯾﺎﻧ ﺎت وﺻ ﻔﯾﺔ ﻓﺳ وف ﻧﺣوﻟﮭ ﺎ اﻟ ﻰ ﺑﯾﺎﻧ ﺎت رﻗﻣﯾ ﺔ ﺣﯾ ث ﯾﻌط ﻰ ﻋﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل اﻟ رﻗم واﺣ د اﻟ ﻰ ﻣﻘﺑ ول واﻟ رﻗم اﺛﻧ ﯾن اﻟ ﻰ ﺟﯾ د وھﻛ ذا .وﻓﯾﻣ ﺎ ﯾﻠ ﻰ ﺧط وات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت . ]Off[General::spell1 ٦٠٧
<<Statistics`MultiDescriptiveStatistics` <<Statistics`NormalDistribution` oppbavg={3,2,1,2,3,4,2,4,2,2}; winpct={2,2,1,3,2,3,1,4,3,3}; SpearmanRankCorrelation[oppbavg,winpct]//N 0.508678 rank[j_,xlist_]:=Module[{}, k=1; flag=0; xsort=Sort[xlist]; While[xlist[[j]]!=xsort[[k]],k=k+1]; m=k; If[m==Length[xlist],flag=1]; If[flag<1,While[xsort[[m]]==xsort[[m+1]],m=m+1]]; num1=m; num2=m-k+1; Sum[val,{val,k,num1}]/num2//N] n=Length[oppbavg] 10 rank1=Table[rank[num,oppbavg],{num,1,n}] {7.5,4.,1.,4.,7.5,9.5,4.,9.5,4.,4.} rank2=Table[rank[num,winpct],{num,1,n}] {4.,4.,1.5,7.5,4.,7.5,1.5,10.,7.5,7.5} rexact=Correlation[rank1,rank2] 0.508678 tval=Sqrt[n-2] rexact/Sqrt[1-rexact^2] 1.67111 2(1-CDF[StudentTDistribution[n-2],Abs[tval]]) 0.133244
: وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻣدﺧﻼت:اوﻻ y ﻟﻘﯾمwinpct و اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎهx ﻟﻘﯾمoppbavg اﻟﻘﺎﺋﻣﺔ اﻟﻣﺳﻣﺎه
اﻟﻣﺧرﺟﺎت: ﺛﺎﻧﯾﺎ ﻣﻌﺎﻣل ﺳﺑﯾرﻣﺎن ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ SpearmanRankCorrelation[oppbavg,winpct]//N
واﻟﻣﺧرج ھو 0.508678
x وﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ﻧﺣﺻل ﻋﻠﻰ رﺗب rank1=Table[rank[num,oppbavg],{num,1,n}] واﻟﻤﺨﺮج ھﻮ {7.5,4.,1.,4.,7.5,9.5,4.,9.5,4.,4.}
y وﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ﻧﺣﺻل ﻋﻠﻰ رﺗب ٦٠٨
]}rank2=Table[rank[num,winpct],{num,1,n واﻟﻤﺨﺮج ھﻮ }{4.,4.,1.5,7.5,4.,7.5,1.5,10.,7.5,7.5
ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم H 0 : 0ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ )]]2(1-CDF[StudentTDistribution[n-2],Abs[tval
واﻟﻣﺧرج ھو 0.133244
واﻟذى ﯾﻣﺛل ﻗﯾﻣﺔ p-value وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن وﺑﻣﺎ ان اﻟﻘﯾﻣﺔ اﻛﺑر ﻣن 0.05ﻓﺈﻧﻧﺎ ﻧﻘﺑل . H 0
٦٠٩
٦١٠
اﳌﺮاﺟـﻊ REFERENCES أوﻻً :اﻟﻤﺮاﺟﻊ اﻟﻌﺮﺑﻴﺔ - ١أﺣﻣ د ﻋﺑ ﺎدة ﺳ رﺣﺎن ، (١٩٦٨) ،ﻣﻘدﻣ ﺔ ﻓ ﻰ ط رق اﻟﺗﺣﻠﯾ ل اﻹﺣﺻ ﺎﺋﻲ ،ﻣﻌﮭ د اﻟدراﺳ ﺎت واﻟﺑﺣوث اﻹﺣﺻﺎﺋﯾﺔ – ﺟﺎﻣﻌﺔ اﻟﻘﺎھرة. - ٢أﺣﻣ د ﻋﺑ ﺎدة ﺳ رﺣﺎن ، (١٩٨٣) ،ﺗﺻ ﻣﯾم اﻟﺗﺟ ﺎرب وﺗﺣﻠﯾﻠﮭ ﺎ ،دار اﻟﻛﺗ ب اﻟﺟﺎﻣﻌﯾ ﺔ – اﻟﻘﺎھرة ،ﺟﻣﮭورﯾﺔ ﻣﺻر اﻟﻌرﺑﯾﺔ . - ٣أﺣﻣد ﻓؤاد ﻏﺎﻟب وآﺧرون ، (١٩٩٣) ،اﻟرﯾﺎﺿﺔ ﻟدارﺳ ﻲ اﻟﻌﻠ وم اﻟﺣﯾوﯾ ﺔ – ﺗرﺟﻣ ﺔ ﻟﻛﺗ ﺎب ﺟ ﺎدﯾش س .أرﺑ ﺎ وروﺑ ﯾن و.ﻻردﻧ ر – اﻟ دار اﻟدوﻟﯾ ﺔ ﻟﻠﻧﺷ ر واﻟﺗوزﯾ ﻊ – اﻟﻘ ﺎھرة – ﺟﻣﮭورﯾﺔ ﻣﺻر اﻟﻌرﺑﯾﺔ . - ٤أﻧ ﯾس إﺳ ﻣﺎﻋﯾل ﻛﻧﺟ و ، (١٩٩٣) ،اﻹﺣﺻ ﺎء واﻹﺣﺗﻣ ﺎل – ﺟﺎﻣﻌ ﺔ اﻟﻣﻠ ك ﺳ ﻌود – ﻋﻣﺎﻧ ﮫ ﺷؤن اﻟﻣﻛﺗﺑﺎت. - ٥ﺑدرﯾ ﺔ ﺷ وﻗﻰ ﻋﺑ د اﻟوھ ﺎب وﻣﺣﻣ د ﻛﺎﻣ ل اﻟﺷ رﺑﯾﻧﻰ ، (١٩٨٤) ،اﻟﻣﺑ ﺎدئ اﻷوﻟﯾ ﺔ ﻓ ﻰ اﻹﺣﺻﺎء – ﺗرﺟﻣﺔ ﻟﻛﺗﺎب ﺑول ج .ھوﯾل – اﻟطﺑﻌﺔ اﻟراﺑﻌﺔ – دار ﺟون واﯾﻠﻰ وأﺑﻧﺎﺋﮫ. - ٦ﺛروت ﻣﺣﻣ د ﻋﺑ د اﻟﻣ ﻧﻌم ، (٢٠٠٤) ،ﺗﺻ ﻣﯾم وﺗﺣﻠﯾ ل اﻟﺗﺟ ﺎرب – ﻣﻛﺗﺑ ﺔ اﻻﻧﺟﻠ و اﻟﻣﺻ رﯾﺔ – اﻟﻘﺎھرة. - ٧ﺛروت ﻣﺣﻣد ﻋﺑد اﻟﻣﻧﻌم ، (٢٠٠٥) ،اﻻﻧﺣدار – ﻣﻛﺗﺑﺔ اﻻﻧﺟﻠو اﻟﻣﺻرﯾﺔ – اﻟﻘﺎھرة. - ٨ﺛ روت ﻣﺣﻣ د ﻋﺑ د اﻟﻣ ﻧﻌم ، (٢٠١١) ،ﻣ دﺧل ﺣ دﯾث ﻟﻼﺣﺻ ﺎء واﻻﺣﺗﻣ ﺎﻻت– اﻟطﺑﻌ ﺔ اﻟراﺑﻌﺔ – ﻣﻛﺗﺑﺔ اﻟﻌﺑﯾﻛﺎن – اﻟدﻣﺎم – اﻟﻣﻣﻠﻛﺔ اﻟﻌرﺑﯾﺔ اﻟﺳﻌودﯾﺔ. - ٩ﺟﻼل ﻣﺻطﻔﻰ اﻟﺻﯾﺎد وﻣﺣﻣ د اﻟدﺳ وﻗﻰ ﺣﺑﯾ ب ، (١٩٩٠) ،ﻣﻘدﻣ ﺔ ﻓ ﻰ اﻟط رق اﻹﺣﺻ ﺎﺋﯾﺔ – اﻟطﺑﻌﺔ اﻟﺛﺎﻧﯾﺔ – ﺗﮭﺎﻣﺔ – ﺟدة – اﻟﻣﻣﻠﻛﺔ اﻟﻌرﺑﯾﺔ اﻟﺳﻌودﯾﺔ. - ١٠ذﻛرﯾ ﺎ اﻟﺷ رﺑﯾﻧﻰ ، (١٩٩٥) ،اﻹﺣﺻ ﺎء وﺗﺻ ﻣﯾم اﻟﺗﺟ ﺎرب ﻓ ﻰ اﻟﺑﺣ وث اﻟﻧﻔﺳ ﯾﺔ واﻟﺗرﺑوﯾ ﺔ واﻹﺟﺗﻣﺎﻋﯾﺔ – ﻣﻛﺗﺑﺔ اﻷﻧﺟﻠو اﻟﻣﺻرﯾﺔ – اﻟﻘﺎھرة. - ١١راﻓ ت رﯾ ﺎض رزق ﷲ ، (٢٠٠٠) ،ﻣﺎﺛﯾﻣﺎﺗﯾﻛ ﺎ – اﻟرﯾﺎﺿ ﯾﺎت ﺑﺎﺳ ﺗﺧدام اﻟﻛﻣﺑﯾ وﺗر – اﻟﻣﻛﺗﺑﺔ اﻻﻛﺎدﯾﻣﯾﺔ– اﻟﻘﺎھرة. ٦١١
- ١٢رﺑﯾ ﻊ ذﻛ ر ﻋ ﺎﻣر ، (١٩٨٩) ،ﺗﺣﻠﯾ ل اﻻﻧﺣ دار – أﺳ ﺎﻟﯾﺑﺔ وﺗطﺑﯾﻘﺎﺗ ﮫ اﻟﻌﻠﻣﯾ ﺔ ﺑﺎﺳ ﺗﺧدام اﻟﺑرﻧﺎﻣﺞ اﻟﺟﺎھز - SPSS/PCﻣﻌﮭد اﻟدراﺳﺎت واﻟﺑﺣوث اﻹﺣﺻﺎﺋﯾﺔ – ﺟﺎﻣﻌﺔ اﻟﻘﺎھرة. - ١٣ﺳ ﻌدﯾﺔ ﺣ ﺎﻓظ ﻣﻧﺗﺻ ر ، (١٩٨٢) ،ﻣﻠﺧﺻ ﺎت ﺷ وم – ﻧظرﯾ ﺎت وﻣﺳ ﺎﺋل ﻓ ﻲ اﻹﺣﺻ ﺎء واﻻﻗﺗﺻﺎد اﻟﻘﯾﺎﺳﻲ – ﺗرﺟﻣﺔ ﻟﻛﺗﺎب دوﻣﯾﻧﯾك ﺳﺎﻟﻔﺎﺗور – دار ﻣﺎﻛﺟروھﯾل – ﻧﯾوﯾورك. - ١٤ﺳﻣﯾر ﻛﺎﻣل ﻋﺎﺷور وﺳ ﺎﻣﯾﺔ ﺳ ﺎﻟم أﺑ و اﻟﻔﺗ وح ، (١٩٩٠) ،ﻣﻘدﻣ ﺔ ﻓ ﻰ اﻹﺣﺻ ﺎء اﻟﺗﺣﻠﯾﻠ ﻰ ﻣﻌﮭد اﻟدراﺳﺎت واﻟﺑﺣوث اﻹﺣﺻﺎﺋﯾﺔ – ﺟﺎﻣﻌﺔ اﻟﻘﺎھرة. - ١٥ﺳﻣﯾر ﻛﺎﻣل ﻋﺎﺷور وﺳ ﺎﻣﯾﺔ ﺳ ﺎﻟم أﺑ و اﻟﻔﺗ وح ، (١٩٩٠) ،ﻣﻘدﻣ ﺔ ﻓ ﻰ اﻹﺣﺻ ﺎء اﻟوﺻ ﻔﻰ ﻣﻌﮭد اﻟدراﺳﺎت واﻟﺑﺣوث اﻹﺣﺻﺎﺋﯾﺔ – ﺟﺎﻣﻌﺔ اﻟﻘﺎھرة. - ١٦ﺳ ﻣﯾر ﻛﺎﻣ ل ﻋﺎﺷ ور وﺳ ﺎﻣﯾﺔ ﺳ ﺎﻟم أﺑ و اﻟﻔﺗ وح ، (١٩٩٥) ،اﻻﺧﺗﺑ ﺎرات اﻟﻼﻣﻌﻠﻣﯾ ﺔ - ﻣﻌﮭد اﻟدراﺳﺎت واﻟﺑﺣوث اﻹﺣﺻﺎﺋﯾﺔ – ﺟﺎﻣﻌﺔ اﻟﻘﺎھرة. - ١٧ﻋدﻧﺎن ﺑن ﻣﺎﺟد ﻋﺑد اﻟرﺣﻣن ﺑ رى وﻣﺣﻣ ود ﻣﺣﻣ د ﺑ راھﯾم ھﻧﯾ دى وأﻧ ور أﺣﻣ د ﻣﺣﻣ د ﻋﺑ د ﷲ ، (١٩٩١) ،ﻣﺑﺎدئ اﻹﺣﺻﺎء واﻻﺣﺗﻣﺎﻻت – ﻋﻣﺎده ﺷ ؤون اﻟﻣﻛﺗﺑ ﺎت – ﺟﺎﻣﻌ ﺔ اﻟﻣﻠك ﺳﻌود – اﻟﻣﻣﻠﻛﺔ اﻟﻌرﺑﯾﺔ اﻟﺳﻌودﯾﺔ. - ١٨ﻋﻔ ﺎف اﻟ دش ، (١٩٩٤) ،اﻹﺣﺻ ﺎء اﻟﺗطﺑﯾﻘ ﻰ ﻟﻠﺗﺟ ﺎرﯾﯾن – اﻟطﺑﻌ ﺔ اﻟﺛﺎﻧﯾ ﺔ – ﺟﺎﻣﻌ ﺔ ﺣﻠوان – اﻟﻘﺎھرة. - ١٩ﻣﺣﻣ د ﺻ ﺑﺣﻰ أﺑ و ﺻ ﺎﻟﺢ وﻋ دﻧﺎن ﻣﺣﻣ د ﻋ وض ، (٠١٩٨٣ ،ﻣﻘدﻣ ﺔ ﻓ ﻰ اﻹﺣﺻ ﺎء – اﻟطﺑﻌﺔ اﻟراﺑﻌﺔ – دار ﺟون واﯾﻠﻰ وأﺑﻧﺎﺋﺔ – ﻧﯾوﯾورك. - ٢٠ﻣﺣﻣد ﻣﺣﻣ د اﻟط ﺎھر اﻹﻣ ﺎم ) ، (١٩٩٤ﺗﺻ ﻣﯾم وﺗﺣﻠﯾ ل اﻟﺗﺟ ﺎرب – دار اﻟﻣ رﯾﺦ – اﻟﻣﻣﻠﻛ ﺔ اﻟﻌرﺑﯾﺔ اﻟﺳﻌودﯾﺔ.
ﺛﺎﻧﻴﺎ :اﻟﻤﺮاﺟﻊ اﻷﺟﻨﺒﻴﺔ 1- Abell, M. L. et.al. (1999) Statistics with Mathematica, Academic Press, New York. 2- Abell, M. L. et.al. (1992) The Mathematica Handbook, Academic Press, New York. 3- Bain, L. J. (1992) Introduction to Probability and Mathematical Statistics, Second Edition, Duxbury Press - An Imprint of Wadsworth Publishing Company Belmont, California. ٦١٢
4- Cangelosi, V. E.; Taylor, P. H. and Rice, P. F. (1979) Basic statistics - A Real World Approach, Second Edition, West Publishing Company, New York. 5- Cochran, W. G. (1963) Sampling Techniques, Second Edition, New York : John Willey & Sons, Inc. 6- Daniel, W. W. (1978) Applied Nonparametric Statistic, Houghton Mifflin Company, London. 7- Devore, J. L. (1995) Probability and Statistics for Engineering and the Sciences, Fourth Edition, Duxburg Press-An International Themson Publishing Company, London. 8- Draper, N. R. and Smith, H. (1981) Applied Regression Analysis, Second Edition, John Wiley & Sons Inc., U.S.A. . 9- Frank, H. and Althoen, S. C. (1997) Statistics- Concepts and Applications, Low Price Edition, Cambridge University Press.
10- Hamburg, M. (1979) Basic Statistics : A Modern Approach, Second Edition, Harcourt Brace Jovanovich, Inc., New York. 11- Mendenhall, W. (1975) Introduction to Probability and Statistics, Company, Inc. Belmont, California Fourth Edition, Duxburg Press, A Division of Wadsworth Publishing 12- Neter, J.; Wasserman, W. and Whitmere, G. A. (1993) Applied Statistics, Fourth Edition, ALLYN AND BACON, London. 13- Owen, F. and Jones, R. (1994) Statistics, Fourth Edition, Pitman Publishing, London. 14- Schelfer, W. (1979) Statistics for the Bidogical Sciences, Second Edition, Addison-Wesly Publishing Company. Inc. Philippines.
٦١٣
15- Yates, F. (1934) Contingency Tables Involving Small Numbers and the 2 13-Test, J. Roy. Statist. Soc., 1,217-235. 16- Walpole, R. E. (1982) Introduction to Statistics, Macmillan Publishing Co. Inc. New York. 17- Weisberg, S. (1980), Applied Linear Regression, John Wiley & Sons Inc., New York, U.S.A.. 18- Winer, B. J. Brown, D. R. and Michels, K. M.(1991) Statistical Experimental Design, Third Edition, McGraw-Hill, Inc., New York. 19- Yamane, T. (1967) Elementary Sampling Theory, Prentice-Hall, Inc., Englewood Cliffs, N. J.
٦١٤
٦١٥
اﻟﻤﻼﺣﻖ ﻣﻠﺤﻖ ) ( ١ﺟﺪول اﻟﻤﺴﺎﺣﺎت ﺗﺤﺖ اﻟﻤﻨﺤﻨﻰ اﻟﻄﺒﯿﻌﻲ اﻟﻘﯿﺎﺳﻲ ). P(0 Z z ﻣﻠﺤﻖ ) ( ٢ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ t ﻟﺘﻮزﯾﻊ . t ﻣﻠﺤﻖ ) ( ٣ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ 2ﻟﺘﻮزﯾﻊ . 2 ﻣﻠﺤﻖ ) ( ٤ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ) f (1, 2ﻟﺘﻮزﯾﻊ Fﻋﻨﺪ ) . ( 0.05 ﻣﻠﺤﻖ ) (٥ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ) f (1, 2ﻟﺘﻮزﯾﻊ Fﻋﻨﺪ ) . ( 0.01 ﻣﻠﺤﻖ ) ( ٦ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ) q (p , ﻟﻨﯿﻮﻣﻦ . ﻣﻠﺤﻖ ) ( ٧ﺟﺪول ﺣﺴﺎب
r ) b ( x ; n , p x 0
ﻟﻤﺘﻐﯿﺮ ﻋﺸﻮاﺋﻲ ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ذي اﻟﺤﺪﯾﻦ .
ﻣﻠﺤﻖ ) ( ٨ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ) d ( n , ), d ( n , ﻻﺧﺘﺒﺎر إﺷﺎرة اﻟﺮﺗﺐ . ﻣﻠﺤﻖ ) ( ٩ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ r1اﻟﺴﻔﻠﻲ ﻻﺧﺘﺒﺎر اﻟﺪورات . ﻣﻠﺤﻖ ) ( ١٠ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ r2اﻟﻌﻠﯿﺎ ﻻﺧﺘﺒﺎر اﻟﺪورات . ﻣﻠﺣق ) ( ١١ﺟدول اﻟﻘﯾم اﻟﺣرﺟﺔ ﻻﺧﺗﺑﺎر Mann-Whitney-Wilcoxon ﻣﻠﺤﻖ ) ( ١٢ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ﻻﺧﺘﺒﺎر . Kruskal – Wallis
ﻣﻠﺤﻖ ) ( ١٣ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ
* rs ,
ﻻﺧﺘﺒﺎر ﺳﺒﯿﺮﻣﺎن .
٦١٦
ﻣﻠﺤﻖ )(١
ﺟدول اﻟﻣﺳﺎﺣﺎت ﺗﺣت اﻟﻣﻧﺣﻧﻰ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ )P(0<Z<z .09 .0359 .0753 .1141 .1517 .1879 .2224 .2549 .2852 .3133 .3389 .3621 .3830 .4015 .4177 .4319 .4441 .4545 .4633 .4706 .4767 .4817 .4857 .4890 .4916 .4936 .4952 .4964 .4974 .4981 .4986 .4990
.08 .0319 .0714 .1103 .1480 .1844 .2190 .2517 .2823 .3106 .3365 .3599 .3810 .3997 .4162 .4306 .4429 .4535 .4625 .4699 .4761 .4812 .4854 .4887 .4913 .4934 .4951 .4963 .4973 .4980 .4986 .4990
.07 .0279 .0675 .1064 .1443 .1808 .2157 .2486 .2794 .3078 .3340 .3577 .3790 .3980 .4147 .4292 .4418 .4525 .4616 .4693 .4756 .4808 .4850 .4884 .4911 .4932 .4949 .4962 .4972 .4979 .4985 .4989
.06 .0239 .0636 .1026 .1406 .1772 .2123 .2454 .2764 .3051 .3315 .3554 .3770 .3962 .4131 .4279 .4406 .4515 .4608 .4686 .4750 .4803 .4846 .4881 .4909 .4931 .4948 .4961 .4971 .4979 .4985 .4989
.05 .0199 .0596 .0987 .1368 .1736 .2088 .2422 .2734 .3023 .3289 .3531 .3749 .3944 .4115 .4265 .4394 .4505 .4599 .4678 .4744 .4798 .4842 .4878 .4906 .4929 .4946 .4960 .4970 .4978 .4984 .4989
.04 .0160 .0557 .0948 .1331 .1700 .2054 .2389 .2704 .2995 .3264 .3508 .3729 .3925 .4099 .4251 .4382 .4495 .4591 .4671 .4738 .4793 .4838 .4875 .4904 .4927 .4945 .4959 .4969 .4977 .4984 .4988
اﻟﻤﺼﺪر :ﻋﻦ ])[Daniel (1978
٦١٧
.03 .0120 .0517 .0910 .1293 .1664 .2019 .2357 .2673 .2967 .3238 .3485 .3708 .3907 .4082 .4236 .4370 .4484 .4582 .4664 .4732 .4788 .4834 .4871 .4901 .4925 .4943 .4957 .4968 .4977 .4983 .4988
.02 .0080 .0478 .0871 .1255 .1628 .1985 .2324 .2642 .2939 .3212 .3461 .3686 .3888 .4066 .4222 .4357 .4474 .4573 .4656 .4726 .4783 .4830 .4868 .4898 .4922 .4941 .4956 .4967 .4976 .4982 .4987
.01 .0040 .0438 .0832 .1217 .1591 .1950 .2291 .2611 .2910 .3186 .3438 .3665 .3869 .4049 .4207 .4345 .4463 .4564 .4649 .4719 .4778 .4826 .4864 .4896 .4920 .4940 .4955 .4966 .4975 .4982 .4987
.00 .0000 .0398 .079 .1179 .1554 .1915 .2257 .2580 .2881 .3159 .3413 .3643 .3849 .4032 .4192 .4332 .4452 .4554 .4641 .4713 .4772 .4821 .4861 .4893 .4918 .4938 .4953 .4965 .4974 .4981 .4987
Z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
ﻣﻠﺤﻖ )(٢ ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ t ﻟﺘﻮزﯾﻊ
t
.0005 636.62 31.598 12.924 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965 3.922 3.883 3.850 3.819 3.792 3.767 3.745 3.725 3.707 3.690 3.674 3.659 3.646 3.551 3.460 3.373 3.291
اﻟﻤﺼﺪر
.001 318.31 22.326 10.213 7.173 5.893 5.208 4.785 4.501 4.297 4.144 4.025 3.930 3.852 3.787 3.733 3.686 3.646 3.610 3.579 3.552 3.527 3.505 3.485 3.467 3.450 3.435 3.421 3.408 3.396 3.385 3.307 3.232 3.160 3.090
.005 63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2.831 2.819 2.807 2.797 2.787 2.779 2.771 2.763 2.756 2.750 2.704 2.660 2.617 2.576
.01 31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764 2.718 2.681 2.650 2.624 2.602 2.583 2.567 2.552 2.539 2.528 2.518 2.508 2.500 2.492 2.485 2.479 2.473 2.467 2.462 2.457 2.423 2.390 2.358 2.326
:ﻋﻦ ])[Devore (1995
٦١٨
.025 12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086 2.080 2.074 2.069 2.064 2.060 2.056 2.052 2.048 2.045 2.042 2.021 2.000 1.980 1.960
.05 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725 1.721 1.717 1.714 1.711 1.708 1.706 1.703 1.701 1.699 1.697 1.684 1.671 1.658 1.645
.10 3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341 1.337 1.333 1.330 1.328 1.325 1.323 1.321 1.319 1.318 1.316 1.315 1.314 1.313 1.311 1.310 1.303 1.296 1.289 1.282
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 60 120
ﻣﻠﺤﻖ )(٣ 2
ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ
ﻟﺘﻮزﯾﻊ 2
.005
.01
.025
.05
.10
.90
.95
.975
.99
.995
7.882 10.59 12.83 14.86 16.74 18.54 20.27 21.95 23.58 25.18 26.75 28.30 29.81 31.31 32.79 34.26 35.71 37.15 38.58 39.99 41.39 42.79 44.17 45.55 46.92 48.29 49.64 50.99 52.33 53.67 55.00 56.32 57.64 58.96 60.27 61.58 62.88 64.18 65.47 66.76
6.637 9.210 11.34 13.27 15.08 16.81 18.47 20.09 21.66 23.20 24.72 26.21 27.68 29.14 30.57 32.00 33.40 34.80 36.19 37.56 38.93 40.28 41.63 42.98 44.31 45.64 46.96 48.27 49.58 50.89 52.19 53.48 54.77 56.06 57.34 58.61 59.89 61.16 62.42 63.69
5.025 7.378 9.348 11.14 12.83 14.44 16.01 17.53 19.02 20.48 21.92 23.33 24.73 26.11 27.48 28.84 30.19 31.52 32.85 34.17 35.47 36.78 38.07 39.36 40.64 41.92 43.19 44.46 45.77 46.97 48.23 49.48 50.72 51.96 53.20 54.43 55.66 56.89 58.11 59.34
3.843 5.992 7.815 9.488 11.07 12.59 14.06 15.50 16.91 18.30 19.67 21.02 22.36 23.68 24.99 26.29 27.58 28.86 30.14 31.41 32.67 33.92 35.17 36.41 37.65 38.88 40.11 41.33 42.55 43.77 44.98 46.19 47.40 48.60 49.80 50.99 52.19 53.38 54.57 55.75
2.706 4.605 6.251 7.779 9.236 10.64 12.01 13.36 14.68 15.98 17.27 18.54 19.81 21.06 22.30 23.54 24.76 25.98 27.20 28.41 29.61 30.81 32.00 33.19 34.38 35.56 36.74 37.91 39.08 40.25 41.42 42.58 43.74 44.90 46.05 47.21 48.36 49.51 50.66 51.80
0.016 0.211 0.584 1.064 1.610 2.204 2.833 3.490 4.168 4.865 5.578 6.304 7.041 7.790 8.547 9.312 10.08 10.86 11.65 12.44 13.24 14.04 14.84 15.65 16.47 17.29 18.11 18.93 19.76 20.59 21.43 22.27 23.11 23.95 24.79 25.64 26.49 27.34 28.19 29.05
0.004 0.103 0.352 0.711 1.145 1.635 2.167 2.733 3.325 3.940 4.575 5.226 5.892 6.571 7.261 7.962 8.682 9.390 10.11 10.85 11.59 12.33 13.09 13.84 14.61 15.37 16.15 16.92 17.70 18.49 19.28 20.07 20.86 21.66 22.46 23.26 24.07 24.88 25.69 26.50
0.001 0.051 0.216 0.484 0.831 1.237 1.690 2.180 2.700 3.247 3.816 4.404 5.009 5.629 6.262 6.908 7.564 8.231 8.906 9.591 10.28 10.98 11.68 12.40 13.12 13.84 14.57 15.30 16.14 16.79 17.53 18.29 19.04 19.80 20.56 21.33 22.10 22.87 23.65 24.43
0.000 0.020 0.115 0.297 0.554 0.872 1.239 1.646 2.088 2.558 3.053 3.571 4.107 4.660 5.229 5.812 6.407 7.015 7.632 8.260 8.897 9.542 10.19 10.85 11.52 12.19 12.87 13.56 14.25 14.95 15.65 16.36 17.07 17.78 18.50 19.23 19.96 20.69 21.42 22.16
0.000 0.010 0.072 0.207 0.412 0.676 0.989 1.344 1.735 2.156 2.603 3.074 3.565 4.075 4.600 5.142 5.697 6.265 6.843 7.434 8.033 8.643 9.260 9.886 10.51 11.16 11.80 12.46 13.12 13.78 14.45 15.13 15.81 16.50 17.19 17.88 18.58 19.28 19.99 20.70
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
اﻟﻤﺼﺪر :ﻋﻦ ])[Devore(1995
٦١٩
ﻣﻠﺤﻖ )(٤ ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ) f (1, 2ﻟﺘﻮزﯾﻊ Fﻋﻨﺪ
)( 0.05 1
120
60
40
30
24
20
15
12
10
9
8
7
236. 238. 240. 241. 243. 245. 248. 249. 250. 251. 252. 253.3 254. 8 19.3 9 19.3 5 19.4 9 19.4 9 19.4 9 19.4 0 19.4 1 19.4 1 19.4 1 19.4 2 19.49 19.5 3 19.3 5 7 8 0 1 3 5 5 6 7 8 0 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
6
5
4
3
2
1
161. 199. 215. 224. 230. 234. 4 19.0 5 19.1 7 19.2 6 19.3 2 19.3 0 18.5 1 0 6 5 0 3 10.1 9..55 9.28 9.12 9.01 8.94 3 6.94 6.59 6.39 6.26 6.16 7.71
2
1 2 3 4
6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 6. 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
5
5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
6
5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
7
5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
8
5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71
9
4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
10
4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
11
4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
12
4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
13
4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
14
4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
15
4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.07
16
4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
17
4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
18
4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
19
4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
20
4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
21
4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
22
4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
23
4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
24
2.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
25
4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.58 1.80 1.75 1.69
26
4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
27
4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
28
4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
29
4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
30
4.08 3.23 2.48 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
40
4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39
60
3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
120
3.84 3.84 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
اﻟﻤﺼﺪر :ﻋﻦ ])[Devore (1995
٦٢٠
ﻣﻠﺤﻖ )(٥ ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ) f (1, 2ﻟﺘﻮزﯾﻊ
Fﻋﻨﺪ ) ( 0.01 1
120
60
40
30
24
20
15
12
10
9
8
7
6
5
4
3
2
1
2
4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366
1
98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
2
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13
3
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
4
9.02
9.11
9.20
9.29
9.38
9.47
9.55
9.72
16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89
5
6.88
6.97
7.06
7.14
7.23
7.31
7.40
7.56
7.72
7.87
7.98
8.10
8.26
8.47
8.75
9.15
13.57 10.92 9.78
6
5.65
5.74
5.82
5.91
5.99
6.07
6.16
6.31
6.47
6.62
6.72
6.84
6.99
7.19
7.46
7.85
8.45
12.25 9.55
7
4.86
4.95
5.03
5.12
5.20
5.28
5.36
5.52
5.67
5.81
5.91
6.03
6.18
6.37
6.63
7.01
7.59
11.26 8.65
8
4.31
4.40
4.48
4.57
4.65
4.73
4.81
4.96
5.11
5.26
5.35
5.47
5.61
5.80
6.06
6.42
6.99
10.56 8.02
9
3.91
4.00
4.08
4.17
4.25
4.33
4.41
4.56
4.71
4.85
4.94
5.06
5.20
5.39
5.64
5.99
6.55
10.04 7.56
10
3.60
3.69
3.78
3.86
3.94
4.02
4.10
4.25
4.40
4.54
4.63
4.74
4.89
5.07
5.32
5.67
6.22
7.21
9.65
11
3.45 3.369 .07 3.25 3.17
3.54
3.62
3.70
3.78
3.86
4.01
4.16
4.30
4.39
4.50
4.64
4.82
5.06
5.41
5.95
6.93
9.33
12
3.34
3.43
3.51
3.59
3.66
3.82
3.96
4.10
4.19
4.30
4.41
4.62
4.86
5.21
5.74
6.70
9.07
13
3.00
3.09
3.18
3.27
3.35
3.43
3.51
3.66
3.80
3.94
4.03
4.14
4.28
4.46
4.69
5.04
5.56
6.51
8.86
14
2.87
2.96
3.05
3.13
3.21
3.29
3.37
3.52
3.67
3.80
3.89
4.00
4.14
4.32
4.56
4.89
5.42
6.36
8.68
15
2.75
2.84
2.93
3.02
3.10
3.18
3.26
3.41
3.55
3.69
3.78
3.89
4.03
4.20
4.44
4.77
5.29
6.23
8.53
16
2.65
2.75
2.83
2.92
3.00
3.08
3.16
3.31
3.46
3.59
3.68
3.79
3.93
4.10
4.34
4.67
5.18
6.11
8.40
17
2.57
2.66
2.75
2.84
2.92
3.00
3.08
3.23
3.37
3.51
3.60
3.71
3.84
4.01
4.25
4.58
5.09
6.01
8.29
18
2.49
2.58
2.67
2.76
2.84
2.92
3.00
3.15
3.30
3.43
3.52
3.63
3.77
3.94
4.17
4.50
5.01
5.93
8.18
19
2.42
2.52
2.61
2.69
2.78
2.86
2.94
3.09
3.23
3.37
3.46
3.56
3.70
3.87
4.10
4.43
4.94
5.85
8.10
20
2.36
2.46
2.55
2.64
2.72
2.80
2.88
3.03
3.17
3.31
3.40
3.51
3.64
3.81
4.04
4.37
4.87
5.78
8.02
21
2.31
2.40
2.50
2.58
2.67
2.75
2.83
2.98
3.12
3.26
3.35
3.45
3.59
3.76
3.99
4.31
4.82
5.72
7.95
22
2.26
2.35
2.45
2.54
2.62
2.70
2.78
2.93
3.07
3.21
3.30
3.41
3.54
3.71
3.94
4.26
4.76
5.66
7.88
23
2.21
2.31
2.40
2.49
2.58
2.66
2.74
3.03 2..89
3.17
3.26
3.36
3.50
3.67
3.90
4.22
4.72
5.61
7.82
24
2.17
2.27
2.36
2.45
2.54
2.62
2.70
2.85
2.99
3.13
3.22
3.32
3.46
3.63
3.85
4.18
4.68
5.57
7.77
25
2.13
2.23
2.33
2.42
2.50
2.58
2.66
2.81
2.96
3.09
3.18
3.29
3.42
3.59
3.82
4.14
4.64
5.53
7.72
26
2.10
2.20
2.29
2.38
2.47
2.55
2.63
2.78
2.93
3.06
3.15
3.26
3.39
3.56
3.78
4.11
4.60
5.49
7.86
27
2.06
2.17
2.26
2.35
2.44
2.52
2.60
2.75
2.90
3.03
3.12
3.23
3.36
3.53
3.75
4.07
4.57
5.45
7.64
28
2.03
2.14
2.23
2.33
2.41
2.49
2.57
2.73
2.87
3.00
3.09
3.20
3.33
3.50
3.73
4.04
4.54
5.42
7.60
29
2.01
2.11
2.21
2.30
2.39
2.47
2.55
2.70
2.84
2.98
3.07
3.17
3.30
3.47
3.70
4.02
4.51
5.39
7.56
30
1.80
1.92
2.02
2.11
2.20
2.29
2.37
2.52
2.66
2.80
3.89
2.99
3.12
3.29
3.51
3.83
4.31
5.18
7.31
40
1.60
1.73
1.84
1.94
2.03
2.12
2.20
2.35
2.50
2.63
3.72
2.82
2.95
3.12
3.34
3.65
4.13
4.98
7.08
60
1.38
1.53
1.66
1.76
1.86
1.95
2.03
2.19
2.34
2.47
3.56
2.66
2.79
2.96
3.17
3.48
3.95
4.79
6.85
120
1.00
1.32
1.47
1.59
1.70
1.79
1.88
2.04
2.18
2.32
3.41
2.51
2.64
2.80
3.02
3.32
3.78
4.61
6.63
٦٢١
ﻣﻠﺤﻖ )(٦ ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ) q (p , ﻟﻨﯿﻮﻣﻦ M
11
10
9
8
7
6
5
4
3
2
7.17
6.99
6.80
6.58
6.33
6.03
5.67
5.22
4.60
3.64
.05
10.48
10.24
9.97
9.67
9.32
8.91
8.42
7.80
6.98
5.70
.01
6.65
6.49
6.32
6.12
5.90
5.63
5.30
4.90
4.34
3.46
.05
9.30
9.10
8.87
8.61
8.32
7.97
7.56
7.03
6.33
5.24
.01
6.30
6.16
6.00
5.82
5.61
5.36
5.06
4.68
4.16
3.34
.05
8.55
8.37
8.17
6.94
7.68
7.37
7.01
6.54
5.92
4.95
.01
6.05
5.92
5.77
5.60
5.40
5.17
4.89
4.53
4.04
3.26
.05
8.03
7.86
7.68
7.47
7.24
6.96
6.62
6.20
5.64
4.75
.01
5.87
5.74
5.59
5.43
5.24
5.02
4.76
4.41
3.95
3.20
.05
7.65
7.49
7.33
7.13
6.91
6.66
6.35
5.96
5.43
4.60
.01
5.72
5.60
5.46
5.30
5.12
4.91
4.65
4.33
3.88
3.15
.05
7.36
7.21
7.05
6.87
6.67
6.43
6.14
5.77
5.27
4.48
.01
5.61
5.49
5.35
5.20
5.03
4.82
4.57
4.26
3.82
3.11
.05
7.13
6.99
6.84
6.67
6.48
6.25
5.97
5.62
5.15
4.39
.01
5.51
5.39
5.27
5.12
4.95
4.75
4.51
4.20
3.77
3.08
.05
6.94
6.81
6.67
6.51
6.32
6.10
5.84
5.50
5.05
4.32
.01
5.43
5.32
5.19
5.05
4.88
4.69
4.45
4.15
3.73
3.06
.05
6.79
6.67
6.53
6.37
6.19
5.98
5.73
5.40
4.96
4.26
.01
5.36
5.25
5.13
4.99
4.83
4.64
4.41
4.11
3.70
3.03
.05
6.66
6.54
6.41
6.26
6.08
5.88
5.63
5.32
4.89
4.21
.01
5.31
5.20
5.08
4.94
4.78
4.59
4.37
4.08
3.67
3.01
.05
6.55
6.44
6.31
6.16
5.99
5.80
5.56
5.25
4.84
4.17
.01
5.26
5.15
5.03
4.90
4.74
4.56
4.33
4.05
3.65
3.00
.05
6.46
6.35
6.22
6.08
5.92
5.72
5.49
5.19
4.79
4.13
.01
5.21
5.11
4.99
4.86
4.70
4.52
4.30
4.02
3.63
2.98
.05
6.38
6.27
6.15
6.01
5.85
5.66
5.43
5.14
4.74
4.10
.01
5.17
5.07
4.96
4.82
4.67
4.49
4.28
4.00
3.61
2.97
.05
6.31
6.20
6.08
5.94
5.79
5.60
5.38
5.09
4.70
4.07
.01
5.14
5.04
4.92
4.79
4.65
4.47
4.25
3.98
3.59
2.96
.05
6.25
6.14
6.02
5.89
5.73
5.55
5.33
5.05
4.67
4.05
.01
5.11
5.01
4.90
4.77
4.62
4.45
4.23
3.96
3.58
2.95
.05
6.19
6.09
5.97
5.84
5.69
5.51
5.29
5.02
4.64
4.02
.01
5.01
4.92
4.81
4.68
4.54
4.37
4.17
3.90
3.53
2.92
.05
6.02
5.92
5.81
5.69
5.54
5.37
5.17
4.91
4.55
3.96
.01
4.92
4.82
4.72
4.60
4.46
4.30
4.10
3.85
3.49
2.89
.05
5.85
5.76
5.65
5.54
5.40
5.24
5.05
4.80
4.45
3.89
.01
4.82
4.73
4.63
4.52
4.39
4.23
4.04
3.79
3.44
2.86
.05
5.69
5.60
5.50
5.39
5.26
5.11
4.93
4.70
4.37
3.82
.01
4.73
4.65
4.55
4.44
4.31
4.16
3.98
3.74
3.40
2.83
.05
5.53
5.45
5.36
5.25
5.13
4.99
4.82
4.59
4.28
3.76
.01
4.64
4.56
4.47
4.36
4.24
4.10
3.92
3.68
3.36
2.80
.05
٦٢٢
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
24
30
40
60
120
.01
3.70
4.20
4.50
4.71
4.87
5.01
5.12
5.21
5.30
5.37
.05
2.77
3.31
3.63
3.86
4.03
4.17
4.29
4.39
4.47
4.55
.01
3.64
4.12
4.40
4.60
4.76
4.88
4.99
5.08
5.16
5.23
٦٢٣
ﺗﺎﺑﻊ ﻣﻠﺤﻖ )(٦ ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ) q (p , ﻟﻨﯿﻮﻣﻦ m
5 6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
24
30
40
60
120
20
19
18
17
16
15
14
13
12
.05
8.21
8.12
8.03
7.93
7.83
7.72
7.60
7.47
7.32
.01
11.93
11.81
11.68
11.55
11.40
11.24
11.08
10.89
10.70
.05
7.59
7.51
7.43
7.34
7.24
7.14
7.03
6.92
6.79
.01
10.54
10.43
10.32
10.21
10.08
9.95
9.81
9.65
9.48
.05
7.17
7.10
7.02
6.94
6.85
6.76
6.66
6.55
6.43
.01
9.65
9.55
9.46
9.35
9.24
9.12
9.00
8.86
8.71
.05
6.87
6.80
6.73
6.65
6.57
6.48
6.39
6.29
6.18
.01
9.03
8.94
8.85
8.76
8.66
8.55
8.44
8.31
8.18
.05
6.64
6.58
6.51
6.44
6.36
6.28
6.19
6.09
5.98
.01
8.57
8.49
8.41
8.33
8.23
8.13
8.03
7.91
7.78
.05
6.47
6.40
6.34
6.27
6.19
6.11
6.03
5.93
5.83
.01
8.23
8.15
8.08
7.99
7.91
7.81
7.71
7.60
7.49
.05
6.33
6.27
6.20
6.13
6.06
5.98
5.90
5.81
5.71
.01
7.95
7.88
7.81
7.73
7.65
7.56
7.46
7.36
7.25
.05
6.21
6.15
6.09
6.02
5.95
5.88
5.80
5.71
5.61
.01
7.73
7.66
7.59
7.52
7.44
7.36
7.26
7.17
7.06
.05
6.11
6.05
5.99
5.93
5.86
5.79
5.71
5.63
5.53
.01
7.55
7.48
7.42
7.35
7.27
7.19
7.10
7.01
6.90
.05
6.03
5.97
5.91
5.85
5.79
5.71
5.64
5.55
5.46
.01
7.39
7.33
7.27
7.20
7.13
7.05
6.96
6.87
6.77
.05
5.96
5.90
5.85
5.78
5.72
5.65
5.57
5.49
5.40
.01
7.26
7.20
7.14
7.07
7.00
6.93
6.84
6.76
6.66
.05
5.90
5.84
5.79
5.73
5.66
5.59
5.52
5.44
5.35
.01
7.15
7.09
7.03
6.97
6.90
6.82
6.74
6.66
6.56
.05
5.84
5.79
5.73
5.67
5.61
5.54
5.47
5.39
5.31
.01
7.05
7.00
6.94
6.87
6.81
6.73
6.66
6.57
6.48
.05
5.79
5.74
5.69
5.63
5.57
5.50
5.43
5.35
5.27
.01
6.97
6.91
6.85
6.79
6.73
6.65
6.58
6.50
6.41
.05
5.75
5.70
5.65
5.59
5.53
5.46
5.39
5.31
5.23
.01
6.89
6.84
6.78
6.72
6.65
6.58
6.51
6.43
6.34
.05
5.71
5.66
5.61
5.55
5.49
5.43
5.36
5.28
5.20
.01
6.82
6.77
6.71
6.65
6.59
6.52
6.45
6.37
6.28
.05
5.59
5.55
5.49
5.44
5.38
5.32
5.25
5.18
5.10
.01
6.61
6.56
6.51
6.45
6.39
6.33
6.26
6.19
6.11
.05
5.47
5.43
5.38
5.33
5.27
5.21
5.15
5.08
5.00
.01
6.41
6.36
6.31
6.26
6.20
6.14
6.08
6.01
5.93
.05
5.36
5.31
5.27
5.22
5.16
5.11
5.04
4.98
4.90
.01
6.21
6.16
6.12
6.07
6.02
5.96
5.90
5.83
5.76
.05
5.24
5.20
5.15
5.11
5.06
5.00
4.94
4.88
4.81
.01
6.01
5.97
5.93
5.89
5.84
5.78
5.73
5.67
5.60
.05
5.13
5.09
5.04
5.00
4.95
4.90
4.84
4.78
4.71
٦٢٤
5.44
5.50
5.56
5.61
5.66
5.71
5.75
5.79
5.83
.01
4.62
4.68
5.74
4.80
4.85
4.89
4.93
4.97
5.01
.05
5.29
5.35
5.40
5.45
5.49
5.54
5.57
5.61
5.65
.01
٦٢٥
ﻣﻠﺤﻖ )(٧ x ) b( k ; n , p k 0
ﻟﻤﺘﻐﯿﺮ ﻋﺸﻮاﺋﻲ ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ذي اﻟﺤﺪﯾﻦ
0.99 .000 .000 .000 .001 .049
0.95 .000 .000 .001 .023 .226
0.90 .000 .000 .009 .081 .410
0.80 .000 .007 .058 .263 .672
0.75 .001 .016 .104 .367 .763
0.70 .002 .031 .163 .472 .832
0.60 .010 .087 .317 .663 .922
0.50 .031 .188 .500 .812 .969
0.40 .078 .337 .683 .913 .990
0.30 .168 .528 .837 .969 .998
0.25 .237 .633 .896 .984 .999
0.20 .328 .737 .942 .993 1.00
0.1 .590 .919 .991 1.00 1.00
0.05 .774 .977 .999 1.00 1.00
0.99 .000 .000 .000 .000 .000 .000 .000 .000 .004 .096
0.95 .000 .000 .000 .000 .000 .000 .001 .012 .086 .401
0.90 .000 .000 .000 .000 .000 .002 .013 .070 .264 .651
0.80 .000 .000 .000 .001 .006 .033 .121 .322 .624 .893
0.75 .000 .000 .000 .004 .020 .078 .224 .474 .756 .944
0.70 .000 .000 .002 .011 .047 .150 .350 .617 .851 .972
0.60 .000 .002 .012 .055 .166 .367 .618 .833 .954 .994
0.50 .001 .011 .055 .172 .377 .623 .828 .945 .989 .999
0.40 .006 .046 .167 .382 .633 .834 .945 .988 .998 1.00
0.30 .028 .149 .383 .650 .850 .953 .989 .998 1.00 1.00
0.25 .056 .244 .526 .776 .922 .980 .996 1.00 1.00 1.00
0.20 .107 .376 .678 .879 .967 .994 .999 1.00 1.00 1.00
0.10 .349 .736 .930 .987 .998 1.00 1.00 1.00 1.00 1.00
0.05 .599 .914 .988 .999 1.00 1.00 1.00 1.00 1.00 1.00
ﺟﺪول ﺣﺴﺎب
n=5 p 0.01 .951 .999 1.00 1.00 1.00
0 1 2 3 4
x
n=10 p 0.01 .904 .996 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1 2 3 4 5 6 7 8 9
x
ﺗﺎﺑﻊ ﻣﻠﺤﻖ )(٧ ﺟﺪول ﺣﺴﺎب
x ) b( k ; n , p k 0
ﻟﻤﺘﻐﯿﺮ ﻋﺸﻮاﺋﻲ ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ذي اﻟﺤﺪﯾﻦ
0.60 .000 .000 .000 .002 .009 .034 .095 .213 .390 .597 .783 .909 .973 .995 1.00
0.05 .463 .829 .964 .995 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n=15 0.99 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .010 .140
0.95 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .005 .036 .171 .537
0.90 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .013 .056 .184 .451 .794
0.80 .000 .000 .000 .000 .000 .000 .001 .004 .018 .061 .164 .352 .602 .833 .965
0.75 .000 .000 .000 .000 .000 .001 .004 .017 .057 .148 .314 .539 .764 .920 .987
0.70 .000 .000 .000 .000 .001 .004 .015 .050 .131 .278 .485 .703 .873 .965 .995
0.50 .000 .000 .004 .018 .059 .151 .304 .500 .696 .849 .941 .982 .996 1.00 1.00
اﻟﻤﺼﺪر :ﻋﻦ ])[Devore(1995 ٦٢٦
0.40 .000 .005 .027 .091 .217 .403 .610 .787 .905 .966 .991 .998 1.00 1.00 1.00
0.30 .005 .035 .127 .297 .515 .722 .869 .950 .985 .996 .999 1.00 1.00 1.00 1.00
0.25 .013 .080 .236 .461 .686 .852 .943 .983 .996 .999 1.00 1.00 1.00 1.00 1.00
0.20 .035 .167 .398 .648 .836 .939 .982 .996 .999 1.00 1.00 1.00 1.00 1.00 1.00
0.10 .206 .549 .816 .944 .987 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
p 0.01 .860 .990 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x
ﺗﺎﺑﻊ ﻣﻠﺤﻖ )(٧ x ) b( k ; n , p k 0
ﻟﻤﺘﻐﯿﺮ ﻋﺸﻮاﺋﻲ ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ذي اﻟﺤﺪﯾﻦ
0.99
0.95
0.90
0.80
0.75
0.70
0.60
0.50
0.40
0.30
0.25
0.20
0.10
0.05
0.01
.000
.000
.000
.000
.000
.000
.000
.000
.000
.001
.003
.012
.122
.358
.818
0
.000
.000
.000
.000
.000
.000
.000
.000
.001
.008
.024
.069
.392
.736
.983
1
.000
.000
.000
.000
.000
.000
.000
.000
.004
.035
.091
.206
.677
.925
.999
2
.000
.000
.000
.000
.000
.000
.000
.001
.016
.107
.225
.411
.867
.984
1.00
3
.000
.000
.000
.000
.000
.000
.000
.006
.051
.238
.415
.630
.957
.997
1.00
4
.000
.000
.000
.000
.000
.000
.002
.021
.126
.416
.617
.804
.989
1.00
1.00
5
.000
.000
.000
.000
.000
.000
.006
.058
.250
.608
.786
.913
.998
1.00
1.00
6
.000
.000
.000
.000
.000
.001
.021
.132
.416
.772
.898
.968
1.00
1.00
1.00
7
.000
.000
.000
.000
.001
.005
.057
.252
.596
.887
.959
.990
1.00
1.00
1.00
8
.000
.000
.000
.001
.004
.017
.128
.412
.755
.952
.986
.997
1.00
1.00
1.00
9
.000
.000
.000
.003
.014
.048
.245
.588
.872
.983
.996
.999
1.00
1.00
1.00
10
.000
.000
.000
.010
.041
.113
.404
.748
.943
.995
.999
1.00
1.00
1.00
1.00
11
.000
.000
.000
.032
.102
.228
.584
.868
.979
.999
1.00
1.00
1.00
1.00
1.00
12
.000
.000
.002
.087
.214
.392
.750
.942
.994
1.00
1.00
1.00
1.00
1.00
1.00
13
.000
.000
.011
.196
.383
.584
.874
.979
.998
1.00
1.00
1.00
1.00
1.00
ﺟﺪول ﺣﺴﺎب
n=20 p
14 1.00
.000
.003
.043
.370
.585
.762
.949
.994
1.00
1.00
1.00
1.00
1.00
1.00
1.00
15
.000
.016
.133
.589
.775
.893
.984
.999
1.00
1.00
1.00
1.00
1.00
1.00
1.00
16
.001
.075
.323
.794
.909
.965
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
17
.996 .017
.264
.608
.931
.976
.992
.999
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
18
.182
.642
.878
.988
.997
.999
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
19
٦٢٧
x
ﺗﺎﺑﻊ ﻣﻠﺤﻖ )(٧
ﺟﺪول ﺣﺴﺎب
x ) b( k ; n , p k 0
ﻟﻤﺘﻐﯿﺮ ﻋﺸﻮاﺋﻲ ﯾﺘﺒﻊ ﺗﻮزﯾﻊ ذي
اﻟﺤﺪﯾﻦ n=25 0.99 .000 .000 .000 .000 .000
0.95 .000 .000 .000 .000 .000
0.90 .000 .000 .000 .000 .000
0.80 .000 .000 .000 .000 .000
0.75 .000 .000 .000 .000 .000
0.70 .000 .000 .000 .000 .000
0.60 .000 .000 .000 .00 .000
0.50 .000 .000 .000 .000 .000
0.40 .000 .000 .000 .002 .009
0.30 .000 .002 .009 .033 .090
0.25 .001 .007 .032 .096 .214
0.20 .004 .027 .098 .234 .421
0.10 .072 .271 .537 .764 .902
0.05 .277 .642 .873 .966 .993
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .002 .006
.000 .000 .000 .000 .000 .000 .001 .003 .020 .030
.000 .000 .000 .000 .000 .002 .006 .017 .044 .098
.000 .000 .001 .004 .013 .034 .078 .154 .268 .414
.002 .007 .022 .054 .115 .212 .345 .500 .655 .788
.029 .074 .154 .274 .425 .586 .732 .846 .922 .966
.193 .341 .512 .677 .811 .902 .956 .983 .994 .998
.378 .561 .727 .851 .929 .970 .980 .997 .999 1.00
.617 .780 .891 .953 .983 .994 .998 1.00 1.00 1.00
.967 .991 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.000 .000 .000
.000 .000 .000
.000 .000 .002
.017 .047 .109
.071 .149 .273
.189 .323 .488
.000 .000 .000 .000 .002 .026 .222
.000 .001 .007 .034 .127 .358 .723
.009 .033 .098 .236 .463 .729 .928
.220 .383 .579 .766 .902 .973 .996
.439 .622 .786 .904 .968 .993 .999
.659 .807 .910 .967 .991 .998 1.00
p 0.01 .778 .974 .998 1.00 1.00
0 1 2 3
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 5 6 7 8 9 10 11 12 13 14
.575 .726
.885 .946 .978
.987 .996 .999
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
15 16 17
.926 .971 .991 .998 1.00 1.00 1.00
.993 .998 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
18 19 20 21 22 23 24
1.00
.846
٦٢٨
x
(٨) ﻣﻠﺤﻖ ﻻﺧﺘﺒﺎر إﺷﺎرة اﻟﺮﺗﺐd ( n , ), d ( n , ) ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ n 3 4 5 6
7
8
9
10
11
d 1 1 1 2 1 2 3 4 1 2 4 5 1 2 4 5 6 7 2 3 6 7 9 10 4 5 9 10 11 12 6 7
Confidence coefficient .750 .875 .938 .875 .969 .937 .906 .844 .984 .969 .922 .891 .992 .984 .961 .945 .922 .891 .992 .988 .961 .945 .902 .871 .990 .986 .951 .936 .916 .895 .990 .986 ٦٢٩
.250 .125 .062 .125 .031 .063 .094 .156 .016 .031 .078 .109 .008 .016 .039 .055 .078 .109 .008 .012 .039 .055 .098 .129 .010 .014 .049 .064 .084 .105 .010 .014
.125 .063 .031 .063 .016 .031 .047 .078 .008 .016 .039 .055 .004 .008 .020 .027 .039 .055 .004 .006 .020 .027 .049 .065 .005 .007 .024 .032 .042 .053 .005 .007
.021 .027 .042 .051 .005 .006 .021 .026 .046 .055 .004 .005 .024 .029 .047 .055
.042 .054 .083 .102 .009 .012 .042 .052 .092 .110 .008 .010 .048 .057 .094 .110
.958 .946 .917 .898 .991 .988 .958 .948 .908 .890 .992 .990 .952 .943 .906 .890
اﻟﻤﺼﺪر :ﻋﻦ ])[Daniel (1978
٦٣٠
11 12 14 15 8 9 14 15 18 19 10 11 18 19 22 23
12
13
ﻻﺧﺘﺒﺎر إﺷﺎرة اﻟﺮﺗﺐd ( n , ), d ( n , ) ( ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ٨) ﻣﻠﺤﻖ: ﺗﺎﺑﻊ n 14
15
16
17
18
19
20
21
d 13 14 22 23 26 27 16 17 26 27 31 32 20 21 30 31 36 37 24 25 35 36 42 43 28 29 41 42 48 49 33 34 47 48 54 55 38 39 53 54 61 62 43 44 59 60 68 69
Confidence coefficient .991 .989 .951 .942 .909 .896 .992 .990 .952 .945 .905 .893 .991 .989 .956 .949 .907 .895 .991 .989 .955 .949 .902 .891 .991 .990 .952 .946 .901 .892 .991 .989 .951 .945 .904 .896 .991 .989 .952 .947 .903 .895 .991 .990 .954 .950 .904 .897
.009 .011 .049 .058 .091 .104 .008 .010 .048 .055 .095 .107 .009 .011 .044 .051 .093 .105 .009 .011 .045 .051 .098 .109 .009 .010 .048 .054 .099 .108 .009 .011 .049 .055 .096 .104 .009 .011 .048 .053 .097 .105 .009 .010 .046 .050 .096 .103
.004 .005 .025 .029 .045 .052 .004 .005 .024 .028 .047 .054 .005 .006 .022 .025 .047 .052 .005 .006 .022 .025 .049 .054 .005 .005 .024 .027 .049 .054 .005 .005 .025 .027 .048 .052 .005 .005 .024 .027 .049 .053 .005 .005 .023 .025 .048 .052
[Daniel (1978)] ﻋﻦ: اﻟﻤﺼﺪر ٦٣١
(٨) ﻣﻠﺤﻖ: ﺗﺎﺑﻊ ﻻﺧﺘﺒﺎر اﻹﺷﺎرةd ( n , ), d ( n , ) ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ n 22
23
24
25
d 49 50 66 67 76 77 55 56 74 75 84 85 62 63 82 83 92 93 69 70 90 91 101 102
Confidence coefficient .991 .990 .954 .950 .902 .895 .991 .990 .952 .948 .902 .895 .990 .989 .951 .947 .905 .899 .990 .989 .952 .948 .904 .899
.009 .010 .046 .050 .098 .105 .009 .010 .048 .052 .098 .105 .010 .011 .049 .053 .095 .101 .010 .011 .048 .052 .096 .101
.005 .005 .023 .025 .049 .053 .005 .005 .024 .026 .049 .052 .005 .005 .025 .026 .048 .051 .005 .005 .024 .026 .048 .051
[Daniel (1978)] ﻋﻦ: اﻟﻤﺼﺪر
٦٣٢
ﻣﻠﺤﻖ )(٩ ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ r1اﻟﺴﻔﻠﻲ ﻻﺧﺘﺒﺎر اﻟﺪورات 20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14
2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13
2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13
2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13
2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12
2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12
2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11
2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10
2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10
2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9
2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9
2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8
2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7
2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6
2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6
2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5
4
3
2
n2 n1
2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4
2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
اﻟﻤﺼﺪر :ﻋﻦ ])[Daniel (1978
ﻣﻠﺤﻖ )(١٠ ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ r2اﻟﻌﻠﯿﺎ ﻻﺧﺘﺒﺎر اﻟﺪورات 20
19
18
17
16
15
14
13
1 7
1 7
1 7
1 7
1 7
1 5 1 6
1 5 1 6
1 5 1 6
12
11
10
9
8
7
6
5
4
13
13
13
13
11 12
11 12
9 10 11
9 10 10
9 9
1 4 1 6
1 4 1 5
1 4 1 5
1 4 1 4
1 3 1 4
1 3 1 3
1 2 1 2
1 1 1 1
3
2
n2 n1
٦٣٣
2 3 4 5 6
7 8
18 20 21 22 23 24 25 25 26 27 27 28
18 20 21 22 23 23 24 25 26 26 27 27
18 19 20 21 22 23 24 25 25 26 26 27
18 19 20 21 22 23 23 24 25 25 26 26
18 19 20 21 21 22 23 23 24 25 25 25
18 18 19 20 21 22 22 23 23 24 24 25
17 18 19 20 20 21 22 22 23 23 23 24
17 18 19 19 20 20 21 21 22 22 23 23
16 17 18 19 19 20 20 21 21 21 22 22
16 17 17 18 19 19 19 20 20 20 21 21
اﻟﻤﺼﺪر :ﻋﻦ ])[Daniel (1978
٦٣٤
16 16 17 17 18 18 18 19 19 19 20 20
15 16 16 16 17 17 18 18 18 18 18 18
14 15 15 16 16 16 16 17 17 17 17 17
14 14 14 14 15 15 15
13 13 13 13
9 10 11 12 13 14 15 16 17 18 19 20
ﻣﻠﺤﻖ )(١١ ﺟدول اﻟﻘﯾم اﻟﺣرﺟﺔ ﻻﺧﺗﺑﺎر Mann-Whitney-Wilcoxon
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
n2=2
0 1 2 3 5 8
0 1 2 3 5 8
0 0 1 3 5 7
0 0 1 3 4 7
0 0 1 2 4 6
0 0 1 2 4 6
0 0 1 2 4 5
0 0 1 2 3 5
0 0 0 2 3 5
0 0 0 1 2 4
0 0 0 1 2 4
0 0 0 1 2 3
0 0 0 1 2 3
0 0 0 0 1 2
0 0 0 0 1 2
0 0 0 0 1 2
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
.001 .005 .01 .025 .05 .10
1 4 6 9 12 16
1 4 5 8 11 15
1 3 5 8 10 14
1 3 5 7 10 13
0 3 4 7 9 12
0 3 4 6 8 11
0 2 3 6 8 11
0 2 3 5 7 10
0 2 3 5 6 9
0 1 2 4 6 8
0 1 2 4 5 7
0 1 2 3 5 6
0 0 1 3 4 6
0 0 1 2 3 5
0 0 0 2 3 4
0 0 0 1 2 3
0 0 0 0 1 2
0 0 0 0 1 2
0 0 0 0 0 1
001 .005 .01 .025 .05 .10
4 9 11 15 19 23
4 8 10 14 18 22
4 7 10 13 17 21
3 7 9 12 16 19
3 6 8 12 15 18
2 6 9 11 13 17
2 5 7 10 12 16
2 4 6 9 11 14
1 4 6 8 10 13
1 3 5 7 9 12
1 3 4 6 8 11
0 2 4 5 7 10
0 2 3 5 6 8
0 1 2 4 5 7
0 1 2 3 4 6
0 0 1 2 3 5
0 0 0 1 2 4
0 0 0 0 1 2
0 0 0 0 0 1
001 .005 .01 .025 .05 .10
8 14 17 21 26 31
8 13 16 20 24 29
7 12 15 19 23 28
6 11 14 18 21 26
6 10 13 16 20 24
5 9 12 15 19 23
4 8 11 14 17 21
4 8 10 13 16 19
3 7 9 12 14 18
3 6 8 10 13 16
2 5 7 9 12 14
2 4 6 8 10 13
1 3 5 7 9 11
0 2 4 6 7 9
0 2 3 4 6 8
0 1 2 3 5 6
0 0 1 2 3 5
0 0 0 1 2 3
0 0 0 0 1 2
001 .005 .01 .025 .05 .10
13 19 23 28 33 39
12 18 21 26 31 37
11 17 20 25 29 35
10 16 19 23 27 32
9 14 17 22 26 30
8 13 16 20 24 28
7 12 14 18 22 26
6 11 13 17 20 24
5 10 12 15 18 22
5 8 10 14 17 20
4 7 9 12 15 18
3 6 8 11 13 16
2 5 7 9 11 14
0 4 5 7 9 12
0 3 4 6 8 10
0 2 3 4 6 8
0 1 2 3 4 6
0 0 0 2 3 4
0 0 0 0 1 2
001 .005 .01 .025 .05 .10
17 25 29 35 40 47
16 23 27 33 38 44
15 22 25 31 36 42
14 20 24 29 34 39
12 19 22 27 31 37
11 17 20 25 29 34
10 16 18 23 27 32
9 14 17 21 25 29
8 13 15 19 22 27
7 11 13 17 20 24
6 10 12 15 18 22
4 8 10 13 16 19
3 7 8 11 14 17
2 5 7 9 12 14
1 4 5 7 9 12
0 2 4 6 7 9
0 1 2 4 5 7
0 0 1 2 3 5
0 0 0 0 1 2
001 .005 .01 .025 .05 .10
22 31 35 42 48 55
21 29 33 39 45 52
19 27 31 37 42 49
18 25 29 35 40 46
16 23 27 32 37 43
15 21 25 30 34 40
13 19 23 27 32 37
12 18 21 25 29 34
10 16 18 23 27 31
9 14 16 20 24 28
7 12 14 18 21 25
6 10 12 16 19 23
5 8 10 14 16 20
3 7 8 11 14 17
2 5 7 9 11 14
1 3 5 7 9 11
0 2 3 5 6 8
0 0 1 3 4 6
0 0 0 1 2 3
001 .005 .01 .025 .05 .10
اﻟﻤﺼﺪر :ﻋﻦ ])[Daniel (1978 ٦٣٥
n1
2
3
4
5
6
7
8
ﺗﺎﺑﻊ ﻣﻠﺣق )(١١ ﺟدول اﻟﻘﯾم اﻟﺣرﺟﺔ ﻻﺧﺗﺑﺎر Mann-Whitney-Wilcoxon 20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
n2=2
27 37 41 49 55 63
26 34 39 46 52 59
24 32 37 43 49 56
22 30 34 40 46 53
20 28 32 38 43 49
18 25 29 35 40 46
16 23 27 32 37 42
15 21 24 29 34 39
13 19 22 27 31 36
11 17 19 24 28 32
9 14 17 21 25 29
8 12 15 18 22 26
6 10 12 16 19 23
4 8 10 13 16 19
3 6 8 11 13 16
2 4 6 8 10 13
0 2 4 5 7 10
0 1 2 3 5 6
0 0 0 1 2 3
.001 .005 .01 .025 .05 .10
33 43 48 56 63 71
30 40 45 53 59 67
28 38 42 49 56 63
26 35 39 46 52 59
24 32 37 43 49 55
22 30 34 40 45 52
20 27 31 37 42 48
18 25 28 34 38 44
15 22 25 30 35 40
13 19 23 27 32 37
11 17 20 24 28 33
9 14 17 21 25 29
7 12 14 18 21 25
6 10 12 15 18 22
4 7 9 12 15 18
2 5 7 9 12 14
1 3 4 6 8 11
0 1 2 4 5 7
0 0 0 1 2 4
.001 .005 .01 .025 .05 .10
38 49 54 63 70 79
35 46 51 59 66 74
33 43 48 56 62 70
30 40 45 52 58 66
28 37 42 48 55 62
25 34 38 45 51 58
23 31 35 41 47 53
21 28 32 38 43 49
18 25 29 34 39 45
16 22 26 31 35 41
13 19 23 27 32 37
11 17 19 24 28 32
9 14 16 20 24 28
7 11 13 17 20 24
5 8 10 14 17 20
3 6 8 10 13 16
1 3 5 7 9 12
0 1 2 4 6 8
0 0 0 1 2 4
.001 .005 .01 .025 .05 .10
43 55 61 70 78 87
41 52 57 66 73 82
38 48 54 62 69 78
35 45 50 58 65 73
32 42 47 54 61 68
29 38 43 50 56 64
26 35 39 46 52 59
24 32 36 42 48 54
21 28 32 38 43 50
18 25 29 34 39 45
15 22 25 30 35 40
13 19 22 27 31 36
10 16 18 23 27 31
8 13 15 19 22 27
5 10 12 15 18 22
3 7 9 12 14 18
1 4 6 8 10 13
0 2 3 5 6 9
0 0 0 2 3 5
.001 .005 .01 .025 .05 .10
49 61 68 77 85 95
46 58 64 73 81 90
43 54 60 68 76 85
39 50 56 64 71 80
36 46 52 60 66 75
33 43 48 55 62 69
30 39 44 51 57 64
27 35 40 46 52 59
24 32 36 42 48 54
21 28 32 38 43 49
18 25 28 34 38 44
15 21 24 29 34 39
12 18 21 25 29 34
9 14 17 21 25 29
6 11 13 17 20 24
4 8 10 13 16 19
2 4 6 9 11 14
0 2 3 5 7 10
0 0 1 2 3 5
.001 .005 .01 .025 .05 .10
55 68 74 84 93 103
51 64 70 79 88 98
47 59 66 75 83 92
44 55 61 70 78 86
40 51 57 65 72 81
37 47 52 60 67 75
33 43 48 56 62 70
30 39 44 51 57 64
26 35 39 46 52 59
23 31 35 41 47 53
20 27 31 37 42 48
16 23 27 32 37 42
13 19 23 27 32 37
10 16 18 23 27 32
7 12 14 18 22 26
4 8 11 14 17 21
2 5 7 10 12 16
0 2 3 6 8 11
0 0 1 2 4 5
.001 .005 .01 .025 .05 .10
60 74 81 91 101 111
56 70 76 86 95 105
52 65 71 81 89 99
48 61 67 76 84 93
44 56 62 71 78 87
41 52 57 65 73 81
37 47 52 60 67 75
33 43 48 55 62 69
29 38 43 50 56 64
25 34 38 45 51 58
22 30 34 40 45 52
18 25 29 35 40 46
15 21 25 30 34 40
11 17 20 25 29 34
8 13 16 20 24 28
5 9 12 15 19 23
2 6 8 11 13 17
0 3 4 6 8 11
0 0 1 2 4 6
.001 .005 .01 .025 .05 .10
66 80 88 99 108 120
61 75 83 93 102 113
57 71 77 87 96 107
53 66 72 82 90 100
49 61 67 76 84 94
44 56 62 71 78 87
40 51 57 65 72 81
36 46 52 60 66 75
32 42 47 54 61 68
28 37 42 48 55 62
24 32 37 43 49 55
20 28 32 38 43 49
16 23 27 32 37 43
12 19 22 27 31 37
9 14 17 22 26 30
6 10 13 16 20 24
3 6 8 12 15 18
0 3 4 7 9 12
0 0 1 2 4 6
.001 .005 .01 .025 .05 .10
٦٣٦
n1
9
10
11
12
13
14
15
16
ﺗﺎﺑﻊ ﻣﻠﺤﻖ )(١١ ﺟدول اﻟﻘﯾم اﻟﺣرﺟﺔ ﻻﺧﺗﺑﺎر Mann-Whitney-Wilcoxon 20
19
71 87 94 106 116 128
67 82 89 100 110 121
53 58 62 66 71 76 72 78 83 82 88 94 90 97 103 100 107 114
77 93 101 113 124 136
72 88 95 107 117 129
57 62 67 71 76 82 77 83 89 87 94 100 96 103 110 107 114 121
83 100 108 120 131 144
67 72 78 82 88 94 89 95 102 100 107 114 110 117 124 121 129 136
56 61 70 75 76 83 86 93 95 102 105 113
89 106 115 128 139 152
71 87 94 106 116 128
60 66 74 80 81 88 91 99 101 108 111 120
83 100 108 120 131 144
18
77 93 101 113 124 136
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
n2=2
P
48 61 67 76 84 93
44 55 61 70 78 86
39 50 56 64 71 80
35 45 50 58 65 73
30 40 45 52 58 66
26 35 39 46 52 59
22 30 34 40 46 53
18 25 29 35 40 46
14 20 24 29 34 39
10 16 19 23 27 32
6 11 14 18 21 26
3 7 9 12 16 19
1 3 5 7 10 13
0 0 1 3 4 7
.001 .005 .01 .025 .05 .10
52 65 71 81 89 99
47 59 66 75 83 92
43 54 60 68 76 85
38 48 54 62 69 78
33 43 48 56 62 70
28 38 42 49 56 63
24 32 37 43 49 56
19 27 31 37 42 49
15 22 25 31 36 42
11 17 20 25 29 35
7 12 15 19 23 28
4 7 10 13 17 21
1 3 5 8 10 14
0 0 1 3 5 7
.001 .005 .01 .025 .05 .10
51 64 70 79 88 98
46 58 64 73 81 90
41 52 57 66 73 82
35 46 51 59 66 74
30 40 45 53 59 67
26 34 39 46 52 59
21 29 33 39 45 52
16 23 27 33 38 44
12 18 21 26 31 37
8 13 16 20 24 29
4 8 10 14 18 22
1 4 5 8 11 15
0 1 2 3 5 8
.001 .005 .01 .025 .05 .10
55 68 74 84 93 103
49 61 68 77 85 95
43 55 61 70 78 87
38 49 54 63 70 79
33 43 48 56 63 71
27 37 41 49 55 63
22 31 35 42 48 55
17 25 29 35 40 47
13 19 23 28 33 39
8 14 17 21 26 31
4 9 11 15 19 23
1 4 6 9 12 16
0 1 2 3 5 8
.001 .005 .01 .025 .05 .10
٦٣٧
n1
17
18
19
20
(١٢) ﻣﻠﺤﻖ Kruskal – Wallisﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ﻻﺧﺘﺒﺎر Sample Sizes
Sample Sizes n1
n2
n3
2 2 2
1 2 2
1 1 2
3 3
1 2
1 1
3
2
2
3
3
1
3
3
2
3
3
3
4 4
1 2
1 1
4
2
2
4
3
1
Critical value 2.7000 3.6000 4.5714 3.7143 3.2000 4.2857 3.8571 5.3572 4.7143 4.5000 4.4643 5.1429 4.5714 4.000 6.2500 5.3611 5.1389 4.5556 4.2500 7.2000 6.4889 5.6889 5.6000 5.0667 4.6222 3.5714 4.8214 4.5000 4.0179 6.0000 5.3333 5.1250 4.4583 4.1667 5.8333 5.2083
0.500 0.200 0.067 0.200 0.300 0.100 0.133 0.029 0.048 0.067 0.105 0.043 0.100 0.129 0.011 0.032 0.061 0.100 0.121 0.004 0.011 0.029 0.050 0.086 0.100 0.200 0.057 0.076 0.114 0.014 0.033 0.052 0.100 0.105 0.021 0.050
n1
n2
n3
4
4
1
4
4
2
4
4
3
4
4
4
5 5
1 2
1 1
5
2
2
٦٣٨
Critical value 4.7000 6.6667 6.1667 4.9667 4.8667 4.1667 4.0667 7.0364 6.8727 5.4545 5.2364 4.5545 4.4455 7.1439 7.1364 5.5985 5.5758 4.5455 4.4773 7.6538 7.5385 5.6923 5.6538 4.6539 4.5001 3.8571 5.2500 5.0000 4.4500 4.2000 4.0500 6.5333 6.1333 5.1600 5.0400 4.3733
0.101 0.010 0.022 0.048 0.054 0.082 0.102 0.006 0.011 0.046 0.052 0.098 0.103 0.010 0.011 0.049 0.051 0.099 0.102 0.008 0.011 0.049 0.054 0.097 0.104 0.143 0.036 0.048 0.071 0.095 0.119 0.008 0.013 0.034 0.056 0.090
4
4
3
3
2
3
5.0000 4.0556 4.8889 6.4444 6.3000 5.4444 5.4000 4.5111 4.4444 6.7455 6.7091 5.7909 5.7273 4.7091
0.057 0.093 0.129 0.008 0.011 0.046 0.051 0.098 0.102 0.010 0.013 0.046 0.050 0.092
5
3
1
5
3
2
5
3
3
٦٣٩
4.2933 6.4000 4.9600 4.8711 4.0178 3.8400 6.9091 6.8218 5.2509 5.1055 4.6509 4.4945 7.0788 6.9818
0.122 0.012 0.048 0.052 0.095 0.123 0.009 0.010 0.049 0.052 0.091 0.101 0.009 0.011
(١٢) ﻣﻠﺤﻖ: ﺗﺎﺑﻊ Kruskal – Wallisﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ ﻻﺧﺘﺒﺎر
Sample Sizes
Sample Sizes n1
n2
n3
5
3
3
5
4
1
5
5
5
5
4
4
4
5
2
3
4
1
Critical value 5.6485 5.5152 4.5333 4.4121 6.9545 6.8400 4.9855 4.8600 3.9873 3.9600 7.2045 7.1182 5.2727 5.2682 4.5409 4.5182 7.4449 7.3949 5.6564 5.6308 4.5487 4.5231 7.7604 7.7440 5.6571 5.6176 4.6187 4.5527 7.3091
n1
n2
n3
0.049 0.051 0.097 0.109 0.008 0.011 0.044 0.056 0.098 0.102 0.009 0.010 0.049 0.050 0.098 0.101 0.010 0.011 0.049 0.050 0.099 0.103 0.009 0.011 0.049 0.050 0.100 0.102 0.009
5
5
1
5
5
2
5
5
3
5
5
4
5
5
5
Critical value 6.8364 5.1273 4.9091 4.1091 4.0364 7.3385 7.2692 5. 3385 5.2462 4.6231 4.5077 7.5780 7.5429 5.7055 5.6264 4.5451 4.5363 7.8229 7.7914 5.6657 5.6429 4.5229 4.5200 8.000 7.9800 5.7800 5.6600 4.5600 4.5000
0.011 0.046 0.053 0.086 0.105 0.010 0.010 0.047 0.051 0.097 0.100 0.010 0.010 0.046 0.051 0.100 0.102 0.010 0.010 0.049 0.050 0.099 0.101 0.009 0.010 0.049 0.051 0.100 0.102
[Daniel (1978)] ﻋﻦ: اﻟﻤﺼﺪر
٦٤٠
ﻣﻠﺤﻖ )(١٣ ﺟﺪول اﻟﻘﯿﻢ اﻟﺤﺮﺟﺔ .100 .8000 .7000 .6000 .5357 .5000 .4667 .4424 .4182 .3986 . 3791 .3626 .3500 .3382 .3260 .3148 .3070 .2977 .2909 .2829 .2767 .2704 .2646 .2588 .2540 .2490 .2443 .2400
.050 .8000 .8000 .7714 .6786 .6190 .5833 .5515 .5273 .4965 .4780 .4593 .4429 .2465 .4118 .3994 .3895 .3789 .3688 .3597 .3518 .3435 .3362 .3299 .3236 .3175 .3113 .3059
.025 -.9000 .8286 .7450 .7143 .6833 .6364 .6091 .5804 .5549 .5341 .5179 .5000 .4853 .4716 .4579 .4451 .4351 .4241 .4150 .4061 .3977 .3894 .3822 .3749 .3685 .3620
* rs,
ﻻﺧﺘﺒﺎر ﺳﺒﯿﺮﻣﺎن
.010 -.9000 .8857 .8571 .8095 .7667 .7333 .7000 .6713 .6429 .6220 .6000 .5824 .5637 .5480 .5333 .5203 .5078 .4963 .4852 .4748 .4654 .4564 .4481 .4401 .4320 .4251
اﻟﻤﺼﺪر :ﻋﻦ ])[Daniel (1978
٦٤١
.005 --.9429 .8929 .8571 .8167 .7818 .7545 .7273 .6978 .6747 .6536 .6324 .6152 .5975 .5825 .5684 .5545 .5426 .5306 .5200 .5100 .5002 .4915 .4828 .4744 .4665
.001 ---.9643 .9286 .9000 .8667 .8364 .8182 .7912 .7670 .7464 .7265 .7083 .6904 .6737 .6586 .6455 .6318 .6186 .6070 .5962 .5856 .5757 .5660 .5567 .5479
n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
٦٤٢