استخدام برنامج ماثيماتيكا كلغة برمجة فى مجال الاحصاء الاستدلالى

Page 1

‫اﺳﺘﺨﺪام ﺑﺮﻧﺎﻣﺞ‪Mathematica‬‬ ‫ﻛﻠﻐﺔ ﺑﺮﻣﺠﺔ ﻓﻰ ﻣﺠﺎل اﻻﺣﺼﺎء اﻻﺳﺘﺪﻻﻟﻰ‬ ‫ﺗﺄﻟﻴﻒ‬

‫اﻟﺪﻛﺘﻮرة ‪ /‬ﺛﺮوت ﻣﺤﻤﺪ ﻋﺒﺪ اﻟﻤﻨﻌﻢ‬ ‫أﺳﺘﺎذ ﻣﺸﺎرك‬ ‫ﺟﺎﻣﻌﺔ اﻟﺪﻣﺎم‬

‫ﻛﻠﻴﺔ اﻟﻌﻠﻮم ﺑﺎﻟﺪﻣﺎم – ﻗﺴﻢ اﻟﺮﻳﺎﺿﻴﺎت )ﺳﺎﺑﻘﺎ(‬

‫‪٢٠١٢‬م‬

‫‪١‬‬


٢


‫إﻟ ﻰ اﺑﻧﺗ ﻰ ﻓ ﻰ ﷲ اﻟ دﻛﺗورة ﻣﻧ ﺎل اﻟﻌ وھﻠﻰ واﻟﺗ ﻰ ﻛ ﺎن ﻟ ﻰ اﻟﺷ رف ﻓ ﻰ‬ ‫اﻟﺗ درﯾس ﻟﮭ ﺎ ﻓ ﻰ ﻣرﺣﻠ ﺔ اﻟﻣﺎﺟﺳ ﺗﯾر واﻟ دﻛﺗوراة وﻣﻧﺎﻗﺷ ﺔ رﺳ ﺎﻟﺔ‬ ‫اﻟ دﻛﺗوراه اﻟﺧﺎﺻ ﺔ ﺑﮭ ﺎ ‪.‬وﻗ د ﻟﻣﺳ ت ﻓﯾﮭ ﺎ اﻻدب اﻟﺟ م واﻻﺣﺗ رام واﻟﺗﻘ دﯾر‬ ‫واﻻﻋﺗ راف ﺑﺎﻟﺟﻣﯾ ل‪.‬وﻻﻧﻧ ﻰ اؤﻣ ن ﺑ ﺎن ﻛ ل اﺳ ﺗﺎذ ﻻ ﺑ د ان ﯾﻌط ﻰ اﻗﺻ ﻰ‬ ‫ﻣ ﺎ ﻋﻧ ده ﻟﺗﻠﻣﯾ ذة ﺣﺗ ﻰ ﺗﻛ ون اﻟﺧط وة اﻻوﻟ ﻰ ﻟ ﮫ ﻟﯾﻧﺗﮭ ل ﻣ ن اﻟﻌﻠ م وﯾﺗﻔ وق‬ ‫ﻋﻠ ﻰ اﺳ ﺗﺎذه ﺑﻌ د ذﻟ ك ﻻﻧﻧ ﻰ اؤﻣ ن ﺑ ﺎن ﻛ ل ﺟﯾ ل ﻻﺑ د ان ﯾﻛ ون اﻛﺛ ر ﺗﻔوﻗ ﺎ‬ ‫ﻣ ن اﻟﺟﯾ ل اﻟ ذى ﻗﺑﻠ ﮫ ﺣﺗ ﻰ ﯾﺗﻘ دم اﻟﻌﻠ م ‪ .‬وﻗ د ﺗﻔﮭﻣ ت ط ﺎﻟﺑﺗﻰ ذﻟ ك وﻗ د‬ ‫ﻟﻣﺳ ت ذﻟ ك ﻣ ن ﺧ ﻼل ﻗﯾﺎﻣﮭ ﺎ ﺑﻔ ك اﻟﻣﻌ ﺎدﻻت اﻟﺧﺎﺻ ﺔ ﺑﻛﺛﯾ ر ﻣ ن اﻻﺑﺣ ﺎث‬ ‫اﻟﺧﺎﺻ ﺔ ﺑﺎﻟﺗﺣﻠﯾ ل اﻟﺑﯾﯾ زى ﺧ ﻼل ﺗدرﯾﺳ ﻰ ﻟﮭ ﺎ ﻓ ﻰ ﻣرﺣﻠ ﺔ ﺗﻣﮭﯾ دى‬ ‫دﻛﺗ وراه ‪.‬وﻟﻘ د ﺷ ﺟﻌﺗﻧﻰ ھ ذه اﻟﺛ روة اﻟﺗ ﻰ ﺟﻣﻌﺗﮭ ﺎ ﻋﻠ ﻰ اﻟﺑ دء ﻓ ﻰ ﻋﻣ ل‬ ‫ﻛﺗ ﺎب ﻓ ﻰ اﻟﺗﺣﻠﯾ ل اﻟﺑﯾﯾ زى ﺗﻛ ون ﻣ ﺎ ﻗﺎﻣ ت ﺑﻌﻣﻠ ﺔ ﺗﻠﻣﯾ ذﺗﻰ ﻓﺻ ل ﻣﺗﻘ دم‬ ‫ﻓ ﻰ ھ ذا اﻟﻛﺗ ﺎب وﷲ ﯾﻌﯾﻧﻧ ﻰ ﻋﻠ ﻰ اﻻﻧﺗﮭ ﺎء ﻣﻧ ﮫ ‪.‬وھ ذا اﻟﻛﺗ ﺎب ﺳ وف‬ ‫ﯾﻛ ون اﻟﻛﺗ ﺎب اﻻول ﻋﻠ ﻰ ﻣﺳ ﺗوى اﻟﻌ ﺎﻟم اﻟﻌرﺑ ﻰ‪ ،‬وﻟﻠﻌﻠ م ﻓ ﺈن اﻟﻛﺗ ب‬ ‫اﻻﺟﻧﺑﯾ ﺔ ﻓ ﻰ ھ ذا اﻟﻔ رع ﻧ ﺎدرة‪.‬ﻓﺎﺳ ﺎل ﷲ ﻟﮭ ﺎ اﻟﺻ ﺣﺔ واﻟﻌﺎﻓﯾ ﺔ ﻓ ﻰ اﻟ دﻧﯾﺎ‬ ‫واﻟﺟﻧﺔ ﻓﻰ اﻻﺧرة‪.‬‬ ‫د‪ .‬ﺛروت ﻣﺣﻣد ﻋﺑد اﻟﻣﻧﻌم‬

‫‪٣‬‬


‫ﺑﺳم ﷲ اﻟرﺣﻣن اﻟرﺣﯾم‬ ‫ﺗﻣﮭﯾد‬ ‫اﻟﺣﻣد رب اﻟﻌﺎﻟﻣﯾن واﻟﺻﻼة واﻟﺳﻼم ﻋﻠ ﻰ أﺷ رف اﻟﻣرﺳ ﻠﯾن ﻣﺣﻣ د وﻋﻠ ﻰ آﻟ ﮫ‬ ‫وﺻﺣﺑﮫ أﺟﻣﻌﯾن‪ .‬أﻣﺎ ﺑﻌد‪ ،‬ﻓﺎﻟﺣﻣد اﻟذي ھ داﻧﺎ وﻣ ﺎ ﻛﻧ ﺎ ﻟﻧﮭﺗ دي ﻟ وﻻ أن ھ داﻧﺎ ﷲ اﻟ ذي‬ ‫أﻧﻌم ﻋﻠﻲ ﺑﻛﺗﺎﺑﺔ ھذا اﻟﻛﺗﺎب ﺗﻠﺑﯾﺔ ﻟﻧداء اﻟﺗﻌرﯾب اﻟذي ﯾﺗﺑﻧﺎه اﻟﻛﺛﯾر ﻣن اﻟﻌﻠﻣﺎء واﻟﻣﺛﻘﻔﯾن‪.‬‬ ‫ﯾﺧ دم ﺑرﻧ ﺎﻣﺞ ‪ Mathematica‬ﻗطﺎﻋ ﺎ ﻛﺑﯾ را ﻣ ن اﻟﺗﺧﺻﺻ ﺎت اﻟﻌﻠﻣﯾ ﺔ اﻟﻣﺧﺗﻠﻔ ﺔ‬ ‫ﺣﯾ ث ﯾﻘ وم ﺑ ﺈﺟراء اﻟﻌﻣﻠﯾ ﺎت اﻟﺣﺳ ﺎﺑﯾﺔ اﻟﻌددﯾ ﺔ ‪ Numerical Calculation‬اﻟﻣﺗﻌ ﺎرف‬ ‫ﻋﻠﯾﮭﺎ ﻣﺛل اﻟﺟﻣﻊ واﻟطرح واﻟﻘﺳ ﻣﺔ وﺣﺳ ﺎب اﻻﺳس واﻟﻠوﻏﺎرﺗﻣ ﺎت و اﻟ دوال اﻟﻣﺛﻠﺛﯾ ﺔ و‬ ‫اﻟزاﺋدﯾ ﺔ ﺳ واء ﻟﻼﻋ داد اﻟﺣﻘﯾﻘﯾ ﺔ او اﻻﻋ داد اﻟﻣرﻛﺑ ﺔ وﻛ ذﻟك ﯾﻘ وم ﺑ ﺈﺟراء اﻟﻌﻣﻠﯾ ﺎت‬ ‫اﻟرﯾﺎﺿﯾﺔ اﻟرﻣزﯾ ﺔ ‪ Symbolic‬اﻟﻣﺗﻌ ﺎرف ﻋﻠﯾﮭ ﺎ ﻓ ﻰ ﻓ روع ﻛﺛﯾ رة ﻣ ن اﻟرﯾﺎﺿ ﯾﺎت ﻣﺛ ل‬ ‫اﻟﺟﺑ ر اﻟﺧط ﻰ واﻻﺣﺻ ﺎء واﻟﺗﻔﺎﺿ ل واﻟﺗﻛﺎﻣ ل واﻟ دوال اﻟﺧﺎﺻ ﺔ واﻟﻣﻌ ﺎدﻻت اﻟﺗﻔﺎﺿ ﻠﯾﺔ‬ ‫واﻟﺗﺣﻠﯾ ل اﻟﻌ ددى واﻟﺑرﻣﺟ ﺔ اﻟﺧطﯾ ﺔ ‪ .‬ﻛﻣ ﺎ ﯾﻘ وم ﺑرﺳ م اﻟ دوال ﺳ واء اﻟﻣﺑﺎﺷ رة او‬ ‫اﻟﺑﺎراﻣﺗرﯾ ﺔ ﻓ ﻰ ﺑﻌ دﯾن او ﺛ ﻼث اﺑﻌ ﺎد‪ .‬ﻛﻣ ﺎ ﯾﻣﻛ ن اﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ‪Mathematica‬‬ ‫ﻛﻠﻐﺔ ﺑرﻣﺟﺔ ﻟﻛﺗﺎﺑﺔ ﺑراﻣﺞ ﺗﺣل ﻣﺷﻛﻼت ﻛﺑﯾرة ﯾﻌﺟز ﺣﻠﮭﺎ اﻣر واﺣد وھذا ھدﻓﻧﺎ ﻓ ﻰ ھ ذا‬ ‫اﻟﻛﺗ ﺎب وﻟﻛ ن ﻓ ﻰ ﻣﺟ ﺎل اﻻﺣﺻ ﺎء اﻻﺳ ﺗدﻻﻟﻰ ‪.‬وﺳ وف ﺗرﻓ ق ھ ذه اﻟﺑ راﻣﺞ )اﻟﻣﻛﺗوﺑ ﺔ‬ ‫ﺑﺎﻻﺻدار ‪( 5‬ﻣﻊ اﻟﻛﺗﺎب وﻓﻰ ﻛل ﻓﺻل ﺳوف ﯾﺗم ﺷرح اﻟﺑرﻧﺎﻣﺞ اﻟﺧﺎص ﺑﻛل ﻣﺛﺎل ﻣ ﻊ‬ ‫ﺷرح ﻛﯾﻔﯾﺔ اﺳﺗﺧدام اﻟﺑرﻧﺎﻣﺞ ﻋن طرﯾق ﺷرح ﻛﯾﻔﯾﺔ اﺳ ﺗﺑدال اﻟﻣ دﺧﻼت اﻟﻣﻌروﺿ ﺔ ﻓ ﻰ‬ ‫اﻟﺑرﻧﺎﻣﺞ ﺑﺎﻟﻣدﺧﻼت اﻟﺧﺎﺻﺔ ﺑﻣﺳﺗﺧدم اﻟﻛﺗﺎب‪.‬اﯾﺿﺎ ﺳوف ﯾﺗم ﺷ رح ﻛﯾﻔﯾ ﺔ اﻟﺗﻌ رف ﻋﻠ ﻰ‬ ‫اﻟﻣﺧرﺟﺎت ‪.‬وﺳوف ﯾﺎﺧذ ﻛل ﺑرﻧﺎﻣﺞ ﻧﻔس رﻗم اﻟﻣﺛﺎل اﻟﺧ ﺎص ﺑ ﮫ وذﻟ ك ﻟﺳ ﮭوﻟﺔ اﻟﺗﻌ رف‬ ‫ﻋﻠﯾﮫ‪.‬‬ ‫ھذا اﻟﻛﺗ ﺎب ﯾﺻﻠﺢ ﻛﻣﻘ رر ﻟط ﻼب ﻛﻠﯾ ﺎت اﻟﻌﻠ وم ﺗﺧﺻ ص اﺣﺻ ﺎء ‪ ،‬ﻛﻣ ﺎ ﯾﺻ ﻠﺢ‬ ‫ﻷن ﯾﻛ ون ﻣﻘ ررا ً ﻟط ﻼب اﻟدراﺳ ﺎت اﻟﻌﻠﯾ ﺎ اﻟﻣﺗﺧﺻﺻ ون ﻓ ﻰ اﻻﺣﺻ ﺎء ﺣﯾ ث ﯾﻘ وم‬ ‫ﺑﺎﻟﺗ درﯾس ﻋﺿ و ھﯾﺋ ﺔ ﺗ درﯾس ﻣﺗﺧﺻ ص ﻓ ﻰ اﻻﺣﺻ ﺎء ﺑﺎﻻﺿ ﺎﻓﺔ إﻟ ﻰ اﻟﻣﺎﻣ ﮫ ﺑﺑرﻧ ﺎﻣﺞ‬ ‫‪، Mathematica‬ﺣﯾث ﯾﺑدا ﺑﺗ درﯾس اواﻣ ر اﻟﺑرﻧ ﺎﻣﺞ وﺑﺎﻟﺗ ﺎﻟﻰ ﻓﮭ م اﻟﺑ راﻣﺞ اﻟﻣرﻓﻘ ﺔ ﻓ ﻰ‬ ‫اﻟﻛﺗ ﺎب وﯾﻣﻛ ن ﺑﻧ ﺎء ﻋﻠ ﻰ اﻟﻣ ﺎم اﻟطﺎﻟ ب ﺑﺎﻟﻠﻐ ﺔ اﻋ ﺎدة ﻛﺗﺎﺑ ﺔ ھ ذه اﻟﺑ راﻣﺞ ﺑﺎﺳ ﻠوب اﺧ ر‬ ‫واﻟﺣﺻ ول ﻋﻠ ﻰ ﻧﻔ س اﻟﻧﺗ ﺎﺋﺞ وذﻟ ك ﻟﯾ زداد ﻣﮭ ﺎرة اﻟطﺎﻟ ب ﻣ ن اﻟﻠﻐ ﺔ واﻟﺗ ﻰ ﺗﺳ ﺎﻋده ﻓ ﻰ‬ ‫رﺳ ﺎﻟﺔ اﻟﻣﺎﺟﺳ ﺗﯾر واﻟ دﻛﺗوراه ﻓ ﻰ ﻋﻣ ل ﺑ راﻣﺞ ﻓ ﻰ ﻣﺟ ﺎل اﻟﻔ رع اﻟ ذى ﯾﻌﻣ ل ﻓﯾ ﮫ ‪.‬‬ ‫ﯾﺻﻠﺢ ھذا اﻟﻛﺗﺎب أﯾﺿﺎ ً ﻷن ﯾﻛون ﻣرﺟﻌﺎ ً ﻟﻛ ل اﻟﻣﺳ ﺗﺧدﻣﯾن ﻟﮭ ذا اﻟﺑرﻧ ﺎﻣﺞ ﻣﺛ ل اﻟطﻠﺑ ﺔ و‬ ‫اﻟﻣﮭﻧدﺳﯾن ورﺟﺎل اﻻﻋﻣ ﺎل واﻋﺿ ﺎء ھﯾﺋ ﺔ اﻟﺗ درﯾس ﻓ ﻰ ﻣﺟ ﺎل اﻻﺣﺻ ﺎء واﻟ ذﯾن ﯾﻠﻣ ون‬ ‫ﺑﺎﻟﻠﻐﺔ واﻟذﯾن ﻟدﯾﮭم ﻣﺑﺎدئ ﻓﻰ ﻋﻠم اﻻﺣﺻﺎء‪ ،‬ھذا وﯾﻣﻛن ﻓﻰ ﺣﺎﻟ ﺔ ﻋ دم اﻻﻟﻣﺎم ﺑﺎﻟﺑرﻧ ﺎﻣﺞ‬ ‫اﻻﺳﺗﻌﺎﻧﺔ ﺑﺎﻟﻣﺗﺧﺻﺻﯾن ﻓﻰ ادﺧﺎل اﻟﺑﯾﺎﻧﺎت واﻟﺣﺻول ﻋﻠﻰ اﻟﻣﺧرﺟﺎت‪.‬‬ ‫‪٤‬‬


‫وﻓﻲ وﺿﻊ ھذا اﻟﻛﺗﺎب اﺳﺗﻌﻧت ﺑﻛﺛﯾر ﻣن اﻟﻣراﺟﻊ اﻟﻌرﺑﯾﺔ واﻷﺟﻧﺑﯾﺔ ﻛﻣﺎ اﺳ ﺗﻌﻧت‬ ‫ﺑﺧﺑرﺗ ﻲ ﻓ ﻲ ﺗ درﯾس ھ ذا اﻟﻣﻘ رر ﻟط ﻼب اﻟدراﺳ ﺎت اﻟﻌﻠﯾ ﺎ ﻓ ﻲ ﻣرﺣﻠ ﺔ اﻟﻣﺎﺟﺳ ﺗﯾر‬ ‫واﻟ دﻛﺗوراه وﻛﻣ ﺎ اﺳ ﺗﻌﻧت ﺑﺧﺑرﺗ ﻲ ﻓ ﻲ اﻻﺳﺗﺷ ﺎرات اﻹﺣﺻ ﺎﺋﯾﺔ ﻓ ﻲ ﻣرﺣﻠ ﺔ اﻟﻣﺎﺟﺳ ﺗﯾر‬ ‫واﻟدﻛﺗوراه ‪.‬‬ ‫وﯾﻌﺗﺑ ر ھ ذا اﻟﻛﺗ ﺎب اﻟﻣرﺟ ﻊ اﻻول ﻋﻠ ﻰ ﻣﺳ ﺗوى اﻟﻌ ﺎﻟم اﻟﻌرﺑ ﻰ ﻓ ﻰ ھ ذا اﻟﻣﺟ ﺎل ﻛﻣ ﺎ‬ ‫اﻋﺗﺑ ره اﻓﺿ ل ﻣ ن اﻟﻛﺗ ﺎب اﻻﺟﻧﺑ ﻰ واﻟﻣﻧ ﺎظر ﻟ ﮫ ﻓ ﻰ ھ ذا اﻟﻣﺟ ﺎل واﻟ ذى اﺳ ﺗﻌﻧت ﺑ ﮫ ﻓ ﻰ‬ ‫ﺗدرﯾس ﻣﻘرر ﺣﺎﺳب اﻟﻰ ﻣﺗﻘدم ﻟطﻠﺑﺔ اﻟدﻛﺗوراه‪.‬‬ ‫ﯾﺣﺗوي ھذا اﻟﻛﺗﺎب ﻋﻠﻰ ﺳﺑﻌﺔ ﻓﺻول‪ ،‬ﯾﻘدم اﻟﻔﺻل اﻷول ﺗوزﯾﻌﺎت اﻟﻣﻌﺎﯾﻧ ﺔ‪ ،‬أﻣ ﺎ اﻟﻔﺻ ل‬ ‫اﻟﺛ ﺎﻧﻲ ﻓﯾﮭ ﺗم ﺑﻔﺗ رات اﻟﺛﻘ ﺔ ‪ ،‬ﺑﯾﻧﻣ ﺎ ﯾﮭ ﺗم اﻟﻔﺻ ل اﻟﺛﺎﻟ ث ﺑﺎﺧﺗﺑ ﺎرات اﻟﻔ روض‪ ،‬وﯾﺗط رق‬ ‫اﻟﻔﺻ ل اﻟراﺑ ﻊ إﻟ ﻰ اﻻﻧﺣ داراﻟﺧطﻰ اﻟﺑﺳ ﯾط واﻻرﺗﺑ ﺎط‪ ،‬وﯾﻘ دم اﻟﻔﺻ ل اﻟﺧ ﺎﻣس ﻧﻣ ﺎزج‬ ‫اﻻﻧﺣدار اﻟﺧط ﻰ اﻟﻣﺗﻌ دد وﻧﻣ ﺎزج اﻻﻧﺣ دار ﻣ ن اﻟدرﺟ ﺔ اﻟﺛﺎﻧﯾ ﺔ واﻟﻧﻣ ﺎزج اﻟﻐﯾ ر ﺧطﯾ ﺔ ‪،‬‬ ‫أﻣ ﺎ اﻟﻔﺻ ل اﻟﺳ ﺎدس ﻓﯾﻘ دم ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن‪ ،‬واﺧﯾ را ﯾﻘ دم اﻟﻔﺻ ل اﻟﺳ ﺎﺑﻊ اﻻﺧﺗﺑ ﺎرات‬ ‫اﻟﻼﻣﻌﻠﻣﯾﺔ‪.‬‬ ‫وأﺳ ﺄل ﷲ أن أﻛ ون ﻗ د وﻓﻘ ت ﻓ ﻲ ھ ذا اﻟﻣﺟﮭ ود اﻟﻣﺗواﺿ ﻊ ﺧدﻣ ًﺔ ﻟﻘﺿ ﺎﯾﺎ اﻟﺑﺣ ث‬ ‫اﻟﻌﻠﻣﻲ ﻓﻲ وطﻧﻧﺎ اﻟﻌرﺑﻲ‪.‬‬ ‫ﻛﻣ ﺎ أﺗوﺟ ﮫ ﺑﺎﻟﺷ ﻛر إﻟ ﻰ دار اﻟﻧﺷ ر اﻟﺗ ﻲ أﺗﺎﺣ ت ﻟ ﻲ اﻟﻔرﺻ ﺔ ﻟﻧﺷ ر ھ ذا اﻟﻌﻣ ل‬ ‫اﻟﻌﻠﻣﻲ‪.‬‬ ‫وإﻧﻧﻲ أرﺣب ﺑﻛل ﻧﻘد ﺑﻧﺎء ﯾﮭدف إﻟﻰ اﻷﻓﺿل‪ ،‬وﻣﺎ اﻟﻛﻣﺎل إﻻ وﺣده‪.‬‬ ‫وﷲ وﻟﻲ اﻟﺗوﻓﯾق‬

‫د‪ .‬ﺛروت ﻣﺣﻣد ﻋﺑد اﻟﻣﻧﻌم ‪‬‬

‫‪٥‬‬


‫اﻟﻔﺼـﻞ اﻷول ‪ :‬ﺗﻮزﻳﻌﺎت اﻟﻤﻌﺎﻳﻨﺔ‬ ‫)‪(١ -١‬‬ ‫)‪(٢ -١‬‬ ‫)‪(٣ -١‬‬ ‫)‪(٤ -١‬‬ ‫)‪(٥ -١‬‬ ‫)‪(٦ -١‬‬ ‫)‪(٧ -١‬‬ ‫)‪(٨ -١‬‬

‫ﻣﻘدﻣﺔ‬ ‫ﺗوزﯾﻌﺎت اﻟﻣﻌﺎﯾﻧﺔ اﻟطﺑﯾﻌﯾﺔ‬ ‫ﺗوزﯾﻌﺎت اﻟﻣﻌﺎﯾﻧﺔ ﻟﻠﻣﺗوﺳط‬ ‫ﺗوزﯾﻌﺎت اﻟﻣﻌﺎﯾﻧﺔ ﻟﻠﻔرق ﺑﯾن ﻣﺗوﺳطﻲ ﻣﺟﺗﻣﻌﯾن‬ ‫اﻟﺗوزﯾﻌﺎت اﻟﻌﯾﻧﯾﺔ ﻟﻠﻧﺳب‬ ‫ﺗوزﯾﻊ ‪t‬‬ ‫ﺗوزﯾﻊ ﻣرﺑﻊ ﻛﺎى‬ ‫ﺗوزﯾﻊ ‪F‬‬

‫اﻟﻔﺼـﻞ اﻟﺜﺎﻧﻲ ‪ :‬ﻓﺘﺮات اﻟﺜﻘﺔ‬ ‫)‪(١ -٢‬‬ ‫)‪(٢ -٢‬‬ ‫)‪( ٣ - ٢‬‬ ‫)‪( ٤ - ٢‬‬ ‫)‪(٥ -٢‬‬ ‫)‪( ٦ - ٢‬‬ ‫)‪(٧ -٢‬‬

‫ﻣﻘدﻣﺔ‬ ‫ﻓﺗرة ﺛﻘﺔ ﻟﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ‪‬‬ ‫ﻓﺗرة ﺛﻘﺔ ﻟﻠﻔرق ﺑﯾن ﻣﺗوﺳطﻰ ﻣﺟﺗﻣﻌﯾن ‪1  2‬‬ ‫ﻓﺗرة ﺛﻘﺔ ﻟﻠﻧﺳﺑﺔ‬ ‫ﻓﺗرة ﺛﻘﺔ ﻟﻠﻔرق ﺑﯾن ﻧﺳﺑﺗﯾن‬ ‫ﻓﺗرة ﺛﻘﺔ ﻟﻠﺗﺑﺎﯾن‬ ‫ﻓﺗرة ﺛﻘﺔ ﻟﻧﺳﺑﺔ ﺗﺑﺎﯾﻧﯾن‬

‫اﻟﻔﺼﻞ اﻟﺜﺎﻟـﺚ‪ :‬اﺧﺘﺒﺎرات اﻟﻔﺮوض‬ ‫)‪(١ -٣‬‬ ‫)‪(٢ -٣‬‬ ‫)‪(٣ -٣‬‬ ‫)‪(٤ -٣‬‬ ‫)‪(٥ -٣‬‬ ‫)‪(٦ -٣‬‬ ‫)‪(٧ -٣‬‬ ‫)‪(٨ -٣‬‬ ‫)‪(٩ -٣‬‬

‫اﻟﻔروض اﻻﺣﺻﺎﺋﯾﺔ‬ ‫اﺧﺗﺑﺎرات ﻣن ﺟﺎﻧب واﺣد او ﻣن ﺟﺎﻧﺑﯾن‬ ‫اﺧﺗﺑﺎر ﺣول ﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ‪‬‬ ‫اﺧﺗﺑﺎرات ﺣول ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ‪2‬‬

‫اﺧﺗﺑﺎرات ﺗﺧص ﺗﺑﺎﯾﻧﻰ ﻣﺟﺗﻣﻌﯾن‬ ‫اﺧﺗﺑﺎرات ﺗﺧص اﻟﻣﺗوﺳطﺎت‬ ‫اﺧﺗﺑﺎرات ‪ t‬ﻟﻼزواج‬ ‫اﺧﺗﺑﺎرات ﺗﺧص ﻧﺳﺑﺔ ﻣﺟﺗﻣﻊ‬ ‫اﺧﺗﺑﺎرات ﺗﺧص اﻟﻔرق ﺑﯾن ﻧﺳﺑﺗﯾن‬

‫اﻟﻔﺼﻞ اﻟﺮاﺑﻊ ‪ :‬اﻻﻧﺤﺪار اﻟﺨﻄﻰ اﻟﺒﺴﻴﻂ واﻻرﺗﺒﺎط‬ ‫)‪(١ -٤‬‬ ‫)‪(٢ -٤‬‬ ‫)‪(٣ -٤‬‬

‫ﻣﻔﺎھﯾم اﺳﺎﺳﯾﺔ‬ ‫ﻣﻘدﻣﺔ ﻓﻰ اﻻﻧﺣدار اﻟﺧطﻰ اﻟﺑﺳﯾط‬ ‫ﺷﻛل اﻻﻧﺗﺷﺎر‬ ‫‪٦‬‬


‫)‪ (٤ -٤‬ﻧﻣوزج اﻻﻧﺣدار اﻟﺧطﻰ اﻟﺑﺳﯾط‬ ‫)‪ (٥ -٤‬ﻓروض ﻧﻣوزج اﻻﻧﺣدار اﻟﺧطﻰ اﻟﺑﺳﯾط‬ ‫)‪ (٦ -٤‬طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى‬ ‫)‪ (٧ - ٤‬ﺗﺣﻠﯾل اﻻﻧﺣدار‬ ‫) ‪(٨ - ٤‬‬ ‫ﺗﻘدﯾر ‪2‬‬ ‫)‪ (٩ - ٤‬ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﺑﺳﯾط‬ ‫)‪ (١٠ - ٤‬اﺳﺗدﻻﻻت ﺗﺧص ﻣﻌﺎﻣﻼت اﻻﻧﺣدار‬ ‫)‪ (١ -١٠ -٤‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪1‬‬ ‫)‪ (٢ -١٠ -٤‬اﺧﺗﺑﺎرات ﻓروض ﺗﺧص اﻟﻣﯾل‬ ‫)‪ (٣ -١٠ -٤‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪0‬‬ ‫)‪ (٤ -١٠ -٤‬اﺧﺗﺑﺎرات ﻓروض ﺗﺧص ‪0‬‬ ‫)‪ (١١ - ٤‬اﻟﺗﻧﺑؤ‬ ‫)‪ (١٢ - ٤‬ﻣﺧﺎﻟﻔﺎت ﻧﻣوزج اﻻﻧﺣدار وﻛﯾﻔﯾﺔ اﻛﺗﺷﺎﻓﮭﺎ ﺑﺎﻟﺑواﻗﻰ‬ ‫)‪ (١ -١٢ -٤‬رﺳوم اﻟﺑواﻗﻰ‬ ‫)‪ (٢ -١٢ -٤‬رﺳوم ﺑواﻗﻰ اﺧرى ﻻﺧﺗﺑﺎر اﻻﻋﺗدال‬ ‫)‪ (٣ -١٢ -٤‬اﺧﺗﺑﺎر ﻧﻘص اﻻﻋﺗدال‬ ‫)‪ (١٣ - ٤‬اﺧﺗﺑﺎر ﺧطﯾﺔ اﻻﻧﺣدار‬ ‫)‪ (١٤ - ٤‬ﺗﺣوﯾﻼت اﻟﻰ اﻟﺧط اﻟﻣﺳﺗﻘﯾم‬ ‫)‪ (١ -١٤ -٤‬اﻟﻧﻣوزج اﻻﺳﻰ‬ ‫)‪ (٢ -١٤ -٤‬ﻧﻣوزج اﻟﻘوى‬ ‫)‪ (٣ -١٤ -٤‬ﻧﻣوزج ﯾﻌطﻰ ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻋﻠﻰ اﻟﺷﻛل‬ ‫‪yˆ  b0  b1 x‬‬

‫)‪(١٥ - ٤‬‬

‫)‪(١٦ - ٤‬‬

‫اﻛﺗﺷﺎف وﺗﺻﺣﯾﺢ ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن‬ ‫)‪(١ -١٥ -٤‬طرﯾﻘﺔ ﺟوﻟد – ﻛوادت ﻻﻛﺗﺷﺎف ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن‬ ‫)‪ (٢ -١٥ -٤‬ﺗﺻﺣﯾﺢ ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن‬ ‫)‪ (٣ -١٥ -٤‬طرﯾﻘﺔ ﻟﺣﺳﺎب اﻻوزان‬ ‫ﻣﻌﺎﻣل اﻻرﺗﺑﺎط اﻟﺧطﻰ اﻟﺑﺳﯾط‬

‫اﻟﻔﺼﻞ اﻟﺨﺎﻣﺲ‪ :‬ﻧﻤﺎزج اﻻﻧﺤﺪار اﻟﺨﻄﻰ اﻟﻤﺘﻌﺪد وﻧﻤﺎزج اﻻﻧﺤﺪار‬ ‫ﻣﻦ اﻟﺪرﺟﺔ اﻟﺜﺎﻧﻴﺔ واﻟﻨﻤﺎزج اﻟﻐﻴﺮ ﺧﻄﻴﺔ‬ ‫)‪(١ -٥‬‬ ‫)‪(٢ -٥‬‬ ‫)‪(٣ -٥‬‬ ‫)‪(٤ -٥‬‬

‫اﻻﻧﺣدار اﻟﺧطﻰ اﻟﻣﺗﻌدد‬ ‫ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﻣﺗﻌدد‬ ‫اﻻﻧﺣدار ﻣن اﻟدرﺟﺔ اﻟﺛﺎﻧﯾﺔ‬ ‫اﻛﺗﺷﺎف ﻣﺧﺎﻟﻔﺎت ﻓروض اﻟﺗﺣﻠﯾل ﻓﻰ اﻻﻧﺣدار اﻟﻣﺗﻌدد‬ ‫)‪ (١ -٤ -٥‬رﺳوم اﻟﺑواﻗﻰ‬ ‫)‪ (٢ -٤ -٥‬اﻟﺑواﻗﻰ اﻟﻣﻌﯾﺎرﯾﺔ وﺑواﻗﻰ ﺳﺗودﻧت‬ ‫‪٧‬‬


‫)‪ (٣ -٤ -٥‬اﺳﺗﺧدام ﻣﺻﻔوﻓﺔ اﻟﻘﺑﻌﺔ ﻟﻠﺗﻌرف ﻋﻠﻰ ﻣﺷﺎھدات ﻗﺎﺻﯾﺔ‬ ‫ﻓﻰ ﻗﯾم ‪x‬‬ ‫)‪ (٤ -٤ -٥‬اﺳﺗﺧدام ﺑواﻗﻰ ﺳﺗودﻧت اﻟﻣﺣذوﻓﺔ ﻟﻠﺗﻌرف ﻋﻠﻰ ﻗﯾم ﻗﺎﺻﯾﺔ‬ ‫ﻟﻠﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ‬ ‫)‪ ( ٥ -٤ -٥‬ﺗﺣدﯾد اﻟﻣﺷﺎھدات اﻟﻣؤﺛرة‬

‫)‪(٥ -٥‬‬

‫)‪ (٦ -٤ -٥‬اﻻرﺗﺑﺎط اﻟذاﺗﻰ‬ ‫)‪ (٧ -٤ -٥‬ﻣﺷﻛﻠﺔ ﻋدم اﻟﺧطﯾﺔ‬ ‫)‪ (٨ -٤ -٥‬اﻻرﺗﺑﺎط اﻟﺧطﻰ اﻟﻣﺗﻌدد وطرق اﻟﻛﺷف ﻋﻠﯾﮫ‬ ‫ﻧﻣﺎزج اﻻﻧﺣدار اﻟﻐﯾر ﺧطﯾﺔ‬

‫اﻟﻔﺼـﻞ اﻟﺴﺎدس ‪ :‬ﺗﺤﻠﻴﻞ اﻟﺘﺒﺎﻳﻦ‬ ‫)‪(١ -٦‬‬ ‫)‪(٢ -٦‬‬

‫)‪(٣ -٦‬‬ ‫)‪(٤ -٦‬‬ ‫)‪(٥ -٦‬‬

‫ﻣﻘدﻣﺔ‬ ‫اﻟﺗﺻﻧﯾف اﻻﺣﺎدى‪:‬‬ ‫)‪ (١-٢-٦‬اﺧﺗﺑﺎرات ﺗﺟﺎﻧس ﻋدة ﺗﺑﺎﯾﻧﺎت‬ ‫)‪ (٢-٢-٦‬اﺧﺗﺑﺎر ﻧﯾوﻣن –ﻛﻠز ﻟﻠﻣدى اﻟﻣﺗﻌدد‬ ‫اﻟﺗﺻﻧﯾف اﻟﺛﻧﺎﺋﻰ ‪ ،‬ﻣﺷﺎھدة واﺣدة ﻓﻰ ﻛل ﺧﻠﯾﺔ‬ ‫اﻟﺗﺻﻧﯾف اﻟﺛﻧﺎﺋﻰ ‪ ،‬ﻋدة ﻣﺷﺎھدات ﻓﻰ ﻛل ﺧﻠﯾﺔ‬ ‫ﺑﻌض ﺗﺻﺎﻣﯾم اﻟﺗﺟﺎرب اﻟﺑﺳﯾطﺔ‬ ‫)‪ (١ -٥ -٦‬ﺗﺻﻣﯾم و ﺗﺣﻠﯾل اﻟﺗﺟﺎرب ذات اﻟﻌﺎﻣل اﻟواﺣد‪:‬اﻟﺗﺻﻣﯾم‬ ‫اﻟﺗﺎم ﻟﻠﺗﻌﺷﯾﺔ‬ ‫)‪ (٢ -٥ -٦‬ﺗﺻﻣﯾم اﻟﻘطﺎﻋﺎت اﻟﻛﺎﻣﻠﺔ اﻟﻌﺷواﺋﯾﺔ )ﺗﺟﺎرب ذات اﻟﻌﺎﻣل‬ ‫اﻟواﺣد(‬ ‫)‪ ( ٣ -٥ -٦‬ﺗﺻﻣﯾم اﻟﻣرﺑﻊ اﻟﻼﺗﯾﻧﻲ ‪ :‬ﺗﺟﺎرب ذات اﻟﻌﺎﻣل اﻟواﺣد‬

‫اﻟﻔﺼـﻞ اﻟﺴﺎﺑﻊ ‪ :‬اﻻﺧﺘﺒﺎرات اﻟﻼﻣﻌﻠﻤﻴﺔ‬ ‫)‪(١ -٧‬‬ ‫)‪( ٢ - ٧‬‬ ‫)‪(٣ -٧‬‬ ‫)‪(٤ -٧‬‬ ‫)‪(٥ -٧‬‬ ‫)‪(٦ -٧‬‬ ‫)‪(٧ -٧‬‬ ‫)‪(٨ -٧‬‬ ‫)‪(٩ -٧‬‬ ‫)‪(١٠ -٧‬‬ ‫)‪(١١ -٧‬‬

‫ﻣﻘدﻣـﺔ‬ ‫اﺧﺗﺑﺎر ﻣرﺑﻊ ﻛﺎي ﻟﻼﺳﺗﻘﻼل‬ ‫اﺧﺗﺑﺎر ﻣرﺑﻊ ﻛﺎي ﻟﻠﺗﺟﺎﻧس‬ ‫اﺧﺗﺑﺎر اﻹﺷﺎرة ﻟﻌﯾﻧﺔ واﺣدة‬ ‫اﺧﺗﺑﺎر إﺷﺎرة اﻟرﺗب‬ ‫اﺧﺗﺑﺎرات ﺗﺗﻌﻠق ﺑﻣﻌﻠﻣﺔ اﻟﻧﺳﺑﺔ‬ ‫اﺧﺗﺑﺎر اﻟدورات‬ ‫اﺧﺗﺑﺎر اﻹﺷﺎرة ﻟﻌﯾﻧﺗﯾن ﻣرﺗﺑطﺗﯾن "ﻋﯾﻧﺔ ﻣزدوﺟﺔ"‬ ‫اﺧﺗﺑﺎر ‪Mann-Whitney-Wilcoxon‬‬ ‫اﺧﺗﺑﺎر ‪Kruskal-Wallis‬‬ ‫اﺧﺗﺑﺎر ﻓرﯾدﻣﺎن ﻟﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻟﻠرﺗب ﻓﻲ اﺗﺟﺎھﯾن‬ ‫‪٨‬‬


‫)‪(١٢ -٧‬‬ ‫)‪(١٣ -٧‬‬

‫اﺧﺗﺑﺎر ﻛوﻛران ﻟﻠﻌﯾﻧﺎت اﻟﻣرﺗﺑطﺔ‬ ‫اﺧﺗﺑﺎرات ﺣول اﻻرﺗﺑﺎط‬ ‫اﻟﻣراﺟﻊ‬ ‫اﻟﻣﻼﺣق‬

‫‪٩‬‬


‫اﻟﻔﺻل اﻷول‬ ‫ﺗوزﯾﻌﺎت اﻟﻣﻌﺎﯾﻧﺔ‬

‫‪١٠‬‬


‫) ‪ ( ١-١‬ﻣﻘدﻣﺔ‬

‫‪Introduction‬‬

‫ﯾﮭﺗم ﻓرع اﻹﺣﺻﺎء اﻻﺳﺗدﻻﻟﻲ ﺑﺎﻟﺗﻌﻣﯾم واﻟﺗﻧﺑؤ‪ ،‬ﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ﯾﻣﻛن اﻟﻘول أن ﻣﺗوﺳط دﺧل‬ ‫اﻟﻔرد ﻓﻲ ﺑﻠد ﻣﺎ ‪ 86000$‬ﻓﻲ اﻟﺳﻧﺔ وذﻟك ﺑﻧﺎء ﻋﻠﻰ ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ اﺧﺗﯾرت ﻣن ھذا اﻟﺑﻠد‪.‬‬ ‫وﺑﺗوﺿﯾﺢ آﺧر ﯾﻣﻛن أن ﻧﺗوﻗﻊ ﺑﻧﺎء ﻋﻠﻰ أراء ﻣﺟﻣوﻋﺔ ﻣن اﻷﺷﺧﺎص ﻓﻲ اﻟﺷﺎرع أن ‪ %80‬ﻣن‬ ‫أﺻوات اﻟﻧﺎﺧﺑﯾن ﻓﻲ ﻣدﯾﻧﺔ ﻣﺎ ﺳوف ﺗﻌطﻰ ﻟﻣرﺷﺢ ﻣﻌﯾن‪ .‬ﻛﻣﺎ ﯾﻣﻛن اﻟﺗوﻗﻊ أن ﻋﻣر اﻟﻣﺻﺑﺎح‬ ‫اﻟﻛﮭرﺑﺎﺋﻲ ﻣن إﻧﺗﺎج ﻣﺻﻧﻊ ﻣﺎ ﯾﺗراوح ﺑﯾن ‪ 1150‬ﺳﺎﻋﺔ و ‪ 1250‬ﺳﺎﻋﺔ ﺑدرﺟﺔ ﺛﻘﺔ ﻣﻌﯾﻧﺔ‪ .‬ﻓﺈﻧﻧﺎ ﻧﺟد‬ ‫ﻓﻲ ﻛل ﻣﺛﺎل ﻣن اﻷﻣﺛﻠﺔ اﻟﺳﺎﺑﻘﺔ‪ ،‬ﺗم ﺣﺳﺎب إﺣﺻﺎء ﻣن ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﺗم اﺧﺗﯾﺎرھﺎ ﻣن اﻟﻣﺟﺗﻣﻊ‬ ‫ﻣوﺿﻊ اﻟدراﺳﺔ‪ ،‬وﻣن ﺗﻠك اﻹﺣﺻﺎءات أﻣﻛﻧﻧﺎ اﻟوﺻول إﻟﻰ ﺟﻣل ﺗﺧص ﻗﯾم اﻟﻣﻌﺎﻟم واﻟﺗﻲ ﻗد ﺗﻛون‬ ‫ﺻﺣﯾﺣﺔ أو ﻏﯾر‪ .‬اﻟﺗﻌﻣﯾم ﻣن اﻹﺣﺻﺎء إﻟﻰ اﻟﻣﻌﻠﻣﺔ ﯾﻛون ﺑﺛﻘﺔ ﻓﻘط إذا اﺳﺗطﻌﻧﺎ أن ﻧﻔﮭم اﻟﻌﻼﻗﺔ ﺑﯾن‬ ‫اﻟﻣﺟﺗﻣﻊ وﻋﯾﻧﺎﺗﮫ‪.‬‬ ‫ﻣن اﻟﻣﻌروف ان اﻹﺣﺻﺎء ﻣﺗﻐﯾر ﻋﺷواﺋﻲ ﯾﻌﺗﻣد ﻗﯾﻣﺗﮫ ﻓﻘط ﻋﻠﻰ اﻟﻌﯾﻧﺔ‪ ،‬وﺑﺎﻟﺗﺎﻟﻲ ﻓﺈن ﻧﻔس‬ ‫اﻟﺣﺳﺎﺑﺎت ﻟﻌﯾﻧﺎت ﻣﺧﺗﻠﻔﺔ ﻣن اﻟﻣﺟﺗﻣﻊ ﺗؤدي إﻟﻰ ﻗﯾم ﻣﺧﺗﻠﻔﺔ ﻟﻺﺣﺻﺎء‪ .‬ھذه اﻻﺧﺗﻼﻓﺎت ﻓﻲ ﻗﯾم‬ ‫اﻹﺣﺻﺎء ﺗﻌﺗﻣد ﻋﻠﻰ ﺣﺟم اﻟﻣﺟﺗﻣﻊ وﺣﺟم اﻟﻌﯾﻧﺎت واﻟطرﯾﻘﺔ اﻟﺗﻲ اﺳﺗﺧدﻣت ﻓﻲ اﺧﺗﯾﺎر اﻟﻌﯾﻧﺎت‬ ‫اﻟﻌﺷواﺋﯾﺔ‪ .‬إذا ﻛﺎن ﺣﺟم اﻟﻣﺟﺗﻣﻊ ﻛﺑﯾرا ً أو ﻻ ﻧﮭﺎﺋﻲ ﻓﺈن اﻟﺗوزﯾﻊ اﻹﺣﺗﻣﺎﻟﻲ ﻟﻺﺣﺻﺎء ﻓﻲ ﺣﺎﻟﺔ‬ ‫اﻟﺳﺣب ﺑﺈرﺟﺎع ﺳوف ﯾﻛون ﻧﻔﺳﮫ ﻓﻲ ﺣﺎﻟﺔ اﻟﺳﺣب ﺑدون إرﺟﺎع‪ .‬وﻣن ﻧﺎﺣﯾﺔ أﺧرى ﻓﺈن اﻟﺳﺣب‬ ‫ﺑﺈرﺟﺎع ﻣن ﻣﺟﺗﻣﻊ ﺻﻐﯾر ﻣﺣدود ﯾﻌطﻲ ﺗوزﯾﻌﺎ ً ﻟﻺﺣﺻﺎء ﯾﺧﺗﻠف ﻗﻠﯾﻼ ً ﻋن اﻟﺳﺣب ﺑدون إرﺟﺎع‪.‬‬ ‫أﺧﯾرا ً اﻟﻣﻌﺎﯾﻧﺔ ﻣﻊ اﻹرﺟﺎع ﻣن ﻣﺟﺗﻣﻊ ﻣﺣدود ﯾﻛﺎﻓﺊ اﻟﻣﻌﺎﯾﻧﺔ ﻣن ﻣﺟﺗﻣﻊ ﻻ ﻧﮭﺎﺋﻲ وذﻟك ﻟﻌدم وﺟود‬ ‫ﺣدود ﻟﺣﺟم اﻟﻌﯾﻧﺔ اﻟﻣﺧﺗﺎرة ﻣن اﻟﻣﺟﺗﻣﻊ‪.‬‬ ‫ﺗﻌرﯾف ‪:‬‬ ‫اﻟﺗوزﯾﻊ اﻹﺣﺗﻣﺎﻟﻲ ﻷي إﺣﺻﺎء ﯾﺳﻣﻰ اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ‪.sampling distribution‬‬ ‫ﺗﻌرﯾف ‪:‬‬ ‫اﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻷي إﺣﺻﺎء ﯾﺳﻣﻲ اﻟﺧطﺄ اﻟﻣﻌﯾﺎري ‪standard error‬‬ ‫ﻟﻺﺣﺻﺎء‪.‬‬ ‫ﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل اﻟﺗوزﯾﻊ اﻻﺣﺗﻣﺎﻟﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﯾﺳﻣﻰ اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻠﻣﺗوﺳط‪ ،‬ﻛﻣﺎ أن اﻟﺧطﺄ‬ ‫اﻟﻣﻌﯾﺎري ﻟﻠﻣﺗوﺳط ھو اﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪. X‬‬ ‫ﻓﻲ ھذا اﻟﻔﺻل ﺳوف ﻧدرس ﺑﻌض ﺗوزﯾﻌﺎت اﻟﻣﻌﺎﯾﻧﺔ اﻷﻛﺛر اﺳﺗﺧداﻣﺎ ﻓﻲ اﻹﺣﺻﺎء‪ .‬اﻟﺗطﺑﯾﻘﺎت‬ ‫ﻋﻠﻰ ﺗﻠك اﻟﺗوزﯾﻌﺎت اﻟﻌﯾﻧﯾﺔ ﺗﺧص ﻣﺷﺎﻛل اﻻﺳﺗدﻻل اﻹﺣﺻﺎﺋﻲ اﻟﺗﻲ ﺳوف ﻧﺗﻧﺎوﻟﮭﺎ ﻓﻲ اﻟﻔﺻول‬ ‫اﻟﺗﺎﻟﯾﺔ‪.‬‬

‫) ‪ ( ٢-١‬ﺗوزﯾﻌﺎت اﻟﻣﻌﺎﯾﻧﺔ اﻟطﺑﯾﻌﯾﺔ ‪Normal Sampling Distributions‬‬

‫‪١١‬‬


‫إذا أﺧذﻧﺎ ﻋﯾﻧﺎت ﻣﺗﻛررة ﻣن اﻟﺣﺟم ‪ n‬ﻣن ﺗوزﯾﻊ ﻣﺗﺻل ﻟﮫ ﻣﺗوﺳط ‪ µ‬وﺑﺗﺑﺎﯾن ‪ .σ2‬ﻟﻛل ﻋﯾﻧﺔ ﺛم‬ ‫ﺣﺳﺎب اﻟﻘﯾﻣﺔ ‪ y‬ﻹﺣﺻﺎء ﻣﺎ ‪ ،Y‬واﻟذي ﻧﻔﺳﮫ ﻣﺗﻐﯾر ﻋﺷواﺋﻲ ﻣﺗﺻل‪ .‬ﺑﻔرض أن ‪ Y‬ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً‬ ‫طﺑﯾﻌﯾﺎ ﺑﻣﺗوﺳط ‪  Y‬واﻧﺣراف ﻣﻌﯾﺎري ‪ .  Y‬اﻟﻧظرﯾﺔ اﻟﺗﺎﻟﯾﺔ ﺗﻧص ﻋﻠﻰ أن‪:‬‬ ‫ﻧظرﯾﺔ ‪:‬‬ ‫إذا ﻛﺎن ‪ y‬ﻗﯾﻣﺔ ﻟﻺﺣﺻﺎء ‪Y‬واﻟذي ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ﺑﻣﺗوﺳط ‪  Y‬واﻧﺣراف ﻣﻌﯾﺎري ‪،  Y‬‬ ‫ﻓﺈن‪:‬‬ ‫‪y  Y‬‬ ‫‪z‬‬ ‫‪Y‬‬ ‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻲ ‪ Z‬ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﺣﯾث‪:‬‬ ‫‪Y  Y‬‬ ‫‪Z‬‬ ‫‪.‬‬ ‫‪Y‬‬ ‫ﯾﻣﻛن ﺗطﺑﯾق اﻟﻧظرﯾﺔ اﻟﺳﺎﺑﻘﺔ ﻟﻺﺣﺻﺎءات اﻟﻣﺣﺳوﺑﺔ ﻣن ﻋﯾﻧﺎت ﻋﺷواﺋﯾﺔ اﺧﺗﯾرت ﻣن‬ ‫ﻣﺟﺗﻣﻌﺎت ﻣﺗﻘطﻌﺔ‪ ،‬ﺳواء ﻣﺣدودة أو ﻏﯾر ﻣﺣدودة ‪ ،‬واﻟﺗﻲ اﻟﺗوزﯾﻌﺎت اﻟﻌﯾﻧﯾﺔ ﻹﺣﺻﺎءاﺗﮭﺎ ﺗﻘرﯾﺑﺎ ً‬ ‫ﺗﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً‪ .‬ھذا وﯾﻣﻛﻧﻧﺎ اﺳﺗﺧدام ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ﻓﻲ اﻟﻣﻠﺣق )‪ (١‬ﻓﻲ ﺣﺳﺎب‬ ‫اﻻﺣﺗﻣﺎﻻت اﻟﺗﻲ ﯾﺄﺧذھﺎ اﻷﺣﺻﺎء ﻓﻲ ﻓﺗرات ﻣﻌﯾﻧﺔ وﺳوف ﻧﺣﺗﺎج إﻟﻰ ﺣﺳﺎب اﻟﻘﯾﻣﺔ ‪ z ‬واﻟﺗﻰ‬ ‫‪2‬‬

‫‪‬‬ ‫ﺗﻣﺛل ﻗﯾﻣﺔ ‪ z‬اﻟﺗﻲ ﺗﻛون اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾﻧﮭﺎ ﺗﺳﺎوي‬ ‫‪2‬‬ ‫اﻟطﺑﯾﻌﻰ اﻟﻘﯾﺎﺳﻲ ﻓﻰ ﻣﻠﺣق )‪ (١‬ﺣﯾث ﯾﺗم ﺣﺳﺎب ) ‪. P(0  Z  z ‬‬

‫واﻟﻣﺳﺗﺧرﺟﮫ ﻣن ﺟدول اﻟﺗوزﯾﻊ‬

‫‪2‬‬

‫ﯾﻘوم ﺑرﻧﺎﻣﺞ ‪ Mathematica‬ﺑﺣﺳﺎب اﻟﻘﯾﻣﺔ ‪ z ‬ﻛﻣﺎ ﯾﺗﺿﺢ ﻣن اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ ‪.‬‬ ‫‪2‬‬

‫ﻣﺛﺎل )‪(١-١‬‬ ‫ﻗدر اﻟﻘﯾم ‪z ‬‬

‫ﻟﻠﻘﯾم ‪  .1,.05,.01,.001,.0001,.00001‬‬

‫‪2‬‬

‫اﻟﺣــل ‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة ‪:‬‬ ‫‪ Statistics`ContinuousDistributions‬وذﻟك ﻣن ﺧﻼل اﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫وﻟﻠﺗذﻛﯾر ﻓﺈن اﻟﺣزﻣﺔ اﻟﺟﺎھزة ‪ DiscriptiveStatistics‬ﺗﺗﺣﻣل ﺗﻠﻘﺎﺋﯾﺎ ‪.‬‬ ‫اﻻﻣر]‪ zdist=NormalDistribution[0,1‬ﺣﯾث‬ ‫‪١٢‬‬


:‫ ﯾﺳﺗﺧدم اﻻﻣر‬z  ‫ ﯾﻌرف اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ اﻟﻘﯾﺎﺳﻲ وﻟﺣﺳﺎب ﻗﯾم ﻋدﯾدة ﻟـ‬zdist 2 commonvalues=Map[{#,(100-#)/100,(100#)/200,Quantile[zdist,(100+#)/200]}&,{90,95,99,99.9,99.99,9 9.999}]//N

{x,(100  x) /100, (100  x) / 200, z  }

‫وذﻟﻚ ﻟﺘﻘﺪﯾﺮ اﻟﻘﺎﺋﻤﺔ‬

2

: ‫ ﺑﺣﯾث ان‬X=90,95,99,99.9,99.999 : ‫ﻟﻛل ﻣن اﻟﻘﯾم‬

(100  x) (100  x)   ,  . 100 200 2

: ‫ﺑﺎﺳﺗﺧدام اﻻﻣر‬

TableFormcommonvalues, TableHeadings  , "Confidence Level", ,   2, z2 ‫ﯾﺗم اظﮭﺎر اﻟﺟدول اﻟﺗﺎﻟﻰ‬ Confidence Level

 2

z

90. 95. 99. 99.9 99.99 99.999

0.1 0.05 0.01 0.001 0.0001 0.00001

0.05 0.025 0.005 0.0005 0.00005 5.  106

1.64485 1.95996 2.57583 3.29053 3.89059 4.41717

2

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`ContinuousDistributions` zdist=NormalDistribution[0,1];

commonvalues=Map[{#,(100-#)/100,(100#)/200,Quantile[zdist,(100+#)/200]}&,{90,95,99,99.9,99.99,99 .999}]//N; TableFormcommonvalues,

TableHeadings  , "Confidence Level", ,   2, z2

١٣


‫‪z‬‬

‫‪‬‬ ‫‪2‬‬

‫‪1.64485‬‬ ‫‪1.95996‬‬ ‫‪2.57583‬‬ ‫‪3.29053‬‬ ‫‪3.89059‬‬ ‫‪4.41717‬‬

‫‪0.05‬‬ ‫‪0.025‬‬ ‫‪0.005‬‬ ‫‪0.0005‬‬ ‫‪0.00005‬‬ ‫‪5.  106‬‬

‫‪2‬‬

‫‪‬‬

‫‪0.1‬‬ ‫‪0.05‬‬ ‫‪0.01‬‬ ‫‪0.001‬‬ ‫‪0.0001‬‬ ‫‪0.00001‬‬

‫‪Confidence Level‬‬ ‫‪90.‬‬ ‫‪95.‬‬ ‫‪99.‬‬ ‫‪99.9‬‬ ‫‪99.99‬‬ ‫‪99.999‬‬

‫)‪ (٣-١‬ﺗوزﯾﻌﺎت اﻟﻣﻌﺎﯾﻧﺔ ﻟﻠﻣﺗوﺳط ‪Sampling Distributions of the Mean‬‬ ‫ﯾﻌﺗﺑر ﺗوزﯾﻊ اﻟﻣﻌﺎﯾﻧﺔ ﻟﻠﻣﺗوﺳط ‪ X‬أھم ﺗوزﯾﻊ ﻣﻌﺎﯾﻧﺔ ﺳوف ﻧﺗﻧﺎوﻟﮫ ﻓﻲ ھذا اﻟﻔﺻل‪ .‬إن ﺷﻛل‬ ‫وﻧوع اﻟﺗوزﯾﻊ اﻻﺣﺗﻣﺎﻟﻲ ﻟﻣﺟﺗﻣﻊ ﻣﺗوﺳط اﻟﻌﯾﻧﺎت ) اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻠﻣﺗوﺳط ( ﯾﻌﺗﻣد ﻋﻠﻰ ﺷﻛل‬ ‫اﻟﻣﺟﺗﻣﻊ اﻷﺻﻠﻲ اﻟذي اﺧﺗﯾرت ﻣﻧﮫ اﻟﻌﯾﻧﺎت‪ .‬اﻟﻧظرﯾﺔ اﻵﺗﯾﺔ ﺗﻌطﻲ اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻠﻣﺗوﺳط إذا ﻛﺎن‬ ‫اﻟﻣﺟﺗﻣﻊ اﻷﺻﻠﻲ اﻟﺗﻲ اﺧﺗﯾرت ﻣﻧﮫ اﻟﻌﯾﻧﺎت ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً‪.‬‬ ‫ﻧظرﯾﺔ ‪:‬‬ ‫إذا أﺧذﻧﺎ ﻋﯾﻧﺎت ﻣﺗﻛررة ﻣن ﻣﺟﺗﻣﻊ ﻣﻌروف أﻧﮫ ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ﺑﻣﺗوﺳط ‪ µ‬واﻧﺣراف‬ ‫ﻣﻌﯾﺎري ‪ σ‬ﻓﺈن اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ﺑﻣﺗوﺳط ‪ X  ‬واﻧﺣراف‬

‫‪‬‬ ‫ﻣﻌﯾﺎري‬ ‫‪n‬‬ ‫ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪. X‬‬

‫‪ X ‬ﺣﯾث ‪ X‬و ‪ X‬ﯾرﻣزان ﻟﻠﻣﺗوﺳط واﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻋﻠﻰ اﻟﺗواﻟﻲ‬

‫ﻓﻲ ﻛﺛﯾر ﻣن اﻟﺣﺎﻻت ﯾﻛون اﻟﺗوزﯾﻊ اﻻﺣﺗﻣﺎﻟﻲ ﻟﻠﻣﺟﺗﻣﻊ اﻷﺻﻠﻲ ﻏﯾر طﺑﯾﻌﻲ وﯾﺗطﻠب اﻷﻣر‬ ‫ﻣﻌرﻓﺔ اﻟﺗوزﯾﻊ اﻻﺣﺗﻣﺎﻟﻲ ﻟﻠوﺳط اﻟﺣﺳﺎﺑﻲ ‪. X‬‬ ‫ﻓﻰ ﺣﺎﻟﺔ اﻟﺳﺣب ﺑﺎرﺟﺎع ﻣن ﻣﺟﺗﻣﻊ ﻣﺣدود ﻓﺈن اﻟﻣﺗوﺳط اﻟﺣﺳﺎﺑﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﯾﺳﺎوي ﻣﺗوﺳط‬ ‫اﻟﻣﺟﺗﻣﻊ اﻟذي اﺧﺗﯾرت ﻣﻧﮫ اﻟﻌﯾﻧﺎت اﻟﻌﺷواﺋﯾﺔ وﻻ ﯾﻌﺗﻣد ﻋﻠﻰ ﺣﺟم اﻟﻌﯾﻧﺔ‪ .‬ﺑﯾﻧﻣﺎ اﻻﻧﺣراف اﻟﻣﻌﯾﺎري‬ ‫ﻟﻺﺣﺻﺎء ‪ X‬ﯾﻌﺗﻣد ﻋﻠﻰ ﺣﺟم اﻟﻌﯾﻧﺔ وﯾﺳﺎوي اﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﻣﺟﺗﻣﻊ اﻷﺻﻠﻲ ‪ σ‬ﻣﻘﺳوﻣﺎ ﻋﻠﻰ‬ ‫‪ . n‬ﻟﻠﺗﺳﮭﯾل ﺳوف ﻧﺳﺗﺧدم ﻣﺟﺗﻣﻌﺎ ﻣﻧﻔﺻﻼ ﻣﻧﺗظﻣﺎ واﻟﻣوﺿﺢ ﻓﻲ اﻟﻣﺛﺎل اﻟﺗﺎﻟﻲ‪:‬‬

‫ﻣﺛﺎل )‪: (٢-١‬‬ ‫ﻣﺟﺗﻣﻊ ﻣﺣدود ﯾﺗﻛون ﻣن اﻟﻘﯾم ‪. 1, 2, 3, 4‬‬ ‫أوﺟد اﻟﻣدرج اﻟﺗﻛراري ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﻋﻧد ﺳﺣب ﻋﯾﻧﺎت ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م ‪n  4‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪. X ‬‬ ‫ﻣﻊ اﻹرﺟﺎع و ﺗﺣﻘق أن ‪, X  ‬‬ ‫‪n‬‬ ‫‪١٤‬‬


‫اﻟﺣــل‪:‬‬ ‫‪1 2  3  4‬‬ ‫‪ 2.5‬‬ ‫‪4‬‬

‫‪‬‬

‫واﻧﺣراﻓﮫ اﻟﻣﻌﯾﺎري‪:‬‬

‫‪(1  2.5)2  (2  2.5) 2  (3  2.5) 2  (4  2.5) 2‬‬ ‫‪‬‬ ‫‪ 1.118.‬‬ ‫‪4‬‬ ‫اﻟﻣدرج اﻟﺗﻛراري ﻟﮭذا اﻟﻣﺟﺗﻣﻊ ﻣوﺿﺢ ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ‪.‬‬

‫ﺑﻔرض أﻧﮫ ﺗم اﺧﺗﯾﺎر ﻛل اﻟﻌﯾﻧﺎت ﻣن اﻟﺣﺟم ‪ n  2‬ﻣن ھذا اﻟﻣﺟﺗﻣﻊ ﺑﺈرﺟﺎع واﻟذي ﯾﻛﺎﻓﺊ‬ ‫اﻟﻣﻌﺎﯾﻧﺔ ﻣن ﻣﺟﺗﻣﻊ ﻻ ﻧﮭﺎﺋﻲ‪ .‬ﯾﻌطﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﻛل اﻟﻌﯾﻧﺎت اﻟﻣﻣﻛﻧﺔ اﻟﺗﻲ ﯾﻣﻛن اﺧﺗﯾﺎرھﺎ )ﻋدد‬ ‫اﻟﻌﯾﻧﺎت ‪ Nn =42 =16‬ﻋﯾﻧﺔ ( ﻣن ھذا اﻟﻣﺟﺗﻣﻊ ﻣﻊ ﻗﯾﻣﺗﮭﺎ‪.‬‬ ‫‪8‬‬

‫‪7‬‬

‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫رﻗم اﻟﻌﯾﻧﺔ‬

‫‪2,4‬‬

‫‪2,3‬‬

‫‪2,2‬‬

‫‪2,1‬‬

‫‪1,4‬‬

‫‪1,3‬‬

‫‪1,2‬‬

‫‪1,1‬‬

‫اﻟﻘﯾم‬

‫‪16‬‬

‫‪15‬‬

‫‪14‬‬

‫‪13‬‬

‫‪12‬‬

‫‪11‬‬

‫‪10‬‬

‫‪9‬‬

‫رﻗم اﻟﻌﯾﻧﺔ‬

‫‪4,4‬‬

‫‪4,3‬‬

‫‪4,2‬‬

‫‪4,1‬‬

‫‪3,4‬‬

‫‪3,3‬‬

‫‪3,2‬‬

‫‪3,1‬‬

‫اﻟﻘﯾم‬

‫ﻟﻛل ﻋﯾﻧﺔ ﺗم ﺣﺳﺎب ‪ x‬واﻟﺗوزﯾﻊ اﻟﺗﻛراري ﻟﻣﺟﺗﻣﻊ ﻣﺗوﺳط اﻟﻌﯾﻧﺎت اﻟﺗﻲ ﺣﺟم ﻛل ﻣﻧﮭﺎ ‪n  2‬‬

‫ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ وﺗوزﯾﻌﮫ اﻟﺗﻛراري ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪4‬‬

‫‪3.5‬‬

‫‪3‬‬

‫‪2.5‬‬

‫‪2‬‬

‫‪1.5‬‬

‫‪1‬‬

‫‪x‬‬

‫‪1‬‬

‫‪2‬‬

‫‪3‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫‪ f‬اﻟﺗﻛرار‬

‫‪١٥‬‬


‫ﯾﻼﺣظ أن ﺗوزﯾﻊ اﻟﻣﻌﺎﯾﻧﺔ ﻟﻺﺣﺻﺎء ‪ X‬ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ﺗﻘرﯾﺑﺎ ً طﺑﯾﻌﻲ‪ .‬اﻟﻣﺗوﺳط واﻹﻧﺣراف‬ ‫اﻟﻣﻌﯾﺎري ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﺗم ﺣﺳﺎﺑﮭﺎ ﻣن اﻟﺟدوﻟﯾن اﻟﺳﺎﺑﻘﯾﯾن وھﻣﺎ ﻋﻠﻰ اﻟﺗواﻟﻲ ‪:‬‬ ‫‪ f x 40‬‬ ‫‪X ‬‬ ‫‪‬‬ ‫‪ 2.5  ‬‬ ‫‪ f 16‬‬ ‫‪2‬‬ ‫‪10‬‬ ‫)‪ f (x  2.5‬‬ ‫‪X ‬‬ ‫‪‬‬ ‫‪16‬‬ ‫‪f‬‬

‫‪1.118 ‬‬ ‫‪‬‬ ‫‪.‬‬ ‫‪2‬‬ ‫‪n‬‬

‫‪ 0.791 ‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪Mathematica‬‬ ‫ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ‬

‫}‪a={1,2,3,4‬‬ ‫}‪{1,2,3,4‬‬ ‫‪n=2‬‬ ‫‪2‬‬ ‫]}‪a1=Table[a,{i,n‬‬ ‫}}‪{{1,2,3,4},{1,2,3,4‬‬ ‫]]‪a2=Outer[List,Apply[Sequence,a1‬‬ ‫‪{{{1,1},{1,2},{1,3},{1,4}},{{2,1},{2,2},{2,3},{2,4}},{{3,1},‬‬ ‫}}}‪{3,2},{3,3},{3,4}},{{4,1},{4,2},{4,3},{4,4‬‬ ‫]‪a3=Flatten[a2,n-1‬‬ ‫}‪{{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2‬‬ ‫}}‪,{3,3},{3,4},{4,1},{4,2},{4,3},{4,4‬‬ ‫]‪fh=Transpose[a3‬‬

‫‪١٦‬‬


{{1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4},{1,2,3,4,1,2,3,4,1,2,3,4, 1,2,3,4}}

ax  ApplyPlus,

fh   N n

{1.,1.5,2.,2.5,1.5,2.,2.5,3.,2.,2.5,3.,3.5,2.5,3.,3.5,4.} <<Statistics`DataManipulation` ff=Frequencies[ax] {{1,1.},{2,1.5},{3,2.},{4,2.5},{3,3.},{2,3.5},{1,4.}} <<Graphics`Graphics` BarChart[ff] 4

3

2

1

1.

1.5

2.

2.5

3.

3.5

4.

Graphics w[x_]:=Length[x] z=Transpose[ff] {{1,2,3,4,3,2,1},{1.,1.5,2.,2.5,3.,3.5,4.}}

xb 

Dotz1, z2 wax

2.5

vxb  0.625

sxb 

Dotz1, z2  xb^2 wax 

vxb

0.790569 =Mean[a]//N 2.5 2=Mean[(a-)^2] 1.25

 2 1.11803 xb True

s

١٧


‫‪s‬‬ ‫‪‬‬

‫‪sxb ‬‬

‫‪n‬‬

‫‪True‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫اﻟﻘﺎﺋﻣﺔ }‪ a={1,2,3,4‬وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪n=2‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﻣدرج اﻟﺗﻛرارى ﻟﺗوزﯾﻊ ‪ X‬ﻣن اﻻﻣر‬ ‫]‪BarChart[ff‬‬

‫اﻟﻣﺗوﺳط ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﻣﻦ اﻻﻣﺮ‬ ‫‪Dotz1, z2‬‬ ‫‪xb ‬‬ ‫‪wax‬‬ ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﻣﻦ اﻻﻣﺮ‬ ‫‪‬‬ ‫‪sxb  vxb‬‬ ‫وﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ﻣن اﻻﻣر‬ ‫‪=Mean[a]//N‬‬

‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﻣن اﻻﻣر‬ ‫‪‬‬ ‫‪s  2‬‬ ‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪ X  ‬ﻣن اﻻﻣر‬ ‫‪xb‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬

‫وﯾﻣﻛن اﺛﺑﺎت ان‬

‫‪‬‬ ‫‪n‬‬

‫‪X ‬‬

‫ﻣن اﻻﻣر‬ ‫‪s‬‬

‫‪sxb  ‬‬ ‫‪n‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬

‫‪١٨‬‬


‫ﻧظرﯾﺔ‪ :‬إذا اﺧﺘﯿﺮت ﻛﻞ اﻟﻌﯿﻨﺎت اﻟﻤﻤﻜﻨﺔ ﻣﻦ اﻟﺤﺠﻢ ‪ n‬ﺑﺈرﺟﺎع ﻣﻦ ﻣﺠﺘﻤﻊ ﻣﺤﺪود ﻣﻦ اﻟﺤﺠﻢ ‪ N‬وﻟﮫ‬ ‫ﻣﺘﻮﺳﻂ ‪ µ‬واﻧﺤﺮاف ﻣﻌﯿﺎري ‪ σ‬ﻓﺈن اﻟﺘﻮزﯾﻊ اﻟﻌﯿﻨﻲ ﻟﻺﺣﺼﺎء ‪X‬ﺗﻘﺮﯾﺒﺎ ً ﯾﺘﺒﻊ ﺗﻮزﯾﻌﺎ ً طﺒﯿﻌﯿﺎ ً ﺑﻤﺘﻮﺳﻂ‬ ‫‪‬‬ ‫‪  x ‬وﻋﻠﻰ ذﻟﻚ‪:‬‬ ‫‪  x  ‬واﻧﺤﺮاف ﻣﻌﯿﺎري‬ ‫‪n‬‬ ‫‪x ‬‬ ‫=‪z‬‬ ‫‪ n‬‬ ‫ھﻲ ﻗﯿﻤﺔ ﻟﻤﺘﻐﯿﺮ ﻋﺸﻮاﺋﻲ ‪ Z‬ﯾﺘﺒﻊ اﻟﺘﻮزﯾﻊ اﻟﻄﺒﯿﻌﻲ اﻟﻘﯿﺎﺳﻲ‪ .‬اﻟﻨﻈﺮﯾﺔ اﻟﺴﺎﺑﻘﺔ ﺻﺤﯿﺤﺔ ﻷي ﻣﺠﺘﻤﻊ‬ ‫ﻣﺤﺪود ﻋﻨﺪﻣﺎ ‪. n  30‬‬ ‫ﻓﻰ ﺣﺎﻟﺔ اﻟﺳﺣب ﺑدون ارﺟﺎع ﻣن ﻣﺟﺗﻣﻊ ﻣﺣدود ﻓﺈن اﻟﻣﺗوﺳط اﻟﺣﺳﺎﺑﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﯾﺳﺎوي‬ ‫ﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ اﻟذي اﺧﺗﯾرت ﻣﻧﮫ اﻟﻌﯾﻧﺎت اﻟﻌﺷواﺋﯾﺔ واﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻺﺣﺻﺎء ‪ X‬ھو‬ ‫‪ Nn‬‬ ‫‪X ‬‬ ‫‪n N 1‬‬ ‫ﻟﻠﺗﺳﮭﯾل ﺳوف ﻧﺳﺗﺧدم ﻣﺟﺗﻣﻌﺎ ﻣﻧﻔﺻﻼ ﻣﻧﺗظﻣﺎ واﻟﻣوﺿﺢ ﻓﻲ اﻟﻣﺛﺎل اﻟﺗﺎﻟﻲ‪:‬‬

‫ﻣﺛﺎل )‪: (٣-١‬‬ ‫ﺑﻔ رض أﻧﻧ ﺎ ﺳ ﺣﺑﻧﺎ ﻛ ل اﻟﻌﯾﻧ ﺎت اﻟﻣﻣﻛﻧ ﺔ ﻣ ن اﻟﺣﺟ م ‪ n  2‬ﻣ ن ﻣﺟﺗﻣﻌﻧ ﺎ اﻟﻣﻧ ﺗظم واﻟ ذى‬ ‫ﻣﺷ ﺎھداﺗﮫ ‪ 1, 2, 3, 4‬وﻟﻛ ن ﺑ دون إرﺟ ﺎع‪ .‬ﻟﻛ ل ﻋﯾﻧ ﺔ ﺗ م ﺣﺳ ﺎب ﻣﺗوﺳ ط اﻟﻌﯾﻧ ﺔ ‪ . x‬ﯾﻌط ﻰ‬ ‫اﻟﺟدول اﻟﺗﺎﻟﻰ ﻛل اﻟﻌﯾﻧﺎت اﻟﻣﻣﻛﻧﺔ اﻟﺗﻰ ﯾﻣﻛن اﺧﺗﯾﺎرھﺎ ﻣن ھذا اﻟﻣﺟﺗﻣﻊ ﺑدون إرﺟ ﺎع ﻣ ﻊ ﻗ ﯾم ﻛ ل‬ ‫!‪N‬‬ ‫!‪4‬‬ ‫ﻋﯾﻧﺔ (‪.‬‬ ‫ﻋﯾﻧﺔ ) ﻋدد اﻟﻌﯾﻧﺎت ‪  12‬‬ ‫!‪(N  n)! 2‬‬ ‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫رﻗم اﻟﻌﯾﻧﺔ‬

‫‪2,4‬‬

‫‪2,3‬‬

‫‪2,1‬‬

‫‪1,4‬‬

‫‪1,3‬‬

‫‪1,2‬‬

‫اﻟﻘﯾم‬

‫‪12‬‬

‫‪11‬‬

‫‪10‬‬

‫‪9‬‬

‫‪8‬‬

‫‪7‬‬

‫رﻗم اﻟﻌﯾﻧﺔ‬

‫‪4,3‬‬

‫‪4,2‬‬

‫‪4,1‬‬

‫‪3,4‬‬

‫‪3,2‬‬

‫‪3,1‬‬

‫اﻟﻘﯾم‬

‫اﻟﺗوزﯾ ﻊ اﻟﺗﻛ راري ﻟﻣﺟﺗﻣ ﻊ ﻣﺗوﺳ ط اﻟﻌﯾﻧ ﺎت ﻣ ن اﻟﺣﺟ م ‪ n = 2‬ﻣﻌط ﻰ ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ‪.‬‬ ‫اﻟﻣدرج اﻟﺗﻛراري ﻟﻣﺟﺗﻣﻊ ﻣﺗوﺳط اﻟﻌﯾﻧﺎت ﻣوﺿﺢ ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪3.5‬‬

‫‪3.0‬‬

‫‪2.5‬‬

‫‪2.0‬‬

‫‪1.5‬‬

‫‪x‬‬

‫‪2‬‬

‫‪2‬‬

‫‪4‬‬

‫‪2‬‬

‫‪2‬‬

‫‪f‬‬

‫‪١٩‬‬


‫ﯾﺗﺿﺢ ﻣن اﻟﺷﻛل اﻟﺳﺎﺑق أن اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻰ ﻟﻺﺣﺻﺎء ‪ X‬ﻓﻲ ﺣﺎﻟﺔ اﻟﺳﺣب ﺑدون إرﺟﺎع‬ ‫ﻣن ﻣﺟﺗﻣﻊ ﻣﺣدود ﺑﻌﯾدا ﻋن اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ ﺣﯾث ‪ .n = 2‬ﻣن اﻟﺟدول اﻟﺳﺎﺑق ﯾﻣﻛن ﺣﺳﺎب‬ ‫اﻟﻣﺗوﺳط واﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻺﺣﺻﺎء ‪ X‬ﻋﻠﻰ اﻟﺗواﻟﻲ ‪:‬‬ ‫‪ f x 30‬‬ ‫‪X ‬‬ ‫‪‬‬ ‫‪ 2.5   ،‬‬ ‫‪f‬‬ ‫‪12‬‬

‫‪ f (x  2.5)2‬‬ ‫‪5‬‬ ‫‪‬‬ ‫‪ 0.645‬‬ ‫‪f‬‬ ‫‪12‬‬ ‫‪1.118 4  2  N  n‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 0.645 .‬‬ ‫‪2 4 1‬‬ ‫‪n N 1‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪X ‬‬

‫}‪a={1,2,3,4‬‬ ‫}‪{1,2,3,4‬‬ ‫‪n=2‬‬ ‫‪2‬‬ ‫]}‪a1=Table[a,{i,n‬‬ ‫}}‪{{1,2,3,4},{1,2,3,4‬‬ ‫]]‪a2=Outer[List,Apply[Sequence,a1‬‬ ‫‪{{{1,1},{1,2},{1,3},{1,4}},{{2,1},{2,2},{2,3},{2,4}},{{3,1},‬‬ ‫}}}‪{3,2},{3,3},{3,4}},{{4,1},{4,2},{4,3},{4,4‬‬ ‫]‪a3=Flatten[a2,n-1‬‬ ‫}‪{{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2‬‬ ‫}}‪,{3,3},{3,4},{4,1},{4,2},{4,3},{4,4‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪m=l[a‬‬ ‫‪4‬‬ ‫‪٢٠‬‬


a4  Dropa3, 1, m n, m  1 {{1,2},{1,3},{1,4},{2,1},{2,3},{2,4},{3,1},{3,2},{3,4},{4,1} ,{4,2},{4,3}} q=Transpose[a4] {{1,1,1,2,2,2,3,3,3,4,4,4},{2,3,4,1,3,4,1,2,4,1,2,3}}

xa  ApplyPlus,

q   N n

{1.5,2.,2.5,1.5,2.5,3.,2.,2.5,3.5,2.5,3.,3.5} <<Statistics`DataManipulation` ff=Frequencies[xa] {{2,1.5},{2,2.},{4,2.5},{2,3.},{2,3.5}} <<Graphics`Graphics` BarChart[ff] 4

3

2

1

1.5

2.

2.5

3.

3.5

Graphics w=Transpose[ff] {{2,2,4,2,2},{1.5,2.,2.5,3.,3.5}}

xb 

Dotw1, w2 lxa

2.5

vxb 

Dotw1, w2  xb^2 lxa

0.416667

sxb 



vxb

0.645497 =Mean[a]//N 2.5 xb True 2=Mean[(a-)^2] 1.25

s

 2

٢١


‫‪1.11803‬‬ ‫‪ssxb‬‬ ‫‪False‬‬

‫‪s‬‬ ‫‪mn‬‬ ‫‪sxb    ‬‬ ‫‪m1‬‬ ‫‪n‬‬ ‫‪True‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫اﻟﻘﺎﺋﻣﺔ }‪ a={1,2,3,4‬وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪n=2‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﻣدرج اﻟﺗﻛرارى ﻟﺗوزﯾﻊ ‪ X‬ﻣن اﻻﻣر‬ ‫]‪BarChart[ff‬‬

‫واﻟﻣﺗوﺳط ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﻣﻦ اﻻﻣﺮ‬ ‫‪Dotz1, z2‬‬ ‫‪xb ‬‬ ‫‪wax‬‬ ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X‬ﻣﻦ اﻻﻣﺮ‬ ‫‪‬‬ ‫‪sxb  vxb‬‬ ‫وﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ﻣن اﻻﻣر‬ ‫‪=Mean[a]//N‬‬

‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﻣن اﻻﻣر‬ ‫‪‬‬ ‫‪s  2‬‬ ‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪ X  ‬ﻣن اﻻﻣر‬ ‫‪xb‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬

‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪ Nn‬‬ ‫‪x ‬‬ ‫‪n N 1‬‬ ‫ﻣن اﻻﻣر‬ ‫‪s‬‬ ‫‪mn‬‬ ‫‪sxb    ‬‬ ‫‪m1‬‬ ‫‪n‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬

‫‪٢٢‬‬


‫ﻧظرﯾﺔ‪ :‬إذا اﺧﺘﯿﺮت ﻛﻞ اﻟﻌﯿﻨﺎت اﻟﻤﻤﻜﻨﺔ ﻣﻦ اﻟﺤﺠﻢ ‪ n‬ﺑﺪون ارﺟﺎع ﻣﻦ ﻣﺠﺘﻤﻊ ﻣﺤﺪود ﻣﻦ اﻟﺤﺠﻢ‬ ‫‪ N‬وﻟﮫ ﻣﺘﻮﺳﻂ ‪ µ‬واﻧﺤﺮاف ﻣﻌﯿﺎري ‪ σ‬ﻓﺈن اﻟﺘﻮزﯾﻊ اﻟﻌﯿﻨﻲ ﻟﻺﺣﺼﺎء ‪X‬ﺗﻘﺮﯾﺒﺎ ً ﯾﺘﺒﻊ ﺗﻮزﯾﻌﺎ ً طﺒﯿﻌﯿﺎ ً‬ ‫‪Nn‬‬ ‫‪ Nn‬‬ ‫ﻣﻌﺎﻣﻞ‬ ‫‪ . X ‬ﯾﺴﻤﻰ اﻟﻤﻘﺪار‬ ‫ﺑﻤﺘﻮﺳﻂ ‪  x  ‬واﻧﺤﺮاف ﻣﻌﯿﺎري‬ ‫‪N 1‬‬ ‫‪n N 1‬‬ ‫‪Nn‬‬ ‫ﯾﻤﻜﻦ اﺳﻘﺎطﮭﺎ ﻣﻦ‬ ‫اﻟﺘﺼﺤﯿﺢ‪.‬إذا ﻛﺎن ﺣﺠﻢ اﻟﻌﯿﻨﺔ ﺻﻐﯿﺮ ﺟﺪا ﺑﺎﻟﻨﺴﺒﺔ ﻟﺤﺠﻢ اﻟﻨﺠﺘﻤﻊ ﻓﺈن‬ ‫‪N 1‬‬ ‫اﻟﻤﻌﺎدﻟﺔ‪.‬وﻗﺪ ﺟﺮت اﻟﻌﺎدة ﻋﻠﻰ اھﻤﺎل ھﺬا اﻟﺤﺪ ﻋﻨﺪﻣﺎ ﺗﻜﻮن ‪. n  .05N‬‬ ‫ﻟﻠﻣﺟﺗﻣﻌﺎت اﻟﻛﺑﯾرة او اﻻﻧﮭﺎﺋﯾﺔ ﺳواء ﻛﺎﻧت ﻣﺗﺻﻠﺔ او ﻣﺗﻘطﻌﺔ ﺗﻧص اﻟﻧظرﯾﺔ ﻋﻠﻰ ‪:‬‬ ‫إذا اﺧﺘﯿﺮت ﻛﻞ اﻟﻌﯿﻨﺎت اﻟﻤﻤﻜﻨﺔ ﻣﻦ اﻟﺤﺠﻢ ‪ n‬ﻣﻦ ﻣﺠﺘﻤﻊ ﻛﺒﯿﺮ او ﻻﻧﮭﺎﺋﻰ ‪ N‬ﺑﻤﺘﻮﺳﻂ ‪µ‬‬ ‫ﻧظرﯾﺔ‪:‬‬ ‫واﻧﺤﺮاف ﻣﻌﯿﺎري ‪ σ‬ﻓﺈن اﻟﺘﻮزﯾﻊ اﻟﻌﯿﻨﻲ ﻟﻺﺣﺼﺎء ‪X‬ﺗﻘﺮﯾﺒﺎ ً ﯾﺘﺒﻊ ﺗﻮزﯾﻌﺎ ً طﺒﯿﻌﯿﺎ ً ﺑﻤﺘﻮﺳﻂ ‪ x  ‬‬ ‫‪‬‬ ‫‪  x ‬وﻋﻠﻰ ذﻟﻚ‪:‬‬ ‫واﻧﺤﺮاف ﻣﻌﯿﺎري‬ ‫‪n‬‬ ‫‪x ‬‬ ‫=‪z‬‬ ‫‪ n‬‬ ‫ھﻲ ﻗﯿﻤﺔ ﻟﻤﺘﻐﯿﺮ ﻋﺸﻮاﺋﻲ ‪ Z‬ﯾﺘﺒﻊ اﻟﺘﻮزﯾﻊ اﻟﻄﺒﯿﻌﻲ اﻟﻘﯿﺎﺳﻲ‪ .‬اﻟﺘﻘﺮﯾﺐ ﺳﻮف ﯾﻜﻮن ﺟﯿﺪا إذا ﻛﺎﻧﺖ‬ ‫‪ n  30‬ﺑﺼﺮف اﻟﻨﻈﺮ ﻋﻦ ﺷﻜﻞ اﻟﺘﻮزﯾﻊ اﻻﺻﻠﻰ اﻟﺬى اﺧﺘﯿﺮت ﻣﻨﮫ اﻟﻌﯿﻨﺎت ‪.‬إذا ﻛﺎﻧﺖ ‪n  30‬‬ ‫اﻟﺘﻘﺮﯾﺐ ﺳﻮف ﯾﻜﻮن ﺟﯿﺪ ﻓﻘﻂ أذا ﻛﺎن اﻟﻤﺠﺘﻤﻊ ﻻ ﯾﺨﺘﻠﻒ ﻛﺜﯿﺮا ﻋﻦ اﻟﺘﻮزﯾﻊ اﻟﻄﺒﯿﻌﻰ‪.‬‬

‫) ‪ :( ٤-١‬اﻟﺗوزﯾﻌﺎت اﻟﻌﯾﻧﯾﺔ ﻟﻠﻔرق ﺑﯾن ﻣﺗوﺳطﻲ ﻣﺟﺗﻣﻌﯾن‬ ‫‪Sampling Distribution of Different Between Two Populations‬‬ ‫‪Means‬‬ ‫ﺑﻔرض أن ﻟدﯾﻧﺎ ﻣﺟﺗﻣﻌﯾن اﻷول ﻣﺗوﺳطﮫ ‪ 1‬وﺗﺑﺎﯾﻧﮫ ‪ 12‬واﻟﺛﺎﻧﻲ ﻣﺗوﺳطﮫ ‪ 2‬وﺗﺑﺎﯾﻧﮫ ‪ . 22‬اذا‬ ‫ﻛﺎن اﻟﺳﺣب ﺑﺎرﺟﺎع وﺑﻔرض أن ﻗﯾم اﻟﻣﺗﻐﯾر ‪ X1‬ﺗﻣﺛل ﻣﺗوﺳطﺎت ﻟﻌﯾﻧﺎت ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪n1‬‬ ‫اﺧﺗﯾرت ﻣن اﻟﻣﺟﺗﻣﻊ اﻷول‪ ،‬وﻗﯾم اﻟﻣﺗﻐﯾر ‪ X 2‬ﺗﻣﺛل ﻣﺗوﺳطﺎت ﻟﻌﯾﻧﺎت ﻋﺷواﺋﯾﺔ ﻣن اﻟﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻲ‬ ‫وﻣﺳﺗﻘﻠﺔ ﻋن اﻟﻣﺟﺗﻣﻊ اﻷول‪ .‬اﻟﺗوزﯾﻊ ﻟﻠﻔروق ‪ x1  x2‬ﺑﯾن اﻟﻔﺋﺗﯾن ﻣن ﻣﺗوﺳطﺎت اﻟﻌﯾﻧﺗﯾن‬ ‫اﻟﻣﺳﺗﻘﻠﺗﯾن ﯾﺳﻣﻰ اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X1  X 2‬واﻟذى ﻣﺗوﺳطﮫ ‪X  X  1  2‬‬ ‫‪2‬‬

‫‪12 22‬‬ ‫‪‬‬ ‫وﺗﺑﺎﯾﻧﮫ ‪n1 n 2‬‬

‫‪ 2X1  X 2 ‬‬

‫‪.‬‬

‫ﻣﺛﺎل )‪: (٤-١‬‬ ‫‪٢٣‬‬

‫‪1‬‬


‫ﻧﻔرض أن اﻟﻣﺟﺗﻣﻊ اﻷول ﻣن اﻟﺣﺟم ‪ N1  3‬وﯾﺗﻛون ﻣن اﻟﻘﯾم ‪ 4, 5, 6‬واﻟﺗﻲ ﻣﺗوﺳطﮭﺎ‪:‬‬ ‫‪456‬‬ ‫‪1 ‬‬ ‫‪5‬‬ ‫‪3‬‬ ‫وﺗﺑﺎﯾﻧﮭﺎ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫)‪(4  5)  (5  5)  (6  5‬‬ ‫‪2‬‬ ‫‪12 ‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫اﻟﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻲ ﯾﺗﻛون ﻣن اﻟﻘﯾﻣﺗﯾن ‪ 1, 4‬وﻟﮭﻣﺎ اﻟﻣﺗوﺳط‪:‬‬ ‫‪1 4‬‬ ‫‪2 ‬‬ ‫‪ 2.5.‬‬ ‫‪2‬‬ ‫واﻟﺗﺑﺎﯾن‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫)‪(1  2.5)  (4  2.5‬‬ ‫‪9‬‬ ‫‪22 ‬‬ ‫‪ .‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫ﻣن اﻟﻣﺟﺗﻣﻊ اﻷول ﺗم اﺧﺗﯾﺎر ﻛل اﻟﻌﯾﻧﺎت اﻟﻣﻣﻛﻧﺔ ﻣن اﻟﺣﺟم ‪ n1  2‬ﻣﻊ اﻹرﺟﺎع وﺣﺳﺎب‬ ‫اﻟﻣﺗوﺳط ‪ x1‬ﻟﻛل ﻋﯾﻧﺔ‪ .‬ﺑﻧﻔس اﻟﺷﻛل ﻟﻠﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻲ ﺗم اﺧﺗﯾﺎر ﻛل اﻟﻌﯾﻧﺎت اﻟﻣﻣﻛﻧﺔ ﻣن اﻟﺣﺟم‬ ‫‪ n 2  3‬وﺣﺳﺎب ‪ x 2‬ﻟﻛل ﻋﯾﻧﺔ‪ .‬اﻟﻔﺋﺗﺎن ﻣن ﻛل اﻟﻌﯾﻧﺎت وﻣﺗوﺳطﺎﺗﮭﺎ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬ ‫رﻗم اﻟﻣﺟﺗﻣﻊ‬ ‫اﻟﻌﯾﻧﺔ اﻷول‬

‫‪9‬‬

‫‪8‬‬

‫‪7‬‬

‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫‪6, 6‬‬

‫‪6, 5‬‬

‫‪6, 4‬‬

‫‪5, 6‬‬

‫‪5, 5‬‬

‫‪5, 4‬‬

‫‪4, 6‬‬

‫‪4, 5‬‬

‫‪4, 4‬‬

‫اﻟﻘﯾم‬

‫‪6‬‬

‫‪5.5‬‬

‫‪5‬‬

‫‪5.5‬‬

‫‪5‬‬

‫‪4.5‬‬

‫‪5‬‬

‫‪4.5‬‬

‫‪4‬‬

‫‪x1‬‬

‫‪7‬‬

‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫‪8‬‬

‫‪1, 1, 1 1, 1, 4 1, 4, 1 4, 1, 1 4, 4, 1 1, 4, 4 4, 1, 4 4, 4, 4‬‬ ‫‪4‬‬

‫‪3‬‬

‫‪3‬‬

‫‪3‬‬

‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫اﻟﻔروق اﻟﻣﻣﻛﻧﺔ واﻟﺗﻲ ﻋددھﺎ ‪ 72‬ﻣن ‪ x1  x2‬ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬ ‫‪٢٤‬‬

‫‪1‬‬

‫رﻗم اﻟﻣﺟﺗﻣﻊ‬ ‫اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﻲ‬ ‫اﻟﻘﯾم‬ ‫‪x2‬‬


‫‪x1‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2‬‬

‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪5.5‬‬ ‫‪4.5‬‬ ‫‪3.5‬‬ ‫‪3.5‬‬ ‫‪3.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪1.5‬‬

‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪5.5‬‬ ‫‪4.5‬‬ ‫‪3.5‬‬ ‫‪3.5‬‬ ‫‪3.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪1.5‬‬

‫‪x2‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪4.5‬‬ ‫‪3.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪1.5‬‬ ‫‪1.5‬‬ ‫‪1.5‬‬ ‫‪0.5‬‬

‫‪4‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬

‫‪4.5‬‬ ‫‪3.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪1.5‬‬ ‫‪1.5‬‬ ‫‪1.5‬‬ ‫‪0.5‬‬

‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪4‬‬

‫اﻟﺗوزﯾﻊ اﻟﺗﻛراري ﻟﻺﺣﺻﺎء ‪ X1  X 2‬ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ وﻣدرﺟﮫ اﻟﺗﻛراري ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ‪.‬‬ ‫ﻣن اﻟواﺿﺢ أن اﻟﻣﺗﻐﯾر اﻟﻌﺷواﺋﻲ ‪ X1  X 2‬ﺗﻘرﯾﺑﺎ ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ طﺑﯾﻌﯾﺎ وھذا اﻟﺗﻘرﯾب ﯾﺗﺣﺳن ﻋﻧدﻣﺎ‬ ‫ﯾزﯾد ‪ .n1, n2‬ﺣﯾث ﻣﺗوﺳط اﻟﻔروق ﻟﻣﺟﺗﻣﻊ اﻟﻌﯾﻧﺎت اﻟﻣﺳﺗﻘﻠﺔ ھو‪:‬‬

‫‪X1 X2  1  2.‬‬ ‫ھذه اﻟﻧﺗﯾﺟﺔ ﯾﻣﻛن اﻟﺗﺣﻘق ﻣﻧﮭﺎ ﻣن اﻟﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﺣﯾث ‪:‬‬ ‫‪ f (x1  x 2 ) 180‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 2.5  5  2.5  1  2 .‬‬ ‫‪72‬‬ ‫‪f‬‬

‫‪X1  X2‬‬

‫‪5‬‬

‫‪4.5‬‬

‫‪4‬‬

‫‪3.5‬‬

‫‪3‬‬

‫‪2.5‬‬

‫‪2‬‬

‫‪1.5‬‬

‫‪1‬‬

‫‪0.5‬‬

‫‪0‬‬

‫‪x1  x 2‬‬

‫‪1‬‬

‫‪2‬‬

‫‪6‬‬

‫‪8‬‬

‫‪13‬‬

‫‪12‬‬

‫‪13‬‬

‫‪8‬‬

‫‪6‬‬

‫‪2‬‬

‫‪1‬‬

‫‪f‬‬

‫‪٢٥‬‬


‫أﯾﺿﺎ اﻟﺗﺑﺎﯾن ﻟﻔروق اﻟﻣﺗوﺳطﺎت اﻟﻣﺳﺗﻘﻠﺔ ھو‬

‫‪ 22‬‬ ‫‪n2‬‬

‫‪‬‬

‫‪12‬‬ ‫‪n1‬‬

‫‪ 2X1  X 2 ‬‬

‫‪ 2    9  ‬‬ ‫‪   / 2     / 3  1.08333.‬‬ ‫‪ 3    4  ‬‬ ‫ھذه اﻟﻧﺗﯾﺟﺔ ﯾﻣﻛن اﻟﺗﺣﻘق ﻣﻧﮭﺎ ﺑﺳﮭوﻟﺔ وذﻟك ﺑﺣﺳﺎب اﻟﺗﺑﺎﯾن )‪ (1.08333‬ﻣن اﻟﺑﯾﺎﻧﺎت ﻓﻲ‬ ‫اﻟﺟدول اﻟﺳﺎﺑق ‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫}‪a={4,5,6‬‬ ‫}‪{4,5,6‬‬ ‫‪n1=2‬‬ ‫‪2‬‬ ‫}‪b={1,4‬‬ ‫}‪{1,4‬‬ ‫‪n2=3‬‬ ‫‪3‬‬ ‫]}‪a1=Table[a,{i,n1‬‬ ‫}}‪{{4,5,6},{4,5,6‬‬ ‫]}‪b1=Table[b,{i,n2‬‬ ‫}}‪{{1,4},{1,4},{1,4‬‬ ‫]‪a2=Flatten[Outer[List,Apply[Sequence,a1]],n1-1‬‬ ‫}}‪{{4,4},{4,5},{4,6},{5,4},{5,5},{5,6},{6,4},{6,5},{6,6‬‬ ‫]‪b2=Flatten[Outer[List,Apply[Sequence,b1]],n2-1‬‬ ‫‪{{1,1,1},{1,1,4},{1,4,1},{1,4,4},{4,1,1},{4,1,4},{4,4,1},{4,‬‬ ‫}}‪4,4‬‬ ‫]‪a3=Transpose[a2‬‬ ‫‪٢٦‬‬


{{4,4,4,5,5,5,6,6,6},{4,5,6,4,5,6,4,5,6}} b3=Transpose[b2] {{1,1,1,1,4,4,4,4},{1,1,4,4,1,1,4,4},{1,4,1,4,1,4,1,4}}

c1  ApplyPlus,

a3   N n1

{4.,4.5,5.,4.5,5.,5.5,5.,5.5,6.}

c2  ApplyPlus,

b3   N n2

{1.,2.,2.,3.,2.,3.,3.,4.} xa=Outer[Subtract,c1,c2] {{3.,2.,2.,1.,2.,1.,1.,0.},{3.5,2.5,2.5,1.5,2.5,1.5,1.5,0.5} ,{4.,3.,3.,2.,3.,2.,2.,1.},{3.5,2.5,2.5,1.5,2.5,1.5,1.5,0.5} ,{4.,3.,3.,2.,3.,2.,2.,1.},{4.5,3.5,3.5,2.5,3.5,2.5,2.5,1.5} ,{4.,3.,3.,2.,3.,2.,2.,1.},{4.5,3.5,3.5,2.5,3.5,2.5,2.5,1.5} ,{5.,4.,4.,3.,4.,3.,3.,2.}} ss=Flatten[xa] {3.,2.,2.,1.,2.,1.,1.,0.,3.5,2.5,2.5,1.5,2.5,1.5,1.5,0.5,4., 3.,3.,2.,3.,2.,2.,1.,3.5,2.5,2.5,1.5,2.5,1.5,1.5,0.5,4.,3.,3 .,2.,3.,2.,2.,1.,4.5,3.5,3.5,2.5,3.5,2.5,2.5,1.5,4.,3.,3.,2. ,3.,2.,2.,1.,4.5,3.5,3.5,2.5,3.5,2.5,2.5,1.5,5.,4.,4.,3.,4., 3.,3.,2.} <<Statistics`DataManipulation` f=Frequencies[ss] {{1,0.},{2,0.5},{6,1.},{8,1.5},{13,2.},{12,2.5},{13,3.},{8,3 .5},{6,4.},{2,4.5},{1,5.}} <<Graphics`Graphics` BarChart[f] 12 10 8 6 4 2 0.

0.5

1. 1.5

2.

2.5

3. 3.5

4.

Graphics w=Transpose[f]

٢٧

4.5

5.


‫‪{{1,2,6,8,13,12,13,8,6,2,1},{0.,0.5,1.,1.5,2.,2.5,3.,3.5,4.,‬‬ ‫}}‪4.5,5.‬‬ ‫]‪l[x_]:=Length[x‬‬

‫‪Dotw1, w2‬‬ ‫‪lss‬‬

‫‪xb ‬‬ ‫‪2.5‬‬

‫‪Dotw1, w2  xb^2‬‬ ‫‪lss‬‬

‫‪vxb ‬‬

‫‪1.08333‬‬

‫‪‬‬

‫‪vxb‬‬

‫‪sxb ‬‬

‫‪1.04083‬‬ ‫]‪1=Mean[a‬‬ ‫‪5‬‬ ‫‪2=Mean[b]//N‬‬ ‫‪2.5‬‬ ‫‪1-2xb‬‬ ‫‪True‬‬ ‫‪21=Mean[(a-1)^2]//N‬‬ ‫‪0.666667‬‬ ‫‪22=Mean[(b-2)^2]//N‬‬ ‫‪2.25‬‬

‫‪ vxb‬‬

‫‪22‬‬

‫‪n2‬‬

‫‪‬‬

‫‪21‬‬

‫‪n1‬‬ ‫‪True‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫اﻟﻘﺎﺋﻣﺔ }‪ a={4,5,6‬ﻟﻠﻣﺟﺗﻣﻊ اﻻول وﺣﺟم اﻟﻌﯾﻧﺔ ﻟﻠﻣﺟﺗﻣﻊ اﻻول ﻣن اﻻﻣر‬ ‫‪n1=2‬‬

‫اﻟﻘﺎﺋﻣﺔ }‪ b={1,4‬ﻟﻠﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻰ وﺣﺟم اﻟﻌﯾﻧﺔ ﻟﻠﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻰ ﻣن اﻻﻣر‬ ‫‪n2=3‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﻣدرج اﻟﺗﻛرارى ﻟﺗوزﯾﻊ ‪ X1  X2‬ﻣن اﻻﻣر‬ ‫]‪BarChart[f‬‬

‫واﻟﻣﺗوﺳط ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X1  X 2‬ﻣﻦ اﻻﻣﺮ‬ ‫‪Dotw1, w2‬‬ ‫‪xb ‬‬ ‫‪lss‬‬ ‫اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ‪ X1  X 2‬ﻣﻦ اﻻﻣﺮ‬ ‫‪٢٨‬‬


‫‪‬‬

‫‪sxb  vxb‬‬ ‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪ X1  X2  1  2‬ﻣن اﻻﻣر‬ ‫‪1-2xb‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬

‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪12 22‬‬ ‫‪2‬‬ ‫‪ X1  X 2 ‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬ ‫ﻣن اﻻﻣر‬ ‫‪22‬‬

‫‪ vxb‬‬ ‫‪n2‬‬ ‫واﻟﻣﺧرج ھو‬

‫‪‬‬

‫‪21‬‬

‫‪n1‬‬

‫‪True‬‬ ‫ﺗﻘﺗﺻر اﻟدراﺳﺔ ﻣن اﻻن وﻓﻰ اﻟﻔﺻول اﻟﺗﺎﻟﯾﺔ ﻋﻠﻰ اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻰ ﻟﻠﻔروق ﺑﯾن اﻟﻣﺗوﺳطﺎت اﻟﻣﺳﺗﻘﻠﺔ ﻓﻘط إذا ﻛﺎن‬ ‫ﺣﺟم اﻟﻣﺟﺗﻣﻊ اﻟذى ﺗﺧﺗﺎر ﻣﻧﮫ اﻟﻌﯾﻧﺎت ﻛﺑﯾرا او ﻻﻧﮭﺎﺋﻰ ‪.‬‬ ‫إذا اﺧﺗﯾرت ﻋﯾﻧﺎت ﻣﺳﺗﻘﻠﺔ ﻣن اﻟﺣﺟم ﻣن ﻣﺟﺗﻣﻌﯾن ﻛﺑﯾرﯾن )او ﻻﻧﮭﺎﺋﯾﯾن (ﻣﺗﻘطﻌﺔ او ﻣﺗﺻﻠﺔ‬ ‫ﻧظرﯾﺔ‪:‬‬

‫ﺑﻣﺗوﺳطﻰ ‪ 1 ,  2‬وﺗﺑﺎﯾﻧﻰ ‪ 12 ,  22‬ﻋﻠﻰ اﻟﺗواﻟﻰ ﻓﺈن اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻰ ﻟﻔروق اﻟﻣﺗوﺳطﺎت ‪ X1  X 2‬ﺗﻘﺮﯾﺒﺎ ً‬ ‫ﯾﺘﺒﻊ ﺗﻮزﯾﻌﺎ ً طﺒﯿﻌﯿﺎ ً ﺑﻤﺘﻮﺳﻂ و ﺗﺒﺎﯾﻦ ﻣﻌﻄﻰ ﻛﺎﻟﺘﺎﻟﻰ‪:‬‬

‫‪X1 X2  1  2 ,‬‬ ‫‪12 22‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬

‫‪ 2X1  X 2‬‬

‫وﻋﻠﻰ ذﻟﻚ‪:‬‬ ‫) ‪(x1  x 2 )  (1   2‬‬ ‫‪22‬‬ ‫‪n2‬‬

‫‪‬‬

‫‪12‬‬ ‫‪n1‬‬

‫=‪z‬‬

‫ھﻲ ﻗﯿﻤﺔ ﻟﻤﺘﻐﯿﺮ ﻋﺸﻮاﺋﻲ ‪ Z‬ﯾﺘﺒﻊ اﻟﺘﻮزﯾﻊ اﻟﻄﺒﯿﻌﻲ اﻟﻘﯿﺎﺳﻲ‪ .‬اﻟﺘﻘﺮﯾﺐ ﺳﻮف ﯾﻜﻮن ﺟﯿﺪا إذا ﻛﺎن ﻛﻞ ﻣﻦ‬ ‫‪ n1 , n 2  30‬ﺑﺼﺮف اﻟﻨﻈﺮ ﻋﻦ ﺷﻜﻞ اﻟﺘﻮزﯾﻊ اﻻﺻﻠﻰ اﻟﺬى اﺧﺘﯿﺮت ﻣﻨﮫ اﻟﻌﯿﻨﺎت ‪.‬إذا ﻛﺎن ﻛﻞ ﻣﻦ‬ ‫‪ n1 , n 2  30‬اﻟﺘﻘﺮﯾﺐ اﻟﻄﺒﯿﻌﻰ ﻟﺘﻮزﯾﻊ ‪ X1  X 2‬ﯾﻜﻮن ﺟﯿﺪ ﺟﺪا‪ .‬إذا ﻛﺎن اﻟﻌﯾﻧﺗﯾن ﺗم اﺧﺗﯾﺎرھﻣﺎ ﻣن‬ ‫ﻣﺟﺗﻣﻌﯾن طﺑﯾﻌﯾﯾن ﻓﺈن ‪:‬‬

‫) ‪(x1  x 2 )  (1   2‬‬ ‫‪2‬‬

‫‪ n2‬‬ ‫‪2‬‬

‫‪12‬‬ ‫‪n1‬‬

‫‪٢٩‬‬

‫‪z‬‬


‫ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ ﺑﺻرف اﻟﻧظر ﻋن ﺣﺟم ﻛﻼ ﻣن ‪. n1, n 2‬‬

‫) ‪ ( ٥-١‬اﻟﺗوزﯾﻌﺎت اﻟﻌﯾﻧﯾﺔ ﻟﻠﻧﺳب‬ ‫‪Sampling Distributions of Proportions‬‬ ‫ﺑﻔرض أن ﻟدﯾﻧﺎ ﻣﺟﺗﻣﻌﺎ ﻣﺎ وأن ﺑﻌض ﻣﻔ ردات ھ ذا اﻟﻣﺟﺗﻣ ﻊ ﺗﺗ وﻓر ﻓﯾﮭ ﺎ ﺻ ﻔﺔ ﻣﻌﯾﻧ ﺔ وأن ﻧﺳ ﺑﺔ‬ ‫ھذه اﻟﻣﻔردات ھﻲ ‪ .p‬ﻓﻌﻠﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل ‪ p‬ﻗ د ﺗﻛ ون ﻧﺳ ﺑﺔ اﻷﻓ راد اﻟﻣﺻ ﺎﺑﯾن ﺑﺗﺳ وس اﻷﺳ ﻧﺎن‬ ‫ﻓﻲ ﻣدﯾﻧﺔ ﻣﺎ أو ﻧﺳﺑﺔ اﻟطﻠﺑﺔ اﻟﻣدﺧﻧﯾن ﻓﻲ ﻛﻠﯾﺔ ﻣﺎ أو ﻧﺳﺑﺔ اﻟوﺣدات اﻟﻣﻌﯾﺑﺔ ﻓﻲ ﻣﺻﻧﻊ ﻣ ﺎ‪ ...‬اﻟ ﺦ‬ ‫‪ .‬إذا أﺧذﻧﺎ ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n‬ﻣن ھذا اﻟﻣﺟﺗﻣﻊ ووﺟدﻧﺎ ﻣن ﺑﯾﻧﮭ ﺎ ‪ x‬ﻣﻔ رده ﺗﺗ وﻓر ﻓﯾﮭ ﺎ‬ ‫‪x‬‬ ‫اﻟﺻ ﻔﺔ‪ ،‬وﺗ م ﺣﺳ ﺎب ‪ pˆ ‬واﻟﺗ ﻲ ﺗﻣﺛ ل ﻧﺳ ﺑﺔ اﻟﻣﻔ ردات ﻓ ﻲ اﻟﻌﯾﻧ ﺔ واﻟﺗ ﻰ ﺗﺗ وﻓر ﻓﯾﮭ ﺎ اﻟﺻ ﻔﺔ‬ ‫‪n‬‬ ‫اﻟﻣﻌﻧﯾﺔ‪ .‬إذا أﺧ ذﻧﺎ ﻋﯾﻧ ﺎت ﻣﺗﻛ ررة ﻣ ن اﻟﺣﺟ م ‪ n‬ﻣ ن ھ ذا اﻟﻣﺟﺗﻣ ﻊ ﻓ ﺈن ˆ‪ P‬ﺗﺗﻐﯾ ر ﻣ ن ﻋﯾﻧ ﺔ إﻟ ﻰ‬ ‫أﺧرى وﺗﻣﺛل ﻗﯾﻣﺔ ﻟﻺﺣﺻﺎء ˆ‪ . P‬اﻵن ﺳ وف ﻧﺗﻌ رف ﻋﻠ ﻰ ﻛﯾﻔﯾ ﺔ اﺷ ﺗﻘﺎق اﻟﺗوزﯾ ﻊ اﻟﻌﯾﻧ ﻲ ﻟﻠﻧﺳ ﺑﺔ‬ ‫وﺧﺻﺎﺋﺻﮫ ﺳواء ﻓﻲ ﺣﺎﻟﺔ اﻟﺳﺣب ﺑﺈرﺟﺎع أو ﺑدون إرﺟﺎع وذﻟك ﻣن اﻷﻣﺛﻠﺔ اﻟﺗﺎﻟﯾﺔ‪:‬‬

‫ﻣﺛﺎل )‪:(٥-١‬‬ ‫ﻣﺟﺗﻣﻊ ﯾﺗﻛون ﻣن اﻟﻘﯾم ‪ 1, 2, 3, 4‬ﻓﺈذا ﺗم ﺳﺣب ﻛل اﻟﻌﯾﻧﺎت اﻟﻣﻣﻛﻧﺔ ﻣن اﻟﺣﺟ م ‪ n = 2‬ﻣ ن ھ ذا‬ ‫اﻟﻣﺟﺗﻣﻊ )ﺑﺈرﺟﺎع(‪ .‬اﻟﻣطﻠ وب إﯾﺟ ﺎد اﻟﺗوزﯾ ﻊ اﻟﻌﯾﻧ ﻰ ﻟﻺﺣﺻ ﺎء ˆ‪ P‬واﻟ ذي ﯾﻣﺛ ل ﻧﺳ ﺑﺔ ظﮭ ور اﻟ رﻗم ‪4‬‬ ‫ﻓﻲ اﻟﻌﯾﻧﺔ‪ .‬وإﺛﺑﺎت أن اﻟﻣﺗوﺳط واﻟﺗﺑﺎﯾن ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻰ ﻟﻺﺣﺻﺎء ˆ‪ P‬ھﻣﺎ ﻋﻠﻰ اﻟﺗواﻟﻲ ‪:‬‬

‫‪Pˆ  p,‬‬ ‫‪pq‬‬ ‫‪.‬‬ ‫‪n‬‬

‫‪2Pˆ ‬‬

‫اﻟﺣــل ‪:‬‬ ‫اﻟﺟدول اﻟﺗﺎﻟﻰ ﯾﺣﺗوى ﻋﻠﻰ ﻛل اﻟﻌﯾﻧﺎت اﻟﻣﻣﻛﻧﺔ وﻧﺳﺑﺔ ظﮭور اﻟرﻗم ‪ 4‬ﻓﯾﮭﺎ‪.‬‬ ‫ﻋدد‬ ‫ﻣرات‬ ‫ظﮭور ‪4‬‬ ‫‪0‬‬

‫‪3,1‬‬

‫‪9‬‬

‫‪0‬‬

‫‪0‬‬

‫‪0‬‬

‫‪3, 2‬‬

‫‪10‬‬

‫‪0‬‬

‫‪0‬‬

‫‪0‬‬

‫‪0‬‬

‫‪3, 3‬‬

‫‪11‬‬

‫‪0‬‬

‫‪0‬‬

‫‪1, 3‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪3, 4‬‬

‫‪12‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪1,4‬‬

‫ﻧﺳﺑﺔ‬ ‫ظﮭور ‪4‬‬ ‫‪0‬‬

‫اﻟﻘﯾم‬

‫ﻧﺳﺑﺔ‬ ‫رﻗم اﻟﻌﯾﻧﺔ‬ ‫ظﮭور ‪4‬‬

‫‪٣٠‬‬

‫ﻋدد‬ ‫ﻣرات‬ ‫ظﮭور ‪4‬‬ ‫‪0‬‬

‫اﻟﻘﯾم‬

‫رﻗم اﻟﻌﯾﻧﺔ‬

‫‪1, 1‬‬

‫‪1‬‬

‫‪1, 2‬‬

‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬


‫‪0.5‬‬

‫‪1‬‬

‫‪4, 1‬‬

‫‪13‬‬

‫‪0‬‬

‫‪0‬‬

‫‪2, 1‬‬

‫‪5‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪4, 2‬‬

‫‪14‬‬

‫‪0‬‬

‫‪0‬‬

‫‪2, 2‬‬

‫‪6‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪4, 3‬‬

‫‪15‬‬

‫‪0‬‬

‫‪0‬‬

‫‪2, 3‬‬

‫‪7‬‬

‫‪1‬‬

‫‪2‬‬

‫‪4, 4‬‬

‫‪16‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪2, 4‬‬

‫‪8‬‬

‫اﻟﺗوزﯾ ﻊ اﻟﺗﻛ راري ﻟﻧﺳ ﺑﺔ ظﮭ ور اﻟ رﻗم ‪ 4‬ﻟﻠﻌﯾﻧ ﺎت ﻣ ن اﻟﺣﺟ م ‪ n = 2‬اﻟﺗ ﻲ ﺗ م اﺧﺗﯾﺎرھ ﺎ ﻣ ن‬ ‫اﻟﻣﺟﺗﻣﻊ اﻟ ذى ﺣﺟﻣ ﮫ ‪) N = 4‬ﺑﺈرﺟ ﺎع( ﻣﻌط ﺎة ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ وﻣ درﺟﮭﺎ اﻟﺗﻛ راري ﻓ ﻲ‬ ‫اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪.‬‬ ‫‪1‬‬

‫‪0.5‬‬

‫‪0‬‬

‫ˆ‪P‬‬

‫‪1‬‬

‫‪6‬‬

‫‪9‬‬

‫‪f‬‬

‫اﻟﺗوزﯾ ﻊ اﻟﺗﻛ راري ﻓ ﻲ اﻟﺷ ﻛل اﻟﺗ ﺎﻟﻰ ﻣﻠﺗ و ﻧﺎﺣﯾ ﺔ اﻟﯾﻣ ـﯾن وذﻟ ك ﻷن ‪ . p  0.5‬إذا ﻛﺎﻧ ت‬ ‫‪ p  0.5‬ﻓﺈن اﻟﺗوزﯾﻊ ﺳوف ﯾﻛون ﻣﻠﺗوﯾﺎ ﻧﺎﺣﯾﺔ اﻟﯾﺳﺎر ‪.‬‬

‫اﻟﻣﺗوﺳط واﻟﺗﺑﺎﯾن ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ˆ‪ P‬ﺗم ﺣﺳﺎﺑﮭﻣﺎ ﻣن اﻟﺟدول اﻟﺳﺎﺑق وھﻣﺎ ‪:‬‬ ‫‪f pˆ 4‬‬ ‫‪Pˆ ‬‬ ‫‪  0.25  p,‬‬ ‫‪ f 16‬‬

‫‪ f (pˆ  0.25)2‬‬ ‫‪‬‬ ‫‪ 0.094‬‬ ‫‪f‬‬ ‫‪٣١‬‬

‫ˆ‪2P‬‬


(0.25)(0.75) pq  . 2 n

. Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ : ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ x={1,2,3,4} {1,2,3,4} n=2 2 a=4 4 x1=Table[x,{i,n}] {{1,2,3,4},{1,2,3,4}} x2=Flatten[Outer[List,Apply[Sequence,x1]],n-1] {{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2} ,{3,3},{3,4},{4,1},{4,2},{4,3},{4,4}} {{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2} ,{3,3},{3,4},{4,1},{4,2},{4,3},{4,4}} {{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2} ,{3,3},{3,4},{4,1},{4,2},{4,3},{4,4}} l[x_]:=Length[x] x3=Table[Count[x2[[i]],a],{i,l[x2]}] {0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,2}

px 

x3  N n

{0.,0.,0.,0.5,0.,0.,0.,0.5,0.,0.,0.,0.5,0.5,0.5,0.5,1.} <<Statistics`DataManipulation` ff=Frequencies[px] {{9,0.},{6,0.5},{1,1.}} <<Graphics`Graphics` BarChart[ff]

٣٢


8

6

4 2

0.

0.5

1.

Graphics w=Transpose[ff] {{9,6,1},{0.,0.5,1.}}

pb 

Dotw1, w2 lpx

0.25

vp 

Dotw1, w2  pb^2 l px

0.09375

sp 



vp

0.306186 m=l[x] 4 xx=Count[x,a] 1

p

xx  N m

0.25 q=1-p 0.75 ppb True

p q sp   n True

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ ‫ وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬a={1,2,3,4} ‫اﻟﻘﺎﺋﻣﺔ‬ n=2

‫اﻟﺻﻔﺔ ﻣوﺿﻊ اﻟدراﺳﺔ ﻣن اﻻﻣر‬ ٣٣


‫‪a=4‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ˆ‬ ‫اﻟﻣدرج اﻟﺗﻛرارى ﻟﺗوزﯾﻊ ‪ P‬ﻣن اﻻﻣر‬ ‫]‪BarChart[ff‬‬

‫واﻟﻣﺗوﺳط ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ˆ‪ P‬ﻣﻦ اﻻﻣﺮ‬

‫‪Dotw1, w2‬‬ ‫‪l px‬‬ ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ˆ‪ P‬ﻣﻦ اﻻﻣﺮ‬ ‫‪‬‬ ‫‪sp  vp‬‬ ‫‪pb ‬‬

‫وﻧﺳﺑﺔ اﻟﺻﻔﺔ ﻣن اﻻﻣر‬ ‫‪xx‬‬ ‫‪p‬‬ ‫‪ N‬‬ ‫‪m‬‬ ‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪ Pˆ  p‬ﻣن اﻻﻣر‬ ‫‪ppb‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬

‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪pq‬‬ ‫‪Pˆ ‬‬ ‫‪n‬‬ ‫ﻣن اﻻﻣر‬

‫‪p q‬‬ ‫‪sp  ‬‬ ‫‪n‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬

‫ﻣﺛﺎل )‪:(٦-١‬‬ ‫أوﺟد اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻰ ﻟﻺﺣﺻﺎء ˆ‪ P‬ﻟﻠﺑﯾﺎﻧﺎت ﻟﻠﻣﺛ ﺎل اﻟﺳ ﺎﺑق إذا ﻛ ﺎن اﻟﺳ ﺣب ﺑ دون إرﺟ ﺎع وأﺛﺑ ت أن‬ ‫ﻣﺗوﺳط وﺗﺑﺎﯾن اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ˆ‪ P‬ھﻣﺎ ﻋﻠﻰ اﻟﺗواﻟﻲ‬

‫‪Pˆ  p,‬‬ ‫‪pq  N  n ‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫‪n  N 1 ‬‬ ‫‪٣٤‬‬

‫‪ 2Pˆ ‬‬


‫اﻟﺟدول اﻟﺗﺎﻟﻰ ﯾﺣﺗوى ﻋﻠﻰ ﻛل اﻟﻌﯾﻧﺎت وﻧﺳﺑﺔ ظﮭور اﻟرﻗم ‪ 4‬ﻓﯾﮭﺎ ‪.‬‬

‫ﻋدد‬ ‫ﻣرات‬ ‫ظﮭور ‪4‬‬ ‫‪0‬‬

‫اﻟﻘﯾم‬

‫رﻗم اﻟﻌﯾﻧﺔ‬

‫‪1,2‬‬

‫‪1‬‬

‫‪0‬‬

‫‪0‬‬

‫‪3, 2‬‬

‫‪10‬‬

‫‪0‬‬

‫‪0‬‬

‫‪1, 3‬‬

‫‪2‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪3, 4‬‬

‫‪11‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪1, 4‬‬

‫‪3‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪4,1‬‬

‫‪12‬‬

‫‪0‬‬

‫‪0‬‬

‫‪2, 1‬‬

‫‪4‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪4, 2‬‬

‫‪13‬‬

‫‪0‬‬

‫‪0‬‬

‫‪2, 3‬‬

‫‪5‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪4, 3‬‬

‫‪14‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪2,4‬‬

‫‪6‬‬

‫ﻧﺳﺑﺔ‬ ‫ظﮭور ‪4‬‬ ‫‪0‬‬

‫ﻋدد‬ ‫ﻣرات‬ ‫ظﮭور ‪4‬‬ ‫‪0‬‬

‫اﻟﻘﯾم‬

‫رﻗم‬ ‫اﻟﻌﯾﻧﺔ‬

‫ﻧﺳﺑﺔ‬ ‫ظﮭور ‪4‬‬

‫‪3,1‬‬

‫‪9‬‬

‫‪0‬‬

‫اﻟﺗوزﯾﻊ اﻟﺗﻛراري ﻟﻧﺳﺑﺔ ظﮭور اﻟرﻗم ‪ 4‬ﻟﻠﻌﯾﻧﺎت ﻣ ن اﻟﺣﺟ م ‪ n = 2‬واﻟﺗ ﻰ ﺗ م اﺧﺗﯾﺎرھ ﺎ ﻣ ن‬ ‫اﻟﻣﺟﺗﻣﻊ اﻟذى ﺣﺟﻣ ﮫ ‪ ) N = 4‬ﺑ دون إرﺟ ﺎع ( ﻣﻌط ﺎة ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ وﻣ درﺟﮭﺎ اﻟﺗﻛ راري‬ ‫ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪0.5‬‬

‫‪0‬‬

‫ˆ‪P‬‬

‫‪6‬‬

‫‪6‬‬

‫‪f‬‬

‫اﻟﻣﺗوﺳط واﻟﺗﺑﺎﯾن ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ˆ‪ P‬ﺗم ﺣﺳﺎﺑﮭﻣﺎ ﻣن اﻟﺟدول اﻟﺳﺎﺑق وھﻣﺎ ‪:‬‬ ‫‪ f pˆ 3‬‬ ‫‪  .25  p,‬‬ ‫‪f‬‬ ‫‪12‬‬ ‫‪ f (pˆ  0.25)2‬‬ ‫‪2‬‬ ‫‪Pˆ ‬‬ ‫‪ 0.0625 .‬‬ ‫‪f‬‬ ‫‪(0.25)(0.75)  4  2  pq  N  n ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ ‬‬ ‫‪.‬‬ ‫‪2‬‬ ‫‪ 4 1  n  N 1 ‬‬ ‫‪ Pˆ ‬‬

‫‪٣٥‬‬


‫‪Nn‬‬ ‫‪ ‬ﻓﻲ ﺻﯾﻐﺔ ˆ‪ 2P‬ﯾﺳﺗﺧدم إذا ﻛﺎن اﻟﻣﺟﺗﻣﻊ‬ ‫ﯾﺗﺿﺢ ﻣن اﻟﻣﺛﺎل اﻟﺳﺎﺑق أن ﻣﻌﺎﻣل اﻟﺗﺻﺣﯾﺢ ‪‬‬ ‫‪ N 1 ‬‬ ‫ﻣﺣدود واﻟﺳﺣب ﺑدون إرﺟﺎع‪ .‬إذا ﻛﺎن ﺣﺟم اﻟﻌﯾﻧﺔ أﺻﻐر ﻣن ‪ 0.05N‬ﯾﻣﻛن اﻋﺗﺑﺎر‬

‫‪ Nn‬‬ ‫‪.‬‬ ‫‪ 1‬‬ ‫‪ N 1 ‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫}‪x={1,2,3,4‬‬ ‫}‪{1,2,3,4‬‬ ‫‪n=2‬‬ ‫‪2‬‬ ‫‪a=4‬‬ ‫‪4‬‬ ‫]}‪x1=Table[x,{i,n‬‬ ‫}}‪{{1,2,3,4},{1,2,3,4‬‬ ‫]‪x2=Flatten[Outer[List,Apply[Sequence,x1]],n-1‬‬ ‫}‪{{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2‬‬ ‫}}‪,{3,3},{3,4},{4,1},{4,2},{4,3},{4,4‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪m=l[x‬‬ ‫‪4‬‬ ‫]}‪x3=Drop[x2,{1,l[x2],m+1‬‬

‫‪٣٦‬‬


{{1,2},{1,3},{1,4},{2,1},{2,3},{2,4},{3,1},{3,2},{3,4},{4,1} ,{4,2},{4,3}} xa=Table[Count[x3[[i]],a],{i,l[x3]}] {0,0,1,0,0,1,0,0,1,1,1,1}

pa 

xa  N n

{0.,0.,0.5,0.,0.,0.5,0.,0.,0.5,0.5,0.5,0.5} <<Statistics`DataManipulation` ff=Frequencies[pa] {{6,0.},{6,0.5}} <<Graphics`Graphics` BarChart[ff] 6 5 4 3 2 1

0.

0.5

Graphics w=Transpose[ff] {{6,6},{0.,0.5}}

pb 

Dotw1, w2 lpa

0.25

vp 

Dotw1, w2  pb^2 l pa

0.0625

sp 



vp

0.25 m=l[x] 4 xx=Count[x,a] 1

p

xx  N m

0.25 q=1-p 0.75 ٣٧


‫‪ppb‬‬ ‫‪True‬‬

‫‪p q‬‬ ‫‪mn‬‬ ‫‪sp   ‬‬ ‫‪n‬‬ ‫‪m1‬‬ ‫‪True‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫اﻟﻘﺎﺋﻣﺔ }‪ x={1,2,3,4‬وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪n=2‬‬

‫اﻟﺻﻔﺔ ﻣوﺿﻊ اﻟدراﺳﺔ ﻣن اﻻﻣر‬ ‫‪a=4‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ˆ‬ ‫اﻟﻣدرج اﻟﺗﻛرارى ﻟﺗوزﯾﻊ ‪ P‬ﻣن اﻻﻣر‬ ‫]‪BarChart[ff‬‬

‫واﻟﻣﺗوﺳط ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ˆ‪ P‬ﻣﻦ اﻻﻣﺮ‬ ‫‪Dotw1, w2‬‬ ‫‪pb ‬‬ ‫‪l pa‬‬ ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﺗوزﯾﻊ اﻟﻌﯾﻧﻲ ﻟﻺﺣﺻﺎء ˆ‪ P‬ﻣﻦ اﻻﻣﺮ‬ ‫‪‬‬ ‫‪sp  vp‬‬ ‫وﻧﺳﺑﺔ اﻟﺻﻔﺔ ﻣن اﻻﻣر‬ ‫‪xx‬‬ ‫‪p‬‬ ‫‪ N‬‬ ‫‪m‬‬ ‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪ Pˆ  p‬ﻣن اﻻﻣر‬ ‫‪ppb‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬

‫وﯾﻣﻛن اﺛﺑﺎت ان‬ ‫‪pq  N  n ‬‬ ‫‪ Pˆ ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪n  N 1 ‬‬ ‫ﻣن اﻻﻣر‬

‫‪p q‬‬ ‫‪m n‬‬ ‫‪sp   ‬‬ ‫‪n‬‬ ‫‪m 1‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪True‬‬ ‫‪٣٨‬‬


‫ﻧظرﯾﺔ‪:‬‬ ‫إذا ﻛﺎﻧت ‪ p‬ھﻰ ﻧﺳﺑﺔ ﺻﻔﺔ ﻣﻌﯾﻧﺔ ﻓﻲ ﻣﺟﺗﻣﻊ ﻣﺎ واﺧﺗﯾرت ﻣن ھذا اﻟﻣﺟﺗﻣﻊ ﻋﯾﻧﺎت ﻛﺑﯾرة‪،‬‬ ‫ﺣﺟم ﻛل ﻣﻧﮭﺎ ‪ n‬وﻛﺎن اﻹﺣﺻﺎء ˆ‪ P‬ﯾﻣﺛل ﻧﺳﺑﺔ وﺟود ھذه اﻟﺻﻔﺔ ﻓﻲ اﻟﻌﯾﻧﺎت ﻓﺈن ˆ‪ P‬ﺗﻘرﯾﺑﺎ ً ﺗﺗﺑﻊ‬ ‫ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ﻣﺗوﺳطﺔ وﺗﺑﺎﯾﻧﮫ ﻋﻠﻰ اﻟﺗواﻟﻲ ‪:‬‬

‫‪Pˆ  p,‬‬ ‫‪pq‬‬ ‫‪.‬‬ ‫‪n‬‬

‫‪2Pˆ ‬‬

‫وﻋﻠﻰ ذﻟك ‪:‬‬

‫‪pˆ  p‬‬ ‫‪pq‬‬ ‫‪n‬‬ ‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻰ ‪ Z‬ﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻰ‪٠‬‬ ‫وﺿﻊ اﻟﻌﺎﻟم )‪ Cochran (1963‬ﻗواﻋد ﻟﺣﺟم اﻟﻌﯾﻧﺔ اﻟﻼزم ﻟﺗطﺑﯾق اﻟﻧظرﯾﺔ اﻟﺳﺎﺑﻘﺔ‬ ‫ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪.‬‬ ‫‪z‬‬

‫ﯾﺳﺗﺧدم اﻟﺗﻘرﯾب اﻟطﺑﯾﻌﻰ إذا‬ ‫ﻛﺎن‪ n‬ﻋل اﻷﻗل ﯾﺳﺎوى‬

‫إذا ﻛﺎﻧت ‪ p‬ﺗﺳﺎوى‬

‫‪30‬‬

‫‪0.5‬‬

‫‪50‬‬

‫‪.4 - .6‬‬

‫‪80‬‬

‫‪.3 - .7‬‬

‫‪200‬‬

‫‪.2 - .8‬‬

‫‪600‬‬

‫‪.1 - .9‬‬

‫‪1400‬‬

‫‪0.95‬‬

‫إذا ﻛﺎن ﻟدﯾﻧﺎ ﻣﺟﺗﻣﻌﺎن ﻣﺳﺗﻘﻼن ) ﻣﺟﺗﻣﻌﺎت ﻛﺑﯾرة أو ﻻﻧﮭﺎﺋﯾﺔ ( وإذا ﻛﺎﻧ ت ‪ p1‬ھ ﻲ ﻧﺳ ﺑﺔ‬ ‫ﺗوﻓر ﺻﻔﺔ ﻣﺎ ﻓﻲ اﻟﻣﺟﺗﻣﻊ اﻷول وﻛﺎﻧت ‪ p2‬ھﻰ ﻧﺳﺑﺔ ﺗ وﻓر اﻟﺻ ﻔﺔ ﻧﻔﺳ ﮭﺎ ﻓ ﻲ اﻟﻣﺟﺗﻣ ﻊ اﻟﺛ ﺎﻧﻰ ‪.‬‬ ‫إذا اﺧﺗرﻧﺎ ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻛﺑﯾرة ﺣﺟﻣﮭﺎ ‪ n1‬ﻣن اﻟﻣﺟﺗﻣﻊ اﻷول وﺣﺳ ﺑﻧﺎ ﻣﻧﮭ ﺎ ﻧﺳ ﺑﺔ ﺗ وﻓر اﻟﺻ ﻔﺔ‬ ‫ﻣﺣ ل اﻟدراﺳ ﺔ وﻟ ﺗﻛن ‪ . pˆ1‬وإذا اﺧﺗرﻧ ﺎ ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻛﺑﯾ رة ﺣﺟﻣﮭ ﺎ ‪ n2‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻟﺛ ﺎﻧﻰ‬ ‫‪٣٩‬‬


‫وﺣﺳﺑﻧﺎ ﻣﻧﮭﺎ ﻧﺳﺑﺔ ﺗوﻓر اﻟﺻﻔﺔ اﻟﻣطﻠوﺑﺔ وﻟﺗﻛن ‪ . pˆ 2‬ﺑﺗﻛرار اﻟﻣﻌﺎﯾﻧﺔ ﻣن اﻟﺣﺟ م ‪ n1‬و ‪ n2‬ﻓ ﺈن‬ ‫اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻰ ﻟﻺﺣﺻﺎء ‪ Pˆ2  Pˆ1‬ﺗﺣدده اﻟﻧظرﯾﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫ﻧظرﯾﺔ‪:‬‬ ‫اﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻰ ﻟﻺﺣﺻﺎء ‪Pˆ1  Pˆ2‬ﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ﺑﻣﺗوﺳط ‪:‬‬ ‫‪ ˆ  ˆ  p1  p 2 ,‬‬ ‫‪P1 P 2‬‬

‫وﺗﺑﺎﯾن ‪:‬‬

‫‪p1q1 p2q 2‬‬ ‫‪‬‬ ‫‪.‬‬ ‫‪n1‬‬ ‫‪n2‬‬

‫‪2Pˆ ‬‬

‫وﻋﻠﻰ ذﻟك ﺗﻛون ‪:‬‬ ‫) ‪(pˆ 1  pˆ 2 )  (p1  p 2‬‬ ‫‪.‬‬ ‫‪p1q1 p 2q 2‬‬ ‫‪‬‬ ‫‪n1‬‬ ‫‪n2‬‬ ‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻰ ‪ Z‬اﻟذى ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ اﻟﻘﯾﺎﺳﻰ ‪.‬‬ ‫ﺗﻌط ﻰ اﻟﻧظرﯾ ﺔ اﻟﻧظرﯾ ﺔ اﻟﺳ ﺎﺑﻘﺔ ﻧﺗﺎﺋﺟ ﺎ ً ﺟﯾ دة ‪ ،‬إذا ﻛﺎﻧ ت ‪ n2 , n1‬ﻣﺣ ددﺗﺎن طﺑﻘ ﺎ ﻟﻘواﻋ د‬ ‫‪. Cochran‬‬ ‫‪z‬‬

‫)‪ ( ٦-١‬ﺗوزﯾـﻊ ‪t‬‬

‫‪t Distribution‬‬

‫ﻓﻲ ﻣﻌظم اﻷﺑﺣﺎث وﻏﺎﻟﺑﺎ ﯾﻛون ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ اﻟذى ﺗﺧﺗﺎر ﻣﻧﮫ اﻟﻌﯾﻧﺎت ﻣﺟﮭوﻻ‪ .‬ﻟﻠﻌﯾﻧﺎت‬ ‫اﻟﻌﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n >30‬ﻓﺈن اﻟﺗﻘدﯾر اﻟﺟﯾد ﻟﻠﻣﻌﻠﻣﺔ ‪ 2‬ھو ‪ .s2‬إذا ﻛﺎﻧت ‪ n > 30‬ﻓﺈن ‪:‬‬ ‫‪x ‬‬ ‫‪z‬‬ ‫‪s‬‬ ‫‪n‬‬ ‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻰ ‪ Z‬ﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ اﻟﻘﯾﺎﺳﻰ ‪ .‬أﻣﺎ إذا ﻛﺎن ﺣﺟم اﻟﻌﯾﻧﺔ‬ ‫ﺻﻐﯾرً ) ‪ ( n < 30‬ﻓﺈن ﻗﯾم )‪ (x  ) /(s / n‬ﻻ ﺗﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ اﻟﻘﯾﺎﺳﻰ‪ .‬ﻓﻲ ھذه‬ ‫اﻟﺣﺎﻟﺔ ﯾﻛون اھﺗﻣﺎﻣﻧﺎ ﺑﺗوزﯾﻊ ﻹﺣﺻﺎء ﻣﺎ ﺳوف ﻧرﻣز ﻟﮫ ﺑﺎﻟرﻣز ‪ ، T‬واﻟذى ﻗﯾﻣﮫ ﺗﻌطﻰ ﻣن‬ ‫اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪x ‬‬ ‫‪t‬‬ ‫‪,‬‬ ‫‪s‬‬ ‫‪n‬‬ ‫‪2‬‬

‫‪,i  1,2,...,n‬‬

‫‪n‬‬

‫)‪ (xi  x‬‬

‫‪i 1‬‬

‫‪n 1‬‬ ‫‪٤٠‬‬

‫‪s‬‬


‫إذا ﻛﺎن ‪ x‬و ‪ s2‬ھﻣﺎ اﻟﻣﺗوﺳط اﻟﺣﺳﺎﺑﻰ واﻟﺗﺑﺎﯾن ﻋﻠﻰ اﻟﺗواﻟﻲ ﻟﻌﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪n‬‬ ‫ﻣﺄﺧوذة ﻣن ﻣﺟﺗﻣﻊ طﺑﯾﻌﻰ ﻟﮫ ﻣﺗوﺳط ‪ ‬وﺗﺑﺎﯾن ‪ 2‬ﻏﯾر ﻣﻌروف ﻓﺈن ‪:‬‬

‫‪x ‬‬ ‫‪s‬‬ ‫‪n‬‬

‫‪t‬‬

‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻰ ‪ T‬ﻟﮫ ﺗوزﯾﻊ ‪ t‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪.   n  1‬‬ ‫ﺑﻔرض أن ‪ t‬ﺗرﻣز ﻟﻘﯾﻣﺔ ‪ t‬اﻟﺗﻰ ﺗوﺟد ﻋﻠﻰ اﻟﻣﺣور اﻷﻓﻘﻲ ﺗﺣت ﻣﻧﺣﻧﻰ ﺗوزﯾﻊ ‪t‬‬ ‫ﺑدرﺟﺎت ﺣرﯾﺔ ‪ ‬واﻟﺗﻲ اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾﻧﮭﺎ ﻗدرھﺎ ‪ ‬ﻛﻣﺎ ھو ﻣوﺿﺢ ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪:‬‬

‫ﻏﺎﻟﺒﺎ ﻣﺎ ﻧﺣﺗﺎج اﻟﻰ اﻟﻘﯾﻣﺔ ‪ t ‬وھﻲ ﻗﯾﻣﺔ ‪ t‬ﺑدرﺟﺔ ﺣرﯾﺔ )‪   (n  1‬واﻟﺗﻲ ﺗﻛون اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ‬ ‫‪2‬‬

‫‪α‬‬ ‫ﯾﻣﯾﻧﮭﺎ ﺗﺳﺎوي‬ ‫‪2‬‬

‫وﺗﺳﺗﺧرج ﻣن ﺟدول ﺗوزﯾﻊ‬

‫‪α‬‬ ‫‪ t‬ﻓﺈن ﻣﺳﺎﺣﺔ ﻣﺳﺎوﯾﺔ ﻗدرھﺎ‬ ‫‪2‬‬

‫‪t‬‬

‫ﻓﻰ ﻣﻠﺣق )‪ . (٢‬وﻧظرا ﻟﺧﺎﺻﯾﺔ اﻟﺗﻣﺎﺛل ﻟﺗوزﯾﻊ‬

‫ﺗﻘﻊ ﻋﻠﻰ ﯾﺳﺎر اﻟﻘﯾﻣﺔ ‪ . - t α‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺑرﻧﺎﻣﺞ ﯾﺣﺳب ‪ t ‬ﻟﻘﯾم‬ ‫‪2‬‬

‫‪2‬‬

‫ﻣﺧﺗﻠﻔﺔ ﻣن ‪ ‬و ‪ ‬ﻣن ﺧﻼل اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ‪.‬‬

‫ﻣﺛﺎل )‪(٧-١‬‬ ‫ﻗدر اﻟﻘﯾم ‪ t ‬ﻟﻠﻘﯾم ‪   .05,.025,.01,.005,.001,.0005‬وذﻟك ﺑدرﺟﺎت ﺣرﯾﺔ ﻣن ‪١‬اﻟﻰ‪١٥‬‬ ‫‪2‬‬

‫‪٤١‬‬


: ‫اﻟﺣل‬ : ‫ وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ : ‫ وذﻟك ﻣن ﺧﻼل اﻻﻣر اﻟﺗﺎﻟﻰ‬Statistics`ContinuousDistributions <<Statistics`ContinuousDistributions`

‫اﻻﻣر‬ Quantile[StudentTDistribution[n],1-#] :‫ ﯾﺳﺗﺧدم اﻻﻣرﯾن اﻟﺗﺎﻟﯾﯾن‬t  ‫ و ﻟﺣﺳﺎب اﻟﻘﯾم اﻟﻣطﻠوﺑﺔ ﻟـ‬t ‫ﯾﻌرف ﺗوزﯾﻊ‬ 2

tvals[n_]:={n,Map[Quantile[StudentTDistribution[n],1#]&,{.1,.05,.025,.01,.005,.001,.0005}]}//Flatten; commonvalues=Table[tvals[n],{n,1,15}]; : ‫ﺑﺎﺳﺗﺧدام اﻻﻣر اﻟﺗﺎﻟﻰ‬

TableFormcommonvalues, TableHeadings  , "Degrees of Freedom", t.1, t.05, t.025, t.01, t.005, t.001, t.0005 ‫ﯾﺗم اظﮭﺎر اﻟﺟدول اﻟﻣطﻠوب‬ . ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`ContinuousDistributions` tvals[n_]:={n,Map[Quantile[StudentTDistribution[n],1#]&,{.1,.05,.025,.01,.005,.001,.0005}]}//Flatten; commonvalues=Table[tvals[n],{n,1,15}];

TableFormcommonvalues, TableHeadings  , "Degrees of Freedom", t.1, t.05, t.025, t.01, t.005, t.001, t.0005

٤٢


‫‪t0.0005‬‬ ‫‪636.619‬‬ ‫‪31.5991‬‬ ‫‪12.924‬‬ ‫‪8.6103‬‬ ‫‪6.86883‬‬ ‫‪5.95882‬‬ ‫‪5.40788‬‬ ‫‪5.04131‬‬ ‫‪4.78091‬‬ ‫‪4.58689‬‬ ‫‪4.43698‬‬ ‫‪4.31779‬‬ ‫‪4.22083‬‬ ‫‪4.14045‬‬ ‫‪4.07277‬‬

‫‪t0.001‬‬ ‫‪318.309‬‬ ‫‪22.3271‬‬ ‫‪10.2145‬‬ ‫‪7.17318‬‬ ‫‪5.89343‬‬ ‫‪5.20763‬‬ ‫‪4.78529‬‬ ‫‪4.50079‬‬ ‫‪4.29681‬‬ ‫‪4.1437‬‬ ‫‪4.0247‬‬ ‫‪3.92963‬‬ ‫‪3.85198‬‬ ‫‪3.78739‬‬ ‫‪3.73283‬‬

‫‪t0.005‬‬ ‫‪63.6567‬‬ ‫‪9.92484‬‬ ‫‪5.84091‬‬ ‫‪4.60409‬‬ ‫‪4.03214‬‬ ‫‪3.70743‬‬ ‫‪3.49948‬‬ ‫‪3.35539‬‬ ‫‪3.24984‬‬ ‫‪3.16927‬‬ ‫‪3.10581‬‬ ‫‪3.05454‬‬ ‫‪3.01228‬‬ ‫‪2.97684‬‬ ‫‪2.94671‬‬

‫) ‪ ( ٧-١‬ﺗوزﯾﻊ ﻣرﺑﻊ ﻛﺎى‬

‫‪t0.01‬‬ ‫‪31.8205‬‬ ‫‪6.96456‬‬ ‫‪4.5407‬‬ ‫‪3.74695‬‬ ‫‪3.36493‬‬ ‫‪3.14267‬‬ ‫‪2.99795‬‬ ‫‪2.89646‬‬ ‫‪2.82144‬‬ ‫‪2.76377‬‬ ‫‪2.71808‬‬ ‫‪2.681‬‬ ‫‪2.65031‬‬ ‫‪2.62449‬‬ ‫‪2.60248‬‬

‫‪t0.025‬‬ ‫‪12.7062‬‬ ‫‪4.30265‬‬ ‫‪3.18245‬‬ ‫‪2.77645‬‬ ‫‪2.57058‬‬ ‫‪2.44691‬‬ ‫‪2.36462‬‬ ‫‪2.306‬‬ ‫‪2.26216‬‬ ‫‪2.22814‬‬ ‫‪2.20099‬‬ ‫‪2.17881‬‬ ‫‪2.16037‬‬ ‫‪2.14479‬‬ ‫‪2.13145‬‬

‫‪t0.05‬‬ ‫‪6.31375‬‬ ‫‪2.91999‬‬ ‫‪2.35336‬‬ ‫‪2.13185‬‬ ‫‪2.01505‬‬ ‫‪1.94318‬‬ ‫‪1.89458‬‬ ‫‪1.85955‬‬ ‫‪1.83311‬‬ ‫‪1.81246‬‬ ‫‪1.79588‬‬ ‫‪1.78229‬‬ ‫‪1.77093‬‬ ‫‪1.76131‬‬ ‫‪1.75305‬‬

‫‪t0.1‬‬ ‫‪3.07768‬‬ ‫‪1.88562‬‬ ‫‪1.63774‬‬ ‫‪1.53321‬‬ ‫‪1.47588‬‬ ‫‪1.43976‬‬ ‫‪1.41492‬‬ ‫‪1.39682‬‬ ‫‪1.38303‬‬ ‫‪1.37218‬‬ ‫‪1.36343‬‬ ‫‪1.35622‬‬ ‫‪1.35017‬‬ ‫‪1.34503‬‬ ‫‪1.34061‬‬

‫‪DegreesofFreedom‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪10‬‬ ‫‪11‬‬ ‫‪12‬‬ ‫‪13‬‬ ‫‪14‬‬ ‫‪15‬‬

‫‪Chi - Square Distribution‬‬

‫إذا ﺗﻛرر ﺳﺣب ﻋﯾﻧﺎت ﻣن اﻟﺣﺟم ‪ n‬ﻣن ﺗوزﯾﻊ طﺑﯾﻌﻰ ﺗﺑﺎﯾﻧﮫ ‪  2‬وإذا ﺗم ﺣﺳﺎب ﺗﺑﺎﯾن اﻟﻌﯾﻧ ﺔ ‪s2‬‬ ‫ﻟﻛل ﻋﯾﻧﺔ ﻓﺈﻧﻧﺎ ﻧﺣﺻل ﻋﻠﻰ ﻗﯾم ﻟﻺﺣﺻﺎء ‪ . S2‬اﻟﺗوزﯾﻊ اﻟﻌﯾﻧ ﻰ ﻟﻺﺣﺻ ﺎء ‪ S2‬ﻟ ﮫ ﺗطﺑﯾﻘ ﺎت ﻗﻠﯾﻠ ﺔ ﻓ ﻲ‬ ‫اﻹﺣﺻﺎء ‪ .‬اھﺗﻣﺎﻣﻧﺎ ﺳوف ﯾﻛون ﻓﻲ ﺗوزﯾﻊ اﻟﻣﺗﻐﯾر ‪ X2‬واﻟﺗﻲ ﺗﺣﺳب ﻗﯾﻣﺗﮫ ﻣن اﻟﺻﯾﻐﺔ اﻵﺗﯾﺔ ‪:‬‬ ‫‪(n  1)s2‬‬ ‫‪2‬‬ ‫‪ ‬‬ ‫‪.‬‬ ‫‪2‬‬ ‫ﺗوزﯾ ﻊ اﻟﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻰ ‪ X2‬ﯾﺳ ﻣﻰ ﺗوزﯾ ﻊ ‪ ) 2‬ﺗوزﯾ ﻊ ﻣرﺑ ﻊ ﻛ ﺎى ( ﺑ درﺟﺎت ﺣرﯾ ﺔ‬ ‫‪   n  1‬ﺣﯾث ‪ ‬ﺗﺳﺎوى اﻟﻣﻘﺎم ﻓﻲ ﺻﯾﻐﺔ ‪.s2‬‬ ‫ﺑﻔرض أن ‪ 2‬ﺗرﻣز ﻟﻘﯾﻣﺔ ‪ 2‬اﻟﺗﻲ ﺗوﺟد ﻋﻠﻰ اﻟﻣﺣور اﻷﻓﻘﻰ ﺗﺣت ﻣﻧﺣﻧﻰ ‪ 2‬ﺑدرﺟﺎت ﺣرﯾﺔ‬ ‫‪ ‬واﻟﺗﻲ ﺗﻛون اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾﻧﮭﺎ ﻗدرھﺎ ‪ ‬ﻛﻣﺎ ھو ﻣوﺿﺢ ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪٤٣‬‬


‫اﻟﺟدول ﻓﻲ ﻣﻠﺣق )‪ (٣‬ﯾﻌطﻰ ﻗﯾم ‪ 2‬وذﻟك ﻟﻘﯾم ﻣﺧﺗﻠﻔﺔ ﻣن ‪ ‬و ‪ ‬ﺣﯾث ‪ ‬ﺗﺄﺧذ اﻟﻘﯾم ‪:‬‬ ‫‪.995 , .99, .975, .95, .90, .10, .05, 0.025, .01, .005‬‬ ‫ودرﺟﺎت ﺣرﯾﺔ ﻣن ‪   1‬إﻟﻰ ‪ .   40‬ﯾوﺿﺢ اﻟﺻف اﻟﺛﺎﻧﻰ ﻣن اﻟﺟدول ﻗﯾم ‪ ‬واﻟﻌﻣود‬ ‫اﻷول ﻣن اﻟﺷﻣﺎل ﻗﯾم درﺟﺎت اﻟﺣرﯾﺔ أﻣﺎ ﻣﺣﺗوﯾﺎت اﻟﺟدول ﻓﮭﻲ ﻟﻘﯾم اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾﻧﮭﺎ ﺗﺳﺎوى‬ ‫‪ .05‬ﻓﺈﻧﻧﺎ ﻧﺑﺣث ﻓﻲ اﻟﺟدول ﻋﻧد ﺗﻘﺎطﻊ اﻟﺻف اﻟذى ﺑﮫ ‪   6‬ﻣﻊ اﻟﻌﻣود ‪ .05‬وﻋﻠﻰ ذﻟك‬ ‫‪2‬‬ ‫‪ 12.592‬‬ ‫‪ . .05‬وﻟﻌدم ﺗﻣﺎﺛل ﻣﻧﺣﻧﻰ ﺗوزﯾﻊ ‪ 2‬ﻓﻼ ﺑد‬

‫ﻣن اﺳﺗﺧدام اﻟﺟدول ﻹﯾﺟﺎد‬

‫‪2‬‬ ‫‪ .95  1.635‬ﻋﻧد ‪.   6‬‬

‫ﻣﺛﺎل )‪:(٨-١‬‬ ‫أوﺟد اﻟﻧﻘﺎط اﻟﺗﺎﻟﯾﺔ ﻣن ﺟدول ﺗوزﯾﻊ ‪ 2‬ﻓﻲ ﻣﻠﺣق )‪: (٣‬‬ ‫‪2‬‬ ‫‪ν=12 ، .95‬‬ ‫أ‪-‬‬ ‫‪2‬‬ ‫ب‪ν=1 ، .05 -‬‬

‫اﻟﺣــل‪:‬‬ ‫أ‪= 5.226 -‬‬ ‫ب‪= 3.843 -‬‬

‫‪2‬‬ ‫‪.95‬‬ ‫‪2‬‬ ‫‪.05‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺑرﻧﺎﻣﺞ ﯾﺣﺳب ‪  ‬ﻟﻘﯾم ﻣﺧﺗﻠﻔﺔ ﻣن ‪ ‬و ‪ ‬ﻣن ﺧﻼل اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ‪.‬‬ ‫‪2‬‬

‫ﻣﺛﺎل )‪(٩-١‬‬ ‫‪ ٤٤‬وذﻟك ﺑدرﺟﺎت ﺣرﯾﺔ ﻣن ‪١‬اﻟﻰ‪١٥‬‬ ‫ﻗدر اﻟﻘﯾم ‪  2‬ﻟﻠﻘﯾم ‪ .995,.99,.01,.975,.95‬‬ ‫‪2‬‬


: ‫اﻟﺣل‬ : ‫ وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ : ‫ وذﻟك ﻣن ﺧﻼل اﻻﻣر اﻟﺗﺎﻟﻰ‬Statistics`ContinuousDistributions <<Statistics`ContinuousDistributions`

‫ﻟﺣﺳﺎب اﻟﻘﯾم اﻟﻣطﻠوﺑﺔ ﯾﺳﺗﺧدم اﻻﻣر واﻟداﻟﺔ اﻟﺗﺎﻟﯾﯨﯾن‬ m=Map[Quantile[ChiSquareDistribution[n],#]&,{0.005` ,0.01`,0.025`,0.05`}]; cv[n_]=Flatten[{n,m}];

‫ﯾﺗم اظﮭﺎر اﻟﺟدول اﻟﻣطﻠوب ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ‬ TableForm t, TableHeadings 

, "Degrees of Freedom

TableSpacing

", .9952, .992, .9752, .952,

 1

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`ContinuousDistributions` m=Map[Quantile[ChiSquareDistribution[n],#]&,{0.005` ,0.01`,0.025`,0.05`}]; cv[n_]=Flatten[{n,m}]; TableForm t, TableHeadings 

, "Degrees of Freedom

TableSpacing

", .9952, .992, .9752, .952,

 1

٤٥


‫‪2‬‬ ‫‪0.95‬‬

‫‪2‬‬ ‫‪0.975‬‬

‫‪2‬‬ ‫‪0.99‬‬

‫‪2‬‬ ‫‪0.995‬‬

‫‪0.00393214‬‬ ‫‪0.102587‬‬ ‫‪0.351846‬‬ ‫‪0.710723‬‬ ‫‪1.14548‬‬ ‫‪1.63538‬‬ ‫‪2.16735‬‬ ‫‪2.73264‬‬ ‫‪3.32511‬‬ ‫‪3.9403‬‬ ‫‪4.57481‬‬ ‫‪5.22603‬‬ ‫‪5.89186‬‬ ‫‪6.57063‬‬ ‫‪7.26094‬‬

‫‪0.000982069‬‬ ‫‪0.0506356‬‬ ‫‪0.215795‬‬ ‫‪0.484419‬‬ ‫‪0.831212‬‬ ‫‪1.23734‬‬ ‫‪1.68987‬‬ ‫‪2.17973‬‬ ‫‪2.70039‬‬ ‫‪3.24697‬‬ ‫‪3.81575‬‬ ‫‪4.40379‬‬ ‫‪5.00875‬‬ ‫‪5.62873‬‬ ‫‪6.26214‬‬

‫‪0.000157088‬‬ ‫‪0.0201007‬‬ ‫‪0.114832‬‬ ‫‪0.297109‬‬ ‫‪0.554298‬‬ ‫‪0.87209‬‬ ‫‪1.23904‬‬ ‫‪1.6465‬‬ ‫‪2.0879‬‬ ‫‪2.55821‬‬ ‫‪3.05348‬‬ ‫‪3.57057‬‬ ‫‪4.10692‬‬ ‫‪4.66043‬‬ ‫‪5.22935‬‬

‫‪0.0000392704‬‬ ‫‪0.0100251‬‬ ‫‪0.0717218‬‬ ‫‪0.206989‬‬ ‫‪0.411742‬‬ ‫‪0.675727‬‬ ‫‪0.989256‬‬ ‫‪1.34441‬‬ ‫‪1.73493‬‬ ‫‪2.15586‬‬ ‫‪2.60322‬‬ ‫‪3.07382‬‬ ‫‪3.56503‬‬ ‫‪4.07467‬‬ ‫‪4.60092‬‬

‫)‪ (٨- ١‬ﺗوزﯾﻊ ‪F‬‬

‫‪Degrees‬‬ ‫‪of Freedom‬‬

‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪10‬‬ ‫‪11‬‬ ‫‪12‬‬ ‫‪13‬‬ ‫‪14‬‬ ‫‪15‬‬

‫‪F Distribution‬‬

‫ﯾﻌﺗﺑر ﺗوزﯾﻊ ‪ F‬ﻣن اﻟﺗوزﯾﻌﺎت اﻻﺣﺗﻣﺎﻟﯾﺔ اﻟﮭﺎﻣﺔ اﻟﺗﻰ ﺗﺳﺗﺧدم ﻓﻲ ﻣﺟﺎل اﻹﺣﺻﺎء اﻟﺗطﺑﯾﻘﻰ ‪.‬‬ ‫ﻧظرﯾﺔ‪:‬‬ ‫إذا ﻛﺎﻧ ت‬

‫‪s12‬‬

‫‪,‬‬

‫‪s22‬‬

‫ﺗﻣ ﺛﻼن ﺗﺑ ﺎﯾﻧﻲ ﻋﯾﻧﺗ ﯾن ﻋﺷ واﺋﯾﺗﯾن ﻣﺳ ﺗﻘﻠﺗﯾن ﻣ ن اﻟﺣﺟ م‬

‫‪n 2 , n1‬‬

‫ﻣﺄﺧوذﺗﯾن ﻣﺟﺗﻣﻌﯾن ﻣن طﺑﯾﻌﯾﯾن ﺑﺗﺑﺎﯾﻧﺗﻰ ‪ 22 , 12‬ﻋﻠﻰ اﻟﺗواﻟﻲ ﻓﺈن ‪:‬‬ ‫‪s12 / 12  22s12‬‬ ‫‪f  2 2  2 2.‬‬ ‫‪s 2 /  2 1 s 2‬‬ ‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻲ ‪ F‬ﯾﺗﺑﻊ ﺗوزﯾﻊ ‪ F‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪ ٠ 1, 2‬ﺑﻔرض أن ) ‪f (1, 2‬‬ ‫ﺗرﻣز ﻟﻘﯾﻣﺔ ‪ f‬ﻋﻠﻰ اﻟﻣﺣور اﻷﻓﻘﻲ ﺗﺣت ﻣﻧﺣﻧﻰ ﺗوزﯾﻊ ‪ F‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪ 1  n1  1‬و‬ ‫‪ 2  n2  1‬واﻟﺗﻲ ﺗﻛون اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾﻧﮭﺎ ﺗﺳﺎوى ‪ ‬واﻟﻣوﺿﺣﺔ ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪٤٦‬‬


‫ﻻﺳﺗﺧراج ﻗﯾم ) ‪ f (1, 2‬ﯾوﺟد ﺟدوﻻن ﻓﻲ ﻣﻠﺣق )‪ (٤‬وﻣﻠﺣق )‪ ، (٥‬اﻷول ﻋﻧد ‪  0.05‬‬ ‫واﻵﺧر ﻋﻧد ‪   .01‬وﻓﻲ ﻛل ﻣﻧﮭﻣﺎ ﯾﻛون اﻟﺻف اﻷول ﻟﻘﯾم ‪ 1‬واﻟﻌﻣود اﻷول ﻟﻘﯾم ‪ 2‬أﻣﺎ‬

‫ﻣﺣﺗوﯾﺎت اﻟﺟدول ﻓﮭو ﻟﻘﯾم ) ‪ . f (1, 2‬ﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ﻣن ﺟدول ﺗوزﯾﻊ ‪ F‬ﻧﻼﺣظ أن ‪:‬‬

‫‪f.05 (1,4)  7.71‬‬ ‫‪f.05 (4,1)  224.6‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺑرﻧﺎﻣﺞ ﯾﺣﺳب ) ‪ f (1, 2‬ﻟﻘﯾم ﻣﺧﺗﻠﻔﺔ ﻣن‬ ‫ﻣن ﺧﻼل اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ‪.‬‬

‫‪1, 2‬‬

‫ﺣﯾث ‪   .05‬وذﻟك‬

‫ﻣﺛﺎل )‪(١٠-١‬‬ ‫ﻗ در اﻟﻘ ﯾم ) ‪ f (1, 2‬ﺣﯾ ث ‪ 1‬ﺗﺎﺧ ذ اﻟﻘ ﯾم ‪1,2,3,4‬‬ ‫‪ 1,2,3,4,5,6,…,15‬و ‪  0.05‬‬

‫و ‪ 2‬ﺗﺎﺧ ذ اﻟﻘ ﯾم‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ‪ Mathematica‬وذﻟك ﺑﺈﺳﺗﺧدام اﻟﺣزﻣﺔ اﻟﺟﺎھزة ‪:‬‬ ‫‪ Statistics`ContinuousDistributions‬وذﻟك ﺑﺗﺣﻣﯾل اﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬

‫ﻟﺣﺳﺎب اﻟﻘﯾم اﻟﻣطﻠوﺑﺔ ﯾﺳﺗﺧدم اﻟداﻟﺗﯾن اﻟﺗﺎﻟﯾﯨﯾن‬ ‫‪f[n1_,n2_]:=Quantile[FRatioDistribution[n1,n2],1‬‬‫;]‪.05‬‬ ‫]}‪v[n1_]:=Table[Flatten[{n2,f[n1,n2]}],{n2,1,15‬‬ ‫ﯾﺗم اظﮭﺎر اﻟﺟدول اﻟﻣطﻠوب ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ‬ ‫]}}‪TableForm[v[n1],TableHeadings{{},{"",1,2,3,4‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫`‪<<Statistics`ContinuousDistributions‬‬ ‫‪f[n1_,n2_]:=Quantile[FRatioDistribution[n1,n2],1‬‬‫;]‪.05‬‬ ‫]}‪v[n1_]:=Table[Flatten[{n2,f[n1,n2]}],{n2,1,15‬‬ ‫}‪n1={1,2,3,4‬‬ ‫}‪{1,2,3,4‬‬

‫]}}‪TableForm[v[n1],TableHeadings{{},{"",1,2,3,4‬‬ ‫‪٤٧‬‬


‫‪4‬‬ ‫‪224.583‬‬ ‫‪19.2468‬‬ ‫‪9.11718‬‬ ‫‪6.38823‬‬ ‫‪5.19217‬‬ ‫‪4.53368‬‬ ‫‪4.12031‬‬ ‫‪3.83785‬‬ ‫‪3.63309‬‬ ‫‪3.47805‬‬ ‫‪3.35669‬‬ ‫‪3.25917‬‬ ‫‪3.17912‬‬ ‫‪3.11225‬‬ ‫‪3.05557‬‬

‫‪3‬‬ ‫‪215.707‬‬ ‫‪19.1643‬‬ ‫‪9.27663‬‬ ‫‪6.59138‬‬ ‫‪5.40945‬‬ ‫‪4.75706‬‬ ‫‪4.34683‬‬ ‫‪4.06618‬‬ ‫‪3.86255‬‬ ‫‪3.70826‬‬ ‫‪3.58743‬‬ ‫‪3.49029‬‬ ‫‪3.41053‬‬ ‫‪3.34389‬‬ ‫‪3.28738‬‬

‫‪2‬‬ ‫‪199.5‬‬ ‫‪19.‬‬ ‫‪9.55209‬‬ ‫‪6.94427‬‬ ‫‪5.78614‬‬ ‫‪5.14325‬‬ ‫‪4.73741‬‬ ‫‪4.45897‬‬ ‫‪4.25649‬‬ ‫‪4.10282‬‬ ‫‪3.9823‬‬ ‫‪3.88529‬‬ ‫‪3.80557‬‬ ‫‪3.73889‬‬ ‫‪3.68232‬‬

‫‪1‬‬ ‫‪161.448‬‬ ‫‪18.5128‬‬ ‫‪10.128‬‬ ‫‪7.70865‬‬ ‫‪6.60789‬‬ ‫‪5.98738‬‬ ‫‪5.59145‬‬ ‫‪5.31766‬‬ ‫‪5.11736‬‬ ‫‪4.9646‬‬ ‫‪4.84434‬‬ ‫‪4.74723‬‬ ‫‪4.66719‬‬ ‫‪4.60011‬‬ ‫‪4.54308‬‬

‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪10‬‬ ‫‪11‬‬ ‫‪12‬‬ ‫‪13‬‬ ‫‪14‬‬ ‫‪15‬‬

‫ﻻﺳﺗﺧراج ﻗﯾم ) ‪ f (1, 2‬ﻣن اﻟﺟدول اﻟﺳﺎﺑق اﻟﻣﺳﺗﺧرج ﻣن اﻟﺑرﻧﺎﻣﺞ ﯾﻛون اﻟﺻف اﻷول ﻟﻘﯾم‬ ‫‪ 1‬واﻟﻌﻣود اﻷول ﻟﻘﯾم ‪ 2‬أﻣﺎ ﻣﺣﺗوﯾﺎت اﻟﺟدول ﻓﮭو ﻟﻘﯾم ) ‪ . f (1, 2‬ﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ‪:‬‬

‫‪f.05 (1,4)  7.70865‬‬ ‫‪f.05 (4,1)  224.583‬‬

‫‪٤٨‬‬


‫اﻟﻔﺻل اﻟﺛﺎﻧﻰ‬ ‫ﻓﺗرات اﻟﺛﻘﺔ‬

‫‪٤٩‬‬


‫)‪ (١-٢‬ﻣﻘدﻣـﺔ‬

‫‪Introduction‬‬

‫ﯾﻌﺗﺑ ر اﻻﺳ ﺗدﻻل اﻹﺣﺻ ﺎﺋﻲ ‪ statistical inference‬ﻓ رع ﻓ ﻲ ﻋﻠ م اﻹﺣﺻ ﺎء ﯾﮭ ﺗم‬ ‫ﺑطرق اﻻﺳﺗدﻻل أو اﻟﺗﻌﻣﯾم ﺑﺷ ﺎن اﻟﻣﺟﺗﻣ ﻊ وذﻟ ك ﺑﺎﻻﻋﺗﻣ ﺎد ﻋﻠ ﻰ ﻣﻌﻠوﻣ ﺎت ﯾ ﺗم اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ‬ ‫ﻣن ﻋﯾﻧﺎت ﻣﺧﺗﺎرة ﻣن اﻟﻣﺟﺗﻣﻊ ‪ .‬ﺳوف ﻧﺗﻧ ﺎول ﻓ ﻲ ھ ذا اﻟﻔﺻ ل اﻻﺳ ﺗدﻻل ﻋ ن ﻣﻌ ﺎﻟم ﻣﺟﺗﻣﻌ ﺎت‬ ‫ﻣﺟﮭوﻟﺔ ﻣﺛل اﻟﻣﺗوﺳط ‪ ،‬اﻟﻧﺳﺑﺔ ‪ ،‬اﻻﻧﺣراف اﻟﻣﻌﯾﺎري ‪.‬‬ ‫ﯾﻧﻘﺳ م ﻓ رع اﻻﺳ ﺗدﻻل اﻹﺣﺻ ﺎﺋﻲ إﻟ ﻰ ﻓ رﻋﯾن أﺳﺎﺳ ﯾن ‪ :‬اﻟﺗﻘ دﯾر ‪estimation‬‬ ‫واﺧﺗﺑﺎرات اﻟﻔ روض ‪ . tests of hypotheses‬ﺳ وف ﺗﻘﺗﺻ ر دراﺳ ﺗﻧﺎ ﻓ ﻲ ھ ذا اﻟﻔﺻ ل ﻋﻠ ﻰ‬ ‫ﻣوﺿ وع اﻟﺗﻘ دﯾر ﺑﯾﻧﻣ ﺎ ﻣوﺿ وع اﺧﺗﺑ ﺎرات اﻟﻔ روض ﺳ وف ﻧﺗﻧﺎوﻟ ﮫ ﻓ ﻲ اﻟﻔﺻ ل اﻟﺗ ﺎﻟﻰ ‪ .‬اﻷﻣﺛﻠ ﺔ‬ ‫اﻟﺗﺎﻟﯾ ﺔ ﺗوﺿ ﺢ اﻟﻔ رق ﺑ ﯾن اﻟﻔ رﻋﯾن‪ .‬ﯾﻘ وم ﻣﺻ ﻧﻊ ﺑﺈﻧﺗ ﺎج ﻗﺿ ﺑﺎﻧﺎ ﺣدﯾدﯾ ﺔ ‪ ،‬ﻓ ﺈذا اﺧﺗﯾ رت ﻋﯾﻧ ﺔ‬ ‫ﻋﺷ واﺋﯾﺔ ﻣﻛوﻧ ﮫ ﻣ ن ‪ 200‬ﻗﺿ ﯾب ﻣ ن إﻧﺗ ﺎج ھ ذا اﻟﻣﺻ ﻧﻊ وﻗﯾﺳ ت أطواﻟﮭ ﺎ وﺗ م ﺣﺳ ﺎب ﻣﺗوﺳ ط‬ ‫طول اﻟﻘﺿﯾب ﻓﻲ اﻟﻌﯾﻧﺔ ‪ .‬ھذا اﻟﻣﺗوﺳط ﯾﻣﻛن أن ﯾﺳﺗﺧدم ﻟﺗﻘدﯾر اﻟﻣﻌﻠﻣ ﺔ اﻟﺣﻘﯾﻘﯾ ﺔ ﻟﻠﻣﺟﺗﻣ ﻊ ‪μ‬‬ ‫‪ .‬اﻟﻣﻌﻠوﻣ ﺎت ﻋ ن ﺗوزﯾ ﻊ اﻟﻣﻌﺎﯾﻧ ﺔ ﻟﻺﺣﺻ ﺎء ‪ X‬ﺳ وف ﯾﺳ ﺎﻋدﻧﺎ ﻓ ﻲ ﺣﺳ ﺎب درﺟ ﺔ اﻟﺛﻘ ﺔ ﻓ ﻲ‬ ‫ﺗﻘ دﯾرﻧﺎ‪ .‬ھ ذه اﻟﻣﺷ ﻛﻠﺔ ﺗﻧﺗﻣ ﻲ إﻟ ﻰ ﻓ رع اﻟﺗﻘ دﯾر ‪ .‬اﻵن إذا ﻛ ﺎن ﻣﻌروﻓ ﺎ أن ﺟﺳ م اﻹﻧﺳ ﺎن اﻟﺑ ﺎﻟﻎ‬ ‫ﯾﺣﺗ ﺎج ﯾوﻣﯾ ﺎ ﻓ ﻲ اﻟﻣﺗوﺳ ط إﻟ ﻰ ‪ 800‬ﻣﻠﻠﯾﺟراﻣ ﺎت ﻣ ن اﻟﻛﺎﻟﺳ ﯾوم ﻟﻛ ﻲ ﯾﻘ وم ﺑوظﺎﺋﻔ ﮫ ﺧﯾ ر ﻗﯾ ﺎم‪.‬‬ ‫ﯾﻌﺗﻘ د ﻋﻠﻣ ﺎء اﻟﺗﻐذﯾ ﺔ أن اﻷﻓ راد ذوى اﻟ دﺧل اﻟﻣ ﻧﺧﻔض ﻻ ﯾﺳ ﺗطﯾﻌون ﺗﺣﻘﯾ ق ھ ذا اﻟﻣﺗوﺳ ط ‪.‬‬ ‫ﻻﺧﺗﺑ ﺎر ذﻟ ك اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ‪ 50‬ﺷﺧﺻ ﺎ ﺑﺎﻟﻐ ﺎ ﻣ ن ﺑ ﯾن ذوى اﻟ دﺧل اﻟﻣ ﻧﺧﻔض وﺗ م‬ ‫ﺣﺳﺎب ﻣﺗوﺳط ﻣﺎ ﯾﺗﻧﺎوﻟوﻧﮫ ﻣن اﻟﻛﺎﻟﺳﯾوم ﯾوﻣﯾﺎ‪ .‬ﻓﻲ ھ ذا اﻟﻣﺛ ﺎل ﻟ م ﻧﺣ ﺎول ﺗﻘ دﯾر ﻣﻌﻠﻣ ﺔ وﻟﻛ ن‬ ‫ﺑدﻻ ﻣن ذﻟك ﻧﺣﺎول اﻟوﺻول إﻟﻰ ﻗ رار ﺻ ﺣﯾﺢ ﻋ ن اﻟﻔ رض اﻟ ذي وﺿ ﻌﮫ ﻋﻠﻣ ﺎء اﻟﺗﻐذﯾ ﺔ ‪ .‬ﻣ رة‬ ‫أﺧرى ﻧﻌﺗﻣد ﻋﻠﻰ ﻧظرﯾﺔ اﻟﻣﻌﺎﯾﻧﺔ ﻟﺗﻣدﻧﺎ ﺑﻣﻘﯾﺎس ﻟدرﺟﺔ اﻟﺛﻘﺔ ﻓﻲ اﻟﻘرار اﻟذي ﻧﺗﺧذه‪.‬‬ ‫ﯾ ﺗم ﺗﻘ دﯾر ﻣﻌﻠﻣ ﺔ اﻟﻣﺟﺗﻣ ﻊ إﻣ ﺎ ﻛﺗﻘ دﯾر ﺑﻧﻘط ﺔ ‪ point estimate‬أو ﻛﺗﻘ دﯾر ﺑﻔﺗ رة‬ ‫‪ . interval estimate‬ﺗﻘ دﯾر اﻟﻧﻘط ﺔ ﻟﻣﻌﻠﻣ ﺔ ﻣﺟﺗﻣ ﻊ ﻣ ﺎ ‪ ‬ھ ﻲ ﻗﯾﻣ ﺔ وﺣﯾ دة ) ﻣﻔ ردة ( ˆ‪θ‬‬ ‫ﻟﻺﺣﺻﺎء ˆ‬ ‫‪ . Θ‬ﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل اﻟﻘﯾﻣﺔ ‪ x‬ﻟﻺﺣﺻﺎء ‪ ، X‬واﻟﻣﺣﺳ وﺑﺔ ﻣ ن ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن‬ ‫‪x‬‬ ‫‪ pˆ ‬ھ ﻲ ﺗﻘ دﯾر ﺑﻧﻘط ﺔ‬ ‫اﻟﺣﺟ م ‪ ، n‬ھ ﻲ ﺗﻘ دﯾر ﺑﻧﻘط ﺔ ﻟﻣﻌﻠﻣ ﺔ اﻟﻣﺟﺗﻣ ﻊ ‪ . ‬ﺑ ﻧﻔس اﻟﺷ ﻛل ‪،‬‬ ‫‪n‬‬ ‫ﻟﻠﻣﻌﻠﻣﺔ اﻟﺣﻘﯾﻘﯾﺔ ‪ p‬واﻟﺗﻲ ﺗﻣﺛل ﻧﺳﺑﺔ ﺻﻔﺔ ﻣﺎ ﻓﻲ ﻣﺟﺗﻣﻊ ‪.‬‬ ‫اﻹﺣﺻ ﺎء اﻟﻣﺳ ﺗﺧدم ﻹﯾﺟ ﺎد ﺗﻘ دﯾر اﻟﻧﻘط ﺔ ﯾﺳ ﻣﻰ اﻟﻣﻘ در ‪ estimator‬أو داﻟ ﺔ اﻟﻘ رار‬ ‫‪ .decision function‬ﻓﻌﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل داﻟ ﺔ اﻟﻘ رار ‪ ، S‬واﻟﺗ ﻲ ﺗﻛ ون داﻟ ﺔ ﻓ ﻲ اﻟﻌﯾﻧ ﺔ‬ ‫اﻟﻌﺷواﺋﯾﺔ ‪ ،‬ھﻲ ﻣﻘدر ﻟﻠﻣﻌﻠﻣﺔ ‪ . σ‬ﻋﯾﻧﺎت ﻣﺧﺗﻠﻔﺔ ﺗؤدى إﻟﻰ ﺗﻘدﯾرات ﻣﺧﺗﻠﻔﺔ ‪.‬‬ ‫أي ﺗﻘدﯾر ﺑﻔﺗرة ﻟﻣﻌﻠﻣﺔ ‪ ‬ھو ﻓﺗرة ﻋﻠﻰ اﻟﺷﻛل ‪ b a    b‬ﺣﯾ ث ‪ a , b‬ﺗﻌﺗﻣ دان ﻋﻠ ﻰ‬ ‫اﻟﺗﻘ دﯾر ﺑﻧﻘط ﺔ ˆ‪ ‬ﻟﻌﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﺧﺎﺻ ﺔ ﻣﺧﺗ ﺎرة ﻣ ن اﻟﻣﺟﺗﻣ ﻊ ﻣوﺿ ﻊ اﻟدراﺳ ﺔ وأﯾﺿ ﺎ ﻋﻠ ﻰ‬ ‫اﻟﺗوزﯾ ﻊ اﻟﻌﯾﻧ ﻲ ﻟﻺﺣﺻ ﺎء ˆ‬ ‫‪ . Θ‬ﻋﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل إذا اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﺗﻣﺛ ل درﺟ ﺎت‬ ‫اﻟﺗﺣﺻﯾل ﻓﻲ اﻣﺗﺣ ﺎن اﻟﻘﺑ ول ﻟﺧﻣﺳ ﯾن طﺎﻟﺑ ﺎ ﻣ ن اﻟﻣﺗﻘ دﻣﯾن ﻟﻼﻟﺗﺣ ﺎق ﻓ ﻲ ﻛﻠﯾ ﺔ ﻣ ﺎ وﺗ م اﻟﺣﺻ ول‬ ‫ﻋﻠﻰ اﻟﻔﺗرة ‪ 500 , 550‬واﻟﺗﻲ ﻧﺗوﻗﻊ أن اﻟﻣﺗوﺳ ط اﻟﺣﻘﯾﻘ ﻲ ﻟ درﺟﺎت اﻟﺗﺣﺻ ﯾل داﺧﻠﮭ ﺎ ‪ .‬اﻟﻘﯾﻣﺗ ﺎن‬ ‫اﻟﻧﮭﺎﺋﯾﺗﺎن ‪ 500‬و ‪ 550‬ﺳوف ﺗﻌﺗﻣدان ﻋﻠﻰ ﻣﺗوﺳط اﻟﻌﯾﻧﺔ اﻟﻣﺣﺳوﺑﺔ ‪ x‬وأﯾﺿ ﺎ ﻋﻠ ﻰ اﻟﺗوزﯾ ﻊ‬ ‫اﻟﻌﯾﻧﻲ ‪. X‬‬ ‫ﻋﯾﻧﺎت ﻣﺧﺗﻠﻔﺔ ﺗؤدى إﻟﻰ ﻗﯾم ﻣﺧﺗﻠﻔ ﺔ ﻟ ـ ˆ‪ ‬وﺑﺎﻟﺗ ﺎﻟﻲ إﻟ ﻰ ﺗﻘ دﯾرات ﺑﻔﺗ رة ﻟﻣﻌﻠﻣ ﺔ اﻟﻣﺟﺗﻣ ﻊ‬ ‫‪ . ‬ﺑﻌ ض ھ ذه اﻟﻔﺗ رات ﺳ وف ﺗﺣﺗ وى ﻋﻠ ﻰ ‪ ‬واﻟ ﺑﻌض اﻵﺧ ر ﻻ ﯾﺣﺗ وى ﻋﻠ ﻰ ‪ . ‬اﻟﺗوزﯾ ﻊ‬ ‫اﻟﻌﯾﻧ ﻲ ﻟﻺﺣﺻ ﺎء ˆ‬ ‫‪ Θ‬ﺳ وف ﯾﺳ ﺎﻋدﻧﺎ ﻓ ﻲ إﯾﺟ ﺎد ‪ a , b‬ﻟﻛ ل اﻟﻌﯾﻧ ﺎت اﻟﻣﻣﻛﻧ ﺔ ﺑﺣﯾ ث أن أي ﻧﺳ ﺑﺔ‬ ‫‪٥٠‬‬


‫ﺧﺎﺻ ﺔ ﻣ ن ھ ذه اﻟﻔﺗ رات ﺳ وف ﺗﺣﺗ وى ﻋﻠ ﻰ ‪ . ‬ﻓﻌﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل ‪ ،‬ﯾ ﺗم ﺣﺳ ﺎب ‪ a , b‬ﺑﺣﯾ ث‬ ‫ﺗﻛ ون ‪ 0. 95‬ﻣ ن ﻛ ل اﻟﻔﺗ رات اﻟﻣﻣﻛﻧ ﺔ ‪ ،‬ﻣ ﻊ ﺗﻛ رار اﻟﻣﻌﺎﯾﻧ ﺔ ‪ ،‬ﺳ وف ﺗﺣﺗ وي ﻋﻠ ﻰ ‪ . θ‬وﻋﻠ ﻰ‬ ‫ذﻟك ﯾﻛ ون ﻟ دﯾﻧﺎ اﺣﺗﻣ ﺎل ‪ 0.95‬ﻻﺧﺗﯾ ﺎر واﺣ دة ﻣ ن ھ ذه اﻟﻌﯾﻧ ﺎت واﻟﺗ ﻲ ﺗ ؤدى إﻟ ﻰ ﻓﺗ رة ﺗﺣﺗ وي‬ ‫ﻋﻠ ﻰ ‪ .‬ھ ذه اﻟﻔﺗ رة اﻟﻣﺣﺳ وﺑﺔ ﻣ ن ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ‪ ،‬ﺗﺳ ﻣﻲ ‪ 95%‬ﻓﺗ رة ﺛﻘ ﺔ ‪confidence‬‬ ‫‪ . interval‬ﺑﻣﻌﻧ ﻰ آﺧ ر ﯾﻛ ون ﻟ دﯾﻧﺎ ‪ 95%‬ﺛﻘ ﺔ أن ﻓﺗرﺗﻧ ﺎ اﻟﻣﺣﺳ وﺑﺔ ﺗﺣﺗ وى ﻋﻠ ﻰ اﻟﻣﻌﻠﻣ ﺔ ‪. θ‬‬ ‫ﻋﻣوﻣ ﺎ ﺗوزﯾ ﻊ ˆ‬ ‫‪ Θ‬ﺳ وف ﯾﺳ ﺎﻋدﻧﺎ ﻓ ﻲ ﺣﺳ ﺎب ‪ a , b‬ﺑﺣﯾ ث ﯾﻛ ون ﻷي ﻧﺳ ﺑﮫ ﺧﺎﺻ ﺔ‬ ‫‪ ، 0 < α < 1 , 1 α‬ﻣن اﻟﻔﺗرات اﻟﻣﺣﺳوﺑﺔ ﻣن ﻛل اﻟﻌﯾﻧﺎت اﻟﻣﻣﻛﻧﺔ ﺳوف ﺗﺣﺗوى ﻋﻠ ﻰ اﻟﻣﻌﻠﻣ ﺔ‬ ‫‪ . ‬اﻟﻔﺗ رة اﻟﻣﺣﺳ وﺑﺔ ﺗﺳ ﻣﻰ ‪ (1 α )100 %‬ﻓﺗ رة ﺛﻘ ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ . θ‬ﺗﻌﺗﺑ ر ﻓﺗ رة اﻟﺛﻘ ﺔ اﻷط ول ‪،‬‬ ‫ھ ﻲ اﻷﻛﺛ ر ﺛﻘ ﺔ ﻓ ﻲ اﻟﺣﺻ ول ﻋﻠ ﻰ ﻓﺗ رة ﺗﺣﺗ وي ﻋﻠ ﻰ اﻟﻣﻌﻠﻣ ﺔ اﻟﻣﺟﮭوﻟ ﺔ ‪ .‬ﺑ ﺎﻟطﺑﻊ ﯾﻛ ون ﻣ ن‬ ‫اﻷﻓﺿل اﻟﺣﺻول ﻋﻠﻰ ‪ 95%‬ﻓﺗرة ﺛﻘﺔ أن ﻣﺗوﺳط اﻟﻌﻣر ﻟﻧوع ﻣﻌﯾن ﻣن اﻟﺑطﺎرﯾ ﺎت ﯾﻧﺣﺻ ر ﺑ ﯾن‬ ‫‪ 8‬و ‪ 5‬أﺳ ﺎﺑﯾﻊ ﻋ ن اﻟﺣﺻ ول ﻋﻠ ﻰ ‪ 99%‬ﻓﺗ رة ﺛﻘ ﺔ أن ﻣﺗوﺳ ط اﻟﻌﻣ ر ﯾﻧﺣﺻ ر ﺑ ﯾن ‪ 11‬و ‪2‬‬ ‫أﺳﺑوﻋﺎ ‪ .‬داﺋﻣﺎ ﯾﻔﺿل اﻟﺣﺻول ﻋﻠﻰ ﻓﺗرة ﻗﺻﯾرة ﺑدرﺟﺔ ﻋﺎﻟﯾﺔ ﻣن اﻟﺛﻘﺔ ‪.‬‬

‫‪μ‬‬

‫)‪ (٢-٢‬ﻓﺗرة ﺛﻘﺔ ﻟﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ‬ ‫‪Confidence Interval for Population Mean μ‬‬ ‫ﻹﯾﺟﺎد ﻓﺗ رة ﺛﻘ ﺔ ﻟﻣﺗوﺳ ط اﻟﻣﺟﺗﻣ ﻊ ‪ μ‬وذﻟ ك ﺗﺣ ت ﻓ رض أن اﻟﻌﯾﻧ ﺔ ﻣﺧﺗ ﺎرة ﻣ ن ﻣﺟﺗﻣ ﻊ‬ ‫طﺑﯾﻌﻲ أو‪ ،‬ﻋﻧد ﻋدم ﺗﺣﻘ ق ھ ذا اﻟﻔ رض إذا ﻛﺎﻧ ت ‪ n‬ﻛﺑﯾ رة ﺑدرﺟ ﺔ ﻛﺎﻓﯾ ﺔ ‪ ،‬وﻋﻠ ﻰ ذﻟ ك ﻧﺧﺗ ﺎر‬ ‫ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م ‪ n‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻟ ذي ﺗﺑﺎﯾﻧ ﮫ ‪  2‬ﻣﻌﻠ وم وﻧﺣﺳ ب ﻣﺗوﺳ ط اﻟﻌﯾﻧ ﺔ ‪x‬‬ ‫وذﻟك ﻟﻠﺣﺻول ﻋﻠﻰ ‪ (1 α)100%‬ﻓﺗرة ﺛﻘﺔ ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬

‫‪‬‬ ‫‪‬‬ ‫‪   x  z‬‬ ‫‪,‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪2‬‬

‫‪x z‬‬ ‫‪2‬‬

‫‪‬‬ ‫ﺣﯾث ‪ z ‬ﺗﻣﺛل ﻗﯾﻣﺔ ‪ z‬اﻟﺗﻲ ﺗﻛون اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾﻧﮭﺎ ﺗﺳﺎوي‬ ‫‪2‬‬

‫واﻟﻣﺳﺗﺧرﺟﮫ ﻣن ﺟدول‬

‫‪2‬‬

‫اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ اﻟﻘﯾﺎﺳﻲ ﻓﻰ ﻣﻠﺣق )‪.(١‬‬ ‫ﺣﯾث ﻟﻠﻌﯾﻧﺎت اﻟﻌﺷواﺋﯾﺔ اﻟﺻ ﻐﯾرة اﻟﻣﺧﺗ ﺎرة ﻣ ن ﻣﺟﺗﻣﻌ ﺎت ﻏﯾ ر طﺑﯾﻌﯾ ﺔ ‪ ،‬ﻻ ﻧﺗوﻗ ﻊ أن درﺟ ﺔ‬ ‫ﺛﻘﺗﻧﺎ ﺗﻛون ﻣﺿﺑوطﺔ‪ .‬ﻟﻠﻌﯾﻧﺎت ﻣ ن اﻟﺣﺟ م ‪ n > 30‬وﺑﺻ رف اﻟﻧظ ر ﻋ ن ﺷ ﻛل اﻟﻣﺟﺗﻣ ﻊ ﻓ ﺈن ﻧظرﯾ ﺔ‬ ‫اﻟﻣﻌﺎﯾﻧﺔ ﺗؤﻣن ﻟﻧﺎ ﻧﺗﺎﺋﺞ ﺟﯾدة‪.‬‬ ‫ﻟﺣﺳ ﺎب ‪ (1 α )100 %‬ﻓﺗ رة ﺛﻘ ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ μ‬ﻧﻔﺗ رض أن ‪ σ‬ﻣﻌﻠوﻣ ﺔ وﻟﻛ ن ﻋﻣوﻣ ﺎ ﻻ ﯾﺗ واﻓر ھ ذا‬ ‫اﻟﻔ رض ‪ ،‬ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﯾﻣﻛ ن اﻻﺳﺗﻌﺎﺿ ﺔ ﻋ ن ‪ σ‬ﺑ ﺎﻻﻧﺣراف اﻟﻣﻌﯾ ﺎري ﻟﻠﻌﯾﻧ ﺔ ‪ s‬ﺑﺷ رط أن > ‪n‬‬ ‫‪.30‬‬

‫‪٥١‬‬


‫ﻣﺛﺎل )‪(١-٢‬‬ ‫اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ‪ 44‬ﻣﺷ ﺎھدة ﺣﯾ ث اﻟﻣﺷ ﺎھدات ﻛﺎﻟﺗ ﺎﻟﻰ ‪:‬‬ ‫‪85,94.5,76.7,79.2,83,80.2,68.7,89.1,74.1,87.8,44.9,77.6,85.1,‬‬ ‫‪75.7,81.5,66.2,83.4,79.8,94,91.8,96.3,73.5,82.2,76.1,78.5,69.‬‬ ‫‪1,75.4,71.7,78.2,77.7,88.7,79.9,86.1,63.8,78.7,82.6,98.6,81.3‬‬ ‫‪ ,63.4,76.6,84.2,89.7,87.7,54.6‬وﻛﺎن اﻻﻧﺣراف ﻣﻌﯾﺎري ﻟﻠﻣﺟﺗﻣﻊ ھ و ‪  10.5‬‬

‫أوﺟد ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﺗوﺳط ‪. ‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫‪grades={85,94.5,76.7,79.2,83,80.2,68.7,89.1,74.1,87.8,44.9,7‬‬ ‫‪7.6,85.1,75.7,81.5,66.2,83.4,79.8,94,91.8,96.3,73.5,82.2,76.‬‬ ‫‪1,78.5,69.1,75.4,71.7,78.2,77.7,88.7,79.9,86.1,63.8,78.7,82.‬‬ ‫;}‪6,98.6,81.3,63.4,76.6,84.2,89.7,87.7,54.6‬‬ ‫‪=10.5‬‬ ‫‪10.5‬‬

‫‪=.1‬‬ ‫‪0.1‬‬

‫]‪n=Length[grades‬‬ ‫‪44‬‬

‫]‪m=Mean[grades‬‬

‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪79.3841‬‬

‫‪z  Quantile NormalDistribution0, 1, 1 ‬‬ ‫‪‬‬

‫‪n‬‬

‫‪1.64485‬‬

‫‪low  m  z  ‬‬

‫‪‬‬

‫‪n‬‬

‫‪76.7804‬‬

‫‪up  m  z  ‬‬ ‫‪81.9878‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪ grades‬واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﻣن اﻻﻣر‬ ‫‪=10.5‬‬ ‫‪‬ﻣن اﻻﻣر‬ ‫‪=0. 1‬‬ ‫‪٥٢‬‬


‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ n=Length[grades]

‫وﻣﺗوﺳط اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ m=Mean[grades]

z  Quantile NormalDistribution0, 1, 1 

2

‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬z ‫و‬

76.7804 ‫واﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ‬

‫ﻣن اﻻﻣر‬ low=m-z s/Sqrt[n] 81.9878 ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ‬ ‫ﻣن اﻻﻣر‬ up=m+z s/Sqrt[n]

(٢-٢) ‫ﻣﺛﺎل‬ ‫وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ‬

Mathematica

‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ : ‫اﻟﺟﺎھزة‬

Statistics`ConfidenceIntervals

: ‫ﻣن ﺧﻼل اﻻﻣر اﻟﺗﺎﻟﻰ‬ <<Statistics`ConfidenceIntervals`

. ‫واﻟﺬى ﯾﻜﻮن ﻣﻦ ﺿﻤﻦ ﺧطوات اﻟﺑرﻧﺎﻣﺞ‬ . ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`ConfidenceIntervals` grades={85,94.5,76.7,79.2,83,80.2,68.7,89.1,74.1,87.8,44.9,7 7.6,85.1,75.7,81.5,66.2,83.4,79.8,94,91.8,96.3,73.5,82.2,76. 1,78.5,69.1,75.4,71.7,78.2,77.7,88.7,79.9,86.1,63.8,78.7,82. 6,98.6,81.3,63.4,76.6,84.2,89.7,87.7,54.6}; =10.5 10.5

n=Length[grades] 44

m=Mean[grades] 79.3841

NormalCI[m,/Sqrt[n],ConfidenceLevel->.90] {76.7804,81.9878} ٥٣


‫ﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪ grades‬واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﻣن اﻻﻣر‬ ‫‪=10.5‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫]‪n=Length[grades‬‬

‫وﻣﺗوﺳط اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫]‪m=Mean[grades‬‬ ‫وﻋﻧد اﻟرﻏﺑﺔ ﻓﻰ اﻟﺣﺻول ﻋﻠﻰ ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ μ‬ﯾﺳﺗﺧدم اﻻﻣر‬ ‫]‪NormalCI[m,/Sqrt[n],ConfidenceLevel->.90‬‬ ‫ﺣﯾث اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪76.7804‬‬

‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 81.9878‬و ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن ﻣﺧرﺟﺎت اﻻﻣر‬

‫اﻟﺳﺎﺑق ﻋﻠﻰ اﻟﺷﻛل‬ ‫}‪{76.7804,81.9878‬‬

‫واﻟﺻورة اﻟﻌﺎﻣﺔ ﻟﻼﻣر اﻟﺳﺎﺑق ﻋﻠﻰ اﻟﺷﻛل اﻟﺗﺎﻟﻰ‬ ‫‪‬‬ ‫(‪NormalCI[Mean, ,‬‬ ‫]‪),ConfidenceLevel->c‬‬ ‫‪n‬‬ ‫‪‬‬ ‫اﻟﺧطﺎ اﻟﻣﻌﯾﺎرى‬ ‫ﺣﯾث ‪ mean‬ﻣﺗوﺳط اﻟﻌﯾﻧﺔ )ﻟﮭذا اﻟﻣﺛﺎل ﻣﺗوﺳط اﻟﻌﯾﻧﺔ ‪ (79.3841‬و‬ ‫‪n‬‬ ‫‪10.5‬‬ ‫( و ‪) c‬ﻟﮭذا اﻟﻣﺛﺎل ‪.( (1   )  c  .95‬‬ ‫ﻟﻠﻣﺗوﺳط )ﻟﮭذا اﻟﻣﺛﺎل‬ ‫‪44‬‬ ‫اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻻﻣر )‪ (min, max‬ﺣﯾث ‪ min‬اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ و ‪ max‬اﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ‪.‬ﻟﮭذا‬ ‫اﻟﻣﺛﺎل }‪ . (min, max) ={76.7804,81.9878‬ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ﻧﻔس اﻟﻧﺗﺎﺋﺞ ﺑﺎﺳﺗﺧدام اﻻﻣر ‪:‬‬ ‫]‪MeanCI[list, options,ConfidenceLevel->c‬‬

‫ﺣﯾث ‪ list‬ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ و ‪ options‬ﺗﻌﻧﻰ اﻟﺧﯾﺎرات اﻟﻣطﻠوﺑﺔ ‪.‬ﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ﯾﻣﻛن‬ ‫وﺿﻊ اﻟﺧﯾﺎر ‪:‬‬ ‫>‪KnownStandardDeviation-‬‬

‫ﺣﯾث اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى اﻟﻣﺟﺗﻣﻊ ﯾوﺿﻊ ﺑﻌد اﻟﺳﮭم ) وھو ﻟﮭذا اﻟﻣﺛﺎل ‪ (10.5‬وﻗد ﯾﺳﺗﺧدم اﻟﺧﯾﺎر‬ ‫>‪KnownVariance-‬‬

‫ﺣﯾث ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ﯾوﺿﻊ ﺑﻌد اﻟﺳﮭم ‪ .‬ﻟﻼﻣرﯾن اﻟﺳﺎﺑﻘﯾن و ﻟﻠرﻏﺑﺔ ﻓﻰ اﻟﺣﺻول ﻋﻠﻰ ‪ ‬ﻣﻌﯾﻧﺔ ‪،‬ﻋﻠﻰ‬ ‫ﺳﺑﯾل اﻟﻣﺛﺎل‬ ‫‪   0.1‬أو ‪   0 .01‬ﯾﺳﺗﺧدم اﻟﺧﯾﺎر‬ ‫>‪ SignificanceLevel-‬ﺣﯾث ﯾوﺿﻊ ‪ c  0.9‬أو ‪. c  0.99‬ﻋﻧد ﻋدم اﺳﺗﺧدام ھذا اﻟﺧﯾﺎر ﯾﻛون‬ ‫اﻟﻣﻔﺗرض ‪ c  0.95‬اى ‪.   0.05‬‬ ‫‪٥٤‬‬


‫ﻣﺛﺎل )‪(٣-٢‬‬ ‫ﻟﻠﻣﺛﺎل اﻟﺳﺎﺑق وﺑﻔرض ان ‪ ‬ﻏﯾر ﻣﻌﻠوﻣﺔ اوﺟد ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﺗوﺳط ‪. ‬‬

‫اﻟﺣــل‪:‬‬ ‫وﺣﯾث أن ﺣﺟم اﻟﻌﯾﻧﺔ ﻛﺑﯾر ‪ ،‬ﻓﺈن اﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﻣﺟﺗﻣﻊ ‪ σ‬ﯾﻣﻛ ن اﻻﺳﺗﻌﺎﺿ ﺔ ﻋﻧ ﮫ ﺑ ﺎﻻﻧﺣراف‬ ‫اﻟﻣﻌﯾﺎري ﻟﻠﻌﯾﻧﺔ ‪ s  10.5096‬وﯾﺗم اﻟﺣﺻول ﻋﻠﻰ ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪s‬‬ ‫‪s‬‬ ‫‪x z 0.05‬‬ ‫‪   x  z 0.05‬‬ ‫‪.‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫‪grades={85,94.5,76.7,79.2,83,80.2,68.7,89.1,74.1,87.8,44.9,7‬‬ ‫‪7.6,85.1,75.7,81.5,66.2,83.4,79.8,94,91.8,96.3,73.5,82.2,76.‬‬ ‫‪1,78.5,69.1,75.4,71.7,78.2,77.7,88.7,79.9,86.1,63.8,78.7,82.‬‬ ‫;}‪6,98.6,81.3,63.4,76.6,84.2,89.7,87.7,54.6‬‬ ‫‪=.1‬‬ ‫‪0.1‬‬

‫]‪n=Length[grades‬‬ ‫‪44‬‬

‫]‪m=Mean[grades‬‬ ‫‪79.3841‬‬

‫]‪s=StandardDeviation[grades‬‬

‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪10.5096‬‬

‫‪z  Quantile NormalDistribution0, 1, 1 ‬‬ ‫‪1.64485‬‬

‫]‪low=m-z s/Sqrt[n‬‬ ‫‪76.778‬‬

‫]‪up=m+z s/Sqrt[n‬‬ ‫‪81.9902‬‬ ‫ﻟﮭذا اﻟﻣﺛﺎل ‪:‬‬ ‫اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻣن اﻻﻣر‬ ‫]‪s=StandardDeviation[grades‬‬ ‫‪٥٥‬‬


76.778 ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ‬

‫ﻣن اﻻﻣر‬ low=m-z s/Sqrt[n] 81.9902 ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ‬ ‫ﻣن اﻻﻣر‬ up=m+z s/Sqrt[n]

(٤-٢) ‫ﻣﺛﺎل‬ ‫ وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ‬Mathematica

‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ : ‫اﻟﺟﺎھزة‬ . ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬Statistics`ConfidenceIntervals

<<Statistics`ConfidenceIntervals` grades={85,94.5,76.7,79.2,83,80.2,68.7,89.1, 74.1,87.8,44.9,77.6,85.1,75.7,81.5,66.2,83.4,79.8,94,91.8,96 .3,73.5,82.2,76.1,78.5,69.1,75.4,71.7,78.2,77.7,88.7,79.9,86 .1,63.8,78.7,82.6,98.6,81.3,63.4,76.6,84.2,89.7,87.7,54.6}; n=Length[grades]

44

m=Mean[grades] 79.3841

s=StandardDeviation[grades] 10.5096

sig=StandardErrorOfSampleMean[grades] 1.58439

NormalCI[m,s/Sqrt[n],ConfidenceLevel->.90] {76.778,81.9902}

NormalCI[m,sig,ConfidenceLevel->.90] {76.778,81.9902}

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ grades ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت‬ ‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ n=Length[grades]

‫وﻣﺗوﺳط اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ m=Mean[grades]

‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ ﻣن اﻻﻣر‬ s=StandardDeviation[grades]

٥٦


‫‪s‬‬ ‫و‬ ‫‪n‬‬ ‫]‪sig=StandardErrorOfSampleMean[grades‬‬ ‫واﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪ 76.778‬واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 81.9905‬ﻣن اﻻﻣرﯾن اﻻﺧﯾرﯾن‪.‬‬

‫ﻣن اﻻﻣر‬

‫ﻣﺛﺎل )‪(٥-٢‬‬ ‫اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ‪ 100‬ﻣ رﯾض ﺑﺎﻟﺳ ﻛر وﻛ ﺎن ﻣﺗوﺳ ط أﻋﻣ ﺎرھم ‪x  55‬‬ ‫ﺑﺎﻧﺣراف ﻣﻌﯾﺎري ‪ s  20‬أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﺗوﺳط ‪. ‬‬

‫اﻟﺣــل‪:‬‬ ‫وﺣﯾث أن ﺣﺟم اﻟﻌﯾﻧﺔ ﻛﺑﯾر ‪ ، n  30‬ﻓﺈن اﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﻣﺟﺗﻣﻊ ‪ σ‬ﯾﻣﻛن اﻻﺳﺗﻌﺎﺿﺔ ﻋﻧﮫ‬ ‫ﺑﺎﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﻌﯾﻧﺔ ‪ .s=20‬ﯾﺗم اﻟﺣﺻول ﻋﻠﻰ ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﮫ ‪:‬‬ ‫‪s‬‬ ‫‪s‬‬ ‫‪x z 0.025‬‬ ‫‪< μ < x + z 0.025‬‬ ‫‪.‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫ﺑﺎﺳﺗﺧدام ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪ (١‬ﻓﺈن ﻗﯾﻣﺔ ‪ z‬اﻟﺗﻲ ﻋﻠﻰ ﯾﻣﯾﻧﮭﺎ ﻣﺳﺎﺣﺔ ﻗدرھﺎ‬ ‫‪ 0.025‬وﻋﻠﻰ ﯾﺳﺎرھﺎ ﻣﺳﺎﺣﺔ ﻗدرھﺎ ‪ 0.975‬ھﻲ ‪ . z.025=1.96‬وﻋﻠﻰ ذﻟك ﻓﺈن ‪ 95%‬ﻓﺗرة ﺛﻘﺔ‬ ‫ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫) ‪(1 .96 )(20‬‬ ‫) ‪(1 .96 )(20‬‬ ‫‪55‬‬ ‫‪< μ < 55 +‬‬ ‫‪.‬‬ ‫‪100‬‬ ‫‪100‬‬ ‫واﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ ‪:‬‬

‫‪51.08 < μ < 58.92‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪n=100‬‬ ‫‪m=55‬‬ ‫‪s=20‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬

‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫`‪<<Statistics`ContinuousDistributions‬‬

‫‪z  Quantile NormalDistribution0, 1, 1 ‬‬ ‫‪1.95996‬‬

‫‪s‬‬ ‫‪low  m  z  ‬‬ ‫‪n‬‬

‫‪51.0801‬‬

‫‪٥٧‬‬


‫‪s‬‬ ‫‪‬‬

‫‪up  m  z ‬‬

‫‪n‬‬

‫‪58.9199‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪n=100‬‬

‫وﻣﺗوﺳط اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪m=55‬‬ ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪s=20‬‬ ‫‪‬ﻣن اﻻﻣر‬ ‫‪=0.05‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪ 51.0801‬ﻣن اﻻﻣر‬

‫‪s‬‬ ‫‪‬‬

‫‪low  m  z ‬‬

‫‪n‬‬

‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 58.9199‬ﻣن اﻻﻣر‬

‫‪s‬‬ ‫‪up  m  z  ‬‬ ‫‪n‬‬

‫ﻣﺛﺎل )‪(٦-٢‬‬ ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ ‫اﻟﺟﺎھزة ‪:‬‬

‫‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ‬

‫‪Statistics`ConfidenceIntervals‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`ConfidenceIntervals‬‬ ‫‪n=100‬‬ ‫‪100‬‬

‫‪m=55‬‬ ‫‪55‬‬

‫‪s=20‬‬ ‫‪20‬‬

‫]]‪NormalCI[m,(s)/Sqrt[n‬‬ ‫}‪{51.0801,58.9199‬‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪ 51.0801‬واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 85.9199‬ﻣن اﻻﻣر‬ ‫]]‪NormalCI[m,(s)/Sqrt[n‬‬ ‫و ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن ﻣﺧرﺟﺎت اﻻﻣر اﻟﺳﺎﺑق ﻋﻠﻰ اﻟﺷﻛل‬ ‫‪٥٨‬‬


‫}‪{51.0801,58.9199‬‬

‫ﻓ ﻲ ﻣﻌظ م اﻷﺣﯾ ﺎن ﯾﻛ ون اﻟﻣطﻠ وب ﺗﻘ دﯾر ﻣﺗوﺳ ط اﻟﻣﺟﺗﻣ ﻊ ﻋﻧ دﻣﺎ ﯾﻛ ون اﻟﺗﺑ ﺎﯾن ﻏﯾ ر ﻣﻌﻠ وم‬ ‫وﺣﺟم اﻟﻌﯾﻧﺔ أﻗل ﻣن ‪ ،30‬ﻓﻘد ﺗﻛون اﻟﺗﻛﺎﻟﯾف ﻋﺎﻣﻼ ﻣﺣ ددا ﻟﺣﺟ م اﻟﻌﯾﻧ ﺔ‪ .‬طﺎﻟﻣ ﺎ ﻛ ﺎن ﺷ ﻛل اﻟﻣﺟﺗﻣ ﻊ‬ ‫)ﺗﻘرﯾﺑﺎ( ﻧﺎﻗوﺳﻰ ﻓﺈﻧﮫ ﯾﻣﻛن ﺣﺳﺎب ﻓﺗرات اﻟﺛﻘﺔ ﻋﻧدﻣﺎ ﺗﻛون ‪ σ2‬ﻏﯾر ﻣﻌﻠوﻣﺔ وﺣﺟم اﻟﻌﯾﻧﺔ ﺻﻐﯾر‬ ‫‪.‬‬ ‫طرﯾﻘﺔ إﯾﺟﺎد ‪ (1  )100%‬ﻓﺗ رة ﺛﻘ ﺔ ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ھ ﻲ ﻧﻔﺳ ﮭﺎ اﻟطرﯾﻘ ﺔ اﻟﻣﺗﺑﻌ ﺔ ﻓ ﻲ ﺣﺎﻟ ﺔ‬ ‫اﻟﻌﯾﻧﺎت اﻟﻛﺑﯾرة ﻓﯾﻣﺎ ﻋدا اﺳﺗﺧدام ﺗوزﯾﻊ ‪ t‬ﺑدﻻ ﻣن اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ‪.‬‬ ‫ﻟﻌﯾﻧ ﺔ ﺧﺎﺻ ﺔ ﻣ ن اﻟﺣﺟ م ‪ ، n‬ﯾﺣﺳ ب اﻟﻣﺗوﺳ ط ‪ x‬واﻻﻧﺣ راف اﻟﻣﻌﯾ ﺎري ‪ s‬وﯾ ﺗم اﻟﺣﺻ ول‬ ‫ﻋﻠﻰ ‪ (1  )100%‬ﻓﺗرة ﺛﻘﺔ ﻛﻣﺎ ﯾﺄﺗﻲ ‪:‬‬ ‫‪s‬‬ ‫‪s‬‬ ‫‪x  t‬‬ ‫‪   x  t‬‬ ‫‪.‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪2‬‬ ‫‪2‬‬

‫ﻣﺛﺎل )‪( ٧-٢‬‬ ‫ﻓﻲ اﺧﺗﺑﺎر ﻟﻠزﻣن اﻟذي ﯾﺳﺗﻐرﻗﮫ ﺗﺟﻣﯾﻊ ﻣﺎﻛﯾﻧﺔ ﻣﻌﯾﻧﺔ وﺟد أن اﻟ زﻣن اﻟ ذي اﺳ ﺗﻐرﻗﮫ ﺗﺟﻣﯾ ﻊ ‪6‬‬ ‫ﻣﺎﻛﯾﻧ ﺎت ھ و ﻋﻠ ﻰ اﻟﺗ واﻟﻲ ‪) 12, 13, 11, 5, 10, 12 :‬ﻣﻘﺎﺳ ﮫ ﺑﺎﻟ دﻗﺎﺋق (‪ .‬أوﺟ د ‪ 95%‬ﻓﺗ رة‬ ‫ﺛﻘﺔ ﻟﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ‪ ‬وذﻟك ﺗﺣت ﻓرض أن اﻟزﻣن ) ﻓﻲ ھذا اﻟﻣﺛﺎل ( ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً‪.‬‬

‫اﻟﺣــل‪:‬‬ ‫ﻣﺗوﺳط اﻟﻌﯾﻧﺔ واﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﺑﯾﺎﻧﺎت اﻟﻣﻌطﺎة ھﻣﺎ ‪ . x  10.5 , s  2.881 :‬ﺑﺎﺳﺗﺧدام‬ ‫ﺟدول ﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق )‪ (٢‬ﻓﺈن ‪ t0.025 = 2.571‬وذﻟك ﻋﻧد درﺟﺎت ﺣرﯾﺔ ‪.   5 n-1=6-1‬‬ ‫وﻋﻠﻰ ذﻟك ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ μ‬ھﻲ ‪:‬‬ ‫)‪( 2.571)( 2.881‬‬ ‫)‪(2.571)(2.881‬‬ ‫‪.‬‬ ‫‪< μ < 10.5 +‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫اﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ ‪:‬‬

‫‪10.5‬‬

‫‪7.476    13.524 .‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫;}‪x={12.,13.,11.,5,10,12‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬

‫‪٥٩‬‬


n=Length[x] 6

m

Apply Plus , x  N n

10.5

Apply Plus , x  m2   s  N  n1 2.88097

<<Statistics`ContinuousDistributions`

t  Quantile StudentTDistribution

n  1, 1 

  2

2.57058

s low  m  t   n 7.47661

s up  m  t   n 13.5234

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ x ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت‬ ‫ﻣن اﻻﻣر‬‫و‬ =0.05

‫ اﻟﻣﺧرﺟﺎت‬:‫ﺛﺎﻧﯾﺎ‬ ‫ﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ n=Length[x] ‫وﻣﺗوﺳط اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ m

Apply Plus , x  N n ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻣن اﻻﻣر‬

Apply Plus , x  m2   s  N  n1 ‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬t

t  Quantile StudentTDistribution

 n  1, 1   2

‫ ﻣن اﻻﻣر‬7.47661 ‫واﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ‬

٦٠


low  m  z 

s 

n

‫ ﻣن اﻻﻣر‬13.5234 ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ‬

s up  m  z   n

( ٨-٢) ‫ﻣﺛﺎل‬ ‫وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬

Mathematica

‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ :

Statistics`ConfidenceIntervals

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`ConfidenceIntervals` a={12,13,11,5,10,12} {12,13,11,5,10,12}

MeanCI[a,KnownStandardDeviationNone,ConfidenceLevel>0.99] {5.75759,15.2424}

MeanCI[a,KnownVarianceNone,ConfidenceLevel->0.99] {5.75759,15.2424}

MeanCI[a,ConfidenceLevel->0.99] {5.75759,15.2424}

MeanCI[a,KnownStandardDeviationNone] {7.47661,13.5234}

MeanCI[a,KnownVarianceNone] {7.47661,13.5234}

MeanCI[a] {7.47661,13.5234}

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬: ‫اوﻻ‬ a ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت‬ ‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ ﻣن اﻻﻣر‬μ ‫ ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ‬99% ‫ﯾﺗم اﻟﺣﺻول ﻋﻠﻰ‬ MeanCI[a,KnownStandardDeviation->None,ConfidenceLevel->.99]

٦١


‫ﺣﯾث اﻟﺧﯾﺎر ‪ KnownStandardDeviation->None‬ﯾﻌﻧﻰ ان اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ‬ ‫ﻏﯾر ﻣﻌروف ﻛﻣﺎ ﯾﺳﺗﺧدم اﻟﺧﯾﺎر ‪ ConfidenceLevel->.99‬ﻋﻧد اﻟرﻏﺑﺔ ﻓﻰ اﺳﺗﺧدام‬ ‫‪  .01‬‬

‫ﺣﯾث اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪ 5.75759‬واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 15.2424‬و ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن ﻣﺧرج‬ ‫اﻻﻣراﻟﺳﺎﺑق ﻋﻠﻰ اﻟﺷﻛل‬ ‫}‪{5.75759,15.2424‬‬

‫واﻻﻣر اﻟﺳﺎﺑق ﯾﻛﺎﻓﺊ اﻻﻣر ‪:‬‬ ‫]‪MeanCI[a,KnownVariance->None,ConfidenceLevel->.99‬‬

‫ﺣﯾث اﻟﺧﯾﺎر ‪ KnownVariance->None‬ﯾﻌﻧﻰ ان ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ﻏﯾر ﻣﻌروف‬ ‫وﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ﻧﻔس اﻟﻧﺗﺎﺋﺞ ﺑﺎﺳﺗﺧدام اﻻﻣر ‪:‬‬ ‫]‪MeanCI[a,ConfidenceLevel->0.99‬‬ ‫وﻋﻧد اﻟرﻏﺑﺔ ﻓﻰ اﻟﺣﺻول ﻋﻠﻰ ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ μ‬ﯾﺳﺗﺧدم اﻻﻣر‬ ‫]‪MeanCI[a,KnownStandardDeviationNone‬‬ ‫ﺣﯾث اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪ 7.47661‬واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 13.5234‬و ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن ﻣﺧرج اﻻﻣر‬ ‫اﻟﺳﺎﺑق ﻋﻠﻰ اﻟﺷﻛل‬ ‫}‪{7.47661,13.5234‬‬

‫واﻻﻣر اﻟﺳﺎﺑق ﯾﻛﺎﻓﺊ اﻻﻣر‬ ‫]‪MeanCI[a,KnownVarianceNone‬‬ ‫او اﻻﻣﺮ‬ ‫]‪MeanCI[a‬‬

‫ﻣﺛﺎل )‪(٩-٢‬‬ ‫ﻧﻔرض إن ﻣﻔﺗﺷﺎ ﯾرﻏب ﻓﻲ إﺟراء ﻣراﺟﻌﺔ ﺳرﯾﻌﺔ ﻋﻠﻰ وزن اﻟﺧﺑز اﻟذي ﯾﻧﺗﺟﮫ اﺣ د اﻟﻣﺧ ﺎﺑز‬ ‫ﻣﺎ ﻓﯾﺄﺧذ ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ‪ 15‬رﻏﯾﻔ ﺎ ﻣ ن إﻧﺗ ﺎج اﻟﻣﺧﺑ ز ‪.‬ﻧﻔ رض أن ﻣﺗوﺳ ط وزن اﻟرﻏﯾف‬ ‫‪ x  15.8‬وأن اﻻﻧﺣراف اﻟﻣﻌﯾﺎري ھو‪ 0.3‬رطل‪.‬أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻣﺗوﺳ ط وزن أﻧﺗ ﺎج‬ ‫اﻟﻣﺧﺑز ﺑﺄﻛﻣﻠﮫ وذﻟك ﺗﺣت ﻓرض أن اﻟﻣﺟﺗﻣﻊ ﺗﻘرﯾﺑﺎ طﺑﯾﻌﻲ‪.‬‬

‫اﻟﺣــل‪:‬‬ ‫ﻣﺗوﺳط اﻟﻌﯾﻧﺔ واﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﺑﯾﺎﻧﺎت اﻟﻣﻌطﺎة ھﻣ ﺎ ‪ . x  15.8 , s  0.3 :‬ﺑﺎﺳ ﺗﺧدام ﺟ دول‬ ‫ﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق )‪ (٢‬ﻓﺈن ‪ t0.025 = 2.145‬وذﻟك ﻋﻧد درﺟﺎت ﺣرﯾﮫ ‪ .   14‬وﻋﻠ ﻰ ذﻟ ك ‪95%‬‬ ‫ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ ‬ھﻲ ‪:‬‬

‫‪٦٢‬‬


‫‪.‬‬

‫)‪(2.145)(0.3‬‬ ‫‪15‬‬

‫‪< μ < 15.8 +‬‬

‫)‪(2.145)(0.3‬‬ ‫‪15‬‬

‫‪15.8‬‬

‫واﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ‪:‬‬

‫‪15.63 < μ < 15.97 .‬‬ ‫ﻓﻰ ھذا اﻟﻣﺛﺎل ﻻ ﺗوﺟد ﻗﺎﺋﻣﺔ ﺑﺎﻟﻣﺷﺎھدات ﺣﯾث ﯾﺗوﻓر ﺣﺟم اﻟﻌﯾﻧﺔ‬ ‫واﻟوﺳط اﻟﺣﺳﺎﺑﻰ واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬

‫‪n=15‬‬ ‫‪15‬‬

‫‪m=15.8‬‬ ‫‪15.8‬‬

‫‪s=.3‬‬ ‫‪0.3‬‬

‫‪=n-1‬‬

‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪14‬‬

‫‪t  QuantileStudentTDistribution, 1 ‬‬ ‫‪2.14479‬‬

‫]‪low=m-t s/Sqrt[n‬‬ ‫‪15.6339‬‬

‫]‪up=m+t s/Sqrt[n‬‬ ‫‪15.9661‬‬ ‫ﻟﮭذا اﻟﻣﺛﺎل ‪:‬‬ ‫درﺟﺎت اﻟﺣرﯾﺔ ﺗﻌطﻰ ﻣن اﻻﻣر‬ ‫‪=n-1‬‬ ‫ﻟﻠﺛﻘﺔ‬ ‫اﻻدﻧﻰ‬ ‫واﻟﺣد‬ ‫‪15.6339‬‬ ‫ﻣن اﻻﻣر‬ ‫]‪low=m-t s/Sqrt[n‬‬ ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 15.9661‬ﻣن‬ ‫]‪up=m+t s/Sqrt[n‬‬

‫ﻣﺛﺎل )‪(١٠-٢‬‬ ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬ ‫‪ .Statistics`ConfidenceIntervals‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‪.‬‬ ‫`‪<<Statistics`ConfidenceIntervals‬‬ ‫‪n=15‬‬ ‫‪٦٣‬‬


‫‪m=15.8‬‬ ‫‪s=.3‬‬ ‫‪15‬‬ ‫‪15.8‬‬ ‫‪0.3‬‬

‫‪=n-1‬‬ ‫‪14‬‬

‫‪s‬‬ ‫‪StudentTCI m,  , , ConfidenceLevel  0.99‬‬ ‫‪n‬‬

‫}‪{15.5694,16.0306‬‬

‫‪s‬‬ ‫‪StudentTCIm,  , ‬‬ ‫‪n‬‬

‫}‪{15.6339,15.9661‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪ 15.5694‬و اﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 16.0306‬ﻣن اﻻﻣر‬

‫‪s‬‬ ‫‪StudentTCI m,  , , ConfidenceLevel  0.99‬‬ ‫‪n‬‬ ‫ﺣﯾث‬ ‫واﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪  .01‬‬

‫‪, ‬‬

‫‪s‬‬ ‫‪‬‬

‫اﻟﺧﯾﺎر اﻟﻣﻔﺗرض‬

‫‪StudentTCIm,‬‬

‫‪n‬‬

‫ﺣﯾث ‪   .05‬اﻟﺧﯾﺎر اﻟﻣﻔﺗرض واﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪15.6339‬‬ ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪. 15.9661‬‬

‫)‪ (٣-٢‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻔرق ﺑﯾن ﻣﺗوﺳطﻲ ﻣﺟﺗﻣﻌﯾن ‪μ 1 μ 2‬‬

‫‪Confidence Interval for the Difference Between two‬‬ ‫‪Populations Means‬‬ ‫إذا ﻛﺎن ﻟدﯾﻧﺎ ﻣﺟﺗﻣﻌﺎن ‪ ،‬اﻟﻣﺟﺗﻣﻊ اﻷول ﻟﮫ ﻣﺗوﺳط ‪ μ1‬وﺗﺑﺎﯾن ‪ σ12‬واﻟﻣﺟﺗﻣ ﻊ اﻟﺛ ﺎﻧﻲ ﻟ ﮫ ﻣﺗوﺳ ط ‪μ 2‬‬

‫وﺗﺑﺎﯾن ‪ .  22‬وﻋﻠﻰ ذﻟك ‪ ،‬ﻟﻠﺣﺻ ول ﻋﻠ ﻰ ﺗﻘ دﯾر ﺑﻧﻘط ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ 1   2‬ﻻ ﺑ د ﻣ ن اﺧﺗﯾ ﺎر ﻋﯾﻧ ﺔ‬ ‫ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n1‬ﻣن اﻟﻣﺟﺗﻣﻊ اﻷول وﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n2‬ﻣن اﻟﻣﺟﺗﻣﻊ اﻟﺛ ﺎﻧﻲ وﻣﺳ ﺗﻘﻠﺔ‬ ‫ﻋ ن اﻟﻌﯾﻧ ﺔ اﻷوﻟ ﻲ وﺣﺳ ﺎب اﻟﻔ رق ﺑ ﯾن اﻟﻣﺗوﺳ طﯾن ‪ . x1  x 2‬ﺑﻔ رض أن اﻟﻌﯾﻧﺗ ﯾن اﻟﻣﺳ ﺗﻘﻠﯾن ﺗ م‬ ‫اﺧﺗﯾﺎرھﻣﺎ ﻣن ﻣﺟﺗﻣﻌﯾن طﺑﯾﻌﯾﯾن ‪ ،‬أو ﻓ ﻲ ﺣﺎﻟ ﺔ ﻋ دم ﺗ واﻓر ذﻟ ك اﻟﻔ رض ‪ ،‬إذا ﻛ ﺎن ﻛ ﻼ ﻣ ن ‪ n1‬و ‪n2‬‬ ‫أﻛﺑر ﻣن أو ﯾﺳﺎوي ‪ 30‬ﻓﺈﻧﮫ ﯾﻣﻛن إﯾﺟﺎد ‪ (1  )100%‬ﻓﺗرة ﺛﻘﺔ ﻛﺎﻵﺗﻲ ‪:‬‬

‫‪٦٤‬‬


‫‪12 22‬‬ ‫‪12 22‬‬ ‫‪‬‬ ‫‪ 1  2  (x1 x 2 )  z ‬‬ ‫‪ .‬‬ ‫‪n1 n 2‬‬ ‫‪n‬‬ ‫‪n2‬‬ ‫‪1‬‬ ‫‪2‬‬

‫‪(x1 x 2 ) z ‬‬ ‫‪2‬‬

‫درﺟﺔ اﻟﺛﻘﺔ ﺗﻛون ﻣﺿﺑوطﺔ ﻋﻧدﻣﺎ ﺗﺧﺗﺎر اﻟﻌﯾﻧﺎت ﻣن ﻣﺟﺗﻣﻌﺎت طﺑﯾﻌﯾﺔ‪ .‬ﻟﻠﻣﺟﺗﻣﻌﺎت اﻟﻐﯾر طﺑﯾﻌﯾﺔ‬ ‫ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ﻓﺗرات ﺛﻘﺔ ﺗﻘرﯾﺑﯾﺔ واﻟﺗﻲ ﺗﻛون ﺟﯾدة ﺟدا ﻋﻧدﻣﺎ ‪ n2 , n1‬ﺗزﯾد ﻋن ‪ .30‬إذا ﻛﺎﻧت‬ ‫‪ σ 22 , σ12‬ﻣﺟﮭوﻟﺗﯾن واﻟﻌﯾﻧﺎت اﻟﻣﺧﺗﺎرة ﻛﺑﯾرة ﺑدرﺟﺔ ﻛﺎﻓﯾﺔ ‪ ،‬ﻓﺈﻧﮫ ﯾﻣﻛن اﺳﺗﺑدال ‪ σ 22 , σ12‬ﺑـ‬ ‫‪ s 22 , s12‬ﻋﻠﻰ اﻟﺗواﻟﻲ ﺑدون اﻟﺗﺄﺛﯾر ﻋﻠﻰ ﻓﺗرة اﻟﺛﻘﺔ ‪.‬‬

‫ﻣﺛﺎل )‪(١١-٢‬‬ ‫أﻋط ﻰ اﺧﺗﺑ ﺎر ﻓ ﻲ ﻣ ﺎدة اﻹﺣﺻ ﺎء إﻟ ﻰ ‪ 75‬طﺎﻟﺑ ﺔ و ‪50‬طﺎﻟﺑ ﺎ ً‪ .‬ﻓ ﺈذا ﻛ ﺎن ﻣﺗوﺳ ط اﻟﻧﻘ ﺎط ﻣ ن‬ ‫ﻋﯾﻧ ﺔ اﻟطﺎﻟﺑ ﺎت ‪ x1  80‬ﺑ ﺎﻧﺣراف ﻣﻌﯾ ﺎري ‪ . s1  7‬وﻛ ﺎن ﻣﺗوﺳ ط اﻟﻧﻘ ﺎط ﻟﻌﯾﻧ ﺔ اﻟطﻠﺑ ﺔ‬ ‫‪ x 2  70‬ﺑﺎﻧﺣراف ﻣﻌﯾﺎري ‪ . s 2  6‬أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪. 1   2‬‬

‫اﻟﺣــل‪:‬‬ ‫اﻟﺗﻘدﯾر ﺑﻧﻘطﺔ ﻟـ ‪ μ1 μ 2‬ھو ‪ . x 1 x 2 =80-70=10‬وﺣﯾث أن ﻛ ﻼ ﻣ ن ‪ n1 , n2‬ﻛﺑﯾ رة ﻓﺈﻧ ﮫ ﯾﻣﻛ ن‬ ‫اﺳ ﺗﺧدام ‪ s1=7‬ﺑ دﻻ ﻣ ن ‪ σ1‬و ‪ s2=6‬ﺑ دﻻ ﻣ ن ‪ . σ 2‬ﺑﺎﺳ ﺗﺧدام ‪ α = 0 .05‬ﻓ ﺈن ‪z 0.005  1.96‬‬

‫وذﻟك ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ﻓﻲ ﻣﻠﺣق )‪ .(١‬وﺑﺎﻟﺗﻌوﯾض ﻓ ﻲ ‪ 95%‬ﻓﺗ رة ﺛﻘ ﺔ ﻟ ـ ‪ μ 1 μ 2‬اﻟﺗﺎﻟﯾ ﺔ‬ ‫‪:‬‬

‫‪12 22‬‬ ‫‪2 2‬‬ ‫‪‬‬ ‫‪ 1  2  (x1 x 2 )  z  1  2 .‬‬ ‫‪n1 n 2‬‬ ‫‪n1 n 2‬‬ ‫‪2‬‬ ‫ﻧﺣﺻل ﻋﻠﻰ ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪72 62‬‬ ‫‪μ 2 < 10 1.96‬‬ ‫‪+ .‬‬ ‫‪75 50‬‬ ‫أو‪:‬‬

‫‪(x1 x 2 ) z ‬‬ ‫‪2‬‬

‫‪72 62‬‬ ‫‪10 1.96‬‬ ‫‪+‬‬ ‫‪< μ1‬‬ ‫‪75 50‬‬

‫‪7.703 < μ1 μ 2 < 12.297.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪٦٥‬‬


‫‪‬‬ ‫‪‬‬ ‫‪2‬‬

‫;‪n1=75;xb1=80;s1=7‬‬ ‫;‪n2=50;xb2=70;s2=6‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬

‫‪0, 1, 1 ‬‬

‫‪z  Quantile NormalDistribution‬‬ ‫‪1.95996‬‬ ‫‪xb=xb1-xb2‬‬ ‫‪10‬‬

‫‪s1 2‬‬ ‫‪s22 ‬‬ ‫‪s  ‬‬ ‫‪‬‬ ‫‪ N‬‬ ‫‪n1‬‬ ‫‪n2‬‬ ‫‪1.17189‬‬ ‫‪low=xb-z*s‬‬ ‫‪7.70313‬‬ ‫‪up=xb+z*s‬‬ ‫‪12.2969‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﺣﺟم اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ ‫‪n1=75‬‬ ‫وﺣﺟم اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ ‫‪n2=50‬‬ ‫وﻣﺗوﺳط اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ ‫‪xb1=80‬‬ ‫وﻣﺗوﺳط اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ ‫‪xb2=70‬‬ ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ ‫‪s1=7‬‬ ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ ‫‪s2=6‬‬ ‫‪‬ﻣن اﻻﻣر‬ ‫‪=0.05‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬ ‫‪low=xb-z*s‬‬ ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪up=xb+z*s‬‬

‫‪٦٦‬‬


‫ﻣﺛﺎل )‪(١٢-٢‬‬ ‫ﻟﻠﺑﯾﺎﻧ ﺎت اﻟﺗﺎﻟﯾ ﺔ أوﺟ د ‪ 95%‬ﻓﺗ رة ﺛﻘ ﺔ ﻟ ـ ‪1   2‬‬

‫ﺣﯾ ث ‪ 12  22  10.5‬ﺗﺣ ت ﻓ رض أن‬

‫اﻟﻣﻔردات ﻣﺄﺧوذة ﻣن ﻣﺟﺗﻣﻌﯾن طﺑﯾﻌﯾﯾن‪:‬‬ ‫}‪public={825,990,1054,921,816,818,1071,1121,926,956,867,935‬‬ ‫‪private={840,600,890,780,915,915,1230,1302,922,845,923,1030,‬‬ ‫}‪879,757,921,848,870,826,831,1005,1002,915,813,842,774‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ ‫اﻟﺟﺎھزة ‪:‬‬

‫‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ‬

‫‪Statistics`ConfidenceIntervals‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`ConfidenceIntervals‬‬ ‫;}‪public={825,990,1054,921,816,818,1071,1121,926,956,867,935‬‬ ‫‪private={840,600,890,780,915,915,1230,1302,922,845,923,1030,‬‬ ‫;}‪879,757,921,848,870,826,831,1005,1002,915,813,842,774‬‬ ‫‪MeanDifferenceCI[public,private,KnownStandardDeviation{10.‬‬ ‫]}‪5,10.5‬‬ ‫}‪{35.4393,49.894‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪ public‬و ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪private‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪ 35.4393‬واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 49.894‬ﻣن اﻻﻣر‬ ‫‪MeanDifferenceCI[public,private,KnownStandardDeviation{10.‬‬ ‫]}‪5,10.5‬‬

‫‪.‬واﻻﻣر اﻟﺳﺎﺑق ﯾوﺿﻊ ﺑﺻورة ﻋﺎﻣﺔ ﻋﻠﻰ اﻟﺷﻛل اﻟﺗﺎﻟﻰ‬ ‫]‪MeanDifferenceCI[list1, list2, options‬‬ ‫ﺣﯾث ‪ list1‬ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ ﻟﻠﻣﺟﻣوﻋﺔ اﻻوﻟﻰ و ‪ list2‬ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ ﻟﻠﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ‬ ‫و‪ options‬ﺗﻌﻧﻰ اﻟﺧﯾﺎرات اﻟﻣطﻠوﺑﺔ ﺣﯾث ﯾﺳﺗﺧدم اﻟﺧﯾﺎر‬ ‫} ‪KnownStandardDeviation{ {1 ,  2‬‬ ‫‪٦٧‬‬


‫او اﻟﺧﯾﺎر ‪:‬‬ ‫‪2 2‬‬ ‫} ‪KnownVariance{ {1 ,  2‬‬

‫واﻟﺧﯾﺎر اﻟﻣﻔﺗرض ھو ‪ 95%‬ﻓﺗرة ﺛﻘﺔ وﻟﻛن ﻻى ﻓﺗرة ﺛﻘﺔ اﺧرى ﯾﺳﺗﺧدم اﻟﺧﯾﺎر ‪:‬‬ ‫‪ConfidenceLevel->c‬‬

‫ﻣن اﻻﻣر اﻟﺳﺎﺑق‪.‬‬ ‫ﻧﺣﺻل ﻋﻠﻰ ﻗﺎﺋﻣﺔ }‪ {min, max‬ﺗﻣﺛل ﻓﺗرة اﻟﺛﻘﺔ وذﻟك ﺑﺎﺳﺗﺧدام اﻟﻣﺷﺎھدات ﻣن اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ﻓﻰ‬ ‫‪ list1‬واﻟﻣﺷﺎھدات ﻓﻰ اﻟﻌﯾﻧﻰ اﻟﺛﺎﻧﯾﺔ ﻓﻰ ‪list2‬‬ ‫إذا ﻛﺎﻧت ‪ σ 22 , σ12‬ﻣﺟﮭوﻟﺗﯾن واﻟﻌﯾﻧﺎت اﻟﻣﺧﺗﺎرة ﻛﺑﯾرة ﺑدرﺟﺔ ﻛﺎﻓﯾﺔ ‪ ،‬ﻓﺈﻧﮫ ﯾﻣﻛن اﺳﺗﺑدال‬ ‫‪ σ 22 , σ12‬ﺑـ ‪ s 22 , s12‬ﻓﻰ اﻟﺧﯾﺎر ‪:‬‬ ‫‪2‬‬

‫‪2‬‬

‫} ‪KnownVariance{ {1 ,  2‬‬

‫ﻻﯾﺟﺎد ‪ (1  )100%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ 1   2‬ﺗﺳﺗﺧدم اﻟطرﯾﻘﺔ اﻟﺳﺎﺑﻘﺔ إذا ﻛﺎن ‪  22 , 12‬ﻣﻌﻠوﻣﺗﺎن‬ ‫أو ﯾﻣﻛن ﺗﻘدﯾرھﻣﺎ ﻣن ﻋﯾﻧﺎت ﻛﺑﯾرة‪ .‬إذا ﻛﺎﻧت أﺣﺟﺎم اﻟﻌﯾﻧﺎت ﺻﻐﯾرة ‪ ،‬ﻓﺳوف ﺗﺳﺗﺧدم ﺻﯾﻐﺔ اﺧرى‬ ‫ﻟﻠﺣﺻول ﻋﻠﻰ ﻓﺗرات ﺛﻘﺔ واﻟﺗﻲ ﺗﻛون ﺻﺣﯾﺣﺔ ﻋﻧدﻣﺎ ﺗﻛون اﻟﻣﺟﺗﻣﻌﺎت ﺗﻘرﯾﺑﺎ ً ﺗﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ‪.‬‬ ‫ﺑﻔرض أن ‪ 12   22   2‬ﻓﺈﻧﮫ ﯾﻣﻛن اﺳﺗﺧدام ‪ s 2p‬ﻛﺗﻘدﯾر ﻟﻠﺗﺑﺎﯾن اﻟﻌﺎم ‪ . σ2‬ﺣﯾث ‪:‬‬

‫‪(n1  1)s12  (n 2  1)s 22‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪n1  n 2  2‬‬ ‫ﻷي ﻋﯾﻧﺗﯾن ﻋﺷواﺋﯾﺗﯾن ﻣﺳﺗﻘﻠﺗﯾن ﻣن اﻟﺣﺟم ‪ n2 , n1‬ﯾﺗم اﺧﺗﯾﺎرھﻣﺎ ﻣن ﻣﺟﺗﻣﻌﯾن طﺑﯾﻌﯾﯾن ﻓﺈن اﻟﻔرق‬ ‫ﺑﯾن ﻣﺗوﺳطﻲ اﻟﻌﯾﻧﺗﯾن ‪ ، x1  x 2 ،‬واﻟﺗﺑﺎﯾن اﻟﻌﺎم ﻟﻠﻌﯾﻧﺔ ‪ s2p‬ﯾﺗم ﺣﺳﺎﺑﮭﻣﺎ واﺳﺗﺧداﻣﮭﻣﺎ ﻓﻲ إﯾﺟﺎد‬ ‫‪ (1  )100%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ 1   2‬ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪s 2p‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪ 1 2  (x1 x 2 )  t  s p‬‬ ‫‪‬‬ ‫‪.‬‬ ‫‪n1 n 2‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪(x1 x 2 ) t  s p‬‬ ‫‪2‬‬

‫ﻣﺛﺎل )‪( ١٣-٢‬‬ ‫اﺧﺗﯾرت ﻣﺟﻣوﻋﺗ ﺎن ﻣ ن اﻷراﻧ ب ‪ ،‬اﻷوﻟ ﻰ ﻣ ن ‪ 13‬أرﻧﺑ ﺎ ً وأﻋطﯾ ت اﻟﻐ ذاء ‪ A‬واﻟﺛﺎﻧﯾ ﺔ ﻣ ن‬ ‫‪ 15‬أرﻧﺑﺎ ً وأﻋطﯾت اﻟﻐذاء ‪ B‬وﻛﺎﻧت اﻟزﯾﺎدة ﻓﻲ اﻟوزن ﺑﻌد ﻓﺗرة ﻣﻌﯾﻧﺔ ھﻲ ‪:‬‬ ‫‪A: 35, 30, 30, 23, 21, 12, 24, 23, 33, 27, 29, 25, 21.‬‬ ‫‪B: 20, 17, 34, 31, 29, 39, 30, 46, 7, 21, 33, 43, 21, 34, 20.‬‬ ‫أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻔ رق ﺑ ﯾن ﻣﺗوﺳ طﻲ اﻟﻣﺟﺗﻣﻌ ﯾن ‪ ،‬وذﻟ ك ﺗﺣ ت ﻓ رض أن اﻟﻣﺟﺗﻣﻌ ﯾن‬ ‫ﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻌﺎن اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ﺣﯾث ‪. 12   22‬‬

‫‪٦٨‬‬


‫اﻟﺣــل‪:‬‬ ‫‪s 1 = 6.05,‬‬ ‫‪s 2 = 10.58,‬‬

‫‪x 1 = 25.62,‬‬ ‫‪x 2 = 28.33,‬‬

‫‪n 1 = 13,‬‬ ‫‪n 2 = 15,‬‬

‫ﻹﯾﺟﺎد ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ μ1 μ 2‬ﺳوف ﻧﺳﺗﺧدم اﻟﺗﻘدﯾر ﺑﻧﻘطﺔ ‪ . =25.62-28.33=-2.71 x1 x 2‬اﻟﺗﺑﺎﯾن‬ ‫اﻟﻌﺎم ‪ s 2p‬ھو ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫)‪2 (n1  1)s1  (n 2  1)s 2 (12)(6.05)  (14)(10.58‬‬ ‫‪sp ‬‬ ‫‪‬‬ ‫‪ 77.1669.‬‬ ‫‪n1  n 2  2‬‬ ‫‪13  15  2‬‬ ‫‪α‬‬ ‫ﺑﺄﺧذ اﻟﺟذر اﻟﺗرﺑﯾﻌﻲ ﻟﻠﺗﺑﺎﯾن اﻟﻌﺎم ﻓﺈن ‪ .sp=8.784‬ﺑﺎﺳﺗﺧدام ‪ = .025‬ﻓﺈن ‪ t.025=2.056‬ﺗﺳﺗﺧرج‬ ‫‪2‬‬

‫ﻣن ﺟدول ﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق )‪ (٢‬ﻋﻧد درﺟﺎت ﺣرﯾﺔ ‪ .   13  15  2  26‬ﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ‬ ‫اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪ 1   2‬‬ ‫‪n1 n 2‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪,‬‬ ‫‪n1 n 2‬‬

‫‪(x1  x 2 )t  s p‬‬ ‫‪2‬‬

‫‪ (x1  x 2 )t  s p‬‬ ‫‪2‬‬

‫ﻓﺈن ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ 1   2‬ھﻲ ‪:‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫< ‪< μ1 μ 2‬‬ ‫‪13 15‬‬

‫) ‪2 .71 ( 2.056 )(8.784‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪+ .‬‬ ‫‪13 15‬‬

‫) ‪2 .71 + ( 2.056 )(8 .784‬‬

‫واﻟﺗﻲ ﯾﻣﻛن اﺧﺗزاﻟﮭﺎ إﻟﻰ ‪:‬‬ ‫‪-9.553 < μ 1 μ 2 < 4.133.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫;}‪a={35,30,30,23,21,12,24,23,33,27,29,25,21‬‬ ‫;}‪b={20,17,34,31,29,39,30,46,7,21,33,43,21,34,20‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬

‫]‪plu[w_]:=Apply[Plus,w‬‬ ‫]‪l[w_]:=Length[w‬‬ ‫]‪n1=l[a‬‬ ‫‪13‬‬

‫]‪n2=l[b‬‬ ‫‪٦٩‬‬


15

plu a  N n1

xb1  25.6154

xb2 

plu b  N n2

28.3333

plu a  xb1 2 s1   n1  1 6.04895

plu b  xb2 2  s2  n2  1 10.5808

<<Statistics`ContinuousDistributions` t  Quantile StudentTDistribution n1  n2  2,

1

  2

2.05553

xb=xb1-xb2 -2.71795

n1  1s12  n2  1s2 2  sp  n1  n2  2 8.78462

1 1  s  sp   N n1 n2 3.32878

low=xb-t*s -9.56035

up=xb+t*s 4.12445

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬: ‫اوﻻ‬ b ‫ و ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت‬a ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت‬ ‫ﻣن اﻻﻣر‬ =0.05

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬ low=xb-t*s ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

up=xb+t*s ٧٠


‫ﺗﻔﺗرض اﻟطرﯾﻘﺔ اﻟﺳﺎﺑﻘﺔ ﻟﻠﺣﺻول ﻋﻠﻰ ﻓﺗرات ﺛﻘﺔ ﻟـ ‪ 1   2‬أن اﻟﻣﺟﺗﻣﻌﯾن طﺑﯾﻌﯾﯾن وأن‬ ‫‪ . 12   22‬أﯾﺿﺎ ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ﻧﺗﺎﺋﺞ ﺟﯾدة إذا ﻛﺎﻧت‬ ‫اﻟﻣﺟﺗﻣﻌﯾن طﺑﯾﻌﯾﯾن و ‪. n1  n 2‬‬

‫‪ 12   22‬وذﻟك ﺗﺣت ﺷرط أن‬

‫ﻣﺛﺎل )‪(١٤-٢‬‬ ‫ﻓﯾﻣ ﺎ ﯾﻠ ﻲ ﺑﯾﺎﻧ ﺎت ﻋﯾﻧﺗ ﺎن اﻟﻛ ﺎﺑﻼت اﻟﻣ ﺄﺧوذة ﻣ ن ﺷ رﻛﺗﯾن ﻣﻧﺗﺟ ﺔ ﻟﻘط ﻊ ﻏﯾ ﺎر ﻣﻛ ﺎﺋن ﻣﻌﯾﻧ ﺔ‬ ‫وﺗﺗﺿ ﻣن اﻟﺑﯾﺎﻧ ﺎت ﻋ دد اﻷﯾ ﺎم اﻟﺗ ﻲ ﺗﺳ ﺗﻐرﻗﮭﺎ ﻛ ل ﺷ رﻛﺔ ﻓ ﻲ ﺗﺣﻘﯾ ق طﻠ ب اﻟﻘط ﻊ وﻋ دد‬ ‫اﻟﻛﺎﺑﻼت ﻓﻲ ﻋﺷرة‬ ‫‪ : 19,14,18,13,10,12,14,11,16,10‬ﺷرﻛﺔ ‪A‬‬ ‫‪ : 21,20,19,13,14,18,15,19,25,20‬ﺷرﻛﺔ ‪B‬‬ ‫أوﺟ د ‪ 95%‬ﻓﺗ رة ﺛﻘ ﺔ ﻟﻠﻔ رق ﺑ ﯾن ﻣﺗوﺳ طﻲ اﻟﻣﺟﺗﻣﻌ ﯾن وذﻟ ك ﺗﺣ ت ﻓ رض أن اﻟﻣﺟﺗﻣﻌ ﯾن‬ ‫ﺗﻘرﯾﺑﺎ ﯾﺗﺑﻌﺎن اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ﺣﯾث ‪. 12  2 2‬‬

‫اﻟﺣــل‪:‬‬ ‫‪n1  10,‬‬ ‫اﻟﺷرﻛﺔ ‪ : A‬ﻓﺈن ‪s1  3.16‬‬ ‫‪x 2  13.7,‬‬ ‫وﻟﻠﺷرﻛﺔ ‪ : B‬ﻓﺈن‬ ‫‪n 2  10,‬‬ ‫‪s 2  3.6‬‬ ‫‪x 2  18.4,‬‬ ‫ﻹﯾﺟﺎد‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟ ـ ‪ 1   2‬ﺳ وف ﻧﺳ ﺗﺧدم اﻟﺗﻘ دﯾر ﺑﻧﻘط ﺔ ‪x1  x 2  13.7  18.4  4.7‬‬ ‫‪2‬‬ ‫واﻟﺗﺑﺎﯾن اﻟﻌﺎم ‪ s p‬ھو‪:‬‬

‫‪2‬‬

‫‪2‬‬

‫‪(n  1)s12  (n 2  1)s 2 2  9  3.16    9  3.6 ‬‬ ‫‪ 1‬‬ ‫‪‬‬ ‫‪ 11.4921. .‬‬ ‫‪n1  n 2  2‬‬ ‫‪10  10  2‬‬

‫‪2‬‬

‫‪sp‬‬

‫‪α‬‬ ‫ﺑﺄﺧذاﻟﺟذراﻟﺗرﺑﯾﻌﻲ ﻟﻠﺗﺑﺎﯾن اﻟﻌﺎم ﻓﺈن ‪ s p  3.39‬وﺑﺎﺳﺗﺧدام ‪= 0.025‬‬ ‫‪2‬‬ ‫ﻧﺳﺗﺧرج ﻣن ﺟدول اﻟﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق )‪ (٢‬ﻋﻧد درﺟﺎت ﺣرﯾﺔ ‪  10  10  2  18‬‬ ‫ﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ‪:‬‬

‫ﻓﺈن‪t 0.025 = 2.101‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪, (x1  x 2 )  t  s p‬‬ ‫‪‬‬ ‫‪ 1  2‬‬ ‫‪n1 n 2‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﻓﺈن ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ 1   2‬ھﻲ‪:‬‬

‫‪٧١‬‬

‫‪ (x 1  x 2 )  t  s p‬‬ ‫‪2‬‬


1 1 1 1 + < μ 1 μ 2 < ( 4.7) + (2.101)(3.39) + 10 10 10 10 :‫واﻟﺗﻲ ﯾﻣﻛن اﺧﺗزاﻟﮭﺎ إﻟﻰ‬ 7.8852  1   2  1.5148 . ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬

4.7 ) (2.101)(3.39)

(

a={19,14,18,13,10,12,14,11,16,10}; b={21,20,19,13,14,18,15,19,25,20}; =.05 0.05

plu[w_]:=Apply[Plus,w] l[w_]:=Length[w] n1=l[a] 10

n2=l[b] 10

plu a  N n1

xb1  13.7

plu b  N n2

xb2  18.4

plu a  xb1 2   s1  n1  1 3.16403

plu b  xb2 2 s2   n2  1 3.59629

<<Statistics`ContinuousDistributions` t  Quantile StudentTDistribution n1  n2  2,

1

  2

2.10092

xb=xb1-xb2 -4.7

n1  1s12  n2  1s2 2  sp  n1  n2  2 ٧٢


‫‪3.38707‬‬

‫‪1‬‬ ‫‪1 ‬‬ ‫‪s  sp‬‬ ‫‪‬‬ ‫‪ N‬‬ ‫‪n1‬‬ ‫‪n2‬‬ ‫‪1.51474‬‬

‫‪low=xb-t*s‬‬ ‫‪-7.88236‬‬

‫‪up=xb+t*s‬‬ ‫‪-1.51764‬‬

‫اﻵن وﻋﻧد اﻟرﻏﺑﺔ ﻓﻲ إﯾﺟﺎد ‪ (1 α )100 %‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ μ 1 μ 2‬ﻓﻲ ﺣﺎﻟﺔ اﻟﻌﯾﻧ ﺎت اﻟﺻ ﻐﯾرة‬ ‫ﻋﻧ دﻣﺎ ﺗﻛ ون ‪ 12   22‬وﻋﻧ د ﺻ ﻌوﺑﺔ اﻟﺣﺻ ول ﻋﻠ ﻰ ﻋﯾﻧ ﺎت ذات أﺣﺟ ﺎم ﻣﺗﺳ ﺎوﯾﺔ ﻓ ﺈن درﺟ ﺎت‬ ‫اﻟﺣرﯾﺔ ‪ ‬ﺗﺣﺳب ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪s1 s 2‬‬ ‫‪+‬‬ ‫‪n1 n 2‬‬ ‫=‪ν‬‬ ‫‪s12 2‬‬ ‫‪s 22 2‬‬ ‫) (‬ ‫) (‬ ‫‪n1‬‬ ‫‪n‬‬ ‫‪+ 1‬‬ ‫‪n1 1 n 2 1‬‬ ‫وﺑﻣﺎ أن ‪ ν‬ﻧﺎدرا ً ﻣﺎ ﺗﻛون ﻋدد ﺻﺣﯾﺢ ‪ ،‬ﻓﺈﻧﻧﺎ ﻧﻘرﺑﮭﺎ إﻟﻰ أﻗرب رﻗم ﺻﺣﯾﺢ‪ .‬ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ‬ ‫‪ (1 α)100%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ 1   2‬ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬

‫‪s12 s 22‬‬ ‫‪s 2 s2‬‬ ‫‪‬‬ ‫‪ 1   2  (x1  x 2 )  t  1  2 ‬‬ ‫‪n1 n 2‬‬ ‫‪n1 n 2‬‬ ‫‪2‬‬

‫‪(x1  x 2 )  t ‬‬ ‫‪2‬‬

‫ﻣﺛﺎل )‪(١٥-٢‬‬ ‫ﺧﻼل ‪ 20‬ﺳﻧﺔ ﻣﺎﺿﯾﺔ ﻛﺎن ﻣﺗوﺳ ط ﺳ ﻘوط اﻟﻣط ر ﻓ ﻲ اﻟﻣﻧطﻘ ﺔ ‪ A‬ﻓ ﻲ ﻗط ر ﻣ ﺎ ﺧ ﻼل ﺷ ﮭر‬ ‫ﯾﻧ ﺎﯾر ‪ 1.8‬ﺑوﺻ ﺔ ﺑ ﺎﻧﺣراف ﻣﻌﯾ ﺎري ‪ 0.4‬ﺑوﺻ ﺔ‪ .‬ﺑﯾﻧﻣ ﺎ ﻛ ﺎن ﻣﺗوﺳ ط ﺳ ﻘوط اﻟﻣط ر ﻓ ﻲ‬ ‫اﻟﻣﻧطﻘﺔ ‪ B‬ﻣ ن ﻧﻔ س اﻟﻘط ر ﺧ ﻼل ‪ 15‬ﺳ ﻧﺔ ﻣﺎﺿ ﯾﺔ ‪ 1.03‬ﺑوﺻ ﺔ ﺑ ﺎﻧﺣراف ‪ 0.25‬ﺑوﺻ ﺔ ‪.‬‬ ‫أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ 1   2‬وذﻟ ك ﺗﺣ ت ﻓ رض أن اﻟﻣﻔ ردات ﻣ ﺄﺧوذة ﻣ ن ﻣﺟﺗﻣﻌ ﯾن‬ ‫طﺑﯾﻌﯾﯾن ﺣﯾث ‪. 12  22‬‬

‫اﻟﺣــل‪:‬‬ ‫‪s 1 = 0 .4 ,‬‬ ‫ﻟﻠﻣﻧطﻘﺔ ‪ A‬ﻓﺈن‬ ‫وﻟﻠﻣﻧطﻘﺔ ‪ B‬ﻓﺈن ‪s 2 = 0.25,‬‬

‫‪x 1 = 1.8,‬‬ ‫‪x 2 = 1.03,‬‬

‫‪٧٣‬‬

‫‪n 1 = 20,‬‬ ‫‪n 2 = 15,‬‬


‫وﻋﻠﻰ ذﻟك ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ 1   2‬ﺣﯾث ‪ 12  22‬و ‪ n1  n 2‬ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﯾﮭ ﺎ ﻛ ﺎﻵﺗﻲ‬ ‫‪:‬‬ ‫‪2‬‬ ‫‪s12 s 22‬‬ ‫‪+‬‬ ‫‪n1 n 2‬‬ ‫=‪ν‬‬ ‫‪s12 2‬‬ ‫‪s 22 2‬‬ ‫) (‬ ‫) (‬ ‫‪n1‬‬ ‫‪n‬‬ ‫‪+ 1‬‬ ‫‪n1 1 n 2 1‬‬

‫‪2‬‬

‫‪= 32.11 ≈32.‬‬

‫‪2‬‬

‫‪.4 2 .25 2‬‬ ‫‪+‬‬ ‫‪20 15‬‬

‫‪.25 2‬‬ ‫‪15‬‬ ‫‪14‬‬

‫‪2‬‬

‫‪+‬‬

‫‪.4 2‬‬ ‫‪20‬‬ ‫‪19‬‬

‫=‬

‫وﻋﻠ ﻰ ذﻟ ك ‪ x 1 x 2 = 1.8 1.03 = 0.77‬وﺗﺣ ت ﻓ رض أن ‪ α = 0 .05‬وﻣن اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ ق‬ ‫)‪ (٢‬ﻓﺈن ‪ t0.025 = 2.042‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪ .   32‬وﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪s12 s 22‬‬ ‫‪+‬‬ ‫‪< μ1 μ 2‬‬ ‫‪n1 n 2‬‬

‫‪( x1 x 2 ) t α‬‬ ‫‪2‬‬

‫‪s12 s 22‬‬ ‫‪< (x1 x 2 ) + t α‬‬ ‫‪+‬‬ ‫‪.‬‬ ‫‪n1 n 2‬‬ ‫‪2‬‬ ‫ﯾﻣﻛن إﯾﺟﺎد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ) ﺗﻘرﯾﺑﯾﺔ ( ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪.4 2 .25 2‬‬ ‫‪.4 2 .25 2‬‬ ‫‪0.77 2.042‬‬ ‫‪+‬‬ ‫‪< μ 1 μ 2 < 0.77 + 2.042‬‬ ‫‪+‬‬ ‫‪.‬‬ ‫‪20 15‬‬ ‫‪20 15‬‬ ‫واﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ ‪:‬‬ ‫‪0.545 < μ 1 μ 2 < 0.995 .‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫;‪n1=20;xb1=1.8;s1=.4‬‬ ‫‪٧٤‬‬


n2=15;xb2=1.03;s2=0.25; =.05 0.05

s12 w1  n1 0.008

s22 w2  n2 0.00416667

vv 

w1  w22 w12 n11

w22 n21

 N

32.1206

v=Round[vv] 32

<<Statistics`ContinuousDistributions`

t  Quantile StudentTDistribution

v, 1 

  2

2.03693

xb=xb1-xb2 0.77

s1 2 s2 2   ss    N n1 n2 0.110303

low=xb-t*ss 0.545321

up=xb+t*ss 0.994679

(١٦-٢) ‫ﻣﺛﺎل‬ ‫ وذﻟ ك ﺗﺣ ت ﻓ رض أن اﻟﻣﻔ ردات ﻣ ﺄﺧوذة ﻣ ن‬1   2 ‫ ﻓﺗ رة ﺛﻘ ﺔ ﻟ ـ‬95% ‫ﻟﻠﺑﯾﺎﻧ ﺎت اﻟﺗﺎﻟﯾ ﺔ أوﺟ د‬ . 12  22 ‫ﻣﺟﺗﻣﻌﯾن طﺑﯾﻌﯾﯾن و‬

se={980,990,940,997,980,1054,1019,942}

w={939,838,1024,903,965,1027,1000} ٧٥


‫اﻟﺣــل‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ ‫اﻟﺟﺎھزة ‪:‬‬

‫‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ‬

‫‪Statistics`ConfidenceIntervals‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`ConfidenceIntervals‬‬ ‫;}‪se={980,990,940,997,980,1054,1019,942‬‬ ‫;}‪w={939,838,1024,903,965,1027,1000‬‬ ‫]‪MeanDifferenceCI[se,w,EqualVariances->True‬‬ ‫}‪{-29.7877,92.1448‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪ se‬و ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪w‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ‪ -29.7877‬واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ‪ 92.1448‬ﻣن اﻻﻣر‬ ‫]‪MeanDifferenceCI[se,w,EqualVariances->True‬‬

‫‪.‬واﻻﻣر اﻟﺳﺎﺑق ﯾوﺿﻊ ﺑﺻورة ﻋﺎﻣﺔ ﻋﻠﻰ اﻟﺷﻛل اﻟﺗﺎﻟﻰ‬ ‫]‪MeanDifferenceCI[list1, list2, options‬‬

‫ﺣﯾث ‪ list1‬ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ ﻟﻠﻣﺟﻣوﻋﺔ اﻻوﻟﻰ و ‪ list2‬ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ ﻟﻠﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ‬ ‫و‪ options‬ﺗﻌﻧﻰ اﻟﺧﯾﺎرات اﻟﻣطﻠوﺑﺔ ‪.‬‬ ‫واﻟﺧﯾﺎر اﻟﻣﻔﺗرض ھو ‪ 95%‬ﻓﺗرة ﺛﻘﺔ وﻟﻛن ﻻى ﻓﺗرة ﺛﻘﺔ اﺧرى ﯾﺳﺗﺧدم اﻟﺧﯾﺎر ‪:‬‬ ‫>‪ConfidenceLevel-‬‬

‫‪12  22‬‬

‫ﺑﻣﺎ ان‬ ‫ﯾﻛﺗب اﻟﺧﯾﺎر‪:‬‬

‫‪EqualVariances->True‬‬

‫اﻟﺧﯾﺎر اﻟﻣﻔﺗرض ھﻧﺎ ھو‬ ‫‪KnownVariance None‬‬

‫وﻟذﻟك ﻻ ﯾﻛﺗب ھذا اﻟﺧﯾﺎر ‪.‬‬

‫ﻣﺛﺎل )‪(١٧-٢‬‬

‫‪٧٦‬‬


‫أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘ ﺔ ﻟ ـ ‪ 1   2‬وذﻟ ك ﺗﺣ ت ﻓ رض أن اﻟﻣﻔ ردات ﻣ ﺄﺧوذة ﻣ ن ﻣﺟﺗﻣﻌ ﯾن طﺑﯾﻌﯾ ﯾن‬ ‫ﺣﯾث ‪ 12  22‬ﻟﻠﻣﺛﺎل اﻟﺳﺎﺑق‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`ConfidenceIntervals‬‬ ‫;}‪se={980,990,940,997,980,1054,1019,942‬‬ ‫;}‪w={939,838,1024,903,965,1027,1000‬‬ ‫]‪MeanDifferenceCI[se,w‬‬

‫}‪{-35.1969,97.554‬‬

‫ﺑﻣﺎ ان ‪12  22‬‬ ‫ﻻ ﯾﻛﺗب اى ﺧﯾﺎرات ﺣﯾث اﻟﺧﯾﺎر اﻟﻣﻔﺗرض ھو ‪:‬‬ ‫‪EqualVariance False‬‬

‫وﻟذﻟك ﻻ ﯾﻛﺗب ھذا اﻟﺧﯾﺎر ‪.‬‬ ‫اﯾﺿﺎ اﻟﺧﯾﺎر اﻟﻣﻔﺗرض ھﻧﺎ ھو‬ ‫‪KnownVariance None‬‬

‫وﻟذﻟك ﻻ ﯾﻛﺗب ھذا اﻟﺧﯾﺎر ‪.‬‬ ‫ﻣن اﻻﻣر ‪:‬‬ ‫]‪MeanDifferenceCI[se,w‬‬

‫ﻧﺣﺻل ﻋﻠﻰ ﻓﺗرة ﺛﻘﺔ اﻟﻣطﻠوﺑﺔ ﻟـ ‪ 1   2‬وھﻰ‬ ‫}‪{-35.1969,97.554‬‬ ‫وأﺧﯾرا ً ﺳوف ﻧﻧﺎﻗش ﻓﻲ ھذا اﻟﺑﻧد طرﯾﻘﺔ ﺗﻘدﯾر اﻟﻔرق ﺑﯾن ﻣﺗوﺳطﯾن ﻋﻧدﻣﺎ ﺗﻛون اﻟﻌﯾﻧﺗﯾن‬ ‫ﻏﯾر ﻣﺳﺗﻘﻠﯾن‪ .‬ﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ﻋﻧدﻣﺎ ﺗﺄﺧذ ﻋﯾﻧﺔ واﺣدة وﻧﺣﺻل ﻋﻠﻰ ﻗراءات ﻟﻣﻔرداﺗﮭﺎ ﺛم ﻧﺿﻊ‬ ‫ھذه اﻟﻌﯾﻧﺔ ﺗﺣت ﻣؤﺛر وﻧﻌود وﻧﺄﺧذ ﻗراءات أﺧري ﻟﮭﺎ ‪ ،‬وﺑﻣﻘﺎرﻧﺔ ﻣﺟﻣوﻋﺗﻲ اﻟﻘراءﺗﯾن ﻟﻧﻔس‬ ‫اﻟﻣﻔردات ﯾﻣﻛﻧﻧﺎ اﺳﺗﻧﺗﺎج ﺗﺄﺛﯾر ھذا اﻟﻌﺎﻣل أو اﻟﻣؤﺛر‪ .‬ﻟﻧﻔرض ﻣﺛﻼ أﻧﻧﺎ ﻧرﯾد ﻣﻌرﻓﺔ ﺗﺄﺛﯾر دواء ﻋﻠﻰ‬ ‫ﻗراءات ﺿﻐط اﻟدم اﻟﻣرﺗﻔﻊ وأﺧذﻧﺎ ﻟذﻟك ﻋﯾﻧﺔ ﻣن ‪ 10‬ﺷﺧﺻﺎ ً وﻗرأﻧﺎ ﺿﻐط اﻟدم ﻟﻛل ﻣﻧﮭﻣﺎ ﺛم أﻋطﯾﻧﺎ‬ ‫ﻛل ﺷﺧص دواء ﻟﮫ ﺗﺄﺛﯾر ﻋﻠﻰ ﺿﻐط اﻟدم اﻟﻣرﺗﻔﻊ وأﻋدﻧﺎ أﺧذ اﻟﻘراءات ﻣرة أﺧرى‪ .‬ﻓﻲ ھذه اﻟﺣﺎﻟﺔ‬ ‫ﻧﻘول أﻧﻧﺎ أﻣﺎم ﻋﯾﻧﺗﯾن ﻏﯾر ﻣﺳﺗﻘﻠﯾن أو ﻋﯾﻧﺗﯾن ﻣزدوﺟﺗﯾن ‪ .paired samples‬أزواج اﻟﻣﺷﺎھدات‬ ‫ﺳوف ﺗﻛون ) ‪ ( x 1 y1 ), ( x 2 y 2 ),..., ( x n y n‬اﻟﻔروق ﻷزواج اﻟﻣﺷﺎھدات ﺳوف ﺗﻛون‬ ‫) ‪ d1 = ( x 1 y1 ), d 2 = ( x 2 y 2 ),..., d n = ( x n y n‬ھذه اﻟﻔروق ﺗﻣﺛل ﻗﯾم ﻟﻠﻣﺗﻐﯾر اﻟﻌﺷواﺋﻲ‬ ‫‪ .D‬اﻟﺗﻘدﯾر ﺑﻧﻘطﺔ ﻟﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ‪ μ D = μ 1 μ 2‬ﯾﻌطﻰ ﻣن ‪ d‬واﻟذي ﯾﺳﺎوى ﻣﺗوﺳط اﻟﻔروق‬ ‫ﻓﻲ اﻟﻌﯾﻧﺔ‪ .‬وﺑﻣﺎ أن ‪ d‬ﺗﻣﺛل ﻗﯾﻣﺔ ﻟﻺﺣﺻﺎء ‪ D‬ﻛﻣﺎ أن اﻟﺗﺑﺎﯾن ﻟﻠﻔروق ھو ‪ s 2d‬ﺣﯾث ‪:‬‬

‫‪٧٧‬‬


‫‪n‬‬ ‫‪‬‬ ‫‪‬‬ ‫(‬ ‫‪di ) 2 ‬‬ ‫‪‬‬ ‫‪n‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪i 1‬‬ ‫‪s d2 ‬‬ ‫‪  di ‬‬ ‫‪‬‬ ‫‪n  1  i 1‬‬ ‫‪n‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ‪ (1 α)100 %‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪  D‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪s‬‬ ‫‪s‬‬ ‫‪d  t  d  D  d  t  d ‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪2‬‬ ‫‪2‬‬

‫ﺣﯾث ‪ d‬و ‪ sd‬ھﻣﺎ اﻟﻣﺗوﺳط واﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﻔروق ﻟﻌدد ‪ n‬ﻣن ازواج اﻟﻣﺷﺎھدات و ‪t α‬‬ ‫‪2‬‬

‫ھﻲ ﻗﯾﻣﺔ ﻟﺗوزﯾﻊ ‪ t‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪   n  1‬واﻟﺗﻲ ﺗﻛون اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾﻧﮭﺎ ﺗﺳﺎوى‬

‫‪α‬‬ ‫‪2‬‬

‫واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول ﺗوزﯾﻊ ‪ t‬ﻓﻰ ﻣﻠﺣق )‪. (٢‬‬

‫ﻣﺛﺎل ) ‪(١٨-٢‬‬ ‫أﺧذت ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن ‪ 10‬ﺗﻼﻣﯾذ ﻣن إﺣدى اﻟﻣدارس ودوﻧت أوزاﻧﮭم ﺛم أﻋطﻲ ﻛل ﻣﻧﮭم ﻛوﺑﺎ ً‬ ‫ﻣن اﻟﻠﺑن ﺻﺑﺎﺣﺎ ً وآﺧر ظﮭرا ً وذﻟك ﻟﻣدة ﺛﻼﺛﺔ ﺷﮭور ﻣﺗﺗﺎﻟﯾﺔ ‪ .‬ﺛم دوﻧت أوزاﻧﮭم ﻓﻛﺎﻧت اﻟﻧﺗﺎﺋﺞ ﻛﺎﻵﺗﻰ‬ ‫‪:‬‬ ‫‪129 124 126 139 133 136 139 135 137 140‬‬

‫اﻟوزن ﻗﺑل ﺗﻌﺎطﻰ اﻟﻠﺑن‬

‫‪ 130 126 129 140 136 134 141 140 138 141‬اﻟوزن ﺑﻌد ﺗﻌﺎطﻲ اﻟﻠﺑن‬ ‫اﻟﻣطﻠوب إﯾﺟﺎد ‪ 99%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻔرق اﻟﺣﻘﯾﻘﻰ ‪.  D  1   2‬‬

‫اﻟﺣــل‬ ‫اﻟﺗﻘدﯾر ﺑﻧﻘطﺔ ﻟـ ‪ μ D‬ھو ‪ . d = 1.7‬اﻟﺗﺑﺎﯾن ‪ s2d‬ﻟﻔروق اﻟﻌﯾﻧﺔ ھو ‪:‬‬

‫‪( Σd i ) 2‬‬ ‫‪n‬‬ ‫‪= 3.344‬‬

‫‪2‬‬ ‫‪i‬‬

‫‪∑d‬‬

‫‪1‬‬ ‫= ‪s‬‬ ‫‪n 1‬‬

‫‪1‬‬ ‫‪( 17 ) 2‬‬ ‫=‬ ‫‪59‬‬ ‫‪9‬‬ ‫‪10‬‬

‫‪٧٨‬‬

‫‪2‬‬ ‫‪d‬‬


t.005  3.25 ‫ ﻓ ﺈن‬α = 0 .01 ‫ ﺑﺎﺳ ﺗﺧدام‬. sd  1.829 ‫ ﻓ ﺈن‬s2d ‫وﺑﺄﺧ ذ اﻟﺟ ذر اﻟﺗرﺑﯾﻌ ﻲ ﻟﻠﻣﻘ دار‬

‫ وﺑ ﺎﻟﺗﻌوﯾض ﻓ ﻲ‬. ν = n 1 = 9 ‫( ﻋﻧد درﺟﺎت ﺣرﯾ ﺔ‬٢) ‫ ﻓﻲ ﻣﻠﺣق‬t ‫واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول ﺗوزﯾﻊ‬ : ‫اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ‬ s s d t α d < μD < d + t α d . n n 2 2 : ‫ ﻓﺗرة ﺛﻘﺔ ﻛﺎﻟﺗﺎﻟﻲ‬99% ‫ﻧﺣﺻل ﻋﻠﻰ‬ (1.8797) (1.829) 1.7  (3.25)   D  1.7  (3.25) . 10 10 : ‫واﻟﺗﻲ ﺗﺧﺗزل اﻟﻰ‬ - 3.58 < μ D < 0.18. ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ x={129,124,126,139,133,136,139,135,137,140}; y={130,126,129,140,136,134,141,140,138,141}; =.01 0.01

d=x-y {-1,-2,-3,-1,-3,2,-2,-5,-1,-1}

plu[w_]:=Apply[Plus,w] n=Length[d] 10

db 

plu d  N n

-1.7

1 sd    plu d  db 2  N n 1 1.82878

<<Statistics`ContinuousDistributions`

t  Quantile StudentTDistribution 3.24984

sd low  db  t   n -3.57942

sd up  db  t   n

٧٩

n  1, 1 

  2


‫‪0.179418‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪ x‬وﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪y‬‬ ‫و‪‬ﻣن اﻻﻣر‬ ‫‪‬‬ ‫‪=0.01‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪sd‬‬ ‫‪low  db  t  ‬‬ ‫‪n‬‬ ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪sd‬‬ ‫‪up  db  t  ‬‬ ‫‪n‬‬

‫ﻣﺛﺎل )‪(١٩-٢‬‬ ‫ﺷرﻛﺔ ﺗﻧﺗﺞ ﻣﻘﯾﺎﺳﯾن ﻟﻠﻣﻘﺎوﻣﺔ اﻟﻛﮭرﺑﺎﺋﯾﺔ ورﻏﺑت اﻟﺷرﻛﺔ ﻓﻲ ﻣﻌرﻓﺔ ﻛﻔﺎءة اﻟﺟﮭﺎزﯾن ﻓﻲ اﻟﻘﯾﺎس‬ ‫أﺧذت ‪ 10‬ﻧﻣﺎذج ﻣن اﻷﺳﻼك اﻟﻛﮭرﺑﺎﺋﯾﺔ وﺗم ﻗﯾﺎس ﻣﻘﺎوﻣﺗﮭم ﺑﺎﻻوم ﺑﺎﻟﻣﻘﯾﺎﺳﯾن وﺗم اﻟﺣﺻول ﻋﻠﻰ‬ ‫اﻟﻧﺗﺎﺋﺞ اﻟﺗﺎﻟﯾﺔ‪s d  0.037 , d  0.018 :‬‬ ‫اﻟﻣطﻠوب إﯾﺟﺎد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻔرق اﻟﺣﻘﯾﻘﻰ ‪.  D  1   2‬‬

‫اﻟﺣــل‪:‬‬ ‫اﻟﺗﻘدﯾر ﺑﻧﻘطﺔ ﻟـ ‪  D‬ھو ‪ . d = 0.018‬واﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻔروق اﻟﻌﯾﻧﺔ ھو ‪s d = 0.037‬‬ ‫ﺑﺎﺳ ﺗﺧدام ‪ α = 0.05‬ﻓ ﺈن ‪ t0.025=2.262‬واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ‪ t‬ﻓ ﻲ ﻣﻠﺣ ق )‪ (٢‬ﻋﻧ د‬ ‫درﺟﺎت ﺣرﯾﺔ ‪ .   n  1  9‬وﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪s‬‬ ‫‪s‬‬ ‫‪d tα d < μD < d + tα d .‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﻧﺣﺻل ﻋﻠﻰ ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫)‪(0.037‬‬ ‫)‪(0.037‬‬ ‫)‪0.018 ( 2.262‬‬ ‫)‪< μ D < 0.018 + ( 2.262‬‬ ‫‪.‬‬ ‫‪10‬‬ ‫‪10‬‬ ‫واﻟﺗﻲ ﺗﺧﺗزل اﻟﻰ ‪:‬‬ ‫‪-0.00847 <  D < 0.04447.‬‬

‫‪٨٠‬‬


‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪95‬‬

‫‪=.05‬‬ ‫‪0.05‬‬ ‫‪n=10‬‬ ‫‪10‬‬

‫‪db=.018‬‬ ‫‪0.018‬‬

‫‪sd=.037‬‬ ‫‪0.037‬‬

‫`‪<<Statistics`ContinuousDistributions‬‬ ‫‪2.26216‬‬

‫‪‬‬ ‫‪‬‬ ‫‪2‬‬

‫‪sd‬‬ ‫‪low  db  t  ‬‬ ‫‪n‬‬

‫‪n  1, 1 ‬‬

‫‪t  Quantile StudentTDistribution‬‬ ‫‪-0.00846821‬‬

‫‪sd‬‬ ‫‪up  db  t  ‬‬ ‫‪n‬‬ ‫‪0.0444682‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫‪‬ﻣن اﻻﻣر‬ ‫‪=0.05‬‬

‫وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪n=10‬‬ ‫و ‪ d‬ﻣن اﻻﻣر‬

‫‪db=.018‬‬ ‫و ‪ sd‬ﻣن اﻻﻣر‬ ‫‪sd=.037‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪sd‬‬ ‫‪low  db  t  ‬‬ ‫‪n‬‬ ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪٨١‬‬


‫‪sd‬‬ ‫‪up  db  t  ‬‬ ‫‪n‬‬

‫) ‪ ( ٤-٢‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻧﺳﺑﺔ‬

‫‪Confidence Interval for Proportion‬‬

‫أن اﻟﺗﻘدﯾر ‪ x‬ﻟﯾس داﺋﻣﺎ اﻟﻣطﻠوب ﻓﻲ ﻣﺟ ﺎل اﻹﺣﺻ ﺎء‪ .‬ﻓﻔ ﻲ ﺑﻌ ض اﻷﺣﯾ ﺎن ﯾﻛ ون اﻻھﺗﻣ ﺎم ﺑﻣﻌرﻓ ﺔ‬ ‫ﻧﺳ ﺑﺔ وﺟ ود ﺻ ﻔﺔ ﻣﻌﯾﻧ ﺔ ﻓ ﻲ ﻣﺟﺗﻣ ﻊ ﻣ ﺎ ﻣﺛ ل ﻧﺳ ﺑﺔ اﻟﻣﺻ ﺎﺑﯾن ﺑﺗﺳ وس اﻷﺳ ﻧﺎن أو ﻧﺳ ﺑﺔ اﻟﻧﺑﺎﺗ ﺎت‬ ‫‪x‬‬ ‫اﻟﻣﺻﺎﺑﺔ وھﻛذا‪ .‬وﻋﻠﻰ ذﻟك ‪ ،‬ﻓﺈن ﻧﺳﺑﺔ اﻟﻌﯾﻧﺔ ‪ pˆ ‬ﺳ وف ﺗﺳ ﺗﺧدم ﻛﺗﻘ دﯾر ﺑﻧﻘط ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ .p‬وﯾ ﺗم‬ ‫‪n‬‬ ‫اﻟﺣﺻول ﻋﻠﻰ ‪ (1  ) 100%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ p‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫ˆˆ‬ ‫ˆˆ‬ ‫‪pq‬‬ ‫‪pq‬‬ ‫‪ p  pˆ  z ‬‬ ‫‪‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪2‬‬

‫‪pˆ  z ‬‬ ‫‪2‬‬

‫إذا اﺳ ﺗﺧدﻣت ˆ‪ p‬ﻛﺗﻘ دﯾر ﺑﻧﻘط ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ p‬ﻓﺈﻧ ﮫ ﯾﻛ ون ﻟ دﯾﻧﺎ ‪ (1 α)100 %‬ﺛﻘ ﺔ أن اﻟﺧط ﺄ‬ ‫ﺳوف ﯾﻛون أﻗل ﻣن ﻗﯾﻣﺔ ﻣﻌﯾﻧﺔ ‪ e‬ﻋﻧدﻣﺎ ﯾﺣﺳب ﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫ˆ‪z 2α pˆq‬‬ ‫‪2‬‬

‫‪.‬‬ ‫‪e2‬‬ ‫وﺣﯾث أن ˆ‪ p‬ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺳﺎﺑﻘﺔ ﻻ ﺑد أن ﺗﻘ در ﻣ ن ﻋﯾﻧ ﺔ ‪ ،‬ﻟ ذﻟك ﻻﺑ د ﻣ ن اﺧﺗﯾ ﺎر ﻋﯾﻧ ﺔ ﻣﺑدﺋﯾ ﺔ ﻛﺑﯾ رة‬ ‫وﺣﺳﺎب ﻧﺳﺑﺔ اﻟﻌﯾﻧﺔ ˆ‪ p‬ﻣﻧﮭﺎ‪.‬‬

‫=‪n‬‬

‫ﻣﺛﺎل ) ‪(٢٠-٢‬‬ ‫ﻓﻲ ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن ‪ 500‬ﻣواطن ﻓﻲ ﻣﺟﺗﻣﻊ ﺳﻛﺎﻧﻲ ﻣ ﺎ ‪ ،‬وﺟ د ﻣ ﻧﮭم ‪ 270‬ﻣواطﻧ ﺎ ً ﯾﺣﺑ ون‬ ‫أن ﯾﺿﺎف اﻟﻰ ﻣﯾﺎھم ﻗﻠﯾل ﻣن اﻟﻔﻠور‪ .‬اﻟﻣطﻠوب ‪:‬‬ ‫)أ( إﯾﺟﺎد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻧﺳﺑﺔ اﻟﻣﺟﺗﻣﻊ اﻟذﯾن ﯾﺣﺑذون إﺿﺎﻓﺔ اﻟﻔﻠور‪.‬‬ ‫)ب( ﺗﻘدﯾر ﺣﺟم اﻟﻌﯾﻧﺔ اﻟﺗﻲ ﯾﻣﻛﻧﻧﺎ اﻟﺗﺄﻛد ﻣﻧﮭﺎ ﺑﺎﺣﺗﻣﺎل ‪ 95%‬ﻣن أن اﻟﺧطﺄ ﻻ ﯾﺗﺟﺎوز ‪.0.05‬‬

‫اﻟﺣــل‪:‬‬ ‫‪x 270‬‬ ‫=‬ ‫)أ( اﻟﺗﻘ دﯾر ﺑﻧﻘط ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ p‬ھ و ‪= 0.54‬‬ ‫‪n 500‬‬ ‫اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪ (١‬ﻓﺈن ‪ z0.025 = 1.96‬وﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫= ˆ‪ . p‬ﺑﺎﺳ ﺗﺧدام ﺟ دول اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ‬

‫‪٨٢‬‬


‫ˆ‪pˆq‬‬ ‫ˆ‪pˆq‬‬ ‫‪< p < pˆ + z α‬‬ ‫‪.‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫)‪(0.54)(0.46‬‬ ‫)‪(0.54)(0.46‬‬ ‫‪0.54 1.96‬‬ ‫‪< p < 0.54 + 1.96‬‬ ‫‪500‬‬ ‫‪500‬‬ ‫واﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ ‪:‬‬ ‫‪0.496 < p < 0.584.‬‬ ‫‪pˆ z α‬‬

‫)ب( ﺑﺎﻋﺗﺑﺎر اﻷﺷﺧﺎص اﻟذﯾن ﻋددھم ‪ 500‬ﯾﻣﺛﻠون ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣﺑدﺋﯾﺔ ﺣﯾث أن ˆ‪=0.54 p‬‬ ‫وﺑﺎﺳﺗﺧدام اﻟﻧظرﯾﺔ اﻟﺳﺎﺑﻘﺔ ﻓﺈن ‪:‬‬ ‫‪2‬‬ ‫)‪(1.96) (0.54)(0.46‬‬ ‫=‪n‬‬ ‫‪= 381.70‬‬ ‫‪(0.05) 2‬‬

‫‪≈ 382 .‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫;‪n=500;x=270‬‬ ‫‪=.05‬‬

‫‪x‬‬ ‫‪ N‬‬ ‫‪n‬‬

‫‪0.05‬‬

‫‪ph ‬‬ ‫‪0.54‬‬

‫‪qh=1-ph‬‬ ‫‪0.46‬‬

‫‪ph  qh‬‬ ‫‪s  ‬‬ ‫‪n‬‬ ‫‪0.022289‬‬

‫‪‬‬ ‫‪‬‬ ‫‪2‬‬

‫`‪<<Statistics`ContinuousDistributions‬‬

‫‪0, 1, 1 ‬‬

‫‪z  Quantile NormalDistribution‬‬ ‫‪1.95996‬‬

‫‪low=ph-z* s‬‬ ‫‪0.496314‬‬

‫‪ub=ph+z* s‬‬ ‫‪0.583686‬‬

‫‪e=.05‬‬ ‫‪0.05‬‬

‫‪٨٣‬‬


‫‪z2  ph  qh‬‬ ‫‪‬‬ ‫‪e2‬‬

‫‪m  Round ‬‬ ‫‪382‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪n=500‬‬ ‫وﻋدد اﻟذﯾن ﯾﻣﻠﻛون اﻟﺻﻔﺔ ﻣوﺿﻊ اﻟدراﺳﺔ ﻣن اﻻﻣر‬ ‫‪x=270‬‬ ‫و‪‬ﻣن اﻻﻣر‬ ‫‪=0.05‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪low=ph-z* s‬‬ ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪ub=ph+z* s‬‬ ‫وﺣﺟم اﻟﻌﯾﻧﺔ اﻟﻣﻔﺗرض ﻣن اﻻﻣر‬

‫‪z2  ph  qh‬‬ ‫‪m  Round ‬‬ ‫‪‬‬ ‫‪e2‬‬ ‫‪.‬‬

‫‪Confidence Interval for the‬‬ ‫) ‪ ( ٥-٢‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻔرق ﺑﯾن ﻧﺳﺑﺗﯾن‬ ‫‪Difference Between Two Proportions‬‬ ‫ﻟﻠﺣﺻول ﻋﻠﻰ ﺗﻘدﯾر ﺑﻧﻘطﺔ ﻟـ ‪ p1 p 2‬ﺳوف ﺗﺧﺗﺎر ﻋﯾﻧﺗﯾن ﻋﺷ واﺋﯾﺗﯾن ﻣﺳ ﺗﻘﻠﺗﯾن ﻣ ن اﻟﺣﺟ م ‪n 2 , n 1‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫وﺣﺳﺎب اﻟﻧﺳﺑﺔ ﻟﻠﺻﻔﺔ ﻣوﺿﻊ اﻟدراﺳ ﺔ ﻓ ﻲ ﻛ ل ﻋﯾﻧ ﺔ ‪ ، pˆ1 = 1 , pˆ 2 = 2 ،‬ﺣﯾ ث ‪ x2 , x1‬ﯾﻣ ﺛﻼن‬ ‫‪n1‬‬ ‫‪n2‬‬ ‫ﻋ دد اﻟﻣﻔ ردات اﻟ ذﯾن ﯾﻣﻠﻛ ون اﻟﺻ ﻔﺔ ﻣوﺿ ﻊ اﻻھﺗﻣﺎم ﻓ ﻲ اﻟﻌﯾﻧﺗ ﯾن ﻋﻠ ﻰ اﻟﺗ واﻟﻲ‪ .‬ﯾ ﺗم ﺣﺳ ﺎب اﻟﻔ رق‬ ‫‪. . pˆ1 pˆ 2‬‬ ‫وﺑﺎﻟﺗﺎﻟﻲ ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ‪ (1  ) 100%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻔرق ﺑﯾن ﻧﺳﺑﺗﯾن ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬

‫‪pˆ1qˆ1 pˆ 2 qˆ 2‬‬ ‫‪+‬‬ ‫) ‪< (p 1 p 2‬‬ ‫‪n1‬‬ ‫‪n2‬‬

‫‪٨٤‬‬

‫‪( pˆ1 pˆ 2 ) z α‬‬ ‫‪2‬‬


‫‪pˆ1qˆ1 pˆ 2 qˆ 2‬‬ ‫‪+‬‬ ‫‪.‬‬ ‫‪n1‬‬ ‫‪n2‬‬

‫‪< (pˆ1 pˆ 2 ) + z α‬‬ ‫‪2‬‬

‫ﻣﺛﺎل )‪(٢١–٢‬‬ ‫ﻓﻲ ﻋﯾﻧﺔ ﻣن ‪ 2000‬ﻣن اﻟرﺟﺎل و ‪5000‬ﻣن اﻟﻧﺳﺎء اﻟذﯾن ﯾﺷ ﺎھدن ﺑرﻧﺎﻣﺟ ﺎ ً ﺗﻠﯾﻔزﯾوﻧﯾ ﺎ ً ﯾوﻣﯾ ﺎ ً‬ ‫وﺟد أن ‪ 1100‬ﻣن اﻟرﺟ ﺎل و ‪ 2300‬ﻣ ن اﻟﻧﺳ ﺎء ﯾﻔﺿ ﻠون ھ ذا اﻟﺑرﻧ ﺎﻣﺞ‪ .‬أوﺟ د ‪ 95%‬ﻓﺗ رة‬ ‫ﺛﻘ ﺔ ﻟﻠﻔ رق ﺑ ﯾن ﻧﺳ ﺑﺔ ﻛ ل ﻣ ن اﻟرﺟ ﺎل وﻧﺳ ﺑﺔ ﻛ ل ﻣ ن اﻟﻧﺳ ﺎء اﻟ ذﯾن ﯾﺷ ﺎھدون ھ ذا اﻟﺑرﻧ ﺎﻣﺞ‬ ‫وﯾﻔﺿﻠوﻧﮫ‪.‬‬

‫اﻟﺣــل ‪:‬‬ ‫ﺑﻔرض أن ‪ p1 p 2‬اﻟﻧﺳﺑﺗﯾن اﻟﺣﻘﯾﻘﺗﯾن وﻋﻠﻰ ذﻟك‬ ‫‪2300‬‬ ‫‪1100‬‬ ‫= ‪pˆ 2‬‬ ‫= ‪= 0.46 , pˆ1‬‬ ‫‪= 0.55 .‬‬ ‫‪5000‬‬ ‫‪2000‬‬ ‫وﻋﻠ ﻰ ذﻟ ك اﻟﺗﻘ دﯾر ﺑﻧﻘط ﺔ ﻟ ـ ‪ p1 p 2‬ھ و ‪. pˆ1 pˆ 2 =0.55 – 0.46=.09‬ﺑﺎﺳ ﺗﺧدام ﺟ دول اﻟﺗوزﯾ ﻊ‬ ‫اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪ (١‬ﻓﺈن ‪ z0.025 = 1.96‬وﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪pˆ1qˆ1 pˆ 2 qˆ 2‬‬ ‫‪+‬‬ ‫‪< p1 p 2‬‬ ‫‪n1‬‬ ‫‪n2‬‬ ‫‪pˆ1qˆ1 pˆ 2 qˆ 2‬‬ ‫‪+‬‬ ‫‪.‬‬ ‫‪n1‬‬ ‫‪n2‬‬

‫‪(pˆ1 pˆ 2 ) z α‬‬ ‫‪2‬‬

‫‪< (pˆ1 pˆ 2 ) + z α‬‬ ‫‪2‬‬

‫ﻓﺈن ‪:‬‬

‫)‪(0.55)(0.45) (0.46)(0.54‬‬ ‫‪+‬‬ ‫‪< p1 p 2‬‬ ‫‪2000‬‬ ‫‪5000‬‬ ‫)‪(0.55)(0.45) (0.46)(0.54‬‬ ‫‪< 0.09 + 1.96‬‬ ‫‪+‬‬ ‫‪,‬‬ ‫‪2000‬‬ ‫‪5000‬‬

‫‪0.09 1.96‬‬

‫واﻟﺗﻲ ﺗﺧﺗزل اﻟﻰ ‪:‬‬ ‫‪0.0642 < p1 p 2 < 0.1158.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫;‪n1=2000;x1=1100;n2=5000;x2=2300‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬

‫‪x1‬‬ ‫‪ N‬‬ ‫‪n1‬‬ ‫‪٨٥‬‬

‫‪p1 ‬‬


‫‪0.55‬‬

‫‪x2‬‬ ‫‪ N‬‬ ‫‪n2‬‬

‫‪p2 ‬‬ ‫‪0.46‬‬

‫‪q1=1-p1‬‬ ‫‪0.45‬‬

‫‪q2=1-p2‬‬ ‫‪0.54‬‬

‫‪p=p1-p2‬‬ ‫‪0.09‬‬

‫‪p1 q1‬‬ ‫‪p2 q2 ‬‬ ‫‪sp  ‬‬ ‫‪‬‬ ‫‪n1‬‬ ‫‪n2‬‬ ‫‪0.0131693‬‬

‫‪‬‬ ‫‪‬‬ ‫‪2‬‬

‫`‪<<Statistics`ContinuousDistributions‬‬

‫‪0, 1, 1 ‬‬

‫‪z  Quantile NormalDistribution‬‬ ‫‪1.95996‬‬

‫‪low=p-z *sp‬‬ ‫‪0.0641887‬‬

‫‪up=p+z*sp‬‬ ‫‪0.115811‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﺣﺟم اﻟﻌﯾﻧﺔ ﻟﻠﻣﺟﺗﻣﻊ اﻻول ﻣن اﻻﻣر‬ ‫‪n1=2000‬‬ ‫وﻋدد اﻟذﯾن ﯾﻣﻠﻛون اﻟﺻﻔﺔ ﻓﻰ اﻟﻣﺟﺗﻣﻊ اﻻول ﻣن اﻻﻣر‬ ‫‪x1=1100‬‬ ‫وﺣﺟم اﻟﻌﯾﻧﺔ ﻟﻠﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻰ ﻣن اﻻﻣر‬ ‫‪n2=5000‬‬ ‫وﻋدد اﻟذﯾن ﯾﻣﻠﻛون اﻟﺻﻔﺔ ﻓﻰ اﻟﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻰ ﻣن اﻻﻣر‬ ‫‪x2=2300‬‬ ‫و‪‬ﻣن اﻻﻣر‬ ‫‪=0.05‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪low=p-z *sp‬‬ ‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر ‪. up‬‬

‫‪up=p+z*sp‬‬

‫) ‪ ( ٦-٢‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﺗﺑﺎﯾن ‪Confidence Interval for the Variance‬‬ ‫‪٨٦‬‬


‫ﻟﻌﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﺧﺎﺻﺔ ﻣن اﻟﺣﺟم ‪ ، n‬ﻓﺈن ﺗﺑﺎﯾن اﻟﻌﯾﻧﺔ ‪ s2‬ﯾﺣﺳب وﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ‬ ‫‪ (1 α )100 %‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ σ2‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪(n  1)s 2‬‬ ‫‪(n  1)s2‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2 ‬‬ ‫‪2‬‬

‫‪1‬‬

‫‪2‬‬

‫‪2‬‬

‫ﺣﯾث ‪  2‬و ‪  2‬ھﻣﺎ ﻗﯾﻣﺗﺎن ﻟﺗوزﯾ ﻊ ‪ ‬ﺑ درﺟﺎت ﺣرﯾ ﻰ ‪ n  1‬واﻟﺗ ﻰ اﻟﻣﺳ ﺎﺣﺔ ﻋﻠ ﻲ ﯾﻣ ﯾن‬ ‫‪2‬‬

‫‪2‬‬

‫‪1‬‬

‫‪‬‬ ‫‪ ،‬واﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾن‬ ‫ﺗﺳﺎوى‬ ‫‪2‬‬

‫‪ 2‬‬ ‫‪2‬‬

‫‪:  2‬‬ ‫‪2‬‬

‫‪1‬‬

‫ﺗﺳﻠم أﺣد اﻟﺗﺟﺎر ﻛﻣﯾﺔ ﻛﺑﯾرة ﻣن ﺑطﺎرﯾﺎت اﻟﺳﯾﺎرات اﻟﻣﻧﺗﺟﺔ ﺑواﺳ طﺔ ﻣﺻ ﻧﻊ ﺟدﯾ د وﺗ م‬ ‫اﺧﺗﯾﺎر ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺑطﺎرﯾﺎت اﻟﺗﻲ ﺗﺳﻠﻣﮭﺎ اﻟﺗﺎﺟر وﺗﻣ ت ﺗﺟرﺑﺗﮭ ﺎ ﻓﻛﺎﻧ ت أﻋﻣﺎرھ ﺎ‬ ‫ﺑﺎﻟﺷﮭر ھﻲ ‪:‬‬ ‫‪26.9‬‬ ‫‪28.5‬‬ ‫‪33.6‬‬ ‫‪28.0‬‬ ‫‪23.9‬‬ ‫‪28.7‬‬ ‫‪29.3‬‬ ‫‪29.1‬‬ ‫‪35.9‬‬ ‫‪35.2‬‬

‫أوﺟد ‪ 99%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪σ2‬‬

‫ﻣﺛﺎل )‪(٢٢-٢‬‬ ‫اﻟﺣــل‬ ‫‪2‬‬

‫أوﻻ ﻧﺣﺻل ﻋﻠﻰ ﺗﺑﺎﯾن اﻟﻌﯾﻧﺔ ‪ s‬وھو ‪:‬‬ ‫‪n‬‬

‫‪(∑x i ) 2‬‬ ‫‪i =1‬‬

‫‪n‬‬

‫‪n‬‬

‫‪2‬‬ ‫‪i‬‬

‫‪∑x‬‬ ‫‪i =1‬‬

‫‪1‬‬ ‫= ‪s2‬‬ ‫‪n 1‬‬

‫‪1‬‬ ‫‪(299.1) 2‬‬ ‫=‬ ‫‪9076.87‬‬ ‫‪9‬‬ ‫‪10‬‬

‫‪= 14.53.‬‬

‫ﺑﺎﺳﺗﺧدام ﺟدول ﺗوزﯾﻊ ‪  2‬ﻓﻲ ﻣﻠﺣق )‪ (٣‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪ ν = n 1 = 9‬ﻓﺈن ‪:‬‬ ‫‪χ 2 = 1.735 ,‬‬ ‫‪χ 2 = 23.587‬‬ ‫ﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪(n 1)s‬‬ ‫‪( n 1)s‬‬ ‫< ‪< σ2‬‬ ‫‪2‬‬ ‫‪χα‬‬ ‫‪χ2 α‬‬ ‫‪0.005‬‬

‫‪2‬‬

‫‪0.995‬‬

‫‪1‬‬

‫‪2‬‬

‫‪٨٧‬‬


‫ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ﻓﺗرة ﺛﻘﺔ ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫)‪(9)(14.53‬‬ ‫)‪(9)(14 .53‬‬ ‫< ‪< σ2‬‬ ‫‪23.587‬‬ ‫‪1.735‬‬ ‫واﻟﺗﻲ ﯾﻣﻛن اﺧﺗزاﻟﮭﺎ اﻟﻰ‬ ‫‪2‬‬ ‫‪5.544 < σ < 75.372.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫}‪x={26.9,28.5,33.6,28,23.9,28.7,29.3,29.1,35.9,35.2‬‬ ‫;‬ ‫‪=.01‬‬ ‫‪0.01‬‬

‫]‪n=Length[x‬‬ ‫‪10‬‬

‫]‪plu[w_]:=Apply[Plus,w‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪ss ‬‬ ‫‪plu x2   plu x2‬‬ ‫‪n1‬‬ ‫‪n‬‬ ‫‪14.5321‬‬

‫`‪<<Statistics`ContinuousDistributions‬‬ ‫‪k1  Quantile ChiSquareDistribution n  1,‬‬

‫‪‬‬ ‫‪‬‬ ‫‪2‬‬

‫‪‬‬ ‫‪‬‬ ‫‪2‬‬

‫‪1‬‬

‫‪23.5894‬‬

‫‪n  1,‬‬

‫‪k2  Quantile ChiSquareDistribution‬‬ ‫‪ssn  1‬‬ ‫‪k1‬‬

‫‪1.73493‬‬

‫‪low ‬‬ ‫‪5.54441‬‬

‫‪ss n  1‬‬ ‫‪k2‬‬ ‫‪75.3856‬‬

‫‪up ‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ ‫‪=0.05‬‬

‫وﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪x‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت ‪:‬‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪٨٨‬‬


‫‪ssn  1‬‬ ‫‪k1‬‬

‫‪low ‬‬

‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪ss n  1‬‬ ‫‪k2‬‬

‫‪up ‬‬

‫‪.‬‬

‫ﻣﺛﺎل )‪(٢٣-٢‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﻟﻠﻣﺛﺎل )‪ (٢-٢‬أوﺟد ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ σ‬و‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ 99%, σ‬ﻓﺗ رة ﺛﻘ ﺔ‬ ‫ﻟﻠﻣﻌﻠﻣﺔ ‪σ2‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬

‫‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة ‪:‬‬

‫‪Statistics`ConfidenceIntervals‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`ConfidenceIntervals‬‬ ‫‪grades={85,94.5,76.7,79.2,83,80.2,68.7,89.1,74.1,87.8,44.9,7‬‬ ‫‪7.6,85.1,75.7,81.5,66.2,83.4,79.8,94,91.8,96.3,73.5,82.2,76.‬‬ ‫‪1,78.5,69.1,75.4,71.7,78.2,77.7,88.7,79.9,86.1,63.8,78.7,82.‬‬ ‫;}‪6,98.6,81.3,63.4,76.6,84.2,89.7,87.7,54.6‬‬ ‫]‪VarianceCI[grades,ConfidenceLevel->.90‬‬ ‫}‪{80.0873,163.974‬‬

‫]‪VarianceCI[grades‬‬ ‫}‪{75.3998,177.315‬‬

‫]‪VarianceCI[grades,ConfidenceLevel->.99‬‬

‫}‪{67.2576,207.768‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪grades‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪2‬‬ ‫‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ σ‬ﺗم اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪VarianceCI[grades,ConfidenceLevel->.90‬‬

‫واﻟﻣﺧرج ھو‬ ‫}‪{80.0873,163.974‬‬ ‫‪2‬‬ ‫‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ σ‬ﺗم اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫]‪VarianceCI[grades‬‬ ‫‪٨٩‬‬


‫واﻟﻣﺧرج ھو‬ ‫}‪{75.3998,177.315‬‬ ‫‪2‬‬ ‫‪ 99%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ σ‬ﺗم اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫]‪VarianceCI[grades,ConfidenceLevel->.99‬‬

‫واﻟﻣﺧرج ھو‬ ‫}‪{67.2576,207.768‬‬

‫) ‪ ( ٧-٢‬ﻓﺗرة ﺛﻘﺔ ﻟﻧﺳﺑﺔ ﺗﺑﺎﯾﻧﯾن‬ ‫‪Confidence Interval for the Ratio of two variances‬‬ ‫اﻟﺗﻘدﯾر ﺑﻧﻘطﺔ ﻟﻧﺳﺑﺔ ﺗﺑﺎﯾﻧﻲ ﻣﺟﺗﻣﻌﯾن ‪ ، σ12 / σ 22 ،‬ﯾﻣﻛ ن اﻟﺣﺻ ول ﻋﻠﯾ ﮫ ﻣ ن اﻟﻧﺳ ﺑﺔ ‪s12 / s 22 ،‬‬ ‫‪ ،‬ﺣﯾث ) ‪ f  (1,  2 ) , f  (1,  2‬ھﻣﺎ ﻗﯾﻣﺗﺎن ﻟﺗوزﯾﻊ ‪ F‬ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪ ν1 , ν 2‬ﻋﻠ ﻰ اﻟﺗ واﻟﻲ‬ ‫‪2‬‬

‫‪1‬‬

‫‪2‬‬

‫‪1‬‬ ‫‪f  (1,  2 ) ‬‬ ‫ﻣﻊ اﻟﻌﻠم أن ‪‬‬ ‫‪1‬‬ ‫‪f‬‬ ‫(‬ ‫‪‬‬ ‫‪,‬‬ ‫‪‬‬ ‫)‬ ‫‪‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬

‫ﻷي ﻋﯾﻧﺗﯾن ﻋﺷواﺋﯾﺗﯾن ﻣﺳﺗﻘﻠﺗﯾن ﻣن اﻟﺣﺟم ‪ n 2 , n 1‬ﻣ ﺄﺧوذﺗﯾن ﻣ ن ﻣﺟﺗﻣﻌ ﯾن طﺑﯾﻌﯾ ﯾن ‪ ،‬ﻓ ﺈن‬ ‫‪12‬‬ ‫اﻟﻧﺳﺑﺔ ‪ s12 / s 22‬ﺗﺣﺳب وﯾﺗم اﻟﺣﺻول ﻋﻠﻰ ‪ (1 α )100 %‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ 2‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪2‬‬

‫‪s12‬‬ ‫‪1‬‬ ‫‪12‬‬ ‫‪s12‬‬ ‫‪‬‬ ‫‪ 2 f  ( 2 ,1 ) .‬‬ ‫‪s 22 f  (1 , 2 ) 22‬‬ ‫‪s2 2‬‬ ‫‪2‬‬

‫ﻣﺛﺎل )‪(٢٤-٢‬‬ ‫إذا ﻛﺎﻧت درﺟﺎت ﻛل ﻣ ن اﻟط ﻼب واﻟطﺎﻟﺑ ﺎت ﺑﺈﺣ دى اﻟﺟﺎﻣﻌﺎت ﻓ ﻲ ﻣ ﺎدة اﻹﺣﺻ ﺎء ﯾﺗﺑ ﻊ‬ ‫ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً‪ .‬اﺧﺗﯾ ر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ﺑ ﯾن اﻟط ﻼب وأﺧ رى ﻣ ن ﺑ ﯾن اﻟطﺎﻟﺑ ﺎت ﻓﻛﺎﻧ ت‬ ‫درﺟﺎﺗﮭم ﻛﻣﺎ ﯾﻠﻲ ‪:‬‬ ‫‪ : 59‬اﻟطﻼب‬ ‫‪79‬‬ ‫‪73‬‬ ‫‪49‬‬ ‫‪88‬‬ ‫‪83‬‬ ‫‪69‬‬ ‫‪44‬‬ ‫‪81‬‬ ‫‪ :‬اﻟطﺎﻟﺑﺎت‬ ‫‪74 79‬‬ ‫‪49‬‬ ‫‪59‬‬ ‫‪82‬‬ ‫‪69‬‬ ‫‪79‬‬ ‫‪89‬‬ ‫أوﺟد ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻧﺳﺑﺔ ‪. 12 / 22‬‬

‫اﻟﺣــل‪:‬‬ ‫‪n 1 = 9 , s1 = 15.57 , n 2 = 8 , s 2 = 13.07 .‬‬

‫‪٩٠‬‬


‫( ﺑدرﺟﺎت‬٤) ‫ ﻓﻲ ﻣﻠﺣق‬F ‫ اﻟﻣﺳﺗﺧرﺟﺗﺎن ﻣن ﺟدول ﺗوزﯾﻊ‬f.05(7,8)=3.5 , f.05(8,7) = 3.73 ‫ ﯾﻣﻛن‬.‫ ﻟﻠﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ‬ν1 = 7, ν 2 = 8 ‫ ﻟﻠﻌﯾﻧﺔ اﻷوﻟﻲ ودرﺟﺎت ﺣرﯾﺔ‬ν1 = 8, ν 2 = 7 ‫ﺣرﯾﺔ‬ . ‫ وذﻟك ﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ‬σ12 / σ22 ‫ ﻓﺗرة ﺛﻘﺔ ﻟﻠﻧﺳﺑﺔ‬90% ‫اﻟﺣﺻول ﻋﻠﻰ‬

s12 1 12 s12   f (  , ) . s 22 f  (1 , 2 ) 22 s 22 2 2 1 2

: ‫أي أن‬ 2

(15.57)  (13.07) 2 (3.73)

12  22

0.3805 

12  22

2

(15.57 )(3.5) . (13.07) 2

: ‫واﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ‬  4.967.

‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ x1={59,79,73,49,88,83,69,44,81};x2={74,79,49,59,82, 69,79,89}; =.1 0.1

l[w_]:=Length[w] plu[w_]:=Apply[Plus,w] n1=l[x1] 9

n2=l[x2] 8

ss1 

1 1 plu x1 2   plu x12  N n1  1 n1

242.528

ss2 

1 1 plu x2 2   plu x22  N n2  1 n2

170.857

<<Statistics`ContinuousDistributions` f1  Quantile FRatioDistribution n1  1, n2  1,

1

  2

3.72573

f2  Quantile FRatioDistribution  1  2 ٩١

n2  1, n1  1,


‫‪3.50046‬‬

‫‪ss1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪ss2‬‬ ‫‪f1‬‬

‫‪low ‬‬

‫‪0.380993‬‬

‫‪ss1‬‬ ‫‪ f2‬‬ ‫‪ss2‬‬

‫‪up ‬‬

‫‪4.96883‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪ x1‬وﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪. x2‬‬ ‫‪‬ﻣن اﻻﻣر‬ ‫‪=0.01‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت ‪:‬‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪ss1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪ss2‬‬ ‫‪f1‬‬

‫‪low ‬‬

‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪ss1‬‬ ‫‪ f2‬‬ ‫‪ss2‬‬

‫‪up ‬‬

‫ﻣﺛﺎل )‪(٢٥-٢‬‬ ‫أﺧ ذت ﻋﯾﻧ ﺔ ﺣﺟﻣﮭ ﺎ ‪ n1  6‬واﻧﺣراﻓﮭ ﺎ اﻟﻣﻌﯾ ﺎري ‪ s1  77.9‬ﻣ ن ﻣﺟﺗﻣ ﻊ طﺑﯾﻌ ﻲ وﻋﯾﻧ ﺔ‬ ‫اﺧرى ﻣﺳﺗﻘﻠﺔﻋن ﺣﺟﻣﮭﺎ ‪ n 2  10‬واﻧﺣراﻓﮭ ﺎ اﻟﻣﻌﯾ ﺎري ‪ s 2  194.2‬ﻣ ن ﻣﺟﺗﻣ ﻊ طﺑﯾﻌ ﻰ‬ ‫اﯾﺿﺎ ‪ .‬أوﺟد ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪. 12 / 22‬‬

‫اﻟﺣــل ‪:‬‬ ‫‪n 1 = 6 , s1 = 77.9 , n 2 = 10 , s 2 = 194.2 .‬‬ ‫‪ f.05(9,5) = 4.77 , f.05(5,9) = 3.48‬اﻟﻣﺳﺗﺧرﺟﺗﺎن ﻣن ﺟدول ﺗوزﯾﻊ ‪ F‬ﻓﻲ ﻣﻠﺣق )‪ (٤‬ﺑدرﺟﺎت‬ ‫ﺣرﯾﺔ ‪ ν1 = 5, ν 2 = 9‬ﻟﻠﻌﯾﻧﺔ اﻷوﻟﻲ ودرﺟﺎت ﺣرﯾﺔ ‪ 1  9 ,  2  5‬ﻟﻠﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﯾﻣﻛن‬

‫اﻟﺣﺻول ﻋﻠﻰ ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻧﺳﺑﺔ ‪ σ12 / σ 22‬وذﻟك ﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ‪:‬‬ ‫‪.‬‬

‫) ‪( ν 2 , ν1‬‬

‫‪α‬‬ ‫‪2‬‬

‫‪s12 1‬‬ ‫‪σ12 s12‬‬ ‫<‬ ‫‪< f‬‬ ‫‪s 22 f ( ν , ν ) σ 22 s 22‬‬ ‫‪2‬‬

‫أي أن ‪:‬‬ ‫‪٩٢‬‬

‫‪1‬‬

‫‪α‬‬ ‫‪2‬‬


(77.9) 2

2 (77.9) 2 (4.77) .  1  (194.2) 2 (3.48)  22 (194.2) 2

: ‫واﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ‬ 12  0.7675 .  22 ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ 0.046 

=.1 0.1

n1=6 6

n2=10 10

ss1=77.9 77.9

ss2=194.2 194.2

<<Statistics`ContinuousDistributions` f1  Quantile FRatioDistribution n1  1, n2  1,

1

  2

3.48166

f2  Quantile FRatioDistribution  1  2

n2  1, n1  1,

4.77247

low  

ss1 2 1   ss2 f1

0.0462158

up  

ss1 2   f2 ss2

0.767926

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ ‫ﻣن اﻻﻣر‬ =0.01

‫ﺣﺟم اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ n1=6 ٩٣


‫ﺣﺟم اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ ‫‪n2=10‬‬ ‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ ‫‪ss1=77.9‬‬ ‫واﻻﻧﺣراف ﻟﻠﻣﻌﯾﺎرى اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ ‫‪ss2=194.2‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫اﻟﺣد اﻻدﻧﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬ ‫‪ss1 2 1‬‬

‫‪f1‬‬

‫‪ ‬‬

‫‪ss2‬‬

‫‪low  ‬‬

‫واﻟﺣد اﻻﻋﻠﻰ ﻟﻠﺛﻘﺔ ﻣن اﻻﻣر‬

‫‪ss1 2‬‬ ‫‪up  ‬‬ ‫‪  f2‬‬ ‫‪ss2‬‬

‫ﻣﺛﺎل )‪(٢٦-٢‬‬ ‫ﻟﻠﻣﺛﺎل )‪ (١٦-٢‬أوﺟد ‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻧﺳﺑﺔ ‪. 12 / 22‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬

‫‪ Mathematica‬وذﻟك ﺑﺈﺳﺗﺧدام اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬

‫‪Statistics`ConfidenceIntervals‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ ‫`‪<<Statistics`ConfidenceIntervals‬‬ ‫;}‪se={980,990,940,997,980,1054,1019,942‬‬ ‫;}‪w={939,838,1024,903,965,1027,1000‬‬ ‫]‪VarianceRatioCI} [se,w,ConfidenceLevel->.90‬‬

‫}‪{0.0706333,1.1487‬‬ ‫‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻧﺳﺑﺔ ‪ 12 / 22‬ﺗم اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪VarianceRatioCI} [se,w,ConfidenceLevel->.90‬‬

‫واﻟﻣﺧرج ھو‬ ‫}‪{0.0706333,1.1487‬‬

‫‪٩٤‬‬


‫اﻟﻔﺻل اﻟﺛﺎﻟث‬ ‫اﺧﺗﺑﺎرات اﻟﻔروض‬

‫‪٩٥‬‬


‫)‪ (١-٣‬اﻟﻔروض اﻹﺣﺻﺎﺋﯾﺔ‬

‫‪Statistical Hypotheses‬‬

‫ﺗﻌﺗﺑر اﺧﺗﺑﺎرات اﻟﻔروض اﻹﺣﺻﺎﺋﯾﺔ أھم ﻓرع ﻓﻲ ﻧظرﯾﺔ اﻟﻘرارات‪ ،‬أوﻻ‪ ،‬دﻋﻧﺎ ﻧﻌ رف ﺑدﻗ ﺔ ﻣ ﺎذا‬ ‫ﻧﻌﻧﻲ ﺑﺎﻟﻔرض اﻹﺣﺻﺎﺋﻲ‪.‬‬ ‫ﺗﻌرﯾف ‪ :‬اﻟﻔرض اﻹﺣﺻﺎﺋﻲ ھو ﺟﻣﻠﺔ ﻣﺎ ﺗﺧص واﺣد أو أﻛﺛر ﻣن اﻟﻣﺟﺗﻣﻌﺎت‪ ،‬ﻣن اﻟﻣﻣﻛن أن‬ ‫ﺗﻛون ﺻﺣﯾﺣﺔ أو ﻏﯾر ﺻﺣﯾﺣﺔ‪.‬‬ ‫ﻟﻠﺗﺄﻛد ﻣن ﺻﺣﺔ أو ﻋدم ﺻﺣﺔ اﻟﻔرض اﻹﺣﺻﺎﺋﻲ ﻻ ﺑد ﻣن دراﺳﺔ ﻛل ﻣﻔردات اﻟﻣﺟﺗﻣﻊ ﺗﺣت‬ ‫اﻟدراﺳﺔ وھذا ﺑﺎﻟطﺑﻊ ﻏﯾر ﻋﻣﻠﻲ ﻓﻲ ﻣﻌظم اﻟﺣﺎﻻت‪ .‬ﺑدﻻ ﻣن ذﻟك ﻓﺈﻧﻧﺎ ﻧﺧﺗﺎر ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن‬ ‫اﻟﻣﺟﺗﻣﻊ وﻧﺳﺗﺧدم اﻟﻣﻌﻠوﻣﺎت اﻟﻣوﺟودة ﻓﻲ اﻟﻌﯾﻧﺔ ﻟﻧﺗﺧذ ﻗرار ﺑﻘﺑول أو رﻓض اﻟﻔرض اﻹﺣﺻﺎﺋﻲ‪.‬‬ ‫اﻟﻘرار اﻟذي ﻧﺗﺧذه ﺳوف ﯾﻛون ﺳﻠﯾم إذا ﻛﺎن اﻟﻔرض ﺻﺣﯾﺢ وﺗم ﻗﺑوﻟﮫ أو ﺧطﺄ وﺗم رﻓﺿﮫ‪ .‬ﺑﯾﻧﻣﺎ‬ ‫ﯾﻛون اﻟﻘرار ﻏﯾر ﺳﻠﯾم إذا ﻛﺎن اﻟﻔرض ﺻﺣﯾﺢ وﺗم رﻓﺿﮫ أو ﻏﯾر ﺻﺣﯾﺢ وﺗم ﻗﺑوﻟﮫ‪.‬‬ ‫اﻟﻔروض اﻟﺗﻲ ﻧﺿﻌﮭﺎ ﻋﻠﻰ أﻣل أن ﻧرﻓﺿﮭﺎ ﺗﺳﻣﻰ ﻓروض اﻟﻌدم ‪ .null hypotheses‬وﯾرﻣز‬ ‫ﻟﻔرض اﻟﻌدم ﺑﺎﻟرﻣز ‪ .  0‬رﻓض ﻓرض اﻟﻌدم ﯾؤدي إﻟﻰ ﻗﺑول ﻓرض ﺑدﯾل ‪hypothesis‬‬ ‫‪ alternative‬وﯾرﻣز ﻟﻠﻔرض اﻟﺑدﯾل ﺑﺎﻟرﻣز ‪ . 1‬ﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل إذا ﻛﺎن ﻓرض اﻟﻌدم ‪  0‬أن‬ ‫ﻣﺗوﺳط اﻟطول ﻓﻲ ﻣﺟﺗﻣﻊ ﻣﺎ ‪)   160‬ﻣﻘﺎﺳﮫ ﺑﺎﻟﺳﻧﺗﯾﻣﺗر( ﻓﺈن اﻟﻔرض اﻟﺑدﯾل ‪ 1‬ﻗد ﯾﻛون‬ ‫‪   160‬أو ‪   160‬أو ‪.   160‬‬ ‫ﺗﻌرﯾف ‪ :‬ﯾﺣدث اﻟﺧطﺄ ﻣن اﻟﻧوع اﻻول إذا رﻓض ﻓرض اﻟﻌدم وھو ﺻﺣﯾﺢ‪.‬‬ ‫ﺗﻌرﯾف ‪ :‬اﺣﺗﻣﺎل اﻟوﻗوع ﻓﻲ ﺧطﺄ ﻣن اﻟﻧوع اﻷول ﯾﺳﻣﻰ ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ‬ ‫‪ significance‬ﻟﻼﺧﺗﺑﺎر وﯾرﻣز ﻟﮫ ﺑﺎﻟرﻣز ‪. ‬‬ ‫ﻣن اﻟﻘﯾم اﻟﺷﺎﺋﻌﺔ ﻟﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ‪   0 .05‬أو ‪ .   0 .01‬ﯾﻘﺎل ﻟﻼﺧﺗﺑﺎر أﻧﮫ ﻣﻌﻧوي‬ ‫‪ significant‬ﻋﻧد ‪   0 .05‬إذا رﻓض ﻓرض اﻟﻌدم ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪   0 .05‬وﯾﻌﺗﺑر‬ ‫اﻻﺧﺗﺑﺎر ﻣﻌﻧوي ﺟدا إذا رﻓض ﻓرض اﻟﻌدم ﻋﻧد ﻣﺳﺗوي ﻣﻌﻧوﯾﺔ ‪.   0 .01‬وھﻧﺎك ﻗﯾم ﺗﺳﺗﺧرج ﻣن‬ ‫اﻟﺑراﻣﺞ اﻟﺟﺎھزة ﻣﺛل ﺑرﻧﺎﻣﺞ ‪ SPSS‬او ﺑرﻧﺎﻣﺞ ‪ Mathematica‬ﺗﺴﻤﻰ ﻗﯿﻢ ‪ pvalue‬ﺣﯿﺚ‬ ‫ﺗﻘﺎرن ھﺬه اﻟﻘﯿﻢ ﻣﺒﺎﺷﺮة ﺑﻤﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ ‪ ‬وﯾﺘﻢ رﻓﺾ او ﻗﺒﻮل ‪  0‬ﻛﺎﻟﺘﺎﻟﻰ ‪:‬‬ ‫)أ( ﻧﻘﺒﻞ ‪  0‬إذا ﻛﺎﻧﺖ اﻟﻘﯿﻤﺔ ‪ p‬اﻛﺒﺮ ﻣﻦ ﻣﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ اﻟﻤﺴﺘﺨﺪم ‪.‬‬ ‫)ب( ﻧﺮﻓﺾ ‪  0‬إذا ﻛﺎﻧﺖ اﻟﻘﯿﻤﺔ ‪ p‬اﺻﻐﺮ ﻣﻦ ﻣﺴﺘﻮى اﻟﻤﻌﻨﻮﯾﺔ اﻟﻤﺴﺘﺨﺪم ‪.‬‬ ‫‪level of‬‬

‫)‪ (٢-٣‬اﺧﺗﺑﺎرات ﻣن ﺟﺎﻧب واﺣد أو ﻣن ﺟﺎﻧﺑﯾن‪:‬‬ ‫‪One – Tailed and Two – Tailed Tests‬‬ ‫ﯾﺳﻣﻰ اﻻﺧﺗﺑﺎر ‪ ،‬ﻷي ﻓرض إﺣﺻﺎﺋﻲ ‪ ،‬أﻧﮫ ﻣن ﺟﺎﻧب واﺣد إذا ﻛﺎن ﻋﻠﻰ اﻟﺻورة‬ ‫‪H 0 :   0‬‬ ‫‪H 0 :   0‬‬

‫أو ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪٩٦‬‬


‫‪H 0 :   0‬‬ ‫‪H1 :   0‬‬

‫ﯾﺳﻣﻰ اﻻﺧﺗﺑﺎر‪ ،‬ﻷي ﻓرض إﺣﺻﺎﺋﻲ‪ ،‬أﻧﮫ ﻣن ﺟﺎﻧﺑﯾن إذا ﻛﺎن ﻋﻠﻰ اﻟﺻورة ‪:‬‬ ‫‪H 0 :   0‬‬ ‫‪H1 :   0‬‬

‫اﻟﻣﻔﺎﺿلة ﺑﯾن اﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد أو ﻣن ﺟﺎﻧﺑﯾن ﺳوف ﯾﺗوﻗف ﻋﻠﻰ اﻻﺳﺗﻧﺗﺎج اﻟذي ﯾرﻏب‬ ‫اﻟﺑﺎﺣث ﻓﻲ اﻟوﺻول إﻟﯾﮫ ﻋﻧد رﻓض ﻓرض اﻟﻌدم ‪:‬‬ ‫ﻓﻲ اﻟﺑﻧود اﻟﺗﺎﻟﯾﺔ ﻣن ھذا اﻟﻔﺻل ﺳوف ﻧﻧﺎﻗش ﺑﻌض اﺧﺗﺑﺎرات اﻟﻔروض اﻟﺷﺎﺋﻌﺔ اﻻﺳﺗﺧدام‪.‬‬

‫)‪ (٣-٣‬اﺧﺗﺑﺎرات ﺣول ﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ‪:‬‬ ‫‪Tests About a Population Mean ‬‬ ‫اﻟﺣﺎﻟﺔ اﻷوﻟﻰ ‪ :‬اﺧﺗﺑﺎر اﻟﻔرض أن اﻟﻣﺗوﺳط ﻟﻣﺟﺗﻣﻊ طﺑﯾﻌﻰ ﺑﺗﺑﺎﯾن ﻣﻌﻠوم ‪ ، 2‬ﯾﺳﺎوى ﻗﯾﻣﺔ ﻣﻌﯾﻧﺔ‬ ‫‪ 0‬ﺿد اﻟﻔرض اﻟﺑدﯾل ذي ﺟﺎﻧﺑﯾن أن اﻟﻣﺗوﺳط ﻻ ﯾﺳﺎوى ‪ 0‬ﯾﻛون ﻋﻠﻰ اﻟﺷﻛل‪:‬‬ ‫‪H 0 :   0‬‬ ‫‪H1 :    0 .‬‬

‫ﻹﺟراء اﻻﺧﺗﺑﺎر ﻧﺧﺗﺎر ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n‬ﻣن اﻟﻣﺟﺗﻣﻊ ﻣوﺿﻊ اﻟدراﺳﺔ وﻧﺣﺳب‬ ‫ﻣﻧﮭﺎ اﻟﻘﯾﻣﺔ ‪:‬‬ ‫‪x  0‬‬ ‫‪‬‬ ‫‪n‬‬

‫‪z‬‬

‫ﻓﺈذا وﻗﻌت ‪ z‬ﻓﻲ اﻟﻣﻧطﻘﺔ ‪  z   Z  z ‬ﻓﺎﻻﺳﺗﻧﺗﺎج ﺳوف ﯾﻛون ‪    0‬وﻏﯾر ذﻟك ﻧرﻓض‬ ‫‪2‬‬

‫‪H0‬‬

‫‪2‬‬

‫وﻧﻘﺑل اﻟﻔرض اﻟﺑدﯾل ‪.    0‬‬ ‫ﺑﻔرض اﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪H 0 :   0 ,‬‬ ‫‪H1 :    0‬‬

‫ﻓ ﺈن ‪Z   z ‬‬

‫ﻣﻧطﻘﺔ اﻟ رﻓض ﺳ وف ﺗﻛ ون ﻓ ﻲ اﻟ ذﯾل اﻷﯾﺳ ر ﻣ ن ﺗوزﯾ ﻊ ‪ . Z‬ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪‬‬

‫ﺗﻣﺛل ﻣﻧطﻘﺔ اﻟرﻓض و ‪ Z   z ‬ﺗﻣﺛل ﻣﻧطﻘﺔ اﻟﻘﺑول‪.‬‬ ‫ﺑﻔرض اﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪H 0 :   0 ,‬‬ ‫‪H1 :    0‬‬

‫ﻣﻧطﻘ ﺔ اﻟ رﻓض ﺳ وف ﺗﻛ ون ﻓ ﻲ اﻟ ذﯾل اﻻﯾﻣ ن ﻣ ن ﺗوزﯾ ﻊ ‪ . Z‬ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪‬‬

‫ﺗﻣﺛل ﻣﻧطﻘﺔ اﻟرﻓض و ‪ Z  z ‬ﺗﻣﺛل ﻣﻧطﻘﺔ اﻟﻘﺑول‪.‬‬ ‫إذا ﻛﺎن ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ﻣﺟﮭول ﻓﺈﻧﻧﺎ ﻧﺣﺳب ﺗﺑﺎﯾن اﻟﻌﯾﻧﺔ ‪ s‬وﻧﺳﺗﺧدﻣﮫ ﺑدﻻ ً ﻣن‬ ‫ﺣﺟم اﻟﻌﯾﻧﺔ أﻛﺑر ﻣن أو ﯾﺳﺎوى ‪. n  30  30‬‬ ‫‪2‬‬

‫‪٩٧‬‬

‫‪2‬‬

‫ﻓ ﺈن‬

‫‪Z  z‬‬

‫‪ ‬ﺗﺣت ﺷرط أن‬


‫ﻣﺛﺎل)‪(١-٣‬‬ ‫إذا ﻛﺎن ﻟدﯾك اﻟﺑﯾﺎﻧﺎت ﻟﺗﺎﻟﯾﺔ‪:‬‬

‫‪464,450,450,456,452,433,446,446,450,447,442,438,452,‬‬ ‫‪447,460,450,453,456,446,433,448,450‬‬ ‫‪,439,452,459,454,456,454,452,449,463,449,447,466,446,44‬‬ ‫‪7,450,449,457,464,468,447,433,464,469,457,454,451,453,443‬‬

‫اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪ H 0 :   454‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪   454‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬ ‫‪ .   0 .05‬ﻣﻊ اﻟﻌﻠم أن اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ھو ‪ 7.9‬واﯾﺿﺎ اﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫‪ H 0 :   454‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪   454‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   0 .05‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬ ‫‪ Statistics HypothesisTests‬وذﻟك ﻣن ﺧﻼل اﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬ ‫`‪<<Statistics`HypothesisTests‬‬ ‫ﯾﺗم إدﺧﺎل اﻟﺑﯾﺎﻧﺎت ﻓﻰ ﻗﺎﺋﻣﺔ ﻟﮭﺎ اﺳم )ﻟﮭذا اﻟﻣﺛﺎل ﺗم اﺳﺗﺧدام اﻻﺳم ‪.( weights‬‬

‫ﺑﻔرض اﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪H 0 :   0 ,‬‬ ‫‪H1 :    0‬‬

‫ﺳوف ﯾﺳﺗﺧدام اﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬ ‫]‪MeanTest[list,muo,options‬‬

‫ﺣﯾث ‪ list‬ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ و ‪ muo‬ﺗﻌﻧﻰ ﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ )وھو ‪ 454‬ﻟﮭذا اﻟﻣﺛﺎل( ﺗﺣت ﻓرض‬ ‫اﻟﻌدم و‪ options‬ﺗﻌﻧﻰ اﻟﺧﯾﺎرات اﻟﻣطﻠوﺑﺔ ‪.‬ﻓﻌﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ﯾﻣﻛن وﺿﻊ اﻟﺧﯾﺎر ‪:‬‬ ‫>‪ KnownStandardDeviation-‬ﺣﯾث اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﯾوﺿﻊ ﺑﻌد اﻟﺳﮭم‬ ‫)وھو ‪ 7.9‬ﻟﮭذا اﻟﻣﺛﺎل( ‪ ،‬وﻗد ﯾﺳﺗﺧدم اﻟﺧﯾﺎر >‪ KnownVariance-‬ﺣﯾث ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ﯾوﺿﻊ‬ ‫ﺑﻌد اﻟﺳﮭم ‪ .‬أﯾﺿﺎ ﻟﻠرﻏﺑﺔ ﻓﻰ اﻟﺣﺻول ﻋﻠﻰ ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ﻣﻌﯾن )ﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ‪   0.1‬أو‬ ‫‪ (   0 .01‬ﯾﺳﺗﺧدم اﻟﺧﯾﺎر >‪ SignificanceLevel-‬ﺣﯾث ﯾوﺿﻊ ‪   0.1‬أو ‪   0 .01‬ﺑﻌد‬ ‫اﻟﺳﮭم وﻓﻰ ھذه اﻟﺣﺎﻟﺔ اﻟﻘرار ﺑﻘﺑول أو رﻓض ﻓرض اﻟﻌدم ﯾظﮭر ﺿﻣن اﻟﻣﺧرﺟﺎت وﺑدون ھذا‬ ‫اﻟﺧﯾﺎر ﺗظﮭر ﻗﯾﻣﺔ ‪ p‬ﺿﻣن اﻟﻣﺧرﺟﺎت ‪.‬وﻟﻠﺣﺻول ﻋﻠﻰ ﺗﻘرﯾر ﻣﻔﺻل ﯾوﺿﻊ اﻟﺧﯾﺎر‬ ‫‪ ، FullReport->True‬وﻟﻠﻌﻠم ھذا اﻻﻣر ﻻ ﯾوﺿﺢ ھل اﻻﺧﺗﺑﺎر ﻣن اﻟﯾﻣﯾن ام ﻣن‬

‫‪٩٨‬‬


‫ وﺑدون ھذا اﻟﺧﯾﺎر ﯾﻛون اﻻﺧﺗﺑﺎر‬TwoSided->True ‫ﻻﺧﺗﺑﺎر ذو ﺟﺎﻧﺑﯾن ﯾﺳﺗﺧدم اﻟﺧﯾﺎر‬.‫اﻟﯾﺳﺎر‬ . ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬. ‫ﻣن ﺟﺎﻧب واﺣد‬ <<Statistics`HypothesisTests` weights={464,450,450,456,452,433,446,446,450,447,442,438,452 ,447,460,450,453,456,446,433,448,450,439,452,459,454,456,454 ,452,449,463,449,447,466,446,447,450,449,457,464,468,447,433 ,464,469,457,454,451,453,443}; MeanTest[weights,454,KnownStandardDeviation->7.9] OneSidedPValue0.00641777

MeanTest[weights,454,KnownStandardDeviation>7.9,FullReport->True] FullReport 

Mean 451.22

TestStat 2.4883

Distribution , NormalDistribution

OneSidedPValue  0.00641777 MeanTest[weights,454,KnownStandardDeviation>7.9,FullReport->True ,SignificanceLevel->0.05] FullReport 

Mean 451.22

TestStat 2.4883

Distribution , NormalDistribution

OneSidedPValue  0.00641777, Reject null hypothesis at significance level  0.05 MeanTest[weights,454,KnownStandardDeviation->7.9,TwoSided>True,FullReport->True] FullReport 

Mean 451.22

TestStat 2.4883

Distribution , NormalDistribution

TwoSidedPValue  0.0128355

:‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬ MeanTest[weights,454,KnownStandardDeviation->7.9]

‫واﻟذى ﯾﻌﻧﻰ أن اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد‬ ‫ واﻟﻣﺧرج ھو‬7.9 ‫ﺣﯾث اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ھو‬ p< 0.05 ‫ وﺑﻣﺎ أن‬p =.00641777‫ واﻟﺗﻰ ﺗﻌﻧﻰ ان ﻗﯾﻣﺔ‬OneSidedPValue0.00641777 . ‫ﻓﮭذا ﯾﻌﻧﻰ رﻓض ﻓرض اﻟﻌدم‬ : ‫وﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬ MeanTest[weights,454,KnownStandardDeviation->7.9,FullReport>True]

‫واﻟذى أﺿﯾف إﻟﯾﮫ اﻟﺧﯾﺎر‬ ٩٩


‫‪FullReport->True‬‬ ‫ﻟذﻟك ﺗﻐﯾرت اﻟﻣﺧرﺟﺎت ﺣﯾث ﺗم اﻟﺣﺻول ﻋﻠﻰ ﺗﻘرﯾر ﻣﻔﺻل ﯾﺣﺗوى ﻋﻠﻰ ﻣﺗوﺳط اﻟﻌﯾﻧﺔ ﺗﺣت اﻟﻌﻧوان‬

‫‪Mean‬‬ ‫وﻗﯾﻣﺔ اﻻﺣﺻﺎء اﻟﻣﺳﺗﺧدم ﺗﺣت اﻟﻌﻧوان ‪ TestStat‬واﻻﺣﺻﺎء اﻟﻣﺳﺗﺧدم ﺗﺣت اﻟﻌﻧوان‬ ‫‪ Distribution‬واﻟذى ﯾﻌﻧﻰ ان اﻻﺣﺻﺎء اﻟﻣﺳﺗﺧدم ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻰ‬ ‫اﻟﻘﯾﺎﺳﻰ وﻧﺳﺗﻧﺗﺞ ﻣن ھذا اﻻﻣر ﻗﺑول اﻟرﻓض اﻟﺑدﯾل‬ ‫‪H1 :    0‬‬

‫وذﻟك ﻻن ﻗﯾﻣﺔ اﻻﺣﺻﺎء ﺳﺎﻟﺑﺔ‪.‬‬ ‫وﺑﺎﻟﻧﺳﺑﺔ ﻟﻼ ﻣر اﻟﺗﺎﻟﻰ )واﻟذى اﺿﯾف إﻟﯾﮫ اﻟﺧﯾﺎر ‪( SignificanceLevel->0.05‬‬ ‫‪MeanTest[weights,454,KnownStandardDeviation->7.9,FullReport‬‬‫]‪>True,SignificanceLevel->0.05‬‬ ‫ﻓﯾؤدى اﻟﻰ اﺗﺧﺎذ ﻗرار‪ .‬ﻟﮭذا اﻟﻣﺛﺎل ا ﻟﻘرار رﻓض ﻓرض اﻟﻌدم ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬ ‫‪ . 0.05‬اى ان‬ ‫‪H1 :    0‬‬

‫وﺑﺎﻟﻧﺳﺑﺔ إﻟﻰ اﻻﻣر ‪:‬‬ ‫‪MeanTest[weights,454,KnownStandardDeviation->7.9,TwoSided‬‬‫]‪>True,FullReport->True‬‬ ‫واﻟذى أﺿﯾف إﻟﯾﮫ اﻟﺧﯾﺎر ‪ TwoSided->True‬واﻟذى ﯾؤدى اﻟﻰ اﻟﺣﺻول ﻋﻠﻰ ﻗﯾﻣﺔ ‪p‬‬ ‫ﻻﺧﺗﺑﺎر ذو ﺟﺎﻧﺑﯾن وذﻟك ﺿﻣن اﻟﻣﺧرﺟﺎت وﺣﯾث ان ‪ p  .05‬ﻓﮭذا ﯾﻌﻧﻰ رﻓض ﻓرض اﻟﻌدم ان‬

‫‪. H 0 :   454‬‬

‫ﻣﺛﺎل)‪(٢-٣‬‬ ‫ﻟﻠﻣﺛﺎل )‪ (١-٣‬وﺑﻔرض ان اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﻏﯾر ﻣﻌروف اﺧﺗﺑر ﻓرض اﻟﻌدم ان‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل ان ‪ H 0 :   454‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﻰ ‪.   .05‬‬

‫‪H 0 :   454‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺑﻣﺎ ان اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻏﯾر ﻣﻌروف وﺣﺟم اﻟﻌﯾﻧﺔ ‪ n  30‬ﻓﺈن اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ ﯾﺣل‬ ‫ﻣﺣل اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى اﻟﻣﺟﺗﻣﻊ ﻓﻰ ﻋﻣﻠﯾﺔ اﻟﺣﺳﺎب ‪.‬ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ ‫ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪weights={464.,450.,450,456,452,433,446,446,450,447,442,438,4‬‬ ‫‪52,447,460,450,453,456,446,433,448,450,439,452,459,454,456,4‬‬ ‫‪54,452,449,463,449,447,466,446,447,450,449,457,464,468,447,4‬‬ ‫}‪33,464,469,457,454,451,453,443‬‬ ‫‪{464.,450.,450,456,452,433,446,446,450,447,442,438,452,447,4‬‬ ‫‪60,450,453,456,446,433,448,450,439,452,459,454,456,454,452,4‬‬

‫‪١٠٠‬‬


49,463,449,447,466,446,447,450,449,457,464,468,447,433,464,4 69,457,454,451,453,443} =0.05 0.05 =454 454 n=Length[weights] 50 aa=Apply[Plus,weights] 22561.

xb 

aa  N n

451.22

c  ApplyPlus, weights2 1.01834  107

1  aa2    s   c    N n 1  n  8.39653

s v    N n

1.18745

z

xb    N v

-2.34116 <<Statistics`ContinuousDistributions`

a  QuantileNormalDistribution0, 1, 1 

2

1.95996 r  If Absz  a, Print"Reject Ho",

Print"Accept Ho" Reject Ho : ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ weights ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ =.05

‫ ﻣن اﻻﻣر‬H 0 :   454 ‫وﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ﺗﺣت ﻓرض اﻟﻌدم‬ =454

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬z

١٠١


‫‪ N‬‬

‫‪xb  ‬‬ ‫‪s‬‬ ‫‪‬‬ ‫‪n‬‬

‫‪z‬‬

‫و ‪ z‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪a  Quantile NormalDistribution0, 1, 1 ‬‬

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر ‪.‬‬ ‫]]"‪If[Abs[z]>a,Print["RjectH0"],Print["AccetH0‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪RjectH0‬‬

‫اى رﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫ﻣﺛﺎل)‪(٣-٣‬‬ ‫ﻟﻠﻣﺛﺎل )‪ (١-٣‬وﺑﻔرض ان اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﻏﯾر ﻣﻌروف اﺧﺗﺑر ﻓرض اﻟﻌدم ان‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل ان ‪ H 0 :   454‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   .05‬‬

‫‪H 0 :   454‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺑﻣﺎ ان اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻏﯾر ﻣﻌروف وﺣﺟم اﻟﻌﯾﻧﺔ ‪ n  30‬ﻓﺈن اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ ﯾﺣل‬ ‫ﻣﺣل اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى اﻟﻣﺟﺗﻣﻊ ﻓﻰ ﻋﻣﻠﯾﺔ اﻟﺣﺳﺎ ب ‪.‬ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ ‫ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪weights={464.,450.,450,456,452,433,446,446,450,447,442,438,4‬‬ ‫‪52,447,460,450,453,456,446,433,448,450,439,452,459,454,456,4‬‬ ‫‪54,452,449,463,449,447,466,446,447,450,449,457,464,468,447,4‬‬ ‫}‪33,464,469,457,454,451,453,443‬‬ ‫‪{464.,450.,450,456,452,433,446,446,450,447,442,438,452,447,4‬‬ ‫‪60,450,453,456,446,433,448,450,439,452,459,454,456,454,452,4‬‬ ‫‪49,463,449,447,466,446,447,450,449,457,464,468,447,433,464,4‬‬ ‫}‪69,457,454,451,453,443‬‬ ‫‪=0.05‬‬ ‫‪0.05‬‬ ‫‪=454‬‬ ‫‪454‬‬ ‫]‪n=Length[weights‬‬ ‫‪50‬‬ ‫]‪aa=Apply[Plus,weights‬‬ ‫‪22561.‬‬

‫‪aa‬‬ ‫‪ N‬‬ ‫‪n‬‬

‫‪xb ‬‬

‫‪451.22‬‬ ‫‪١٠٢‬‬


‫‪c  ApplyPlus, weights2‬‬ ‫‪1.01834  107‬‬

‫‪1 ‬‬ ‫‪aa2 ‬‬ ‫‪‬‬ ‫‪s  ‬‬ ‫‪‬‬ ‫‪c ‬‬ ‫‪  N‬‬ ‫‪n 1 ‬‬ ‫‪n ‬‬ ‫‪8.39653‬‬

‫‪s‬‬ ‫‪v    N‬‬ ‫‪n‬‬

‫‪1.18745‬‬

‫‪xb  ‬‬ ‫‪ N‬‬ ‫‪v‬‬

‫‪z‬‬

‫‪-2.34116‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫]‪a=Quantile[NormalDistribution[0,1],1-‬‬ ‫‪1.64485‬‬

‫‪r  Ifz  a, Print"Reject Ho", Print"Accept Ho"‬‬ ‫‪Accept Ho‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ﻓﺈن ‪:‬‬ ‫‪ z‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫]‪a=Quantile[NormalDistribution[0,1],1-‬‬

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر ‪.‬‬ ‫‪r  Ifz  a, Print"Reject Ho", Print"Accept Ho"‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪Accept Ho‬‬ ‫اى ﻗﺑول ﻓرض اﻟﻌدم ‪.‬‬

‫ﻣﺛﺎل)‪(٤-٣‬‬ ‫ﻟﻠﻣﺛﺎل )‪ (١-٣‬وﺑﻔرض ان اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﻏﯾر ﻣﻌروف اﺧﺗﺑر ﻓرض اﻟﻌدم ان‬ ‫ﺿد اﻟﻔرض ﻟﺑدﯾل ان ‪ H 0 :   454‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   .05‬‬

‫‪H 0 :   454‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺑﻣﺎ ان اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻏﯾر ﻣﻌروف وﺣﺟم اﻟﻌﯾﻧﺔ ‪ n  30‬ﻓﺈن اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ ﯾﺣل‬ ‫ﻣﺣل اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى اﻟﻣﺟﺗﻣﻊ ﻓﻰ ﻋﻣﻠﯾﺔ اﻟﺣﺳﺎ ب ‪.‬ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ ‫ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪١٠٣‬‬


weights={464.,450.,450,456,452,433,446,446,450,447,442,438,4 52,447,460,450,453,456,446,433,448,450,439,452,459,454,456,4 54,452,449,463,449,447,466,446,447,450,449,457,464,468,447,4 33,464,469,457,454,451,453,443} {464.,450.,450,456,452,433,446,446,450,447,442,438,452,447,4 60,450,453,456,446,433,448,450,439,452,459,454,456,454,452,4 49,463,449,447,466,446,447,450,449,457,464,468,447,433,464,4 69,457,454,451,453,443} =0.05 0.05 =454 454 n=Length[weights] 50 aa=Apply[Plus,weights] 22561.

xb 

aa  N n

451.22

c  ApplyPlus, weights2 1.01834  107

1  aa2   s    c    N n 1  n  8.39653

s v    N n

1.18745

xb    N v r  Ifz  a, Print"Reject Ho", Print"Accept Ho" -2.34116 z

<<Statistics`ContinuousDistributions` a=Quantile[NormalDistribution[0,1],] -1.64485

Reject Ho

: ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ﻓﺈن‬ ‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬z a=Quantile[NormalDistribution[0,1],]

. ‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬ r  Ifz  a, Print"Reject Ho", Print"Accept Ho" ‫واﻟﻣﺧرج ھو‬ ١٠٤


‫‪Reject Ho‬‬ ‫اى رﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫ﻣﺛﺎل)‪(٥-٣‬‬ ‫ﯾﻧﺗﺞ ﻣﺻﻧﻊ ﻟﻸﻏذﯾﺔ اﻟﻣﻌﻠﺑﺔ ﻧوﻋﺎ ﻣن اﻟﻣﻌﻠﺑﺎت‪ .‬ﻗﺎم اﻟﻣﺳ ﺋوﻟﯾن ﺧ ﻼل ﻓﺗ رة طوﯾﻠ ﺔ ﺑﻣراﻗﺑ ﺔ أوزان ھ ذه‬ ‫اﻟﻣﻌﻠﺑ ﺎت ووﺟ د أﻧﮭ ﺎ ﺗﺧﺿ ﻊ ﻟﻠﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ ﺑ ﺎﻧﺣراف ﻣﻌﯾ ﺎري ‪ 2.6‬ﺟ رام‪ .‬ﺟ رت اﻟﻌ ﺎدة ﻓ ﻲ‬ ‫اﻟﻣﺻﻧﻊ أن ﯾﻛﺗب ﻋﻠﻰ اﻟﻌﻠﺑﺔ اﻟوزن اﻟﺻﺎﻓﻲ وھو ‪ 300‬ﺟرام‪ .‬اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ‪ 20‬ﻋﻠﺑ ﺔ‬ ‫وﻛ ﺎن ﻣﺗوﺳ ط اﻟ وزن ﻣ ن اﻟﻌﯾﻧ ﺔ ‪ . x  305‬أﺧﺗﺑ ر ﻓ رض اﻟﻌ دم ‪  = 300‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل‬ ‫‪   300‬وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪. = 0.01‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 :   300,‬‬ ‫‪H1 :   300.‬‬ ‫‪  0 .01 .‬‬

‫‪ z 0.005  2.575‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪ (١‬ﻣﻧطﻘﺔ اﻟرﻓض‬ ‫‪ Z  2 .575‬أو ‪Z   2 .575‬‬ ‫‪x   0 305  300‬‬ ‫‪‬‬ ‫‪ 8.6.‬‬ ‫‪‬‬ ‫‪2.6‬‬ ‫‪n‬‬ ‫‪20‬‬

‫‪z‬‬

‫ﻧرﻓض ﻓرض اﻟﻌدم ﻷن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ ) Mathematica‬ﻣﻊ ﻣﻼﺣظﺔ ﻋدم وﺟود‬ ‫ﻣﺷﺎھدات اﻟﻌﯾﻧﺔ ( وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪xb=305‬‬ ‫‪305‬‬ ‫‪=300‬‬ ‫‪300‬‬ ‫‪sgm=2.6‬‬ ‫‪2.6‬‬ ‫‪n=20‬‬ ‫‪20‬‬

‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪=.01‬‬ ‫‪0.01‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬

‫‪a  Quantile NormalDistribution0, 1, 1 ‬‬ ‫‪2.57583‬‬ ‫‪b=xb-‬‬ ‫‪١٠٥‬‬


‫‪5‬‬

‫‪sgm‬‬ ‫‪c  ‬‬ ‫‪n‬‬

‫‪0.581378‬‬

‫‪b‬‬ ‫‪c‬‬

‫‪z‬‬

‫‪8.60026‬‬

‫‪r  If Absz  a, Print"Reject Ho",‬‬ ‫‪Print"Accept Ho"‬‬ ‫‪Reject Ho‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻣﺗوﺳط اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪xb=305‬‬

‫وﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ﺗﺣت ﻓرض اﻟﻌدم ‪ H 0 :   300‬ﻣن اﻻﻣر‬ ‫‪=300‬‬

‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻣﺟﺗﻣﻊ ﻣن اﻻﻣر‬ ‫‪sgm=2.6‬‬

‫وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪n=20‬‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ ‫‪=.01‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪ z‬اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬ ‫‪b‬‬ ‫‪z‬‬ ‫‪c‬‬ ‫و ‪ z‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫‪‬‬ ‫‪a  Quantile NormalDistribution0, 1, 1  ‬‬ ‫‪2‬‬ ‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

‫‪r  If Absz  a, Print"Reject Ho",‬‬ ‫‪Print"Accept Ho"‬‬ ‫‪.‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬

‫اى رﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫ﻣﺛﺎل)‪(٦ -٣‬‬ ‫‪١٠٦‬‬


‫اﺗﻔق أﺣد ﻣﺻدري اﻟﺑﯾض ﻣﻊ أﺣد اﻟﺗﺟﺎر ﻋﻠﻰ أن ﯾورد اﻷﺧﯾر ﻟﻸول ﻋدد ﻣن اﻟﺑﯾض ﻣن اﻟﺣﺟم‬ ‫اﻟﻛﺑﯾر وﻟﻣﺎ أﺣﺿر اﻟﺗﺎﺟر اﻟﺑﯾض ﻗﺎم اﻟﻣﺻدر ﺑﺎﺧﺗﯾﺎر ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن ‪ 100‬ﺑﯾﺿﺔ ﻓوﺟد أن‬ ‫ﻣﺗوﺳط وزن اﻟﺑﯾﺿﺔ ‪ 67‬ﺟراﻣﺎ ﺑﺎﻧﺣراف ﻣﻌﯾﺎري ‪ . 1 .6‬اﺧﺗﺑر ﻓرض اﻟﻌدم ‪ H 0 :   65‬ﺿد اﻟﻔرض‬ ‫اﻟﺑدﯾل ‪ ) H1 :   65‬ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ‪(   0 .05‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 :   65,‬‬

‫‪H1 :   65.‬‬ ‫‪  0 . 05 .‬‬

‫ﺑﻣﺎ أن ‪ n  30‬ﻓﺈﻧﮫ ﯾﻣﻛﻧﻧﺎ اﺳﺗﺧدام ‪ s‬ﺑدﻻ ً ﻣن ‪ ‬ﻓﻲ ﺻﯾﻐﺔ ‪ z 0.05  1.645 . Z‬واﻟﻣﺳﺗﺧرﺟﺔ‬ ‫ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪ (١‬ﻣﻧطﻘﺔ اﻟرﻓض ‪Z  1 .645‬‬ ‫‪x   0 67  65‬‬ ‫‪‬‬ ‫‪ 12.5.‬‬ ‫‪s‬‬ ‫‪1.6‬‬ ‫‪n‬‬ ‫‪100‬‬

‫‪z‬‬

‫ﻧرﻓض ‪ H 0‬ﻷن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ‪ .‬أي أن اﻟﻣورد ﺳوف ﯾﻘﺑل اﺳﺗﻼم اﻟﺑﯾض‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺎﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺑﻠﻐﺔ ‪ ) .Mathematica‬ﻣﻊ ﻣﻼﺣظﺔ ﻋدم وﺟود‬ ‫ﻣﺷﺎھدات اﻟﻌﯾﻧﺔ ( وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫‪xb=67‬‬ ‫‪67‬‬ ‫‪=65‬‬ ‫‪65‬‬ ‫‪sgm=1.6‬‬ ‫‪1.6‬‬ ‫‪n=100‬‬ ‫‪100‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫]‪a=Quantile[NormalDistribution[0,1],1-‬‬ ‫‪1.64485‬‬ ‫‪b=xb-‬‬ ‫‪2‬‬

‫‪sgm‬‬ ‫‪c  ‬‬ ‫‪n‬‬

‫‪0.16‬‬

‫‪b‬‬ ‫‪c‬‬ ‫‪١٠٧‬‬

‫‪z‬‬


‫‪12.5‬‬

‫‪r  Ifz  a, Print"Reject Ho", Print"Accept Ho"‬‬ ‫‪Reject Ho‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ ﻣن اﻻﻣر‬ ‫‪sgm=1.6‬‬

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

‫‪r  Ifz  a, Print"Reject Ho", Print"Accept Ho"‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬

‫اى رﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫ﻣﺛﺎل)‪(٧-٣‬‬ ‫ﻣن اﻟﻣﻌروف أن أﺣد أدوﯾﺔ إزاﻟﺔ اﻷﻟم اﻟﻣﺳﺗﺧدﻣﺔ ﯾﻣﻛﻧﮭﺎ إزاﻟﺔ اﻷﻟم ﻟﻠﻣرﯾض ﻓﻲ ﻓﺗرة زﻣﻧﯾﺔ‬ ‫ﻣﺗوﺳطﮭﺎ ‪ 3 .7‬دﻗﯾﻘﺔ ‪ .‬وﻟﻣﻘﺎرﻧﺔ ھذا اﻟدواء ﺑدواء ﺟدﯾد ﻹزاﻟﺔ اﻷﻟم اﺧﺗﯾرت ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن ‪60‬‬ ‫ﻣرﯾﺿﺎ وﺗم إﻋطﺎء اﻟدواء اﻟﺟدﯾد ﻟﮭم ﻓﻛﺎن اﻟﻣﺗوﺳط اﻟﺣﺳﺎﺑﻲ ﻟطول ﻓﺗرة إزاﻟﺔ اﻷﻟم ﻓﻲ ھذه اﻟﻌﯾﻧﺔ‬ ‫‪ 2 .2‬دﻗﯾﻘﺔ ﺑﺎﻧﺣراف ﻣﻌﯾﺎري ‪ 1 .2‬دﻗﯾﻘﺔ ‪ .‬ﻓﮭل ﺗدل ھذه اﻟﻧﺗﺎﺋﺞ أن اﻟدواء اﻟﺟدﯾد أﻓﺿل ﻣن اﻟدواء‬ ‫اﻟﻘدﯾم ﻣن ﺣﯾث اﻟﻔﺗرة اﻟﻼزﻣﺔ ﻹزاﻟﺔ اﻟﻣرض ؟ وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   0 .05‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 :   3 .7 ,‬‬

‫‪H1 :   3.7.‬‬ ‫‪  0 . 05 .‬‬

‫ﺑﻣﺎ أن ‪ n  30‬ﻓﺈﻧﮫ ﯾﻣﻛﻧﻧﺎ اﺳﺗﺧدام ‪ s‬ﺑدﻻ ً ﻣن ‪ ‬ﻓﻲ ﺻﯾﻐﺔ ‪. Z‬‬ ‫‪ z 0.05  1.645‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪ (١‬ﻣﻧطﻘﺔ اﻟرﻓض‬ ‫‪Z   1 . 645‬‬

‫‪x   0 2.2  3.7‬‬ ‫‪‬‬ ‫‪ 9.682.‬‬ ‫‪s‬‬ ‫‪1.2‬‬ ‫‪n‬‬ ‫‪60‬‬

‫‪z‬‬

‫ﻧرﻓض ﻓرض اﻟﻌدم ﻷن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض‪ .‬أي أن اﻟدواء اﻟﺟدﯾد أﻓﺿل ﻣن اﻟدواء اﻟﻘدﯾم ﻣن‬ ‫ﺣﯾث اﻟﻔﺗرة اﻟﻼزﻣﺔ ﻹزاﻟﺔ اﻟﻣرض‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺎﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺑﻠﻐﺔ ‪ ) .Mathematica‬ﻣﻊ ﻣﻼﺣظﺔ ﻋدم وﺟود‬ ‫ﻣﺷﺎھدات اﻟﻌﯾﻧﺔ ( وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪١٠٨‬‬


‫‪xb=2.2‬‬ ‫‪2.2‬‬ ‫‪=3.7‬‬ ‫‪3.7‬‬ ‫‪sgm=1.2‬‬ ‫‪1.2‬‬ ‫‪n=60‬‬ ‫‪60‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫]‪a=Quantile[NormalDistribution[0,1],‬‬ ‫‪-1.64485‬‬ ‫‪b=xb-‬‬ ‫‪-1.5‬‬

‫‪sgm‬‬ ‫‪c  ‬‬ ‫‪n‬‬

‫‪0.154919‬‬

‫‪b‬‬ ‫‪c‬‬

‫‪z‬‬

‫‪-9.68246‬‬

‫‪r  Ifz  a, Print"Reject Ho", Print"Accept Ho"‬‬ ‫‪Reject Ho‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اﻟﻘرار اﻟذى ﯾﺗﺧذ ھو رﻓض ﻓرض اﻟﻌدم ‪.‬‬ ‫اﻟﺣﺎﻟﺔ اﻟﺛﺎﻧﯾﺔ ‪ :‬ﻓﻲ ﺑﻌض اﺧﺗﺑﺎرات اﻟﻔروض اﻟﺗﻲ ﺗﺧص ﻣﺗوﺳ ط ﻣﺟﺗﻣ ﻊ طﺑﯾﻌ ﻲ ﻋﻧ دﻣﺎ ﯾﻛ ون ﺗﺑ ﺎﯾن‬ ‫اﻟﻣﺟﺗﻣﻊ ‪ 2‬ﻣﺟﮭول وﺣﺟم اﻟﻌﯾﻧﺔ ﺻﻐﯾر ‪ . n  30‬اﺳﺗﻧﺗﺎﺟﻧﺎ‪ ،‬ﻓﻲ ھذه اﻟﺣﺎﻟﺔ‪ ،‬ﺳوف ﯾﻌﺗﻣ د ﻋﻠ ﻰ ﺗوزﯾ ﻊ‬ ‫‪ . t‬ﺑﻔرض اﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪H 0 :   0 ,‬‬ ‫‪H1 :    0‬‬

‫ﻧﺧﺗﺎر ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n  30‬ﻣن اﻟﻣﺟﺗﻣ ﻊ وﻧﺣﺳ ب اﻟﻣﺗوﺳ ط ‪ x‬واﻻﻧﺣ راف اﻟﻣﻌﯾ ﺎري ‪s‬‬

‫وﻋﻠﻰ ذﻟك ‪:‬‬ ‫‪x  0‬‬ ‫‪t‬‬ ‫‪s‬‬ ‫‪n‬‬

‫‪١٠٩‬‬


‫ھ ﻰ ﻗﯾﻣ ﺔ ﻟﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ ‪ T‬ﻟ ﮫ ﺗوزﯾ ﻊ ‪ t‬ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪   n  1‬ﻋﻧ دﻣﺎ ‪ H 0‬ﺻ ﺣﯾﺣﺎ ً‪ .‬ﻣﻧطﻘ ﺔ‬ ‫اﻟرﻓض ﺳوف ﺗﻛون ﻓﻲ اﻟذﯾل اﻷﯾﺳر ﻣن ﺗوزﯾﻊ ‪ . t‬ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪ ‬ﯾﻣﻛ ن اﻟﺣﺻ ول ﻋﻠ ﻰ ﻗﯾﻣ ﺔ‬ ‫واﺣ دة ‪ t1    t ‬ﺑﺣﯾ ث أن ‪ T   t ‬ﺗﻣﺛ ل ﻣﻧطﻘ ﺔ اﻟ رﻓض و ‪ T   t ‬ﺗﻣﺛ ل ﻣﻧطﻘ ﺔ اﻟﻘﺑ ول‪ .‬ﺣﺟ م‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض ﯾﺳﺎوى اﻟﻣﺳﺎﺣﺔ اﻟﻣظﻠﻠﺔ ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪:‬‬

‫ﻣﻧطﻘ ﺔ اﻟ رﻓض ﻟﻠﻔ رض اﻟﺑ دﯾل ‪ H 0 :    0‬ﺑﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪ ، ‬ھ ﻰ ‪ . T  t ‬ﻟﻠﻔ رض اﻟﺑ دﯾل‬ ‫‪ H 0 :    0‬ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض اﻟﻣﻘﺎﺑﻠ ﺔ ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪ ، ‬ھ ﻰ ‪ T  t  / 2‬أو ‪٠ T   t  / 2‬‬ ‫وﻋﻠﻰ ذﻟك ﻧﺣﺳب ﻗﯾﻣ ﺔ اﻹﺣﺻ ﺎء ‪ ،‬أي ﻗﯾﻣ ﺔ ‪ ، t‬وإذا وﻗﻌ ت ﻗﯾﻣ ﺔ ‪ t‬ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟﻘﺑ ول ﻧﻘﺑ ل ﻓرض‬ ‫اﻟﻌدم وﻏﯾر ذﻟك ﻧرﻓض ‪. H 0‬‬

‫ﻣﺛﺎل)‪(٨-٣‬‬ ‫ﻟﻣﻌرﻓﺔ اﺛر ﻏذاء ﻣﻌﯾن ﻋﻠﻰ زﯾﺎدة اﻟوزن اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ﺳ ﺗﺔ ﻓﺋ ران وﺗ م ﺗﻐ ذﯾﺗﮭﺎ ﺑﮭ ذا‬ ‫اﻟﻐذاء وﻛﺎﻧت اﻟزﯾﺎدة ﻓﻲ أوزاﻧﮭم ﺑﻌد اﻟﺗﻐذﯾﺔ ھﻰ ‪:‬‬ ‫‪2 .5‬‬

‫‪1 .7 ,‬‬

‫‪1.4,‬‬

‫‪1 .4 ,‬‬

‫‪2.5,‬‬

‫‪2 .3,‬‬

‫ﻓﮭل ﯾﻣﻛن اﻟﺣﻛم ﻋﻠﻰ أن ھذه اﻟﻌﯾﻧﺔ ﻣن ﻣﺟﺗﻣﻊ ﻣﺗوﺳط اﻟزﯾﺎدة ﻓﻲ اﻟوزن ﻓﯾﮫ ‪ 1 .2‬أم ﻻ ؟ وذﻟ ك ﻋﻧ د‬ ‫ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪ .   0 .05‬وذﻟك ﺗﺣت ﻓرض أن اﻟﻌﯾﻧﺔ ﺗم اﺧﺗﯾﺎرھﺎ ﻣن ﻣﺟﺗﻣﻊ طﺑﯾﻌﻲ ‪.‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 :   1.2,‬‬

‫‪H1 :   1.2.‬‬ ‫‪  0 .05 .‬‬

‫‪ t .025  2.571‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق )‪ (٢‬ﻋﻧد درﺟﺎت ﺣرﯾﺔ ‪.   5‬‬

‫‪١١٠‬‬


T   2 .571

‫أو‬

T  2 . 571

‫ﻣﻧطﻘﺔ اﻟرﻓض‬

n

x x

i 1

n

i

11.8  1.967, 6

n   ( x i )2    n 1  x i2  i 1  s n  1  i 1 n   

 t

1 (11.8) 2  24 . 6     0.528. 5 6  x   0 1.967  1.2   3.5582. s 0.528 n 6

. ‫ ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض‬t ‫ ﻷن‬H 0 ‫ﻧرﻓض‬ . Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ : ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ x={2.3,2.5,1.4,1.4,1.7,2.5} {2.3,2.5,1.4,1.4,1.7,2.5} =1.2 1.2 =.05 0.05 n=Length[x] 6 a=Apply[Plus,x] 11.8

xb 

a n

1.96667

c  ApplyPlus, x2 24.6

1  a2    s   c   n 1  n 0.527889

s v    N n

0.21551 ١١١


t

xb    N v

3.55746 <<Statistics`ContinuousDistributions`

d  QuantileStudentTDistributionn 1, 1 

2

2.57058

r  Ift  d  t  d, Print"Reject Ho", Print"Accept Ho" Reject Ho

‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ H 0 :   1.2 ‫ وﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ﺗﺣت ﻓرض اﻟﻌدم‬x ‫ﻗﺎﺋﻣﺔ اﻟﻣﺷﺎھدات‬ ‫ﻣن اﻻﻣر‬ =1.2 ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ =.05

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬t xb   t  N v ‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬t ‫و‬  d  QuantileStudentTDistributionn 1, 1   2 ‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

r  Ift  d  t  d, Print"Reject Ho", Print"Accept Ho" ‫واﻟﻣﺧرج ھو‬ Reject Ho

.‫اى رﻗض ﻓرض اﻟﻌدم‬

(٩-٣)‫ﻣﺛﺎل‬ (٨-٣) ‫ﻟﻠﻣﺛﺎل‬

١١٢


‫اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪ H 0 :   1.2‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪   1.2‬ﻋﻧد ﻣﺳﺗوى‬ ‫ﻣﻌﻧوﯾﺔ ‪ .   0 .05‬واﯾﺿﺎ اﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪ H 0 :   1.2‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪   1.2‬ﻋﻧد‬ ‫ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪   0 .05‬وذﻟك ﺑﺈﺳﺗﺧدام اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬ ‫‪Statistics`HypothesisTests‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل وذﻟك ﺑﺎﺗﺑﺎع ﻧﻔس اﻟﺧطوات اﻟﺗﻰ أﺗﺑﻌت ﻓﻰ ﻣﺛﺎل )‪ (١- ٣‬واﻻﺧﺗﻼف‬ ‫اﻟوﺣﯾد ھﻧﺎ ھو ﻓﻰ اﻟﺧﯾﺎرات اﻟﺧﺎﺻﺔ ﺑﺎﻻﻣر ‪:‬‬ ‫]‪MeanTest[list,muo,options‬‬

‫وذﻟك ﺑﻌدم وﺿﻊ اﻟﺧﯾﺎر >‪ KnownStandardDeviation-‬أو اﻟﺧﯾﺎر‪:‬‬ ‫>‪KnownVariance-‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`HypothesisTests‬‬ ‫}‪weights={2.3,2.5,1.4,1.4,1.7,2.5‬‬ ‫}‪{2.3,2.5,1.4,1.4,1.7,2.5‬‬

‫]‪MeanTest[weights,1.2,FullReport->True‬‬ ‫‪FullReport ‬‬

‫‪Distribution‬‬ ‫‪,‬‬ ‫‪StudentTDistribution5‬‬

‫‪TestStat‬‬ ‫‪3.55746‬‬

‫‪Mean‬‬ ‫‪1.96667‬‬

‫‪OneSidedPValue  0.00812917‬‬ ‫‪MeanTest[weights,1.2]//N‬‬ ‫‪OneSidedPValue0.00812917‬‬

‫]‪MeanTest[weights,1.2,TwoSided->True,FullReport->True‬‬ ‫‪FullReport ‬‬

‫‪Distribution‬‬ ‫‪,‬‬ ‫‪StudentTDistribution5‬‬

‫‪TestStat‬‬ ‫‪3.55746‬‬

‫‪Mean‬‬ ‫‪1.96667‬‬

‫‪TwoSidedPValue  0.0162583‬‬ ‫ﺑﺎﻟﻨﺴﺒﺔ إﻟﻰ اﻻﻣﺮ ‪:‬‬ ‫]‪MeanTest[weights,1.2,FullReport->True‬‬

‫واﻟذى وﺿﻊ ﻓﯾﮫ اﻟﺧﯾﺎر ‪ FullReport->True‬وﻧﺗﯾﺟﺔ ﻟذﻟك ﺗم اﻟﺣﺻول ﻋﻠﻰ ﺗﻘرﯾر ﻣﻔﺻل‬ ‫ﯾﺣﺗوى ﻋﻠﻰ ﻣﺗوﺳط اﻟﻌﯾﻧﺔ وذﻟك ﺗﺣت اﻟﻌﻧوان ‪ Mean‬وﻗﯾﻣﺔ اﻻﺣﺻﺎء )ﺗﺣت اﻟﻌﻧوان ‪(TestStat‬‬ ‫واﻟذى ﯾﺗﺑﻊ ﺗوزﯾﻊ ‪ T‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪ 5‬و ھذا ﻣﺎ ﯾوﺿﺣﮫ اﻟﻣﻛﺗوب ﺗﺣت ﻋﻧوان ‪.Distribution‬‬ ‫ھذا ﺑﺎﻻﺿﺎﻓﺔ إﻟﻰ ﻗﯾﻣﺔ ‪ p‬ﻋﻠﻰ اﺳﻔل اﻟﺟدول‪ .‬وھﻧﺎ اﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد وﺣﯾث ان ‪ p  .05‬ﻓﺈﻧﻧﺎ‬ ‫ﻧرﻓض ﻓرض اﻟدم ان ‪ H 0 :   1.2‬وﻗﺑول اﻟﻔرض اﻟﺑدﯾل أن ‪ . H1 :   1.2‬وﻟﯾس ‪H1 :   1.2‬‬ ‫وذﻟك ﻻن ﻗﯾﻣﺔ اﻻﺣﺻﺎء ﻣوﺟﺑﺔ‪.‬‬ ‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر ]‪MeanTest[weights,1.2‬‬ ‫اﻟذى ﯾﻌﻧﻰ أن اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم أن ‪ H 0 :   1.2‬و ذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد‬ ‫واﻟﻣﺧرﺟﺎت ھﻰ ‪:‬‬ ‫‪١١٣‬‬


‫‪OneSidedPValue0.00812917‬‬

‫واﻟﺗﻰ ﺗﻌﻧﻰ أن ﻗﯾﻣﺔ ‪ p =0.00812917‬وﺑﻣﺎ‬ ‫وﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‪:‬‬

‫أن ‪0.05‬‬

‫< ‪ p‬ﻓﮭذا ﯾﻌﻧﻰ رﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫]‪MeanTest[weights,1.2,TwoSided->True‬‬ ‫اﻟذى ﯾﻌﻧﻰ أن اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم أن ‪ H 0 :   1.2‬و ذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن اي ان‬

‫‪ H1 :   1.2‬واﻟﻣﺧرﺟﺎت ھﻰ ‪:‬‬ ‫‪TwoSidedPValue0.0162583‬‬

‫واﻟﺗﻰ ﺗﻌﻧﻰ أن ﻗﯾﻣﺔ‪ p =0.0162583‬وﺑﻣﺎ‬

‫أن ‪0.05‬‬

‫< ‪ p‬ﻓﮭذا ﯾﻌﻧﻰ رﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫ﻣﺛﺎل)‪(١٠-٣‬‬ ‫اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣﻛوﻧ ﺔ ﻣ ن درﺟ ﺎت ‪ 10‬ط ﻼب ﻓ ﻲ ﻣ ﺎدة اﻹﺣﺻ ﺎء وﻛ ﺎن ‪. x  7 , s  3‬‬ ‫أﺧﺗﺑر اﻟﻔرض اﻟﻘﺎﺋل أن ﻣﺗوﺳط درﺟﺔ اﻟطﺎﻟب ﻓﻲ اﻟﻣﺟﺗﻣﻊ اﻟطﺑﯾﻌﻲ اﻟﻣﺳﺣوب ﻣﻧﮫ اﻟﻌﯾﻧ ﺔ ﯾﺳ ﺎوى ‪7 .5‬‬ ‫وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   0 .05‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 :   7 .5,‬‬

‫‪H1 :   7.5.‬‬ ‫‪  0 . 05 .‬‬

‫‪ t .025  2.262‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق )‪ (٢‬ﻋﻧد درﺟﺎت ﺣرﯾﺔ ‪.   9‬‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض ‪ T  2 . 262‬أو ‪T   2 . 262‬‬ ‫‪x  7,‬‬ ‫‪s3‬‬

‫‪x   0 7  7.5‬‬ ‫‪t‬‬ ‫‪‬‬ ‫‪ 0.527.‬‬ ‫‪s‬‬ ‫‪3‬‬ ‫‪n‬‬ ‫‪10‬‬

‫ﻧﻘﺑل ‪ H 0‬ﻷن ‪ t‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺎﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺑﻠﻐﺔ ‪.Mathematica‬‬ ‫) ﻣﻊ ﻣﻼﺣظﺔ ﻋدم وﺟود ﻣﺷﺎھدات اﻟﻌﯾﻧﺔ ( وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫‪xb=7‬‬ ‫‪7‬‬ ‫‪=7.5‬‬ ‫‪7.5‬‬ ‫‪sgm=3‬‬ ‫‪n=10‬‬ ‫‪3‬‬ ‫‪١١٤‬‬


10 =.05 0.05 <<Statistics`ContinuousDistributions`

a  QuantileStudentTDistributionn 1, 1 

2

2.26216 b=xb- -0.5

sgm c   n 3 

10

t

b c

-0.527046

r  If Abst  a, Print"Reject Ho", Print"Accept Ho" Accept Ho

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬: ‫اوﻻ‬ ‫ﻣﺗوﺳط اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ xb=7

‫ ﻣن اﻻﻣر‬H 0 :   7.8 ‫وﻣﺗوﺳط اﻟﻣﺟﺗﻣﻊ ﺗﺣت ﻓرض اﻟﻌدم‬ =7.5

‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ ﻣن اﻻﻣر‬ sgm=3

‫وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ n=10 ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ =.05

a  QuantileStudentTDistributionn  1, 1 

2

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬t 

‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬t b t c

١١٥


‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

‫‪r  If Abst  a, Print"Reject Ho",‬‬ ‫‪Print"Accept Ho"‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬ ‫اى ﻗﺑول ﻓرض اﻟﻌدم ‪.‬‬

‫ﻣﺛﺎل)‪(١١-٣‬‬ ‫اﺧﺗﯾرت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣن ‪ 20‬ﻋﺑ وة ﻣ ن ﻣﺷ روب ﺑ ﺎرد اﺳ ﺗﺧدﻣت آﻟ ﺔ ﻟﺗﻌﺑﺋﺗ ﮫ‪ .‬ﻓ ﺈذا ﻛ ﺎن ﻣﺗوﺳ ط‬ ‫اﻟﻌﺑوة ‪ x  7 .5‬أوﻗﯾﺔ ﺑﺎﻧﺣراف ﻣﻌﯾﺎري ‪ 0 .47‬أوﻗﯾﺔ‪ .‬اﺧﺗﺑر ﻓ رض اﻟﻌ دم أن ‪   7.8‬ﺿ د اﻟﻔ رض‬ ‫اﻟﺑ دﯾل ‪   7.8‬ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪   0 .01‬ﺗﺣ ت ﻓ رض أن اﻟﻣﺟﺗﻣ ﻊ اﻟ ذي اﺧﺗﯾ رت ﻣﻧ ﮫ اﻟﻌﯾﻧ ﺔ‬ ‫ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ‪.‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 :   7 .8,‬‬

‫‪H1 :   7.8.‬‬ ‫‪  0 . 01 .‬‬

‫‪ t .01  2.539‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق )‪ (٢‬ﻋﻧد درﺟﺎت ﺣرﯾﺔ ‪.   19‬‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض ‪T   2 . 539‬‬ ‫‪x  7 .5 ,‬‬ ‫‪s  0 .47‬‬ ‫‪x   0 7.5  7.8‬‬ ‫‪t‬‬ ‫‪‬‬ ‫‪ 2.85.‬‬ ‫‪s‬‬ ‫‪0.47‬‬ ‫‪n‬‬ ‫‪20‬‬

‫ﻧرﻓض ‪ H 0‬ﻷن ‪ t‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ‪.‬‬ ‫ﺳ وف ﯾ ﺗم ﺣ ل اﻟﻣﺛ ﺎل اﻟﺗ ﺎﻟﻰ ﺑﺎﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ﺑﻠﻐ ﺔ ‪ Mathematica‬وﻓﯾﻣ ﺎ ﯾﻠ ﻰ ﺧط وات اﻟﺑرﻧ ﺎﻣﺞ‬ ‫واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪xb=7.5‬‬ ‫‪=7.8‬‬ ‫‪7.5‬‬ ‫‪7.8‬‬ ‫‪sgm=.47‬‬ ‫‪n=20‬‬ ‫‪0.47‬‬ ‫‪20‬‬ ‫‪=.01‬‬ ‫‪0.01‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫‪١١٦‬‬


‫]‪a=Quantile[StudentTDistribution[n-1],‬‬ ‫‪-2.53948‬‬ ‫‪b=xb-‬‬ ‫‪-0.3‬‬

‫‪sgm‬‬ ‫‪c  ‬‬ ‫‪n‬‬

‫‪0.105095‬‬

‫‪b‬‬ ‫‪c‬‬

‫‪t‬‬

‫‪-2.85455‬‬

‫‪r  Ift  a, Print"Reject Ho", Print"Accept Ho"‬‬ ‫‪Reject Ho‬‬

‫اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ھﻲ ‪:‬‬ ‫‪ t‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫]‪a=Quantile[StudentTDistribution[n-1],‬‬

‫‪ t‬واﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬

‫‪b‬‬ ‫‪c‬‬

‫‪t‬‬

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

‫‪r  Ift  a, Print"Reject Ho", Print"Accept Ho"‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬

‫اى رﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫)‪ (٤-٣‬اﺧﺗﺑﺎرات ﺣول ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ‪2‬‬ ‫‪Tests about the Population Variance 2‬‬ ‫ﻋﻧد اﻟرﻏﺑﺔ ﻓﻲ اﺧﺗﺑﺎر اﻟﻔرض أن اﻟﺗﺑﺎﯾن ﻟﻣﺟﺗﻣﻊ طﺑﯾﻌﻲ ﯾﺳﺎوى ﻗﯾﻣﺔ ﻣﻌﯾﻧﺔ ‪ 20‬ﺿد اﻟﻔرض‬ ‫اﻟﺑدﯾل ذي ﺟﺎﻧﺑﯾﯾن أن اﻟﺗﺑﺎﯾن ﻻ ﯾﺳﺎوى ‪ . 02‬أي أﻧﻧﺎ ﺗﺧﺗﺑر اﻟﻔرض أن ‪:‬‬ ‫‪H 0 :  2   20 ,‬‬ ‫‪H1 :  2   20‬‬

‫ﻧﺧﺗﺎر ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n‬ﻣن اﻟﻣﺟﺗﻣﻊ ﻣوﺿﻊ اﻟدراﺳﺔ وﻧﺣﺳب ﺗﺑﺎﯾن اﻟﻌﯾﻧﺔ ‪ .s2‬وﻋﻠﻰ ذﻟك‪:‬‬

‫‪١١٧‬‬


‫‪(n  1)s 2‬‬ ‫‪ 20‬‬

‫‪, 2 ‬‬

‫ﺣرﯾﺔ ‪  n  1‬‬

‫ﻗﯾﻣﺔ ﻟﻠﻣﺗﻐﯾر ‪ X 2‬واﻟذي ﻟﮫ ﺗوزﯾﻊ ‪ 2‬ﺑدرﺟﺎت‬ ‫اﻟﺣرﺟﺗﯾن‬ ‫اﻟﻘﯾﻣﺗﯾن‬ ‫ﻧوﺟد‬ ‫ﻣﻌﻧوﯾﺔ‬ ‫‪‬‬

‫ﻋﻧدﻣﺎ ﯾﻛون ‪ H 0‬ﺻﺣﯾﺣﺎ ً‪ .‬ﻟﻣﺳﺗوى‬ ‫أن‬ ‫ﺑﺣﯾث‬ ‫‪12  ,  2‬‬ ‫‪2‬‬

‫‪2‬‬

‫‪ X 2   2  , X 2   ‬ﯾﻣﺛﻼن ﻣﻧطﻘﺔ اﻟرﻓض‪ .‬ﺣﺟم اﻟﻣﻧطﻘﺔ اﻟﺣرﺟﺔ ﯾﺳﺎوى اﻟﻣﺳﺎﺣﺔ اﻟﻣظﻠﻠﺔ ﻓﻲ‬ ‫‪2‬‬

‫‪2‬‬

‫‪1‬‬

‫اﻟﺷﻛل اﻟﺗﺎﻟﻰ‪ .‬ﻧرﻓض ‪ H 0‬إذا وﻗﻌت ‪ 2‬ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ‪.‬‬

‫ﻋﺎدة ﯾﻛون اﻻھﺗﻣﺎم ﺑﺎﺧﺗﺑﺎر اﻟﻔ رض ‪  2   2‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ﻣ ن ﺟﺎﻧ ب واﺣ د ﻣ ن اﻟﺗوزﯾ ﻊ ‪.‬‬ ‫ﻟﻠﺑ دﯾل ‪  2   2‬وﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪ ‬ﻧﺣﺻ ل ﻋﻠ ﻰ ﻗﯾﻣ ﺔ ﺣرﺟ ﺔ ‪ 12‬ﺑﺣﯾ ث أن ‪ X 2  12‬ﺗﻣﺛ ل‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض و ‪ X 2  12‬ﺗﻣﺛل ﻣﻧطﻘﺔ اﻟﻘﺑ ول‪ .‬ﺑ ﻧﻔس اﻟﺷ ﻛل ﻟﺑ دﯾل ﻣ ن ﺟﺎﻧ ب واﺣ د ‪،  2   2‬‬ ‫ﻓﺈن ‪ 2‬ﺗﻣﺛل اﻟﻘﯾﻣﺔ اﻟﺣرﺟﺔ ﺑﺣﯾث ‪ X 2  2‬ﺗﻣﺛل ﻣﻧطﻘﺔ اﻟ رﻓض و ‪ X 2   2‬ﺗﻣﺛ ل ﻣﻧطﻘ ﺔ اﻟﻘﺑ ول‪.‬‬ ‫ﺣﺟم اﻟﻣﻧطﻘﺔ اﻟﺣرﺟﺔ ﻟﺑدﯾل ﻣن ﺟﺎﻧب واﺣد ‪  2   2‬ﯾﺳﺎوى اﻟﻣﺳﺎﺣﺔ اﻟﻣظﻠﻠﺔ ﻓﻲ اﻟﺷﻛل اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪0‬‬

‫‪0‬‬

‫‪0‬‬

‫‪0‬‬

‫‪١١٨‬‬


‫ﻣﺛﺎل)‪(١٢-٣‬‬ ‫أﺟرﯾت دراﺳﺔ ﻓﻲ إﺣدى ﻣراﻛز اﻟﻌﻼج اﻟطﺑﯾﻌﻲ ﻋﻠﻰ ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣ ن ‪ 10‬أﺷ ﺧﺎص‬ ‫ﻣﻣن ﯾﺗﺑﻌون ﻧظﺎم إﻧﻘﺎص اﻟوزن وﻗ د ﺗ م ﺗﺳ ﺟﯾل ﻣﻘ دار اﻟ ﻧﻘص ﻓ ﻲ اﻟ وزن ﻟﻛ ل ﺷ ﺧص‬ ‫ﻓﻲ اﻟﻌﯾﻧﺔ ﺧ ﻼل ﻓﺗ رة إﺗﺑ ﺎع اﻟﻧظ ﺎم اﻟﻣﺗﺑ ﻊ ﻹﻧﻘ ﺎص اﻟ وزن وﺗ م اﻟﺣﺻ ول ﻋﻠ ﻰ اﻟﺑﯾﺎﻧ ﺎت‬ ‫اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪14, 5, 5, 11, 12, 17, 7, 3, 4, 9‬‬

‫اﺧﺗﺑر ﻓرض اﻟدم ‪ H 0 :  2  10‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪ H1 :  2  10‬ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ‬ ‫‪   0 .01‬وذﻟك ﺗﺣت ﻓرض أن اﻟﻣﺟﺗﻣﻊ اﻟذي اﺧﺗﺑرت ﻣﻧﮫ اﻟﻌﯾﻧﺔ ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ‪.‬‬ ‫اﻟﺣــل‪:‬‬ ‫‪2‬‬

‫‪H 0 :   10 ,‬‬ ‫‪H1 :  2  10‬‬

‫‪  0.01 .‬‬

‫‪ .201  21.665‬واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ‪ ‬ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪.   9‬‬ ‫‪. X 2  21.665‬‬ ‫‪2‬‬

‫ﻣﻧطﻘ ﺔ اﻟ رﻓض‬

‫‪s  4 . 692‬‬

‫‪(n  1)s 2 (9)( 4.692) 2‬‬ ‫‪‬‬ ‫‪ 19.813.‬‬ ‫‪10‬‬ ‫‪ 02‬‬

‫‪2 ‬‬

‫ﺑﻣﺎ أن ‪ 2‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ﻧﻘﺑل ‪. H 0‬‬ ‫ﺳ وف ﯾ ﺗم ﺣ ل ھ ذا اﻟﻣﺛ ﺎل ﺑﺎﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ﺑﻠﻐ ﺔ ‪ Mathematica‬وﻓﯾﻣ ﺎ ﯾﻠ ﻰ ﺧط وات اﻟﺑرﻧ ﺎﻣﺞ‬ ‫واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫}‪x={14.0,5.0,5.0,11.0,12.0,17.0,7.0,3.0,4.0,9.0‬‬ ‫}‪{14.,5.,5.,11.,12.,17.,7.,3.,4.,9.‬‬ ‫‪var=10‬‬ ‫‪10‬‬ ‫]‪n=Length[x‬‬ ‫‪10‬‬ ‫‪=0.01‬‬ ‫‪0.01‬‬ ‫‪=n-1//N‬‬ ‫‪9.‬‬ ‫]‪a=Apply[Plus,x‬‬ ‫‪87.‬‬ ‫‪c  ApplyPlus, x2‬‬ ‫‪955.‬‬

‫‪1 ‬‬ ‫‪a2 ‬‬ ‫‪‬‬ ‫‪s  ‬‬ ‫‪‬‬ ‫‪c ‬‬ ‫‪‬‬ ‫‪n 1 ‬‬ ‫‪n ‬‬ ‫‪١١٩‬‬


‫‪4.6916‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫]‪=Quantile[ChiSquareDistribution[],1-‬‬ ‫‪21.666‬‬

‫‪n  1s2‬‬

‫‪var‬‬

‫‪x‬‬

‫‪19.81‬‬

‫‪r  Ifx  , Print"Reject Ho", Print"Accept Ho"‬‬ ‫‪Accept Ho‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫ﻗﺎﺋﻣﺔ اﻟﻣﺷﺎھدات ‪ x‬وﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ﺗﺣت ﻓرض اﻟﻌدم ﻣن اﻻﻣر‬ ‫‪var=10‬‬ ‫وﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ ‫‪=.01‬‬

‫وﻗﯾﻣﺔ ﻣرﺑﻊ ﻛﺎى اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬ ‫‪n  1s2‬‬ ‫‪x‬‬ ‫‪var‬‬ ‫واﻟﻘﯾﻣﺔ اﻟﺟدوﻟﯾﺔ ﻟﻣرﺑﻊ ﻛﺎى ﻣن اﻻﻣر‬ ‫]‪=Quantile[ChiSquareDistribution[],1-‬‬

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

‫‪r  Ifx  , Print"Reject Ho", Print"Accept Ho"‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪Accept Ho‬‬

‫اى ﻗﺑول ﻓرض اﻟﻌدم‪.‬‬

‫ﻣﺛﺎل)‪(١٣-٣‬‬ ‫ﻟﻠﻣﺛﺎل )‪ (١٢-٣‬وﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم ان ‪ H 0 : 2  10‬ﺿد اﻟﻔرض اﻟﺑدﯾل ان ‪ H1 :  2  10‬ﻋﻧد‬ ‫ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪ .   .01‬ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪Mathematica‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫}‪x={14.0,5.0,5.0,11.0,12.0,17.0,7.0,3.0,4.0,9.0‬‬ ‫}‪{14.,5.,5.,11.,12.,17.,7.,3.,4.,9.‬‬ ‫‪١٢٠‬‬


var=10; n=Length[x] 10 =0.01; =n-1//N 9. a=Apply[Plus,x];

c  ApplyPlus, x2; 1  a2   s    c   n 1  n 4.6916 <<Statistics`ContinuousDistributions`

1  QuantileChiSquareDistribution, 1  23.5894

2  QuantileChiSquareDistribution,

2

2

1.73493

x

n  1s2

var

19.81

r  Ifx  1  x  2, Print"Reject Ho", Print"Accept Ho" Accept Ho

: ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ . ‫اﻟﻘرار ھو ﻗﺑول ﻓرض اﻟﻌدم‬

(١٤-٣)‫ﻣﺛﺎل‬ Mathematica

‫( ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬١٣-٣) ‫( و اﻟﻣﺛﺎل‬١٢- ٣) ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل‬ Statistics HypothesisTests ‫وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬ :‫ﺣﯾث ﯾﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ‬

VarianceTest[list, varo, options] ‫ ﻟﮭذا اﻟﻣﺛﺎل( ﺗﺣت ﻓرض‬10 ‫ ﺗﻌﻧﻰ ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ )وھو‬varo ‫ ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ و‬list ‫ﺣﯾث‬ ‫ ﺗﻌﻧﻰ اﻟﺧﯾﺎرات اﻟﻣطﻠوﺑﺔ‬options‫اﻟﻌدم و‬

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`HypothesisTests` grades={14,5,5,11,12,17,7,3,4,9}; VarianceTest[grades,10,TwoSided->True,FullReport->True] ١٢١


FullReport

Variance 22.0111

TestStat 19.81

Distribution ,TwoSidedPValue 0.0382437 ChiSquareDistribution9

VarianceTest[grades,10] OneSidedPValue0.0191219

VarianceTest[grades,10,TwoSided->True,SignificanceLevel>0.01,FullReport->True]

FullReport 

Variance 22.0111

TestStat 19.81

Distribution , ChiSquareDistribution9

TwoSidedPValue  0.0382437, Fail to reject null hypothesis at significance level  0.01 VarianceTest[grades,10,TwoSided->True] TwoSidedPValue0.0382437

VarianceTest[grades,10,FullReport->True]

FullReport

Variance 22.0111

TestStat 19.81

Distribution ,OneSidedPValue 0.0191219 ChiSquareDistribution9

‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬ VarianceTest[grades,10,TwoSided->True,FullReport->True]

‫ وﻧﺗﯾﺟﺔ ﻟذﻟك‬TwoSided -> True ‫ واﻟﺧﯾﺎر‬FullReport->True ‫واﻟذى وﺿﻊ ﻓﯾﮫ اﻟﺧﯾﺎر‬ ‫ واﻟذى‬TestStat ‫ وﻗﯾﻣﺔ اﻻﺣﺻﺎء ﺗﺣت اﻟﻌﻧوان‬Variance ‫ﻧﺣﺻل ﻋﻠﻰ ﺗﺑﺎﯾن اﻟﻌﯾﻧﺔ ﺗﺣت اﻟﻌﻧوان‬ .Distribution ‫ و ھذا ﻣﺎ ﯾوﺿﺣﮫ اﻟﻣﻛﺗوب ﺗﺣت ﻋﻧوان‬9 ‫ﯾﺗﺑﻊ ﺗوزﯾﻊ ﻣرﺑﻊ ﻛﺎى ﺑدرﺟﺎت ﺣرﯾﺔ‬ .‫ ﻋﻠﻲ ﯾﻣﯾن اﻟﺟدول وذﻟك ﻻﺧﺗﺑﺎر ذو ﺟﺎﻧﺑﯾن‬p ‫ھذا ﺑﺎﻻﺿﺎﻓﺔ إﻟﻰ ﻗﯾﻣﺔ‬ . ‫ ﻓﮭذا ﯾﻌﻧﻰ ﻗﺑول ﻓرض اﻟﻌدم‬p > 0 .0 1 ‫ وﺑﻣﺎ أن‬p =.0382437 ‫واﻟﺗﻰ ﺗﻌﻧﻰ أن ﻗﯾﻣﺔ‬ :‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬ VarianceTest[grades, 10]

‫ و ذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد‬H 0 :  2  10 ‫اﻟذى ﯾﻌﻧﻰ أن اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم أن‬ : ‫واﻟﻣﺧرﺟﺎت ھﻰ‬ OneSidedPValue0.0191219

. ‫ ﻓﮭذا ﯾﻌﻧﻰ رﻓض ﻓرض اﻟﻌدم‬p <

0.01 ‫أن‬

‫ وﺑﻣﺎ‬p =0. 0.0191219 ‫واﻟﺗﻰ ﺗﻌﻧﻰ أن ﻗﯾﻣﺔ‬ :‫وﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬

VarianceTest[grades,10,TwoSided->True,SignificanceLevel>0.01,FullReport->True]

١٢٢


‫اﻟذى ﯾﻌﻧﻰ أن اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم أن ‪ H 0 :  2  10‬و ذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن واﻟﺣﺻول‬ ‫ﻋﻠﻰ ﺗﻘرﯾر ﻣﻔﺻل ‪ .‬واﻟﺨﯿﺎر ‪:‬‬ ‫]‪SignificanceLevel ->.01‬‬ ‫ادى إﻟﻰ اﻟﺤﺼﻮل ﻋﻠﻰ ﻗﺮار ﺑﻘﺒﻮل ﻓﺮض اﻟﻌﺪم ﻋﻨﺪ ﻣﺴﺘﻮي ﻣﻌﻨﻮﯾﺔ‬ ‫واﻟﻘرار ﻗﺑول ﻓرض اﻟﻌدم وﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‪:‬‬

‫‪  0 .01‬‬

‫]‪VarianceTest[grades,10,TwoSided->True‬‬ ‫اﻟذى ﯾﻌﻧﻰ أن اﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم أن ‪ H 0 :  2  10‬و ذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾن‬

‫واﻟﻣﺧرﺟﺎت ھﻰ ‪:‬‬ ‫‪TwoSidedPValue0.0382437‬‬

‫وﺑﻣﺎ أن ‪ p >.01‬ﻓﮭذا ﯾﻌﻧﻰ ﻗﺑول ﻓرض اﻟﻌدم ‪.‬‬ ‫وﺑﺎﻟﻧﺳﺑﺔ إﻟﻰ اﻻﻣر‬ ‫]‪VarianceTest[grades,10,FullReport->True‬‬

‫ﯾﺗم اﻟﺣﺻول ﻋﻠﻰ ﺗﻘرﯾر ﻣﻔﺻل ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد‪.‬‬

‫ﻣﺛﺎل)‪(١٥-٣‬‬ ‫اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م ‪ n  10‬ﻣ ن ﻣﺟﺗﻣ ﻊ طﺑﯾﻌ ﻲ وﻛ ﺎن ﺗﺑ ﺎﯾن اﻟﻌﯾﻧ ﺔ ‪ s 2  24‬اﺧﺗﺑ ر‬ ‫ﻓ رض اﻟﻌ دم ‪ H 0 :  2  23‬ﺣﯾ ث اﻟﻔ رض اﻟﺑ دﯾل ‪ H 1 :  2  23‬وذﻟ ك ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ‬ ‫‪.   0 .01‬‬

‫اﻟﺣــل‪:‬‬ ‫‪2‬‬

‫‪H 0 :   23 ,‬‬ ‫‪H 1 :  2  23‬‬

‫‪.‬‬ ‫‪ .2005  23.587‬واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ‪ ‬ﺑ درﺟﺎت ﺣرﯾ ﺔ‬ ‫‪ X 2  23.587‬أو ‪. X 2  1.735‬‬ ‫‪  0 .01‬‬

‫‪2‬‬

‫)‪( n  1)s 2 (9)( 24‬‬ ‫‪‬‬ ‫‪ 9.39.‬‬ ‫‪23‬‬ ‫‪ 20‬‬

‫‪ .   9‬ﻣﻧطﻘ ﺔ اﻟ رﻓض‬

‫‪2 ‬‬

‫ﺑﻣﺎ أن ‪ 2‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ﻧﻘﺑل ‪. H 0‬‬ ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ ﺑﺎﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺑﻠﻐﺔ ‪Mathematica‬‬ ‫;‪var=23‬‬ ‫‪n=10‬‬ ‫‪10‬‬ ‫;‪=0.01‬‬ ‫‪=n-1//N‬‬ ‫‪9.‬‬ ‫‪sd2=24‬‬ ‫‪١٢٣‬‬


24 <<Statistics`ContinuousDistributions`

1  QuantileChiSquareDistribution, 1  23.5894

2  QuantileChiSquareDistribution,

2

2

1.73493

x  N

n  1sd2

var

9.3913

r  Ifx  1  x  2, Print"Reject Ho", Print"Accept Ho" Accept Ho

:‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ : ‫اوﻻ اﻟﻣدﺧﻼت‬ 2 ‫ ﻣن اﻻﻣر‬H 0 :   23 ‫ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻊ ﺗﺣت ﻓرض اﻟﻌدم‬ var=23

‫وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ n=10 ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ =0.01 ‫وﺗﺑﺎﯾن اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ sd2=24

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ 2 ‫ ﻣن اﻻﻣر‬.005 1  QuantileChiSquareDistribution, 1 

2  QuantileChiSquareDistribution,

2

2

2 ‫ ﻣن اﻻﻣر‬.995 ‫و‬

‫وﻗﯾﻣﺔ ﻣرﺑﻊ ﻛﺎى اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬

x  N

n  1sd2

var

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

١٢٤


‫‪r  Ifx  1  x  2, Print"Reject Ho",‬‬ ‫‪Print"Accept Ho"‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪Accept Ho‬‬ ‫اى ﻗﺑول ﻓرض اﻟﻌدم‪.‬‬

‫)‪ (٥-٣‬اﺧﺗﺑﺎرات ﺗﺧص ﺗﺑﺎﯾﻧﻲ ﻣﺟﺗﻣﻌﯾن‬ ‫‪Tests Concerning Two Populations Variances‬‬ ‫ﺑﻔرض أن ﻟدﯾﻧﺎ ﻣﺟﺗﻣﻌ ﯾن ‪ :‬اﻷول ﯾﺗﺑ ﻊ ﺗوزﯾﻌ ﺎ ً طﺑﯾﻌﯾ ﺎ ً ﻣﺗوﺳ طﺔ ‪ 1‬وﺗﺑﺎﯾﻧ ﮫ ‪ 12‬واﻟﺛ ﺎﻧﻲ‪ :‬ﯾﺗﺑ ﻊ‬ ‫ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ﻣﺗوﺳطﺔ ‪ 2‬وﺗﺑﺎﯾﻧﮫ ‪  22‬واﻟﻣطﻠوب اﺧﺗﺑﺎر ھل اﻟﻣﺟﺗﻣﻌﯾن ﻟﮭﻣﺎ ﻧﻔس اﻟﺗﺑ ﺎﯾن ؟ أي ھ ل‬ ‫‪ 12   22‬أم ﻻ ؟ ﻓﺈذا ﻛﺎﻧت ‪ 12   22‬ﻓﺈﻧﻧ ﺎ ﻧﻘ ول أن ھﻧ ﺎك ﺗﺟ ﺎﻧس ﺑ ﯾن اﻟﻣﺟﺗﻣﻌ ﯾن ‪ .‬إن اﻟﺗﺄﻛ د ﻣ ن‬ ‫ﺻ ﺣﺔ اﻟﻔ رض ‪ 12   22‬ﺿ روري ﻻﺧﺗﺑ ﺎر اﻟﻔ رق ﺑ ﯾن ﻣﺗوﺳ طﻲ ﻣﺟﺗﻣﻌ ﯾن ) اﺧﺗﺑ ﺎر ‪ ( t‬واﻟ ذي‬ ‫ﺳوف ﻧﺗﻧﺎوﻟﮫ ﻓﻲ اﻟﺑﻧد اﻟﺗﺎﻟﻲ ‪ .‬أﯾﺿﺎ ھﻧﺎك اﻟﻌدﯾد ﻣن اﻷﺑﺣﺎث اﻟﺗﻲ ﯾﻛون ھدﻓﮭﺎ اﻟرﺋﯾﺳ ﻲ ھ و ﻣﻘﺎرﻧ ﺔ‬ ‫‪ 12‬ﻣﻊ ‪  22‬ﻣﺛل دراﺳﺎت ﺟودة اﻟﺑﺿﺎﺋﻊ اﻟﻣﺳﺗﮭﻠﻛﺔ ﺣﯾث ﯾﻌﺗﺑر اﻟﺗﺑﺎﯾن أھم ﻣﻘﺎﯾﯾس اﻟﺟودة‪.‬‬ ‫ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪:‬‬ ‫‪H 0 : 12   22‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪H1 :   ‬‬ ‫وﺗﺑﺎﯾﻧﮭ ﺎ ‪s‬‬

‫ﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﺣﺟﻣﮭ ﺎ ‪ n1‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻷول وﻟ ﯾﻛن ﻣﺗوﺳ طﮭﺎ اﻟﺣﺳ ﺎﺑﻲ ‪x1‬‬ ‫وﺗﺧﺗﺎر ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ أﺧرى ﺣﺟﻣﮭﺎ ‪ n2‬ﻣن اﻟﻣﺟﺗﻣﻊ اﻟﺛﺎﻧﻲ وﻟﯾﻛن ﻣﺗوﺳطﮭﺎ ‪ x2‬وﺗﺑﺎﯾﻧﮭﺎ‬

‫‪2‬‬ ‫‪1‬‬

‫‪2‬‬ ‫‪2‬‬

‫‪٠s‬‬

‫) اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣﺳﺗﻘﻠﺔ ﻋن اﻟﻌﯾﻧﺔ اﻷوﻟﻰ ( ‪ .‬ﺑﺎﻓﺗراض ﺻﺣﺔ ﻓرض اﻟﻌدم ﻓﺈن ‪:‬‬ ‫‪s12‬‬ ‫‪,‬‬ ‫‪s 22‬‬

‫‪f‬‬

‫ﺗﻣﺛ ل ﻗﯾﻣ ﺔ ﻟﻠﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ ‪ F‬واﻟ ذي ﻟ ﮫ ﺗوزﯾ ﻊ ‪ F‬ﺑ درﺟﺎت ﺣرﯾ ﺔ‬ ‫‪ ٠ 1  n1  1,  2  n 2  1‬ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪ ، ‬ﺳ وف ﻧﺣﺻ ل ﻋﻠ ﻰ ﻗﯾﻣﺗ ﯾن ﺣ رﺟﺗﯾن ) ‪ f  (1 ,  2‬و‬ ‫‪2‬‬

‫) ‪(1 ,  2‬‬

‫‪‬‬ ‫‪2‬‬

‫‪ . f‬وﻋﻠ ﻰ ذﻟ ك ﻓ ﺈن ) ‪ F  f  (1 ,  2‬أو ) ‪(1 ,  2‬‬

‫‪1‬‬

‫‪2‬‬

‫‪‬‬ ‫‪2‬‬

‫‪ F  f‬ﺗﻣ ﺛﻼن ﻣﻧطﻘ ﺔ اﻟ رﻓض‪ .‬ﺣﺟ م‬

‫‪1‬‬

‫ﻣﻧطﻘ ﺔ اﻟ رﻓض ﯾﺳ ﺎوى اﻟﻣﺳ ﺎﺣﺔ اﻟﻣظﻠﻠ ﺔ ﻓ ﻲ اﻟﺷ ﻛل اﻟﺗ ﺎﻟﻰ‪ .‬اﻟﻘﯾﻣ ﺔ اﻟﺣرﺟ ﺔ ﻟﻠﻣﺗﻐﯾ ر ‪ F‬ﻓ ﻲ اﻟط رف‬ ‫اﻷﯾﺳر ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻟﻌﻼﻗﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪1‬‬ ‫) ‪f  ( 2 , 1‬‬

‫‪(1 ,  2 ) ‬‬

‫‪2‬‬

‫‪١٢٥‬‬

‫‪‬‬ ‫‪2‬‬

‫‪f‬‬

‫‪1‬‬


‫‪.‬‬

‫ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪H0 :   ‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪H1 :   ‬‬

‫ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض ‪ ،‬ﺑﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪ ، ‬ﺳ وف ﺗﻛ ون ﻓ ﻲ اﻟﺟﺎﻧ ب اﻷﯾﺳ ر ﻣ ن اﻟﺗوزﯾ ﻊ )اﻟ ذﯾل‬ ‫اﻷﯾﺳ ر ( ‪ .‬ﻣﻧطﻘ ﺔ اﻟ رﻓض ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﺗﻣﺛ ل ﻛ ل ﻗ ﯾم ‪ F‬ﺑﺣﯾ ث ) ‪ . F  f1  (1 ,  2‬وأﺧﯾ را‬ ‫ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪:‬‬ ‫‪H 0 : 12   22‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪H1 :   ‬‬

‫ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض ‪ ،‬ﺑﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪ ، ‬ﺳ وف ﺗﻛ ون ﻓ ﻲ اﻟﺟﺎﻧ ب اﻷﯾﻣ ن ﻣ ن اﻟﺗوزﯾ ﻊ )اﻟ ذﯾل‬ ‫اﻷﯾﻣن( ‪ .‬ﻣﻧطﻘﺔ اﻟرﻓض ﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﺗﻣﺛل ﻛل ﻗﯾم ‪ F‬ﺑﺣﯾث ) ‪. F  f  (1 ,  2‬‬

‫ﻣﺛﺎل)‪(١٦-٣‬‬ ‫اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ اﺧﺗﺑر اﻟﺗﺟﺎﻧس ﺑﯾن اﻟﻣﺟﺗﻣﻌﯾن وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬ ‫اﻟﻌﯾﻧﺔ اﻷوﻟﻲ‬

‫اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ‬

‫‪40 .5‬‬

‫‪50 .7‬‬

‫‪si2‬‬

‫‪31‬‬

‫‪41‬‬

‫‪ni‬‬

‫اﻟﺣــل‪:‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪H0 :    ,‬‬

‫‪١٢٦‬‬

‫‪  0 .1‬‬


H1 : 12   22

.

  0 .1 .

‫( ﻋﻧ د درﺟ ﺎت‬٤) ‫ ﻓ ﻲ ﻣﻠﺣ ق‬F ‫ واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ‬f.05 40, 30   1.79 : ‫ ﻓﺗﺣﺳب ﻣن اﻟﻌﻼﻗﺔ اﻟﺗﺎﻟﯾﺔ‬f 0.95 40, 30  ‫ أﻣﺎ‬. 1  40,  2  30 ‫ﺣرﯾﺔ‬ f 0.95 ( 40,30) 

1 1   0.575. f 0.05 (30,40) 1.74 F  0 . 575

‫أو‬

F  1 . 79 ‫اﻟرﻓض‬

‫ﻣﻧطﻘﺔ‬

‫اﻟﺗﺑﺎﯾن اﻷﻛﺑر‬ f

2 2 2 1

s  s

=

50.7  1.252. 40.5

‫اﻟﺗﺑﺎﯾن اﻷﺻﻐر‬ . ‫ ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول‬f ‫ ﻷن‬H 0 ‫ﻧﻘﺑل‬ ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ =.1 0.1 s1=40.5 40.5 s2=50.7 50.7 n1=31 31 n2=41 41

f

Maxs1, s2 Mins1, s2

1.25185 <<Statistics`ContinuousDistributions`

ff1  QuantileFRatioDistributionn1  1, n2  1, 1  1.74443

ff2  QuantileFRatioDistributionn1  1, n2  1,

2

f11  QuantileFRatioDistributionn2  1, n1  1, 1  f22  QuantileFRatioDistributionn2  1, n1  1, 0.573253 a1=If[s1>s2,ff1,f11] ١٢٧

2

2

0.558101

1.79179

2


1.79179 a2=If[s1>s2,ff2,f22] 0.573253

c1  Iff  a2  f  a1, Print"Reject H0 ", Print"Accept H0 " Accept H0

:‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ : ‫اوﻻ اﻟﻣدﺧﻼت‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ =.1

‫ﺗﺑﺎﯾن اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ s1=40.5

‫ﺗﺑﺎﯾن اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ s2=50.7 ‫ﺣﺟم اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ n1=31 ‫ﺣﺟم اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ n2=41

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ ﻣن اﻻﻣر‬f.05  30, 40 

ff1  QuantileFRatioDistributionn1  1, n2  1, 1 

2

‫ ﻣن اﻻﻣر‬f0.95  30, 40 ‫و‬

ff2  QuantileFRatioDistributionn1  1, n2  1,

2

‫ ﻣن اﻻﻣر‬f.05  40,30  ‫و‬

f11  QuantileFRatioDistributionn2  1, n1  1, 1 

2 ‫ ﻣن اﻻﻣر‬f0.95  40,30 ‫و‬

f22  QuantileFRatioDistributionn2  1, n1  1,

2 ‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬F ‫وﻗﯾﻣﺔ‬

Maxs1, s2 Mins1, s2 ‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬ f

c1  Iff  a2  f  a1, Print"Reject H0 ", Print"Accept H0 " ١٢٨


‫واﻟﻣﺧرج ھو‬ Accept H0 . ‫وھو ﻗﺑول ﻓرض اﻟﻌدم‬

(١٧-٣)‫ﻣﺛﺎل‬

: ‫( وﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬١٦-٣) ‫ﻟﻠﻣﺛﺎل‬ 2 1

2 2

2 1

2 2

H0 :   

: ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ H1 :   

: ‫ ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻰ‬Mathematica ‫ﻓﺈن ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت اﻟﻣﻛﺗوب ﺑﻠﻐﺔ‬ =.1 0.1 s1=40.5 40.5 s2=50.7 50.7 n1=31 31 n2=41 41

f

Maxs1, s2 Mins1, s2

1.25185 <<Statistics`ContinuousDistributions` ff1=Quantile[FRatioDistribution[n1-1,n2-1],1-] 1.54108 f11=Quantile[FRatioDistribution[n2-1,n1-1],1-] 1.57323 a1=If[s1>s2,ff1,f11] 1.57323

c1  Iff  a1, Print"Reject H0 ", Print"Accept H0 " Accept H0

: ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ﻓﺈن‬ ١٢٩


: ‫اﻟﻣﺧرﺟﺎت ﻛﺎﻟﺗﺎﻟﻰ‬ ‫ ﻣن اﻻﻣر‬f.1  30, 40 ff1=Quantile[FRatioDistribution[n1-1,n2-1],1-]

‫ ﻣن اﻻﻣر‬f0.1  40,30 ‫و‬ f11=Quantile[FRatioDistribution[n2-1,n1-1],1-] 1.57323

‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬F ‫وﻗﯾﻣﺔ‬

Maxs1, s2 Mins1, s2 ‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬ f

c1  Iff  a1, Print"Reject H0 ", Print"Accept H0 " Accept H0

‫اﻟﻣﺧرج ھو‬ Accept Ho .‫وھو ﻗﺑول ﻓرض اﻟﻌدم‬

(١٨-٣)‫ﻣﺛﺎل‬ : ‫( ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬١٦-٣) ‫ﻟﻠﻣﺛﺎل‬ 2 1

2 2

2 1

2 2

H0 :   

: ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ H1 :   

: ‫ ﺳوف ﺗﻛون ﻛﺎﻟﺗﺎﻟﻰ‬Mathematica ‫ﻓﺈن ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت اﻟﻣﻛﺗوب ﺑﻠﻐﺔ‬ =.1 0.1 s1=40.5 40.5 s2=50.7 50.7 n1=31 31 n2=41 41

f

Maxs1, s2 Mins1, s2

1.25185 <<Statistics`ContinuousDistributions` ١٣٠


ff1=Quantile[FRatioDistribution[n1-1,n2-1],] 0.635636 f11=Quantile[FRatioDistribution[n2-1,n1-1],] 0.648897 a1=If[s1>s2,ff1,f11] 0.648897

c1  Iff  a1, Print"Reject H0 ", Print"Accept H0 " Accept H0

: ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ﻓﺈن‬ : ‫اﻟﻣﺧرﺟﺎت ﻛﺎﻟﺗﺎﻟﻰ‬ ‫ ﻣن اﻻﻣر‬f.9  30, 40  ff1=Quantile[FRatioDistribution[n1-1,n2-1],]

‫ ﻣن اﻻﻣر‬f0.9  40,30  ‫و‬ f11=Quantile[FRatioDistribution[n2-1,n1-1],]

‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬F ‫وﻗﯾﻣﺔ‬

Maxs1, s2 Mins1, s2 ‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬ c1  Iff  a1, Print"Reject H0 ", Print"Accept H0 " ‫واﻟﻣﺧرج ھو‬ f

Accept H0

. ‫وھو ﻗﺑول ﻓرض اﻟﻌدم‬

(١٩-٣)‫ﻣﺛﺎل‬ :‫إذا ﻛﺎن ﻟدﯾك اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ‬

‫اﻟﻣﺟﻣوﻋﺔ اﻻوﻟﻰ‬ 825,990,1054,921,816,818,1071,1121,926,956,867,935

‫اﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ‬

١٣١


840,600,890,780,915,915,1230,1302,922,845,923,1030,879,757,9 21,848, 870,826,831,1005,1002,915,813,842,774

‫ ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ‬H 0 : 12  22 ‫ ﺿ د اﻟﻔ رض اﻟﺑ دﯾل‬H 0 : 12   22 ‫اﺧﺗﺑر ﻓرض اﻟدم‬ . ً ‫ وذﻟك ﺗﺣت ﻓرض أن اﻟﻣﺟﺗﻣﻊ اﻟذي اﺧﺗﺑرت ﻣﻧﮫ اﻟﻌﯾﻧﺔ ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ‬  0.01 ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬. . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ x1={825,990,1054,921,816,818,1071,1121,926,956,867,935}; x2={840,600,890,780,915,915,1230,1302,922,845,923,1030,879,7 57,921,848,870,826,831,1005,1002,915,813,842,774}; n1=Length[x1] 12 n2=Length[x2] 25 =0.01 0.01 a1=Apply[Plus,x1] 11300 c1=Apply[Plus,x1^2] 10755870

s1  N

1 a1^2 c1   n1  1 n1

10457.9 a2=Apply[Plus,x2] 22475 c2=Apply[Plus,x2^2] 20688627

s2  N

1 a2^2 c2   n2  1 n2

20150.1

f

Maxs1, s2 Mins1, s2

1.92678

ff1  QuantileFRatioDistributionn1  1, n2  1, 1  3.49668

ff2  QuantileFRatioDistributionn1  1, n2  1,

2

f11  QuantileFRatioDistributionn2  1, n1  1, 1 

١٣٢

2

0.210272

4.75575

2


‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪f22  QuantileFRatioDistributionn2  1, n1  1,‬‬ ‫‪0.285986‬‬ ‫]‪a1=If[s1>s2,ff1,f11‬‬ ‫‪4.75575‬‬ ‫]‪a2=If[s1>s2,ff2,f22‬‬ ‫‪0.285986‬‬

‫‪c1  Iff  a2  f  a1, Print"Reject H0 ",‬‬ ‫‪Print"Accept H0 "‬‬ ‫‪Accept H0‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ﻓﺈن اﻟﻘرار اﻟذى ﯾﺗﺧذ ھو ﻗﺑول ﻓرض اﻟﻌدم‪.‬‬

‫ﻣﺛﺎل)‪(٢٠-٣‬‬ ‫ﻟﻠﻣﺛ ﺎل)‪ (١٩-٣‬اﺧﺗﺑ ر ﻓ رض اﻟ دم ‪ H 0 : 12  22‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H 0 : 12   22‬ﻋﻧ د‬ ‫ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪   0 .01‬وذﻟك ﺗﺣت ﻓرض أن اﻟﻣﺟﺗﻣﻊ اﻟذي اﺧﺗﺑرت ﻣﻧﮫ اﻟﻌﯾﻧ ﺔ ﯾﺗﺑ ﻊ‬ ‫ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً ‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫;}‪x1={825,990,1054,921,816,818,1071,1121,926,956,867,935‬‬ ‫‪x2={840,600,890,780,915,915,1230,1302,922,845,923,1030,879,7‬‬ ‫;}‪57,921,848,870,826,831,1005,1002,915,813,842,774‬‬ ‫]‪n1=Length[x1‬‬ ‫‪12‬‬ ‫]‪n2=Length[x2‬‬ ‫‪25‬‬ ‫‪=0.01‬‬ ‫‪0.01‬‬ ‫]‪a1=Apply[Plus,x1‬‬ ‫‪11300‬‬ ‫]‪c1=Apply[Plus,x1^2‬‬ ‫‪10755870‬‬

‫‪1‬‬ ‫‪a1^2‬‬ ‫‪c1 ‬‬ ‫‪‬‬ ‫‪n1  1‬‬ ‫‪n1‬‬

‫‪s1  N‬‬

‫‪10457.9‬‬ ‫]‪a2=Apply[Plus,x2‬‬ ‫‪22475‬‬ ‫‪١٣٣‬‬


c2=Apply[Plus,x2^2] 20688627

s2  N

1 a2^2 c2   n2  1 n2

20150.1

f

Maxs1, s2 Mins1, s2

1.92678 <<Statistics`ContinuousDistributions` ff1=Quantile[FRatioDistribution[n1-1,n2-1],1-] 3.09437 f11=Quantile[FRatioDistribution[n2-1,n1-1],1-] 4.02091 a1=If[s1>s2,ff1,f11] 4.02091

c1  Iff  f11, Print"Reject H0 ", Print"Accept H0 " Accept H0

. ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻘرار اﻟذى ﯾﺗﺧذ ھو ﻗﺑول ﻓرض اﻟﻌدم‬

(٢١-٣)‫ﻣﺛﺎل‬ ‫ ﻋﻧ د‬H 0 : 12   22 ‫ ﺿ د اﻟﻔ رض اﻟﺑ دﯾل‬H 0 : 12  22 ‫ﻟﻠﻣﺛ ﺎل اﻟﺳ ﺎﺑق اﺧﺗﺑ ر ﻓ رض اﻟ دم‬ ‫ وذﻟك ﺗﺣت ﻓرض أن اﻟﻣﺟﺗﻣﻊ اﻟذي اﺧﺗﺑرت ﻣﻧﮫ اﻟﻌﯾﻧ ﺔ ﯾﺗﺑ ﻊ‬  0 .01 ‫ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬ . ً ‫ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ‬ ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ x1={825,990,1054,921,816,818,1071,1121,926,956,867,935}; x2={840,600,890,780,915,915,1230,1302,922,845,923,1030,879,7 57,921,848,870,826,831,1005,1002,915,813,842,774}; n1=Length[x1] 12 n2=Length[x2] 25 =0.01 0.01 a1=Apply[Plus,x1] 11300 ١٣٤


c1=Apply[Plus,x1^2] 10755870

s1  N

1 a1^2 c1   n1  1 n1

10457.9 a2=Apply[Plus,x2] 22475 c2=Apply[Plus,x2^2] 20688627

s2  N

1 a2^2 c2   n2  1 n2

20150.1

f

Maxs1, s2 Mins1, s2

1.92678 <<Statistics`ContinuousDistributions` ff1=Quantile[FRatioDistribution[n1-1,n2-1],] 0.2487 f11=Quantile[FRatioDistribution[n2-1,n1-1],] 0.323168 a1=If[s1>s2,ff1,f11] 0.323168

c1  Iff  a1, Print"Reject H0 ", Print"Accept H0 " Accept H0

. ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻘرار اﻟذى ﯾﺗﺧذ ھو ﻗﺑول ﻓرض اﻟﻌدم‬

(٢٢-٣)‫ﻣﺛﺎل‬ ‫ ﻋﻧد ﻣﺳﺗوى‬H 0 : 12   22 ‫ ﺿد اﻟﻔرض اﻟﺑدﯾل‬H 0 : 12   22 ‫ﻟﻠﻣﺛﺎل اﻟﺳﺎﺑق اﺧﺗﺑر ﻓرض اﻟﻌدم‬ : HypotheseTest ‫ وذﻟك ﺑﺈﺳﺗﺧدام اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬.   0 .01 ‫ﻣﻌﻧوﯾﺔ‬ ‫وﺳوف ﯾﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ‬ Variance[list1, list2, 1, options] ‫ ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ ﻟﻠﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ‬list2 ‫ ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ ﻟﻠﻣﺟﻣوﻋﺔ اﻻوﻟﻰ و‬list1 ‫ﺣﯾث‬ 2 ‫ ﺗﻌﻧﻰ اﻟﺧﯾﺎرات اﻟﻣطﻠوﺑﺔ‬options‫ و‬12  1` ‫و‬ 2

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`HypothesisTests`

x1={825,990,1054,921,816,818,1071,1121,926,956,867,935};

١٣٥


‫‪x2={840,600,890,780,915,915,1230,1302,922,845,923,1030,879,7‬‬ ‫;}‪57,921,848,870,826,831,1005,1002,915,813,842,774‬‬ ‫]‪VarianceRatioTest[x1, x2, 1,FullReport->True‬‬

‫‪Distribution‬‬ ‫‪,OneSidedPValue0.128506‬‬ ‫‪FRatioDistribution11,24‬‬ ‫وﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬

‫‪TestStat‬‬ ‫‪0.518999‬‬

‫‪Ratio‬‬ ‫‪0.518999‬‬

‫‪FullReport‬‬

‫]‪VarianceRatioTest[x1, x2, 1,FullReport->True‬‬ ‫ﻧﺣﺻل ﻋﻠﻰ ﺗﻘرﯾر ﻣﻔﺻل ﯾﺣﺗوى ﻋﻠﻰ ﻗﯾﻣﺔ اﻻﺣﺻﺎء ﺗﺣت اﻟﻌﻧوان ‪ TestStat‬واﻻﺣﺻﺎء اﻟﻣﺳﺗﺧدم ھو‬ ‫ﺗوزﯾﻊ ‪ F‬ﺑد رﺟﺎت ﺣرﯾﺔ ‪11,24‬وذﻟك ﻻﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد‪ .‬وﺑﻣﺎ ان ‪ p  .01‬ﻓﮭذا ﯾﻌﻧﻰ ﻗﺑول ﻓرض‬

‫اﻟﻌدم ‪.‬‬

‫)‪ (٦-٣‬اﺧﺗﺑﺎرات ﺗﺧص اﻟﻣﺗوﺳطﺎت‬

‫‪Tests Concerning Means‬‬

‫ﻓﻲ ﺑﻌض اﻷﺣﯾﺎن ﯾﻛون اﻻھﺗﻣﺎم ﺑﺎﺧﺗﺑﺎرات اﻟﻔروض اﻟﺗﻲ ﺗﺧص ﻣﺟﺗﻣﻌﯾن ﻣﺧﺗﻠﻔﯾن‪ .‬أي‬ ‫أﻧﻧﺎ ﻧرﻏب ﻓﻲ اﺧﺗﺑﺎر ﻓرض اﻟﻌدم أن اﻟﻔرق ﺑﯾن ﻣﺗوﺳطﻲ ﻣﺟﺗﻣﻌﯾن ‪ ، 1   2 ،‬ﯾﺳﺎوى ﺻﻔر أي‬ ‫‪ 1   2‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪ 1   2  0‬أي ‪ 1   2‬أو اﻟﻔرض اﻟﺑدﯾل ‪ 1   2  0‬أي‬ ‫‪ 1   2‬أو اﻟﻔرض اﻟﺑدﯾل ‪ 1   2  0‬أي ‪ . 1   2‬ﺗﻌﺗﻣد اﻟطرﯾﻘﺔ اﻟﻣﺳﺗﺧدﻣﺔ ﻓﻲ اﺧﺗﯾﺎر اﻟﻔرق‬ ‫ﺑﯾن ﻣﺗوﺳطﻲ ﻣﺟﺗﻣﻌﯾن ﻋﻠﻰ ﺗوزﯾﻊ ﻛل ﻣﺟﺗﻣﻊ وﺣﺟم اﻟﻌﯾﻧﺔ اﻟﻣﺧﺗﺎرة ﻣن ﻛل ﻣﺟﺗﻣﻊ‪ .‬ﻓﻲ اﻟﺟزء‬ ‫اﻟﺗﺎﻟﻲ ﺳوف ﻧﺗﻧﺎول ﺛﻼﺛﺔ ﺣﺎﻻت‪.‬‬ ‫اﻟﺣﺎﻟﺔ اﻷوﻟﻰ ‪ :‬ﻋﻧد اﺧﺗﺑﺎر ﻓرض اﻟﻌ دم ‪ H 0‬أن اﻟﻔ رق ﺑ ﯾن ﻣﺗوﺳ طﻲ ﻣﺟﺗﻣﻌ ﯾن ‪ ، 1   2 ،‬ﯾﺳ ﺎوى‬ ‫ﺻﻔر وذﻟك ﻋﻧ دﻣﺎ ﻛ ل ﻣ ن ‪ 12 , 22‬ﻣﻌﻠوﻣﺗ ﺎن وﺗﺣت ﻓ رض أن ﻛ ل ﻣﺟﺗﻣ ﻊ ﻟ ﮫ ﺗوزﯾﻌ ﺎ ً طﺑﯾﻌﯾ ﺎ ً أو‬ ‫ﺗﻘرﯾﺑﺎ طﺑﯾﻌﯾﺎ ً‪ .‬أﻣﺎ ﻓﻲ ﺣﺎﻟﺔ اﻟﻌﯾﻧﺎت اﻟﻛﺑﯾرة وإذا ﻛﺎﻧت ‪ 22 , 12‬ﻣﺟﮭوﻟﺗ ﺎن ﻓﺈﻧ ﮫ ﯾﻣﻛ ن ﺗﻘ دﯾرھﻣﺎ ﻣ ن‬ ‫اﻟﻌﯾﻧ ﺎت ﺑﺣﺳ ﺎب ‪ . s12 , s22‬ﯾﻌﺗﻣ د ﻗرارﻧ ﺎ ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﻋﻠ ﻰ اﻟﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ ) اﻹﺣﺻ ﺎء (‬ ‫‪ . X1  X 2‬أوﻻ ﻧﺧﺗﺎر ﻋﯾﻧﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م ‪ n1‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻷول وﻧﺣﺳ ب ﻣﻧﮭ ﺎ ‪ x1‬وﻧﺧﺗ ﺎر‬ ‫ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ أﺧرى ﻣن اﻟﺣﺟ م ‪ n2‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻟﺛ ﺎﻧﻲ )ﻣﺳ ﺗﻘﻠﺔ ﻋ ن اﻟﻌﯾﻧ ﺔ اﻷوﻟ ﻰ ( وﻧﺣﺳ ب‬ ‫ﻣﻧﮭﺎ ‪ x2‬ﺛم ﻧﺣﺳب اﻟﻔرق ‪ ، x1  x 2 ،‬ﻟﻣﺗوﺳطﻲ اﻟﻌﯾﻧﺗﯾن ‪ ٠‬وﺑﻣﺎ ان ‪:‬‬ ‫‪.‬‬

‫‪( x1  x 2 )  0‬‬ ‫‪12  22‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬

‫‪١٣٦‬‬

‫‪z‬‬


‫ﻗﯾﻣﺔ ﻟﻠﻣﺗﻐﯾر اﻟﻌﺷواﺋﻲ ‪ Z‬ﻋﻧدﻣﺎ ﯾﻛون ‪ H 0‬ﺻﺣﯾﺣﺎ‪ .‬وﻋﻠﻰ ذﻟك ﻓﻲ اﺧﺗﺑﺎر ﻣن ﺟﺎﻧﺑﯾﯾن وﻋﻧد‬ ‫ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪ ‬ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض ﺗﺣدد ﻋﻠﻰ اﻟﺷﻛل ‪ Z  z ‬أو ‪ . Z  z ‬أﻣﺎ ﻓﻲ اﺧﺗﺑﺎر‬ ‫‪2‬‬

‫‪2‬‬

‫ﻣن ﺟﺎﻧب واﺣد ﺣﯾث اﻟﻔرض اﻟﺑدﯾل ‪ 1   2‬ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض ‪ ،‬ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪ ، ‬ﺳوف‬ ‫ﺗﻛون ‪ . Z   z ‬وأﺧﯾرا ﻓﻲ ﺣﺎﻟﺔ اﻟﻔرض اﻟﺑدﯾل ﻣن ﺟﺎﻧب واﺣد ‪ 1   2‬ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض‬ ‫ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪ ، ‬ﺳوف ﺗﻛون ‪. Z  z ‬‬

‫ﻣﺛﺎل)‪(٢٣-٣‬‬ ‫أﺟ رى اﺧﺗﺑ ﺎر ﻋﻠ ﻰ اﻟﻣﻘﺎوﻣ ﺔ ﻟﻠﺷ د ‪ tensile strength‬ﻟﻧ وﻋﯾن ﻣ ن اﻟﺳﻠك ‪ .‬اﻟﻧﺗ ﺎﺋﺞ ﻣﻌط ﺎة ﻓ ﻲ‬ ‫اﻟﺟدول اﻟﺗﺎﻟﻲ ‪:‬‬ ‫اﻻﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻠﻌﯾﻧﺔ‬

‫‪s1  1.3‬‬

‫‪s 2  2.0‬‬

‫ﺣﺟم اﻟﻌﯾﻧﺔ‬

‫ﻣﺗوﺳط اﻟﻌﯾﻧﺔ‬

‫اﻟﻧوع‬

‫‪x1  107.6‬‬

‫‪n1  129‬‬

‫‪A‬‬

‫‪x 2  123.6‬‬

‫‪n 2  129‬‬

‫‪B‬‬

‫اﻟﻣطﻠوب اﺧﺗﺑﺎر ھل ھﻧﺎك ﻓرﻗﺎ ﻣﻌﻧوﯾﺎ ﺑﯾن ﻣﺗوﺳطﻲ اﻟﻣﺟﺗﻣﻌﯾن اﻟﻣﺳﺣوﺑﺗﯾن ﻣﻧﮭﻣﺎ اﻟﻌﯾﻧﺗﯾن ؟ ) ﻋﻧد‬ ‫ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.(   0.1‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺣﯾث أن ‪ n1  30‬و ‪ n 2  30‬ﻧﺗﺑﻊ اﻵﺗﻲ ‪:‬‬ ‫‪H 0 : 1   2 ,‬‬ ‫‪H 1 : 1   2 .‬‬ ‫‪  0.1 .‬‬

‫‪ z 0.05  1.64485‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪. (١‬‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض ‪ Z  1.1.64485‬أو ‪Z   1.64485‬‬ ‫‪( x1  x 2 )  0‬‬

‫‪z‬‬

‫‪.‬‬ ‫‪s12 s 22‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬ ‫‪107.6  123.6‬‬ ‫‪‬‬ ‫‪ 76.183.‬‬ ‫‪1 .3 2 2 2‬‬ ‫‪‬‬ ‫‪129 129‬‬

‫وﺑﻣﺎ أن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻓﺈﻧﻧﺎ ﻧرﻓض ‪. H 0‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪١٣٧‬‬


‫‪=.1‬‬ ‫‪0.1‬‬ ‫‪n1=129‬‬ ‫‪129‬‬ ‫‪n2=129‬‬ ‫‪129‬‬ ‫‪xb1=107.6‬‬ ‫‪107.6‬‬ ‫‪xb2=123.6‬‬ ‫‪123.6‬‬ ‫‪s1=1.3‬‬ ‫‪1.3‬‬ ‫‪s2=2‬‬ ‫‪2‬‬ ‫‪d=xb1-xb2‬‬ ‫‪-16.‬‬

‫‪d‬‬

‫‪‬‬

‫‪z  N‬‬

‫‪s12  s22‬‬ ‫‪‬‬ ‫‪n2‬‬

‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪n1‬‬

‫‪-76.1831‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬

‫‪z1  QuantileNormalDistribution0, 1, 1 ‬‬ ‫‪1.64485‬‬

‫‪r  If Absz  z1, Print"Reject Ho",‬‬ ‫‪Print"Accept Ho"‬‬ ‫‪Reject Ho‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ اﻟﻣدﺧﻼت ‪:‬‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‪=.01‬‬ ‫‪ n1  129‬ﺣﺟم اﻟﻌﯾﻧﺔ اﻻوﻟﻰ و ‪ n 2  129‬ﺣﺟم اﻟﻌﯾﻧﺔ ااﻟﺛﺎﻧﯾﺔ و ﻣﺗوﺳط اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ‪x  107.6‬‬

‫ﻣﺗوﺳط اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ‬ ‫ﻟﻠﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ‪. s 2  2‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪ z‬اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬ ‫‪d‬‬

‫‪x  123.6‬‬

‫واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى ﻟﻠﻌﯾﻧﺔ اﻻوﻟﻰ ‪ s1  1.3‬واﻻﻧﺣراف اﻟﻣﻌﯾﺎرى‬

‫‪z  N‬‬

‫‪‬‬

‫‪s12  s22‬‬ ‫‪‬‬ ‫‪n2‬‬

‫‪n1‬‬

‫و ‪ z‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫‪١٣٨‬‬


‫‪‬‬

‫‪‬‬

‫‪2‬‬ ‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

‫‪z1  QuantileNormalDistribution0, 1, 1 ‬‬

‫‪r  If Absz  z1, Print"Reject Ho",‬‬ ‫‪Print"Accept Ho"‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬ ‫وھو رﻓض ﻓرض اﻟﻌدم‬

‫ﻣﺛﺎل)‪(٢٤-٣‬‬ ‫إذا ﻛﺎﻧت ‪ 1‬ﺗﻣﺛ ل اﻟﻌﻣ ر اﻟﺣﻘﯾﻘ ﻲ ﻹط ﺎرات اﻟﺳ ﯾﺎرات ﻣ ن اﻟﻧ وع ‪ A‬ﻣﻘﺎﺳ ﺔ ﺑﺎﻷﻣﯾ ﺎل )ﻋ دد اﻷﻣﯾ ﺎل‬ ‫اﻟﺗ ﻲ ﺗﻘطﻌﮭ ﺎ اﻟﺳ ﯾﺎرة ﺣﺗ ﻰ ﯾﺳ ﺗﮭﻠك اﻹط ﺎر ( و ‪ 2‬ﺗﻣﺛ ل اﻟﻌﻣ ر اﻟﺣﻘﯾﻘ ﻲ ﻹط ﺎرات اﻟﺳ ﯾﺎرات ﻣ ن‬ ‫اﻟﻧ وع ‪ . B‬اﺧﺗﺑ ر ﻓ رض اﻟﻌ دم ‪ H 0 : 1   2‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H1 : 1   2‬ﻋﻧ د ﻣﺳ ﺗوى‬ ‫ﻣﻌﻧوﯾﺔ ‪   0 .01‬إذا ﻛﺎﻧت ‪:‬‬ ‫‪n1  40 , x1  36500 , s1  220,‬‬ ‫‪n 2  40 , x 2  33400 , s1  190.‬‬

‫اﻟﺣــل‪:‬‬ ‫ﺣﯾث أن ‪ n1  30‬و ‪ n 2  30‬ﻧﺗﺑﻊ اﻵﺗﻲ ‪:‬‬ ‫‪H0 : 1  2 ,‬‬ ‫‪H1 : 1   2 .‬‬ ‫‪  0 .01 .‬‬

‫‪ z 0.005  2.575‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪. (١‬‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض ‪ Z  2 . 575‬أو ‪Z   2 . 575‬‬ ‫‪.‬‬

‫‪(x1  x 2 )  0‬‬ ‫‪s12 s 22‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬

‫‪ 67.447.‬‬

‫‪z‬‬

‫‪36500  33400‬‬ ‫‪2202 190 2‬‬ ‫‪‬‬ ‫‪40‬‬ ‫‪40‬‬

‫وﺑﻣﺎ أن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻓﺈﻧﻧﺎ ﻧرﻓض ‪. H 0‬‬

‫‪١٣٩‬‬

‫‪‬‬


‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ =.01 0.01 n1=40 40 n2=40 40 xb1=36500 36500 xb2=33400 33400 s1=220 220 s2=190 190 d=xb1-xb2 3100

d

z  N

s12  s22  n1

n2

67.4471 <<Statistics`ContinuousDistributions`

z1  QuantileNormalDistribution0, 1, 1 

2

2.57583

r  If Absz  z1, Print"Reject Ho", Print"Accept Ho" Reject Ho

. ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻘرار اﻟذى ﯾﺗﺧذ ھو رﻓض ﻓرض اﻟﻌدم‬

(٢٥-٣)‫ﻣﺛﺎل‬ ‫إذا ﻛﺎن ﻟدﯾك اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ‬ ‫ اﻟﻤﺠﻤﻮﻋﺔ اﻻوﻟﻰ‬34, 37, 44, 31, 41, 42, 38, 45 42, 38 ‫ اﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ‬39, 40, 34, 45, 44, 38, 42, 39 47, 41 ١٤٠


‫ ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬H1 : 1   2 ‫ ﺿد اﻟﻔرض اﻟﺑدﯾل‬H 0 : 1   2 ‫اﺧﺗﺑر ﻓرض اﻟﻌدم‬  12   22  8 ‫ ﺗﺣت ﻓرض أن‬.   0.05

.Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ : ‫ﺳوف ﯾﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ‬ MeanDifferenceTest[list1, list2, diff0, options] ‫ ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ ﻟﻠﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ‬list2 ‫ ﺗﻌﻧﻰ اﺳم اﻟﻘﺎﺋﻣﺔ ﻟﻠﻣﺟﻣوﻋﺔ اﻻوﻟﻰ و‬list1 ‫ﺣﯾث‬ ‫ ﺗﻌﻧﻰ اﻟﺧﯾﺎرات اﻟﻣطﻠوﺑﺔ‬options‫ و‬1   2  0 ‫ ﺗﻌﻧﻰ أن‬diff0 =0 ‫و‬

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`HypothesisTests` x1={34,37,44,31,41,42,38,45,42,38} {34,37,44,31,41,42,38,45,42,38}

x2={39,40,34,45,44,38,42,39,47,41} {39,40,34,45,44,38,42,39,47,41}

MeanDifferenceTest[x1,x2,0,KnownVariance{8,8}] OneSidedPValue0.0894794

MeanDifferenceTest[x1,x2,0,KnownVariance{8,8},FullReport>True ,SignificanceLevel->.05] FullReport 

MeanDiff 1.7

TestStat 1.34397

Distribution , NormalDistribution

OneSidedPValue  0.0894794, Fail to reject null hypothesis at significance level  0.05 : ‫ﺑﺎﻟﻨﺴﺒﺔ ﻟﻼﻣﺮ‬ MeanDifferenceTest[x1,x2, 0, KnownVariance -> {8, 8}] OneSidedPValue0.0894794

‫ ﻓﺈﻧﻧﺎ ﻧﻘﺑل ﻓرض اﻟﻌدم‬.05 ‫ اﻛﺑر ﻣن‬p ‫ وﺑﻣﺎ أن‬p ‫ﻧﺤﺼﻞ ﻋﻠﻰ اﺧﺘﺒﺎر ﻣﻦ ﺟﺎﻧﺐ واﺣﺪ ﻣﻊ ﻗﯿﻤﺔ‬

: ‫وﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬ MeanDifferenceTest[x1,x2, 0, KnownVariance -> {8, 8}, SignificanceLevel -> .05, FullReport -> True]

.   .05 ‫ﻧﺣﺻل ﻋﻠﻰ ﺗﻘرﯾر ﻣﻔﺻل ﻣﻊ اﺗﺧﺎذ ﻗرار ﺑﻘﺑول ﻓرض اﻟﻌدم وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬

(٢٦-٣)‫ﻣﺛﺎل‬ ‫إذا ﻛﺎن ﻟدﯾك اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ‬ ‫ اﻟﻤﺠﻤﻮﻋﺔ اﻻوﻟﻰ‬825,990,1054,921,816,818,1071,1121,926,956,867,935 ١٤١


‫اﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ‬ ‫‪840,600,890,780,915,915,1230,1302,922,845,923,1030,879,757,9‬‬ ‫;}‪21,848,870,826,831,1005,1002,915,813,842,774‬‬ ‫اﺧﺗﺑر ﻓرض اﻟﻌدم ‪ H 0 : 1   2‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪ H1 : 1   2‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬ ‫‪ .   0.05‬ﺗﺣت ﻓرض أن ‪. 12   22  130.5‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫;}‪x1={825,990,1054,921,816,818,1071,1121,926,956,867,935‬‬ ‫‪x2={840,600,890,780,915,915,1230,1302,922,845,923,1030,879,7‬‬ ‫;}‪57,921,848,870,826,831,1005,1002,915,813,842,774‬‬ ‫]}‪MeanDifferenceTest[x1,x2,0,KnownVariance{130.5,130.5‬‬ ‫‪OneSidedPValue  1.0226  1026‬‬ ‫‪MeanDifferenceTest[x1,x2,0,KnownVariance{130.5,130.5},Full‬‬ ‫]‪Report->True ,SignificanceLevel->.05‬‬ ‫‪FullReport ‬‬

‫‪Distribution‬‬ ‫‪,‬‬ ‫‪NormalDistribution‬‬

‫‪TestStat‬‬ ‫‪10.6351‬‬

‫‪MeanDiff‬‬ ‫‪42.6667‬‬

‫‪OneSidedPValue  1.0226  1026,‬‬ ‫‪Reject null hypothesis at significance level  0.05‬‬

‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر ‪:‬‬ ‫‪MeanDifferenceTest[x1,x2,0,KnownVariance{130.5,130.5},Full‬‬ ‫]‪Report->True ,SignificanceLevel->.05‬‬

‫ﻧﺣﺻل ﻋﻠﻰ ﺗﻘرﯾر ﻣﻔﺻل واﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد واﻟﻘرار ﻧرﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫اﻟﺣﺎﻟﺔ اﻟﺛﺎﻧﯾﺔ ‪ :‬ﺑﻔرض أن ‪ 12 , 22‬ﻣﺟﮭوﻟﺗ ﺎن وﺣﺟ م ﻛ ﻼ ﻣ ن اﻟﻌﯾﻧﺗ ﯾن ﺻ ﻐﯾر‪ .‬ﯾﻌﺗﻣ د اﻟﻘ رار اﻟ ذي‬ ‫ﻧﺗﺧذه ﻓﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﻓ ﻲ اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم ﻋﻠ ﻰ ﺗوزﯾ ﻊ ‪ t‬وذﻟ ك ﺗﺣ ت ﻓ رض ‪) 12  22  2‬‬ ‫ھﻧ ﺎك ﺗﺟ ﺎﻧس ( وأن ﻛ ل ﻣﺟﺗﻣ ﻊ ﻟ ﮫ ﺗوزﯾﻌ ﺎ ً طﺑﯾﻌﯾ ﺎ ً‪ .‬أوﻻ ﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م ‪ n1‬ﻣ ن‬ ‫اﻟﻣﺟﺗﻣ ﻊ اﻷول وﺗﺣﺳ ب ﻣﻧﮭ ﺎ ‪ s12 , x 1‬وﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ أﺧ رى ﻣ ن اﻟﺣﺟ م ‪ n2‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ‬ ‫اﻟﺛ ﺎﻧﻲ ) ﻣﺳ ﺗﻘﻠﺔ ﻋ ن اﻟﻌﯾﻧ ﺔ اﻷوﻟ ﻲ ( وﻧﺣﺳ ب ﻣﻧﮭ ﺎ ‪ . s12 , x 2‬اﻟﺗﺑ ﺎﯾن اﻟﺗﺟﻣﯾﻌ ﻲ ‪pooled‬‬ ‫‪ variance‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪(n 1  1)s12  (n 2  1)s 22‬‬ ‫‪n1  n 2  2‬‬

‫وﺗﺣت ﻓرض أن ‪ H 0‬ﺻﺣﯾﺣﺎ ً ﻓﺈن‬ ‫‪(x1  x 2 )  0‬‬ ‫‪.‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪sp‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬

‫‪١٤٢‬‬

‫‪t‬‬

‫‪s 2p ‬‬


‫ﻗﯾﻣ ﺔ ﻟﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ ‪ T‬ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ ‪ t‬ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪ ٠   n1  n 2  2‬ﻓ ﻲ ﺣﺎﻟ ﺔ اﺧﺗﺑ ﺎر ذي‬ ‫ﺟﺎﻧﺑﯾن وﻋﻧد ﻣﺳﺗوي ﻣﻌﻧوﯾﺔ ‪ ‬ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض ﺳ وف ﺗﻛ ون ‪ T  t ‬أو ‪ . T   t ‬ﻟﻠﺑ دﯾل ﻣ ن‬ ‫‪2‬‬

‫‪2‬‬

‫ﺟﺎﻧ ب واﺣ د ‪ 1   2‬ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض ﺳ وف ﺗﻛ ون ‪ . T   t ‬وأﺧﯾ را ﻟﻠﺑ دﯾل ‪ 1   2‬ﻓ ﺈن‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض ﺳوف ﺗﻛون ‪. T  t ‬‬

‫ﻣﺛﺎل)‪(٢٧-٣‬‬ ‫اﺧﺗﯾرت ﻣﺟﻣوﻋﺗﺎن ﻣن اﻟطﻠﺑ ﺔ وأﻋطﯾ ت اﻟﻣﺟﻣوﻋ ﺔ اﻷوﻟ ﻲ اﻟوﺟﺑ ﺔ ‪ A‬ﯾوﻣﯾ ﺎ أﻋطﯾ ت اﻟﻣﺟﻣوﻋ ﺔ‬ ‫اﻟﺛﺎﻧﯾ ﺔ اﻟوﺟﺑ ﺔ ‪ B‬ﯾوﻣﯾ ﺎ ‪ .‬وﻗ د اﺳ ﺗﻣرت اﻟﺗﺟرﺑ ﺔ ﻟﻣ دة ﺷ ﮭر وﻛﺎﻧ ت اﻟزﯾ ﺎدة ﻓ ﻲ وزن ﻣﻔ ردات ﻛ ل‬ ‫ﻣﺟﻣوﻋﺔ ) ﺑﺎﻟرطل ( ھﻰ ‪:‬‬ ‫اﻟﻣﺟﻣوﻋﺔ اﻷوﻟﻲ ‪2.6, 2.7 , 3.9, 3 .4, 1.0, 1.6, 4.0, 3.6, 2.4, 3 .0‬‬ ‫اﻟﻣﺟﻣوﻋﺔ اﻟﺛﺎﻧﯾﺔ‬ ‫‪2.9, 1 .4, 2 .6, 1.9, 1.9, 2.4, 2.9, 3.6, 1.6‬‬ ‫ﻓﮭ ل ﺗﻌﺗﻘ د أن ھﻧ ﺎك ﻓرﻗ ﺎ ﻣﻌﻧوﯾ ﺔ ﺑ ﯾن ﺗ ﺄﺛﯾر اﻟوﺟﺑ ﺔ ‪ A‬واﻟوﺟﺑ ﺔ ‪ B‬ﻋﻠ ﻰ زﯾ ﺎدة اﻟ وزن ؟ ) ﻋﻧ د‬ ‫ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪ ،(   0 .1‬وذﻟك ﺗﺣت ﻓرض أن اﻟﻌﯾﻧﺗﯾن ﺗم اﺧﺗﺑﺎرھﻣﺎ ﻣن ﻣﺟﺗﻣﻌﯾن طﺑﯾﻌﯾﯾن ‪.‬‬

‫اﻟﺣــل‪:‬‬ ‫‪n 1  10, x 1  2.820,‬‬

‫‪s1  0.976‬‬

‫‪n 2  9, x 2  2.356,‬‬

‫‪s 2  0.716‬‬

‫أوﻻ ﯾﺟب اﻟﺗﺄﻛد ﻣن أن ‪    22‬أي اﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪:‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪H 0 : 12   22‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪2‬‬ ‫‪2‬‬

‫‪H1 :    .‬‬

‫‪.‬‬

‫‪  0 .1‬‬

‫اﻟﺗﺑﺎﯾن اﻷﻛﺑر‬ ‫‪(0.976) 2‬‬ ‫‪ 1.858.‬‬ ‫‪(0.716) 2‬‬

‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪s‬‬ ‫‪‬‬ ‫‪s‬‬

‫=‬

‫‪f‬‬

‫اﻟﺗﺑﺎﯾن اﻷﺻﻐر‬

‫‪ f.05 9, 8  3.39‬واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ‪ F‬ﻓ ﻲ ﻣﻠﺣ ق ) ‪ ( ٤‬ﻋﻧ د درﺟ ﺎت ﺣرﯾ ﺔ‬ ‫‪ 1  9,  2  8‬أﻣﺎ ‪ f.95 9, 8 ‬ﻓﺗﺣﺳب ﻣن اﻟﻌﻼﻗﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪١٤٣‬‬


‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪ 0.3096.‬‬ ‫‪f 0.05 (8,9) 3.23‬‬

‫‪f 0.95 (9,8) ‬‬

‫ﻣﻧطﻘﺔ اﻟرﻓض ‪ F  3.39‬أو‬ ‫وﺑﻣﺎ أن ‪ f‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ﻓﺈﻧﻧﺎ ﻧﻘﺑل ﻓرض اﻟﻌدم أن‬ ‫اﻵن ﻧﺧﺗﺑـر ‪:‬‬

‫‪.  ‬‬

‫‪F  0 .3096‬‬

‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪H 0 : 1   2 ,‬‬

‫‪H1 : 1   2 .‬‬ ‫‪  0 .1 .‬‬ ‫‪2‬‬ ‫‪1‬‬

‫)‪s ( n1  1)  s 22 (n 2  1‬‬ ‫‪n1  n 2  2‬‬

‫‪sp ‬‬

‫)‪(.976) 2 (9)  (0.716) 2 (8‬‬ ‫‪10  9  2‬‬ ‫‪ 0.7455548  0.86346 .‬‬ ‫‪‬‬

‫‪( x1  x 2 )  0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪sp‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬ ‫‪2.820  2.356‬‬ ‫‪‬‬ ‫‪ 1.16955.‬‬ ‫‪1 1‬‬ ‫‪0.86346‬‬ ‫‪‬‬ ‫‪10 9‬‬ ‫‪ t 0.05  1.74‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول ﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق ) ‪ ( ٢‬ﻋﻧد درﺟﺎت ﺣرﯾﺔ ‪.   17‬‬ ‫‪t‬‬

‫ﻣﻧطﻘﺔ اﻟرﻓض ‪ T  1 .74‬أو ‪ . T  1 .74‬وﺑﻣﺎ أن ‪ t‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ﻓﺈﻧﻧﺎ ﻧﻘﺑل ‪ H 0‬وھذا‬ ‫ﯾدل ﻋﻠﻰ ﻋدم وﺟود ﻓرق ﻣﻌﻧوي ﺑﯾن ﺗﺄﺛﯾر اﻟوﺟﺑﺔ ‪ A‬واﻟوﺟﺑﺔ ‪ B‬ﻋﻠﻰ زﯾﺎدة اﻟوزن ‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪=.1‬‬ ‫‪0.1‬‬ ‫}‪x1={2.6,2.7,3.9,3.4,1,1.6,4,3.6,2.4,3‬‬ ‫}‪{2.6,2.7,3.9,3.4,1,1.6,4,3.6,2.4,3‬‬ ‫}‪x2={2.9,1.4,2.6,1.9,1.9,2.4,2.9,3.6,1.6‬‬ ‫}‪{2.9,1.4,2.6,1.9,1.9,2.4,2.9,3.6,1.6‬‬ ‫]‪y[x_]:=Apply[Plus,x‬‬ ‫]‪a[x_]:=Length[x‬‬ ‫]‪n1=a[x1‬‬ ‫‪10‬‬ ‫]‪n2=a[x2‬‬ ‫‪9‬‬ ‫‪v=n1+n2-2‬‬ ‫‪17‬‬ ‫‪١٤٤‬‬


bx_ :

yx ax

a1=b[x1]//N 2.82 a2=b[x2]//N 2.35556 d=a1-a2//N 0.464444

yx2   2     ax  1 cx_ : yx   a  x    s1=c[x1]//N 0.952889 s2=c[x2]//N 0.512778

f

Maxs1, s2 Mins1, s2

1.85829 <<Statistics`ContinuousDistributions`

ff1  QuantileFRatioDistributionn1  1, n2  1, 1  3.38813

ff2  QuantileFRatioDistributionn1  1, n2  1,

2

f11  QuantileFRatioDistributionn2  1, n1  1, 1 

f22  QuantileFRatioDistributionn2  1, n1  1, 0.295148 a1=If[s1>s2,ff1,f11] 3.38813 a2=If[s1>s2,ff2,f22] 0.309638

c1  Iff  a2  f  a1, Print"Reject H0 ", Print"Accept H0 " Accept H0 n1  1  s1  n2  1  s2 sp    N v 0.863584

١٤٥

2

2

0.309638

3.22958

2


‫‪d‬‬

‫‪ N‬‬

‫‪t‬‬

‫‪1  1‬‬ ‫‪sp‬‬ ‫‪n2‬‬

‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪n1‬‬

‫‪1.17051‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬

‫‪t1  QuantileStudentTDistributionv, 1 ‬‬ ‫‪1.73961‬‬

‫‪r  If Abst  t1, Print"Reject Ho",‬‬ ‫‪Print"Accept Ho"‬‬ ‫‪Accept Ho‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻘرار اﻟذى ﯾﺗﺧذ ھو ﻗﺑول ﻓرض اﻟﻌدم ‪.‬‬

‫ﻣﺛﺎل)‪(٢٨-٧‬‬ ‫إذا ﻛﺎن ﻟدﯾك اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ‬ ‫اﻟﻤﺠﻤﻮﻋﺔ اﻻوﻟﻰ‬ ‫}‪825,990,1054,921,816,818,1071,1121,926,956,867,935‬‬ ‫اﻟﻤﺠﻤﻮﻋﺔ اﻟﺜﺎﻧﯿﺔ‬ ‫‪840,600,890,780,915,915,1230,1302,922,845,923,1030,879,757,9‬‬ ‫‪21,848,870,826,831,1005,1002,915,813,842,774‬‬ ‫اﺧﺗﺑر ﻓرض اﻟﻌدم ‪ H 0 : 1   2‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪ H1 : 1   2‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬ ‫‪   0 .05‬واﺧﺗﺑر ﻓرض اﻟﻌدم ‪:‬‬ ‫‪H 0 : 12   22‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪H1 :    .‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام اﻟﺣزﻣﺔ اﻟﺟﺎھزة ‪HypotheseTest‬‬ ‫وذﻟك ﺑﺎﺗﺑﺎع ﻧﻔس اﻟﺧطوات اﻟﺗﻰ أﺗﺑﻌت ﻓﻰ ﻣﺛﺎل )‪ (٢٥- ٣‬واﻻﺧﺗﻼف اﻟوﺣﯾد ھﻧﺎ ھو ﻓﻰ أﺧﺗﻼف‬ ‫ﺑﻌض اﻟﺧﯾﺎرات اﻟﺧﺎﺻﺔ ﺑﺎﻻﻣر اﻟﺘﺎﻟﻰ‪:‬‬ ‫]‪MeanDifferenceTest[list1, list2, diff0, options‬‬ ‫ﺣﯾث ﻻ ﯾوﺿﻊ اﻟﺧﯾﺎر } ‪ .KnownVariance -> {,‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬

‫‪:‬‬ ‫‪١٤٦‬‬


<<Statistics`HypothesisTests` x1={825,990,1054,921,816,818,1071,1121,926,956,867,935}; x2={840,600,890,780,915,915,1230,1302,922,845,923,1030,879,7 57,921,848,870,826,831,1005,1002,915,813,842,774}; VarianceRatioTest[x1,x2, 1,FullReport->True,TwoSided>True,SignificanceLevel->0.05]

FullReport 

Ratio 0.518999

TestStat 0.518999

Distribution , FRatioDistribution11, 24

TwoSidedPValue  0.257013, Fail to reject null hypothesis at significance level  0.05 MeanDifferenceTest[x1,x2,0,FullReport->True,EqualVariances>True,TwoSided->True,SignificanceLevel->0.05]

FullReport 

MeanDiff 42.6667

TestStat 0.928967

Distribution , StudentTDistribution35

TwoSidedPValue  0.359269, Fail to reject null hypothesis at significance level  0.05

: ‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬ VarianceRatioTest[x1,x2, 1,FullReport->True,TwoSided>True,SignificanceLevel->0.05]

‫ واﻟﻧ ﺎﺗﺞ ﻣ ن ﻗﺳ ﻣﺔ‬.518999 ‫ وھ و‬f ‫ﯾ ﺗم اﻟﺣﺻ ول ﻋﻠ ﻰ ﺗﻘرﯾ ر ﻣﻔﺻ ل ﯾﺣﺗ وى ﻋﻠ ﻰ ﻗﯾﻣ ﺔ اﻻﺣﺻ ﺎء‬ p=.257013 ‫ﻛﻣ ﺎ أن اﻻﺧﺗﺑ ﺎر ﻣ ن ﺟ ﺎﻧﺑﯾن وﻗﯾﻣ ﺔ‬.‫ﺗﺑ ﺎﯾن اﻟﻌﯾﻧ ﺔ اﻻﺻ ﻐر ﻋﻠ ﻰ ﺗﺑ ﺎﯾن اﻟﻌﯾﻧ ﺔ اﻻﻛﺑ ر‬ ‫ وﻛﻣﺎ ﯾﺗﺿﺢ ﻣن اﻟﺗﻘرﯾر ﻗﺑول ﻓرض اﻟﻌدم‬.05 ‫واﻟﺗﻰ اﻛﺑر ﻣن‬ : ‫وﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‬. 12   22 ‫أن‬ MeanDifferenceTest[x1,x2,0,EqualVariances->True,FullReport>True,TwoSided->True,SignificanceLevel->0.05]

‫ ﺑ درﺟﺎت ﺣرﯾ ﺔ‬T ‫ واﻟ ذى ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ‬TestStat ‫ﻓﺈﻧﮫ ﯾﺗم اﻟﺣﺻول ﻋﻠﻰ ﻗﯾﻣﺔ اﻻﺣﺻﺎء ﺗﺣت اﻟﻌﻧوان‬ ‫ واﻻﺧﺗﺑ ﺎر ﺳ وف ﯾﻛ ون ﻣ ن ﺟ ﺎﻧﺑﯾن وﻗﯾﻣ ﺔ‬Distribution ‫ ﻛﻣ ﺎ ﯾﺗﺿ ﺢ ﺗﺣ ت اﻟﻌﻧ وان‬35 ‫ ﻛﻣ ﺎ ﯾﺗﺿ ﺢ ﻣ ن‬H 0 : 1   2 ‫ وﺑﺎﻟﺗ ﺎﻟﻰ ﯾ ﺗم ﻗﺑ ول ﻓ رض اﻟﻌ دم‬.05 ‫ وھ ﻰ أﻛﺑ ر ﻣ ن‬p=.359269 . ‫اﻟﺗﻘرﯾر اﻟﻣﻔﺻل‬ ‫ ﺗﺣ ت‬H1 : 1  2 ‫ ﺿ د اﻟﻔ رض اﻟﺑ دﯾل‬H 0 : 1   2 ‫ ﻋﻧ د اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم‬: ‫اﻟﺣﺎﻟ ﺔ اﻟﺛﺎﻟﺛ ﺔ‬ : ‫اﻟﺷروط اﻟﺗﺎﻟﯾﺔ‬ . ً ‫)أ( ﻛل ﻣﺟﺗﻣﻊ ) ﻣن اﻟﻣﺟﺗﻣﻌﯾن ﺗﺣت اﻟدراﺳﺔ (ﯾﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ‬ .‫ ﻣﺧﺗﻠﻔﯾن ﻛﺛﯾرا‬، 12   22 ، ‫)ب( ﺗﺑﺎﯾن اﻟﻣﺟﺗﻣﻌﯾن‬ . ‫)ج( اﻟﻌﯾﻧﺗﺎن ﺻﻐﯾرﺗﺎن وإﺣﺟﺎﻣﮭﻣﺎ ﻣﺧﺗﻠﻔﺎن‬ ‫ ﺑدرﺟﺎت ﺣرﯾﺔ ﺗﺣﺳب ﻣن‬t ‫واﻟذي ﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻊ ﺗوزﯾﻊ‬T ‫اﻟﻘرار اﻟذي ﻧﺗﺧذه ﯾﻌﺗﻣد ﻋﻠﻰ اﻹﺣﺻﺎء‬ : ‫اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ‬ ١٤٧


‫‪2‬‬

‫‪.‬‬

‫‪ s12 s 22 ‬‬ ‫‪n  n ‬‬ ‫‪2‬‬ ‫‪ 1‬‬

‫‪‬‬

‫‪  s 2 2  s 2  ‬‬ ‫‪ 2  ‬‬ ‫‪  1 ‬‬ ‫‪  n1 ‬‬ ‫‪ n2  ‬‬ ‫‪ n  1  n  1‬‬ ‫‪2‬‬ ‫‪ 1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻹﺟ راء اﻻﺧﺗﺑ ﺎر ﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﺣﺟﻣﮭ ﺎ ‪ n1‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻷول ﻛﻣ ﺎ ﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ‬

‫أﺧ رى ﺣﺟﻣﮭ ﺎ ‪ n2‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻟﺛ ﺎﻧﻲ ) اﻟﻌﯾﻧ ﺔ اﻟﺛﺎﻧﯾ ﺔ ﻣﺳ ﺗﻘﻠﺔ ﻋ ن اﻟﻌﯾﻧ ﺔ اﻷوﻟ ﻲ (‪ .‬ﻧﺣﺳ ب‬ ‫‪ x 1 , x 2 , s12 , s 22‬وﻋﻠﻰ ذﻟك ﯾﻛون ‪:‬‬ ‫‪.‬‬

‫‪( x1  x 2 )  0‬‬ ‫‪s12 s 22‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬

‫‪t ‬‬

‫ﻗﯾﻣ ﺔ ﻟﻠﻣﺗﻐﯾ ر ‪ T‬ﻋﻧ دﻣﺎ ﯾﻛ ون ‪ H 0‬ﺻ ﺣﯾﺣﺎ ً‪ .‬ﻻﺧﺗﺑ ﺎر ذي ﺟ ﺎﻧﺑﯾن ‪ ،‬ﺑﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪ ، ‬ﻣﻧطﻘ ﺔ‬ ‫اﻟ رﻓض ﺗﻘرﯾﺑﺎ ً ﺗﻌط ﻰ ﺣﯾ ث ‪ t‬أو ‪  t‬ھﻣﺎ اﻟﻘﯾﻣﺗ ﯾن اﻟﺣ رﺟﺗﯾن ﻟﺗوزﯾ ﻊ ‪ t‬ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪ ‬و‬ ‫‪‬‬ ‫‪2‬‬

‫ﻣﻧطﻘﺔ اﻟرﻓض ﺳوف ﺗﻛون‬

‫‪‬‬ ‫‪2‬‬

‫‪‬‬ ‫‪2‬‬

‫‪ T'  t‬أو ‪ . T'  t‬ﻟﺑدﯾل ﻣ ن ﺟﺎﻧ ب واﺣ د ‪ ، 1   2‬ﻓﺈن ﻣﻧطﻘ ﺔ‬ ‫‪‬‬ ‫‪2‬‬

‫اﻟرﻓض ﺳوف ﺗﻛون ‪ T '   t ‬وﻟﻠﺑدﯾل ‪ 1   2‬ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض ﺳوف ﺗﻛون ‪. T '  t ‬‬

‫ﻣﺛﺎل)‪(٢٩-٣‬‬ ‫أوﺿﺣت اﻟدراﺳﺔ أن زﯾﺎدة اﻟﻧﺗرات ‪ nitrate‬ﻓﻲ اﻻﺳﺗﮭﻼك اﻵدﻣﻲ ﻟﮫ ﺗﺄﺛﯾرات ﺿﺎرة ﻣﻧﮭﺎ ﻗﻠ ﺔ إﻧﺗ ﺎج‬ ‫اﻟﺛﯾروﻛﺳﯾن وﻗﻠﺔ إدرار اﻟﻠﺑن ﻋﻧد اﻟﺑﻘر‪ .‬اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ ﻧﺗﯾﺟ ﺔ ﺗﺟرﺑ ﺔ ﻟﻘﯾ ﺎس اﻟﻧﺳ ﺑﺔ اﻟﻣﺋوﯾ ﺔ ﻟﻠزﯾ ﺎدة‬ ‫ﻓﻲ وزن ﻓﺋران ﺗﺟﺎرب ﺻﻐﯾرة اﻟﻌﻣر ﺗﻧﺎوﻟ ت وﺟﺑ ﺔ ﻗﯾﺎﺳ ﯾﺔ وﻓﺋ ران ﺗﻧﺎوﻟ ت ‪ppm 2000‬ﻧﺗ رات ﻣ ن‬ ‫ﻣﯾﺎه اﻟﺷرب‪.‬‬ ‫اﻟﻧﺗرات‬ ‫‪12 .7, 19 .3, 20 .5, 10 .5, 14 .0, 10 .8, 16 .6, 14.0, 17 .2‬‬ ‫‪ 18.2, 32.9, 10.0, 14.3, 16.2, 27.6, 15.7‬اﻟﻣراﻗﺑﺔ ) اﻟﻘﯾﺎﺳﯾﺔ(‬ ‫ﺗﺣﻘق ﻣ ن ﺻ ﺣﺔ اﻟﻔ رض اﻟﻘﺎﺋ ل ‪ :‬ﻻ ﯾوﺟ د ﻓ رق ﻣﻌﻧ وي ﺑ ﯾن ﻣﺟﻣوﻋ ﺔ اﻟﻧﺗ رات وﻣﺟﻣوﻋ ﺔ اﻟﻣراﻗﺑ ﺔ‬ ‫وذﻟ ك ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪ ) .   0 .1‬ﺗﺣ ت ﻓ رض أن اﻟﻌﯾﻧﺗ ﯾن ﺛ م اﺧﺗﯾﺎرھﻣ ﺎ ﻣ ن ﻣﺟﺗﻣﻌ ﯾن‬ ‫طﺑﯾﻌﯾﯾن (‪.‬‬

‫اﻟﺣــل‪:‬‬ ‫ﯾﺟب ﻋﻠﯾﻧﺎ أوﻻ اﻟﺗﺣﻘق ﻣن ‪.   ‬‬ ‫‪ s1  3.558,‬وﻋﻠﻰ ذﻟك ﻓﺈن ﻗﯾﻣﺔ ‪ f‬ھﻰ ‪:‬‬ ‫‪s 2  8.053‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪(8.053) 2‬‬ ‫‪ 5.1228.‬‬ ‫‪(3.558) 2‬‬

‫‪١٤٨‬‬

‫‪s 22‬‬ ‫‪‬‬ ‫‪s12‬‬

‫‪f‬‬


‫‪ f.05 6, 8   3.58‬واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ‪ F‬ﻓ ﻲ ﻣﻠﺣ ق ) ‪ ( ٦‬ﻋﻧ د درﺟ ﺎت ﺣرﯾ ﺔ‬ ‫‪ . 1  6,  2  8‬أﻣﺎ ‪ f.95 6, 8 ‬ﻓﯾﻣﻛن اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻟﻌﻼﻗﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪ 0.241.‬‬ ‫‪f.05 (8,6) 4.15‬‬

‫‪f.95 (6,8) ‬‬

‫ﻣﻧطﻘﺔ اﻟرﻓض ‪ F  3.58‬أو‬ ‫وﺣﯾث أن ‪ f‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻓﺈﻧﻧﺎ ﻧرﻓض ‪ H 0‬وﻧﺳﺗﻧﺗﺞ أن‬ ‫اﻵن ﻧﺧﺗﺑـر ‪:‬‬ ‫‪F  0 . 241‬‬

‫‪2‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪ ‬‬

‫‪H 0 : 1   2 ,‬‬

‫‪H1 : 1   2 .‬‬ ‫‪  0 .1 .‬‬

‫‪x 2  19.271 , x 1  15.067‬‬ ‫‪(x  x 2 )  0‬‬ ‫‪t'  1‬‬ ‫‪.‬‬ ‫‪s12 s 22‬‬ ‫‪‬‬ ‫‪n1 n 2‬‬ ‫‪ 1.2869 .‬‬

‫وﻋﻠﯾﻧﺎ أن ﻧﻘﺎرن ﻗﯾﻣﺔ‬

‫‪t‬‬

‫‪15.067  19.271‬‬ ‫‪3.558 2 8.053 2‬‬ ‫‪‬‬ ‫‪9‬‬ ‫‪7‬‬

‫‪‬‬

‫اﻟﻣﺣﺳوﺑﺔ ﺑﻘﯾﻣﺔ ‪ t‬اﻟﺟدوﻟﯾﺔ ﻋﻧد درﺟﺎت ﺣرﯾﺔ ‪:‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪1‬‬

‫‪2‬‬ ‫‪2‬‬

‫‪s‬‬ ‫‪s ‬‬ ‫‪n  n ‬‬ ‫‪2‬‬ ‫‪ 1‬‬

‫‪  s 2 2  s 2  ‬‬ ‫‪ 2  ‬‬ ‫‪  1 ‬‬ ‫‪n‬‬ ‫‪ 1 ‬‬ ‫‪ n2  ‬‬ ‫‪‬‬ ‫‪ n  1 n  1‬‬ ‫‪2‬‬ ‫‪ 1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬

‫‪ 3.5582 8.0532 ‬‬ ‫‪ 9  7 ‬‬ ‫‪‬‬ ‫‪‬‬

‫‪‬‬

‫‪113.87‬‬ ‫‪ 7.8  8. ‬‬ ‫‪14.55‬‬ ‫‪  3.5582  2  8.0532  2 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ ‬‬ ‫‪ ‬‬ ‫‪ 9    7  ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪8‬‬ ‫‪6‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬

‫‪‬‬

‫‪ t 0.05  1.86‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول ﺗوزﯾﻊ ‪ t‬ﻓﻲ ﻣﻠﺣق )‪ (٢‬ﻋﻧد درﺟ ﺎت ﺣرﯾ ﺔ ‪   8‬وﻋﻠ ﻰ ذﻟ ك‬ ‫ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض‬ ‫‪ T   1 .86‬أو ‪ . T    1 . 86‬ﺑﻣ ﺎ أن ‪ t‬ﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟﻘﺑ ول ﻧﻘﺑ ل ‪H 0‬‬ ‫‪١٤٩‬‬


‫وھذا ﯾﻌﻧﻰ ﻋدم وﺟ ود ﻓ رق ﻣﻌﻧ وي ﺑ ﯾن ﻣﺟﻣوﻋ ﺔ اﻟﻧﺗ رات وﻣﺟﻣوﻋ ﺔ اﻟﻣراﻗﺑ ﺔ ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ‬ ‫‪.   0 .1‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام اﻟﺣزﻣﺔ اﻟﺟﺎھزة ‪HypotheseTest‬‬ ‫وذﻟك ﺑﺎﺗﺑﺎع ﻧﻔس اﻟﺧطوات اﻟﺗﻰ أﺗﺑﻌت ﻓﻰ ﻣﺛﺎل )‪ (٢٨- ٣‬واﻻﺧﺗﻼف اﻟوﺣﯾد ھﻧﺎ ھو ﻓﻰ أﺧﺗﻼف‬ ‫ﺑﻌض اﻟﺧﯾﺎرات اﻟﺧﺎﺻﺔ ﺑﺎﻻﻣر اﻟﺘﺎﻟﻰ‪:‬‬ ‫]‪MeanDifferenceTest[list1, list2, diff0, options‬‬ ‫ﺣﯾث ﻻ ﯾوﺿﻊ اﻟﺧﯾﺎر ‪ . EqualVariances->True‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪:‬‬ ‫`‪<<Statistics`HypothesisTests‬‬ ‫}‪X1={12.7,19.3,20.5,10.5,14,10.8,16.6,14,17.2‬‬ ‫}‪{12.7,19.3,20.5,10.5,14,10.8,16.6,14,17.2‬‬

‫}‪X2={18.2,32.9,10,14.3,16.2,27.6,15.7‬‬ ‫}‪{18.2,32.9,10,14.3,16.2,27.6,15.7‬‬

‫‪VarianceRatioTest[public, private, 1,FullReport‬‬‫]‪>True,TwoSided->True‬‬

‫‪TestStat‬‬ ‫‪0.195213‬‬

‫‪Distribution‬‬ ‫‪,TwoSidedPValue 0.0380965‬‬ ‫‪FRatioDistribution8,6‬‬

‫‪Ratio‬‬ ‫‪0.195213‬‬

‫‪FullReport‬‬

‫]‪MeanDifferenceTest[x1,x2,0‬‬ ‫‪OneSidedPValue0.117402‬‬

‫]‪MeanDifferenceTest[x1,x2,0,FullReport->True,TwoSided->True‬‬

‫‪Distribution‬‬ ‫‪,TwoSidedPValue0.234804‬‬ ‫‪StudentTDistribution7.82501‬‬

‫‪TestStat‬‬ ‫‪1.28716‬‬

‫‪MeanDiff‬‬ ‫‪4.20476‬‬

‫‪FullReport‬‬

‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر ‪:‬‬ ‫]‪VarianceRatioTest[x1,x2, 1,TwoSided->True,FullReport->True‬‬

‫ﯾﺗم اﻟﺣﺻول ﻋﻠﻰ ﺗﻘرﯾ ر ﻣﻔﺻ ل ﯾﺣﺗ وى ﻋﻠ ﻰ ﻗﯾﻣ ﺔ اﻻﺣﺻ ﺎء ‪ f‬وھ و ‪ .195213‬وھ و ﻣﻘﻠ وب ﻗﯾﻣ ﺔ‬ ‫‪f=5.1128‬واﻟﺗ ﻰ ﺗ م اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ ﻋﻧ د ﺣ ل اﻟﻣﺛ ﺎل ﯾ دوﯾﺎ وﯾرﺟ ﻊ ذﻟ ك إﻟ ﻰ ﻗﺳ ﻣﺔ ﺗﺑ ﺎﯾن اﻟﻌﯾﻧ ﺔ‬ ‫اﻻﺻﻐر ﻋﻠﻰ ﺗﺑﺎﯾن اﻟﻌﯾﻧ ﺔ اﻻﻛﺑ ر‪.‬ﻛﻣ ﺎ أن اﻻﺧﺗﺑ ﺎر ﻣ ن ﺟ ﺎﻧﺑﯾن وﻗﯾﻣ ﺔ ‪ p=.0380965‬واﻟﺗ ﻰ اﻗ ل ﻣ ن‬ ‫‪.05‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫وھ ذا ﯾﻌﻧ ﻰ رﻓ ض ﻓ رض اﻟﻌ دم أن ‪. 1   2‬وﻋﻧ د ﻋ دم وﺿ ﻊ اﻟﺧﯾ ﺎر ‪ TwoSided->True‬ﻓ ﺈن‬ ‫اﻻﺧﺗﺑﺎر ﯾﻛون ﻣن طرف واﺣد ﻛﻣﺎ ھو واﺿﺢ ﻣن اﻻﻣر‬ ‫]‪MeanDifferenceTest[x1,x2,0‬‬ ‫‪OneSidedPValue0.117402‬‬

‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻼﻣر‪:‬‬ ‫]‪MeanDifferenceTest[x1,x2,0,FullReport->True,TwoSided->True‬‬

‫ﻓﺈﻧ ﮫ ﯾ ﺗم اﻟﺣﺻ ول ﺗﻘرﯾ ر ﻣﻔﺻ ل ﺣﯾ ث اﻟﻘﯾﻣ ﺔ ‪   7 .8  8 .‬ﺗﺣ ت اﻟﻌﻧ وان ‪ Distribution‬وﻗﯾﻣ ﺔ‬ ‫اﻻﺣﺻ ﺎء ﺗﺣ ت اﻟﻌﻧ وان ‪ TestStat‬واﻻﺧﺗﺑ ﺎر ﺳ وف ﯾﻛ ون ﻣ ن ﺟ ﺎﻧﺑﯾن وﻗﯾﻣ ﺔ ‪ p=.234804‬وھ ﻰ‬

‫‪١٥٠‬‬


‫ وھ ذا ﯾﻌﻧ ﻰ ﻋ دم وﺟ ود ﻓ رق ﻣﻌﻧ وي ﺑ ﯾن ﻣﺟﻣوﻋ ﺔ‬H 0 ‫ وﺑﺎﻟﺗﺎﻟﻰ ﯾﺗم ﻗﺑول ﻓرض اﻟﻌدم‬0.1‫أﻛﺑر ﻣن‬ .   0 .1 ‫اﻟﻧﺗرات وﻣﺟﻣوﻋﺔ اﻟﻣراﻗﺑﺔ ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ‬

(٣٠-٣)‫ﻣﺛﺎل‬ ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ =.1 0.1 x1={12.7,19.3,20.5,10.5,14,10.8,16.6,14,17.2} {12.7,19.3,20.5,10.5,14,10.8,16.6,14,17.2} x2={18.2,32.9,10,14.3,16.2,27.6,15.7} {18.2,32.9,10,14.3,16.2,27.6,15.7} y[x_]:=Apply[Plus,x] z[x_]:=Length[x] n1=z[x1] 9 n2=z[x2] 7

fx_ :

yx zx

a1=f[x1] 15.0667 a2=f[x2] 19.2714 b=a1-a2 -4.20476

 lx_ :  yx^2  

yx ^2     zx  1 zx 

s1=l[x1] 12.66 s2=l[x2] 64.8524

f

Maxs1, s2 Mins1, s2

5.12262 <<Statistics`ConfidenceIntervals`

ff1  QuantileFRatioDistributionn1  1, n2  1, 1  4.1468

ff2  QuantileFRatioDistributionn1  1, n2  1, 0.279284

١٥١

2

2


f11  QuantileFRatioDistributionn2  1, n1  1, 1  3.58058

f22  QuantileFRatioDistributionn2  1, n1  1,

2

2

0.24115 d1=If[s1>s2,ff1,f11] 3.58058 d2=If[s1>s2,ff2,f22] 0.24115 c1  Iff  d2  f  d1, Print"Reject H0 ",

Print"Accept H0" Reject H0 s1 u n1 1.40667

w

s2 n2

9.26463 u  w ^2

v

2 2  u  w  n11

n21

7.82501 Round[v] 8

 Statistics`ContinuousDistributions`

t  QuantileStudentTDistribution v, 1 

2

1.86495

b t1   u w -1.28716

a1  IfAbst1  t, Print"Reject H0", Print"Accept H0" Accept H0

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ .‫ اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ‬x2 ‫ اﻟﻌﯾﻧﺔ اﻻوﻟﻰ و ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت‬x1 ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت‬ ‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ اﻟﻣﺣﺳوﺑﺔ ھﻰ‬t -1.28716

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ھو ﻗﺑول ﻓرض اﻟﻌدم ﻣن اﻻﻣر‬ ١٥٢

1.86495

‫ اﻟﺟدوﻟﯾﺔ ھﻰ‬t ‫و‬


‫‪a1  IfAbst1  t, Print"Reject H0",‬‬ ‫‪Print"Accept H0"‬‬

‫)‪ ( ٨-٣‬اﺧﺗﺑﺎرات ‪ t‬ﻟﻸزواج‬

‫‪The Paired t Tests‬‬

‫ﻓ ﻲ اﻟﺑﻧ د اﻟﺳ ﺎﺑق ﻛ ﺎن اھﺗﻣﺎﻣﻧ ﺎ ﺑﺎﻟﻌﯾﻧ ﺎت اﻟﻣﺳ ﺗﻘﻠﺔ ‪ .‬اﻵن ﺳ وف ﯾﻛ ون اھﺗﻣﺎﻣﻧ ﺎ ﺑﺎﻟﻌﯾﻧ ﺎت اﻟﻣزدوﺟ ﺔ‬ ‫‪ ، paired samples‬ﺣﯾث ‪ d1, d 2 ,..., d n‬ﺗﻣﺛل اﻟﻔروق ﻷزواج اﻟﻣﺷﺎھدات اﻟﻣرﺗﺑطﺔ اﻟﺗ ﻲ ﻋ ددھﺎ‬ ‫‪ . n‬ﻣﺛ ل ھ ذه اﻟﻣﺷ ﺎھدات ﺗﺣ دث ﻋﻧ دﻣﺎ ﻧﺄﺧ ذ اﻟﻣﺷ ﺎھدات ) اﻟﻘ راءات ( ﻋﻠ ﻰ اﻟﻣﻔ ردات ﻗﺑ ل وﺑﻌ د‬ ‫ﻣﻌﺎﻟﺟﺔ‪ .‬ﺑﺎﻟﻧظر إﻟﻰ اﻟﻔروق ﻟﻛل أزواج اﻟﻣﺷﺎھدات ﻓﺈﻧﻧﺎ ﻧﺄﻣل ﻓ ﻲ اﻟوﺻ ول إﻟ ﻰ اﺳ ﺗﻧﺗﺎج ﯾﺧ ص ﺗ ﺄﺛﯾر‬ ‫اﻟﻣﻌﺎﻟﺟﺔ‪ .‬ﻣﺗوﺳط ﻓروق اﻟﻣﺟﺗﻣﻊ ‪ ، D ،‬ﺳوف ﯾﺳﺎوى اﻟﻔ رق ﺑ ﯾن ﻣﺗوﺳ طﻲ اﻟﻣﺟﺗﻣﻌ ﯾن ‪1   2 ،‬‬ ‫‪ ،‬وﻋﻠﻰ ذﻟك ﻓﺈن ﻣﺷﻛﻠﺔ اﺧﺗﺑﺎر ﻓرض اﻟﻌ دم ‪ H0‬أن ‪ 1   2  0‬ﺗﻛ ﺎﻓﺊ اﺧﺗﺑ ﺎر ‪ . D  0‬ﺑﻔ رض‬ ‫أن ﻛ ل ﻣﺟﺗﻣ ﻊ ﻣ ن اﻟﻣﺟﺗﻣﻌ ﯾن ﯾﺗﺑ ﻊ ﺗوزﯾﻌ ﺎ ً طﺑﯾﻌﯾ ﺎ ً‪ .‬أوﻻ ً ﻧﺧﺗ ﺎر ‪ n‬ﻣ ن أزواج اﻟﻣﺷ ﺎھدات‬ ‫ﻋﺷواﺋﯾﺎ وﻧﺣﺳب اﻟﻔروق وﻧﻘدر ‪ d‬و ‪ . s d‬وﻋﻠﻰ ذﻟك ﻋﻧدﻣﺎ ﯾﻛون ‪ H 0‬ﺻﺣﯾﺣﺎ ﻓﺈن ‪:‬‬ ‫‪d0‬‬ ‫‪,‬‬ ‫‪sd‬‬ ‫‪n‬‬

‫‪t‬‬

‫ھ ﻰ ﻗﯾﻣ ﺔ ﻟﻠﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ ‪ T‬اﻟ ذي ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ ‪ t‬ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪ .   n  1‬ﻗرارﻧ ﺎ ﻓ ﻲ ھ ذه‬ ‫اﻟﺣﺎﻟ ﺔ ﯾﻌﺗﻣ د ﻋﻠ ﻰ ﺗوزﯾ ﻊ ‪ t‬وﻣﻧ ﺎطق اﻟ رﻓض اﻟﻣﻘﺎﺑﻠ ﺔ ﻟﻠﻔ روض اﻟﺑدﯾﻠ ﺔ اﻟﻣﺧﺗﻠﻔ ﺔ وﺳ وف ﻧﺗﺑ ﻊ‬ ‫اﻟﺧطوات اﻟﺗﻲ أﺗﺑﻌت ﻣن ﻗﺑل ‪.‬‬

‫ﻣﺛﺎل)‪(٣١-٣‬‬ ‫إذا ﻛﺎﻧت أوزان‬ ‫ﯾﻠﻲ ‪:‬‬

‫‪10‬‬

‫‪10‬‬

‫أﺷﺧﺎص ﻗﺑل اﻟﺗوﻗف ﻋ ن اﻟﺗ دﺧﯾن وﺑﻌ د‬ ‫‪9‬‬

‫‪8‬‬

‫‪7‬‬

‫‪5‬‬

‫‪6‬‬

‫‪166 147 150 175 151 146‬‬

‫‪8‬‬

‫‪4‬‬

‫أﺳ ﺎﺑﯾﻊ ﻣ ن اﻟﺗوﻗ ف ﻋ ن اﻟﺗ دﺧﯾن ﻛﻣ ﺎ‬ ‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫‪148 176 152 115‬‬

‫اﻷﺷﺧﺎص‬ ‫ﻗﺑل‬

‫‪ 155 170 169 117 170 150 154 180 160 151‬ﺑﻌـد‬ ‫ﻓﮭل ﺗدل ھذه اﻟﺑﯾﺎﻧﺎت ﻋﻠﻰ أن اﻻﻣﺗﻧﺎع ﻋن اﻟﺗدﺧﯾن ﯾ ؤدى إﻟ ﻰ زﯾ ﺎدة وزن اﻷﺷ ﺧﺎص اﻟ ذﯾن ﯾﻣﺗﻧﻌ ون‬ ‫ﻋن اﻟﺗدﺧﯾن ؟ وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   0 .05‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 : D  0,‬‬ ‫‪H1 :  D  0 .‬‬ ‫‪  0 .05 .‬‬

‫‪١٥٣‬‬


.   9 ‫( ﻋﻧد درﺟﺎت ﺣرﯾﺔ‬٢) ‫ ﻓﻲ ﻣﻠﺣق‬t ‫ واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول ﺗوزﯾﻊ‬t 0.025  2.262 T   2 . 262 ‫ أو‬T  2 .262 ‫ﻣﻧطﻘﺔ اﻟرﻓض‬ n

x d

i 1

n

i

 50  5 , 10

n   ( di )2    n 1  d i2  i 1  sd  n  1  i 1 n   

1 (50) 2  550     5.7735, 9 10 

t

d 0 sd n

5  2.7386. 5.7735 / 10

. H 0 ‫ ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض‬t ‫وﺑﻣﺎ أن‬ ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ x1={148.,176,152,115,166,147,150,175,151,146} {148.,176,152,115,166,147,150,175,151,146} x2={155.,170,169,117,170,150,154,180,160,151} {155.,170,169,117,170,150,154,180,160,151} d=x1-x2 {-7.,6,-17,-2,-4,-3,-4,-5,-9,-5} y[x_]:=Apply[Plus,x] z[x_]:=Length[x]

fx_ :

yx zx

d1=f[d] -5.

   sd  ld

lx_ :  yx^2 

yx ^2     zx  1 zx 

5.7735 ١٥٤


‫]‪n=z[d‬‬ ‫‪10‬‬ ‫‪v=n-1‬‬ ‫‪9‬‬

‫‪d1‬‬ ‫‪sd‬‬ ‫‪n‬‬

‫‪t1 ‬‬

‫‪‬‬

‫‪-2.73861‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫]‪t=Quantile[StudentTDistribution[v],0.975‬‬ ‫‪2.26216‬‬

‫‪a1  If Abst1  t, Print"Reject H0 ",‬‬ ‫‪Print"Accept H0 "‬‬ ‫‪Reject H0‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪ x1‬ﻟﻠﻌﯾﻧﺔ اﻻوﻟﻰ و ﻗﺎﺋﻣﺔ اﻟﺑﯾﺎﻧﺎت ‪ x2‬ﻟﻠﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ‪.‬‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪ t‬اﻟﻣﺣﺳوﺑﺔ ھﻰ‬ ‫‪-2.73861‬‬

‫و ‪ t‬اﻟﺟدوﻟﯾﺔ ھﻰ‬ ‫‪2.26216‬‬

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ھو رﻓض ﻓرض اﻟﻌدم ﻣن اﻻﻣر‬ ‫‪a1  IfAbst1  t, Print"Reject H0",‬‬ ‫‪Print"Accept H0"‬‬

‫)‪ (٩-٣‬اﺧﺗﺑﺎرات ﺗﺧص ﻧﺳﺑﺔ ﻣﺟﺗﻣﻊ‬ ‫‪Tests Concerning a Population Proportion‬‬ ‫ﺳ وف ﻧﮭ ﺗم ﻓ ﻲ ھ ذا اﻟﺑﻧ د ﺑﻣﺷ ﻛﻠﺔ اﺧﺗﺑ ﺎرات اﻟﻔ روض اﻟﺗ ﻲ ﻓﯾﮭ ﺎ ﻧﺳ ﺑﺔ ﺻ ﻔﺔ ﻣ ﺎ ﺗﺳ ﺎوى ﻗﯾﻣ ﺔ‬ ‫ﻣﻌﻧﯾﺔ ‪ .‬أي أﻧﻧﺎ ﻧﮭ ﺗم ﺑﺎﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم ‪ H 0 : p  p 0‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ p  p 0‬أو‬ ‫‪p  p0‬‬ ‫أو ‪ p  p 0 .‬ﺳ وف ﺗﻘﺗﺻ ر دراﺳ ﺗﻧﺎ ﻓ ﻲ ھ ذا اﻟﺑﻧ د ﻋﻠ ﻰ ﺣﺎﻟ ﺔ اﻟﻌﯾﻧ ﺎت اﻟﻛﺑﯾ رة ‪ ،‬وﻋﻠ ﻰ ذﻟ ك ﻓ ﺈن‬ ‫اﻹﺣﺻﺎء اﻟﻣﻧﺎﺳب اﻟ ذي ﯾﻌﺗﻣ د ﻋﻠﯾ ﮫ ﻗرارﻧ ﺎ ھ و ˆ‪ P‬اﻟ ذي ﺗﻘرﯾﺑ ﺎ ً ﯾﺗﺑ ﻊ ﺗوزﯾﻌ ﺎ ً طﺑﯾﻌﯾ ﺎ ً‪ .‬أي أن ﻗرارﻧ ﺎ‬ ‫ﺳوف ﯾﻌﺗﻣد ﻋﻠﻰ ‪:‬‬ ‫‪pˆ  p 0‬‬ ‫‪p0 q 0‬‬ ‫‪n‬‬

‫‪١٥٥‬‬

‫‪z‬‬


‫واﻟذي ﯾﻣﺛل ﻗﯾﻣﺔ ﻟﻠﻣﺗﻐﯾر ‪ Z‬اﻟذي ﯾﺗﺑﻊ اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ ‪ . q 0  1  p 0‬وﻋﻠ ﻰ ذﻟ ك ﻟﻼﺧﺗﺑ ﺎر‬ ‫ﻣ ن ﺟ ﺎﻧﺑﯾن ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض ‪ ،‬ﺑﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪ ، ‬ﺳ وف ﺗﻛ ون ‪ Z  z ‬أو ‪. Z  z ‬‬ ‫‪2‬‬

‫‪2‬‬

‫ﻟﻠﺑدﯾل ﻣن ﺟﺎﻧب واﺣد ‪ p  p 0‬ﻓﺈن ﻣﻧطﻘﺔ اﻟ رﻓض ﺳ وف ﺗﻛ ون ‪ . Z   z ‬وأﺧﯾ را ﻟﻠﺑ دﯾل‬ ‫ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض ﺳوف ﺗﻛون ‪. Z  z ‬‬

‫‪p  p0‬‬

‫ﻣﺛﺎل)‪(٣٢-٣‬‬ ‫اﺧﺗﯾرت ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن ‪ 200‬ﺷﺧص ﻣن ﻣﺟﺗﻣﻊ ﻣﺎ ووﺟد أن ‪ 40‬ﺷﺧص ﻣن اﻟﻌﯾﻧﺔ ﻣﺻﺎﺑون‬ ‫ﺑﻣرض ﻣﺎ ‪ .‬اﻟﻣطﻠوب اﺧﺗﺑﺎر اﻟﻔرض أن ﻧﺳﺑﺔ اﻹﺻﺎﺑﺔ ﺑﺎﻟﻣرض ﻓﻲ ھذا اﻟﻣﺟﺗﻣﻊ أﻗل ﻣن ‪0 .5‬‬ ‫وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   0 .01‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 : p  0 .5 ,‬‬ ‫‪H 1 : p  0 .5 .‬‬ ‫‪  0 .01 .‬‬

‫‪ z .01  2.325‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳ ﻲ ﻓ ﻲ ﻣﻠﺣ ق )‪ .(١‬ﻣﻧطﻘ ﺔ اﻟ رﻓض‬ ‫‪Z   2 . 325‬‬

‫‪n  200.‬‬

‫‪,‬‬

‫‪x  40‬‬

‫‪x 40‬‬ ‫‪‬‬ ‫‪ 0.2 , q 0  1  q0  1  0.5  0.5. .‬‬ ‫‪n 200‬‬ ‫‪0 .2  0 .5‬‬ ‫‪ 8.4852.‬‬ ‫)‪(0.5)(0.5‬‬ ‫‪200‬‬

‫‪pˆ  p0‬‬ ‫‪‬‬ ‫‪p0 q 0‬‬

‫‪pˆ ‬‬

‫‪z‬‬

‫‪n‬‬

‫وﺑﻣﺎ أن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض ‪. H 0‬‬ ‫ﺳ وف ﯾ ﺗم ﺣ ل ھ ذا اﻟﻣﺛ ﺎل ﺑﺈﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ﻣﻛﺗ وب ﺑﻠﻐ ﺔ ‪ Mathematica‬وﻓﯾﻣ ﺎ ﯾﻠ ﻰ ﺧط وات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‪.‬‬ ‫‪=.01‬‬ ‫‪0.01‬‬ ‫‪n=200‬‬ ‫‪x=40‬‬ ‫‪200‬‬ ‫‪40‬‬ ‫‪po=0.5‬‬ ‫‪0.5‬‬

‫‪x‬‬ ‫‪ N‬‬ ‫‪n‬‬ ‫‪١٥٦‬‬

‫‪p‬‬


0.2 qo=1-po 0.5

z

p  po

poqo  n

-8.48528 <<Statistics`ContinuousDistributions` z1=Quantile[NormalDistribution[0,1],] -2.32635

r  Ifz  z1, Print"Reject Ho", Print"Accept Ho" Reject Ho

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ =.01

‫وﺣﺟم اﻟﻌﯾﻧﺔ ﻣن اﻻﻣر‬ n=200

‫وﻋدد اﻟذﯾن ﻟدﯾﮭم اﻟﺻﻔﺔ ﻣوﺿﻊ اﻟدراﺳﺔ ﻣن اﻻﻣر‬ x=40 ‫ ﻣن اﻻﻣر‬p0 po=0.5

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬z p  po z poqo  n

‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬z ‫و‬ z1=Quantile[NormalDistribution[0,1],]

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬

r  Ifz  z1, Print"Reject Ho", Print"Accept Ho" . ‫واﻟﻣﺧرج ھو‬ Reject Ho

. ‫اى رﻓض ﻓرض اﻟﻌدم‬

(٣٣-٣)‫ﻣﺛﺎل‬ ١٥٧


‫ﯾﻌﺗﻘ د ﻣ دﯾر اﻹﻧﺗ ﺎج ﻓ ﻲ ﻣﺻ ﻧﻊ ﻹﻧﺗ ﺎج اﻟﺗﻠﻔزﯾوﻧ ﺎت ﻓ ﻲ ﺑﻠ د ﻣ ﺎ أن ‪ 80 %‬ﻣ ن اﻷﺳ ر ﺗﻣﺗﻠ ك ﺗﻠﻔزﯾ ون‬ ‫ﻣﻠ ون‪ ٠‬ﻟﻠﺗﺣﻘ ق ﻣ ن ھ ذا اﻟﻔ رض اﺧﺗﯾ رت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ‪ 1000‬أﺳ رة ووﺟ د أن ‪ 318‬ﻣ ﻧﮭم‬ ‫ﯾﻣﺗﻠﻛون ﺗﻠﯾﻔزﯾوﻧﺎ ﻣﻠوﻧﺎ اﺧﺗﺑر ﺻﺣﺔ ھذا اﻟﻔرض ‪ p  0.8‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   0 .05‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 : p  0 .8 ,‬‬ ‫‪H 1 : p  0 .8 .‬‬ ‫‪  0 .05 .‬‬

‫‪ z .025  1.96‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ ﻓ ﻲ ﻣﻠﺣ ق )‪ .(٣‬ﻣﻧطﻘ ﺔ اﻟ رﻓض‬ ‫‪ Z  1 .96‬أو ‪Z   1 . 96‬‬ ‫‪x  318 , n  1000.‬‬ ‫‪x 318‬‬ ‫‪pˆ  ‬‬ ‫‪ 0.318 , q 0  1  q0  1  0.8  0.2 .‬‬ ‫‪n 1000‬‬ ‫‪pˆ  p 0‬‬ ‫‪0.318  0.8‬‬ ‫‪z‬‬ ‫‪‬‬ ‫‪ 38.105.‬‬ ‫‪p0 q 0‬‬ ‫)‪(0.8)(0.2‬‬ ‫‪1000‬‬ ‫‪n‬‬

‫وﺑﻣﺎ أن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض ‪. H 0‬‬ ‫ﺳ وف ﯾ ﺗم ﺣ ل ھ ذا اﻟﻣﺛ ﺎل ﺑﺈﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ﻣﻛﺗ وب ﺑﻠﻐ ﺔ ‪ Mathematica‬وﻓﯾﻣ ﺎ ﯾﻠ ﻰ ﺧط وات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‪.‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫;‪n=1000‬‬ ‫;‪x=318‬‬ ‫;‪po=0.8‬‬

‫‪x‬‬ ‫‪ N‬‬ ‫‪n‬‬

‫‪p‬‬

‫‪0.318‬‬ ‫‪qo=1-po‬‬ ‫‪0.2‬‬

‫‪p  po‬‬

‫‪poqo‬‬ ‫‪‬‬

‫‪z1 ‬‬

‫‪n‬‬

‫‪-38.1054‬‬

‫`‪ Statistics`ContinuousDistributions‬‬ ‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪z  Quantile NormalDistribution0, 1, 1 ‬‬ ‫‪1.95996‬‬ ‫‪a1  IfAbsz1  z, Print"Reject H0",‬‬

‫‪Print"Accept H0"‬‬ ‫‪١٥٨‬‬


‫‪Reject H0‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ اﻟﻘرار اﻟذى ﯾﺗﺧذ ھو رﻓض ﻓرض اﻟﻌدم ‪.‬‬

‫)‪ (١٠-١٠‬اﺧﺗﺑﺎرات ﺗﺧص اﻟﻔرق ﺑﯾن ﻧﺳﺑﺗﻲ ﻣﺟﺗﻣﻌﯾن‬ ‫‪Tests Concerning a Difference Between Two Population Proportions‬‬ ‫ﺑﻔرض أن ‪ p1‬ھﻲ ﻧﺳﺑﺔ ﺗوﻓر ﺻﻔﺔ ﻣﺎ ﻓﻲ إﺣدى اﻟﻣﺟﺗﻣﻌ ﺎت وﻛﺎﻧ ت ‪ p2‬ھ ﻲ ﻧﺳ ﺑﺔ ﺗ وﻓر اﻟﺻ ﻔﺔ‬ ‫ﻧﻔﺳﮭﺎ ﻓﻲ ﻣﺟﺗﻣﻊ آﺧر وإذا ﻛﺎن اھﺗﻣﺎﻣﻧﺎ ﺑﺎﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪ H 0 : p1  p 2‬ﻓ ﺈن اﻹﺣﺻ ﺎء اﻟﻣﻧﺎﺳ ب‬ ‫واﻟذي ﯾﻌﺗﻣد ﻋﻠﯾﮫ ﻗرارﻧﺎ ﺳوف ﯾﻛون اﻟﻣﺗﻐﯾر اﻟﻌﺷواﺋﻲ ‪ . Pˆ1  Pˆ2‬ﻧﺧﺗﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻛﺑﯾ رة ﻣ ن‬ ‫اﻟﺣﺟ م ‪ n1‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻷول وﻧﺣﺳ ب ﻧﺳ ﺑﺔ ﺗ وﻓر اﻟﺻ ﻔﺔ ﻣﺣ ل اﻟدراﺳ ﺔ ﻓﯾﮭ ﺎ وﻟ ﺗﻛن‬

‫‪x1‬‬ ‫‪n1‬‬

‫‪pˆ1 ‬‬

‫ﺣﯾث أن ‪ x1‬ھﻲ ﻋدد اﻟذﯾن ﯾﻣﺛﻠ ون اﻟﺻ ﻔﺔ ﻓ ﻲ اﻟﻣﺟﺗﻣ ﻊ اﻷول‪ .‬ﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ أﺧ رى ﻛﺑﯾ رة‬ ‫‪x2‬‬ ‫ﻣ ن اﻟﺣﺟ م ‪ n2‬ﻣ ن اﻟﻣﺟﺗﻣ ﻊ اﻟﺛ ﺎﻧﻲ وﻧﺣﺳ ب ﻧﺳ ﺑﺔ ﺗ وﻓر اﻟﺻ ﻔﺔ اﻟﻣطﻠوﺑ ﺔ ﻣﻧﮭ ﺎ وﻟ ﺗﻛن‬ ‫‪n2‬‬

‫‪pˆ 2 ‬‬

‫ﺣﯾ ث ‪ x2‬ھ ﻲ ﻋ دد اﻟ ذﯾن ﯾﻣﺗﻠﻛ ون اﻟﺻ ﻔﺔ ﻓ ﻲ اﻟﻣﺟﺗﻣ ﻊ اﻟﺛ ﺎﻧﻲ ‪ ،‬وﯾﺟ ب أن ﺗﻛ ون اﻟﻌﯾﻧﺗ ﯾن ﻣﺳ ﺗﻘﻠﯾن‬ ‫ﺗﺣت ﻓرض اﻟﻌدم وﻣن ﻧظرﯾﺔ ) ‪ ( ٨-٧‬ﻓﺈن ‪:‬‬ ‫‪pˆ1  pˆ 2‬‬ ‫‪p1 q1 p 2 q 2‬‬ ‫‪‬‬ ‫‪n1‬‬ ‫‪n2‬‬ ‫‪pˆ1  pˆ 2‬‬

‫‪.‬‬

‫‪1‬‬ ‫‪1‬‬ ‫] ‪pq[ ‬‬ ‫‪n1 n 2‬‬

‫‪z‬‬

‫‪‬‬

‫ھو ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ ‪ Z‬ﯾﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ ﻋﻧ دﻣﺎ ‪ H 0‬ﯾﻛ ون ﺻ ﺣﯾﺣﺎ و ‪, n1 n2‬‬ ‫ﻛﺑﯾرﺗﺎن ‪ .‬وﺑﻣﺎ أن ‪ p‬ﻣﺟﮭوﻟﺔ ﻓﻲ ﺻﯾﻐﺔ ‪ z‬ﻓﺈﻧﻧﺎ ﻧﺣﺳﺑﮭﺎ ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪~p  x 1  x 2 .‬‬ ‫‪n1  n 2‬‬

‫وﻋﻠﻰ ذﻟك ﺗﺻﺑﺢ ‪ z‬ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪pˆ1  pˆ 2‬‬ ‫‪.‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫~‬ ‫~‬ ‫] ‪p q[ ‬‬ ‫‪n1 n 2‬‬

‫‪z‬‬

‫~‬ ‫~ ‪q  1‬‬ ‫ﺣﯾث أن ‪p‬‬

‫ﻣﻧطﻘﺔ اﻟرﻓض ﻟﻠﻔروض اﻟﺑدﯾﻠﺔ اﻟﻣﺧﺗﻠﻔﺔ ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﯾﮭﺎ ‪ ،‬ﻛﻣﺎ ﺳﺑق أن ذﻛرﻧ ﺎ ‪ ،‬ﺑﺎﺳ ﺗﺧدام اﻟﻘ ﯾم‬ ‫اﻟﺣرﺟﺔ ﻟﻣﻧﺣﻧﻰ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ‪.‬‬

‫ﻣﺛﺎل)‪(٣٤-٣‬‬

‫‪١٥٩‬‬


‫اﺧﺗﺑرت ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن ‪ 300‬ﻣدﺧﻧﺎ ﻓﻲ ﻣدﯾﻧﺔ ﻣﺎ ووﺟ د أن ﻣ ن ﺑﯾ ﻧﮭم ‪ 60‬ﯾﻔﺿ ﻠون ﺗ دﺧﯾن اﻟﻧ وع‬ ‫‪ A‬ﻣن اﻟﺳﺟﺎﺋر ﺛم اﺧﺗﯾرت ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ‪ 200‬ﻣ دﺧﻧﺎ ﻓ ﻲ ﻣدﯾﻧ ﺔ أﺧ رى ووﺟ د أن ﻣ ن ﺑﯾ ﻧﮭم‬ ‫‪ 30‬ﯾﻔﺿ ﻠون ﺗ دﺧﯾن اﻟﻧ وع ‪ A‬ﻣ ن اﻟﺳ ﺟﺎﺋر ‪ .‬اﺧﺗﺑ ر ﻓ رض اﻟﻌ دم ‪ H 0 : p1  p 2‬ﺿ د اﻟﻔ رض‬ ‫اﻟﺑدﯾل ‪ H1 : p1  p 2‬وذﻟك ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.   0 .05‬‬

‫اﻟﺣــل‪:‬‬ ‫‪H 0 : p1  p 2 ,‬‬

‫‪H1 : p1  p2 .‬‬ ‫‪  0 . 05 .‬‬

‫‪x 1 60‬‬ ‫‪x‬‬ ‫‪30‬‬ ‫‪‬‬ ‫‪ 0 .2‬‬ ‫‪,‬‬ ‫‪pˆ 2  2 ‬‬ ‫‪ 0.15 ,‬‬ ‫‪n 1 300‬‬ ‫‪n 2 200‬‬ ‫~ ‪~p  x 1  x 2  60  30  90  0.18 ,‬‬ ‫‪q  1  ~p  1  0.18  0.82 .‬‬ ‫‪n 1  n 2 300  200 500‬‬ ‫‪pˆ1 ‬‬

‫‪ z .025  1.96‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓﻲ ﻣﻠﺣق )‪.(١‬‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض ‪ Z  1.96‬أو ‪Z   1 .96‬‬ ‫‪(0.2  0.15)  0‬‬ ‫‪ 1.4257.‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫([)‪(0.18)(0.82‬‬ ‫(‪)‬‬ ‫])‬ ‫‪300‬‬ ‫‪200‬‬

‫‪z‬‬

‫ﺑﻣﺎ أن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ﻓﺈﻧﻧﺎ ﻧﻘﺑل ‪. H 0‬‬ ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫‪n1=300.0‬‬ ‫‪300.‬‬ ‫‪x1=60.0‬‬ ‫‪60.‬‬

‫‪x1‬‬ ‫‪n1‬‬

‫‪p1 ‬‬

‫‪0.2‬‬ ‫‪q1=1-p1‬‬ ‫‪0.8‬‬ ‫‪n2=200.0‬‬ ‫‪200.‬‬ ‫‪x2=30.0‬‬ ‫‪30.‬‬

‫‪x2‬‬ ‫‪n2‬‬ ‫‪١٦٠‬‬

‫‪p2 ‬‬


‫‪0.15‬‬ ‫‪q2=1-p2‬‬ ‫‪0.85‬‬ ‫‪d=p1-p2‬‬ ‫‪0.05‬‬

‫‪x1  x2‬‬ ‫‪n1  n2‬‬

‫‪p3 ‬‬

‫‪0.18‬‬ ‫‪q3=1-p3‬‬ ‫‪0.82‬‬

‫‪d‬‬

‫‪z1 ‬‬

‫‪‬‬ ‫‪p3  q3 1  1 ‬‬ ‫‪n2‬‬

‫‪n1‬‬

‫‪1.42566‬‬

‫`‪ Statistics`ContinuousDistributions‬‬ ‫‪‬‬

‫‪‬‬

‫‪2‬‬

‫‪z  Quantile NormalDistribution0, 1, 1 ‬‬ ‫‪1.95996‬‬

‫‪a1  IfAbsz1  z, Print"Reject H0",‬‬ ‫‪Print"Accept H0"‬‬ ‫‪Accept H0‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ ‫‪=.05‬‬

‫وﺣﺟم اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ ‫‪n1=300.0‬‬

‫وﺣﺟم اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ ‫‪n=200‬‬

‫ﻋدد اﻟذﯾن ﻟدﯾﮭم اﻟﺻﻔﺔ ﻣوﺿﻊ اﻟدراﺳﺔ ﻣن اﻟﻌﯾﻧﺔ اﻻوﻟﻰ ﻣن اﻻﻣر‬ ‫‪x1=60.0‬‬

‫ﻋدد اﻟذﯾن ﻟدﯾﮭم اﻟﺻﻔﺔ ﻣوﺿﻊ اﻟدراﺳﺔ ﻣن اﻟﻌﯾﻧﺔ اﻟﺛﺎﻧﯾﺔ ﻣن اﻻﻣر‬ ‫‪x2=30.0‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪ z‬اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬ ‫‪d‬‬

‫‪z1 ‬‬

‫‪‬‬ ‫‪p3  q3 1  1 ‬‬ ‫‪n2‬‬

‫‪n1‬‬

‫و ‪ z‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬

‫‪١٦١‬‬


z1  QuantileNormalDistribution0, 1, 1 

2 ‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن ﻣن اﻻﻣر‬

a1  IfAbsz1  z, Print"Reject H0", Print"Accept H0" ‫واﻟﻣﺧرج ھو‬ Accept H0 . ‫اى ﻗﺑول ﻓرض اﻟﻌدم‬

١٦٢


‫اﻟﻔﺻل اﻟراﺑﻊ‬ ‫اﻻﻧﺣدار اﻟﺧطﻰ اﻟﺑﺳﯾط واﻻرﺗﺑﺎط‬

‫‪١٦٣‬‬


‫)‪ (١-٤‬ﻣﻔﺎھﯾم أﺳﺎﺳﯾﺔ‬ ‫ﯾﮭﺗم ﺗﺣﻠﯾل اﻻﻧﺣدار ﺑﺎﻟﻌﻼﻗﺔ ﺑ ﯾن ﻣﺗﻐﯾ ر ﻛﻣ ﻲ ﻣوﺿ ﻊ اﻟدراﺳ ﺔ‪ ،‬ﯾﺳ ﻣﻰ اﻟﻣﺗﻐﯾ ر اﻟﺗ ﺎﺑﻊ أو ﻣﺗﻐﯾ ر‬ ‫اﺳ ﺗﺟﺎﺑﺔ ‪ response variable‬وواﺣ د أو أﻛﺛ ر ﻣ ن ﻣﺗﻐﯾ رات أﺧ رى ﺗﺳ ﻣﻰ ﻣﺗﻐﯾ رات ﻣﺳ ﺗﻘﻠﺔ‬ ‫‪ independent variables‬أو ﻣﺗﻐﯾ رات ﻣﻔﺳ ره ‪ explanatory variables‬أو ﻣﺗﻐﯾ رات ﺗﻧﺑ ؤ‬ ‫‪. predictor variables‬‬ ‫ﻏﺎﻟﺑﺎ ﻣﺎ ﯾﺳﺗﺧدم ﺗﺣﻠﯾل اﻻﻧﺣدار ﻓﻲ اﻟﺗﻧﺑؤ ﺑﺎﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﻣن اﻟﻣﻌﻠوﻣﺎت ﻋن واﺣ د أو أﻛﺛ ر ﻣ ن‬ ‫اﻟﻣﺗﻐﯾرات اﻟﻣﺳ ﺗﻘﻠﺔ‪ .‬ﻓ ﻲ ھ ذا اﻟﻔﺻ ل ﺳ وف ﻧﻘ دم ﺑﻌ ض اﻟﻣﻔ ﺎھﯾم اﻷﺳﺎﺳ ﯾﺔ وط رق اﻻﺳ ﺗدﻻل ﻟﺗﺣﻠﯾ ل‬ ‫اﻻﻧﺣدار اﻟﺑﺳﯾط ﺣﯾث ﯾﻌﺗﻣد اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﻋﻠﻰ ﻣﺗﻐﯾر ﻣﺳﺗﻘل واﺣد‪.‬‬

‫)‪ (٢-٤‬ﻣﻘدﻣﺔ ﻓﻲ اﻻﻧﺣدار اﻟﺧطﻲ اﻟﺑﺳﯾط‬ ‫ﺑﻔرض ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n‬ﻣﻣﺛﻠﺔ ﺑﺄزواج اﻟﻣﺷﺎھدات }‪{(x i , y i );i  1, 2,..., n‬‬ ‫ﻟﻌﯾﻧﺎت ﻣﺗﻛررة ﻓﺈﻧﻧﺎ ﺳوف ﻧﺄﺧذ ﺑﺎﻟﺿﺑط ﻗﯾم ‪ x‬وﻧﺗوﻗﻊ ﺗﻐﯾر ﻓﻲ ﻗﯾم ‪ . y‬وﻋﻠﻰ ذﻟك ﻗﯾﻣﺔ ‪ yi‬ﻓﻲ‬ ‫اﻟزوج اﻟﻣرﺗب ) ‪ (x i , y i‬ﺗﻣﺛل ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻲ ‪ . Yi‬أي أن اﻟﻧﺗﯾﺟﺔ اﻟﺗﻲ ﯾﺄﺧذھﺎ ‪ Yi‬ﻏﯾر‬ ‫ﻣؤﻛدة ‪ uncertain‬وﻻ ﯾﻣﻛن اﻟﺳﯾطرة ﻋﻠﯾﮭﺎ ﺑواﺳطﺔ اﻟﺑﺎﺣث ‪ .‬ﺳوف ﻧُﻌرف ‪ Y | x‬ﻟﺗﻣﺛل ﻣﺗﻐﯾر‬ ‫ﻋﺷواﺋﻲ ‪ Y‬ﯾﻘﺎﺑل ﻗﯾﻣﺔ ﺛﺎﺑﺗﺔ ‪ ، x‬وﻧﻌرف ﻣﺗوﺳطﺔ ﺑﺎﻟرﻣز ‪  Y|x‬وﺗﺑﺎﯾﻧﮫ ﺑﺎﻟرﻣز ‪ . 2Y|x‬ﻣن اﻟواﺿﺢ‬ ‫أﻧﮫ ﻋﻧدﻣﺎ ‪ x  x i‬ﻓﺈن اﻟرﻣز ‪ Y | x i‬ﯾﻣﺛل اﻟﻣﺗﻐﯾر اﻟﻌﺷواﺋﻲ ‪ Yi‬ﺑﻣﺗوﺳط ‪  Y| x‬وﺗﺑﺎﯾن ‪. 2Y|x‬‬ ‫‪i‬‬

‫‪i‬‬

‫أن اﻻﻧﺣدار اﻟﺧطﻲ اﻟﺑﺳﯾط ﯾﻌﻧﻲ أن ‪  Y|x‬ﺗرﺗﺑط ﺧطﯾﺎ ﺑـ ‪ x‬ﺑﻣﻌﺎدﻟﺔ اﻧﺣدار اﻟﻣﺟﺗﻣﻊ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪Y|x  0  1x‬‬ ‫ﺣﯾث ﻣﻌﺎﻣﻼت اﻻﻧﺣ دار ‪ ، 0 , 1‬ﯾﻣ ﺛﻼن ﻣﻌﻠﻣﺗ ﯾن ﻣطﻠ وب ﺗﻘ دﯾرھﻣﺎ ﻣ ن ﻣﺷ ﺎھدات اﻟﻌﯾﻧ ﺔ ﺣﯾ ث‬ ‫‪ b0‬ﺗﻘ دﯾر ﻟﻠﻣﻌﻠﻣ ﺔ ‪ 0‬و ‪ b1‬ﺗﻘ دﯾر ﻟﻠﻣﻌﻠﻣ ﺔ ‪ . 1‬أي أﻧﻧ ﺎ ﻧﻘ در ‪  Y|x‬ﺑ ـ ˆ‪ y‬ﻣ ن اﻧﺣ دار اﻟﻌﯾﻧ ﺔ أو ﺧ ط‬ ‫اﻻﻧﺣدار اﻟﻣﻘدر اﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪yˆ  b0  b1x .‬‬

‫)‪ (٣-٤‬ﺷﻛل اﻻﻧﺗﺷﺎر‬ ‫اﻷﺳ ﻠوب اﻟﻣﻔﯾ د ﻟﺑ دء ﺗﺣﻠﯾ ل اﻻﻧﺣ دار ھ و ﺗﻣﺛﯾ ل اﻟﺑﯾﺎﻧ ﺎت ﺑﯾﺎﻧﯾ ﺎ ً وھ و ﻣ ﺎ ﯾﻌ رف ﺑﺷ ﻛل‬ ‫اﻻﻧﺗﺷ ﺎر‪ scatter plot‬وذﻟ ك ﻣ ن ﻓﺋ ﺔ اﻟﻣﺷ ﺎھدات }‪ . {(x i , yi ); i  1,2,..., n‬ﻟﻠﺣﺻ ول ﻋﻠ ﻰ ﺷ ﻛل‬ ‫اﻻﻧﺗﺷ ﺎر ﯾﺧﺻ ص ﻣﺣ ور ‪) x‬اﻟﻣﺣ ور اﻷﻓﻘ ﻲ( ﻟﻠﻣﺗﻐﯾ ر ﻟﻠﻣﺳ ﺗﻘل ﺑﯾﻧﻣ ﺎ ﯾﺧﺻص ﻣﺣ ور ‪ ) y‬اﻟﻣﺣ ور‬ ‫اﻟرأﺳﻲ ( ﻟﻠﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ‪ .‬ﻟﻛل زوج )‪ ( x, y‬ﻣ ن أزواج اﻟﻣﺷ ﺎھدات اﻟﺗ ﻲ ﻋ ددھﺎ ‪ n‬ﻧﻘ وم ﺑﺗوﻗﯾ ﻊ ﻧﻘط ﺔ‬ ‫ﻋﻠﻰ اﻟرﺳم ‪ .‬ﺗﺗوﻓر ﻛﺛﯾر ﻣن ﺑراﻣﺞ اﻟﺣﺎﺳب اﻵﻟﻲ اﻟﺟﺎھزة واﻟﺧﺎﺻ ﺔ ﺑﺎﻻﻧﺣ دار ﻣﺛ ل ﺑرﻧ ﺎﻣﺞ ‪SPSS‬‬ ‫و ‪ Statistica‬و ‪ Minitab‬ﻟﻠﺣﺻول ﻋﻠﻰ أﺷﻛﺎل اﻻﻧﺗﺷﺎر‪ .‬ﯾﻔﯾد ﺷﻛل اﻻﻧﺗﺷﺎر ﻓﯾﻣﺎ ﯾﻠﻲ ‪:‬‬ ‫) أ ( ﯾوﺿﺢ ﻋﻣوﻣﺎ ً ﻓﯾﻣﺎ إذا ﻛﺎﻧت ھﻧﺎك ﻋﻼﻗﺔ ظﺎھرة ﺑﯾن اﻟﻣﺗﻐﯾرﯾن أم ﻻ ‪.‬‬ ‫)ب( ﻋﻧد وﺟود ﻋﻼﻗﺔ ﯾوﺿﺢ ﺷﻛل اﻻﻧﺗﺷﺎر ﻓﯾﻣﺎ إذا ﻛﺎﻧت اﻟﻌﻼﻗﺔ ﺧطﯾﺔ أم ﻻ ‪.‬‬

‫‪١٦٤‬‬


‫)ج ( إذا ﻛﺎﻧ ت اﻟﻌﻼﻗ ﺔ ﺧطﯾ ﺔ ﻓ ﺈن ﺷ ﻛل اﻻﻧﺗﺷ ﺎر ﯾوﺿ ﺢ ﻓﯾﻣ ﺎ إذا ﻛﺎﻧ ت ﺳ ﺎﻟﺑﺔ )ﻋﻛﺳ ﯾﺔ( أو ﻣوﺟﺑ ﺔ‬ ‫)طردﯾﮫ(‪.‬‬

‫ﻣﺛﺎل )‪(١-٤‬‬ ‫ﻓﻲ إﺣدى اﻟﺗﺟﺎرب وزن ﻗرون ﻋدد ﻣ ن اﻟﻐ زﻻن اﻟﻣﺧﺗﻠﻔ ﺔ اﻷﻋﻣ ﺎر وﻛﺎﻧت اﻟﻧﺗ ﺎﺋﺞ ﻛﻣ ﺎ ھ ﻲ ﻣﻌط ﺎة ﻓ ﻲ‬ ‫اﻟﺟدول اﻟﺗﺎﻟﻰ‪ .‬اﻟﻣطﻠوب رﺳم ﺷﻛل اﻻﻧﺗﺷﺎر وﺗﺣدﯾد ﺷﻛل اﻟﻌﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن ‪.‬‬ ‫‪70‬‬

‫‪69‬‬

‫‪55‬‬

‫‪53‬‬

‫‪46‬‬

‫‪43‬‬

‫‪42‬‬

‫‪34‬‬

‫‪30‬‬

‫‪22‬‬

‫‪20‬‬

‫اﻟﻌﻤﺮ ‪x‬‬

‫‪0.49‬‬

‫‪0.48‬‬

‫‪0.40‬‬

‫‪0.35‬‬

‫‪0.30‬‬

‫‪0.25‬‬

‫‪0.26‬‬

‫‪0.20‬‬

‫‪0.15‬‬

‫‪0.10‬‬

‫‪0.08‬‬

‫اﻟﻮزن ‪y‬‬

‫اﻟﺣــل‪:‬‬ ‫ﯾﺗﺿﺢ ﻣن ﺷﻛل )‪ (١-٤‬أن اﻟ ﻧﻘط ﻋﻣوﻣ ﺎ ‪ ،‬ﻟ ﯾس ﺑﺎﻟﺿ ﺑط ‪ ،‬ﺗﻘ ﻊ ﻋﻠ ﻰ ﺧ ط ﻣﺳ ﺗﻘﯾم‪ .‬ھ ذا ﯾﺟﻌﻠﻧ ﺎ‬ ‫ﻧﻘﺗرح أن اﻟﻌﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن ﯾﻣﻛن وﺻﻔﮭﺎ ) ﻛﺗﻘرﯾب أوﻟﻲ( ﺑﻣﻌﺎدﻟﺔ ﺧط ﻣﺳﺗﻘﯾم ‪.‬‬

‫ﺷﻛل )‪(١- ٤‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫;}‪x={20,22,30,34,42,43,46,53,55,69,70‬‬ ‫;}‪y={0.08,0.10,0.15,0.20,0.26,0.25,0.30,0.35,0.40,0.48,0.49‬‬ ‫]}‪t1=Transpose[{x,y‬‬

‫‪١٦٥‬‬


‫{‪{{20,0.08},{22,0.1},{30,0.15},{34,0.2},{42,0.26},{43,0.25},‬‬ ‫}}‪46,0.3},{53,0.35},{55,0.4},{69,0.48},{70,0.49‬‬ ‫}}‪c=PlotRange{{0,70},{0,.5‬‬ ‫}}‪PlotRange{{0,70},{0,0.5‬‬ ‫}]‪c2=Prolog{PointSize[0.03‬‬ ‫}]‪Prolog{PointSize[0.03‬‬ ‫]‪l=ListPlot[t1‬‬ ‫‪0.5‬‬

‫‪0.4‬‬

‫‪0.3‬‬

‫‪0.2‬‬

‫‪70‬‬

‫‪50‬‬

‫‪60‬‬

‫‪30‬‬

‫‪40‬‬

‫‪Graphics‬‬ ‫]‪w2=ListPlot[t1,c,c2‬‬ ‫‪0.5‬‬ ‫‪0.4‬‬ ‫‪0.3‬‬ ‫‪0.2‬‬ ‫‪0.1‬‬

‫‪70‬‬

‫‪60‬‬

‫‪50‬‬

‫‪40‬‬

‫‪30‬‬

‫‪20‬‬

‫‪10‬‬

‫‪Graphics‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫)اﻟﻮزن( ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ y .‬اﻟﻤﺴﻤﻰ )اﻟﻌﻤﺮ( ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪١٦٦‬‬


‫ﺷﻛل اﻻﻧﺗﺷﺎر ﺑدون ﺧﯾﺎرات ﻣن اﻻﻣر‬ ‫]‪l=ListPlot[t1‬‬

‫وﺑﺈﺳﺗﺧدام اﻻﻣر ‪ w2‬ﻧﺣﺻل ﻋﻠﻰ ﺷﻛل اﻻﻧﺗﺷﺎر ﺣﯾث اﻟﺧﯾﺎر ‪ c‬ﯾﺣدد اﻟﻣدى ﻟﻘﯾم اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل‬ ‫وھو ﻣن ‪ 0.0‬إﻟﻰ ‪ 70‬و اﻟﻣدى ﻟﻘﯾم اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﻣن ‪ 0.0‬إﻟﻰ ‪ . 0.5‬واﻟﺧﯾﺎر ‪ c2‬واﻟذى ﯾﺣدد‬ ‫ﺣﺟم اﻟﻧﻘﺎط ﻓﻰ ﺷﻛل اﻻﻧﺗﺷﺎر ‪.‬‬

‫ﻣﺛﺎل )‪(٢-٤‬‬ ‫اﻟﺑﯾﺎﻧ ﺎت اﻟﺗﺎﻟﯾ ﺔ ﺗﻣﺛ ل ﻣﺗوﺳ ط ﺿ رﺑﺎت اﻟﺧﺻ م ‪ x‬وﻧﺳ ﺑﺔ اﻟﻔ وز ﻟﻔرﯾ ق ﻣ ﺎ وذﻟ ك ﻓ ﻰ ﻟﻌﺑ ﺔ ﻛ رة اﻟﺳ ﻠﺔ‬ ‫واﻟﻣطﻠوب رﺳم اﻻﻧﺗﺷﺎر وﺗﺣدﯾد ﺷﻛل اﻻﻧﺗﺷﺎر‪.‬‬ ‫‪X‬‬ ‫‪0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.274,0.264,0‬‬ ‫‪.280,0.266,0.268,0.286,‬‬ ‫‪Y‬‬ ‫‪0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.512,0.405,0‬‬ ‫‪.450,0.480,0.456,0.506.‬‬

‫اﻟﺣل ‪:‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬

‫‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬

‫`‪Statistics`LinearRegression‬‬

‫وذﻟك ﻣن ﺧﻼل اﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬ ‫`‪<<Statistics`LinearRegression‬‬ ‫ﯾﺗم ادﺧﺎل اﻟﺑﯾﺎﻧﺎت اﻟﺗﻰ ﺗﺧص اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل ﻓﻰ ﻗﺎﺋﻣﺔ ﺗﺳﻣﻰ‬ ‫‪ oppbavg‬ﻛﻣﺎ ﯾﺗم ادﺧﺎل اﻟﺑﯾﺎﻧﺎت اﻟﺗﻰ ﺗﺧص اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﻓﻰ ﻗﺎﺋﻣﺔ ﺗﺳﻣﻰ‬ ‫‪ winpct‬وﺷﻛل اﻻﻧﺗﺷﺎر ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪. dots‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪:‬‬ ‫`‪<<Statistics`LinearRegression‬‬ ‫‪oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2‬‬ ‫;}‪74,0.264,0.280,0.266,0.268,0.286‬‬ ‫‪winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51‬‬ ‫;}‪2,0.405,0.450,0.480,0.456,0.506‬‬ ‫]‪dpoints=Table[{oppbavg[[i]],winpct[[i]]},{i,1,Length[winpct‬‬ ‫]}‬ ‫‪{{0.24,0.625},{0.254,0.512},{0.249,0.488},{0.245,0.524},{0.2‬‬ ‫‪5,0.588},{0.252,0.475},{0.254,0.513},{0.27,0.463},{0.274,0.5‬‬ ‫‪١٦٧‬‬


‫‪12},{0.264,0.405},{0.28,0.45},{0.266,0.48},{0.268,0.456},{0.‬‬ ‫}}‪286,0.506‬‬ ‫]‪Clear[dots‬‬ ‫]}]‪dots=ListPlot[dpoints,Prolog->{PointSize[0.02‬‬ ‫‪0.6‬‬

‫‪0.55‬‬

‫‪0.5‬‬ ‫‪0.45‬‬

‫‪0.27‬‬

‫‪0.28‬‬

‫‪0.26‬‬

‫‪0.25‬‬

‫‪Graphics‬‬

‫)‪ (٤-٤‬ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻲ اﻟﺑﺳﯾط‬ ‫ﻓ ﻲ ﺣﺎﻟ ﺔ اﻻﻧﺣ دار اﻟﺧط ﻲ اﻟﺑﺳ ﯾط ﺣﯾ ث ﯾوﺟ د ﻣﺗﻐﯾ ر ﻣﺳ ﺗﻘل واﺣ د ‪ x‬وﻣﺗﻐﯾ ر ﺗ ﺎﺑﻊ ‪ Y‬ﻓ ﺈن‬ ‫اﻟﺑﯾﺎﻧ ﺎت ﺗﻣﺛ ل ﺑ ﺄزواج اﻟﻣﺷ ﺎھدات }‪ . {(x i , yi ); i  1,2,..., n‬ﺳ ﻧﻌرف ﻛ ل ﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ‬ ‫‪ Yi  Y | x i‬ﺑﻧﻣ وذج إﺣﺻ ﺎﺋﻲ ‪ Statistical model‬وذﻟ ك ﺗﺣ ت ﻓ رض أن ﻛ ل اﻟﻣﺗوﺳ طﺎت ‪ Y | x‬‬ ‫ﺗﻘﻊ ﻋﻠﻰ ﺧط ﻣﺳﺗﻘﯾم ﻛﻣﺎ ھو ﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل )‪ .(٢-٤‬وﻋﻠ ﻰ ذﻟ ك ﻓ ﺈن ﻛ ل ﻣﺗﻐﯾ ر ‪ Yi‬ﯾﻣﻛ ن وﺻ ﻔﮫ‬ ‫ﺑﻧﻣوذج اﻧﺣدار ﺑﺳﯾط ﻛﺎﻟﺗﺎﻟﻲ‪:‬‬ ‫‪i‬‬

‫)‪(١-٤‬‬

‫‪Yi   Y|xi   i   0  1x i   i ,‬‬

‫ﺣﯾث اﻟﻣﺗﻐﯾر اﻟﻌﺷواﺋﻲ ‪ ،  i‬ﺧطﺄ اﻟﻧﻣوذج ‪ ،‬ﻻﺑد أن ﯾﻛون ﻟﮫ ﻣﺗوﺳط ﯾﺳﺎوي ﺻﻔر‪.‬‬

‫ﺷﻛل )‪(٢- ٤‬‬

‫‪١٦٨‬‬


‫ﺗﺷ ﯾر اﻟﻣﻌﻠﻣ ﺔ ‪ 1‬ﻓ ﻲ ﻧﻣ وذج اﻻﻧﺣ دار )‪) (١-٤‬واﻟﺗ ﻲ ھ ﻲ ﻣﯾ ل ﺧ ط اﻻﻧﺣ دار( إﻟ ﻰ اﻟﺗﻐﯾ ر ﻓ ﻲ‬ ‫ﻣﺗوﺳط اﻟﺗوزﯾﻊ اﻻﺣﺗﻣ ﺎﻟﻲ ﻟﻠﻣﺗﻐﯾ ر اﻟﺗﺎﺑﻊ ‪ Y‬ﻟﻛ ل وﺣ دة زﯾ ﺎدة ﻓ ﻲ ‪ .x‬أﻣ ﺎ اﻟﻣﻌﻠﻣ ﺔ ‪ 0‬ﻓﺗﻣﺛ ل اﻟﺗﻘ ﺎطﻊ‬ ‫اﻟﺻﺎدي ﻟﺧط اﻻﻧﺣدار‪ .‬وإذا اﺣﺗوى ﻣدى اﻟﻧﻣوذج ﻋﻠﻰ اﻟﻘﯾﻣﺔ ‪ x  0‬ﻓﺎن ‪ 0‬ﺗﻌطﻲ ﻣﺗوﺳ ط اﻟﺗوزﯾ ﻊ‬ ‫اﻻﺣﺗﻣﺎﻟﻲ ﻟﻣﺗﻐﯾر ‪ Y‬ﻋﻧدﻣﺎ ‪ . x  0‬وﻟﯾس ﻟﻠﻣﻌﻠﻣ ﺔ ‪ 0‬أي ﺗﻔﺳ ﯾر ﺧ ﺎص ﺑﮭ ﺎ ﻛﺣ د ﻣﻧﻔﺻ ل ﻓ ﻲ ﻧﻣ وذج‬ ‫اﻻﻧﺣدار إذا ﻟم ﯾﺗﺿﻣن ﻣﺟﺎﻟﮫ اﻟﻘﯾﻣﺔ ‪. x  0‬‬ ‫ﯾﻘﺎل ﻋن اﻟﻧﻣوذج )‪ (١-٤‬اﻧﮫ ﺑﺳﯾط وﺧطﻲ ﻓﻲ اﻟﻣﻌﺎﻟم وﺧطﻲ ﻓﻲ اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل‪ .‬ﻓﮭ و ﺑﺳ ﯾط‬ ‫ﻷﻧ ﮫ ﯾﺳ ﺗﺧدم ﻣﺗﻐﯾ را ﻣﺳ ﺗﻘﻼ واﺣ دا ﻓﻘ ط‪ ،‬وﺧط ﻲ ﻓ ﻲ اﻟﻣﻌ ﺎﻟم ﻷﻧ ﮫ ﻻ ﺗظﮭ ر أي ﻣﻌﻠﻣ ﮫ ﻛ ﺄس أو‬ ‫ﻣﺿ روﺑﺔ ﺑﻣﻌﻠﻣ ﮫ أﺧ رى‪ ،‬وﺧط ﻲ ﻓ ﻲ اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل ﻻن ھ ذا اﻟﻣﺗﻐﯾ ر ﻻ ﯾظﮭ ر إﻻ ﻣرﻓوﻋ ﺎ ﻟ ﻸس‬ ‫اﻟواﺣد‪ .‬أﯾﺿﺎ ﯾﻌرف اﻟﻧﻣوذج )‪ (١-٤‬ﺑﺎﻟﻧﻣوذج ﻣن اﻟرﺗﺑﺔ اﻷوﻟ ﻰ واﻟ ذي ﯾﺧﺗﻠف ﻋ ن اﻟﻧﻣ وذج اﻟﺑﺳ ﯾط‬ ‫اﻟﺗﺎﻟﻲ‪:‬‬ ‫‪Yi   0  1x 2   i‬‬

‫واﻟ ذي ﯾﻛ ون ﺧط ﻲ ﻓ ﻲ اﻟﻣﻌ ﺎﻟم وﻏﯾ ر ﺧط ﻲ ﻓ ﻲ اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل ﻻن ھ ذا اﻟﻣﺗﻐﯾ ر ﯾظﮭ ر ﻣرﻓوﻋ ﺎ‬ ‫ﻟﻸس ‪ 2‬وﯾﻣﺛل ﻧﻣوذج ﺧطﻲ ﻓﻲ اﻟﻣﻌﺎﻟم وﻣن اﻟرﺗﺑﺔ اﻟﺛﺎﻧﯾﺔ ﻓﻲ ‪.x‬‬ ‫ﻛل ﻣﺷﺎھدة ) ‪ (x i , yi‬ﻓﻲ ﻋﯾﻧﺔ ﻋﺷواﺋﯾﺔ ﻣن اﻟﺣﺟم ‪ n‬ﺗﺣﻘق اﻟﻌﻼﻗﺔ ‪:‬‬ ‫‪yi  0  1x i  e*i‬‬

‫ﺣﯾث ‪ e *i‬ﻗﯾﻣﺔ ﻣﻔﺗرﺿﺔ ﻟﻠﻣﺗﻐﯾر ‪  i‬ﻋﻧ دﻣﺎ ‪ Yi‬ﺗﺄﺧ ذ اﻟﻘﯾﻣ ﺔ ‪ . yi‬اﻟﻣﻌﺎدﻟ ﺔ اﻟﺳ ﺎﺑﻘﺔ ﯾﻧظ ر إﻟﯾﮭ ﺎ ﻛﻧﻣ وذج‬ ‫ﻟﻣﺷﺎھده ﻣﻔرده ‪ . yi‬ﺑﻧﻔس اﻟﺷﻛل ‪ ،‬ﺑﺎﺳﺗﺧدام ﻣﻌﺎدﻟﺔ ﺧط اﻻﻧﺣدار اﻟﻣﻘدرة ﻓﺈن ‪:‬‬ ‫‪y i  b 0  b1 x i  e i ,‬‬

‫ﺣﯾ ث ‪ e i  y i  yˆ i‬ﺗﺳ ﻣﻰ اﻟﺑ ﺎﻗﻲ ‪ residual‬واﻟ ذي ﯾﺻ ف ﺧط ﺄ ﻓ ﻲ ﺗوﻓﯾ ق اﻟﻧﻣ وذج ﻋﻧ د ﻧﻘط ﺔ‬ ‫اﻟﻣﺷﺎھدة رﻗم ‪ . i‬اﻟﻔرق ﺑﯾن ‪ e i‬و ‪ e*i‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪.(٣–٤‬و ﯾوﺿﺢ ﺷ ﻛل )‪ (٣ -٤‬اﻟﺧ ط اﻟﻣﻘ در‬ ‫ﻣ ن ﻓﺋ ﺔ اﻟﺑﯾﺎﻧ ﺎت واﻟﻣﺳ ﻣﻰ ‪ yˆ  b 0  b1 x‬وﺧ ط اﻻﻧﺣ دار اﻟﺣﻘﯾﻘ ﻲ ‪ .  Y|x   0  1x‬اﻵن ﺑ ﺎﻟطﺑﻊ‬ ‫‪  0 ,1‬ﻣﻌﻠﻣﺗﯾن ﻏﯾر ﻣﻌﻠوﻣﺗﯾن‪ .‬ﯾﻌﺗﺑر اﻟﺧط اﻟﻣﻘدر ﺗﻘدﯾر ﻟﻠﺧط ‪ .  Y|x‬وﻣﻣﺎ ﯾﺟ در اﻹﺷ ﺎرة إﻟﯾ ﮫ أن ‪e i‬‬ ‫ﯾﻣﻛن ﻣﻼﺣظﺗﮭﺎ‪ ،‬أﻣﺎ ‪ e*i‬ﻓﻼ ﯾﻣﻛن ﻣﻼﺣظﺗﮭﺎ ﻷن اﻟﺧط ‪  Y|x‬ﻣﻔﺗرض وﻏﯾر ﻣﻌروف‪.‬‬

‫ﺷﻛل )‪(٣- ٤‬‬

‫‪١٦٩‬‬


‫)‪ (٥-٤‬ﻓروض ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻲ اﻟﺑﺳﯾط‬ ‫ﻟﺗﻘدﯾر ﻣﻌﺎﻟم ﻧﻣوذج اﻻﻧﺣدار )‪ (١– ٤‬ﺗوﺿﻊ اﻟﻔروض اﻟﺗﺎﻟﯾﺔ ﻟﺣ د اﻟﺧط ﺄ ‪ i‬واﻟﻣﺳ ﻣﺎة ﻓ روض‬ ‫ﺟﺎوس ـ ﻣﺎرﻛوف ‪.Gauss-Markov‬‬ ‫‪, E(i )  0‬‬

‫‪E(i j )  0 , E ( i2 )   2‬‬ ‫ﺣﯾث ‪ i  j‬ﻟﻛل ‪ i, j  1,..., n‬أي أن ‪  j ,  i‬ﻏﯾر ﻣرﺗﺑطﺗﯾن‪.‬‬ ‫وﻋﻠﻰ ذﻟك‪:‬‬ ‫‪E (Yi )   0  1x i , Var ( Yi )   2 .‬‬

‫ھﻧﺎك ﻓروض أﺧرى ﻧﺣﺗﺎج ﻟﮭﺎ ﻋﻧد إﺟ راء ﻓﺗ رات ﺛﻘ ﺔ واﺧﺗﺑ ﺎرات ﻓ روض ﺗﺧ ص اﻟﻣﻌﻠﻣﺗ ﯾن‬ ‫‪ 0 ,1‬وھﻲ أن ‪  i‬ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ﺑﻣﺗوﺳط ﺻﻔر وﺗﺑﺎﯾن ‪ ، 2‬أي أن‪:‬‬ ‫‪ i ~ N ( 0,  2 ) .‬‬

‫ﺗوزﯾﻊ ‪  i‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪. ( ٤– ٤‬‬

‫ﺷﻛل )‪( ٤– ٤‬‬

‫)‪ (٦-٤‬طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى‬

‫‪The Method of Least Squares‬‬

‫ﺑ ﺎﻟرﻏم ﻣ ن وﺟ ود اﻟﻌدﯾ د ﻣ ن اﻟط رق ﻟﻠﺣﺻ ول ﻋﻠ ﻰ ﺗﻘ دﯾرات ﻟﻠﻣﻌﻠﻣﺗ ﯾن ‪ 0 , 1‬إﻻ أن أﻓﺿ ل‬ ‫ھذه اﻟطرق ھﻲ طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى‪.‬‬ ‫ﺗﺗطﻠب طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻ ﻐرى اﻟﺣﺻ ول ﻋﻠ ﻰ اﻟﺗﻘ دﯾرﯾن ‪ b 0 , b1‬وذﻟ ك ﻟﻠﻣﻌﻠﻣﺗ ﯾن ‪ 0 ,1‬ﻋﻠ ﻰ‬ ‫اﻟﺗ واﻟﻲ اﻟﻠ ذﯾن ﯾﺟﻌ ﻼن ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت اﻷﺧط ﺎء )اﻟﺑ واﻗﻲ( ‪ SSE‬اﻗ ل ﻣ ﺎ ﯾﻣﻛ ن‪ ،‬أي اﻟﻠ ذﯾن ﯾﺣﻘﻘ ﺎن‬ ‫اﻟﻧﮭﺎﯾﺔ اﻟﺻﻐرى ﻟﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻲ‪ ،‬ﺣﯾث ﯾﻌرف ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻲ ﻛﺎﻵﺗﻲ‪:‬‬ ‫‪2‬‬

‫‪n‬‬

‫‪2‬‬

‫‪n‬‬

‫‪n‬‬

‫‪i 1‬‬

‫‪i 1‬‬

‫‪SSE   e i2   y i  yˆ i    y i  b 0  b1x i  .‬‬ ‫‪i 1‬‬

‫ﯾﻣﻛن ﺣﺳﺎب ‪ b1‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ واﻟﻣﻧﺎﺳﺑﺔ ﻻﺳﺗﺧدام اﻵﻟﺔ اﻟﺣﺎﺳﺑﺔ ‪:‬‬

‫‪١٧٠‬‬


‫‪SXY‬‬ ‫‪SXX‬‬

‫‪b1 ‬‬

‫ﺣﯾث ‪:‬‬ ‫‪2‬‬

‫‪  xi ‬‬

‫‪SXX   x i2 ‬‬

‫‪,‬‬ ‫‪n‬‬ ‫‪ x i  yi‬‬ ‫‪SXY   x i yi ‬‬ ‫‪.‬‬ ‫‪n‬‬ ‫ﻛﻣﺎ ﯾﻣﻛن ﺣﺳﺎب ‪ b 0‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪b 0  y  b1 x .‬‬

‫ﺣﯾث ‪ x , y‬ﯾرﻣزان ﻟﻠوﺳط اﻟﺣﺳﺎﺑﻲ ﻟﻠﻌﯾﻧﺔ ﻟﻠﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل ‪ x‬واﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ‪ Y‬ﻋﻠﻰ اﻟﺗواﻟﻲ‪.‬‬

‫ﻣﺛﺎل )‪(٣-٤‬‬ ‫أﺟرﯾت ﺗﺟرﺑﺔ ﻟدراﺳﺔ اﻟﻌﻼﻗﺔ ﺑﯾن اﻟﺗﺳ ﻣﯾد وﻣﺣﺻ ول اﻟ ذرة‪ .‬اﻟﺑﯾﺎﻧ ﺎت اﻟﺗ ﻲ ﺗ م اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ‬ ‫ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪:‬‬ ‫‪0.3‬‬ ‫‪0.6‬‬ ‫‪0.9‬‬ ‫‪1.2‬‬ ‫‪1.5‬‬ ‫‪1.8‬‬ ‫‪2.1‬‬ ‫‪2.4‬‬ ‫‪ x‬اﻟﺳﻣﺎد‬ ‫‪10‬‬ ‫‪15‬‬ ‫‪30‬‬ ‫‪35‬‬ ‫‪25‬‬ ‫‪30‬‬ ‫‪50‬‬ ‫‪45‬‬ ‫‪ y‬اﻟﻣﺣﺻول‬ ‫أوﺟد ﻣﻌﺎدﻟﺔ ﺧط اﻻﻧﺣدار اﻟﻣﻘدرة‬

‫اﻟﺣــل‪:‬‬ ‫ﻧﻔﺗرض اﻟﻧﻣوذج اﻟﺧطﻰ اﻟﺑﺳﯾط ‪:‬‬ ‫ﺑﻣﺎ أن ‪ 0 , 1‬ﻣﺟﮭوﻟﺗﺎن ﻓﺈﻧﻧﺎ ﻧﻘدرھﻣﺎ ﻣن ﻣﺷﺎھدات اﻟﻌﯾﻧﺔ ﺣﯾث ‪:‬‬ ‫‪ x i2  18.36‬‬ ‫‪ yi  240.‬‬

‫‪ x i  10.8‬‬ ‫‪,‬‬

‫‪x  1.35‬‬

‫‪n 8‬‬

‫‪y  30,‬‬ ‫‪x i yi‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪y‬‬ ‫‪‬‬ ‫‪i‬‬ ‫‪i‬‬ ‫‪SXY‬‬ ‫‪n‬‬ ‫‪b1 ‬‬ ‫‪‬‬ ‫‪SXX‬‬ ‫‪(x i ) 2‬‬ ‫‪x i2 ‬‬ ‫‪n‬‬ ‫‪١٧١‬‬

‫‪,‬‬

‫‪ x i yi  385.5‬‬


(10.8)(240) 8  (10.8)2 18.36  8 61.5   16.27, 3.78 b 0  y  b1x  30  (16.27)(1.35)  8.036. : ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل‬ yˆ  8.036  16.27 x. 385.5 

‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ x={.3,.6,.9,1.2,1.5,1.8,2.1,2.4}; y={10,15,30,35,25,30,50,45}; a[x_]:=Length[x] k[x_]:=Apply[Plus,x]

wx_ :

kx ax

lx_, y_ : kx y 

kx  k y ax

n=a[x] 8 xb=w[x] 1.35 yb=w[y] 30 sxx=l[x,x] 3.78 sxy=l[x,y] 61.5

b1 

sxy sxx

16.2698 b0=yb-b1*xb 8.03571 t=Transpose[{x,y}] {{0.3,10},{0.6,15},{0.9,30},{1.2,35},{1.5,25},{1.8,30},{2.1, 50},{2.4,45}} c=PlotRange{{0,4},{0,60}} PlotRange{{0,4},{0,60}} ١٧٢


c2=Prolog{PointSize[0.03]} Prolog{PointSize[0.03]} w=ListPlot[t,c,c2] 60 50 40 30 20 10

0.5

1

1.5

2

2.5

3

3.5

4

Graphics w2=Plot[b0+b1*x,{x,0,4}] 70 60 50 40 30 20 10 1

2

3

4

Graphics Show[w,w2] 60 50 40 30 20 10

0.5

1

1.5

2

2.5

3

3.5

Graphics ١٧٣

4


‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪y .‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪ x‬ﻣن اﻻﻣر‬ ‫]‪xb=w[x‬‬ ‫و ‪ y‬ﻣن اﻻﻣر‬ ‫]‪yb=w[y‬‬ ‫اﻟﺗﻘدﯾر ‪ b1‬ﻣن اﻻﻣر‬

‫‪sxy‬‬ ‫‪sxx‬‬ ‫واﻟﺗﻘدﯾر ‪ b0‬ﻣن اﻻﻣر‬ ‫‪b1 ‬‬

‫‪b0=yb-b1*xb‬‬

‫وﺷﻛل اﻻﻧﺗﺷﺎر ﻣن اﻻﻣر‬ ‫]‪w=ListPlot[t,c,c2‬‬

‫وﺗﻣﺛﯾل ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار ﺑﯾﺎﻧﯾﺎ ﻣن اﻻﻣر‬ ‫]}‪w2=Plot[b0+b1*x,{x,0,4‬‬

‫وﺷﻛل اﻻﻧﺗﺷﺎر ﻣﻊ ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار ﺑﯾﺎﻧﯾﺎ ﻣن اﻻﻣر ]‪.Show[w,w2‬‬

‫ﻣﺛﺎل )‪(٤-٤‬‬ ‫ﻟﻠﻣﺛﺎل)‪ (٢-٤‬اﻟﻣطﻠوب إﯾﺟﺎد ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ‪.‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬ ‫`‪ Statistics`LinearRegression‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`LinearRegression‬‬ ‫‪oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2‬‬ ‫;}‪74,0.264,0.280,0.266,0.268,0.286‬‬ ‫‪winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51‬‬ ‫;}‪2,0.405,0.450,0.480,0.456,0.506‬‬ ‫]‪dpoints=Table[{oppbavg[[i]],winpct[[i]]},{i,1,Length[winpct‬‬ ‫]}‬ ‫‪{{0.24,0.625},{0.254,0.512},{0.249,0.488},{0.245,0.524},{0.2‬‬ ‫‪5,0.588},{0.252,0.475},{0.254,0.513},{0.27,0.463},{0.274,0.5‬‬ ‫‪12},{0.264,0.405},{0.28,0.45},{0.266,0.48},{0.268,0.456},{0.‬‬ ‫}}‪286,0.506‬‬ ‫]‪Clear[dots‬‬ ‫]}]‪dots=ListPlot[dpoints,Prolog->{PointSize[0.02‬‬

‫‪١٧٤‬‬


0.6

0.55

0.5 0.45

0.25

0.26

0.27

0.28

Graphics Regress[dpoints,{1,x},x,RegressionReport->BestFit] {BestFit1.07813 -2.2171 x} lsq[x_]=Fit[dpoints,{1,x},x] 1.07813 -2.2171 x plotline=Plot[lsq[x],{x,0.24,0.29}, DisplayFunction->Identity]; Show[dots,plotline,DisplayFunction->$DisplayFunction] 0.6 0.55 0.5 0.45

0.25

0.26

0.27

0.28

0.29

Graphics : ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ : ‫ﯾﺳﺗﺧدام اﻻﻣر‬ Regress[dpoints,{1,x},x,RegressionReport->BestFit] : ‫ﻟﻠﺣﺻول ﻋﻠﻰ ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة واﻟﻣﺧرج ھو‬ .{BestFit1.07813 -2.2171 x}

: ‫وﻧﺣﺻل ﻋﻠﻰ ﻧﻔس اﻟﻧﺗﯾﺟﺔ ﻣن اﻻﻣر‬ lsq[x_]=Fit[dpoints,{1,x},x]

: ‫وﺑﺎﻻﻣرﯾن اﻟﺗﺎﻟﯾﯾن‬ plotline=Plot[lsq[x],{x,0.24,0.29}, ١٧٥


‫;]‪DisplayFunction->Identity‬‬ ‫]‪Show[dots,plotline,DisplayFunction->$DisplayFunction‬‬

‫ﯾﺗم اﻟﺣﺻول ﻋﻠﻰ ﺷﻛل اﻻﻧﺗﺷﺎر ﻣﻊ ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺑﯾﺎﻧﯾﺎ‪.‬‬

‫)‪ (٧-٤‬ﺗﺣﻠﯾل اﻻﻧﺣدار‬

‫‪Analysis of Variance‬‬

‫ﻻﺧﺗﺑﺎر ﻣﻌﻧوﯾﺔ ﻣﻌﺎﻣل اﻻﻧﺣدار ‪ 1‬أي اﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫‪H 0 : 1  0‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪H1 : 1  0‬‬ ‫ﯾﺟب دراﺳﺔ ﻣﻛوﻧﺎت ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠﻰ وﯾﻣﻛن اﻟرﻣز اﻟﯾﮫ ﺑﺎﻟﻣﺗﺳﺎوﯾﺔ اﻟﺗﺎﻟﯾﺔ‪:‬‬ ‫‪SSTO = SSR+ SSE .‬‬ ‫ﺣﯾ ث ﻣﺟﻣ وع اﻟﻣرﺑﻌ ﺎت اﻟﻛﻠ ﻰ ‪ SSTO‬ﯾﺳ ﺎوى ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت اﻻﻧﺣ دار‪ SSR‬ﻣﺿ ﺎف إﻟ ﻰ‬ ‫ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﺣول اﻻﻧﺣدار‪: SSE‬‬ ‫ﺣﯾث ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠـﻲ ھو ‪:‬‬ ‫‪2‬‬ ‫‪2 yi‬‬ ‫‪SSTO  SYY  yi ‬‬ ‫‪,‬‬ ‫‪n‬‬ ‫وﻣﺟﻣوع ﻣرﺑﻌﺎت اﻻﻧﺣدار ھو ‪:‬‬ ‫‪2‬‬ ‫)‪(SXY‬‬ ‫‪SSR ‬‬ ‫‪,‬‬ ‫‪SXX‬‬ ‫وﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطـﺄ ھو ‪:‬‬ ‫‪SSE = SSTO – SSR .‬‬ ‫ﻣن اﻟﻧﺎﺣﯾﺔ اﻹﺣﺻﺎﺋﯾﺔ ﻧﺟد أن ﻟﻛل ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت درﺟ ﺎت ﺣرﯾ ﺔ ﺧﺎﺻ ﺔ ﺑ ﮫ ‪ ،‬ﻓ ﺈذا ﻛ ﺎن ﻟ دﯾﻧﺎ‬ ‫‪ n‬ﻣن اﻟﻣﺷﺎھدات ﻓﺈن ﺗوزﯾﻊ درﺟﺎت اﻟﺣرﯾﺔ ﯾﻛون ﻋﻠﻰ اﻟﺷﻛل اﻟﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪:‬‬ ‫درﺟﺎت اﻟﺣرﯾﺔ‬ ‫ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت‬ ‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻻﻧﺣدار‬ ‫‪1‬‬ ‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطـﺄ‬ ‫‪n-2‬‬ ‫ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠـﻲ‬ ‫‪n–1‬‬ ‫ﺑﻘﺳ ﻣﺔ ﻣﺟﻣ وع اﻟﻣرﺑﻌ ﺎت ﺑ درﺟﺎت اﻟﺣرﯾ ﺔ اﻟﺧﺎﺻ ﺔ ﺑ ﮫ ﻧﺣﺻ ل ﻋﻠ ﻰ ﻣ ﺎ ﯾﺳ ﻣﻲ ﻣﺗوﺳ ط اﻟﻣرﺑﻌ ﺎت‬ ‫‪ mean squares‬وﯾﻌﺗﺑ ر ﺗﺑ ﺎﯾن اﻟﻌﯾﻧ ﺔ ‪ s2‬ﻣﺛ ﺎل ﻟﻣﺗوﺳ ط اﻟﻣرﺑﻌ ﺎت‪ .‬وﻋﻠ ﻰ ذﻟ ك ﻣﺗوﺳ ط ﻣﺟﻣ وع‬ ‫ﻣرﺑﻌﺎت اﻻﻧﺣدار ﻧرﻣز ﻟﮫ ﺑﺎﻟرﻣز ‪ ، MSR‬ھو ‪:‬‬ ‫‪SSR‬‬ ‫‪.‬‬ ‫‪MSR ‬‬ ‫‪1‬‬ ‫وﻣﺗوﺳط ﻣرﺑﻌﺎت اﻟﺧطﺄ ‪ ،‬ﻧرﻣز ﻟﮫ ﺑﺎﻟرﻣز ‪ ، MSE‬ھو ‪:‬‬ ‫‪SSE‬‬ ‫‪.‬‬ ‫‪MSE ‬‬ ‫‪n2‬‬

‫‪١٧٦‬‬


‫ﻣ ن اﻟﻧﺗ ﺎﺋﺞ اﻟﺳ ﺎﺑﻘﺔ ﯾﻣﻛ ن اﺷ ﺗﻘﺎق ﺟ دول ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن ‪، ANALYSIS OF VARIANCE‬‬ ‫ﻟﻼﺧﺗﺻﺎر ﺟدول ‪ ، ANOVA‬واﻟﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫ﻣﺗوﺳط ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت‬

‫‪SSR‬‬ ‫‪1‬‬ ‫‪SSE‬‬ ‫‪MSE ‬‬ ‫‪n2‬‬ ‫‪MSR ‬‬

‫اﻻﺧﺗﻼف‬

‫ﻣﺟﻣوع‬ ‫اﻟﻣرﺑﻌﺎت‬ ‫‪SSR‬‬

‫درﺟﺎت‬ ‫اﻟﺣرﯾﺔ‬ ‫‪1‬‬

‫اﻻﻧﺣدار‬

‫‪SSE‬‬

‫‪n-2‬‬

‫اﻟﺧطـﺄ‬

‫‪SSTO‬‬

‫‪n–1‬‬

‫اﻟﻛﻠﻲ‬

‫اﻵن ‪:‬‬ ‫ﻻﺧﺗﺑﺎر ﻓ رض اﻟﻌ دم ‪ H 0 : 1  0‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H1 : 1  0‬وﺑﺎﻋﺗﺑ ﺎر أن ﻓ رض اﻟﻌ دم‬ ‫ﺻﺣﯾﺢ ﻓﺈن ‪:‬‬ ‫‪MSR‬‬ ‫‪f‬‬ ‫‪,‬‬ ‫‪MSE‬‬ ‫ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻲ ‪ F‬ﯾﺗﺑﻊ ﺗوزﯾﻊ ‪ F‬ﺑدرﺟﺎت ﺣرﯾ ﺔ ‪ . 1  1,  2  n  2‬ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪‬‬ ‫ﻣﻧطﻘ ﺔ اﻟ رﻓض )‪ F  f  (1, n  2‬ﺣﯾ ث )‪ f  (1, n  2‬ﺗﺳ ﺗﺧرج ﻣن ﺟ دول ﺗوزﯾ ﻊ ‪ F‬ﻓ ﻲ ﻣﻠﺣ ق‬ ‫)‪ (٤‬أو ﻣﻠﺣق )‪ (٥‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪. 1  1,  2  n  2‬ﻛﻣﺎ ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ﻗﯾم ‪ f‬ﺑﺎﺳ ﺗﺧدام‬ ‫ﺑرﻧﺎﻣﺞ ‪ Mathematica‬ﻛﻣﺎ اوﺿﺣﻧﺎ ﻓﻰ اﻟﻔﺻل اﻟﺧﺎص ﺑﺎﻟﺗوزﯾﻊ اﻟﻌﯾﻧﻰ ‪.‬إذا وﻗﻌ ت ‪ f‬ﻓ ﻲ ﻣﻧطﻘ ﺔ‬ ‫اﻟرﻓض ﻧرﻓض ‪.H0‬‬

‫ﻣﺛﺎل )‪(٥-٤‬‬ ‫ﻗﺎم ﺑﺎﺣث ﺑﺟﻣﻊ اﻟﺑﯾﺎﻧﺎت ﻋن ﻋدد اﻷﻗراص اﻟﻣﻣﻐﻧطﺔ اﻟﻣﺳ ﺗﺧدﻣﺔ ) ‪ ( x‬وزﻣ ن اﻟﺧدﻣ ﺔ ) ‪ ( y‬ﺑﺎﻟ دﻗﺎﺋق‬ ‫ﻟﻌﻣﻼء ﻋددھم ‪ 12‬واﻟﺑﯾﺎﻧﺎت ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫اﻟﻣطﻠوب ‪) :‬أ( إﯾﺟﺎد ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﺧطﻰ اﻟﻣﻘدرة ‪.‬‬ ‫)ب( اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم ‪ H 0 : 1  0‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H1 : 1  0‬ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ‬ ‫‪.   0.05‬‬ ‫‪5‬‬ ‫‪239‬‬

‫‪1‬‬ ‫‪66‬‬

‫‪3‬‬ ‫‪142‬‬

‫‪5‬‬ ‫‪238‬‬

‫‪8‬‬ ‫‪377‬‬

‫‪3‬‬ ‫‪148‬‬

‫‪6‬‬ ‫‪279‬‬

‫‪7‬‬ ‫‪327‬‬

‫‪5‬‬ ‫‪228‬‬

‫‪2‬‬ ‫‪100‬‬

‫‪6‬‬ ‫‪272‬‬

‫اﻟﺣــل‪:‬‬ ‫‪n  12  x i  55  x i y i  14060‬‬ ‫‪ yi  2613 ,‬‬ ‫‪x  4.58333 ,‬‬ ‫‪y  217.75,‬‬ ‫‪x i2  299 , yi2  661865 ،‬‬ ‫‪١٧٧‬‬

‫‪4‬‬ ‫‪197‬‬

‫‪x‬‬ ‫‪y‬‬


x i y i n (55)(2613)  14060   2083.75, 12 2 2 (x i ) SXX  x i  n SXY  x i y i 

2 55   299   46.91667,

.

12 SXY 2083.75 b1    44.41385 , SXX 46.91667 b 0  y  b1 x = 217.75 – (44.41385)(4.58333) = 14.187 : ‫وﻋﻠﻰ ذﻟك ﻓﺈن ﻣﻌﺎدﻟﺔ ﺧط اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ‬ ˆy  14.187  44.41385. . (٥-٤) ‫واﻟﻣوﺿﺣﺔ ﻓﻲ ﺷﻛل‬

(٥- ٤) ‫ﺷﻛل‬ : ‫اﻵن ﻧﺣﺳب‬ 2

(yi ) n 2 (2613)  92884.25, = 661865  12 (SXY) 2 (2083.75) 2 SSR   SXX 46.91667

SSTO  SYY  yi2 

 92547.362.

: ‫ ﻧﺣﺻل ﻋﻠﻰ‬SSTO ‫ ﻣن‬SSR ‫وﺑطرح‬ ١٧٨


‫‪SSE = SSTO – SSR‬‬ ‫‪= 92884.25 – 92547.362‬‬ ‫‪= 336.888,‬‬ ‫‪SSR 92547.362‬‬ ‫‪MSR ‬‬ ‫‪‬‬ ‫‪ 92547.362.‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪SSE 336.888‬‬ ‫‪MSE ‬‬ ‫‪‬‬ ‫‪ 33.6888.‬‬ ‫‪n2‬‬ ‫‪10‬‬ ‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬

‫ﻣﺗوﺳط ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت‬ ‫‪92547.362‬‬ ‫‪92547.362‬‬ ‫‪336.888‬‬ ‫‪33.6888‬‬ ‫‪92884.25‬‬

‫درﺟﺎت اﻟﺣرﯾﺔ‬ ‫‪1‬‬ ‫‪10‬‬ ‫‪11‬‬

‫ﻣﺻدر اﻻﺧﺗﻼف‬ ‫اﻻﻧﺣدار‬ ‫اﻟﺧطﺄ‬ ‫اﻟﻛﻠﻲ‬

‫‪MSR 92547.362‬‬ ‫‪‬‬ ‫‪MSE‬‬ ‫‪33.6888‬‬ ‫‪= 2747.126.‬‬ ‫‪ f 0.05 (1,10)  4.96‬واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ‪ F‬ﻓ ﻲ ﻣﻠﺣ ق )‪ (٤‬ﺑ درﺟﺎت ﺣرﯾ ﺔ‬ ‫‪ . 1  1,  2  10‬ﻣﻧطﻘﺔ اﻟرﻓض ‪ . F  4.96‬وﺑﻣﺎ ن ‪ f‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض ‪.H0‬‬ ‫‪f‬‬

‫)‪ (٨-٤‬ﺗﻘدﯾر‬

‫‪2‬‬

‫‪Estimating‬‬

‫‪2‬‬

‫اﻟﺗﻘ دﯾر ﻟﻠﻣﻌﻠﻣ ﺔ ‪ ‬ﯾﻌﺗﻣ د ﻋﻠ ﻰ اﻟﻧﻣ وذج ‪ ،‬أي ﯾﻛ ون داﻟ ﺔ ﻓ ﻲ ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت اﻷﺧط ﺎء ‪، SSE‬‬ ‫وﯾﺣﺳب ﻣن اﻟﻣﻌﺎدﻟﺔ اﻵﺗﯾﺔ ‪:‬‬ ‫‪SSE‬‬ ‫‪s2 ‬‬ ‫‪ MSE,‬‬ ‫‪n2‬‬ ‫‪2‬‬

‫أي أن ‪ s2‬ﯾﺳﺎوى ﻣﺗوﺳط ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺄ‪ .‬اﻟﺗﻘدﯾر ﺑﻧﻘطﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ ‬ھو ‪ s 2‬واﻟ ذي ﯾﺳ ﻣﻲ‬ ‫اﻟﺧطﺄ اﻟﻣﻌﯾﺎري ﻟﻼﻧﺣدار ‪ .standard error of regression‬ﻟﻠﻣﺛﺎل ) ‪ (٥-٤‬ﻓﺈن ‪:‬‬ ‫‪s  MSE  33.6888‬‬ ‫‪= 5.804.‬‬

‫)‪ (٩-٤‬ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﺑﺳﯾط ‪Coefficient of Simple Determination‬‬ ‫ﯾﻌرف ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﺑﺳﯾط ‪ r 2‬ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪SSR SSTO  SSE‬‬ ‫‪SSE‬‬ ‫‪r2 ‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪SSTO‬‬ ‫‪SSTO‬‬ ‫‪SSTO‬‬ ‫‪١٧٩‬‬


‫ﯾﺄﺧذ ‪ r 2‬اﻟواﺣد اﻟﺻﺣﯾﺢ ﻋﻧدﻣﺎ ﺗﻘﻊ اﻟﻘﯾم ‪ y1, y 2 ,..., y n‬ﻋﻠﻰ ﺧط اﻻﻧﺣدار اﻟﻣﻘدر ‪.‬‬ ‫ﻋﻧدﻣﺎ ‪ r 2  0‬ﻓﮭذا ﯾدل ﻋﻠﻰ ﻋدم وﺟود ﻋﻼﻗﺔ ﺧطﯾﮫ ﺑﯾن اﻟﻣﺗﻐﯾرﯾن‪.‬‬ ‫ﻣﻌﺎﻣل اﻟﺗﺣدﯾد داﺋﻣﺎ ﻣوﺟب وﺗﺗراوح ﻗﯾﻣﺗﮫ ﺑﯾن اﻟﺻﻔر واﻟواﺣد اﻟﺻﺣﯾﺢ أي أن ‪:‬‬ ‫‪0  r2  1‬‬

‫ﻣﺛﺎل )‪(٦-٤‬‬ ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل )‪ (٥- ٤‬ﻻ ﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪ H 0 : 1  0‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪H1 : 1  0‬‬ ‫ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪   0.05‬و ﺣﺳﺎب اﻟﺧطﺄ اﻟﻣﻌﯾﺎري ﻟﻼﻧﺣدار و ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﺑﺳﯾط وذﻟك‬ ‫ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=1‬‬ ‫‪1‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫}‪x1={4,6.,2,5,7,6,3,8,5,3,1,5‬‬ ‫}‪{4,6.,2,5,7,6,3,8,5,3,1,5‬‬ ‫}‪y1={197.,272,100,228,327,279,148,377,238,142,66,239‬‬ ‫}‪{197.,272,100,228,327,279,148,377,238,142,66,239‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪h[x_]:=Apply[Plus,x‬‬ ‫]‪k[x_]:=h[x]/l[x‬‬ ‫]‪c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x‬‬ ‫]‪xb=h[x1]/l[x1‬‬ ‫‪4.58333‬‬ ‫]‪yb=h[y1]/l[y1‬‬ ‫‪217.75‬‬ ‫]‪b1=c[x1,y1]/c[x1,x1‬‬ ‫‪44.4139‬‬ ‫‪b0=yb-b1*xb‬‬ ‫‪14.1865‬‬ ‫]}‪t1=Transpose[{x1,y1‬‬ ‫{‪{{4,197.},{6.,272},{2,100},{5,228},{7,327},{6,279},{3,148},‬‬ ‫}}‪8,377},{5,238},{3,142},{1,66},{5,239‬‬ ‫}}‪a=PlotRange{{0,9},{0,400‬‬ ‫}}‪PlotRange{{0,9},{0,400‬‬ ‫}]‪a1=Prolog{PointSize[.03‬‬ ‫}]‪Prolog{PointSize[0.03‬‬ ‫]‪g= ListPlot[t1,a,a1‬‬

‫‪١٨٠‬‬


400 350 300 250 200 150 100 50 2

4

6

8

Graphics d=Plot[b0+b1*x,{x,0,5}] 200 150 100 50

1

2

3

4

5

Graphics Show[g,d] 400 350 300 250 200 150 100 50 2

4

6

8

Graphics n=l[x1] ١٨١


12 ssto=c[y1,y1] 92884.3 ssr=c[x1,y1]^2/c[x1,x1] 92547.4 sse=ssto-ssr 336.881 dto=n-1 11 msr=ssr/1 92547.4 dse=n-2 10 mse=sse/(n-2) 33.6881 f1=msr/mse 2747.18 th=TableHeadings{{source,regression,residual,total},{anova }} TableHeadings{{source,regression,residual,total},{anova}} rt1=List["df","SS","MS","F"] {df,SS,MS,F} rt2=List[p,ssr,msr,f1] {1,92547.4,92547.4,2747.18} rt3=List[dse,sse,mse,"---"] {10,336.881,33.6881,---} rt4=List[dto,ssto,"---","---"] {11,92884.3,---,---} tf=TableForm[{rt1,rt2,rt3,rt4},th]

source regression residual total

anova df 1 10 11

SS 92547.4 336.881 92884.3

MS 92547.4 33.6881 

<<Statistics`ContinuousDistributions` f=Quantile[FRatioDistribution[1,10],1-] 4.9646 If[f1f,Print["reject H0"],Print["Accept H0"]] reject H0

s



mse

5.80415

r

ssr ssto

0.996373 ١٨٢

F 2747.18  


‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪:‬اﻟﻣدﺧﻼت‬ ‫ﻋدد اﻟﻣﺗﻐﯾرات ﻣن اﻻﻣر‬ ‫‪p=1‬‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ ‫‪=.05‬‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪y1 .‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x1‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ﺟدول ﺗﺣﻠﯾل اﻻﻧﺣدار ﻣن اﻻﻣر‬ ‫]‪tf=TableForm[{rt1,rt2,rt3,rt4},th‬‬

‫‪ f‬اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬ ‫‪f1=msr/mse‬‬

‫‪ f‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫]‪f=Quantile[FRatioDistribution[1,10],1-‬‬

‫واﻟﻘرار اﻟذى ﯾﺗﺧذ ﻣن اﻻﻣر‬ ‫]]"‪If[f1f,Print["reject H0"],Print["Accept H0‬‬

‫واﻟﻣﺧرج‬ ‫‪reject H0‬‬ ‫اى رﻓﺾ رﻓﺾ اﻟﻌﺪم ‪.‬اﻟﺨﻄﺎ اﻟﻤﻌﯿﺎرى ﻟﻼﻧﺤﺪار ﻧﺤﺼﻞ ﻋﻠﯿﮫ ﻣﻦ اﻻﻣﺮ‬

‫‪‬‬

‫‪mse‬‬

‫‪s‬‬

‫وﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﺑﺳﯾط ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬

‫‪ssr‬‬ ‫‪ssto‬‬

‫‪r‬‬

‫)‪ (١٠-٤‬اﺳﺗدﻻﻻت ﺗﺧص ﻣﻌﺎﻣﻼت اﻻﻧﺣدار‬ ‫‪Inferences concerning the regression coefficients‬‬ ‫ﺑﺟﺎﻧ ب ﺗﻘ دﯾر اﻟﻌﻼﻗ ﺔ اﻟﺧطﯾ ﺔ ﺑ ﯾن ‪ Y, x‬ﻷﻏ راض اﻟﺗﻧﺑ ؤ ﻓ ﺈن اﻟﻘ ﺎﺋم ﻋﻠ ﻰ اﻟﺗﺟرﺑ ﺔ ﯾﮭ ﺗم‬ ‫ﺑﺎﻟوﺻـول إﻟﻰ اﺳ ﺗدﻻﻻت ﺗﺧ ص اﻟﻣﯾ ل واﻟﺟ زء اﻟﻣﻘط وع‪ .‬إن إﺟ راء اﺧﺗﺑ ﺎرات ﻓ روض واﻟﺣﺻ ول‬ ‫ﻋﻠﻰ ﻓﺗرات ﺛﻘﺔ ﻟﻛل ﻣ ن ‪ 0 ، 1‬ﯾﺣﺗ ﺎج إﻟ ﻰ وﺿ ﻊ ﻓ روض إﺿ ﺎﻓﯾﺔ ﻋﻠ ﻰ ﻧﻣ وذج اﻻﻧﺣ دار )‪(١ –٤‬‬ ‫ﺣﯾث ﯾﻔﺗرض أن ﻛل ﻣن ‪ ،  i‬ﺣﯾث ‪ ، i=1 ,2... , n‬ﺗﺗﺑﻊ ﺗوزﯾﻌﺎ ً طﺑﯾﻌﯾﺎ ً‪.‬‬

‫)‪ (١-١٠-٤‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪1‬‬

‫‪1 Confidence interval for‬‬

‫‪ (1   )100%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ 1‬ﻋﻠﻰ اﻟﺷﻛل اﻟﺗﺎﻟﻲ ‪:‬‬

‫‪s2‬‬ ‫‪s2‬‬ ‫)‪b1  t  2 (n  2‬‬ ‫)‪ 1  b1  t  2 (n  2‬‬ ‫‪.‬‬ ‫‪SXX‬‬ ‫‪SXX‬‬

‫‪١٨٣‬‬


‫ﺣﯾث ‪ t  2  n  2 ‬ﺗﺳﺗﺧرج ﻣن ﺟدول ﺗوزﯾﻊ ‪ t‬ﻓﻲ اﻟﻣﻠﺣق )‪ (٢‬واﻟﺗﻲ ﺗوﺟد ﻋﻠ ﻰ اﻟﻣﺣ ور اﻷﻓﻘ ﻲ‬ ‫ﺗﺣت ﻣﻧﺣﻧﻰ ﺗوزﯾﻊ ‪ t‬ﺑدرﺟﺎت ﺣرﯾﺔ ) ‪ ( n - 2‬واﻟﺗﻲ اﻟﻣﺳﺎﺣﺔ ﻋﻠﻰ ﯾﻣﯾﻧﮭ ﺎ ﻗ درھﺎ ‪  2‬ﻛﻣ ﺎ ھ و‬ ‫ﻣوﺿﺢ ﻓﻲ اﻟﺷﻛل )‪. (٦-٤‬‬

‫‪‬‬ ‫‪2‬‬

‫‪2‬‬

‫‪t‬‬ ‫ﺷﻛل )‪(٦- ٤‬‬

‫ﻣﺛﺎل )‪(٧-٤‬‬

‫‪١٨٤‬‬


‫ﺗﻌﺗﺑر ﻛﻣﯾﺔ اﻟرطوﺑﺔ ﻓﻲ ﻣﻧﺗﺞ ﻣﺎ ﻟﮭﺎ ﺗﺄﺛﯾر ﻋﻠﻰ ﻛﺛﺎﻓ ﺔ اﻟﻣﻧ ﺗﺞ اﻟﻧﮭ ﺎﺋﻲ‪ ،‬ﺗ م ﻣراﻗﺑ ﺔ اﻟﻣﻧ ﺗﺞ وﻗﯾ ﺎس‬ ‫ﻛﺛﺎﻓﺗﮫ و اﻟﺑﯾﺎﻧﺎت اﻟﻣﺳﺟﻠﺔ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﻓﻲ ﺷﻛل ﺷﻔرة ‪.‬‬ ‫‪x2‬‬

‫‪xy‬‬ ‫‪14.1‬‬ ‫‪15‬‬ ‫‪20.8‬‬ ‫‪52.‬‬ ‫‪11.8‬‬ ‫‪42.3‬‬ ‫‪17.7‬‬ ‫‪36.4‬‬ ‫‪35.4‬‬ ‫‪33.6‬‬ ‫‪20.‬‬ ‫‪299.1‬‬

‫‪y‬‬

‫‪22.09‬‬ ‫‪25‬‬ ‫‪27.04‬‬ ‫‪27.04‬‬ ‫‪34.81‬‬ ‫‪22.09‬‬ ‫‪34.81‬‬ ‫‪27.04‬‬ ‫‪34.81‬‬ ‫‪31.36‬‬ ‫‪25.‬‬

‫‪3‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪10‬‬ ‫‪2‬‬ ‫‪9‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪4‬‬

‫‪311.09‬‬

‫‪57‬‬

‫‪x‬‬ ‫‪4.7‬‬ ‫‪5‬‬ ‫‪5.2‬‬ ‫‪5.2‬‬ ‫‪5.9‬‬ ‫‪4.7‬‬ ‫‪5.9‬‬ ‫‪5.2‬‬ ‫‪5.9‬‬ ‫‪5.6‬‬ ‫‪5.‬‬ ‫‪58.3‬‬

‫ﻗدر ﻣﻌﺎﻟم ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻲ اﻟﺑﺳﯾط وأوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﮫ ‪. 1‬‬

‫اﻟﺣــل‪:‬‬ ‫‪ x y‬‬ ‫‪n‬‬ ‫‪2‬‬

‫‪ xy ‬‬

‫‪ x ‬‬ ‫‪‬‬ ‫‪n‬‬

‫‪2‬‬

‫‪SXY‬‬ ‫=‬ ‫‪SXX‬‬

‫‪x‬‬

‫‪ 58.3 57 ‬‬ ‫‪11‬‬ ‫‪2‬‬

‫‪b1 ‬‬

‫‪299.1 ‬‬

‫‪58.3 ‬‬ ‫‪311.09 ‬‬

‫‪‬‬

‫‪11‬‬

‫‪3‬‬ ‫‪ 1.42857‬‬ ‫‪2.1‬‬ ‫‪b0  y  b1x  5.18182   1.42857  5.3‬‬ ‫‪=12.7532 .‬‬ ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪yˆ  12.7532  1.42857 x‬‬ ‫‪,‬‬

‫واﻟﻣﻣﺛﻠﺔ ﺑﯾﺎﻧﯾﺎ ً ًﻓﻲ ﺷﻛل )‪ (٧-٤‬ﻣﻊ ﺷﻛل اﻹﻧﺗﺷﺎر ‪.‬‬ ‫‪١٨٥‬‬


‫ﺷﻛل )‪(٧- ٤‬‬ ‫اﻟﻘﯾم اﻟﻼزﻣﺔ ﻟﺣﺳﺎب ‪ s 2‬ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪y  yˆ 2‬‬

‫‪yˆ -y‬‬

‫ˆ‪y‬‬

‫‪- 3.03896‬‬ ‫‪- 2.61039‬‬ ‫‪- 1.32468‬‬

‫‪9.23528‬‬ ‫‪6.81413‬‬ ‫‪1.75476‬‬ ‫‪21.8587‬‬ ‫‪5.40412‬‬ ‫‪8.76775‬‬ ‫‪1.75476‬‬ ‫‪2.80671‬‬ ‫‪2.80671‬‬ ‫‪1.55439‬‬ ‫‪2.59335‬‬

‫‪4.67532‬‬ ‫‪- 2.32468‬‬ ‫‪2.96104‬‬ ‫‪- 1.32468‬‬ ‫‪1.67532‬‬ ‫‪1.67532‬‬ ‫‪1.24675‬‬ ‫‪- 1.61039‬‬

‫‪65.3506‬‬

‫‪2.66454× 10-15‬‬

‫‪y‬‬

‫‪3‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪10‬‬ ‫‪2‬‬ ‫‪9‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪4‬‬

‫‪6.03896‬‬ ‫‪5.61039‬‬ ‫‪5.32468‬‬ ‫‪5.32468‬‬ ‫‪4.32468‬‬ ‫‪6.03896‬‬ ‫‪4.32468‬‬ ‫‪5.32468‬‬ ‫‪4.32468‬‬ ‫‪4.75325‬‬ ‫‪5.61039‬‬

‫‪57‬‬

‫‪57‬‬

‫اﻵن ‪:‬‬ ‫‪2‬‬

‫‪  yi  yˆ i ‬‬ ‫‪65.3506‬‬ ‫‪s ‬‬ ‫‪‬‬ ‫‪ 7.26118 .‬‬ ‫‪n2‬‬ ‫‪9‬‬ ‫وﺑﺎﺳ ﺗﺧدام ﺟ دول ﺗوزﯾ ﻊ ‪ t‬ﻓ ﻲ اﻟﻣﻠﺣ ق )‪ (٢‬ﻓ ﺈن ‪ . t .025 9   2.262‬إذا ً ‪ 95 %‬ﻓﺗ رة ﺛﻘ ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪1‬‬ ‫ﺗﺣﺳب ﻛﺎﻵﺗﻲ ‪:‬‬ ‫‪2‬‬

‫‪s2‬‬ ‫‪s2‬‬ ‫)‪b1  t  2 (n  2‬‬ ‫)‪ 1  b1  t  2 (n  2‬‬ ‫‪.‬‬ ‫‪SXX‬‬ ‫‪SXX‬‬ ‫أي أن ‪:‬‬

‫‪١٨٦‬‬


‫‪7.26118‬‬ ‫‪7.26118‬‬ ‫‪ 1  1.42857  2.262‬‬ ‫‪.‬‬ ‫‪2.1‬‬ ‫‪2.1‬‬ ‫وﻋﻠﻰ ذﻟك ‪:‬‬ ‫‪1.42857  2.262 1.85949   1  1.42857  2.262 1.85949  .‬‬ ‫واﻟﺗﻲ ﺗﺧﺗﺻر إﻟﻰ ‪:‬‬ ‫‪5.63503  1  2.77789 .‬‬ ‫‪1.42857  2.262‬‬

‫)‪(٢-١٠-٤‬اﺧﺗﺑﺎرات ﻓروض ﺗﺧص اﻟﻣﯾل‪Hypothesis Testing on the Slope‬‬ ‫ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬

‫*‬

‫‪ 0 : 1  1‬‬

‫ﺿد ﻓرض ﺑدﯾل ﻣﻧﺎﺳب ‪:‬‬ ‫*‬ ‫‪1‬‬

‫‪H1 : 1  ‬‬

‫أو‬ ‫*‬ ‫‪1‬‬

‫‪H1 : 1  ‬‬

‫أو‬ ‫‪H1 : 1  1* .‬‬

‫ﯾﻣﻛﻧﻧﺎ اﺳﺗﺧدام ﺗوزﯾﻊ ‪ t‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪ n  2‬ﻟﻠﺣﺻول ﻋﻠﻰ ﻣﻧطﻘ ﺔ رﻓ ض ‪ .‬ﻗرارﻧ ﺎ ﺳ وف ﯾﻌﺗﻣ د‬ ‫ﻋﻠﻰ اﻟﻘﯾﻣﺔ‪:‬‬ ‫‪.‬‬

‫*‪b1  1‬‬ ‫‪SXX‬‬

‫‪s2‬‬

‫‪t‬‬

‫ﺣﺎﻟﺔ ﺧﺎﺻﺔ ﻣن ﻓرض اﻟﻌدم *‪  0 :  1  1‬ھﻲ ‪ 0 :  1  0 :‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪1 :  1  0 .‬‬

‫ﻓ ﻲ اﻟﻣﺛ ﺎل )‪ (٧ – ٤‬اﺧﺗﺑ ر ﻓ رض اﻟﻌ دم أن‬ ‫ﺑﺎﺳ ﺗﺧدام ﻗﯾﻣ ﺔ ‪b1  1.42857‬‬ ‫‪ H 0 : 1  0‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪. H 0 : 1  0‬‬

‫اﻟﺣــل‪:‬‬ ‫‪,  0 : 1  0‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪,  1 : 1  0‬‬ ‫‪,   0 .05‬‬ ‫‪ t .025 9   2.262‬وﻣﻧطﻘﺔ اﻟرﻓض ‪ T  2 .262‬أو ‪T   2 . 262‬‬ ‫‪١٨٧‬‬


‫‪b1  0‬‬ ‫‪s2‬‬ ‫‪SXX‬‬

‫‪ 1.42857‬‬ ‫‪1.8594 .‬‬

‫‪‬‬

‫‪t‬‬

‫‪ 1.42857‬‬

‫‪‬‬

‫‪7.26118‬‬ ‫‪2.1‬‬ ‫وﺑﻣﺎ أن ﻗﯾﻣﺔ ‪ t‬اﻟﻣﺣﺳوﺑﺔ ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ﻧﻘﺑل ‪. H 0‬‬

‫‪  0 . 768259‬‬

‫اﻟﻔ رض اﻟﺳ ﺎﺑق ﯾ رﺗﺑط ﺑﻣﻌﻧوﯾ ﺔ اﻻﻧﺣ دار ﻓﻌﻧ د ﻗﺑ ول ﻓ رض اﻟﻌ دم ‪ H 0 :  1  0‬ﻓﮭ ذا ﯾﻌﻧ ﻲ ﻋ دم‬ ‫وﺟ ود ﻋﻼﻗ ﺔ ﺧطﯾ ﺔ ﺑ ﯾن ‪ . x , Y‬وﯾﺟ ب أن ﻧﻌﻠ م أن ھ ذا ﯾﻌﻧ ﻲ إﻣ ﺎ أن ‪ x‬ﻟﮭ ﺎ ﻗﯾﻣ ﺔ ﺻ ﻐﯾرة ﻓ ﻲ‬ ‫ﺗﻔﺳﯾر اﻻﺧﺗﻼف ﻓ ﻲ ‪ y‬وأن أﻓﺿ ل ﺗﻘ دﯾر ﻟ ـ ‪ y‬ﻋﻧ د أي ﻗﯾﻣ ﺔ ﻟ ـ ‪ x‬ھ و ‪ yˆ  y‬ﻛﻣ ﺎ ھ و ﻣوﺿ ﺢ‬ ‫ﻓﻲ ﺷﻛل )‪ a (٨-٤‬أو أن اﻟﻌﻼﻗﺔ اﻟﺣﻘﯾﻘﯾﺔ ﺑﯾن ‪ x , Y‬ﻟﯾﺳت ﺧطﯾ ﺔ ﻛﻣ ﺎ ھ و ﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل )‪– ٤‬‬ ‫‪ . b (٨‬أو ﻛﺑ دﯾل وﻋﻧ دﻣﺎ ﻧ رﻓض ﻓ رض اﻟﻌ دم ‪ ، H0 : 1  0‬ﻓ ﺈن ھ ذا ﯾﻌﻧ ﻲ أن ‪ x‬ﻟﮭ ﺎ ﻗﯾﻣ ﺔ ﻓ ﻲ‬ ‫ﺗﻔﺳ ﯾر اﻻﺧ ﺗﻼف ﻓ ﻲ ‪ . y‬إن رﻓ ض ‪ H 0 : 1  0‬ﻗ د ﯾﻌﻧ ﻲ أﻣ ﺎ أن ﻧﻣ وذج اﻟﺧ ط اﻟﻣﺳ ﺗﻘﯾم ھ و‬ ‫اﻷﻧﺳ ب ﻛﻣ ﺎ ھ و ﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل )‪ a (٩-٤‬أو أن ﻧﺗ ﺎﺋﺞ أﻓﺿ ل ﯾﻣﻛ ن اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ ﺑﺈﺿ ﺎﻓﺔ‬ ‫ﺣدود ﻣن رﺗﺑﺔ ﻋﻠﯾﺎ ﻣن ﻛﺛﯾرات اﻟﺣدود ﻓﻲ ‪ x‬ﻛﻣﺎ ھو ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪. b (٩ -٤‬‬

‫ﺷﻛل )‪(٨-٤‬‬

‫ﺷﻛل )‪(٩- ٤‬‬

‫‪١٨٨‬‬


‫‪Confidence interval for 0‬‬

‫‪0‬‬

‫)‪ (٣-١٠-٤‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ‬

‫‪ (1   )100%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ 0‬ﺗﺄﺧذ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪x2 ‬‬ ‫‪x2 ‬‬ ‫‪  0  b0  t  2 (n  2) s 2  ‬‬ ‫‪ .‬‬ ‫‪b 0  t  2 (n  2) s 2  ‬‬ ‫‪ n SXX ‬‬ ‫‪ n SXX ‬‬ ‫واﻵن ﻹﯾﺟ ﺎد ‪ 95 %‬ﻓﺗ رة ﺛﻘ ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ 0‬ﻓ ﻲ ﺧ ط اﻻﻧﺣ دار ‪  Y x  0  1x‬ﺑﺎﻻﻋﺗﻣ ﺎد ﻋﻠ ﻰ‬

‫اﻟﺑﯾﺎﻧﺎت اﻟﺧﺎﺻﺔ ﺑﺎﻟﻣﺛﺎل )‪ (٧ -٤‬ﻧﺗﺑﻊ اﻵﺗﻲ ‪:‬‬ ‫‪ x  5 .3‬و ‪ SXX  2 .1‬و ‪s 2  7.26118‬‬ ‫‪. b 0  12 .7532‬‬

‫وﻋﻠﻰ ذﻟك ﻓﻲ ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ 0‬ﺗﻌطﻰ ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪1‬‬ ‫‪x2‬‬ ‫‪1‬‬ ‫‪x2‬‬ ‫‪b 0  t  2 ( n  2)s 2 [ ‬‬ ‫‪]   0  b 0  t  2 (n  2) s 2 [ ‬‬ ‫‪] .‬‬ ‫‪n SXX‬‬ ‫‪n SXX‬‬

‫وﻋﻠﻰ ذﻟك ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬

‫‪.‬‬

‫‪2‬‬

‫‪ 1 5.3‬‬ ‫‪12.7532  2.262 7.26118  ‬‬ ‫‪ 11 2.1‬‬

‫‪ 1 5.32 ‬‬ ‫‪‬‬ ‫‪ 0  12.7532  2.262 7.26118  ‬‬ ‫‪ 11 2.1 ‬‬

‫أي أن ‪:‬‬ ‫‪12.7532  2.2629.88873   0  12.7532  2.2629.88873 .‬‬

‫واﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ ‪:‬‬ ‫)‪ (٤-١٠-٤‬اﺧﺗﺑﺎرات ﻓروض‬

‫‪ 9 .61663   0  35 .1231 .‬‬ ‫ﺗﺧص ‪0‬‬ ‫‪testing for‬‬

‫‪Hypothesis‬‬

‫‪0‬‬

‫ﻻﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم *‪  0 : 0  0‬ﺿ د أي ﻓ رض ﺑ دﯾل ﻣﻧﺎﺳ ب ﻓﺈﻧﻧ ﺎ ﻣ رة أﺧ ري ﺳ وف‬ ‫ﻧﺳﺗﺧدم ﺗوزﯾﻊ ‪ t‬ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪ n  2‬ﻟﻠﺣﺻ ول ﻋﻠ ﻰ ﻣﻧطﻘ ﺔ اﻟ رﻓض وﺑﺎﻟﺗ ﺎﻟﻲ ﻓ ﺈن ﻗرارﻧ ﺎ ﺳ وف‬ ‫ﯾﻌﺗﻣد ﻋﻠﻰ اﻟﻘﯾﻣﺔ ‪:‬‬ ‫*‬ ‫‪b00‬‬ ‫‪t‬‬ ‫‪.‬‬ ‫‪2 ‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪s2  ‬‬ ‫‪‬‬ ‫‪ n SXX ‬‬ ‫اﻟطرﯾﻘﺔ اﻟﻣﺗﺑﻌﺔ ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم ﻣوﺿﺣﺔ ﺑﺎﺳﺗﺧدام ﺑﯾﺎﻧﺎت اﻟﻣﺛ ﺎل )‪ (٧ – ٤‬ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧ وي‬ ‫‪   0.05‬ﺣﯾث ﻓرض اﻟﻌدم‪:‬‬ ‫‪ 0 : 0  0‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪1 : 0  0 .‬‬ ‫‪١٨٩‬‬


‫‪b0  0.0‬‬

‫‪t‬‬

‫‪1‬‬ ‫‪x2 ‬‬ ‫‪s2  ‬‬ ‫‪‬‬ ‫‪ n SXX ‬‬ ‫‪12.7532‬‬ ‫‪12.7532  1.28967016 .‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 1 5.32  9.88873‬‬ ‫‪ ‬‬ ‫‪‬‬ ‫‪11 2.1 ‬‬

‫‪ t .025 (9)  2.262‬وﻣﻧطﻘﺔ اﻟ رﻓض ‪ T  2.262‬أو ‪ . T  2.262‬وﺑﻣ ﺎ أن ﻗﯾﻣ ﺔ ‪ t‬اﻟﻣﺣﺳ وﺑﺔ‬ ‫ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ﻧﻘﺑل ‪. H 0‬‬

‫ﻣﺛﺎل )‪(٨-٤‬‬ ‫اﻟﻣطﻠ وب ﻋﻣ ل ﺑرﻧ ﺎﻣﺞ ﻻﯾﺟ ﺎد ‪ 95%‬ﻓﺗ رة ﺛﻘ ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ 1 ,  0‬ﻓ ﻲ ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار‬ ‫‪  y|x  0  1x‬ﺑﺎﻻﻋﺗﻣﺎد ﻋﻠﻰ اﻟﺑﯾﺎﻧﺎت ﻓﻲ ﻣﺛﺎل )‪ (٥-٤‬وأﺧﺗﺑر ﻓ رض اﻟﻌ دم ‪  0 : 1  0‬ﺿ د‬ ‫اﻟﻔرض اﻟﺑدﯾل ‪. 1 : 1  0‬‬ ‫ﺛم أﺧﺗﺑر ﻓرض اﻟﻌدم ‪  0 : 0  0‬ﺿد اﻟﻔرض اﻟﺑدﯾل‬

‫‪. 1 :  0  0‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫}‪x1={4.7,5,5.2,5.2,5.9,4.7,5.9,5.2,5.9,5.6,5.‬‬ ‫}‪{4.7,5,5.2,5.2,5.9,4.7,5.9,5.2,5.9,5.6,5.‬‬ ‫}‪y1={3.,3,4,10,2,9,3,7,6,6,4‬‬ ‫}‪{3.,3,4,10,2,9,3,7,6,6,4‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪h[x_]:=Apply[Plus,x‬‬ ‫]‪k[x_]:=h[x]/l[x‬‬ ‫]‪c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x‬‬ ‫]‪n=l[x1‬‬ ‫‪11‬‬ ‫]‪xb=h[x1]/l[x1‬‬ ‫‪5.3‬‬ ‫]‪yb=h[y1]/l[y1‬‬ ‫‪5.18182‬‬ ‫]‪b1=c[x1,y1]/c[x1,x1‬‬ ‫‪-1.42857‬‬ ‫‪b0=yb-b1*xb‬‬ ‫‪12.7532‬‬ ‫]‪sxx=c[x1,x1‬‬ ‫‪2.1‬‬ ‫‪١٩٠‬‬


ssto=c[y1,y1] 69.6364 ssr=c[x1,y1]^2/c[x1,x1] 4.28571 sse=ssto-ssr 65.3506 mse=sse/(n-2) 7.26118 msr=ssr/1 4.28571 mse=sse/(n-2) 7.26118 <<Statistics`ContinuousDistributions`

t1  QuantileStudentTDistributionn  2, 1  2.26216

mse z   sxx 1.85949 e=t1*z 4.20646 l=b1-e -5.63503 u=b1+e 2.77789

1 xb^2 z1   mse   n sxx 9.88873 e1=t1*z1 22.3699 l=b0-e1 -9.61663 u=b0+e1 35.1231 tt1=b1/z -0.768259

a1  If Abstt1  t1, Print"Reject H0", Print"Accept H0 " Accept H0 tt0=b0/z1 1.28967

a2  If Abstt0  t1, Print"Reject H0", Print"Accept H0 " ١٩١

2


‫‪Accept H0‬‬

‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ ‫‪=.05‬‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ y1 .‬اﻟﻤﺴﻤﺎه ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x1‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﮫ ‪ 1‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن ﻣﻊ اﻟﻣﺧرﺟﺎت‬ ‫‪l=b1-e‬‬ ‫‪-5.63503‬‬ ‫‪u=b1+e‬‬ ‫‪2.77789‬‬

‫‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﮫ ‪ 0‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن ﻣﻊ اﻟﻣﺧرﺟﺎت‬ ‫‪l=b0-e1‬‬ ‫‪-9.61663‬‬ ‫‪u=b0+e1‬‬ ‫‪35.1231‬‬

‫ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪ 0 :  1  0 :‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪1 :  1  0‬‬ ‫ﯾﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ‬

‫‪a1  If Abstt1  t1, Print"Reject H0",‬‬ ‫‪Print"Accept H0 "‬‬ ‫واﻟﻣﺧرج‬ ‫‪Accept H0‬‬ ‫اى ﻗﺒﻮل ﻓﺮض اﻟﻌﺪم ‪.‬‬

‫ﺣﯾث ﻗﯾﻣﺔ ‪ t‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪‬‬ ‫‪t1  QuantileStudentTDistributionn  2, 1  ‬‬ ‫‪2‬‬

‫ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪ 0 : 0  0 :‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪1 : 0  0 .‬‬ ‫ﯾﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ‬

‫‪a2  If Abstt0  t1, Print"Reject H0",‬‬ ‫‪Print"Accept H0 "‬‬ ‫واﻟﻣﺧرج‬ ‫‪١٩٢‬‬


‫‪Accept H0‬‬ ‫اى ﻗﺒﻮل ﻓﺮض اﻟﻌﺪم ‪.‬‬

‫)‪ (١١ -٤‬اﻟﺗﻧﺑـؤ‬

‫‪Prediction‬‬

‫ﯾﻣﻛن اﺳﺗﺧدام اﻟﻣﻌﺎدﻟﺔ ‪ yˆ x  b0  b1x‬ﻟﻠﺗﻧﺑﺄ ﺑﻘﯾﻣﺔ ' ‪ ، Y|x‬ﺣﯾ ث ‪ x‬ﻟ ﯾس ﻣ ن اﻟﺿ رورى أن‬ ‫ﺗﻛ ون واﺣ دة ﻣ ن ‪ x1, x 2 ,..., x n‬ﻓ ﻲ اﻟﻌﯾﻧ ﺔ اﻟﻌﺷ واﺋﯾﺔ ﻣ ن اﻟﺣﺟ م ‪ n‬ﻟﻠﻣﺷ ﺎھدات‬ ‫) ‪ . (x1 , y1 ),(x 2 , y 2 ),...,(x n , y n‬أﯾﺿﺎ ﯾﻣﻛن اﺳﺗﺧدام اﻟﻣﻌﺎدﻟﺔ ‪ yˆ x  b0  b1x‬ﻟﻠﺗﻧﺑ ﺄ ﺑﻘﯾﻣ ﺔ‬ ‫واﺣدة ‪ y x ‬ﻟﻠﻣﺗﻐﯾ ر ‪ . Y | x ‬ﺳ وف ﻧﺗوﻗ ﻊ أن ﺧط ﺄ اﻟﺗﻧﺑ ﺄ ﺳ وف ﯾﻛ ون أﻋﻠ ﻰ ﻓ ﻲ ﺣﺎﻟ ﺔ ﻗﯾﻣ ﺔ واﺣ دة‬ ‫ﻣﺗﻧﺑ ﺄ ﺑﮭ ﺎ ﻋﻧ ﮫ ﻓ ﻲ ﺣﺎﻟ ﺔ اﻟﺗﻧﺑ ﺄ ﺑﺎﻟﻣﺗوﺳ ط وھ ذا ﺳ وف ﯾ ؤﺛر ﻋﻠ ﻰ ط ول ﻓﺗ رة اﻟﺛﻘ ﺔ ﻟﻠﻣﻌ ﺎﻟم اﻟﻣ راد‬ ‫ﺗﻘدﯾرھﺎ‪.‬‬ ‫ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ‪ (1   )100%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ' ‪ Y|x‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪ 1 (x ' x) 2 ‬‬ ‫‪ 1 (x ' x)2 ‬‬ ‫‪yˆ  t  / 2 s 2  ( ‬‬ ‫‪)    Y|x '  yˆ  t  / 2 s 2 ( ‬‬ ‫‪).‬‬ ‫‪n‬‬ ‫‪SXX‬‬ ‫‪n‬‬ ‫‪SXX‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫اﯾﺿﺎ ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ‪ (1   )100%‬ﻓﺗرة ﻟﻘﯾﻣﺔ ﻣﻔردة ' ‪ y x‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪1 (x ' x)2‬‬ ‫‪1 (x ' x) 2‬‬ ‫‪‬‬ ‫‪ y x '  yˆ  t  / 2 (n  2) 1  ‬‬ ‫‪.‬‬ ‫‪n‬‬ ‫‪SXX‬‬ ‫‪n‬‬ ‫‪SXX‬‬

‫‪yˆ  t  / 2 (n  2) 1 ‬‬

‫ﻣﺛﺎل )‪(٩-٤‬‬ ‫ﺑﺎﺳﺗﺧدام اﻟﺑﯾﺎﻧﺎت ﻟﻠﻣﺛﺎل )‪ (٥-٤‬أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ Y|4‬؟‬

‫اﻟﺣــل‪:‬‬ ‫ﻣن ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻓﺈن ‪:‬‬ ‫)‪yˆ 4  14.187  (44.41385)(4‬‬ ‫‪= 191.84.‬‬ ‫ﻋرﻓﻧﺎ ﻣﻣﺎ ﺳﺑق أن ‪:‬‬ ‫‪2‬‬ ‫‪SXX  46.91667 , x  4.58333 , s  33.6888,‬‬ ‫‪ t.025 =2.228‬ﺑدرﺟﺎت ﺣرﯾﺔ ‪ . 10‬وﻋﻠﻰ ذﻟك ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪  Y |4‬ھﻲ ‪:‬‬

‫‪١٩٣‬‬


‫‪ 1 (4  4.58333)2 ‬‬ ‫‪191.84  2.228 33.6888  ‬‬ ‫‪  Y|4 ‬‬ ‫‪12‬‬ ‫‪46.91667‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 1 (4  4.58333) 2 ‬‬ ‫‪191.84  2.228 33.6888  ‬‬ ‫‪ .‬‬ ‫‪12‬‬ ‫‪46.91667‬‬ ‫‪‬‬ ‫‪‬‬ ‫أي أن ‪:‬‬

‫)‪191.84  (2.228)(1.7469)  Y|4  191.84  (2.228)(1.7469‬‬ ‫واﻟﺗﻲ ﺗﺧﺗﺻر إﻟﻰ ‪:‬‬ ‫‪187.94791  Y|4  195.73209.‬‬

‫ﻣﺛﺎل )‪(١٠-٤‬‬ ‫ﺑﺎﺳﺗﺧدام اﻟﺑﯾﺎﻧﺎت ﻟﻠﻣﺛﺎل )‪ (٥-٤‬أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪y 4‬‬

‫اﻟﺣــل‪:‬‬ ‫)ا( ‪ n  12 , s2  33.6888 , x  4.58333‬وﻋﻠﻰ ذﻟك ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟـ ‪ y4‬ھﻲ ‪:‬‬ ‫‪‬‬ ‫‪1 (4  4.58333)2 ‬‬ ‫‪191.84  2.228 33.6888 1  ‬‬ ‫‪  y4 ‬‬ ‫‪46.91667 ‬‬ ‫‪ 12‬‬

‫‪‬‬ ‫‪1 (4  4.58333) 2 ‬‬ ‫‪191.84  2.228 33.6888 1  ‬‬ ‫‪‬‬ ‫‪46.91667 ‬‬ ‫‪ 12‬‬ ‫أي أن ‪:‬‬ ‫)‪191.84 - 2.228(6.061) < y4 < 191.84 + 2.228 (6.06‬‬ ‫واﻟﺗﻲ ﺗﺧﺗﺻر إﻟﻰ ‪:‬‬ ‫‪178.3 < y4 < 205.3‬‬

‫ﻣﺛﺎل )‪(١١-٤‬‬ ‫ﻟﻠﺑﯾﺎﻧﺎت اﻟﺧﺎﺻﺔ ﺑﺎﻟﻣﺛ ﺎل )‪ (٥-٤‬اﻟﻣطﻠ وب ﻋﻣ ل ﺑرﻧ ﺎﻣﺞ ﻻﯾﺟ ﺎد ‪ 95%‬ﻓﺗ رة ﺛﻘ ﺔ ﻟ ـ ‪ Y|4‬و ‪95%‬‬ ‫ﻓﺗرة ﺛﻘﺔ ﻟـ ‪. y 4‬‬

‫اﻟﺣــل‪:‬‬ ‫‪١٩٤‬‬


‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ =.05 0.05 x1={4,6.,2,5,7,6,3,8,5,3,1,5} {4,6.,2,5,7,6,3,8,5,3,1,5} y1={197.,272,100,228,327,279,148,377,238,142,66,239} {197.,272,100,228,327,279,148,377,238,142,66,239} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] n=l[x1] 12 xb=h[x1]/l[x1] 4.58333 yb=h[y1]/l[y1] 217.75 b1=c[x1,y1]/c[x1,x1] 44.4139 b0=yb-b1*xb 14.1865 sxx=c[x1,x1] 46.9167 ssto=c[y1,y1] 92884.3 ssr=(c[x1,y1]^2)/c[x1,x1] 92547.4 sse=ssto-ssr 336.881 mse=sse/(n-2) 33.6881 <<Statistics`ContinuousDistributions`

t1  QuantileStudentTDistributionn  2, 1

2

2.22814 xxb=4 4

1 xxb  xb^2 z1   mse   n sxx 1.7469 ١٩٥


‫‪e1=t1*z1‬‬ ‫‪3.89235‬‬ ‫)‪yy=b0+(b1*xxb‬‬ ‫‪191.842‬‬ ‫‪ll=yy-e1‬‬ ‫‪187.95‬‬ ‫‪u=yy+e1‬‬ ‫‪195.734‬‬

‫‪1 xxb  xb ^2 ‬‬ ‫‪z2  ‬‬ ‫‪mse1  ‬‬ ‫‪‬‬ ‫‪n‬‬ ‫‪sxx‬‬ ‫‪6.06133‬‬ ‫‪e2=t1*z2‬‬ ‫‪13.5055‬‬ ‫‪l2=yy-e2‬‬ ‫‪178.336‬‬ ‫‪u2=yy+e2‬‬ ‫‪205.347‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪:‬اﻟﻣدﺧﻼت‬ ‫ﻣﺳﺗوى اﻟﻣﻌﻧوﯾﺔ ﻣن اﻻﻣر‬ ‫‪=.05‬‬ ‫ﻣﻦ اﻻﻣﺮ ‪ x‬اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ و ‪ y‬اﻟﻤﺴﻤﺎه ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬ ‫‪xxb=4‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ‬

‫‪ Y|4‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن ﻣﻊ اﻟﻣﺧرج ﻟﻛل اﻣر‬ ‫‪ll=yy-e1‬‬ ‫‪187.95‬‬ ‫‪u=yy+e1‬‬ ‫‪195.734‬‬

‫‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻘﯾﻣﺔ ‪ y 4‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن ﻣﻊ اﻟﻣﺧرج ﻟﻛل اﻣر‬ ‫‪l2=yy-e2‬‬ ‫‪178.336‬‬ ‫‪u2=yy+e2‬‬ ‫‪205.347‬‬

‫ﻣﺛﺎل )‪(١٢-٤‬‬ ‫ﺑﺎﻻﻋﺗﻣ ﺎد ﻋﻠ ﻰ اﻟﺑﯾﺎﻧ ﺎت ﻓ ﻲ ﻣﺛ ﺎل )‪ (٢-٤‬أﺧﺗﺑ ر ﻓ رض اﻟﻌ دم ‪  0 : 1  0‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل‬ ‫‪1 : 1  0‬‬ ‫ﺛم أﺧﺗﺑر ﻓرض اﻟﻌدم ‪  0 : 0  0‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪. 1 : 0  0‬‬

‫اﻟﺣــل ‪:‬‬ ‫‪١٩٦‬‬


‫ وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬Mathematica

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ‬ <<Statistics`LinearRegression`

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`LinearRegression` oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; dpoints=Table[{oppbavg[[i]],winpct[[i]]},{i,1,Length[winpct] }] {{0.24,0.625},{0.254,0.512},{0.249,0.488},{0.245,0.524},{0.2 5,0.588},{0.252,0.475},{0.254,0.513},{0.27,0.463},{0.274,0.5 12},{0.264,0.405},{0.28,0.45},{0.266,0.48},{0.268,0.456},{0. 286,0.506}} Clear[dots] dots=ListPlot[dpoints,Prolog->{PointSize[0.02]}] 0.6

0.55

0.5 0.45

0.25

0.26

0.27

0.28

Graphics Regress[dpoints,{1,x},x]

ParameterTable 1

x

Estimate 1.07813 2.2171

SE 0.25596 0.979963

TStat 4.21211 2.26243

PValue 0.00120568,RSquared0.299008, 0.0430218

AdjustedRSquared0.240592, EstimatedVariance0.00236213,ANOVATable

Model Error Total

١٩٧

DF 1 12 13

SumOfSq 0.0120908 0.0283456 0.0404364

MeanSq 0.0120908 0.00236213

FRatio 5.11859

PValue 0.0430218


‫‪Regressdpoints, 1, x, x,‬‬ ‫‪RegressionReport  ParameterTable,‬‬ ‫‪BasisNames  b0, b1‬‬ ‫‪PValue‬‬ ‫‪0.00120568‬‬ ‫‪0.0430218‬‬

‫‪TStat‬‬ ‫‪4.21211‬‬ ‫‪2.26243‬‬

‫‪SE‬‬ ‫‪0.25596‬‬ ‫‪0.979963‬‬

‫‪Estimate‬‬ ‫‪1.07813‬‬ ‫‪2.2171‬‬

‫‪ParameterTable  b0‬‬

‫‪b1‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫وﺑﺈﺳﺗﺧدام اﻻﻣر‬

‫]‪Regress[dpoints,{1,x},x‬‬

‫ﯾﺗم اﻟﺣﺻول ﻋﻠﻰ ﺟدوﻟﯾن ‪:‬اﻟﺟدول اﻻول ﯾﺣﺗوى ﻋﻠ ﻰ اﻟﺗﻘ دﯾرﯾن ‪b 0  1.07813, b1  2.2171‬‬ ‫ﺗﺣت اﻟﻌﻧوان ‪ Estimate‬وﺗﺣت اﻟﻌﻧوان ‪ SE‬اﻟﺧطﺎ اﻟﻣﻌﯾﺎرى ﻟـ ‪0‬‬

‫‪s2‬‬ ‫(‬ ‫)‬ ‫‪SXX‬‬

‫‪1‬‬ ‫‪x2‬‬ ‫‪‬‬ ‫وﯾﺳﺎوى ‪. 0.25596‬اﻟﺧطﺎ اﻟﻣﻌﯾﺎرى ﻟـ ‪) 1‬‬ ‫‪n SXX‬‬ ‫وﯾﺳﺎوى ‪.0.979963‬اﯾﺿﺎ ﻗﯾم ‪ t‬اﻟﻣﺣﺳوﺑﺔ ﺗﺣت اﻟﻌﻧوان ‪. TStat‬ﻗﯾم ‪ p‬ﺗﺣت اﻟﻌﻧوان ‪.PVlue‬‬ ‫ﻛﻣﺎ ﯾوﺟد ﻓﻰ اﻟﺟدول ﻣﻌﺎﻣل اﻟﺗﺣدﯾد و اﯾﺿﺎ ﯾوﺟد ﻣﺎ ﯾﺳﻣﻰ ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﻣﻌدل‬ ‫أﻣﺎ اﻟﺟدول اﻟﺛﺎﻧﻰ ﻓﯾﺣﺗوى ﻋﻠﻰ ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ‪.‬‬ ‫وﻣن اﻻﻣر‬ ‫‪Regressdpoints, 1, x, x,‬‬ ‫‪RegressionReport  ParameterTable,‬‬ ‫‪BasisNames  b0, b1‬‬ ‫ﻧﺣﺻل ﻋﻠﻰ ﻣﻛوﻧﺎت اﻟﺟدول اﻻول وﻟﻛن ﺑﺷﻛل اﺧر‬ ‫( ‪s2‬‬

‫ﻣﺛﺎل )‪(١٣-٤‬‬ ‫ﻟﻠﻤﺜﺎل )‪ (٢-٤‬أوﺟد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ 1 ,  0‬ﻓﻲ ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار ‪Y|x  0  1x‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ‪ Mathematica‬وذﻟك ﺑﺗﺣﻣﯾل اﻟﺣزﻣﺔ اﻟﺟﺎھزة‬ ‫`‪Statistics`LinearRegression‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪١٩٨‬‬


<<Statistics`LinearRegression` oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; dpoints=Table[{oppbavg[[i]],winpct[[i]]},{i,1,Length[winpct] }] {{0.24,0.625},{0.254,0.512},{0.249,0.488},{0.245,0.524},{0.2 5,0.588},{0.252,0.475},{0.254,0.513},{0.27,0.463},{0.274,0.5 12},{0.264,0.405},{0.28,0.45},{0.266,0.48},{0.268,0.456},{0. 286,0.506}} Clear[dots] Regress[dpoints,{1,x},x,RegressionReport->ParameterCITable]

ParameterCITable  1

x

Estimate 1.07813 2.2171

SE 0.25596 0.979963

CI 0.520442, 1.63582  4.35225, 0.0819426

Regress[dpoints,{1,x},x,RegressionReport>ParameterCITable,ConfidenceLevel->0.90]

ParameterCITable  1

x

Estimate 1.07813 2.2171

SE 0.25596 0.979963

CI 0.621937, 1.53433  3.96367, 0.470523

: ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ : ‫وﺑﺈﺳﺗﺧدام اﻻﻣر‬ Regress[dpoints,{1,x},x,RegressionReport->ParameterCITable]

.CI ‫ ﺗﺣت اﻟﻌﻧوان‬1 ,  0 ‫ ﻓﺗرة ﺛﻘﺔ ﻟﻛل ﻣن‬95% ‫ﺳوف ﻧﺣﺻل ﻋﻠﻰ ﺟدول ﯾﺣﺗوى‬ : ‫ﺑﺈﺳﺗﺧدام اﻻﻣر‬ Regress[dpoints,{1,x},x,RegressionReport>ParameterCITable,ConfidenceLevel->0.90]

: ‫ﺣﯾث أﺿﯾف اﻟﺧﯾﺎر‬ ‫ ﻓﺗرة ﺛﻘ ﺔ ﻟﻛ ل ﻣ ن‬99% ‫ وذﻟك ﻟﻠﺣﺻول ﻋﻠﻰ ﺟدول ﯾﺣﺗوى‬ConfidenceLevel->0.90] .CI ‫ ﺗﺣت اﻟﻌﻧوان‬1 ,  0 . ‫ﻛﻣﺎ ﯾﺗﺿﺢ ﻣن ﻣﺧرﺟﺎت اﻻﻣر‬

(١٤-٤)‫ﻣﺛﺎل‬ ‫( وذﻟ ك ﻓ ﻲ ﻟﻌﺑ ﺔ ﻛ رة‬y) ‫( وﻧﺳ ﺑﺔ اﻟﻔ وز ﻟﻔرﯾ ق ﻣ ﺎ‬x) ‫ﯾﻌطﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ ﻣﺗوﺳ ط ﺿ رﺑﺎت اﻟﺧﺻ م‬ :‫اﻟﺳﻠﺔ واﻟﻣطﻠوب‬

. ‫)أ( رﺳم ﺷﻛل اﻻﻧﺗﺷﺎر ﻣﻊ ﺧط اﻻﻧﺣدار اﻟﻣﻘدر‬ ١٩٩


‫)ب( إﯾﺟﺎد ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ل ‪  Y x‬ﻟﻌدة ﻗﯾم ﻣن ‪ x‬ووﺿﺣﮭﺎ ﺑﯾﺎﻧﯾﺎ ‪.‬‬ ‫‪xy‬‬

‫‪0.15‬‬ ‫‪0.130048‬‬ ‫‪0.121512‬‬ ‫‪0.12838‬‬ ‫‪0.147‬‬ ‫‪0.1197‬‬ ‫‪0.130302‬‬ ‫‪0.12501‬‬ ‫‪0.140288‬‬ ‫‪0.10692‬‬ ‫‪0.126‬‬ ‫‪0.12768‬‬ ‫‪0.122208‬‬ ‫‪0.144716‬‬ ‫‪1.81976‬‬

‫‪x2‬‬

‫‪y‬‬

‫‪x‬‬

‫‪0.0576‬‬ ‫‪0.064516‬‬ ‫‪0.062001‬‬ ‫‪0.060025‬‬ ‫‪0.0625‬‬ ‫‪0.063504‬‬ ‫‪0.064516‬‬ ‫‪0.0729‬‬ ‫‪0.075076‬‬ ‫‪0.069696‬‬ ‫‪0.0784‬‬ ‫‪0.070756‬‬ ‫‪0.071824‬‬ ‫‪0.081796‬‬

‫‪0.625‬‬ ‫‪0.512‬‬ ‫‪0.488‬‬ ‫‪0.524‬‬ ‫‪0.588‬‬ ‫‪0.475‬‬ ‫‪0.513‬‬ ‫‪0.463‬‬ ‫‪0.512‬‬ ‫‪0.405‬‬ ‫‪0.45‬‬ ‫‪0.48‬‬ ‫‪0.456‬‬ ‫‪0.506‬‬

‫‪0.24‬‬ ‫‪0.254‬‬ ‫‪0.249‬‬ ‫‪0.245‬‬ ‫‪0.25‬‬ ‫‪0.252‬‬ ‫‪0.254‬‬ ‫‪0.27‬‬ ‫‪0.274‬‬ ‫‪0.264‬‬ ‫‪0.28‬‬ ‫‪0.266‬‬ ‫‪0.268‬‬ ‫‪0.286‬‬

‫‪.9551‬‬

‫‪6.997‬‬

‫‪3.652‬‬

‫اﻟﺣــل ‪:‬‬ ‫) أ ( ﺷ ﻛل اﻻﻧﺗﺷ ﺎر ﻣ ﻊ ﺧ ط اﻻﻧﺣ دار اﻟﻣﻘ در ﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل )‪ (١٠-٤‬ﺣﯾ ث ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار‬ ‫اﻟﻣﻘدرة ﺛم ﺣﺳﺎﺑﮭﺎ ﺑﺎﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ‪ Mathematica‬وﻛﺎﻧت ﻛﺎﻟﺗﺎﻟﻰ‪:‬‬ ‫‪. y  1 .07813  2.2171 x‬‬

‫‪٢٠٠‬‬


‫ﺷﻛل )‪(١٠- ٤‬‬ ‫)ب( ﯾﻌط ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﻓﺗ رات ﺛﻘ ﺔ ﻟ ـ ‪  Y x‬وذﻟ ك ﻟﻌ دة ﻗ ﯾم ﻣ ن ‪ x‬و ﺗ م اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ‬ ‫ﺑﺎﺳ ﺗﺧدام اﻟﺣ زم اﻟﺟ ﺎھزة ﻟﺑرﻧ ﺎﻣﺞ ‪ Mathematica‬ﺣﯾ ث ‪ CI‬ﯾرﻣ ز ل ‪ 95 %‬ﻓﺗ رة ﺛﻘ ﺔ ﻟ ـ‬ ‫‪ .  Y x‬وﺗﻠك اﻟﻔﺗرات ﻣوﺿﺣﺔ ﺑﯾﺎﻧﯾﺎ ﻓﻲ ﺷﻛل )‪.(١١-٤‬‬ ‫‪CI‬‬ ‫}‪{0.493263,0.598793‬‬ ‫}‪{0.483124,0.546853‬‬ ‫}‪{0.488102,0.564047‬‬ ‫}‪{0.490814,0.579071‬‬ ‫}‪{0.487273,0.560441‬‬ ‫}‪{0.485385,0.553461‬‬ ‫}‪{0.483124,0.546853‬‬ ‫}‪{0.445134,0.513896‬‬ ‫}‪{0.430791,0.510502‬‬ ‫}‪{0.463732,0.521904‬‬ ‫}‪{0.407629,0.507059‬‬ ‫}‪{0.458027,0.51874‬‬ ‫}‪{0.4518,0.516098‬‬ ‫}‪{0.383354,0.504729‬‬

‫‪SE‬‬ ‫‪0.0242175‬‬ ‫‪0.0146246‬‬ ‫‪0.0174281‬‬ ‫‪0.0202533‬‬ ‫‪0.0167906‬‬ ‫‪0.0156224‬‬ ‫‪0.0146246‬‬ ‫‪0.0157797‬‬ ‫‪0.0182922‬‬ ‫‪0.0133495‬‬ ‫‪0.0228174‬‬ ‫‪0.0139328‬‬ ‫‪0.0147553‬‬ ‫‪0.0278533‬‬

‫اﻟﻘﻴﻢ اﻟﻤﺘﻨﺒﺄ ﺑﻬﺎ‬ ‫‪Predicted‬‬ ‫‪0.546028‬‬ ‫‪0.514989‬‬ ‫‪0.526074‬‬ ‫‪0.534943‬‬ ‫‪0.523857‬‬ ‫‪0.519423‬‬ ‫‪0.514989‬‬ ‫‪0.479515‬‬ ‫‪0.470647‬‬ ‫‪0.492818‬‬ ‫‪0.457344‬‬ ‫‪0.488383‬‬ ‫‪0.483949‬‬ ‫‪0.444042‬‬

‫‪٢٠١‬‬

‫اﻟﻤﺸﺎﻫﺪﻩ‬ ‫‪Observed‬‬ ‫‪0.625‬‬ ‫‪0.512‬‬ ‫‪0.488‬‬ ‫‪0.524‬‬ ‫‪0.588‬‬ ‫‪0.475‬‬ ‫‪0.513‬‬ ‫‪0.463‬‬ ‫‪0.512‬‬ ‫‪0.405‬‬ ‫‪0.45‬‬ ‫‪0.48‬‬ ‫‪0.456‬‬ ‫‪0.506‬‬

‫‪{Mean Prediction‬‬ ‫‪CTTable‬‬


0.6 0.55 0.5 0.45

0.25

0.26

0.27

0.28

(١١-٤) ‫ﺷﻜﻞ‬ :‫ﺳﻮف ﯾﺘﻢ ﺣﻞ ھﺬا اﻟﻤﺜﺎل ﺑﺈﺳﺘﺨﺪام اﻟﺤﺰﻣﺔ اﻟﺠﺎھﺰة‬

Statistics`LinearRegression

.‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`LinearRegression` oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; dpoints=Table[{oppbavg[[i]],winpct[[i]]},{i,1,Length[winpct ]}]

{{0.24,0.625},{0.254,0.512},{0.249,0.488},{0.245,0.524},{0.2 5,0.588},{0.252,0.475},{0.254,0.513},{0.27,0.463},{0.274,0.5 12},{0.264,0.405},{0.28,0.45},{0.266,0.48},{0.268,0.456},{0. 286,0.506}} Clear[dots] Regress[dpoints,{1,x},x,RegressionReport>MeanPredictionCITable]

٢٠٢


Observed 0.625 0.512 0.488 0.524 0.588 0.475 MeanPredictionCITable 0.513 0.463 0.512 0.405 0.45 0.48 0.456 0.506

Predicted 0.546028 0.514989 0.526074 0.534943 0.523857 0.519423 0.514989 0.479515 0.470647 0.492818 0.457344 0.488383 0.483949 0.444042

SE 0.0242175 0.0146246 0.0174281 0.0202533 0.0167906 0.0156224 0.0146246 0.0157797 0.0182922 0.0133495 0.0228174 0.0139328 0.0147553 0.0278533

CI 0.493263,0.598793 0.483124,0.546853 0.488102,0.564047 0.490814,0.579071 0.487273,0.560441 0.485385,0.553461 0.483124,0.546853 0.445134,0.513896 0.430791,0.510502 0.463732,0.521904 0.407629,0.507059 0.458027,0.51874 0.4518,0.516098 0.383354,0.504729

Regress[dpoints,{1,x},x, RegressionReport->SinglePredictionCITable]

Observed 0.625 0.512 0.488 0.524 0.588 0.475 SinglePredictionCITable 0.513 0.463 0.512 0.405 0.45 0.48 0.456 0.506

Predicted 0.546028 0.514989 0.526074 0.534943 0.523857 0.519423 0.514989 0.479515 0.470647 0.492818 0.457344 0.488383 0.483949 0.444042

SE 0.0543012 0.0507544 0.0516321 0.0526529 0.0514204 0.0510509 0.0507544 0.0510992 0.0519301 0.0504018 0.0536914 0.0505594 0.0507922 0.0560173

CI 0.427716,0.66434 0.404404,0.625573 0.413578,0.638571 0.420222,0.649663 0.411822,0.635892 0.408193,0.630653 0.404404,0.625573 0.368179,0.590851 0.357501,0.583793 0.383002,0.602634 0.340361,0.574328 0.378224,0.598543 0.373283,0.594616 0.32199,0.566093

rtable=Regress[dpoints,{1,x},x, RegressionReport->MeanPredictionCITable]; {obs,pred,se,ci}=Transpose[(MeanPredictionCITable/.rtable)[[ 1]]] {{0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.512,0.40 5,0.45,0.48,0.456,0.506},{0.546028,0.514989,0.526074,0.53494 3,0.523857,0.519423,0.514989,0.479515,0.470647,0.492818,0.45 ٢٠٣


7344,0.488383,0.483949,0.444042},{0.0242175,0.0146246,0.0174 281,0.0202533,0.0167906,0.0156224,0.0146246,0.0157797,0.0182 922,0.0133495,0.0228174,0.0139328,0.0147553,0.0278533},{{0.4 93263,0.598793},{0.483124,0.546853},{0.488102,0.564047},{0.4 90814,0.579071},{0.487273,0.560441},{0.485385,0.553461},{0.4 83124,0.546853},{0.445134,0.513896},{0.430791,0.510502},{0.4 63732,0.521904},{0.407629,0.507059},{0.458027,0.51874},{0.45 18,0.516098},{0.383354,0.504729}}} predpts=Transpose[{oppbavg,pred}]

{{0.24,0.546028},{0.254,0.514989},{0.249,0.526074},{0.245,0. 534943},{0.25,0.523857},{0.252,0.519423},{0.254,0.514989},{0 .27,0.479515},{0.274,0.470647},{0.264,0.492818},{0.28,0.4573 44},{0.266,0.488383},{0.268,0.483949},{0.286,0.444042}} lowerCI=Transpose[{oppbavg,Map[First,ci]}] {{0.24,0.493263},{0.254,0.483124},{0.249,0.488102},{0.245,0. 490814},{0.25,0.487273},{0.252,0.485385},{0.254,0.483124},{0 .27,0.445134},{0.274,0.430791},{0.264,0.463732},{0.28,0.4076 29},{0.266,0.458027},{0.268,0.4518},{0.286,0.383354}} upperCI=Transpose[{oppbavg,Map[Last,ci]}]

{{0.24,0.598793},{0.254,0.546853},{0.249,0.564047},{0.245,0. 579071},{0.25,0.560441},{0.252,0.553461},{0.254,0.546853},{0 .27,0.513896},{0.274,0.510502},{0.264,0.521904},{0.28,0.5070 59},{0.266,0.51874},{0.268,0.516098},{0.286,0.504729}} <<Graphics`MultipleListPlot` MultipleListPlot[dpoints,predpts,lowerCI,upperCI,SymbolShap

e->{PlotSymbol[Diamond],None,None,None},PlotJoined>{False,True,True,True},PlotStyle>{Automatic,GrayLevel[0.5],Dashing[Dot],Dashing[Dot]}]

Graphics

٢٠٤


‫‪0.6‬‬ ‫‪0.55‬‬ ‫‪0.5‬‬ ‫‪0.45‬‬

‫‪0.28‬‬

‫‪0.27‬‬

‫‪0.26‬‬

‫‪0.25‬‬

‫ﺟدول ﻓﺗرات ﺛﻘﺔ ﻟـ ‪  Y x‬وذﻟك ﻟﻌدة ﻗﯾم ﻣن ‪ x‬ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪Regress[dpoints,{1,x},x,RegressionReport‬‬‫]‪>MeanPredictionCITable‬‬

‫وﺗﻠك اﻟﻔﺗرات اﻟﻣوﺿﺣﺔ ﺑﯾﺎﻧﯾﺎ ﻓﻲ ﺷﻛل )‪ (١١-٤‬ﺗم اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪MultipleListPlot[dpoints,predpts,lowerCI,upperCI,SymbolShap‬‬ ‫‪e->{PlotSymbol[Diamond],None,None,None},PlotJoined‬‬‫‪>{False,True,True,True},PlotStyle‬‬‫]}]‪>{Automatic,GrayLevel[0.5],Dashing[Dot],Dashing[Dot‬‬

‫ﺟدول ﻓﺗرات ﺛﻘﺔ ﻟـ ‪ yx‬وذﻟك ﻟﻌدة ﻗﯾم ﻣن ‪ x‬ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪Regress[dpoints,{1,x},x,‬‬ ‫]‪RegressionReport->SinglePredictionCITable‬‬

‫)‪ (١٢-٤‬ﻣﺧﺎﻟﻔﺎت ﻧﻣوزج اﻻﺗﺣدار وﻛﯾﻔﯾﺔ اﻛﺗﺷﺎﻓﮭﺎ ﺑﺎﻟﺑواﻗﻰ‬ ‫ﯾﻌﺗﺑر ﺷﻛل اﻻﻧﺗﺷﺎر ﻻزواج اﻟﻣﺷ ﺎھدات ) ‪ ( x i , y i‬ﺣﯾ ث ‪ i=1,2,…,n‬اﻟﺧط وة اﻻوﻟ ﻰ‬ ‫اﻟﺿ رورﯾﺔ ﻓ ﻲ اﺗﺧ ﺎذ ﻗ رار ﺑﺷ ﺎن اﻟﺷ ﻛل اﻟرﯾﺎﺿ ﻲ ﻟﻠﻌﻼﻗ ﺔ ﺑ ﯾن ‪٠x,Y‬ﻓ ﻲ اﻟﺗطﺑﯾ ق‬ ‫وﺑﻣﺟرد ﺗوﻓﯾق اﻟداﻟﺔ ذات اﻟﺷﻛل اﻟﻣﺧﺗﺎر ﯾﻛون ﻣن اﻟﺿروري ﻓﺣص ﺻ ﻼﺣﯾﺔ اﻟﻧﻣ وذج‬ ‫‪ ٠‬ﻓﻲ اﻟﺣﻘﯾﻘﺔ ﻧﺣﺗﺎج اﻟ ﻰ ﻓﺣ ص ﻋ دة ﻧﻣ ﺎذج اﻧﺣ دار ﻗﺑ ل ان ﺗ ﺗم ﻋﻣﻠﯾ ﺔ اﻻﺧﺗﯾﺎراﻟﻧﮭ ﺎﺋﻲ‪٠‬‬ ‫‪٢٠٥‬‬


‫ﻓﻲ ھذا اﻟﺑﻧد ﺳوف ﻧﺗﻧﺎول ﻋدة طرق ﻣﻔﯾ دة ﻟﺗﺷﺧﯾص وﻣﻌﺎﻟﺟ ﺔ اﻻﻧﺣراﻓ ﺎت )اﻟﻣﺧﺎﻟﻔ ﺎت(‬ ‫اﻟﺗﺎﻟﯾﺔ ﻋن ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻲ اﻟﺑﺳﯾط )‪.(١-٤‬‬ ‫‪ .١‬اﻟﻌﻼﻗﺔ ﺑﯾن ‪ x,y‬ﻟﯾﺳت ﺧطﯾﺔ‪٠‬‬ ‫‪ .٢‬ﺣدود اﻟﺧطﺎ ﻟﯾﺳت طﺑﯾﻌﯾﺔ‪٠‬‬ ‫‪ .٣‬اﻟﺗﺑﺎﯾن ﻟﺣد اﻟﺧطﺄ‬

‫‪‬‬

‫ﻟﯾس ﺛﺎﺑت ‪٠‬‬

‫‪ .٤‬ﺣدود اﻟﺧطﺄ ﻟﯾﺳت ﻣرﺗﺑطﮫ‪٠‬‬ ‫‪ .٥‬اﻟﺗوﻗﻊ ﻟﺣد‬

‫اﻟﺧطﺄ ‪‬‬

‫ﻻ ﯾﺳﺎوي ﺻﻔر‪.‬‬

‫وﺑ ﺎﻟرﻏم ﻣ ن إن دراﺳ ﺗﻧﺎ ﻓ ﻲ ھ ذا اﻟﺑﻧ د ﺳ وف ﺗﻘﺗﺻ ر ﻋﻠ ﻰ ﻧﻣ وذج اﻻﻧﺣ دار اﻟﺧط ﻲ‬ ‫اﻟﺑﺳ ﯾط اﻻ ان ﻧﻔ س اﻻﺳ ﻠوب ﯾﻣﻛ ن ﺗﻌﻣﯾﻣ ﮫ ﻟﻠﻧﻣ ﺎذج اﻟﺗ ﻲ ﺗﺣﺗ وي ﻋﻠ ﻰ ﻋ دة ﻣﺗﻐﯾ رات‬ ‫ﻣﺳﺗﻘﻠﺔ‬ ‫ﺗﺷ ﯾر ﺗﺣﻠﯾ ل اﻟﺑ واﻗﻰ ﻟﻔﺋ ﺔ ﻣ ن اﻟط رق اﻟط رق اﻟﺗﺷﺧﯾﺻ ﯾﺔ ‪diagnostic methods‬‬ ‫ﻟﻔﺣص ﺻﻼﺣﯾﺔ ﻧﻣوذج اﻻﻧﺣدار وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺑواﻗﻲ ‪ (yi  yˆi ) residuals‬ﺣﯾث‬ ‫‪. i=1,2,…,n‬ﻋﻧدﻣﺎ ﯾﻛون ﻧﻣ وذج اﻻﻧﺣ دار ﻣﻧﺎﺳ ب ﻟﻠﺑﯾﺎﻧ ﺎت ﻓ ﺈن اﻟﺑ واﻗﻲ ﺳ وف ﺗﻌﻛس‬ ‫اﻟﺧواص اﻟﻣﻔروﺿﺔ ﻟﺣدود اﻟﺧطﺎ ﻓﻲ اﻟﻧﻣوذج‪٠‬‬ ‫ﻓﻲ ﺑﻌض اﻻﺣﯾﺎن ﯾﻛون ﻣن اﻟﻣﻔﯾد اﻟﺗﻌﺎﻣل ﻣﻊ اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ‪:‬‬ ‫‪, i  1,2,, n.‬‬

‫‪ei‬‬ ‫‪MSE‬‬

‫‪di ‬‬

‫ﺣﯾث ‪:‬‬ ‫‪2‬‬

‫‪.‬‬

‫‪ ei‬‬

‫‪n2‬‬

‫‪MSE ‬‬

‫ھﻧﺎك ﺻﯾﻐﺔ اﺧرى ﻟﻠﺑواﻗﻲ وھﻲ ﺑواﻗﻲ ﺳﺗﯾودﻧت واﻟﺗﻲ ﺗﻌرف ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬

‫‪٢٠٦‬‬


‫‪.‬‬

‫‪ei‬‬

‫‪ri ‬‬

‫‪‬‬ ‫‪1 (x i  x ) 2 ‬‬ ‫‪MSE 1  ( ‬‬ ‫‪)‬‬ ‫‪n‬‬ ‫‪SXX ‬‬ ‫‪‬‬ ‫‪i  1,2,  , n .‬‬

‫وﺗﻌﺗﺑ ر ﺑ واﻗﻲ ﺳ ﺗﯾودﻧت ﻣﻔﯾ دة ﻓ ﻲ ﺗﺷ ﺧﯾص اﻻﻧﺣراﻓ ﺎت ﻋ ن ﻧﻣ وذج اﻻﻧﺣ دار‪ ٠‬ﻏﺎﻟﺑ ﺎ ‪،‬‬ ‫ﻓﻲ اﻟﺑﯾﺎﻧﺎت ذات اﻟﺣﺟم اﻟﺻﻐﯾر ﻓﺎن ﺑواﻗﻲ ﺳﺗﯾودﻧت ﺗﻛون اﻛﺛر ﻛﻔﺎءة ﻣن اﻟﺑواﻗﻲ‬ ‫اﻟﻣﻌﯾﺎرﯾﺔ‪٠‬ﻋﻧدﻣﺎ ﺗﻛون ‪ n‬ﻛﺑﯾرة ﺳوف ﯾﻛون ھﻧﺎك اﺧﺗﻼف ﺻﻐﯾر ﺑﯾن اﻟطرﯾﻘﺗﯾن‪٠‬‬ ‫ﻣﺛﺎل )‪(١٥-٤‬‬

‫ﻓ ﻲ ﻋﻣﻠﯾ ﺔ ﺻ ﻧﺎﻋﯾﺔ اﺟرﯾ ت ﺗﺟرﺑ ﺔ ﻟدراﺳ ﺔ اﻟﻌﻼﻗ ﺔ ﺑ ﯾن ﻣﺗﻐﯾ رﯾن ‪ x,Y‬واﻟﺑﯾﺎﻧ ﺎت‬ ‫ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪xy‬‬

‫‪15000.‬‬ ‫‪17500‬‬ ‫‪22500‬‬ ‫‪31500‬‬ ‫‪28500‬‬ ‫‪64000‬‬ ‫‪56000‬‬ ‫‪100000‬‬ ‫‪107500‬‬ ‫‪132000‬‬ ‫‪117000‬‬ ‫‪210000‬‬ ‫‪244000‬‬ ‫‪268000‬‬

‫‪x2‬‬ ‫‪10000.‬‬ ‫‪15625‬‬ ‫‪15625‬‬ ‫‪22500‬‬ ‫‪22500‬‬ ‫‪40000‬‬ ‫‪40000‬‬ ‫‪62500‬‬ ‫‪62500‬‬ ‫‪90000‬‬ ‫‪90000‬‬ ‫‪122500‬‬ ‫‪160000‬‬ ‫‪160000‬‬ ‫‪٢٠٧‬‬

‫‪y‬‬

‫‪x‬‬

‫‪150.‬‬ ‫‪140‬‬ ‫‪180‬‬ ‫‪210‬‬ ‫‪190‬‬ ‫‪320‬‬ ‫‪280‬‬ ‫‪400‬‬ ‫‪430‬‬ ‫‪440‬‬ ‫‪390‬‬ ‫‪600‬‬ ‫‪610‬‬ ‫‪670‬‬

‫‪100.‬‬ ‫‪125‬‬ ‫‪125‬‬ ‫‪150‬‬ ‫‪150‬‬ ‫‪200‬‬ ‫‪200‬‬ ‫‪250‬‬ ‫‪250‬‬ ‫‪300‬‬ ‫‪300‬‬ ‫‪350‬‬ ‫‪400‬‬ ‫‪400‬‬


‫و اﻟﻣطﻠوب ‪:‬‬ ‫ﺣﺳﺎب اﻟﺑواﻗﻲ و اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ وﺑواﻗﻲ ﺳﺗﯾودﻧت ‪.‬‬ ‫اﻟﺣــل‪:‬‬ ‫‪ x 3300‬‬ ‫‪n  14‬‬ ‫‪,x ‬‬ ‫‪‬‬ ‫‪ 235.714 ,‬‬ ‫‪n‬‬ ‫‪14‬‬ ‫‪5010‬‬ ‫‪ 357.857 ,‬‬ ‫‪14‬‬

‫‪‬‬

‫‪y‬‬

‫‪n‬‬

‫‪y‬‬

‫)‪(3300)(5010‬‬ ‫‪ x y‬‬ ‫‪1413500 ‬‬ ‫‪SXY‬‬ ‫‪n‬‬ ‫‪14‬‬ ‫‪b1 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪SXX‬‬ ‫‪( x ) 2‬‬ ‫‪(3300) 2‬‬ ‫‪2‬‬ ‫‪913750 ‬‬ ‫‪x ‬‬ ‫‪n‬‬ ‫‪14‬‬ ‫‪ xy ‬‬

‫‪232571‬‬ ‫‪ 1.71143 ,‬‬ ‫‪135893‬‬

‫‪‬‬

‫‪b 0  y  b1x  357.857  1.71143(235.714)  45.5519 .‬‬ ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ‪:‬‬ ‫‪yˆ   45 .5519  1.71143 x .‬‬

‫واﻟﻣﻣﺛﻠﺔ ﺑﯾﺎﻧﯾﺎ ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻓﻲ ﺷﻛل )‪.(١٢-٤‬‬ ‫‪Y‬‬ ‫‪700‬‬ ‫‪600‬‬ ‫‪500‬‬ ‫‪400‬‬ ‫‪300‬‬ ‫‪200‬‬ ‫‪100‬‬ ‫‪x‬‬ ‫‪600‬‬

‫‪500‬‬

‫‪400‬‬

‫‪300‬‬ ‫‪٢٠٨‬‬

‫‪200‬‬

‫‪100‬‬


‫ﺷﻜﻞ )‪(١٢-٤‬‬ ‫ﯾﻌطﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ اﻟﺑواﻗﻲ ‪ ei‬واﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ ‪ d i‬وﺑواﻗﻲ ﺳﺗﯾودﻧت ‪. ri‬‬ ‫‪ri‬‬

‫‪di‬‬

‫‪0.745861‬‬ ‫‪- 0.843355‬‬ ‫‪0.345426‬‬ ‫‪- 0.0338405‬‬ ‫‪- 0.615821‬‬ ‫‪0.660343‬‬ ‫‪- 0.474977‬‬ ‫‪0.500064‬‬ ‫‪1.34793‬‬ ‫‪- 0.800463‬‬ ‫‪- 2.23613‬‬ ‫‪1.38837‬‬ ‫‪- 0.924322‬‬ ‫‪0.986682‬‬

‫‪0.664208‬‬ ‫‪- 0.772198‬‬ ‫‪0.316281‬‬ ‫‪- 0.031646‬‬ ‫‪- 0.575885‬‬ ‫‪0.633099‬‬ ‫‪- 0.45538‬‬ ‫‪0.481484‬‬ ‫‪1.29784‬‬ ‫‪- 0.75861‬‬ ‫‪- 2.11921‬‬ ‫‪1.26673‬‬ ‫‪- 0.789719‬‬ ‫‪0.842999‬‬

‫‪ei‬‬ ‫‪24.4087‬‬ ‫‪- 28.3771‬‬ ‫‪11.6229‬‬ ‫‪- 1.16294‬‬ ‫‪- 21.1629‬‬ ‫‪23.2654‬‬ ‫‪- 16.7346‬‬ ‫‪17.6938‬‬ ‫‪47.6938‬‬ ‫‪- 27.8778‬‬ ‫‪- 77.8778‬‬ ‫‪46.5506‬‬ ‫‪- 29.021‬‬ ‫‪30.979‬‬

‫‪yˆ i‬‬

‫‪yi‬‬

‫‪xi‬‬

‫‪125.591‬‬ ‫‪168.377‬‬ ‫‪168.377‬‬ ‫‪211.163‬‬ ‫‪211.163‬‬ ‫‪296.735‬‬ ‫‪296.735‬‬ ‫‪382.306‬‬ ‫‪382.306‬‬ ‫‪467.878‬‬ ‫‪467.878‬‬ ‫‪553.449‬‬ ‫‪639.021‬‬ ‫‪639.021‬‬

‫‪150.‬‬ ‫‪140‬‬ ‫‪180‬‬ ‫‪210‬‬ ‫‪190‬‬ ‫‪320‬‬ ‫‪280‬‬ ‫‪400‬‬ ‫‪430‬‬ ‫‪440‬‬ ‫‪390‬‬ ‫‪600‬‬ ‫‪610‬‬ ‫‪670‬‬

‫‪100.‬‬ ‫‪125‬‬ ‫‪125‬‬ ‫‪150‬‬ ‫‪150‬‬ ‫‪200‬‬ ‫‪200‬‬ ‫‪250‬‬ ‫‪250‬‬ ‫‪300‬‬ ‫‪300‬‬ ‫‪350‬‬ ‫‪400‬‬ ‫‪400‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=1‬‬ ‫‪1‬‬ ‫‪x1={100,125.,125,150,150,200,200,250,250,300,300,350,400,400‬‬ ‫}‬ ‫}‪{100,125.,125,150,150,200,200,250,250,300,300,350,400,400‬‬ ‫‪y1={150,140.,180,210,190,320,280,400,430,440,390,600,610,670‬‬ ‫}‬ ‫}‪{150,140.,180,210,190,320,280,400,430,440,390,600,610,670‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪h[x_]:=Apply[Plus,x‬‬ ‫]‪k[x_]:=h[x]/l[x‬‬ ‫]‪c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x‬‬ ‫]‪sxx=c[x1,x1‬‬ ‫‪135893.‬‬ ‫]‪xb=h[x1]/l[x1‬‬ ‫‪٢٠٩‬‬


235.714 yb=h[y1]/l[y1] 357.857 b1=c[x1,y1]/c[x1,x1] 1.71143 b0=yb-b1*xb -45.5519 t1=Transpose[{x1,y1}] {{100,150},{125.,140.},{125,180},{150,210},{150,190},{200,32 0},{200,280},{250,400},{250,430},{300,440},{300,390},{350,60 0},{400,610},{400,670}} a=PlotRange{{0,600},{0,700}} PlotRange{{0,600},{0,700}} PlotRange{{0,600},{0,700}} PlotRange{{0,600},{0,700}} a1=Prolog{PointSize[.02]} Prolog{PointSize[0.02]} g= ListPlot[t1,a,a1] 700 600 500 400 300 200 100 100

200

300

400

500

600

500

600

Graphics d=Plot[b0+b1*x,{x,0,600}] 1000 800 600 400 200

100

200

300

400

٢١٠


Graphics Show[g,d] 700 600 500 400 300 200 100 100

200

300

400

500

600

Graphics n=l[x1] 14 ssto=c[y1,y1] 414236. ssr=c[x1,y1]^2/c[x1,x1] 398030. sse=ssto-ssr 16205.5 mse=sse/(n-2) 1350.45 yy=b0+(b1*x1) {125.591,168.377,168.377,211.163,211.163,296.735,296.735,382 .306,382.306,467.878,467.878,553.449,639.021,639.021} e=y1-yy {24.4087,-28.3771,11.6229,-1.16294,-21.1629,23.2654,16.7346,17.6938,47.6938,-27.8778,-77.8778,46.5506,29.021,30.979}  di  e  mse {0.664208,-0.772198,0.316281,-0.031646,-0.575885,0.633099,0.45538,0.481484,1.29784,-0.75861,-2.11921,1.26673,0.789719,0.842999}

1 x1  xb ^2  ri  e   mse1     N n sxx {0.745861,-0.843355,0.345426,-0.0338405,0.615821,0.660343,-0.474977,0.500064,1.34793,-0.800463,2.23613,1.38837,-0.924322,0.986682} def=t1=Transpose[{x1,y1,yy,e,di,ri}] {{100,150,125.591,24.4087,0.664208,0.745861},{125.,140.,168. ٢١١


‫‪377,-28.3771,-0.772198,‬‬‫‪0.843355},{125,180,168.377,11.6229,0.316281,0.345426},{150,2‬‬ ‫‪10,211.163,-1.16294,-0.031646,-0.0338405},{150,190,211.163,‬‬‫‪21.1629,-0.575885,‬‬‫‪0.615821},{200,320,296.735,23.2654,0.633099,0.660343},{200,2‬‬ ‫‪80,296.735,-16.7346,-0.45538,‬‬‫‪0.474977},{250,400,382.306,17.6938,0.481484,0.500064},{250,4‬‬ ‫‪30,382.306,47.6938,1.29784,1.34793},{300,440,467.878,‬‬‫‪27.8778,-0.75861,-0.800463},{300,390,467.878,-77.8778,‬‬‫‪2.11921,‬‬‫‪2.23613},{350,600,553.449,46.5506,1.26673,1.38837},{400,610,‬‬ ‫‪639.021,-29.021,-0.789719,‬‬‫}}‪0.924322},{400,670,639.021,30.979,0.842999,0.986682‬‬ ‫]‪TableForm[def‬‬

‫‪0.745861‬‬ ‫‪0.843355‬‬ ‫‪0.345426‬‬ ‫‪0.0338405‬‬ ‫‪0.615821‬‬ ‫‪0.660343‬‬ ‫‪0.474977‬‬ ‫‪0.500064‬‬ ‫‪1.34793‬‬ ‫‪0.800463‬‬ ‫‪2.23613‬‬ ‫‪1.38837‬‬ ‫‪0.924322‬‬ ‫‪0.986682‬‬

‫‪0.664208‬‬ ‫‪0.772198‬‬ ‫‪0.316281‬‬ ‫‪0.031646‬‬ ‫‪0.575885‬‬ ‫‪0.633099‬‬ ‫‪0.45538‬‬ ‫‪0.481484‬‬ ‫‪1.29784‬‬ ‫‪0.75861‬‬ ‫‪2.11921‬‬ ‫‪1.26673‬‬ ‫‪0.789719‬‬ ‫‪0.842999‬‬

‫‪24.4087‬‬ ‫‪28.3771‬‬ ‫‪11.6229‬‬ ‫‪1.16294‬‬ ‫‪21.1629‬‬ ‫‪23.2654‬‬ ‫‪16.7346‬‬ ‫‪17.6938‬‬ ‫‪47.6938‬‬ ‫‪27.8778‬‬ ‫‪77.8778‬‬ ‫‪46.5506‬‬ ‫‪29.021‬‬ ‫‪30.979‬‬

‫‪125.591‬‬ ‫‪168.377‬‬ ‫‪168.377‬‬ ‫‪211.163‬‬ ‫‪211.163‬‬ ‫‪296.735‬‬ ‫‪296.735‬‬ ‫‪382.306‬‬ ‫‪382.306‬‬ ‫‪467.878‬‬ ‫‪467.878‬‬ ‫‪553.449‬‬ ‫‪639.021‬‬ ‫‪639.021‬‬

‫‪150‬‬ ‫‪140.‬‬ ‫‪180‬‬ ‫‪210‬‬ ‫‪190‬‬ ‫‪320‬‬ ‫‪280‬‬ ‫‪400‬‬ ‫‪430‬‬ ‫‪440‬‬ ‫‪390‬‬ ‫‪600‬‬ ‫‪610‬‬ ‫‪670‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ y1.‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x1‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬

‫ﻛل اﻟﻣﺧرﺟﺎت اﻟﺗﻰ ﺗﻛﻠﻣﻧﺎ ﻋﻠﯾﮭﺎ ﺳﺎﺑﻘﺎ واﻟﺟدﯾد ھو اﻟﺑواﻗﻰ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪e=y1-yy‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪{24.4087,-28.3771,11.6229,-1.16294,-21.1629,23.2654,‬‬‫‪16.7346,17.6938,47.6938,-27.8778,-77.8778,46.5506,‬‬‫}‪29.021,30.979‬‬ ‫‪٢١٢‬‬

‫‪100‬‬ ‫‪125.‬‬ ‫‪125‬‬ ‫‪150‬‬ ‫‪150‬‬ ‫‪200‬‬ ‫‪200‬‬ ‫‪250‬‬ ‫‪250‬‬ ‫‪300‬‬ ‫‪300‬‬ ‫‪350‬‬ ‫‪400‬‬ ‫‪400‬‬


‫اﻟﺑواﻗﻰ اﻟﻣﻌﯾﺎرﯾﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪mse‬‬

‫‪di  e ‬‬

‫واﻟﻣﺧرج ھو‬

‫‪{0.664208,-0.772198,0.316281,-0.031646,-0.575885,0.633099,‬‬‫‪0.45538,0.481484,1.29784,-0.75861,-2.11921,1.26673,‬‬‫}‪0.789719,0.842999‬‬

‫ﺑواﻗﻰ ﺳﺗودﯾﻧت ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪1 x1  xb ^2 ‬‬ ‫‪ri  e  ‬‬ ‫‪mse1  ‬‬ ‫‪  N‬‬ ‫‪n‬‬ ‫‪sxx‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪{0.745861,-0.843355,0.345426,-0.0338405,‬‬‫‪0.615821,0.660343,-0.474977,0.500064,1.34793,-0.800463,‬‬‫}‪2.23613,1.38837,-0.924322,0.986682‬‬

‫اﻟﺟدول اﻟﺳﺎﺑق ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]‪TableForm[def‬‬

‫ﺳ وف ﻧﺗﻧ ﺎول ﻓ ﻲ اﻷﺟ زاء اﻟﺗﺎﻟﯾ ﮫ ﺑﻌ ض اﻟط رق اﻟﺑﯾﺎﻧﯾ ﮫ واﻟﺗﺣﻠﯾﻠﯾ ﮫ ﻻﻛﺗﺷ ﺎف وﺗﺻ ﺣﯾﺢ‬ ‫اﻻﻧﺣراﻓﺎت ﻋن ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻲ )‪ (١-٤‬وذﻟك ﺑﺈﺳﺗﺧدام اﻟﺑواﻗﻲ‪.‬‬ ‫)‪ (١-١٢-٤‬رﺳوم اﻟﺑواﻗﻰ‬ ‫ﺳ وف ﻧﺗﻧ ﺎول ﻓ ﻲ ھ ذا اﻟﺟ زء ﺑﻌ ض اﻻﻧ واع ﻣ ن رﺳ وم اﻟﺑ واﻗﻲ )أو رﺳ وم اﻟﺑ واﻗﻰ‬ ‫اﻟﻣﻌﯾﺎرﯾﺔ أو رﺳوم ﺳ ﺗﯾودﻧت( واﻟﺗ ﻲ ﺗﺳ ﺗﺧدم ﻓ ﻲ اﻟﻛﺷ ف ﻋ ن اﻻﻧﺣراﻓ ﺎت ﻋ ن ﻧﻣ وذج‬ ‫اﻻﻧﺣدار )‪ .(١-٤‬ﻛﺛﯾر ﻣ ن ﺑ راﻣﺞ اﻟﺣﺎﺳ ب اﻵﻟ ﻲ اﻟﺟ ﺎھزه واﻟﺗ ﻰ ﺗﺧص اﻻﻧﺣ دار ﺗﻧ ﺗﺞ‬ ‫ﺗﻠك اﻟرﺳوم ﺣﺳب اﻟطﻠب وﻓﻲ ھذه اﻟﺣﺎﻟﺔ ﻧﺣﺗﺎج إﻟﻰ ﺟﮭد ﻗﻠﯾ ل ﻓ ﻲ ﺗﺷ ﺧﯾص اﻻﻧﺣ راف‬ ‫ﻋن اﻟﻧﻣوذج‪.‬‬ ‫ا‪ -‬رﺳم اﻟﺑواﻗﻰ ﻣﻘﺎﺑل اﻟﻘﯾم اﻟﺗﻘدﯾرﯾﮫ‪:‬‬ ‫‪٢١٣‬‬


‫ان رﺳم اﻟﺑواﻗﻲ ‪) ei‬أو اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﮫ أو ﺑ واﻗﻰ ﺳ ﯾﺗودﻧت( ﻣﻘﺎﺑ ل اﻟﻘ ﯾم اﻟﻣﻘ دره‬ ‫‪ yˆ i‬ﯾﻔﺳ ر ﻟﻧ ﺎ ﺑﺻ ورة ﻋﺎﻣ ﺔ ﻣ ﺎ إذا ﻛﺎﻧ ت ﻓ روض اﻟﺗﺣﻠﯾ ل ﻣﺗ وﻓرة أو ﻻ‪ .‬إذا ﻛ ﺎن‬ ‫اﻟﻧﻣوذج اﻟﻣﻘدر ﻣﻼﺋﻣﺎ ﻓﺈن ﺷﻛل إﻧﺗﺷﺎر اﻟﺑواﻗﻲ ﯾﺄﺧذ اﻟﺷﻛل اﻟﻣوﺿﺢ ﻓ ﻲ ﺷ ﻛل )‪(١٣-٤‬‬ ‫واﻟﺧ ﺎص ﺑﺎﻟﻣﺛ ﺎل )‪ (١٥-٤‬ﺣﯾ ث اﻟﻧﻘ ﺎط ﺗﻧﺗﺷ ر ﻋﺷ واﺋﯾﺎ ً ﺣ ول اﻟﺻ ﻔر داﺧ ل ﺣ زام اﻓﻘ ﻰ‬ ‫وﻻ ﺗوﺟ د ﻧﺗ وءات أو اﺗﺟ ﺎه ﻣﻌ ﯾن ﻛ ﺎن ﺗﺻ ﺎﻋدﯾﺎ أو ﺗﻧﺎزﻟﯾ ﺎ‪ .‬ﻧﻔ س اﻟﺷ ﺊ ﻋﻧ د اﺳ ﺗﺧدام‬ ‫اﻟﺑ واﻗﻰ اﻟﻣﻌﯾﺎرﯾ ﺔ أو ﺑ واﻗﻰ ﺳ ﺗﯾودﻧت ﻛﻣ ﺎ ھ و ﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل )‪(١٥-٤) ، (١٤-٤‬‬ ‫)واﻟﺧﺎص ﺑﺎﻟﻣﺛﺎل )‪ ((١٥-٤‬ﻋﻠﻲ اﻟﺗواﻟﻰ‪.‬‬

‫ﺷﻛل )‪(١٣-٤‬‬

‫ﺷﻛل )‪(١٤-٤‬‬

‫‪٢١٤‬‬


‫ﺷﻛل )‪(١٥-٤‬‬ ‫إذا ﻛﺎﻧ ت اﻟﻧﻘ ﺎط ﻓ ﻲ رﺳ م اﻟﺑ واﻗﻰ ﺗﺗ وزع ﻋﻠ ﻲ ﺷ ﻛل ﻣﻧﺣﻧ ﻰ ﻛﻣ ﺎ ﯾﺗﺿ ﺢ ﻣ ن ﺷ ﻛل‬ ‫)‪ (١٦-٤‬ﻓﮭ ذا ﯾ دل ﻋﻠ ﻲ ﻋ دم اﻟﺧطﯾ ﮫ‪ .‬وھ ذا ﯾﻌﻧ ﻰ اﻟﺣﺎﺟ ﮫ اﻟ ﻰ إﺿ ﺎﻓﺔ ﻣﺗﻐﯾ رات ﻣﺳ ﺗﻘﻠﮫ‬ ‫أﺧرى ﻓﻲ اﻟﻧﻣوذج‪ .‬ﻋﻠ ﻲ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل ﺣ د اﻟﺗرﺑﯾ ﻊ ﻗ د ﯾﻛ ون ﺿ رورﯾﺎ ً‪ .‬اﻟﺗﺣ وﯾﻼت ﻋﻠ ﻲ‬ ‫اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل و )أو( اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﻗد ﺗﻛون ﻣطﻠوﺑﮫ‪.‬‬ ‫‪e‬‬ ‫‪60‬‬ ‫‪40‬‬ ‫‪20‬‬

‫‪300‬‬

‫‪250‬‬

‫‪200‬‬

‫‪150‬‬

‫‪100‬‬

‫‪50‬‬ ‫‪-20‬‬ ‫‪-40‬‬ ‫‪-60‬‬

‫ﺷﻛل ) ‪( ١٦ – ٤‬‬ ‫اﻟﺣﺎﻟ ﮫ اﻟﺗ ﻰ ﯾﻛ ون ﻓﯾﮭ ﺎ ﻓ رض اﻟﺗﺑ ﺎﯾن ﻏﯾ ر ﻣﺗﺣﻘ ق ﻣوﺿ ﺣﮫ ﻓ ﻲ ﺷ ﻛل )‪(١٧-٤‬‬ ‫ﺣﯾ ث ﯾ زداد اﻻﻧﺗﺷ ﺎر اﻟرأﺳ ﻰ ﻟﻠﺑ واﻗﻰ ﻣ ﻊ زﯾ ﺎدة ‪ yˆ i‬وﺗﺳ ﻣﻰ ھ ذه اﻟﺣﺎﻟ ﺔ اﻟﺷ ﻛل اﻟﻘﻣﻌ ﻲ‬ ‫اﻟﻣﻔﺗوح ﻣن اﻷﻣﺎم‪ .‬وھذا ﯾﻌﻧﻰ أن ﺗوزﯾﻌﺎت ‪ Yi‬ﻟﮭﺎ ﺗﺑ ﺎﯾن ﯾ زداد ﻣ ﻊ زﯾ ﺎدة ‪ .  Y xi‬أﻣ ﺎ‬ ‫ﻓﻲ ﺷﻛل )‪ (١٨-٤‬ﻓﻧﺟد اﻻﻧﺗﺷ ﺎر اﻟرأﺳ ﻲ ﻟﻠﺑ واﻗﻰ ﯾﻘ ل ﻣ ﻊ زﯾ ﺎدة ‪ yˆ i‬وﺗﺳ ﻣﻰ ھ ذه اﻟﺣﺎﻟ ﮫ‬ ‫اﻟﺷﻛل اﻟﻘﻣﻌﻲ اﻟﻣﻔﺗوح ﻣن اﻟﺧﻠف‪ .‬وھذا ﯾﻌﻧﻰ أن ﺗوزﯾﻌ ﺎت ‪ Yi‬ﻟﮭ ﺎ ﺗﺑ ﺎﯾن ﯾﻘ ل ﻣ ﻊ زﯾ ﺎدة‬ ‫‪ .  Y xi‬واﺧﯾ را ﺷ ﻛل )‪ (١٩-٤‬واﻟ ذى ﯾوﺿ ﺢ ﻛ ﻼ اﻟﺷ ﻛﻠﯾن اﻟﺳ ﺎﺑﻘﯾن اى ﺷ ﻛل اﻟﻘ وس‬ ‫اﻟﻣ زدوج وھ ذا ﯾﺣ دث ﻋﻧ دﻣﺎ ﺗﻛ ون ﻗ ﯾم ‪ y i‬ﻧﺳ ب ﺗﻘ ﻊ ﺑ ﯾن ‪ 1 , 0‬ﺣﯾ ث ﺗﺑ ﺎﯾن ﻧﺳ ﺑﺔ ذى‬

‫‪٢١٥‬‬


‫اﻟﺣ دﯾن اﻟﻘرﯾﺑ ﮫ ﻣ ن ‪ 0.5‬ﯾﻛ ون اﻛﺑ ر ﻣ ن اﺧ رى ﻗرﯾﺑ ﮫ ﻣ ن اﻟﺻ ﻔر او اﻟواﺣ د‬ ‫اﻟﺻﺣﯾﺢ‪.‬ﻋﻣوﻣﺎ َ ﺑﻔﺿل اﺳﺗﺧدام اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ أو ﺑواﻗﻰ ﺳﯾﺗودﻧت ﻓﻲ رﺳم اﻟﺑواﻗﻰ‪.‬‬ ‫‪e‬‬ ‫‪20‬‬ ‫‪15‬‬ ‫‪10‬‬ ‫‪5‬‬ ‫‪100‬‬

‫‪95‬‬

‫‪90‬‬

‫‪80‬‬

‫‪85‬‬

‫‪75‬‬ ‫‪-5‬‬ ‫‪-10‬‬ ‫‪-15‬‬

‫ﺷﻛل )‪(١٧-٤‬‬ ‫‪e‬‬

‫ﺷﻛل )‪(١٨-٤‬‬

‫‪٢١٦‬‬


‫ﺷﻛل )‪( ١٩-٤‬‬ ‫اﯾﺿﺎ رﺳم اﻟﺑواﻗﻰ ‪ ei‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻗد ﯾﻛﺷف ﻟﻧ ﺎ ﻋ ن اﻟﻣﺷ ﺎھدات اﻟﺷ ﺎذه )اﻟﺧ وارج( واﻟﺗ ﻰ‬ ‫ﺗﻣﺛل ﻣﺟﻣوﻋﺔ ﻗﻠﯾﻠﮫ ﻣن اﻟﻣﺷﺎھدات ﻓﻲ اﻟﻌﯾﻧﮫ‪ .‬أن وﺟود ﺑﯾﺎﻧﺎت ﺷﺎذه ﻓ ﻲ اﻟﻌﯾﻧ ﺔ ﻗ د ﯾ ؤدى‬ ‫اﻟﻰ اﻟﺗوﺻل اﻟﻰ ﻧﺗﺎﺋﺞ ﺧﺎطﺋﺔ‪ .‬إذا ﺑدأ ﻟﻧﺎ ﻣن ﺷﻛل اﻻﻧﺗﺷﺎر أن ھﻧ ﺎك ﻧﻘط ﺔ أو ﻋ دة ﻧﻘ ﺎط‬ ‫ﺗﺑﻌد ﺑﺻورة واﺿﺣﺔ ﻋن ﺑﻘﯾﺔ اﻟﻘﯾم ﻓﺈن ھذه اﻟﻧﻘطﺔ أو اﻟﻧﻘﺎط ﺗﻣﺛ ل ﺑﯾﺎﻧ ﺎت ﺷ ﺎذة ﯾﺳ ﺗدﻋﻰ‬ ‫دراﺳﺗﮭﺎ‪.‬‬ ‫أﯾﺿ ﺎ رﺳ وم اﻟﺑ واﻗﻲ اﻟﻣﻌﯾﺎرﯾ ﺔ أو ﺑ واﻗﻲ ﺳ ﺗﯾودﻧت ﺗﻛ ون ﻣﻔﯾ ده ﻓ ﻲ اﻛﺗﺷ ﺎف‬ ‫اﻻﻧﺣ راف ﻋ ن اﻻﻋﺗ دال ‪ .‬ﻋﻧ دﻣﺎ ﯾﻛ ون ﺗوزﯾ ﻊ اﻷﺧط ﺎء طﺑﯾﻌ ﻲ ﻓ ﺈن ﺗﻘرﯾﺑ ﺎ ‪ 68%‬ﻣ ن‬ ‫اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ ﺳوف ﺗﻘﻊ ﺑﯾن ‪ -1, +1‬وﺗﻘرﯾﺑﺎ ‪ 95%‬ﻣﻧﮭم ﯾﻘﻊ ﺑ ﯾن ‪ -2,+2‬وﻣ ﺎ ﯾزﯾ د‬ ‫أو ﯾﻘل ﻋن ذﻟك ﯾﻌﺗﺑر أﺧطﺎء ﺷﺎذه )اﻟﺧوارج ‪.(outliers‬‬ ‫ب‪ -‬رﺳم اﻟﺑواﻗﻰ ﻣﻘﺎﺑل ﻣﺗﻐﯾر ﻣﺳﺗﻘل‪:‬‬ ‫ﻋﻧ د رﺳ م اﻟﺑ واﻗﻰ ‪ ei‬ﻣﻘﺎﺑ ل ‪ x i‬وﻋﻧ دﻣﺎ ﯾﻛ ون اﻟﻧﻣ وذج ﻣﻧﺎﺳ ﺑﺎ ﻓ ﺈن اﻟﻧﻘ ﺎط ﻋﻠ ﻲ‬ ‫اﻟرﺳ م ﺗﺗﺑﻌﺛ ر ﻋﺷ واﺋﯾﺎ داﺧ ل ﺣ زام اﻓﻘ ﻲ ﺣ ول اﻟﺻ ﻔر دون ان ﺗظﮭ ر اﺗﺟﺎھ ﺎت ﻣﻧﺗظﻣ ﮫ‬ ‫ﻷن ﺗﻛون ﻣوﺟﺑﮫ او ﺳ ﺎﻟﺑﮫ‪ .‬ان رﺳ م اﻟﺑ واﻗﻰ ‪ ei‬ﻣﻘﺎﺑ ل ﻗ ﯾم ‪ x i‬ﯾﻛ ﺎﻓﺊ رﺳ م اﻟﺑ واﻗﻰ ‪ei‬‬ ‫ﻣﻘﺎﺑ ل اﻟﻘ ﯾم اﻟﺗﻘدﯾرﯾ ﺔ ‪ yˆ i‬وذﻟ ك ﻻن اﻟﻘ ﯾم اﻟﺗﻘدﯾرﯾ ﮫ ‪ yˆ i‬ﺗﻣﺛ ل دوال ﺧطﯾ ﮫ ﻓ ﻲ اﻟﻘ ﯾم ‪x i‬‬ ‫ﻟﻠﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل واﻟ ذى ﯾﺗ ﺄﺛر ﻓﻘ ط ھ و ﺗ درﯾﺞ ﻣﺣ ور ‪ x‬وﻟ ﯾس اﻟﻧﺳ ق اﻷﺳﺎﺳ ﻰ ﻟﻠﻧﻘ ﺎط‬ ‫اﻟﻣرﺳوﻣﺔ‪.‬‬ ‫ج‪ -‬رﺳم اﻟﺑواﻗﻰ ﻣﻘﺎﺑل زﻣن‪:‬‬ ‫ﺑﻌض اﻟﺗطﺑﯾﻘﺎت ﻓﻲ اﻻﻧﺣدار ﺗﺷﺗﻣل ﻋﻠﻲ ﻣﺗﻐﯾر ﺗﺎﺑﻊ وﻣﺗﻐﯾرات ﻣﺳ ﺗﻘﻠﮫ ﻟﮭ ﺎ طﺑﯾﻌ ﺔ‬ ‫ان ﺗﻛ ون ﻣﺗﺗﺎﺑﻌ ﮫ ﻣ ﻊ اﻟ زﻣن‪ .‬اﻟﺑﯾﺎﻧ ﺎت ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﮫ ﺗﺳ ﻣﻰ اﻟﺳﻼﺳ ل اﻟزﻣﻧﯾ ﮫ‪ .‬ﻧﻣ ﺎذج‬ ‫اﻻﻧﺣ دار اﻟﺗ ﻰ ﺗﺳ ﺗﺧدم اﻟﺳﻼﺳ ل اﻟزﻣﻧﯾ ﮫ ﺗﻧﺗﺷ ر ﻓ ﻲ ﻣﺟ ﺎل اﻻﻗﺗﺻ ﺎد‪ .‬إن ﻓ رض ﻋ دم‬ ‫اﻻرﺗﺑﺎط أو اﻻﺳﺗﻘﻼل ﻟﻼﺧطﺎء ﻟﺑﯾﺎﻧﺎت اﻟﺳﻼﺳل اﻟزﻣﻧﯾ ﮫ ﯾﻛ ون ﻏﺎﻟﺑ ﺎ ﻏﯾ ر ﻣﺗﺣﻘ ق ‪.‬ﻋ ﺎدة‬ ‫اﻻﺧط ﺎء ﻓ ﻲ اﻟﺳﻼﺳ ل اﻟزﻣﻧﯾ ﮫ ﺗﻛ ون ﻣرﺗﺑط ﺔ ‪،‬أي أن ‪ E i  j   0‬و ‪ . i  j‬ﯾﻘ ﺎل‬ ‫ﻟﺣ دود اﻟﺧط ﺄ ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ اﻧﮭ ﺎ ﻣرﺗﺑط ﮫ ذاﺗﯾ ﺎ‪ .‬ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﻓ ﺈن رﺳ م اﻟﺑ واﻗﻰ ‪ei‬‬ ‫‪٢١٧‬‬


‫ﻣﻘﺎﺑل اﻟزﻣن ﯾﻛﺷف ﻋن وﺟود اﻻرﺗﺑﺎط اﻟذاﺗﻲ ﻟﻠﺑواﻗﻰ‪ .‬ﯾﺗﺿﺢ ﻣن ﺷ ﻛل )‪ (٢٠-٤‬وﺟ ود‬ ‫ارﺗﺑﺎط ذاﺗﻲ ﻣوﺟب ﺣﯾث ﺗﻛون ھﻧﺎك ﻋدة ﻧﻘﺎط ﻣوﺟﺑﮫ ﺗﻠﯾﮭﺎ ﻋدة ﻧﻘﺎط ﺳﺎﻟﺑﮫ‪.‬‬ ‫‪20‬‬ ‫‪15‬‬ ‫‪10‬‬ ‫‪5‬‬

‫‪20‬‬

‫‪10‬‬

‫‪15‬‬

‫‪5‬‬ ‫‪-5‬‬ ‫‪-10‬‬

‫ﺷﻛل )‪(٢٠-٤‬‬ ‫أﻣ ﺎ ﺷ ﻛل )‪ (٢١-٤‬ﻓﯾوﺿ ﺢ وﺟ ود ارﺗﺑ ﺎط ذاﺗ ﻲ ﺳ ﺎﻟب ﺣﯾ ث ﻧﻘ ﺎط اﻟﺑ واﻗﻰ‬ ‫ﺗﺗﻌﺎﻗ ب ﺑﺎﻷﺷ ﺎرة ﻓ ﺎﻻوﻟﻰ ﻣوﺟﺑ ﮫ ﻣ ﺛﻼ واﻟﺛﺎﻧﯾ ﮫ ﺳ ﺎﻟﺑﮫ واﻟﺛﺎﻟﺛ ﮫ ﻣوﺟﺑ ﮫ واﻟراﺑﻌ ﮫ ﺳ ﺎﻟﺑﮫ‬ ‫وھﻛذا‪.‬‬ ‫‪20‬‬ ‫‪15‬‬ ‫‪10‬‬ ‫‪5‬‬

‫‪20‬‬

‫‪10‬‬

‫‪15‬‬

‫‪5‬‬ ‫‪-5‬‬

‫اﻟﺰﻣﻦ‬

‫‪-10‬‬

‫ﺷﻛل )‪(٢١-٤‬‬ ‫ﻣﺛﺎل )‪(١٦-٤‬‬ ‫ﯾُﺗوﻗﻊ أن ﺗﻘل ﻛﺗﻠﮫ ﻋﺿﻼت اﻟﺷﺧص ﻣﻊ اﻟﻌﻣر ‪ ،‬وﻟﺗﻘﺻﻲ ھ ذه اﻟﻌﻼﻗ ﺔ ﻋﻧ د اﻟﻧﺳ ﺎء‬ ‫‪ .‬اﺧﺗﺎر ﺑﺎﺣث ﺗﻐذﯾﺔ أرﺑﻌﮫ ﻧﺳ ﺎء ﻋﺷ واﺋﯾﺎ ﻣ ن ﻛ ل ﺷ رﯾﺣﺔ ﻋﻣرﯾ ﮫ ﻣ ن ‪ 10‬ﺳ ﻧوات ﺗﺑ دا‬ ‫ﺑﺎﻟﻌﻣر ‪ 40‬وﺗﻧﺗﮭﻲ ﺑﺎﻟﻌﻣر ‪ .79‬ﯾﻌطﻲ ﺟدول اﻟﺗ ﺎﻟﻰ اﻟﻧﺗﯾﺟ ﺔ ‪ x ،‬اﻟﻌﻣ ر و ‪ y‬ﻗﯾ ﺎس ﻛﺗﻠ ﺔ‬ ‫اﻟﻌﺿﻠﺔ ‪ .‬ﺑﺎﻓﺗراض ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻰ اﻟﺑﺳﯾط )‪. (١ – ٤‬‬ ‫‪٢١٨‬‬


‫أوﺟد ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ‪.‬‬

‫)أ(‬

‫) ب ( اﺣﺳب اﻟﺑواﻗﻲ واﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ وﺑواﻗﻲ ﺳﺗﯾودﻧت وﻣﺛﻠﮭ ﺎ ﺑﯾﺎﻧﯾ ﺎ ً‪ .‬ھ ل ﺗﺑ دو داﻟ ﮫ‬ ‫اﻻﻧﺣدار اﻟﺧطﯾﺔ ﺗوﻓﯾﻘﺎ ﺟﯾد‪.‬‬ ‫‪78‬‬

‫‪49‬‬

‫‪53‬‬

‫‪45‬‬

‫‪58‬‬

‫‪45‬‬

‫‪65‬‬

‫‪76‬‬

‫‪56‬‬

‫‪68‬‬

‫‪73‬‬

‫‪56‬‬

‫‪67‬‬

‫‪43‬‬

‫‪64‬‬

‫‪71‬‬

‫‪x‬‬

‫‪77‬‬

‫‪105‬‬

‫‪100‬‬

‫‪97‬‬

‫‪76‬‬

‫‪116‬‬

‫‪84‬‬

‫‪65‬‬

‫‪80‬‬

‫‪78‬‬

‫‪73‬‬

‫‪87‬‬

‫‪68‬‬

‫‪100‬‬

‫‪91‬‬

‫‪82‬‬

‫‪y‬‬

‫اﻟﺣــل‬ ‫)أ( ﯾﺗﺿﺢ ﻣن ﺷﻛل اﻻﻧﺗﺷﺎر )‪ (٢٢-٤‬أن اﻟﺧط اﻟﻣﺳﺗﻘﯾم ھ و أﻓﺿ ل طرﯾﻘ ﺔ ﻟﺗﻣﺛﯾ ل ھ ذه‬ ‫اﻟﺑﯾﺎﻧﺎت ‪:‬‬

‫أي أﻧﻧﺎ ﻧﻔﺗرض اﻟﻧﻣوذج اﻟﺧطﻰ اﻟﺑﺳﯾط ‪.‬‬ ‫‪y‬‬ ‫‪120‬‬ ‫‪100‬‬ ‫‪80‬‬ ‫‪60‬‬ ‫‪40‬‬

‫‪x‬‬

‫‪20‬‬ ‫‪x‬‬ ‫‪100‬‬

‫‪80‬‬

‫‪40‬‬

‫‪60‬‬

‫‪20‬‬

‫ﺷﻛل اﻻﻧﺗﺷﺎر )‪(٢٢-٤‬‬ ‫ﺑﻣﺎ أن‬

‫‪ β 0 , β1‬ﻣﺟﮭوﻟﺗﺎن ﻓﺈﻧﻧﺎ ﻧﻘدرھﻣﺎ ﻣن ﻣﺷﺎھدات اﻟﻌﯾﻧﺔ ﺣﯾث ‪:‬‬ ‫‪ x i2  60409 ,‬‬

‫‪ x i  967‬‬

‫‪٢١٩‬‬

‫‪n  16‬‬


‫‪ y i  1379.‬‬

‫‪,‬‬

‫‪y  86.1875 ,‬‬

‫‪x  60.4375‬‬

‫‪ x i y i  81331‬‬

‫‪,‬‬

‫‪x i yi‬‬ ‫‪SXY‬‬ ‫‪n‬‬ ‫‪b1 ‬‬ ‫‪‬‬ ‫‪SXX‬‬ ‫‪(x i ) 2‬‬ ‫‪x i2 ‬‬ ‫‪n‬‬ ‫)‪(967)(1379‬‬ ‫‪81331 ‬‬ ‫‪16‬‬ ‫‪‬‬ ‫‪(967) 2‬‬ ‫‪60409 ‬‬ ‫‪16‬‬ ‫‪ 2012.3125‬‬ ‫‪‬‬ ‫‪ 1.02359 ,‬‬ ‫‪1965.9375‬‬ ‫‪b 0  y  b1x  86.1875  (1.02359)(60.4375)  148.051 .‬‬ ‫‪x i yi ‬‬

‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪yˆ  148.051  1.02359 x.‬‬

‫واﻟﻣوﺿﺣﺔ ﺑﯾﺎﻧﯾﺎ ً ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻓﻲ ﺷﻛل )‪. (٢٣ – ٤‬‬ ‫‪y‬‬ ‫‪120‬‬ ‫‪100‬‬ ‫‪80‬‬ ‫‪60‬‬ ‫‪40‬‬ ‫‪20‬‬ ‫‪x‬‬ ‫‪100‬‬

‫‪80‬‬

‫‪40‬‬

‫‪60‬‬

‫‪20‬‬

‫ﺷﻛل ) ‪(٢٣ -٤‬‬ ‫)ب( اﻟﺑواﻗﻲ واﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ وﺑواﻗﻲ ﺳﺗﯾودﻧت ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪( y i  yˆ i ) 2‬‬ ‫‪yˆ i‬‬ ‫‪y i  yˆ i‬‬ ‫‪di‬‬ ‫‪ri‬‬

‫‪٢٢٠‬‬

‫‪yi‬‬


‫‪0.7939‬‬ ‫‪1.0138‬‬ ‫‪- 0.4837‬‬ ‫‪- 1.3747‬‬ ‫‪- 0.4470‬‬ ‫‪- 0.0393‬‬ ‫‪- 0.0535‬‬ ‫‪- 1.2859‬‬ ‫‪- 0.6301‬‬ ‫‪0.2975‬‬ ‫‪1.6792‬‬ ‫‪- 1.5199‬‬ ‫‪- 0.5979‬‬ ‫‪0.7430‬‬ ‫‪0.8515‬‬ ‫‪1.0533‬‬

‫‪0.8223‬‬ ‫‪1.0480‬‬ ‫‪- 0.4972‬‬ ‫‪- 1.4223‬‬ ‫‪- 0.4611‬‬ ‫‪- 0.0408‬‬ ‫‪- 0.0553‬‬ ‫‪- 1.3265‬‬ ‫‪- 0.6535‬‬ ‫‪0.3076‬‬ ‫‪1.7270‬‬ ‫‪- 1.5688‬‬ ‫‪- 0.6149‬‬ ‫‪0.7658‬‬ ‫‪0.8767‬‬ ‫‪1.0931‬‬

‫‪6.6241‬‬ ‫‪8.4590‬‬ ‫‪- 4.0363‬‬ ‫‪- 11.4701‬‬ ‫‪- 3.7296‬‬ ‫‪- 0.3286‬‬ ‫‪- 0.4466‬‬ ‫‪- 10.7296‬‬ ‫‪- 5.2578‬‬ ‫‪2.4826‬‬ ‫‪14.0108‬‬ ‫‪- 12.6824‬‬ ‫‪- 4.9891‬‬ ‫‪6.1995‬‬ ‫‪7.1051‬‬ ‫‪8.7892‬‬

‫‪43.8795‬‬ ‫‪71.5553‬‬ ‫‪16.2920‬‬ ‫‪131.5653‬‬ ‫‪13.9104‬‬ ‫‪0.1080‬‬ ‫‪0.1994‬‬ ‫‪115.1259‬‬ ‫‪27.6454‬‬ ‫‪6.1634‬‬ ‫‪196.3036‬‬ ‫‪160.8457‬‬ ‫‪24.8917‬‬ ‫‪38.4344‬‬ ‫‪50.4838‬‬ ‫‪77.2515‬‬

‫‪75.3758‬‬ ‫‪82.5409‬‬ ‫‪104.0363‬‬ ‫‪79.4701‬‬ ‫‪90.7296‬‬ ‫‪73.3286‬‬ ‫‪78.4466‬‬ ‫‪90.7296‬‬ ‫‪70.2578‬‬ ‫‪81.5173‬‬ ‫‪101.9891‬‬ ‫‪88.6824‬‬ ‫‪101.9891‬‬ ‫‪93.8004‬‬ ‫‪97.8948‬‬ ‫‪68.2107‬‬

‫رﺳم اﻟﺑواﻗﻲ ‪ ei‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪.(٢٤-٤‬‬ ‫‪e‬‬ ‫‪15‬‬ ‫‪10‬‬ ‫‪5‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪120‬‬

‫‪110‬‬

‫‪100‬‬

‫‪80‬‬

‫‪90‬‬

‫‪70‬‬

‫‪60‬‬ ‫‪-5‬‬ ‫‪-10‬‬ ‫‪-15‬‬

‫ﺷﻛل )‪(٢٤-٤‬‬

‫رﺳم اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ ‪ d i‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪. (٢٥-٤‬‬ ‫‪٢٢١‬‬

‫`‪82‬‬ ‫‪91‬‬ ‫‪100‬‬ ‫‪68‬‬ ‫‪87‬‬ ‫‪73‬‬ ‫‪78‬‬ ‫‪80‬‬ ‫‪65‬‬ ‫‪84‬‬ ‫‪116‬‬ ‫‪76‬‬ ‫‪97‬‬ ‫‪100‬‬ ‫‪105‬‬ ‫‪77‬‬


‫‪d‬‬ ‫‪3‬‬

‫‪d‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪120‬‬

‫‪110‬‬

‫‪100‬‬

‫‪80‬‬

‫‪90‬‬

‫‪70‬‬

‫‪60‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫ﺷﻛل )‪(٢٥-٤‬‬

‫رﺳم ﺑواﻗﻲ ﺳﺗﯾودﻧت ‪ ri‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪. (٢٦-٤‬‬

‫ﺷﻛل )‪(٢٦-٤‬‬ ‫ﯾﺗﺿ ﺢ ﻣ ن ﺷ ﻛل اﻻﻧﺗﺷ ﺎر )‪ (٢٢-٤‬وﻣ ن رﺳ وم اﻟﺑ واﻗﻲ أن اﻟﻣﻌﺎدﻟ ﺔ اﻟﻣﻘ دره ﺗﺑ دو‬ ‫ﺗوﻓﯾﻘﺎ ﺟﯾد‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=1‬‬ ‫‪٢٢٢‬‬


1 x1={71.,64,43,67,56,73,68,56,76,65,45,58,45,53,49,78} {71.,64,43,67,56,73,68,56,76,65,45,58,45,53,49,78} y1={82.,91,100,68,87,73,78,80,65,84,116,76,97,100,105,77} {82.,91,100,68,87,73,78,80,65,84,116,76,97,100,105,77} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] sxx=c[x1,x1] 1965.94 xb=h[x1]/l[x1] 60.4375 yb=h[y1]/l[y1] 86.1875 b1=c[x1,y1]/c[x1,x1] -1.02359 b0=yb-b1*xb 148.051 yy=b0+(b1*x1) {75.3758,82.541,104.036,79.4702,90.7297,73.3287,78.4466,90.7 297,70.2579,81.5174,101.989,88.6825,101.989,93.8004,97.8948, 68.2107} e=y1-yy {6.62416,8.45904,-4.03634,-11.4702,-3.72968,-0.32866,0.446606,-10.7297,-5.25789,2.48263,14.0108,-12.6825,4.98916,6.19955,7.1052,8.78929} t1=Transpose[{x1,y1}] {{71.,82.},{64,91},{43,100},{67,68},{56,87},{73,73},{68,78}, {56,80},{76,65},{65,84},{45,116},{58,76},{45,97},{53,100},{4 9,105},{78,77}} a=PlotRange{{0,100},{0,120}} PlotRange{{0,100},{0,120}} a1=Prolog{PointSize[.02]} Prolog{PointSize[0.02]} g= ListPlot[t1,a,a1,AxesLabel{"x","y"}]

٢٢٣


y 120 100 80 60 40 20 x 20

40

60

80

100

Graphics dd=Plot[b0+(b1*x),{x,0,100},AxesLabel{"x","y"}] y 140 120 100 80 x 20

40

60

80

100

60

80

100

Graphics Show[g,dd] y 120 100 80 60 40 20 x 20

40

Graphics n=l[x1] 16 ssto=c[y1,y1] ٢٢٤


3034.44 ssr=c[x1,y1]^2/c[x1,x1] 2059.78 sse=ssto-ssr 974.656 mse=sse/(n-2) 69.6183

di  e 



mse

{0.793906,1.01382,-0.483755,-1.3747,-0.447002,-0.0393899,0.0535258,-1.28595,-0.630159,0.297543,1.6792,-1.52,0.597951,0.743017,0.851559,1.0534}

1 x1  xb ^2  ri  e   mse1     N n sxx {0.845946,1.05069,-0.546753,-1.43667,-0.464148,-0.042544,0.0561594,-1.33528,-0.698323,0.309051,1.85859,-1.57238,0.661831,0.779167,0.912464,1.19227} pp1=Transpose[{yy,e}] {{75.3758,6.62416},{82.541,8.45904},{104.036,4.03634},{79.4702,-11.4702},{90.7297,-3.72968},{73.3287,0.32866},{78.4466,-0.446606},{90.7297,-10.7297},{70.2579,5.25789},{81.5174,2.48263},{101.989,14.0108},{88.6825,12.6825},{101.989,4.98916},{93.8004,6.19955},{97.8948,7.1052},{68.2107,8.78929 }} aa=PlotRange{{50,120},{-15,15}} PlotRange{{50,120},{-15,15}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp1, aa, a2, AxesLabel  "y", "e" e 15 10 5  y

60

70

80

90

100

-5 -10 -15

Graphics pp2=Transpose[{yy,di}]

٢٢٥

110

120


{{75.3758,0.793906},{82.541,1.01382},{104.036,0.483755},{79.4702,-1.3747},{90.7297,-0.447002},{73.3287,0.0393899},{78.4466,-0.0535258},{90.7297,1.28595},{70.2579,0.630159},{81.5174,0.297543},{101.989,1.6792},{88.6825,1.52},{101.989,0.597951},{93.8004,0.743017},{97.8948,0.851559},{68.2107,1.0 534}} aa=PlotRange{{50,120},{-3,3}} PlotRange{{50,120},{-3,3}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp2, aa, a2, AxesLabel  "y", "d" d 3 2 1  y

60

70

80

90

100

110

120

-1 -2 -3

Graphics pp3=Transpose[{yy,ri}] {{75.3758,0.845946},{82.541,1.05069},{104.036,0.546753},{79.4702,-1.43667},{90.7297,-0.464148},{73.3287,0.042544},{78.4466,-0.0561594},{90.7297,-1.33528},{70.2579,0.698323},{81.5174,0.309051},{101.989,1.85859},{88.6825,1.57238},{101.989,0.661831},{93.8004,0.779167},{97.8948,0.912464},{68.2107,1.1 9227}} aa=PlotRange{{50,120},{-3,3}} PlotRange{{50,120},{-3,3}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp3, aa, a2, AxesLabel  "y", "r"

٢٢٦


r 3 2 1  y

60

70

80

90

100

110

120

-1 -2 -3

Graphics def=Transpose[{x1,y1,yy,e,di,ri}] {{71.,82.,75.3758,6.62416,0.793906,0.845946},{64,91,82.541,8 .45904,1.01382,1.05069},{43,100,104.036,-4.03634,-0.483755,0.546753},{67,68,79.4702,-11.4702,-1.3747,1.43667},{56,87,90.7297,-3.72968,-0.447002,0.464148},{73,73,73.3287,-0.32866,-0.0393899,0.042544},{68,78,78.4466,-0.446606,-0.0535258,0.0561594},{56,80,90.7297,-10.7297,-1.28595,1.33528},{76,65,70.2579,-5.25789,-0.630159,0.698323},{65,84,81.5174,2.48263,0.297543,0.309051},{45,116, 101.989,14.0108,1.6792,1.85859},{58,76,88.6825,-12.6825,1.52,-1.57238},{45,97,101.989,-4.98916,-0.597951,0.661831},{53,100,93.8004,6.19955,0.743017,0.779167},{49,105 ,97.8948,7.1052,0.851559,0.912464},{78,77,68.2107,8.78929,1. 0534,1.19227}} TableForm[def]

٢٢٧


‫‪0.845946‬‬ ‫‪1.05069‬‬ ‫‪0.546753‬‬ ‫‪1.43667‬‬ ‫‪0.464148‬‬ ‫‪0.042544‬‬ ‫‪0.0561594‬‬ ‫‪1.33528‬‬ ‫‪0.698323‬‬ ‫‪0.309051‬‬ ‫‪1.85859‬‬ ‫‪1.57238‬‬ ‫‪0.661831‬‬ ‫‪0.779167‬‬ ‫‪0.912464‬‬ ‫‪1.19227‬‬

‫‪6.62416‬‬ ‫‪8.45904‬‬ ‫‪4.03634‬‬ ‫‪11.4702‬‬ ‫‪3.72968‬‬ ‫‪0.32866‬‬ ‫‪0.446606‬‬ ‫‪10.7297‬‬ ‫‪5.25789‬‬ ‫‪2.48263‬‬ ‫‪14.0108‬‬ ‫‪12.6825‬‬ ‫‪4.98916‬‬ ‫‪6.19955‬‬ ‫‪7.1052‬‬ ‫‪8.78929‬‬

‫‪0.793906‬‬ ‫‪1.01382‬‬ ‫‪0.483755‬‬ ‫‪1.3747‬‬ ‫‪0.447002‬‬ ‫‪0.0393899‬‬ ‫‪0.0535258‬‬ ‫‪1.28595‬‬ ‫‪0.630159‬‬ ‫‪0.297543‬‬ ‫‪1.6792‬‬ ‫‪1.52‬‬ ‫‪0.597951‬‬ ‫‪0.743017‬‬ ‫‪0.851559‬‬ ‫‪1.0534‬‬

‫‪75.3758‬‬ ‫‪82.541‬‬ ‫‪104.036‬‬ ‫‪79.4702‬‬ ‫‪90.7297‬‬ ‫‪73.3287‬‬ ‫‪78.4466‬‬ ‫‪90.7297‬‬ ‫‪70.2579‬‬ ‫‪81.5174‬‬ ‫‪101.989‬‬ ‫‪88.6825‬‬ ‫‪101.989‬‬ ‫‪93.8004‬‬ ‫‪97.8948‬‬ ‫‪68.2107‬‬

‫‪82.‬‬ ‫‪91‬‬ ‫‪100‬‬ ‫‪68‬‬ ‫‪87‬‬ ‫‪73‬‬ ‫‪78‬‬ ‫‪80‬‬ ‫‪65‬‬ ‫‪84‬‬ ‫‪116‬‬ ‫‪76‬‬ ‫‪97‬‬ ‫‪100‬‬ ‫‪105‬‬ ‫‪77‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ اﻟﻣدﺧﻼت ‪:‬‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ y1.‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x1‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬

‫ﻛ ل اﻟﻣﺧرﺟ ﺎت اﻟﺗ ﻰ ﺗﻛﻠﻣﻧ ﺎ ﻋﻠﯾﮭ ﺎ ﺳ ﺎﺑﻘﺎ واﻟﺟدﯾ د ھ و رﺳ م اﻟﺑ واﻗﻰ ﻣﻘﺎﺑ ل اﻟﻘ ﯾم اﻟﻣﻘ درة‬ ‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪g  ListPlot pp1, aa, a2, AxesLabel  "y", "e"‬‬

‫واﻟﻣﺧرج ھو‬

‫‪٢٢٨‬‬

‫‪71.‬‬ ‫‪64‬‬ ‫‪43‬‬ ‫‪67‬‬ ‫‪56‬‬ ‫‪73‬‬ ‫‪68‬‬ ‫‪56‬‬ ‫‪76‬‬ ‫‪65‬‬ ‫‪45‬‬ ‫‪58‬‬ ‫‪45‬‬ ‫‪53‬‬ ‫‪49‬‬ ‫‪78‬‬


‫‪e‬‬ ‫‪15‬‬ ‫‪10‬‬ ‫‪5‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪120‬‬

‫‪100‬‬

‫‪110‬‬

‫‪90‬‬

‫‪80‬‬

‫‪70‬‬

‫‪60‬‬ ‫‪-5‬‬ ‫‪-10‬‬ ‫‪-15‬‬

‫‪Graphics‬‬

‫رﺳم اﻟﺑواﻗﻰ اﻟﻣﻌﯾﺎرﯾﺔ ﻣﻘﺎﺑل اﻟﻘﯾم اﻟﻣﻘدرة ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪g  ListPlot pp2, aa, a2, AxesLabel  "y", "d"‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪d‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪120‬‬

‫‪110‬‬

‫‪100‬‬

‫‪90‬‬

‫‪80‬‬

‫‪70‬‬

‫‪60‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫‪‬‬ ‫‪Graphics‬‬

‫رﺳم ﺑواﻗﻰ ﺳﺗودﻧت ﻣﻘﺎﺑل اﻟﻘﯾم اﻟﻣﻘدرة ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫‪٢٢٩‬‬


g  ListPlot pp3, aa, a2, AxesLabel  "y", "r"

‫واﻟﻣﺧرج ھو‬ r 3 2 1  y

60

70

80

90

100

110

120

-1 -2 -3

Graphics

(١٧-٤) ‫ﻣﺛﺎل‬ :‫( وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺤﺰﻣﺔ اﻟﺠﺎھﺰة‬٢-٤) ‫( ﺳوف ﯾطﺑق ﻋﻠﻰ ﻣﺛﺎل‬١٦-٤) ‫اﻟﻣطﻠوب ﻓﻰ اﻟﻣﺛﺎل‬ : ‫وذﻟك ﺑﻛﺗﺎﺑﺔ اﻻﻣر اﻟﺗﺎﻟﻰ‬ Statistics`LinearRegression` .‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`LinearRegression`

oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; dpoints=Table[{oppbavg[[i]],winpct[[i]]},{i,1,Length[winpct] }]; res=Regress[dpoints,{1,x},x,RegressionReport->FitResiduals] {FitResiduals{0.0789719,-0.00298867,-0.0380742,0.0109426,0.0641429,-0.0444229,-0.00198867,0.0165151,0.0413533,-0.0878177,-0.00734412,-0.00838349,0.0279493,0.0619585}} pr=Regress[dpoints,{1,x},x,RegressionReport>PredictedResponse] ٢٣٠


{PredictedResponse{0.546028,0.514989,0.526074,0.534943,0.5 23857,0.519423,0.514989,0.479515,0.470647,0.492818,0.457344, 0.488383,0.483949,0.444042}} lsq[x_]=Fit[dpoints,{1,x},x] 1.07813 -2.2171 x Map[lsq,oppbavg] {0.546028,0.514989,0.526074,0.534943,0.523857,0.519423,0.514 989,0.479515,0.470647,0.492818,0.457344,0.488383,0.483949,0. 444042} winpct-Map[lsq,oppbavg] {0.0789719,-0.00298867,-0.0380742,-0.0109426,0.0641429,0.0444229,-0.00198867,-0.0165151,0.0413533,-0.0878177,0.00734412,-0.00838349,-0.0279493,0.0619585} Regress[dpoints,{1,x},x,RegressionReport>{StandardizedResiduals,StudentizedResiduals}] {StandardizedResiduals{1.87411,-0.0644816,-0.839202,0.247677,1.40636,-0.965242,-0.0429063,-0.359268,0.91839,1.87916,-0.171141,-0.180051,0.603555,1.55562},StudentizedResiduals{2.13351,0.0617472,-0.828143,-0.237742,1.47337,-0.962259,-0.0410828,0.345837,0.911923,-2.14166,-0.164055,-0.172619,0.586836,1.66693}} predvals=pr[[1,2]] {0.546028,0.514989,0.526074,0.534943,0.523857,0.519423,0.514 989,0.479515,0.470647,0.492818,0.457344,0.488383,0.483949,0. 444042} errvals=res[[1,2]] {0.0789719,-0.00298867,-0.0380742,-0.0109426,0.0641429,0.0444229,-0.00198867,-0.0165151,0.0413533,-0.0878177,0.00734412,-0.00838349,-0.0279493,0.0619585} eps=(Max[oppbavg]-Min[oppbavg])/Length[oppbavg]; ListPlot[Transpose[{oppbavg,errvals}],Prolog>{PointSize[0.025]},AxesOrigin->{Min[oppbavg]eps,0},PlotRange->{{Min[oppbavg]eps,Max[oppbavg]+eps},{Min[errvals]-eps,Max[errvals]+eps}}]

٢٣١


0.075 0.05 0.025 0.24

0.25

0.26

0.27

0.28

-0.025 -0.05 -0.075

Graphics eps=(Max[predvals]-Min[predvals])/Length[predvals]; ListPlot[Transpose[{predvals,errvals}],Prolog>{PointSize[0.03]},AxesOrigin->{Min[predvals]eps,0},PlotRange->{{Min[predvals]eps,Max[predvals]+eps},{Min[errvals]-eps,Max[errvals]+eps}}] 0.075 0.05 0.025 0.44

0.46

0.48

0.5

0.52

0.54

-0.025 -0.05 -0.075

Graphics errSTvals=Regress[dpoints,{1,x},x,RegressionReport>StandardizedResiduals][[1,2]] {1.87411,-0.0644816,-0.839202,-0.247677,1.40636,-0.965242,0.0429063,-0.359268,0.91839,-1.87916,-0.171141,-0.180051,0.603555,1.55562} eps=(Max[predvals]-Min[predvals])/Length[predvals]; ListPlot[Transpose[{predvals,errSTvals}],Prolog>{PointSize[0.02]},AxesOrigin->{Min[predvals]eps,0},PlotRange->{{Min[predvals]eps,Max[predvals]+eps},{Min[errSTvals]eps,Max[errSTvals]+eps}}]

٢٣٢


1.5 1 0.5 0.44

0.46

0.48

0.5

0.52

0.54

-0.5 -1 -1.5

Graphics

: ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬

‫اﻟﺑواﻗﻰ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ res=Regress[dpoints,{1,x},x,RegressionReport->FitResiduals]

‫واﻟﻣﺧرج ھو‬ {FitResiduals{0.0789719,-0.00298867,-0.0380742,0.0109426,0.0641429,-0.0444229,-0.00198867,0.0165151,0.0413533,-0.0878177,-0.00734412,-0.00838349,0.0279493,0.0619585}}

‫اﻟﻘﯾم اﻟﻣﻘدرة ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ pr=Regress[dpoints,{1,x},x,RegressionReport>PredictedResponse] ‫واﻟﻣﺧرج ھو‬ {PredictedResponse{0.546028,0.514989,0.526074,0.534943,0.5 23857,0.519423,0.514989,0.479515,0.470647,0.492818,0.457344, 0488383,0.483949,0.444042}} ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻣﻌطﺎه ﻣن اﻻﻣر‬ lsq[x_]=Fit[dpoints,{1,x},x]

‫واﻟﻣﺧرج ھو‬ 1.07813 -2.2171 x

‫اﻟﺑواﻗﻰ اﻟﻣﻌﯾﺎرﯾﺔ وﺑواﻗﻰ ﺳﺗودﻧت ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ Regress[dpoints,{1,x},x,RegressionReport>{StandardizedResiduals,StudentizedResiduals}]

‫واﻟﻣﺧرج ھو‬ ٢٣٣


‫‪{StandardizedResiduals{1.87411,-0.0644816,-0.839202,‬‬‫‪0.247677,1.40636,-0.965242,-0.0429063,-0.359268,0.91839,‬‬‫‪1.87916,-0.171141,-0.180051,‬‬‫‪0.603555,1.55562},StudentizedResiduals{2.13351,‬‬‫‪0.0617472,-0.828143,-0.237742,1.47337,-0.962259,-0.0410828,‬‬‫‪0.345837,0.911923,-2.14166,-0.164055,-0.172619,‬‬‫}}‪0.586836,1.66693‬‬

‫رﺳم اﻟﺑواﻗﻲ ‪ ei‬ﻣﻘﺎﺑل‬

‫‪xi‬‬

‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫;]‪eps=(Max[oppbavg]-Min[oppbavg])/Length[oppbavg‬‬ ‫‪ListPlot[Transpose[{oppbavg,errvals}],Prolog‬‬‫]‪>{PointSize[0.025]},AxesOrigin->{Min[oppbavg‬‬‫]‪eps,0},PlotRange->{{Min[oppbavg‬‬‫]}}‪eps,Max[oppbavg]+eps},{Min[errvals]-eps,Max[errvals]+eps‬‬

‫رﺳم اﻟﺑواﻗﻰ اﻟﻣﻌﯾﺎرﯾﺔ ﻣﻘﺎﺑل اﻟﻘﯾم اﻟﻣﻘدرة ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫;]‪eps=(Max[predvals]-Min[predvals])/Length[predvals‬‬ ‫‪ListPlot[Transpose[{predvals,errvals}],Prolog‬‬‫]‪>{PointSize[0.03]},AxesOrigin->{Min[predvals‬‬‫]‪eps,0},PlotRange->{{Min[predvals‬‬‫]}}‪eps,Max[predvals]+eps},{Min[errvals]-eps,Max[errvals]+eps‬‬

‫رﺳم ﺑواﻗﻰ ﺳﺗودﻧت ﻣﻘﺎﺑل اﻟﻘﯾم اﻟﻣﻘدرة ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫;]‪eps=(Max[predvals]-Min[predvals])/Length[predvals‬‬ ‫‪ListPlot[Transpose[{predvals,errSTvals}],Prolog‬‬‫]}‪>{PointSize[0.02]},AxesOrigin->{Min[predvals],0‬‬

‫)‪ (٢-١٢-٤‬رﺳوم ﺑواﻗﻰ اﺧرى ﻻﺧﺗﺑﺎر اﻻﻋﺗدال‬ ‫أن اﻻﻧﺣراف ﻋن اﻻﻋﺗدال ﻻ ﯾؤﺛر ﻛﺛﯾ را ﻋﻠ ﻰ اﻟﻧﻣ وذج ﻓ ﺈن ﻋ دم اﻻﻋﺗ دال ﯾ ؤﺛر ﻛﺛﯾ را‬ ‫ﻓﻲ إﺣﺻﺎءات ‪ t، F‬وﺑﺎﻟﺗ ﺎﻟﻲ ﻋﻠ ﻲ ﻓﺗ رات اﻟﺛﻘ ﺔ واﺧﺗﺑ ﺎرات اﻟﻔ روض و اﻟﺗ ﻲ ﺗﻌﺗﻣ د ﻋﻠ ﻰ‬ ‫ﻓرض اﻻﻋﺗدال‪ .‬أﻛﺛر ﻣن ذﻟك ﻓﺈن اﻷﺧطﺎء اﻟﺗﻲ ﺗﺄﺗﻲ ﻣن ﺗوزﯾﻊ ﻟﮫ ذﯾل أوﺳ ﻊ او اﺿ ﯾق‬ ‫ﻣن اﻟطﺑﯾﻌﻲ ﯾﻛون ﺗوﻓﯾق اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى ﻟﮭﺎ ﺣﺳﺎس ﻟﻠﻔﺋ ﺎت اﻟﺻ ﻐﯾرة ﻣ ن اﻟﺑﯾﺎﻧ ﺎت ‪.‬‬ ‫أن ﺗوزﯾﻌﺎت اﻷﺧطﺎء اﻟﺗﻲ ﻟﮭﺎ ذﯾل أوﺳﻊ ﻣن اﻟطﺑﯾﻌﻲ ﻏﺎﻟﺑﺎ ﺗﻧﺗﺞ ﻣن ﻗ ﯾم ﺷ ﺎذة )اﻟﺧ وارج‬ ‫‪ .(outliers‬ﻓﻲ ھذا اﻟﻘﺳم ﺳوف ﻧﻘدم رﺳوم ﺑواﻗﻲ أﺧ رى و ذﻟ ك ﻻﺧﺗﺑ ﺎر ﻣﺎ إذا ﻛﺎﻧ ت‬ ‫ﺣدود اﻟﺧطﺄ ﺗﺗﺑﻊ ﺗوزﯾﻌﺎت طﺑﯾﻌﯾ ﺔ ﻋﻧ دﻣﺎ ﯾﻛ ون ھ و ﻣطﻠ وب ﻓ ﻲ ﻧﻣ وذج اﻻﻧﺣ دار) ‪-٤‬‬ ‫‪.(١‬‬

‫‪٢٣٤‬‬


‫أ‪ -‬اﻟﻣدرج اﻟﺗﻛراري‬ ‫ﯾﻣﻛن اﺳﺗﺧدام اﻟﻣدرج اﻟﺗﻛراري ﻟﻠﺑواﻗﻲ ﻟﻠﺗﺣﻘق ﻣن ﻓ رض اﻻﻋﺗ دال‪ .‬ﻋﻧ دﻣﺎ ﯾﻛ ون‬ ‫ﻋ دد اﻟﺑ واﻗﻲ ﺻ ﻐﯾر ﺟ دا ﻓﺈﻧ ﮫ ﻻ ﯾﺳ ﻣﺢ ﺑ ﺎﻟﺗﻌرف اﻟﺑﺻ ري ﺑﺳ ﮭوﻟﺔ ﻋﻠ ﻰ ﺷ ﻛل اﻟﺗوزﯾ ﻊ‬ ‫اﻟطﺑﯾﻌﻲ‪ .‬ﯾﺗﺿ ﺢ ﻣ ن ﺷ ﻛل )‪ (a)(٢٧-٤‬أن ﻓ رض اﻻﻋﺗ دال ﻣﺗﺣﻘ ق ﺑﯾﻧﻣ ﺎ ﯾوﺿ ﺢ ﺷ ﻛل‬ ‫)‪ (b) (٢٧-٤‬أن ﺗوزﯾﻊ اﻷﺧطﺎء ﻣﻠﺗوي ﻧﺎﺣﯾﺔ اﻟﯾﻣﯾن‪.‬‬

‫)‪(a‬‬

‫)‪(b‬‬ ‫‪0.3‬‬ ‫‪0.25‬‬ ‫‪0.2‬‬ ‫‪0.15‬‬ ‫‪0.1‬‬ ‫‪0.05‬‬ ‫‪10‬‬

‫‪8‬‬

‫‪6‬‬

‫‪4‬‬

‫‪2‬‬

‫‪0.5‬‬ ‫‪0.4‬‬ ‫‪0.3‬‬ ‫‪0.2‬‬ ‫‪0.1‬‬ ‫‪2‬‬

‫‪1‬‬

‫‪-1‬‬

‫‪-2‬‬

‫ﺷﻛل )‪(٢٧-٤‬‬ ‫ﻣﺛﺎل )‪(١٨-٤‬‬ ‫ﺳﻮف ﯾﺘﻢ اﻟﻮﺻﻮل اﻟﻰ اﻟﺮﺳ ﻢ اﻟﺴﺎﺑﻖ ﺑﺈﺳﺘﺨﺪام ﺑﺮﻧ ﺎﻣﺞ ﺟﺎھﺰ‬

‫ﺣﯾ ث ﺗ م ﺗوﻟﯾ د ﺑﯾﺎﻧ ﺎت ﺗﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻰ ﻋﻠـﻰ‬

‫اﻋﺘﺒﺎر اﻧﻬﺎ ﺗﻤﺜﻞ اﻟﺒﻮاﻗﻰ وذﻟﻚ ﺑﺎﺳﺘﺨﺪام اﻻﻣﺮ‬ ‫]‪data1=RandomArray[NormalDistribution[0,1],50‬‬

‫ﻣﻊ ﺗﻤﺜﻴﻞ ﻫﺬﻩ اﻟﺒﻮاﻗﻰ ﺑﻴﺎﻧﻴﺎ ﺑﺈﺳﺘﺨﺪام اﻻﻣﺮ‬ ‫;]‪p1=normalHistogram[data1,10,DisplayFunction->Identity‬‬

‫ﻣﻊ ﻋﺪم ﺗﻨﻔﻴﺬﻩ وذﻟﻚ ﺑﻮﺿﻊ ; ﻓﻰ ﻧﻬﺎﻳﺔ اﻻﻣﺮ ‪.‬اﻳﻀـﺎ ﯾ ﺗم ﺗوﻟﯾ د ﺑﯾﺎﻧ ﺎت ﺗﺗﺑ ﻊ ﺗوزﯾ ﻊ ﻣرﺑ ﻊ ﻛ ﺎى ﻋﻠـﻰ اﻋﺘﺒـﺎر‬ ‫اﻧﻬﺎ ﺗﻤﺜﻞ اﻟﺒﻮاﻗﻰ وذﻟﻚ ﺑﺎﺳﺘﺨﺪام اﻻﻣﺮ‬ ‫]‪data2=RandomArray[ChiSquareDistribution[2],50‬‬

‫ﻣﻊ ﺗﻤﺜﻴﻞ ﻫﺬﻩ اﻟﺒﻮاﻗﻰ ﺑﻴﺎﻧﻴﺎ ﺑﺈﺳﺘﺨﺪام اﻻﻣﺮ‬ ‫;]‪p2=normalHistogram[data2,10,DisplayFunction->Identity‬‬ ‫ﻣﻊ ﻋﺪم ﺗﻨﻔﯿﺬه وذﻟﻚ ﺑﻮﺿﻊ اﻟﺮﻣﺰ ﻓﻰ ﻧﮭﺎﯾﺔ اﻻﻣر‪ .‬ﻟﺗﻣﺛﯾل اﻟﺑواﻗﻰ ﻓﻰ اﻟﺣﺎﻟﺗﯾن اﻟﺳﺎﺑﻘﺗﯾن ﺑﺎﺳﺗﺧدام اﻟﻣدرج‬ ‫اﻟﺗﻛرارى ﯾﺳﺗﺧدم اﻻﻣر‬ ‫‪٢٣٥‬‬


Show[GraphicsArray[{p1,p2}]]

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ <<Graphics`Graphics` <<Statistics`ContinuousDistributions` Clear[normalHistogram] normalHistogram[data_,bars_:10,opts___]:=Module[{p1,p2min,ma x,stepsize,counts,heights,midpts,tograph}, min=Min[data]; max=Max[data]; mean=Mean[data]; sd=StandardDeviation[data]; stepsize=(max-min)/(bars-1); counts=BinCounts[data,{minstepsize/2,max+stepsize/2,stepsize}]; heights=counts/(stepsize Length[data])//N; midpts=Table[i,{i,min,max,stepsize}]; tograph=Table[{N[midpts[[i]],3],heights[[i]],stepsize}, {i,1,bars}]; p1=GeneralizedBarChart[tograph,PlotRange>All,DisplayFunction->Identity]; p2=Plot[PDF[NormalDistribution[mean,sd],x],{x,min,max}, PlotStyle>{{GrayLevel[0.4],Thickness[0.01]}},DisplayFunction>Identity]; Show[p1,p2,opts,DisplayFunction->$DisplayFunction] ] data1=RandomArray[NormalDistribution[0,1],50] {0.584876,0.164822,0.449716,1.28953,0.520173,-1.69339,0.225564,0.462183,0.446375,0.226037,0.570508,0.735886,2.59758,0.231171,1.0225, -1.31356,2.60839,1.31471,0.893,2.17977,0.184372,-0.661991,0.066023,0.140468,-0.000891814,0.291963,0.728657,0.713564,0.724345,-0.224926,0.256552,0.771846,-0.525295,-0.0889038,-1.28344,-1.91511,-0.599998,0.0474356,0.197584,-0.598371,-0.582649,0.238121,-0.566242,0.484493,-1.61822,-2.08677,-0.191946,0.697967,1.81547,1.39897} p1=normalHistogram[data1,10,DisplayFunction->Identity]; data2=RandomArray[ChiSquareDistribution[2],50] {3.48566,3.55124,2.26459,0.116474,1.56762,1.99768,1.57667,1. 75057,1.90107,0.678585,0.955201,0.20144,1.13616,0.185295,0.4 ٢٣٦


‫‪4635,1.52742,0.423731,2.41548,0.524364,0.394676,6.45974,10.1‬‬ ‫‪795,0.721821,0.155046,0.291119,0.356386,1.963,0.0363703,1.79‬‬ ‫‪359,1.51655,0.166446,1.14102,7.69427,0.558897,2.40877,0.8278‬‬ ‫‪52,1.5761,0.33758,1.38669,3.26832,0.874976,1.21096,0.627969,‬‬ ‫}‪1.96591,1.00144,1.23365,6.79307,1.60237,0.598011,0.705157‬‬ ‫;]‪p2=normalHistogram[data2,10,DisplayFunction->Identity‬‬ ‫]]}‪Show[GraphicsArray[{p1,p2‬‬ ‫‪0.3‬‬ ‫‪0.25‬‬ ‫‪0.2‬‬ ‫‪0.15‬‬ ‫‪0.1‬‬ ‫‪0.05‬‬ ‫‪10‬‬

‫‪8‬‬

‫‪6‬‬

‫‪4‬‬

‫‪2‬‬

‫‪0.5‬‬ ‫‪0.4‬‬ ‫‪0.3‬‬ ‫‪0.2‬‬ ‫‪0.1‬‬ ‫‪2‬‬

‫‪1‬‬

‫‪-1‬‬

‫‪-2‬‬

‫‪GraphicsArray‬‬

‫ب‪ -‬رﺳم اﻻﺣﺗﻣﺎل اﻟطﺑﯾﻌﻰ‬ ‫ﻋﻣوﻣﺎ ﯾﺳﺗﺧدم اﻟ ورق اﻻﺣﺗﻣ ﺎﻟﻲ اﻟطﺑﯾﻌ ﻲ ﻓ ﻲ ﺗﻘﯾﯾم ﻓ رض ﺗﺑﻌﯾ ﺔ اﻟﺑﯾﺎﻧ ﺎت ﻟﻠﺗوزﯾ ﻊ‬ ‫اﻟطﺑﯾﻌ ﻲ ﺣﯾ ث ﺗوﻗ ﻊ اﻟﻣﺷ ﺎھدات اﻟﻣطﻠ وب اﺧﺗﺑﺎرھ ﺎ ﻣ ﻊ اﻟﻘ ﯾم اﻟﻣﺗوﻗ ﻊ اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ‬ ‫ﻋﻧدﻣﺎ ﯾﻛون اﻟﺗوزﯾﻊ طﺑﯾﻌﻲ‪ .‬ﻓﺈذا وﻗﻌت أزواج اﻟﻘﯾم اﻟﻧﺎﺗﺟﺔ ﻋﻠﻰ ﺧ ط ﻣﺳ ﺗﻘﯾم ﺗﻘرﯾﺑ ﺎ ﻓ ﺈن‬ ‫ھذا ﯾدل ﻋﻠﻰ أن اﻟﺑﯾﺎﻧﺎت ﺗﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ‪ .‬أﻣﺎ إذا اﻧﺣرﻓ ت اﻟﻧﻘ ﺎط ﻋ ن ﺧ ط ﻣﺳ ﺗﻘﯾم‬ ‫ﺑﺻورة واﺿﺣﺔ ﻓﺈن ﻓرض اﻻﻋﺗدال ﯾﺻﺑﺢ ﻣﺷﻛوﻛﺎ ﻓﻲ ﺻﺣﺗﮫ ‪ .‬ﻛﻣ ﺎ أن اﻟطرﯾﻘ ﺔ اﻟﺗ ﻲ‬ ‫ﺗﺣدث ﺑﮭﺎ ھذه اﻻﻧﺣراﻓﺎت ﻗ د ﺗﻣ دﻧﺎ ﺑ ﺑﻌض اﻟﻣﻌﻠوﻣ ﺎت ﻋ ن أﺳ ﺑﺎب ﻋ دم اﻟﺗﺑﻌﯾ ﺔ ﻟﻠﺗوزﯾ ﻊ‬ ‫اﻟطﺑﯾﻌ ﻲ ‪ .‬وﺑﻣﺟ رد ﻣﻌرﻓ ﺔ ھ ذه اﻷﺳ ﺑﺎب ﻓﺈﻧ ﮫ ﻣ ن اﻟﻣﻣﻛ ن اﺗﺧ ﺎذ ﺑﻌ ض اﻹﺟ راءات‬ ‫اﻟﺗﺻﺣﯾﺣﯾﺔ‪.‬‬ ‫ﻟ ﯾﻛن ‪ e1 , e 2 ,..., e n‬ﺗﻣﺛ ل اﻟﺑ واﻗﻲ اﻟﺗ ﻲ ﻋ ددھﺎ ‪ n‬و ﺑﻔ رض أن‬ ‫) ‪ e (1 )  e ( 2 ) ,...,  e ( n‬ﺗﻣﺛ ل اﻟﺑ واﻗﻲ ﺑﻌ د ﺗرﺗﯾﺑﮭ ﺎ ﺗﺻ ﺎﻋدﯾﺎ‪ .‬أي أن )‪ e (1‬أﺻ ﻐر‬ ‫‪1‬‬ ‫) ‪(i ‬‬ ‫ﻗﯾﻣ ﺔ ﻓ ﻲ اﻟﺑ واﻗﻲ و ‪ e‬أﻛﺑ ر ﻗﯾﻣ ﺔ ‪.‬ﺳ وف ﯾﺳ ﺗﺧدم اﻟﻣﻘ دار ‪2‬‬ ‫‪ p (i ) ‬ﻛﺗﻘرﯾ ب‬ ‫) ‪(n‬‬ ‫‪n‬‬ ‫‪i‬‬ ‫ﻟﻧﺳﺑﺔ اﻟﺑواﻗﻲ )ﻓﻲ اﻟﻌﯾﻧﺔ( اﻟﺗﻲ ﺗﻘﻊ ﻋﻧ د أو ﻋﻠ ﻰ ﯾﺳ ﺎر ) ‪ . e (i‬ﺑﻔ رض أن اﻟﻣﻘ دار ) ‪p (i‬‬ ‫‪n‬‬

‫ﻣﻌرف ﻣن اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻰ ﻣن اﻟﻌﻼﻗﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪٢٣٧‬‬


‫‪z 2‬‬ ‫‪2‬‬ ‫‪dz  p (i).‬‬

‫)‪ (i‬‬

‫‪1‬‬ ‫‪(  (i) )  P( Z   (i) )  ‬‬ ‫‪e‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬

‫وھﻧ ﺎ ﻓ ﺈن ) ‪ p (i‬ھ و اﺣﺗﻣ ﺎل اﻟﺣﺻ ول ﻋﻠ ﻰ اﻟﻘﯾﻣ ﺔ أﻗ ل ﻣ ن أو ﯾﺳ ﺎوي ) ‪  (i‬وذﻟ ك‬ ‫ﺑﺎﺳﺗﺧدام اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ‪ .‬وﺑرﺳم أزواج اﻟﻘﯾم ) ) ‪ (e (i ) ,  (i‬وإذا ﻛﺎﻧ ت اﻟﻌﻼﻗ ﺔ‬ ‫ﺑﯾن أزواج اﻟﻘﯾم ﺧطﯾﺔ ﺗﻘرﯾﺑﺎ‪ .‬ﻓﺈن ھذا ﯾدل ﻋﻠﻰ ﺗﺣﻘق ﻓرض اﻻﻋﺗ دال ﻟﺣ دود اﻷﺧط ﺎء‬ ‫‪ .‬وھﻧﺎك ورق اﺣﺗﻣﺎل طﺑﯾﻌﻲ ﻣﺻ ﻣم ﻟ ذﻟك اﻟﻐ رض ‪ .‬وﯾﻣﻛ ن إﺟ راء اﻟﺣﺳ ﺎﺑﺎت اﻟﻼزﻣ ﺔ‬ ‫ﻟﻠﺣﺻول ﻋﻠ ﻰ ﺷ ﻛل رﺳ م اﻻﺣﺗﻣ ﺎل اﻟطﺑﯾﻌ ﻲ ﺑﺎﺳ ﺗﺧدام اﻟﺣﺎﺳ ﺑﺎت اﻵﻟﯾ ﺔﻛﻣﺎ ﯾﺗﺿ ﺢ ﻣ ن‬ ‫اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ‪.‬‬ ‫ﻣﺛﺎل )‪(١٩-٤‬‬ ‫ﯾﻌط ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ اﻟﻘ ﯾم اﻟﻣرﺗﺑ ﺔ )‪ e (i‬ﻟﻠﺑ واﻗﻲ اﻟﺧﺎﺻ ﮫ ﺑﺎﻟﻣﺛ ﺎل )‪ (٥-٤‬وذﻟ ك‬ ‫ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻧﻔ ذ ﻋﻠ ﻲ اﻟﺣﺎﺳ ب اﻵﻟ ﻲ ﺑﺈﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ‪ Mathematica‬ﻣ ﻊ اﻟﻘ ﯾم‬ ‫) ‪ p (i‬وﻗﯾم اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ ) ‪  (i‬ﻟﮭ ذا اﻻﺣﺗﻣ ﺎل ﻓﻣ ﺛﻼ ﻣ ن اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﻧﺟ د‬ ‫أن ‪:‬‬

‫‪2‬‬ ‫‪1.73166‬‬ ‫‪z‬‬ ‫‪1 e 2 dz  0.958333.‬‬ ‫‪P( Z  1.73166) ‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬

‫) ‪ (i‬‬

‫) ‪e (i‬‬

‫) ‪p (i‬‬

‫‪٢٣٨‬‬

‫‪ei‬‬


‫‪- 1.73166‬‬ ‫‪- 1.15035‬‬ ‫‪- 0.812218‬‬ ‫‪- 0.548522‬‬ ‫‪- 0.318639‬‬ ‫‪- 0.104633‬‬

‫‪0.104633‬‬ ‫‪0.318639‬‬ ‫‪0.548522‬‬ ‫‪0.812218‬‬ ‫‪1.15035‬‬ ‫‪1.73166‬‬

‫‪- 8.66963‬‬ ‫‪- 8.25577‬‬ ‫‪- 5.42806‬‬ ‫‪- 3.01421‬‬ ‫‪- 1.66963‬‬

‫‪0.0416667‬‬ ‫‪0.125‬‬ ‫‪0.208333‬‬ ‫‪0.291667‬‬ ‫‪0.375‬‬ ‫‪0.458333‬‬ ‫‪0.541667‬‬ ‫‪0.625‬‬ ‫‪0.708333‬‬ ‫‪0.791667‬‬ ‫‪0.875‬‬ ‫‪0.958333‬‬

‫‪0.571936‬‬ ‫‪1.74423‬‬ ‫‪1.91652‬‬ ‫‪2.74423‬‬ ‫‪5.15808‬‬ ‫‪7.39964‬‬ ‫‪7.50266‬‬

‫‪5.15808‬‬ ‫‪- 8.66963‬‬ ‫‪- 3.01421‬‬ ‫‪- 8.25577‬‬ ‫‪1.91652‬‬ ‫‪- 1.66963‬‬ ‫‪0.571936‬‬ ‫‪7.50266‬‬ ‫‪1.74423‬‬ ‫‪- 5.42806‬‬ ‫‪7.39964‬‬ ‫‪2.74423‬‬

‫ﯾوﺿﺢ ﺷﻛل )‪ (٢٨-٤‬ﺗوﻗﯾﻊ اﻟﺑواﻗﻰ اﻟﻣرﺗﺑﺔ ) ‪ e (i‬ﻣﻊ ﻗﯾم اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ) ‪ (i‬‬

‫ﻟﻧﺣﺻل ﻓﻲ اﻟﻧﮭﺎﯾﺔ ﻋﻠﻰ رﺳم اﻻﺣﺗﻣﺎل اﻟطﺑﯾﻌﻲ‪ .‬ﻧﻼﺣظ ﻣن ﺷﻛل )‪ (٢٨-٤‬أن ازواج‬ ‫اﻟﻘﯾم ) ) ‪ (e (i ) ,  (i‬ﺗﻘﻊ ﺗﻘرﯾﺑﺎ ﻋﻠﻲ ﺧط ﻣﺳﺗﻘﯾم وﺑﺎﻟﺗﺎﻟﻲ ﻓﺈﻧﻧﺎ ﻧﻘﺑل ﻓرﺿﯾﮫ ﺗﺑﻌﯾﮫ ﺣدود‬ ‫اﻟﺧطﺄ ﻟﻠﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ‪.‬‬

‫ﺷﻛل )‪(٢٨-٤‬‬

‫‪٢٣٩‬‬


‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ x1={4,6.,2,5,7,6,3,8,5,3,1,5} {4,6.,2,5,7,6,3,8,5,3,1,5} y1={197.,272,100,228,327,279,148,377,238,142,66,239} {197.,272,100,228,327,279,148,377,238,142,66,239} p=1 1 l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] n =l[x1] 12 sxx=c[x1,x1] 46.9167 xb=h[x1]/l[x1] 4.58333 yb=h[y1]/l[y1] 217.75 b1=c[x1,y1]/c[x1,x1] 44.4139 b0=yb-b1*xb 14.1865 yy=b0+(b1*x1) {191.842,280.67,103.014,236.256,325.083,280.67,147.428,369.4 97,236.256,147.428,58.6004,236.256} e=y1-yy {5.15808,-8.66963,-3.01421,-8.25577,1.91652,1.66963,0.571936,7.50266,1.74423,-5.42806,7.39964,2.74423} ssgg=Sort[e] {-8.66963,-8.25577,-5.42806,-3.01421,1.66963,0.571936,1.74423,1.91652,2.74423,5.15808,7.39964,7.5 0266} era=Table[(i-.5)/n,{i,1,n}] {0.0416667,0.125,0.208333,0.291667,0.375,0.458333,0.541667,0 .625,0.708333,0.791667,0.875,0.958333} <<Statistics`ContinuousDistributions` qq[x_]:=Quantile[NormalDistribution[0,1],x] ffg=Map[qq,era] {-1.73166,-1.15035,-0.812218,-0.548522,-0.318639,0.104633,0.104633,0.318639,0.548522,0.812218,1.15035,1.73166 } ٢٤٠


wwwel=Transpose[{e,ssgg,era,ffg}] {{5.15808,-8.66963,0.0416667,-1.73166},{-8.66963,8.25577,0.125,-1.15035},{-3.01421,-5.42806,0.208333,0.812218},{-8.25577,-3.01421,0.291667,-0.548522},{1.91652,1.66963,0.375,-0.318639},{-1.66963,0.571936,0.458333,0.104633},{0.571936,1.74423,0.541667,0.104633},{7.50266,1.91 652,0.625,0.318639},{1.74423,2.74423,0.708333,0.548522},{5.42806,5.15808,0.791667,0.812218},{7.39964,7.39964,0.875,1. 15035},{2.74423,7.50266,0.958333,1.73166}} TableForm[wwwel] 5.15808 8.66963 0.0416667 1.73166 8.66963 8.25577 0.125 1.15035 3.01421 5.42806 0.208333 0.812218 8.25577 3.01421 0.291667 0.548522 1.91652 1.66963 0.375 0.318639 1.66963 0.571936 0.458333 0.104633

0.571936 7.50266 1.74423 5.42806 7.39964 2.74423

1.74423 1.91652 2.74423 5.15808 7.39964 7.50266

0.541667 0.625 0.708333 0.791667 0.875 0.958333

0.104633 0.318639 0.548522 0.812218 1.15035 1.73166

ssal=Transpose[{ssgg,ffg}] {{-8.66963,-1.73166},{-8.25577,-1.15035},{-5.42806,0.812218},{-3.01421,-0.548522},{-1.66963,0.318639},{0.571936,0.104633},{1.74423,0.104633},{1.91652,0.318639},{2.74423,0.5 48522},{5.15808,0.812218},{7.39964,1.15035},{7.50266,1.73166 }} ggo=ListPlot[ssal,Prolog{PointSize[.02]},PlotRange{{9,8},{-2,9}}]

٢٤١


‫‪8‬‬

‫‪6‬‬

‫‪4‬‬

‫‪2‬‬

‫‪7.5‬‬

‫‪5‬‬

‫‪-2.5‬‬

‫‪2.5‬‬

‫‪-7.5‬‬

‫‪-5‬‬

‫‪-2‬‬

‫‪Graphics‬‬

‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اﻟﺑواﻗﻰ اﻟﻣرﺗﺑﺔ )‪ e (1) , e (2) , ... , e (n‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪ssgg=Sort[e‬‬ ‫واﻟﻤﺨﺮج ھﻮ‬ ‫‪{-8.66963,-8.25577,-5.42806,-3.01421,‬‬‫‪1.66963,0.571936,1.74423,1.91652,2.74423,5.15808,7.39964,7.5‬‬ ‫}‪0266‬‬

‫اﻻﺣﺗﻣﺎﻻت اﻟﺗﺟرﯾﺑﯾﺔ اﻟﺗﺟﻣﯾﻌﯾﺔ ) ‪: p (i‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪) / n , (2 - ) / n , ... , (n - ) / n .‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪(1 ‬‬

‫]}‪era=Table[(i-.5)/n,{i,1,n‬‬ ‫واﻟﻤﺨﺮج ھﻮ ‪:‬‬ ‫‪{0.0416667,0.125,0.208333,0.291667,0.375,0.458333,0.541667,0‬‬ ‫}‪.625,0.708333,0.791667,0.875,0.958333‬‬

‫‪٢٤٢‬‬


‫ﻗ ﯾم )‪  (1) ,  (2) , ... ,  (n‬ﯾ ﺗم ﺣﺳ ﺎﺑﮭﺎ ﺑﺎﺳ ﺗﺧدام اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ ﻣ ن اﻻﻣ ر‬ ‫اﻟﺗﺎﻟﻰ ‪:‬‬ ‫]‪ffg=Map[qq,era‬‬

‫واﻟﻣﺧرج ھو ‪:‬‬ ‫‪{-1.73166,-1.15035,-0.812218,-0.548522,-0.318639,‬‬‫‪0.104633,0.104633,0.318639,0.548522,0.812218,1.15035,1.73166‬‬ ‫}‬

‫اﻟﺟ دول اﻟ ذى ﯾﺣﺗ وى ﻋﻠ ﻰ اﻟﻘ ﯾم اﻟﻣرﺗﺑ ﺔ ) ‪ e (i‬ﻟﻠﺑ واﻗﻲ ﻣ ﻊ اﻟﻘ ﯾم ) ‪ p (i‬وﻗ ﯾم اﻟﺗوزﯾ ﻊ‬ ‫اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ) ‪  (i‬ﻣﻌطﺎه ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬ ‫]‪TableForm[wwwe1‬‬

‫ﺗوﻗﯾﻊ اﻟﺑواﻗﻰ اﻟﻣرﺗﺑ ﺔ ) ‪ e (i‬ﻣ ﻊ ﻗ ﯾم اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ ) ‪  (i‬ﻟﻠﺣﺻ ول ﻋﻠ ﻰ رﺳ م‬ ‫اﻻﺣﺗﻣﺎل اﻟطﺑﯾﻌﻲ اﻟﻣوﺿﺢ ﻓﻰ ﺷﻛل )‪ (٢٨-٤‬ﯾﻌطﻰ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ ‪-:‬‬ ‫{{‪ggo=ListPlot[ssal,Prolog{PointSize[.02]},PlotRange‬‬‫]}}‪9,8},{-2,9‬‬

‫ﻋﻧدﻣﺎ ﯾﻛون ﺗوزﯾﻊ ﺣدود اﻟﺧطﺄ طﺑﯾﻌﻲ ﻛﻣﺎ ﻓﻲ ﺷﻛل )‪ a (٢٩-٤‬ﻓﺈﻧﻧﺎ ﻧﺣﺻل ﻋﻠﻰ‬ ‫رﺳم اﺣﺗﻣﺎل طﺑﯾﻌﻲ ﻣﺛﺎﻟﻲ ﻛﻣﺎ ھو ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪ b(٣٠-٤‬ﺣﯾث ﺗﻠﺗف اﻟﻧﻘﺎط ﺣول‬ ‫ﺧط ﻣﺳﺗﻘﯾم‪ .‬ﻋﻧدﻣﺎ ﯾﻛون اﻟﺗوزﯾﻊ ﻣﻠﺗوي ﻧﺎﺣﯾﺔ اﻟﯾﻣﯾن ﻛﻣﺎ ﻓﻲ ﺷﻛل )‪ c(٢٩-٤‬ﻓﺈن رﺳم‬ ‫اﻻﺣﺗﻣﺎل اﻟطﺑﯾﻌﻲ ﺳوف ﯾﻛون ﻣﻘﻌرا ﻣن اﺳﻔل ‪ downward‬ﻛﻣﺎ ﻓﻲ ﺷﻛل )‪. c(٣٠-٤‬‬ ‫أﻣﺎ إذا ﻛﺎن اﻟﺗوزﯾﻊ ﻣﻠﺗوي ﻧﺎﺣﯾﺔ اﻟﯾﺳﺎر ﻓﺎن رﺳم اﻻﺣﺗﻣﺎل اﻟطﺑﯾﻌﻲ ﯾﻛون ﻣﻘﻌرا ﻣن‬ ‫اﻋﻠﻲ ‪ . upward‬وإذا ﻛﺎن اﻟﺗوزﯾﻊ ﻟﮫ اﺣﺗﻣﺎل اﻋﻠﻲ ﻓﻲ اﻟذﯾﻠﯾن ﻣن اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ‬ ‫ﻣﺛل اﻟﺗوزﯾﻊ اﻟﻣﻧﺗظم ﻛﻣﺎ ﻓﻲ ﺷﻛل )‪ b(٢٩-٤‬او اﻟﺗوزﯾﻊ اﻟﻣﻔﻠطﺢ ﻓﺈن اﻟرﺳم ﻋﻠﻲ اﻟورق‬ ‫اﻻﺣﺗﻣﺎﻟﻲ اﻟطﺑﯾﻌﻲ ﯾﻛون ﻣﻘﻌرا ﻣن أﺳﻔل ﻧﺎﺣﯾﺔ اﻟرﻛن اﻷﯾﺳر اﻟﺳﻔﻠﻲ وﻣﻘﻌرا ﻣن اﻋﻠﻲ‬ ‫ﻧﺎﺣﯾﺔ اﻟرﻛن اﻷﯾﻣن اﻟﻌﻠوي ﻛﻣﺎ ﻓﻲ ﺷﻛل )‪ . a(٣٠-٤‬اﻟﺣﺎﻟﺔ اﻟﻌﻛﺳﯾﺔ ﻣﻌطﺎه ﻛﻣﺎ‬ ‫ﻓﻲ ﺷﻛل )‪ d (٢٩-٤‬واﻟﺗﻲ ﯾﻣﻛن ﻣﻼﺣظﺗﮭﺎ ﻓﻲ اﻟﺗوزﯾﻌﺎت اﻟﺗﻲ ﻟﮭﺎ اﺣﺗﻣﺎل أﻗل ﻓﻲ‬ ‫اﻟذﯾﻠﯾن ﻣن اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ او اﻟﻣدﺑﺑﮫ واﻟﻣوﺿﺣﮫ ﻓﻲ ﺷﻛل )‪d(٣٠-٤‬‬

‫‪٢٤٣‬‬


(a)

(b)

(c)

(d) (٢٩-٤) ‫ﺷﻛل‬ 4

(b)

(a)

(c)

(d) (٣٠-٤) ‫ﺷﻛل‬ ٢٤٤


(٢٠-٤) ‫ﻣﺛﺎل‬ : ‫( ﻧﺳﺗﺧدم اﻟﺑرﻧﺎﻣﺞ اﻟﺗﺎﻟﻰ‬٣٠-٤) ‫(وﺷﻛل‬٢٩-٤) ‫ﻟﻠﺣﺻول ﻋﻠﻰ ﺷﻛل‬ <<Statistics`ContinuousDistributions` plot1=Plot[PDF[NormalDistribution[0,1],x],{x,2,2},DisplayFunction->Identity]; plot2=Plot[PDF[UniformDistribution[0,1],x],{x,0,1},DisplayFu nction->Identity]; plot3=Plot[PDF[ChiSquareDistribution[4],x],{x,0,15},DisplayF unction->Identity]; plot4=Plot[PDF[StudentTDistribution[1],x],{x,10,10},DisplayFunction->Identity]; Show[GraphicsArray[{{plot1,plot2},{plot3,plot4}}]]

-2

-1

0.4

2

0.3

1.5

0.2

1

0.1

0.5 1

2

0.2 0.4 0.6 0.8

1

0.3 0.25 0.2 0.15 0.1 0.05

0.175 0.15 0.125 0.1 0.075 0.05 0.025 2 4 6 8 10 12 14

-10

-5

5

10

GraphicsArray normal=RandomArray[NormalDistribution[0,1],50] {0.119447,0.566809,0.280831,0.22715,0.658255,1.56798,0.180001 ,0.187362,0.596641,0.430159,-0.0966329,-0.284134,0.358295,1.26955,-0.27671,-0.0248395,-0.910254,-0.264412,0.305139,1.64856,0.703,1.65633,-0.615424,1.11452,1.18427,0.826099,0.203374,1.14628,-0.435058,2.02507,0.921211,0.616495,-1.06946,-0.965814,0.822306,0.629285,0.162396,-0.328231,0.716756,-0.658059,-

٢٤٥


0.273968,1.53388,-1.11519,-0.839082,1.80152,1.17551,0.0521744,0.368834,0.286288,0.709404} n1=normalProbability[normal,DisplayFunction->Identity]; Pearson'sCorrelationCoefficient0.99369 uniform=RandomArray[UniformDistribution[0,1],50]; Short[uniform] {0.425167,48,0.924985} n2=normalProbability[uniform,DisplayFunction->Identity]; Pearson'sCorrelationCoefficient0.97522 chi=RandomArray[ChiSquareDistribution[4],50]; Short[chi] {3.46277,48,7.38896} n3=normalProbability[chi,DisplayFunction->Identity]; Pearson'sCorrelationCoefficient0.944491 student=RandomArray[StudentTDistribution[1],50]; Short[student] {0.742873,48,0.0998677} n4=normalProbability[student,DisplayFunction->Identity]; Pearson'sCorrelationCoefficient0.691211 Show[GraphicsArray[{{n1,n2},{n3,n4}}]] Normal Probability 2

Plot

1 -2

Probability

Plot

1

-1

Normal 3

Normal 2

1

0.2

-1

-1

-2

-2

Probability

Plot

Normal

0.4

0.6

0.8

Probability

Plot 2 1

2 1 -30 -1

2

4

6

8

10

12

-2

-20

-10

-1 -2 -3

GraphicsArray

: ‫ﻟﮭﺬا اﻟﺒﺮﻧﺎﻣﺞ‬ ‫( ﯾﺗﺑﻊ اﻻﺗﻰ‬٢٩-٤)‫ﻟﻠﺤﺼﻮل ﻋﻠﻰ ﺷﻜﻞ‬ ‫اﻻﻣﺮ‬ plot1=Plot[PDF[NormalDistribution[0,1],x],{x,2,2},DisplayFunction->Identity];

٢٤٦


‫ﯾﺆدى إﻟﻰ اﻟﺤﺼﻮل ﻋﻠﻰ رﺳم اﻟﺗوزﯾﻊ طﺑﯾﻌﻰ واﻻﻣر‬ plot2=Plot[PDF[UniformDistribution[0,1],x],{x,0,1},DisplayFu nction->Identity]; ‫واﻻﻣر‬.‫ﯾﺆدى إﻟﻰ اﻟﺤﺼﻮل ﻋﻠﻰ رﺳﻢ ﺗوزﯾﻊ ﻣﻧﺗظم‬ plot3=Plot[PDF[ChiSquareDistribution[4],x],{x,0,15},DisplayF unction->Identity]; ‫ واﻻﻣر‬. ‫ﯾﺆدى إﻟﻰ اﻟﺤﺼﻮل ﻋﻠﻰ رﺳﻢ ﺗوزﯾﻊ ﻣرﺑﻊ ﻛﺎى ﺑدرﺟﺔ ﺣرﯾﺔ ارﺑﻌﺔ‬ plot4=Plot[PDF[StudentTDistribution[1],x],{x,10,10},DisplayFunction->Identity]; . ‫ﺗوزﯾﻊ ت ﺑدرﺟﺔ ﺣرﯾﺔ واﺣدة‬

‫ﯾﺆدى إﻟﻰ اﻟﺤﺼﻮل رﺳﻢ‬ : ‫اﻻواﻣر اﻟﺳﺎﺑﻘﺔ ﻻ ﺗﻧﻔذ اﻻ ﺑﻌد اﻻﻣر اﻟﺗﺎﻟﻰ‬ Show[GraphicsArray[{{plot1,plot2},{plot3,plot4}}]] . (٢٩-٤) ‫ﺣﯾث ﺗؤدى اﻟﻰ ﺷﻛل‬

‫( ﻳﻘﻮم اﻻﻣﺮ‬٣٠-٤) ‫ﻟﻠﺤﺼﻮل ﻋﻠﻰ ﺷﻜﻞ‬ normal=RandomArray[NormalDistribution[0,1],50]

‫واﻻﻣﺮ‬. ‫ﺑﺘﻮﻟﻴﺪ ﺑﻴﺎﻧﺎت ﺗﺘﺒﻊ اﻟﺘﻮزﻳﻊ اﻟﻄﺒﻴﻌﻰ‬ uniform=RandomArray[UniformDistribution[0,1],50];

‫ﺑﺘﻮﻟﻴﺪ ﺑﻴﺎﻧﺎت ﺗﺘﺒﻊ اﻟﺘﻮزﻳﻊ اﳌﻨﺘﻈﻢ واﻻﻣﺮ‬ chi=RandomArray[ChiSquareDistribution[4],50];

‫ﺑﺘﻮﻟﻴﺪ ﺑﻴﺎﻧﺎت ﺗﺘﺒﻊ ﺗﻮزﻳﻊ ﻣﺮﺑﻊ ﻛﺎى واﻻﻣﺮ‬ student=RandomArray[StudentTDistribution[1],50];

‫( ﺑــﺪون ﺗﻨﻔﻴــﺬ )ﻛﻤــﺎ‬٢٩-٤) ‫ اﻻواﻣــﺮ اﻟﺘﺎﻟﻴــﺔ ﺗـﺆدى اﱃ اﳊﺼــﻮل ﻋﻠــﻰ ﺷ ﻛل‬. ‫ﺑﺘﻮﻟﻴـﺪ ﺑﻴﺎﻧــﺎت ﺗﺘﺒــﻊ ﺗﻮزﻳـﻊ ﻣﺮﺑــﻊ ت‬ :(‫ﺗﺆدى اﱃ اﳊﺼﻮل ﻋﻠﻰ ﻣﻌﺎﻣﻞ ﺳﺒﲑﻣﺎن واﻟﺬى ﺳﻮف ﻧﺘﻨﺎوﻟﻪ ﻓﻴﻤﺎ ﺑﻌﺪ‬ n1=normalProbability[normal,DisplayFunction->Identity]; Pearson'sCorrelationCoefficient0.99369 n2=normalProbability[uniform,DisplayFunction->Identity]; Pearson'sCorrelationCoefficient0.97522 n3=normalProbability[chi,DisplayFunction->Identity]; Pearson'sCorrelationCoefficient0.944491 n4=normalProbability[student,DisplayFunction->Identity]; ٢٤٧


‫‪Pearson'sCorrelationCoefficient0.691211‬‬

‫ﻟﻠﺤﺼﻮل ﻋﻠﻰ ﺷﻜﻞ‬

‫)‪ (٣٠-٤‬ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ ‪:‬‬ ‫]]}}‪Show[GraphicsArray[{{n1,n2},{n3,n4‬‬

‫)‪ (٣-١٢-٤‬اﺧﺗﺑﺎر ﻧﻘص اﻻﻋﺗداﻟﻰ‬ ‫ﻓﻲ ھذا اﻻﺧﺗﺑﺎر ﯾﺗم ﺗرﺗﯾب اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾ ﺔ ) ‪ d (i‬ﻣ ن اﻻﺻ ﻐر اﻟ ﻰ اﻻﻛﺑ ر )ﺗرﺗﯾﺑ ﺎ‬ ‫ﺗﺻ ﺎﻋدﯾﺎ( ﺣﯾ ث ) ‪ d (1)  d ( 2 )  ...  d ( n‬ﺛ م ﯾ ﺗم ﺣﺳ ﺎب اﻟﻘ ﯾم‬ ‫) ‪ z (1)  z ( 2)  ...  z ( n‬واﻟﻣﺳﺗﺧرﺟﮫ ﻣن ﺟدول اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ ﻓ ﻲ ﻣﻠﺣ ق‬ ‫)‪ (١‬واﻟﺗ ﻰ اﻟﻣﺳ ﺎﺣﮫ ﻗﺑﻠﮭ ﺎ ﺗﺳ ﺎوى ‪ p ( i )  ( i  0 . 75 ) /( n  0 . 25 ) ‬ﺣﯾ ث‬ ‫‪ i  1,2,..., n‬وﯾﻣﻛ ن اﺳ ﺗﺧدام اﻟﺣﺎﺳ ب اﻵﻟ ﻲ ﺑﺄﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ‪ Mathematica‬ﻓ ﻲ‬ ‫ﺣﺳﺎب ﻗﯾم ) ‪ . z (i‬ﻻزواج اﻟﻘﯾم ‪:‬‬ ‫) ) ‪(d (2) , z ( 2) ),..., (d (n ) , z (n‬‬

‫‪d (1) , z (1)  ,‬‬

‫ﯾﺗم ﺣﺳﺎب ﻣﻌﺎﻣل اﻻرﺗﺑﺎط اﻟﺑﺳﯾط ‪) r‬ﻣﻌﺎﻣل ﺑﯾرﺳون( ‪ .‬ﺑﻔرض أن ﻓرض اﻟﻌدم‪:‬‬ ‫‪: H0‬‬

‫ﺗوزﯾﻊ ﺣدود اﻟﺧطﺄ ﻓﻲ ﺗوزﯾﻊ اﻻﻧﺣدار اﻟﺧطﻰ اﻟﺑﺳﯾط )‪ (١-٤‬طﺑﯾﻌﻲ‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل‪:‬‬ ‫‪: H1‬‬

‫ﺗوزﯾﻊ ﺣدود اﻟﺧطﺄ ﻓﻲ ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻰ اﻟﺑﺳﯾط )‪ (١-٤‬ﻏﯾر طﺑﯾﻌﻲ‬

‫ﻋﻧ دﻣﺎ ﯾﻛ ون ‪ H 0‬ﺻ ﺣﯾﺢ ﻓ ﺈن ‪ r‬ﻗﯾﻣ ﺔ ﻟﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ ‪ R r‬ﻟ ﮫ ﺗوزﯾ ﻊ اﺣﺗﻣ ﺎﻟﻰ‪ .‬اﻟﻘ ﯾم‬ ‫اﻟﺣرﺟ ﮫ ‪ C ‬ﻣ ن ‪ R r‬ﻣﻌط ﺎه ﻓ ﻲ اﻟﺟ دول ﻓ ﻲ ﻣﻠﺣ ق )‪ (١٠‬ﻓ ﻰ ﻛﺗ ﺎب ﻣ دﺧل ﺣ دﯾث‬ ‫ﻟﻼﺣﺻﺎء واﻻﺣﺗﻣﺎﻻت ﻟﻠدﻛﺗورة ﺛروت ﻣﺣﻣد ﻋﺑد اﻟﻣﻧﻌم وذﻟك ﻋﻧد ﻣﺳ ﺗوﯾﺎت ﻣﻌﻧوﯾ ﺔ‬ ‫ﻣﺧﺗﻠﻔﺔ‪ .‬ﻣﻧطﻘﺔ اﻟرﻓض ‪ R r  C ‬إذا وﻗﻌت ‪ r‬ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ﻧرﻓض ‪. H 0‬‬ ‫ﻣﺛﺎل )‪(٢١-٤‬‬ ‫ﯾﻌطﻰ ﺟدول اﻟﺗﺎﻟﻰ اﻟﺑواﻗﻰ اﻟﻣﻌﯾﺎرﯾ ﺔ اﻟﻣرﺗﺑ ﮫ ) ‪ d (i‬اﻟﺧﺎﺻ ﮫ ﺑﺎﻟﻣﺛ ﺎل )‪ (٥-٤‬ﻣ ﻊ ﻗ ﯾم‬ ‫) ‪ z (i ) , p (i‬ﺣﯾث اﺳﺗﺧدم ﺑرﻧﺎﻣﺞ ‪ Mathematica‬ﻓﻲ ﺣﺳﺎب ﻗﯾم )‪. z(i‬‬

‫‪٢٤٨‬‬


‫) ‪Z (i‬‬

‫) ‪p (i‬‬

‫) ‪d (i‬‬

‫‪-1.63504‬‬ ‫‪-1.11394‬‬ ‫‪-0.791639‬‬ ‫‪-0.536176‬‬ ‫‪-0.311919‬‬ ‫‪-0.102491‬‬ ‫‪0.102491‬‬ ‫‪0.311919‬‬ ‫‪0.536176‬‬ ‫‪0.791639‬‬ ‫‪1.11394‬‬ ‫‪1.63504‬‬

‫‪0.0510204‬‬ ‫‪0.132653‬‬ ‫‪0.214286‬‬ ‫‪0.295918‬‬ ‫‪0.377551‬‬ ‫‪0.459184‬‬ ‫‪0.540816‬‬ ‫‪0.622449‬‬ ‫‪0.704082‬‬ ‫‪0.785714‬‬ ‫‪0.867347‬‬ ‫‪0.94898‬‬

‫‪-1.4937‬‬ ‫‪-1.42239‬‬ ‫‪-0.935205‬‬ ‫‪-0.51932‬‬ ‫‪-0.287661‬‬ ‫‪0.0985392‬‬ ‫‪0.300514‬‬ ‫‪0.330198‬‬ ‫‪0.472805‬‬ ‫‪0.888689‬‬ ‫‪1.27489‬‬ ‫‪1.29264‬‬

‫واﻟﻣطﻠوب اﺧﺗﺑﺎر ﻓرض اﻟﻌدم‪:‬‬ ‫‪: H0‬‬

‫ﺗوزﯾﻊ ﺣدود اﻟﺧطﺄ طﺑﯾﻌﯾﮫ‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‪:‬‬ ‫ﺗوزﯾﻊ ﺣدود اﻟﺧطﺄ ﻏﯾر طﺑﯾﻌﯾﮫ‬

‫‪: H1‬‬

‫ﻣن اﻟﺑﯾﺎﻧﺎت ﻓﻰ اﻟﺟدول اﻟﺳﺎﺑق ﻧﺣﺻل ﻋﻠﻰ ﺻﯾﻐﺔ ‪ r‬اﻟﺗﺎﻟﯾﮫ ‪:‬‬

‫)‪ d (i)  z (i‬‬ ‫‪n‬‬

‫‪ z ( i ) 2 ‬‬ ‫‪‬‬

‫‪n‬‬

‫‪‬‬

‫) ‪ z (2i‬‬

‫‪ d (i) z (i) ‬‬

‫‪2  ‬‬ ‫‪ ‬‬

‫‪‬‬

‫‪r‬‬

‫‪‬‬ ‫)‪ d (i‬‬ ‫‪  d 2( i ) ‬‬ ‫‪n‬‬ ‫‪‬‬

‫‪9 . 74961‬‬ ‫‪ 0 . 981243 .‬‬ ‫) ‪(10 )( 9 . 87237‬‬

‫‪r‬‬

‫ﻟﻣﺳﺗوى ﻣﻌﻧوﯾﮫ ‪   .05‬ﻓﺈن ‪ C 0.05  0.918‬واﻟﻣﺳ ﺗﺧرﺟﮫ ﻣ ن اﻟﺟ دول‬ ‫ﻓﻲ ﻣﻠﺣق )‪) (١٠‬اﻟﻣوﺟود ﻓﻰ ﻛﺗﺎب ﻣدﺧل ﺣدﯾث ﻟﻼﺣﺻﺎء‬ ‫‪٢٤٩‬‬


‫واﻻﺣﺗﻣﺎﻻت ﻟﻠدﻛﺗورة ﺛروت ﻣﺣﻣ د ﻋﺑ د اﻟﻣ ﻧﻌم( ﻋﻧ د ‪ n  10‬وذﻟ ك ﻟﻌ دم‬ ‫وﺟود ﻗﯾﻣﺔ ﻟـ ‪ C .05‬ﻋﻧ د ‪ . n  12‬ﻣﻧطﻘ ﺔ اﻟ رﻓض ‪ . R r  0.918‬وﺑﻣ ﺎ أن‬ ‫‪ r‬ﺗﻘ ﻊ ﻓ ﻲ ﻣﻧطﻘ ﺔ اﻟﻘﺑ ول ﻧﻘﺑ ل ‪ . H 0‬أى أن ﺣ دود اﻟﺧط ﺄ ﺗﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ‬ ‫اﻟطﺑﯾﻌﻲ‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ‬ ‫ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫}‪x1={4,6.,2,5,7,6,3,8,5,3,1,5‬‬ ‫}‪{4,6.,2,5,7,6,3,8,5,3,1,5‬‬ ‫}‪y1={197.,272,100,228,327,279,148,377,238,142,66,239‬‬ ‫}‪{197.,272,100,228,327,279,148,377,238,142,66,239‬‬ ‫‪p=1‬‬ ‫‪1‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪h[x_]:=Apply[Plus,x‬‬ ‫]‪k[x_]:=h[x]/l[x‬‬ ‫]‪c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x‬‬ ‫]‪n =l[x1‬‬ ‫‪12‬‬ ‫]‪sxx=c[x1,x1‬‬ ‫‪46.9167‬‬ ‫]‪xb=h[x1]/l[x1‬‬ ‫‪4.58333‬‬ ‫]‪yb=h[y1]/l[y1‬‬ ‫‪217.75‬‬ ‫]‪b1=c[x1,y1]/c[x1,x1‬‬ ‫‪44.4139‬‬ ‫‪b0=yb-b1*xb‬‬ ‫‪14.1865‬‬ ‫)‪yy=b0+(b1*x1‬‬ ‫‪{191.842,280.67,103.014,236.256,325.083,280.67,147.428,369.4‬‬ ‫}‪97,236.256,147.428,58.6004,236.256‬‬ ‫‪e=y1-yy‬‬ ‫‪{5.15808,-8.66963,-3.01421,-8.25577,1.91652,‬‬‫}‪1.66963,0.571936,7.50266,1.74423,-5.42806,7.39964,2.74423‬‬ ‫]‪n=l[x1‬‬ ‫‪12‬‬ ‫]‪ssto=c[y1,y1‬‬ ‫‪92884.3‬‬ ‫]‪ssr=c[x1,y1]^2/c[x1,x1‬‬ ‫‪92547.4‬‬ ‫‪٢٥٠‬‬


sse=ssto-ssr 336.881 mse=sse/(n-2) 33.6881  di  e  mse {0.888689,-1.4937,-0.51932,-1.42239,0.330198,0.287661,0.0985392,1.29264,0.300514,0.935205,1.27489,0.472805} dii=Sort[di] {-1.4937,-1.42239,-0.935205,-0.51932,0.287661,0.0985392,0.300514,0.330198,0.472805,0.888689,1.274 89,1.29264} nndd=Table[(i-.75)/(n+.25),{i,1,n}] {0.0204082,0.102041,0.183673,0.265306,0.346939,0.428571,0.51 0204,0.591837,0.673469,0.755102,0.836735,0.918367} <<Statistics`ContinuousDistributions` qq[x_]:=Quantile[NormalDistribution[0,1],x] ffg=Map[qq,nndd] {-2.04539,-1.27001,-0.901454,-0.627072,-0.393598,0.180012,0.0255806,0.232272,0.449514,0.690633,0.981126,1.394 17} ffgi=Sort[ffg] {-2.04539,-1.27001,-0.901454,-0.627072,-0.393598,0.180012,0.0255806,0.232272,0.449514,0.690633,0.981126,1.394 17} sss1=c[dii,dii] 10. sss2=c[dii,ffgi] 10.0895 sss3=c[ffgi,ffgi] 10.6044

sss2  sss1 sss3 0.979775

: ‫ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ﻓﺈن‬ ‫ﻣﻌﺎﻣل ارﺗﺑﺎط ﺑﯾرﺳون ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ bxy  nxy  nk2 . (٢٠-٤) ‫وﻟﻠﻌﻠﻢ ﯾﻤﻜﻦ اﻟﺤﺼﻮل ﻋﻠﻰ ﻣﻌﺎﻣﻞ ﺳﺒﯿﺮﻣﺎن ﻣﻦ اﻟﺒﺮﻧﺎﻣﺞ اﻟﺨﺎص ﺑﻤﺜﺎل‬ ٢٥١


‫)‪ (١٣-٤‬اﺧﺗﺑﺎر ﺧطﯾﺔ اﻻﻧﺣدار‬ ‫‪Test for Linearity of Regression‬‬ ‫اﻵن ﺳ وف ﻧﻘ دم اﺧﺗﺑ ﺎر إﺣﺻ ﺎﺋﻲ ﻟ ﻧﻘص اﻟﺗوﻓﯾ ق ﻟﻧﻣ وذج اﻻﻧﺣ دار اﻟﺧط ﻲ اﻟﺑﺳ ﯾط ‪.‬‬ ‫ﺗﻔﺗرض اﻟطرﯾﻘﺔ ﺗﺣﻘق ﻛل ﻣن اﻻﻋﺗدال واﻻﺳﺗﻘﻼل وﺛﺑ ﺎت اﻟﺗﺑ ﺎﯾن وﻓﻘ ط ھﻧ ﺎك ﺷ ك ﻓ ﻲ‬ ‫وﺟود ﻋﻼﻗﺔ ﺧط ﻣﺳﺗﻘﯾم ﺑﯾن ‪. x , Y‬‬ ‫ﯾﺣﺗ ﺎج اﺧﺗﺑ ﺎر ﻧﻘ ص اﻟﺗوﻓﯾ ق إﻟ ﻰ وﺟ ود ﻣﺷ ﺎھدات ﻣﺗﻛ ررة ﻋﻠ ﻰ اﻻﺳ ﺗﺟﺎﺑﺔ ‪ y‬وذﻟ ك‬ ‫ﻋﻠ ﻰ اﻷﻗ ل ﻟﻣﺳ ﺗوى واﺣ د ﻣ ن ‪ . x‬ﺑﻔ رض إﻧﻧ ﺎ أﺧ ذﻧﺎ ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن ‪ n‬ﻣ ن‬ ‫اﻟﻣﺷﺎھدات وذﻟك ﺑﺎﺳﺗﺧدام ‪ m‬ﻣن اﻟﻘ ﯾم اﻟﻣﺧﺗﻠﻔ ﺔ ﻣ ن ‪ ، x‬ﻟ ﯾﻛن ‪ x1 , x 2 ,..., x m‬ﺑﺣﯾ ث‬ ‫أن اﻟﻌﯾﻧﺔ ﺗﺣﺗوي ‪ n1‬ﻗﯾﻣﺔ ﻣﺷﺎھدة ﻣن اﻟﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ ‪ Y1‬اﻟﻣﻘﺎﺑ ل ل ‪ x1‬و ‪ n 2‬ﻗﯾﻣ ﺔ‬ ‫ﻣﺷ ﺎھدة ﻣ ن اﻟﻣﺗﻐﯾ ر اﻟﻌﺷ واﺋﻲ ‪ Y2‬اﻟﻣﻘﺎﺑ ل ﻟ ـ ‪ x 2‬و‪ nm‬ﻗﯾﻣ ﺔ ﻣﺷ ﺎھدة ﻣ ن اﻟﻣﺗﻐﯾ ر‬ ‫‪k‬‬

‫اﻟﻌﺷ واﺋﻲ ‪ Ym‬اﻟﻣﻘﺎﺑ ل ﻟ ـ ‪ . x m‬ﻣ ن اﻟﺿ روري أن ‪ . n   n i‬ﺳ وف ﻧﻌ رف ‪y ij‬‬ ‫‪i 1‬‬

‫ﻟﯾﻣﺛ‬

‫ل اﻟﻘﯾﻣ‬

‫ﺔ رﻗ‬

‫م‪ j‬ﻣ‬

‫‪ i  1,2,..., k‬و ‪ j  1,2,..., n i‬و‬

‫ن اﻟﻣﺗﻐﯾ‬ ‫‪ni‬‬ ‫‪ y ij‬‬ ‫‪j1‬‬

‫ر اﻟﻌﺷ‬

‫واﺋﻲ ‪ Yi‬ﻋﻧ‬

‫د ‪ x i‬ﺣﯾ‬

‫ث‬

‫‪ y i ‬و ‪ . y i  y i / n‬وﻋﻠ ﻰ ذﻟ ك ﻋﻧ دﻣﺎ‬

‫‪ n 4  3‬ﻓ ﺈن اﻟﻘﯾﺎﺳ ﺎت ﻋﻠ ﻰ ‪ Y4‬ﺗﻘﺎﺑ ل ‪ x  x 4‬وﺳ وف ﻧﻌ رف ھ ذه اﻟﻣﺷ ﺎھدات‬ ‫ﺑﺎﻟرﻣوز ‪ y 41 , y 42 , y 43‬وﻋﻠﻰ ذﻟك ‪ . y 4  y 41  y 42  y 43‬ﯾﻌﺗﻣد اﻻﺧﺗﺑ ﺎر ﻋﻠ ﻰ‬ ‫ﺗﺟزﺋﺔ ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻲ إﻟﻰ ﺟزﺋﯾن ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪SSE  SSPE  SSLF ,‬‬

‫ﺣﯾث ‪ SSPE‬ھو ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟذي ﯾرﺟﻊ إﻟﻰ اﻟﺧط ﺄ اﻟﺧ ﺎﻟص ) اﻟﺻ ﺎﻓﻲ ( ‪pure‬‬ ‫‪ error‬أي اﻻﺧ ﺗﻼف ﺑ ﯾن ﻗ ﯾم ‪ y‬داﺧ ل ﻗﯾﻣ ﮫ ﻣﻌط ﺎة ﻣ ن ‪ . x‬أﻣ ﺎ ‪ SSLF‬ﻓﮭ و ﻣﺟﻣ وع‬ ‫ﻣرﺑﻌﺎت ﻧﻘص اﻟﺗوﻓﯾق إي أن ‪ SSPE‬ﯾﻌﻛس اﻻﺧﺗﻼف اﻟﻌﺷواﺋﻲ أو ﺧطﺎ اﻟﺗﺟرﺑﺔ‪.‬‬ ‫ﺣﯾث ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺄ اﻟﺧﺎﻟص ھو‪:‬‬

‫‪2 ‬‬ ‫‪‬‬ ‫‪‬‬

‫‪y ij‬‬ ‫‪nj‬‬

‫‪‬‬

‫‪ ni‬‬ ‫‪  ( y ij2 ‬‬ ‫‪ j1‬‬ ‫‪‬‬

‫‪m‬‬ ‫‪‬‬ ‫‪i 1‬‬

‫‪‬‬

‫‪y ij  y i ‬‬

‫‪2‬‬

‫‪٢٥٢‬‬

‫‪m ni‬‬ ‫‪ ‬‬ ‫‪i1 j1‬‬

‫‪SSPE ‬‬


‫واﻟذى ﻧﺣﺻل ﻋﻠﯾﮫ ﺑﺣﺳ ﺎب ﻣﺟﻣ وع اﻟﻣرﺑﻌ ﺎت اﻟﻣﺻ ﺣﺢ ﻟﻠﻣﺷ ﺎھدات اﻟﻣﺗﻛ رره ﻋﻧ د ﻛ ل‬ ‫ﻣﺳﺗوى ﻣن ‪ x‬ﺛم اﻟﺟﻣﻊ ﻋﻠﻲ ﻛل اﻟﻣﺳﺗوﯾﺎت ‪ m‬ﻣن ‪ .x‬اﻟﻌدد اﻟﻛﻠ ﻰ ﻣ ن درﺟ ﺎت اﻟﺣرﯾ ﺔ‬ ‫اﻟﻣرﺗﺑطﺔ ﺑﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺄ اﻟﺧﺎﻟص ھو‪:‬‬ ‫‪(n i  1)  n  m.‬‬

‫‪m‬‬ ‫‪‬‬ ‫‪i 1‬‬

‫اﻣﺎ ﻣﺟﻣوع ﻣرﺑﻌﺎت ﻧﻘص اﻟﺗوﻓﯾق ﻓﻌﺎدة ﯾﺗم اﻟﺣﺻول ﻋﻠﯾ ﮫ ﺑط رح ‪ SSPE‬ﻣ ن ‪. SSE‬‬ ‫ﯾوﺟ د ‪ m  2‬ﻣ ن درﺟ ﺎت اﻟﺣرﯾ ﺔ ﯾ رﺗﺑط ﺑ ـ ‪ . SSLF‬اﻹﺣﺻ ﺎء اﻟ ذي ﯾﻌﺗﻣ د ﻋﻠﯾ ﮫ‬ ‫اﻻﺧﺗﺑﺎر ھو‪:‬‬ ‫‪SSLF / m  2 MSLF‬‬ ‫‪‬‬ ‫‪.‬‬ ‫‪SSPE / n  m  MSPE‬‬

‫‪F‬‬

‫اﻟﺣﺳ ﺎﺑﺎت اﻟﻣطﻠوﺑ ﺔ ﻻﺧﺗﺑ ﺎر اﻟﻔ رض ﻓ ﻲ ﻣﺷ ﻛﻠﺔ اﻻﻧﺣ دار ﺑﻘﯾﺎﺳ ﺎت ﻣﺗﻛ ررة ﻋﻠ ﻰ‬ ‫اﻻﺳﺗﺟﺎﺑﺔ ﯾﻣﻛن ﺗﻠﺧﯾﺻﮭﺎ ﻛﻣﺎ ھو ﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪:‬‬ ‫‪F‬‬

‫‪SSR‬‬ ‫‪MSE‬‬

‫‪MSLF‬‬ ‫‪MSPE‬‬

‫‪SS‬‬

‫‪Ms‬‬ ‫‪SSR‬‬ ‫)‪MSE  SSE /( n  2‬‬

‫‪SSE  SSPE‬‬ ‫‪m2‬‬ ‫‪SSPE‬‬ ‫‪MSPE ‬‬ ‫‪nm‬‬

‫‪MSLF ‬‬

‫‪SSR‬‬ ‫‪SSE‬‬ ‫‪SSE  SSPE‬‬ ‫‪SSPE‬‬

‫‪df‬‬ ‫‪1‬‬ ‫‪n2‬‬

‫‪m2‬‬

‫‪S.O.V‬‬

‫اﻻﻧﺣدار‬ ‫اﻟﺧطﺄ‬ ‫ﻧﻘص اﻟﺗوﻓﯾق‬

‫‪ n  m‬اﻟﺧطﺄاﻟﺧﺎﻟص‬ ‫‪n 1‬‬

‫اﻟﻛﻠﻲ‬

‫ﻋﻧدﻣﺎ ﯾﻛون ﻓرض اﻟﻌدم ﺻﺣﯾﺢ ‪  Y|x i   0  1 x i‬ﻓ ﺈن اﻹﺣﺻ ﺎء ‪ F‬ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ ‪F‬‬ ‫ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪ n-m‬و ‪ . m-2‬إذا ﻛﺎﻧ ت ﻗﯾﻣ ﺔ ‪ F‬اﻟﻣﺣﺳ وﺑﺔ اﻗ ل ﻣ ن ﻗﯾﻣ ﺔ ‪ F‬اﻟﺟدوﻟﯾ ﺔ‬ ‫ﻓﮭ ذا ﯾ دل ﻋﻠ ﻰ أن ھﻧ ﺎك ﺛﻘ ﺔ ﻛﺑﯾ رة ﻓ ﻲ ﻋ دم ﻧﻘ ص اﻟﺗوﻓﯾ ق وﻋﻧدﺋ ذ ﻧﺧﺗﺑ ر اﻟﻔرﺿ ﯾﺔ‬ ‫‪ H 0 : 1  0‬ﺑﺎﺳﺗﺧدام اﻹﺣﺻﺎء ‪:‬‬ ‫‪٢٥٣‬‬


‫‪.‬‬

‫‪MSR‬‬ ‫‪MSE‬‬

‫‪F‬‬

‫وإذا ﻛﺎﻧ ت ‪ F‬اﻟﻣﺣﺳ وﺑﺔ اﻛﺑ ر ﻣ ن اﻟﺟدوﻟﯾ ﺔ ﻓﺈﻧﻧ ﺎ ﻧ رﻓض ﻓ رض اﻟﻌ دم ‪. H 0 : 1  0‬‬ ‫ﻟﺷ ﻛل اﻻﻧﺗﺷ ﺎر اﻟﻣﻌط ﻰ ﻓ ﻲ ﺷ ﻛل )‪ (٣١-٤‬وﻋﻧ د ﻗﺑ ول ﻓ رض اﻟﻌ دم أن‬ ‫‪  Y|x i   0  1 x i‬ورﻓ ض ﻓ رض اﻟﻌ دم ‪ H 0 : 1  0‬ﻓ ﺈن ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار‬ ‫اﻟﻣﻘدرة ﺳوف ﺗﻛون ‪:‬‬ ‫‪yˆ  b0  b1x .‬‬

‫ﺷﻛل)‪( ٣١-٤‬‬ ‫ﻟﺷ ﻛل اﻻﻧﺗﺷ ﺎر اﻟﻣﻌط ﻰ ﻓ ﻲ ﺷ ﻛل )‪ (٣٢-٤‬وﻋﻧ د ﻗﺑ ول ﻓ رض اﻟﻌ دم أن اﻟﻧﻣ وذج ھ و‬ ‫‪  Y|x i   0  1 x i‬وﻗﺑول ﻓرض اﻟﻌدم ‪ H 0 : 1  0‬ﻓﺈن ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار اﻟﻣﻘ درة‬ ‫ﺳوف ﺗﻛون ‪:‬‬ ‫‪yˆ  y .‬‬

‫‪٢٥٤‬‬


‫ﺷﻛل)‪(٣٢-٤‬‬ ‫ﻟﺷ ﻛل اﻻﻧﺗﺷ ﺎر اﻟﻣﻌط ﻰ ﻓ ﻲ ﺷ ﻛل )‪ (٣٣-٤‬وﻋﻧ د رﻓ ض ﻓ رض اﻟﻌ دم أن اﻟﻧﻣ وذج ھ و‬ ‫‪  Y|x i   0  1 x i‬ورﻓ ض ﻓ رض اﻟﻌ دم ‪ H 0 : 1  0‬ﻓﺈﻧﻧ ﺎ ﻧﺣ ﺎول ﻣ ﻊ اﻟﻧﻣ وذج‬ ‫‪ . Yi   0  1x i   2 x i 2   i‬أﻣﺎ إذا ﻛﺎن ﺷﻛل اﻻﻧﺗﺷﺎر ﻏﯾر ذﻟك ﻓ ﻼ ﺑ د ﻣ ن‬ ‫ﻋﻣل ﺗﺣوﯾﻼت ﻋﻠﻰ ﻗﯾم ‪ x‬أو ﻗﯾم ‪ y‬أو ﻛﻼھﻣﺎ )وﻋﻠﻰ اﻷﻛﺛ ر ﯾﺳ ﺗﺧدم اﻟﺗﺣوﯾ ل ﻟﻘ ﯾم ‪y‬‬ ‫( ‪ .‬ھذا وھﻧﺎك ﻋدة طرق ﻟﺗﺣوﯾل اﻟﺑﯾﺎﻧﺎت ﺳوف ﻧﺗﻧﺎوﻟﮭﺎ ﺑﻌد ذﻟك‪.‬‬

‫ﺷﻛل )‪(٣٣-٤‬‬ ‫ﻟﺷﻛل اﻻﻧﺗﺷ ﺎر واﻟﻣﻌط ﻰ ﻓ ﻲ ﺷ ﻛل )‪ (٣٤-٤‬وﻋﻧ د رﻓض ﻓ رض اﻟﻌ دم أن اﻟﻧﻣ وذج ھ و‬ ‫‪  Y|x i   0  1 x i‬ﻗﺑ ول ﻓ رض اﻟﻌ دم ‪ H 0 : 1  0‬ﻧﺣ ﺎول ﻣ ﻊ اﻟﻧﻣ وذج‬

‫‪٢٥٥‬‬


‫‪ Yi   0  1x i   2 x i 2   i‬أﻣ ﺎ إذا ﻛ ﺎن اﻻﻧﺗﺷ ﺎر ﻏﯾ ر ذﻟ ك ﻓﺈﻧﻧ ﺎ ﻧﻠﺟ ﺄ إﻟ ﻰ‬ ‫اﻟﺗﺣوﯾﻼت ‪.‬‬

‫ﺷﻛل )‪(٣٤-٤‬‬

‫ﻣﺛﺎل)‪(٢٢-٤‬‬ ‫ﻻزواج اﻟﻘﯾﺎﺳﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ اﺧﺗﺑ ر ﻓ رض اﻟﻌ دم ‪ : H0‬اﻟﻧﻣ وذج ﺧط ﻲ ﺿ د اﻟﻔ رض اﻟﺑ دﯾل‬ ‫‪ : H0‬اﻟﻧﻣوذج ﻏﯾر ﺧطﻲ ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪  0.05‬‬ ‫‪y‬‬

‫‪x‬‬

‫اﻟﻣﺷﺎھدات‬

‫‪3.5‬‬ ‫‪2.8‬‬ ‫‪2.1‬‬ ‫‪3.4‬‬ ‫‪3.2‬‬ ‫‪3.0‬‬ ‫‪3.0‬‬ ‫‪5.9‬‬

‫‪5.3‬‬ ‫‪5.3‬‬ ‫‪5.3‬‬ ‫‪5.7‬‬ ‫‪6.0‬‬ ‫‪6.0‬‬ ‫‪6.3‬‬ ‫‪6.7‬‬

‫‪17‬‬ ‫‪18‬‬ ‫‪19‬‬ ‫‪20‬‬ ‫‪21‬‬ ‫‪22‬‬ ‫‪23‬‬ ‫‪24‬‬

‫‪y‬‬

‫‪x‬‬

‫‪1.7‬‬ ‫‪2.8‬‬ ‫‪2.8‬‬ ‫‪2.2‬‬ ‫‪5.4‬‬ ‫‪3.2‬‬ ‫‪1.9‬‬ ‫‪1.8‬‬

‫‪3.7‬‬ ‫‪4.0‬‬ ‫‪4.0‬‬ ‫‪4.0‬‬ ‫‪4.7‬‬ ‫‪4.7‬‬ ‫‪4.7‬‬ ‫‪5.0‬‬

‫اﻟﻣﺷﺎھدات‬ ‫‪9‬‬ ‫‪10‬‬ ‫‪11‬‬ ‫‪12‬‬ ‫‪13‬‬ ‫‪14‬‬ ‫‪15‬‬ ‫‪16‬‬

‫‪x‬‬

‫‪y‬‬ ‫‪2.3‬‬ ‫‪1.8‬‬ ‫‪2.8‬‬ ‫‪1.5‬‬ ‫‪2.2‬‬ ‫‪3.8‬‬ ‫‪1.8‬‬ ‫‪3.7‬‬

‫اﻟﻣﺷﺎھدات‬ ‫‪1.3‬‬ ‫‪1.3‬‬ ‫‪2.0‬‬ ‫‪2.0‬‬ ‫‪2.7‬‬ ‫‪3.3‬‬ ‫‪3.3‬‬ ‫‪3.7‬‬

‫اﻟﺣــل ‪:‬‬ ‫‪ : H 0‬اﻟﻧﻣوذج اﻟﺧطﻰ ‪:‬‬ ‫‪ : H1‬اﻟﻧﻣوذج ﻏﯾر ﺧطﻰ ‪:‬‬ ‫‪.   0.05‬‬ ‫ﺳوف ﻧوﺟد ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﺧﺎﻟص ﺛم ﻣﺟﻣوع ﻣرﺑﻌﺎت ﻗﺻور اﻟﺗوﻓﯾق ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪٢٥٦‬‬

‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪8‬‬


‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺄ اﻟﺧﺎﻟص ﻋﻧد ‪ x  1.3‬ھو ‪:‬‬ ‫‪(2.3)2  (1.8)2  (2.3)  (1.8)2 / 2  0.125.‬‬

‫‪‬‬

‫‪‬‬

‫ﺑدرﺟﺔ ﺣرﯾﺔ واﺣدة ‪.  n1  2.1  1‬‬ ‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺄ اﻟﺧﺎﻟص ﻋﻧد ‪ x  2.0‬ھو ‪:‬‬

‫‪‬‬

‫‪‬‬

‫‪(2.8)2  (1.5)2  (2.8)  (1.5)2 / 2  0.845.‬‬ ‫ﺑدرﺟﺔ ﺣرﯾﺔ واﺣدة ‪ .  n 2  2  1  1‬ﺑﻧﻔس اﻟطرﯾﻘﺔ ﯾﺗم ﺣﺳﺎب ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧط ﺄ اﻟﺧ ﺎﻟص‬ ‫ﻟﻠﻘﯾم اﻟﺑﺎﻗﯾﺔ ﻣن ‪ x‬ﻛﻣﺎ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪.‬‬ ‫درﺟﺎت ﺣرﯾﺔ‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪11‬‬

‫‪(y iu  yi )2‬‬ ‫‪0.125‬‬ ‫‪0.845‬‬ ‫‪2.000‬‬ ‫‪2.000‬‬ ‫‪0.240‬‬ ‫‪6.260‬‬ ‫‪0.980‬‬ ‫‪0.020‬‬ ‫‪12.470‬‬

‫ﻣﺳﺗوى ‪x‬‬ ‫‪1.3‬‬ ‫‪2.0‬‬ ‫‪3.3‬‬ ‫‪3.7‬‬ ‫‪4.0‬‬ ‫‪4.7‬‬ ‫‪5.3‬‬ ‫‪6.0‬‬ ‫اﻟﻣﺟﻣوع‬

‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪S.O.V‬‬ ‫‪df‬‬ ‫‪SS‬‬ ‫‪MS‬‬ ‫‪F‬‬ ‫‪1‬‬ ‫‪6.326‬‬ ‫‪6.326‬‬ ‫اﻻﻧﺣدار‬ ‫‪6.326‬‬ ‫‪f‬‬ ‫‪0.963‬‬ ‫‪22‬‬ ‫‪21.192‬‬ ‫اﻟﺧطﺄ‬ ‫‪= 6.569‬‬ ‫‪0.963=s2‬‬ ‫ﻋﻧد ﻣﺳﺗوى‬ ‫ﻣﻌﻧوﯾﺔ ‪=0.05‬‬ ‫‪11‬‬ ‫‪8.722‬‬ ‫‪0.793=MSL‬‬ ‫ﻗﺻور اﻟﺗوﻓﯾق‬ ‫‪0.793‬‬ ‫‪‬‬ ‫‪f‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪11‬‬ ‫‪12.470‬‬ ‫اﻟﺧطﺄ اﻟﺧﺎﻟص‬ ‫‪1.134= s e‬‬ ‫‪1.134‬‬ ‫‪=0.699‬‬ ‫ﻣ ن اﻟﺟ دول اﻟﺳ ﺎﺑق وﺑﻣ ﺎ ان ‪ f   0.699‬ﻏﯾ ر ﻣﻌﻧوﯾ ﺔ ﻷﻧﮭ ﺎ أﻗ ل ﻣ ن اﻟواﺣ د ﻓﮭ ذا ﯾﻌﻧ ﻰ ان‬ ‫اﻟﻧﻣ وزج ﺧط ﻰ وﺑﻣ ﺎ ان ‪ f  6.569‬اﻛﺑ ر ﻣ ن اﻟﺟدوﻟﯾ ﺔ )‪ (4.5‬ﻓﺈﻧﻧ ﺎ ﻧ رﻓض ﻓ رض اﻟﻌ دم‬

‫‪H 0 : 1  0‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫‪٢٥٧‬‬


x={1.3,1.3,2,2,2.7,3.3,3.3,3.7,3.7,4,4,4,4.7,4.7,4.7,5,5.3,5 .3,5.3,5.7,6,6,6.3,6.7}; y={2.3,1.8,2.8,1.5,2.2,3.8,1.8,3.7,1.7,2.8,2.8,2.2,5.4,3.2,1 .9,1.8,3.5,2.8,2.1,3.4,3.2,3.0,3.0,5.9}; yy={{2.3,1.8},{2.8,1.5},{2.2},{3.8,1.8},{3.7,1.7},{2.8,2.8,2 .2},{5.4,3.2,1.9},{1.8},{3.5,2.8,2.1},{3.4},{3.2,3.0},{3.0}, {5.9}}; a[x_]:=Length[x] z[x_]:=Apply[Plus,x]

cx_ : zx^2 

zx2 ax

h=Map[c,yy] {0.125,0.845,0.,2.,2.,0.24,6.26,0.,0.98,0.,0.02,0.,0.} ssp=z[h] 12.47 q=Map[a,yy] {2,2,1,2,2,3,3,1,3,1,2,1,1} qq=q-1 {1,1,0,1,1,2,2,0,2,0,1,0,0} ne=z[qq] 11

s2e 

ssp ne

1.13364 tx=Table[{1,x[[i]]},{i,1,a[x]}] {{1,1.3},{1,1.3},{1,2},{1,2},{1,2.7},{1,3.3},{1,3.3},{1,3.7} ,{1,3.7},{1,4},{1,4},{1,4},{1,4.7},{1,4.7},{1,4.7},{1,5},{1, 5.3},{1,5.3},{1,5.3},{1,5.7},{1,6},{1,6},{1,6.3},{1,6.7}} a[tx] 24 u=Transpose[tx] {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},{1.3,1.3, 2,2,2.7,3.3,3.3,3.7,3.7,4,4,4,4.7,4.7,4.7,5,5.3,5.3,5.3,5.7, 6,6,6.3,6.7}} t1=u.y {68.6,307.41} t2=Inverse[u.tx] {{0.361353,-0.075965},{-0.075965,0.0180511}} b=t1.t2 {1.4364,0.337886} b0=b[[1]] ٢٥٨


1.4364 b1=b[[2]] 0.337886 yb=b0+b1*x {1.87565,1.87565,2.11217,2.11217,2.34869,2.55142,2.55142,2.6 8657,2.68657,2.78794,2.78794,2.78794,3.02446,3.02446,3.02446 ,3.12583,3.22719,3.22719,3.22719,3.36235,3.46371,3.46371,3.5 6508,3.70023} e=y-yb {0.424352,-0.0756476,0.687832,-0.612168,-0.148688,1.24858,0.75142,1.01343,-0.986575,0.0120596,0.0120596,0.58794,2.37554,0.175539,-1.12446,-1.32583,0.272808,0.427192,-1.12719,0.0376531,-0.263713,-0.463713,0.565079,2.19977} sse=e.e 21.1937 ssto=c[y] 27.5183 ssl=sse-ssp 8.72367 ssr=ssto-sse 6.32467 dsr=1 1 n=a[x] 24 dse=n-2 22 dst=n-1 23 nl=dse-ne 11

msr 

ssr dsr

6.32467

mse 

sse dse

0.963348

f

msr mse

6.56529

msl 

ssl nl

0.793061

٢٥٩


ff 

msl s2e

0.699572 ww=Transpose[{x,y}] {{1.3,2.3},{1.3,1.8},{2,2.8},{2,1.5},{2.7,2.2},{3.3,3.8},{3. 3,1.8},{3.7,3.7},{3.7,1.7},{4,2.8},{4,2.8},{4,2.2},{4.7,5.4} ,{4.7,3.2},{4.7,1.9},{5,1.8},{5.3,3.5},{5.3,2.8},{5.3,2.1},{ 5.7,3.4},{6,3.2},{6,3.},{6.3,3.},{6.7,5.9}} ww1=PlotRange{{0,8},{0,7}} PlotRange{{0,8},{0,7}} ww2=Prolog{PointSize[0.03]} Prolog{PointSize[0.03]} ww3=ListPlot[ww,ww1,ww2] 7 6 5 4 3 2 1 1

2

3

4

5

6

7

8

Graphics ww5=Plot[b0+b1*x,{x,0,8}] 4 3.5 3 2.5

2

4

6

1.5

Graphics Show[ww3,ww5]

٢٦٠

8


7 6 5 4 3 2 1 1

2

3

4

5

6

7

8

Graphics th=TableHeadings{{soruce,regression,residual,lake,pure },{anova}} TableHeadings{{soruce,regression,residual,lake,pure},{anov a}} tr1={"df","ss","ms","f"} {df,ss,ms,f} tr2={dsr,ssr,msr,f} {1,6.32467,6.32467,6.56529} tr3={dse,sse,mse,"---"} {22,21.1937,0.963348,---} tr4={nl,ssl,msl,ff} {11,8.72367,0.793061,0.699572} tr5={ne,ssp,s2e,"---"} {11,12.47,1.13364,---} TableForm[{tr1,tr2,tr3,tr4,tr5},th]

soruce regression residual lake pure

anova df 1 22 11 11

ss 6.32467 21.1937 8.72367 12.47

ms 6.32467 0.963348 0.793061 1.13364

<<Statistics`ContinuousDistributions` =0.05; ff1=Quantile[FRatioDistribution[nl,ne],1-] 2.81793 If[ff>ff1,Print["RjectHo"],Print["AccpetHo"]] AccpetHo ff2=Quantile[FRatioDistribution[dsr,dse],1-] 4.30095 If[f>ff2,Print["RjectHo"],Print["AccpetHo"]] RjectHo ٢٦١

f 6.56529 

0.699572 


‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪:‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ y .‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]‪TableForm[{tr1,tr2,tr3,tr4,tr5},th‬‬

‫و ‪ f   0.699‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫‪msl‬‬ ‫‪s2e‬‬ ‫‪ f‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫‪ff ‬‬

‫]‪ff1=Quantile[FRatioDistribution[nl,ne],1-‬‬

‫ﺣﯾث اﻟﻣﺧرج‬ ‫‪2.81793‬‬

‫اﻟﻘرار اﻟﻣﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]]"‪If[ff>ff1,Print["RjectHo"],Print["AccpetHo‬‬

‫واﻟﻣﺧرج ﻓﻰ ھذه اﻟﺣﺎﻟﺔ ھو‬ ‫‪.AccpetHo‬‬ ‫وھذا ﯾﻌﻧﻰ ان اﻟﻧﻣوزج ﺧطﻰ‪.‬‬ ‫اﯾﺿﺎ ‪ f  6.569‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪msr‬‬ ‫‪f‬‬ ‫‪mse‬‬ ‫‪ f‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫]‪ff2=Quantile[FRatioDistribution[dsr,dse],1-‬‬

‫ﺣﯾث اﻟﻣﺧرج‬ ‫‪4.30095‬‬

‫اﻟﻘرار اﻟﻣﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]]"‪If[f>ff2,Print["RjectHo"],Print["AccpetHo‬‬

‫واﻟﻣﺧرج ﻓﻰ ھذه اﻟﺣﺎﻟﺔ ھو‬ ‫‪RjectHo‬‬

‫اى رﻓض ﻓرض اﻟﻌدم ‪H 0 : 1  0‬‬ ‫وھذا ﯾﻌﻧﻰ اﻧﺎ ﻟﻧﻣوزج ﺧطﻰ‪.‬‬ ‫‪٢٦٢‬‬


‫ﻣﺛﺎل )‪(٢٣-٤‬‬ ‫درﺳت ﻓﻌﺎﻟﯾﺔ )ﺟﯾر( ﺗﺟرﯾﺑﻲ ﺟدﯾ د ﻓ ﻲ ﺗﺧﻔ ﯾض اﺳ ﺗﮭﻼك اﻟﺟ ﺎزوﻟﯾن ﻓ ﻲ ‪12‬ﻣﺣﺎوﻟ ﺔ‬ ‫اﺳﺗﺧدﻣت ﻓﯾﮭﺎ ﻋرﺑﺔ ﻧﻘل ﺧﻔﯾﻔﺔ ﻣﺟﮭ زة ﺑﮭ ذا اﻟﺟﯾ ر ﺣﯾ ث ‪ x‬ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ‪ .‬ﻟﻠﺳ رﻋﺔ‬ ‫اﻟﺛﺎﺑﺗﺔ )ﺑﺎﻟﻣﯾل ﻓﻲ اﻟﺳﺎﻋﺔ( ﻟﻌرﺑﺔ اﻻﺧﺗﺑﺎر و‪ y‬اﻷﻣﯾﺎل اﻟﻣﻘطوﻋﺔ ﻟﻛل ﺟﺎﻟون ‪.‬‬ ‫‪y‬‬

‫‪x‬‬ ‫‪35‬‬ ‫‪35‬‬ ‫‪40‬‬ ‫‪40‬‬ ‫‪45‬‬ ‫‪45‬‬ ‫‪50‬‬ ‫‪50‬‬ ‫‪55‬‬ ‫‪55‬‬ ‫‪60‬‬ ‫‪60‬‬

‫‪22‬‬ ‫‪20‬‬ ‫‪28‬‬ ‫‪31‬‬ ‫‪37‬‬ ‫‪38‬‬ ‫‪41‬‬ ‫‪39‬‬ ‫‪34‬‬ ‫‪37‬‬ ‫‪27‬‬ ‫‪30‬‬

‫ﻓﮭل ﻣﻌﺎدﻟﺔ اﻟﺧط اﻟﻣﺳﺗﻘﯾم ﺗﻼﺋم اﻟﺑﯾﺎﻧﺎت اﻟﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق ؟‬ ‫اﻟﺣــل‬ ‫ﺷﻛل اﻻﻧﺗﺷﺎر ﻟﻠﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق ﻣﻌطﺎة ﻓﻲ ﺷﻛل )‪(٣٥-٤‬‬

‫ﺷﻛل)‪(٣٥-٤‬‬ ‫ﻧوﺟد أوﻻ ﻣﻌﺎدﻟﺔ اﻟﺧط اﻟﻣﺳﺗﻘﯾم اﻟﻣﻘدرة ﻋﻠﻰ اﻓﺗراض أﻧﮭﺎ ﺗﻼﺋم اﻟﺑﯾﺎﻧﺎت ﺣﯾث ‪:‬‬

‫‪٢٦٣‬‬


‫‪570‬‬ ‫‪ 47.5‬‬ ‫‪12‬‬

‫‪‬‬

‫‪x‬‬

‫‪,‬‬

‫‪x‬‬

‫‪384‬‬ ‫‪ 32‬‬ ‫‪12‬‬

‫‪n‬‬ ‫‪ x y‬‬ ‫‪ xy ‬‬ ‫‪SXY‬‬ ‫‪n‬‬ ‫‪b1 ‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪SXX‬‬ ‫‪2  x ‬‬ ‫‪x ‬‬ ‫‪n‬‬

‫‪570 384 ‬‬

‫‪‬‬

‫‪y‬‬

‫‪n‬‬

‫‪18530 ‬‬

‫‪12‬‬ ‫‪570 2‬‬ ‫‪27950 ‬‬ ‫‪12‬‬

‫‪290‬‬ ‫‪ 0 .331429 ,‬‬ ‫‪875‬‬

‫‪‬‬

‫‪‬‬

‫‪b 0  y  b1 x  32  0.33142947.5‬‬ ‫‪ 16.2571 .‬‬

‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪yˆ  16.2571  0.331429 x .‬‬

‫واﻟﻣﻣﺛﻠﺔ ﺑﯾﺎﻧﯾﺎ ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻓﻲ ﺷﻛل )‪(٣٦-٤‬‬

‫ﺷﻛل )‪(٣٦-٤‬‬ ‫‪٢٦٤‬‬

‫‪y‬‬


‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪F‬‬

‫‪MS‬‬

‫‪SS‬‬

‫‪df‬‬

‫‪S.O.V‬‬

‫‪2.32224‬‬

‫‪96.1143‬‬

‫‪96.1143‬‬

‫‪1‬‬

‫اﻻﻧﺣدار‬

‫‪--‬‬

‫‪41.3886‬‬

‫‪413.886‬‬

‫‪10‬‬

‫اﻟﺧطﺄ‬

‫‪--‬‬

‫‪--‬‬

‫‪510‬‬

‫‪11‬‬

‫اﻟﻛﻠﻲ‬

‫ﺑﻣ ﺎ أن ﻗﯾﻣ ﺔ ‪ F‬اﻟﻣﺣﺳ وﺑﺔ ‪ 2.32224 ‬أﻗ ل ﻣ ن اﻟﻘﯾﻣ ﺔ اﻟﺟدوﻟﯾ ﺔ ‪ F.05 1,10  4.96‬ﻓﺈﻧﻧ ﺎ‬ ‫ﻧﻘﺑ ل ﻓ رض اﻟﻌ دم ‪ . H 0 : 1  0‬واﻵن ﻧﺧﺗﺑ ر اﻟﺑ واﻗﻲ ﺑﺎﺳ ﺗﺧدام رﺳ م اﻟﺑ واﻗﻲ ﻣ ن‬ ‫ﻣﻌﺎدﻟﺔ اﻟﺧط اﻟﻣﺳﺗﻘﯾم اﻟﻣﻘدرة ‪:‬‬

‫‪yˆ  16.2571  0.331429 x .‬‬

‫ﻧوﺟد ‪ e i , d i , ri‬ﻟﻛل ﻗﯾم ‪ x i‬ﻛﻣﺎ ھو ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪٢٦٥‬‬


‫‪ri‬‬

‫‪di‬‬

‫‪e  y i  yˆ i‬‬

‫‪1.05972‬‬ ‫‪1.42157‬‬ ‫‪0.254947‬‬

‫‪0.910428‬‬ ‫‪1.22131‬‬ ‫‪0.235379‬‬

‫‪5.85714‬‬ ‫‪7.85714‬‬ ‫‪1.51429‬‬

‫‪0.250137‬‬ ‫‪0.949981‬‬ ‫‪1.11297‬‬ ‫‪1.33184‬‬ ‫‪1.00586‬‬ ‫‪0.0817756‬‬ ‫‪0.423309‬‬ ‫‪1.65419‬‬ ‫‪1.11141‬‬

‫‪0.230938‬‬ ‫‪0.905987‬‬ ‫‪1.06143‬‬ ‫‪1.27016‬‬ ‫‪0.95928‬‬ ‫‪0.0754989‬‬ ‫‪0.390818‬‬ ‫‪1.42116‬‬ ‫‪0.954839‬‬

‫‪1.48571‬‬ ‫‪5.82857‬‬ ‫‪6.82857‬‬ ‫‪8.17143‬‬ ‫‪6.17143‬‬ ‫‪0.485714‬‬ ‫‪2.51429‬‬ ‫‪9.14286‬‬ ‫‪6.14286‬‬

‫‪yˆi‬‬

‫‪yi‬‬ ‫‪27.8571‬‬ ‫‪27.8571‬‬ ‫‪29.5143‬‬ ‫‪29.5143‬‬ ‫‪31.1714‬‬ ‫‪31.1714‬‬ ‫‪32.8286‬‬ ‫‪32.8286‬‬ ‫‪34.4857‬‬ ‫‪34.4857‬‬ ‫‪36.1429‬‬ ‫‪36.1429‬‬

‫‪xi‬‬ ‫‪22‬‬ ‫‪20‬‬ ‫‪28‬‬ ‫‪31‬‬ ‫‪37.‬‬ ‫‪38‬‬ ‫‪41‬‬ ‫‪39‬‬ ‫‪34‬‬ ‫‪37‬‬ ‫‪27‬‬ ‫‪30‬‬

‫ﻟﻠﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق واﻟﺧﺎﺻﺔ ﺑﺎﻟﻣﺛﺎل )‪ (٢٢-٤‬ﯾوﺿﺢ ﺷﻛل )‪ (٣٧-٤‬رﺳم ‪ei‬‬ ‫ﻣﻘﺎﺑل ‪yˆ i‬‬

‫ﺷﻛل )‪(٣٧-٤‬‬ ‫ﻟﻠﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق واﻟﺧﺎﺻﺔ ﺑﺎﻟﻣﺛ ﺎل )‪ (٢٣-٤‬ﯾوﺿ ﺢ ﺷ ﻛل ) ‪ (٣٨-٤‬رﺳ م ‪d i‬‬ ‫ﻣﻘﺎﺑل ‪yˆ i‬‬

‫‪٢٦٦‬‬


‫‪d‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪45‬‬

‫‪40‬‬

‫‪30‬‬

‫‪35‬‬

‫‪25‬‬ ‫‪-2‬‬ ‫‪-4‬‬

‫ﺷﻛل )‪(٣٨-٤‬‬ ‫وﻋﻧد اﺳﺗﺧدام ﺑ واﻗﻲ ﺳ ﺗﯾودﻧت ﻧﺣﺻ ل ﻋﻠ ﻰ ﻧﻔ س اﻟرﺳ م وﻟﻛ ن ﻣ ﻊ اﺧ ﺗﻼف ﻓ ﻲ ﻣﻘﯾ ﺎس‬ ‫اﻟرﺳم ﻛﻣﺎ ﯾﺗﺿﺢ ﻣن ﺷﻛل ) ‪(٣٩-٤‬‬ ‫‪r‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪45‬‬

‫‪40‬‬

‫‪30‬‬

‫‪35‬‬

‫‪25‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫ﺷﻛل ) ‪(٣٩-٥‬‬ ‫وﻣن ﻣﻼﺣظﺔ اﻟرﺳم اﻟﺑﯾﺎﻧﻲ ﻧرى ﺑﺄﻧﮫ ﯾﺷﺑﮫ ‪ ‬ﻣﻣﺎ ﯾدل ﻋﻠﻰ أن ھﻧ ﺎك ﻣﻌﺎدﻟ ﺔ ﻣ ن درﺟ ﺔ‬ ‫ﺛﺎﻧﯾﺔ ﺳوف ﺗﻛون اﻛﺛر ﻣﻼﺋﻣﺔ ﻟﻠﺑﯾﺎﻧﺎت ‪ .‬أي أن اﻟﻧﻣوذج اﻟﺧطﻲ )‪ (١-٤‬ﻻ ﯾﻼﺋ م اﻟﺑﯾﺎﻧ ﺎت‬ ‫واﻟذي ﯾوﺿﺣﮫ ﺷﻛل اﻻﻧﺗﺷﺎر ﻓﻲ ﺷﻛل )‪.(٣٥-٥‬‬ ‫ﺳوف ﯾﺗم اﯾﺟﺎد ‪ e i , d i , ri‬ﻟﻛل ﻗﯾم ‪ x i‬ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ‬ ‫ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=1‬‬ ‫‪1‬‬ ‫‪٢٦٧‬‬


x1={35,35,40.,40,45,45,50,50,55,55,60,60} {35,35,40.,40,45,45,50,50,55,55,60,60} y1={22,20,28,31,37.,38,41,39,34,37,27,30} {22,20,28,31,37.,38,41,39,34,37,27,30} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] sxx=c[x1,x1] 875. xb=h[x1]/l[x1] 47.5 yb=h[y1]/l[y1] 32. b1=c[x1,y1]/c[x1,x1] 0.331429 b0=yb-b1*xb 16.2571 yy=b0+(b1*x1) {27.8571,27.8571,29.5143,29.5143,31.1714,31.1714,32.8286,32. 8286,34.4857,34.4857,36.1429,36.1429} e=y1-yy {-5.85714,-7.85714,1.51429,1.48571,5.82857,6.82857,8.17143,6.17143,0.485714,2.51429,-9.14286,-6.14286} t1=Transpose[{x1,y1}] {{35,22},{35,20},{40.,28},{40,31},{45,37.},{45,38},{50,41},{ 50,39},{55,34},{55,37},{60,27},{60,30}} a=PlotRange{{30,65},{10,45}} PlotRange{{30,65},{10,45}} a1=Prolog{PointSize[.02]} Prolog{PointSize[0.02]} g= ListPlot[t1,a,a1,AxesLabel{"x","y"}]

٢٦٨


y 45 40 35 30 25 20 15 x 35

40

45

50

55

60

65

Graphics dd=Plot[b0+(b1*x),{x,30,65},AxesLabel{"x","y"}] y 38 36 34 32 30 28 x 35

40

45

50

40

45

50

55

60

65

Graphics Show[g,dd] y 45 40 35 30 25 20 15 x 35

55

60

Graphics n=l[x1] 12 ssto=c[y1,y1] ٢٦٩

65


510. ssr=c[x1,y1]^2/c[x1,x1] 96.1143 sse=ssto-ssr 413.886 mse=sse/(n-2) 41.3886

di  e 



mse

{-0.910428,-1.22131,0.235379,0.230938,0.905987,1.06143,1.27016,0.95928,0.0754989,0.390818,-1.42116,-0.954839}

1 x1  xb ^2  ri  e   mse1      N n sxx {-1.05972,-1.42157,0.254947,0.250137,0.949981,1.11297,1.33184,1.00586,0.0817756,0.423309,-1.65419,-1.11141} pp1=Transpose[{yy,e}] {{27.8571,-5.85714},{27.8571,-7.85714},{29.5143,1.51429},{29.5143,1.48571},{31.1714,5.82857},{31.1714,6.8285 7},{32.8286,8.17143},{32.8286,6.17143},{34.4857,0.485714},{34.4857,2.51429},{36.1429,-9.14286},{36.1429,6.14286}} aa=PlotRange{{20,40},{-15,15}} PlotRange{{20,40},{-15,15}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp1, aa, a2, AxesLabel  "y", "e" e 15 10 5  y

22.5

25

27.5

30

32.5

35

37.5

40

-5 -10 -15

Graphics pp2=Transpose[{yy,di}] {{27.8571,-0.910428},{27.8571,-1.22131},{29.5143,0.235379},{29.5143,0.230938},{31.1714,0.905987},{31.1714,1.0 6143},{32.8286,1.27016},{32.8286,0.95928},{34.4857,٢٧٠


0.0754989},{34.4857,0.390818},{36.1429,-1.42116},{36.1429,0.954839}} aa=PlotRange{{20,45},{-5,5}} PlotRange{{20,45},{-5,5}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp2, aa, a2, AxesLabel  "y", "d" d 4 2  y

25

30

35

40

45

-2 -4

Graphics pp3=Transpose[{yy,ri}] {{27.8571,-1.05972},{27.8571,-1.42157},{29.5143,0.254947},{29.5143,0.250137},{31.1714,0.949981},{31.1714,1.1 1297},{32.8286,1.33184},{32.8286,1.00586},{34.4857,0.0817756},{34.4857,0.423309},{36.1429,-1.65419},{36.1429,1.11141}} aa=PlotRange{{20,45},{-3,3}} PlotRange{{20,45},{-3,3}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp3, aa, a2, AxesLabel  "y", "r" r 3 2 1  y

25

30

35

40

-1 -2 -3

Graphics ٢٧١

45


‫]}‪def=Transpose[{x1,y1,yy,e,di,ri‬‬ ‫‪{{35,22,27.8571,-5.85714,-0.910428,‬‬‫‪1.05972},{35,20,27.8571,-7.85714,-1.22131,‬‬‫‪1.42157},{40.,28,29.5143,-1.51429,-0.235379,‬‬‫‪0.254947},{40,31,29.5143,1.48571,0.230938,0.250137},{45,37.,‬‬ ‫‪31.1714,5.82857,0.905987,0.949981},{45,38,31.1714,6.82857,1.‬‬ ‫‪06143,1.11297},{50,41,32.8286,8.17143,1.27016,1.33184},{50,3‬‬ ‫‪9,32.8286,6.17143,0.95928,1.00586},{55,34,34.4857,‬‬‫‪0.485714,-0.0754989,‬‬‫‪0.0817756},{55,37,34.4857,2.51429,0.390818,0.423309},{60,27,‬‬ ‫‪36.1429,-9.14286,-1.42116,-1.65419},{60,30,36.1429,‬‬‫}}‪6.14286,-0.954839,-1.11141‬‬ ‫]‪TableForm[def‬‬ ‫‪1.05972‬‬ ‫‪1.42157‬‬ ‫‪0.254947‬‬

‫‪5.85714‬‬ ‫‪7.85714‬‬ ‫‪1.51429‬‬

‫‪0.910428‬‬ ‫‪1.22131‬‬ ‫‪0.235379‬‬

‫‪1.48571‬‬ ‫‪5.82857‬‬ ‫‪6.82857‬‬ ‫‪8.17143‬‬ ‫‪6.17143‬‬ ‫‪0.485714‬‬ ‫‪2.51429‬‬ ‫‪9.14286‬‬ ‫‪6.14286‬‬

‫‪27.8571‬‬ ‫‪27.8571‬‬ ‫‪29.5143‬‬ ‫‪29.5143‬‬ ‫‪31.1714‬‬ ‫‪31.1714‬‬ ‫‪32.8286‬‬ ‫‪32.8286‬‬ ‫‪34.4857‬‬ ‫‪34.4857‬‬ ‫‪36.1429‬‬ ‫‪36.1429‬‬

‫‪22‬‬ ‫‪20‬‬ ‫‪28‬‬ ‫‪31‬‬ ‫‪37.‬‬ ‫‪38‬‬ ‫‪41‬‬ ‫‪39‬‬ ‫‪34‬‬ ‫‪37‬‬ ‫‪27‬‬ ‫‪30‬‬

‫‪0.230938‬‬ ‫‪0.250137‬‬ ‫‪0.905987‬‬ ‫‪0.949981‬‬ ‫‪1.06143‬‬ ‫‪1.11297‬‬ ‫‪1.27016‬‬ ‫‪1.33184‬‬ ‫‪0.95928‬‬ ‫‪1.00586‬‬ ‫‪0.0754989‬‬ ‫‪0.0817756‬‬ ‫‪0.390818‬‬ ‫‪0.423309‬‬ ‫‪1.42116‬‬ ‫‪1.65419‬‬ ‫‪0.954839‬‬ ‫‪1.11141‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ y1 .‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x1‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬

‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ‪) yˆ  16.2571  0.331429 x .‬ﺣﯾث‬ ‫ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫‪b 0  16.2571‬‬

‫ﻧﺣﺻ ل‬

‫‪b0=yb-b1*xb‬‬

‫و ‪b1  0.331429‬‬

‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫‪(b1=sxy/sxx‬‬ ‫واﻟﻣﻣﺛﻠﺔ ﺑﯾﺎﻧﯾﺎ ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻣن اﻻﻣر‬ ‫]‪Show[g,dd‬‬ ‫‪٢٧٢‬‬

‫‪35‬‬ ‫‪35‬‬ ‫‪40.‬‬ ‫‪40‬‬ ‫‪45‬‬ ‫‪45‬‬ ‫‪50‬‬ ‫‪50‬‬ ‫‪55‬‬ ‫‪55‬‬ ‫‪60‬‬ ‫‪60‬‬


‫اﻟﺟدول اﻟﺳﺎﺑق ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬

‫]‪TableForm[def‬‬

‫رﺳم ‪ ei‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪g  ListPlot pp1, aa, a2, AxesLabel  "y", "e"‬‬

‫رﺳم ‪ d i‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪g  ListPlot pp2, aa, a2, AxesLabel  "y", "d"‬‬

‫رﺳم‬

‫‪ri‬‬

‫ﻣﻘﺎﺑل ‪ yˆ i‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪g  ListPlot pp3, aa, a2, AxesLabel  "y", "r"‬‬

‫وﯾﻣﻛن ﻋﻣل اﺧﺗﺑﺎر ﻟﻧﻘص اﻟﺗوﻓﯾق ﻟﻠﺗﺄﻛﯾد ﻣن اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ ‪:‬‬ ‫ﻣﺛﺎل)‪(٢٤-٤‬‬ ‫اﻵن ﻟﻠﻣﺛﺎل اﻟﺳﺎﺑق ﻻﺧﺗﺑﺎر ﻧﻘص اﻟﺗوﻓﯾق أي اﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪:‬‬ ‫‪H 0 :  Y|x   0  1x i‬‬ ‫‪i‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‪:‬‬ ‫‪H1 :  Y|x   0  1x i‬‬ ‫‪i‬‬ ‫ﻧﺗﺑﻊ اﻟﺧطوات اﻟﺗﺎﻟﯾﺔ‪:‬‬ ‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺎ اﻟﺧﺎﻟص ﻋﻧد ‪ x= 35‬ھو ‪:‬‬

‫}‪22 2  20 2  {22  202 / 2‬‬ ‫‪2‬‬ ‫ﺑدرﺟﺎت ﺣرﯾﺔ ‪n1  2  1  1‬‬

‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺎ اﻟﺧﺎﻟص ﻋﻧد ‪ x=40‬ھو ‪:‬‬

‫}‪282  312  {28  312 / 2‬‬ ‫‪ 4. 5‬‬ ‫‪٢٧٣‬‬


‫ﺑدرﺟﺎت ﺣرﯾﺔ ‪ 2  1  1‬‬

‫‪n 2‬‬

‫ﺑﻧﻔس اﻟطرﯾﻘﺔ ﯾﻣﻛن ﺣﺳﺎب ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺎ اﻟﺧ ﺎﻟص ﻟﻠﻘ ﯾم اﻟﺑﺎﻗﯾ ﺔ ﻣ ن ‪ x‬ﻛﻣ ﺎ‬ ‫ھو ﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪x‬‬ ‫‪ni‬‬ ‫درﺟﺎت‬ ‫‪2‬‬ ‫اﻟﺣرﯾﺔ‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬

‫‪yij  yi ‬‬

‫‪‬‬ ‫‪j 1‬‬

‫‪2‬‬ ‫‪4.5‬‬ ‫‪0.5‬‬ ‫‪2‬‬ ‫‪4.5‬‬ ‫‪4.5‬‬

‫‪35‬‬ ‫‪40‬‬ ‫‪45‬‬ ‫‪50‬‬ ‫‪55‬‬ ‫‪60‬‬

‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪F‬‬ ‫‪2.32224‬‬ ‫‪-‬‬‫‪32.9905‬‬ ‫‪--‬‬

‫‪MS‬‬ ‫‪96.1143‬‬ ‫‪41.3886‬‬ ‫‪98.0714‬‬ ‫‪3‬‬

‫‪SS‬‬ ‫‪96.1143‬‬ ‫‪413.886‬‬ ‫‪395.886‬‬ ‫‪18‬‬

‫‪df‬‬ ‫‪1‬‬ ‫‪10‬‬ ‫‪4‬‬ ‫‪6‬‬

‫‪S.O.V‬‬ ‫اﻻﻧﺣدار‬ ‫اﻟﺧطﺄ‬ ‫ﻗﺻور اﻟﺗوﻓﯾق‬ ‫اﻟﺧطﺄ اﻟﺧﺎﻟص‬

‫ﺑﻣ ﺎ أن ﻗﯾﻣ ﺔ ‪ F‬اﻟﻣﺣﺳ وﺑﺔ ﻟﻘﺻ ور اﻟﺗوﻓﯾ ق ‪ 32.9905 ‬ﺗزﯾ د ﻋ ن اﻟﻘﯾﻣ ﺔ اﻟﺟدوﻟﯾ ﺔ‬ ‫‪ F.05 4,6  4.53‬ﻓﺈﻧﻧﺎ ﻧرﻓض ﻓرض اﻟﻌدم وﺑﻧﺎء ﻋﻠﻰ ذﻟ ك ﻓ ﺈن ﻣﻌﺎدﻟ ﺔ اﻟﺧ ط اﻟﻣﺳ ﺗﻘﯾم‬ ‫ﻏﯾر ﻣﻼﺋﻣﺔ ﻟﻠﺑﯾﺎﻧﺎت ﻓﯾﻣﻛن اﺳﺗﺧدام ﻣﻌﺎدﻟﺔ ﻣ ن اﻟدرﺟ ﺔ اﻟﺛﺎﻧﯾ ﺔ ﻻن ‪ f  2.32224‬اﻗ ل ﻣ ن‬ ‫‪. F.05 1,10  4.9646‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=1‬‬ ‫‪1‬‬ ‫}‪x={35.,35,40.,40,45,45,50,50,55,55,60,60‬‬ ‫}‪{35.,35,40.,40,45,45,50,50,55,55,60,60‬‬ ‫}‪y={22.,20.,28,31,37.,38,41,39,34,37,27,30‬‬ ‫}‪{22.,20.,28,31,37.,38,41,39,34,37,27,30‬‬ ‫}‪{22.`,20.`,28,31,37.`,38.,41,39,34,37,27,30‬‬ ‫}‪{22.,20.,28,31,37.,38.,41,39,34,37,27,30‬‬ ‫}}‪yy={{22,20},{28,31},{37,38},{41,39},{34,37},{27,30‬‬ ‫}}‪{{22,20},{28,31},{37,38},{41,39},{34,37},{27,30‬‬

‫‪٢٧٤‬‬


a[x_]:=Length[x] z[x_]:=Apply[Plus,x]

zx2 cx_ : zx^2  ax h=Map[c,yy]

2,

9 1 9 9 , , 2, ,  2 2 2 2

ssp=z[h] 18 q=Map[a,yy] {2,2,2,2,2,2} qq=q-1 {1,1,1,1,1,1} ne=z[qq] 6

s2e 

ssp ne

3 tx=Table[{1,x[[i]]},{i,1,a[x]}] {{1,35.},{1,35},{1,40.},{1,40},{1,45},{1,45},{1,50},{1,50},{ 1,55},{1,55},{1,60},{1,60}} a[tx] 12 u=Transpose[tx] {{1,1,1,1,1,1,1,1,1,1,1,1},{35.,35,40.,40,45,45,50,50,55,55, 60,60}} t1=u.y {384.,18530.} t2=Inverse[u.tx] {{2.6619,-0.0542857},{-0.0542857,0.00114286}} b=t1.t2 {16.2571,0.331429} b0=b[[1]] 16.2571 b1=b[[2]] 0.331429 yb=b0+b1*x {27.8571,27.8571,29.5143,29.5143,31.1714,31.1714,32.8286,32. 8286,34.4857,34.4857,36.1429,36.1429} e=y-yb {-5.85714,-7.85714,1.51429,1.48571,5.82857,6.82857,8.17143,6.17143,0.485714,2.51429,-9.14286,-6.14286} ٢٧٥


sse=e.e 413.886 ssto=c[y] 510. ssl=sse-ssp 395.886 ssr=ssto-sse 96.1143 dsr=1 1 n=a[x] 12 dse=n-2 10 dst=n-1 11 nl=dse-ne 4

msr 

ssr dsr

96.1143

mse 

sse dse

41.3886

f

msr mse

2.32224

msl 

ssl nl

98.9714

ff 

msl s2e

32.9905 th=TableHeadings{{soruse,redession,residual,ftt,pure},{ano va}} TableHeadings{{soruse,redession,residual,ftt,pure},{anova} } tr1={"df","ss","ms","f"} {df,ss,ms,f} tr2={dsr,ssr,msr,f} {1,96.1143,96.1143,2.32224} tr3={dse,sse,mse,"---"} {10,413.886,41.3886,---} tr4={nl,ssl,msl,ff} ٢٧٦


{4,395.886,98.9714,32.9905} tr5={ne,ssp,s2e,"---"} {6,18,3,---} TableForm[{tr1,tr2,tr3,tr4,tr5},th]

soruse redession residual ftt pure

anova df 1 10 4 6

ss 96.1143 413.886 395.886 18

ms 96.1143 41.3886 98.9714 3

f 2.32224 

32.9905 

<<Statistics`ContinuousDistributions` =0.05; ff1=Quantile[FRatioDistribution[nl,ne],1-] 4.53368 If[ff>ff1,Print["RjectHo"],Print["AccpetHo"]] RjectHo ff2=Quantile[FRatioDistribution[dsr,dse],1-] 4.9646 If[f>ff2,Print["RjectHo"],Print["AccpetHo"]] AccpetHo

‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ ‫اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬x‫ اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‬y . ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ‬

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ ‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ TableForm[{tr1,tr2,tr3,tr4,tr5},th]

‫ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬f   32.9005 ‫و‬

msl s2e ‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬f ff 

ff1=Quantile[FRatioDistribution[nl,ne],1-]

‫ﺣﯾث اﻟﻣﺧرج‬ 4.53368

‫اﻟﻘرار اﻟﻣﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ If[ff>ff1,Print["RjectHo"],Print["AccpetHo"]]

‫واﻟﻣﺧرج ﻓﻰ ھذه اﻟﺣﺎﻟﺔ ھو‬ RjectHo

.‫وھذا ﯾﻌﻧﻰ ان اﻟﻧﻣوزج ﻏﯾر ﺧطﻰ‬ ‫ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬f  2.3224 ‫اﯾﺿﺎ‬ ٢٧٧


‫‪msr‬‬ ‫‪mse‬‬ ‫‪ f‬اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬ ‫‪f‬‬

‫]‪ff2=Quantile[FRatioDistribution[dsr,dse],1-‬‬

‫ﺣﯾث اﻟﻣﺧرج‬ ‫‪4.9646‬‬

‫اﻟﻘرار اﻟﻣﺗﺧذ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]]"‪If[f>ff2,Print["RjectHo"],Print["AccpetHo‬‬

‫واﻟﻣﺧرج ﻓﻰ ھذه اﻟﺣﺎﻟﺔ ھو‬ ‫‪AccpetHo‬‬

‫اى ﻗﺑول ﻓرض اﻟﻌدم ‪H 0 : 1  0‬‬

‫)‪ (١٤-٤‬ﺗﺣوﯾﻼت اﻟﻰ اﻟﺧط اﻟﻣﺳﺗﻘﯾم‬ ‫‪Transformations to a Straight Line‬‬ ‫إن ﺿ رورة اﻗﺗ راح ﻧﻣ وذج ﺑ دﯾل ﻟﻧﻣ وذج اﻻﻧﺣ دار اﻟﺧط ﻲ‬ ‫‪ Yi   0  1x i   i‬ﯾرﺟﻊ إﻣﺎ إﻟﻰ اﻋﺗﺑﺎرات ﻧظرﯾ ﺔ أو ﻣ ن اﻟﺧﺑ رة اﻟﺳ ﺎﺑﻘﺔ أو ﻣ ن‬ ‫اﺧﺗﺑ ﺎر رﺳ وم اﻟﺑ واﻗﻲ أو ﻣ ن اﺧﺗﺑ ﺎر ﻧﻘ ص ﺟ ودة اﻟﺗوﻓﯾ ق‪ .‬ﻓ ﻲ ﻛ ل ﺣﺎﻟ ﺔ ﯾﻛ ون ﻣ ن‬ ‫اﻟﺿ روري وﺿ ﻊ ﻧﻣ وذج ﻣﻌﺎﻟﻣ ﮫ ﯾﻣﻛ ن ﺗﻘ دﯾرھﺎ ﺑﺳ ﮭوﻟﺔ‪ .‬ﻣﺟﻣوﻋ ﺔ ﺧﺎﺻ ﺔ ﻣ ن ﺗﻠ ك‬ ‫اﻟﻧﻣﺎذج ﯾﻣﻛن ﺗﻌرﯾﻔﮭﺎ ﻋن طرﯾق ﻣﺎ ﯾﻌرف ﺑﺎﻟدوال اﻟﻘﺎﺑﻠ ﺔ ﻟﻠﺗﺣوﯾ ل إﻟ ﻰ ﺧطﯾ ﺔ‬ ‫‪intrinsically linear‬أو ‪. transformably linear‬‬

‫ﺗﻌرﯾف ‪ :‬ﺗﺳﻣﻰ اﻟداﻟﺔ اﻟﺗ ﻲ ﺗ رﺑط ‪ x‬ﻣ ﻊ ‪ y‬ﺑﺎﻟداﻟ ﺔ اﻟﻘﺎﺑﻠ ﺔ ﻟﻠﺗﺣوﯾ ل إﻟ ﻰ ﺧطﯾ ﺔ إذا أﻣﻛ ن‬ ‫إﺟراء ﺗﺣوﯾﻠﺔ ﻋﻠ ﻰ ‪ x‬و) أو ( ﺗﺣوﯾﻠ ﺔ ﻋﻠ ﻰ ‪ y‬ﺑﺣﯾ ث ﯾﻣﻛ ن اﻟﺗﻌﺑﯾ ر ﻋ ن اﻟداﻟ ﺔ‬ ‫ﻛ ﺎﻷﺗﻲ ‪ y    0  1 x ‬ﺣﯾ ث ‪ x ‬اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل اﻟﻣﺣ ول و ‪ y‬اﻟﻣﺗﻐﯾ ر‬ ‫اﻟﺗﺎﺑﻊ اﻟﻣﺣول‪.‬‬ ‫اﻟداﻟﺔ اﻟﻘﺎﺑﻠﺔ ﻟﻠﺗﺣوﯾل إﻟﻰ ﺧطﯾﺔ ﺗ ؤدي ﻣﺑﺎﺷ رة إﻟ ﻰ ﻧﻣ ﺎذج إﻧﺣ دار ﺧطﯾ ﮫ وﻣﻌﺎﻟﻣﮭ ﺎ ﯾﻣﻛ ن‬ ‫ﺗﻘدﯾرھﺎ ﺑﺳﮭوﻟﮫ ﺑﺎﺳﺗﺧدام طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى اﻟﻌﺎدﯾﺔ ‪.‬‬

‫‪٢٧٨‬‬


‫اﻟﻣﯾ زة اﻷﺳﺎﺳ ﯾﺔ ﻟﻧﻣ وذج اﻻﻧﺣ دار اﻟﻘﺎﺑ ل ﻟﻠﺗﺣوﯾ ل إﻟ ﻰ ﺧط ﻲ ھ و أن اﻟﻣﻌﻠﻣﺗ ﯾن‬ ‫‪  0 , 1‬ﻓ ﻲ اﻟﻧﻣ وذج اﻟﻣﺣ ول ﯾﻣﻛ ن ﺗﻘ دﯾرھﻣﺎ ﺑﺎﺳ ﺗﺧدام طرﯾﻘ ﺔ اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى‬ ‫اﻟﻌﺎدﯾﺔ وذﻟك ﺑﺎﻟﺗﻌوﯾض ﻋن ‪ x  , y ‬ﻓﻲ ﺻﯾﻐﺔ ﻛل ﻣن ‪ b 0 , b1‬ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪ x i  y i‬‬

‫‪,‬‬

‫‪‬‬

‫‪ x i y i‬‬

‫‪n‬‬ ‫‪(  x i ) 2‬‬ ‫‪2‬‬ ‫‪ ( x i ) ‬‬ ‫‪n‬‬ ‫‪ y i‬‬ ‫‪ x i‬‬ ‫‪b0 ‬‬ ‫‪ b1‬‬ ‫‪.‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪b1 ‬‬

‫اﻟﻣﻌﺎﻟم ﻓﻲ ﻧﻣوذج اﻻﻧﺣ دار اﻟﻐﯾ ر ﺧط ﻲ اﻷﺻ ﻠﻲ ﯾﻣﻛ ن ﺗﻘ دﯾرھﺎ ﻷﻧﮭ ﺎ ﺗﻛ ون داﻟ ﮫ ﻓ ﻲ‬ ‫‪ b 0 , b1‬وذﻟك ﻋﻧد اﻟﺿرورة ‪.‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺑﻌض اﻟﻧﻣﺎزج ﻟﺗوﺿﯾﺢ ذﻟك ‪.‬‬

‫)‪ (١-١٤-٤‬اﻟﻧﻣوذج اﻷﺳﻰ‬

‫‪The Exponential Model‬‬

‫ﻣﻌﺎدﻟﺔ اﻟﻧﻣوذج اﻷﺳﻰ ﺗﻛون ﻋﻠﻰ اﻟﺻورة اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪ Y| x    x‬‬ ‫ﺣﯾث ‪ , ‬ﺛﺎﺑﺗﺎن واﻟﻣطﻠوب ﺗﻘدﯾرھﻣﺎ ﻣن اﻟﺑﯾﺎﻧﺎت ﺑﺎﻟﺗﻘدﯾرﯾن ‪ c , d‬ﻋﻠ ﻰ اﻟﺗ واﻟﻲ ‪ .‬ﯾﻣﻛ ن ﺗﻘ دﯾر ‪ Y|x‬‬

‫ﺑﺎﻟﻘﯾﻣﺔ ‪ yˆx‬ﻣن ﻣﻧﺣﻧﻰ اﻻﻧﺣدار اﻟﻣﻘدر اﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪yˆ x  c d x .‬‬

‫ﺑﺄﺧ ذ ﻟوﻏﺎرﯾﺗﻣ ﺎت اﻟط رﻓﯾن ) ﻟﻸﺳ ﺎس ‪ ( e‬ﻓ ﻲ اﻟﻣﻌﺎدﻟ ﺔ اﻟﺳ ﺎﺑﻘﺔ ﻓ ﺈن ﻣﻧﺣﻧ ﻰ اﻻﻧﺣ دار اﻟﻣﻘ در ﯾﻣﻛ ن‬ ‫ﻛﺗﺎﺑﺗﮫ ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪ln yˆ x  ln c  (ln d) x,‬‬

‫وﻛل زوج ﻣن اﻟﻣﺷﺎھدات ﻓﻲ اﻟﻌﯾﻧﺔ ﯾﺣﻘق اﻟﻌﻼﻗﺔ ‪:‬‬ ‫‪ln y i  ln c  (ln d ) x i  e i  b 0  b 1x i  e i ,‬‬

‫ﺣﯾث أن ‪ . b1  (ln d ), b 0  ln c :‬وﻋﻠﻰ ذﻟك ﯾﻣﻛن إﯾﺟﺎد ‪ b 0 , b1‬ﺑﺎﻟﺻﯾﻎ اﻟﻣﺳﺗﺧدﻣﺔ ﻟﻧﻣوذج‬ ‫اﻻﻧﺣدار اﻟﺧطﻰ ‪ ،‬اﻟﺗﻲ ﺳﺑق أن ﺗﻧﺎوﻟﻧﺎھﺎ ‪ ،‬ﺑﺎﺳﺗﺧدام اﻟﻧﻘﺎط )‪ (xi , ln yi‬ﺛم إﯾﺟﺎد ‪ c , d‬ﺑﺄﺧذ اﻟﻘﯾم‬ ‫اﻟﻣﻘﺎﺑﻠﺔ ﻟﻠوﻏﺎرﯾﺗﻣﺎت ﻟـ ‪ b 0 , b1‬ﻋﻠﻰ اﻟﺗواﻟﻲ‪ ،‬أي أن ‪:‬‬ ‫‪d  exp( b1 ), c  exp( b 0 ) .‬‬ ‫طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى ﻟﺗوﻓﯾق ﻣﻧﺣﻧﻰ أﺳﻰ ﻟﻔﺋﺔ ﻣن اﻟﻣﺷﺎھدات ﻣوﺿﺣﮫ ﻓﻲ اﻟﻣﺛﺎل اﻟﺗﺎﻟﻲ ‪.‬‬ ‫‪٢٧٩‬‬


‫ﻣﺛﺎل)‪(٢٥-٤‬‬ ‫ﻻزواج اﻟﻘﯾﺎﺳﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ أوﺟد ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺗﺣت ﻓ رض اﻟﻧﻣ وذج اﻷﺳ ﻰ‬ ‫‪.‬‬ ‫‪7‬‬ ‫‪882‬‬

‫‪6‬‬ ‫‪670‬‬

‫‪4‬‬ ‫‪457‬‬

‫‪5‬‬ ‫‪548‬‬

‫‪2‬‬ ‫‪341‬‬

‫‪3‬‬ ‫‪393‬‬

‫اﻟﺣــل ‪:‬‬ ‫ﺑوﺿﻊ ‪yi  ln yi‬‬ ‫ﻓﺈن ‪yi  43.243148 :‬‬

‫و‬

‫‪x i2  140‬‬

‫‪,‬‬

‫‪x i  28‬‬

‫‪yi‬‬ ‫‪ 6.1775926‬‬ ‫‪n‬‬

‫‪n7‬‬

‫‪,‬‬

‫‪,‬‬

‫‪x  4,‬‬

‫‪x i yi  177.85134‬‬

‫)‪( 28)(43.243148‬‬ ‫‪7‬‬ ‫‪2‬‬ ‫)‪(28‬‬ ‫‪140 ‬‬ ‫‪7‬‬

‫‪177.85134 ‬‬ ‫‪b1 ‬‬

‫‪= 0.174241 .‬‬ ‫)‪b0= 6.1775926 – ( 0.174241) (4‬‬ ‫‪= 5.4806286 .‬‬ ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ ‪:‬‬ ‫‪yˆ  5.4806286  0.174241x.‬‬

‫وﻋﻠﻰ ذﻟك ‪:‬‬ ‫‪ln d  b1  0.174241 , ln c  b 0  5.4806286,‬‬ ‫‪d  exp( b1 )  1.1903424 , c  exp( b 0 )  239 .99752 .‬‬

‫وﺑﺎﻟﺗﺎﻟﻲ ﻓﺈن ﻣﻧﺣﻧﻰ اﻻﻧﺣدار اﻟﻣﻘدر ﺑﺎﻟﻣرﺑﻌﺎت اﻟﺻﻐرى ھو ‪:‬‬ ‫‪yˆ  c d x‬‬ ‫‪ ( 239 .99752 )(1.1903424 ) x‬‬

‫واﻟﺗﻣﺛﯾل اﻟﺑﯾﺎﻧﻲ ﻟﮭﺎ ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪. (٤٠-٤‬‬ ‫‪٢٨٠‬‬

‫‪1‬‬ ‫‪304‬‬

‫‪x‬‬ ‫‪y‬‬


(٤٠-٤) ‫ﺷﻜﻞ‬

‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬

x1={1,2,3,4,5,6,7} {1,2,3,4,5,6,7} yy3={304.0,341.0,393.0,457.0,548.0,670.0,882.0} {304.,341.,393.,457.,548.,670.,882.} y1=Log[yy3] {5.71703,5.83188,5.97381,6.12468,6.30628,6.50728,6.78219} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] k[x_]:=h[x]/l[x] xb=k[x1] 4 yb=k[y1] 6.17759 b1=c[x1,y1]/c[x1,x1] 0.174241 d=Exp[b1] 1.19034 b0=yb-b1*xb 5.48063 c=Exp[b0] 239.997 ٢٨١


t1=Transpose[{x1,yy3}] {{1,304.},{2,341.},{3,393.},{4,457.},{5,548.},{6,670.},{7,88 2.}} a=PlotRange{{0,10},{100,1100}} PlotRange{{0,10},{100,1100}} a1=Prolog{PointSize[.03]} Prolog{PointSize[0.03]} g= ListPlot[t1,a,a1] 1000 800 600 400

2

4

6

8

10

6

8

10

Graphics d=Plot[c*d^x,{x,0,10}]

1200 1000 800 600

2

4

Graphics Show[g,d]

٢٨٢


‫‪1000‬‬ ‫‪800‬‬ ‫‪600‬‬ ‫‪400‬‬

‫‪10‬‬

‫‪6‬‬

‫‪8‬‬

‫‪4‬‬

‫‪2‬‬

‫‪Graphics‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ y1 .‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x1‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ ‪:‬‬ ‫‪yˆ  5.4806286  0.174241x.‬‬

‫ﺣﯾث ‪ b 0  5.4806286‬ﺗم اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪b0=yb-b1*xb‬‬

‫و ‪ b1  0.174241‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪b1=c[x1,y1]/c[x1,x1‬‬

‫ﻣﻧﺣﻧﻰ اﻻﻧﺣدار اﻟﻣﻘدر ﺑﺎﻟﻣرﺑﻌﺎت اﻟﺻﻐرى ھو ‪:‬‬ ‫‪yˆ  c d x‬‬ ‫‪ ( 239.99752 )(1.1903424 ) x‬‬

‫ﺣﯾث‬ ‫‪ln d  b1  0.174241 , ln c  b 0  5.4806286,‬‬ ‫‪d  exp( b1 )  1.1903424 , c  exp( b 0 )  239 .99752 .‬‬

‫ﺣﯾث‬ ‫‪ c  exp(b 0 )  239.99752‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪c=Exp[b0‬‬

‫‪٢٨٣‬‬


‫و ‪ d  exp(b1 )  1.1903424‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪d=Exp[b1‬‬

‫واﻟﺗﻣﺛﯾل اﻟﺑﯾﺎﻧﻰ ﻟﻠﻣﻌﺎدﻟﺔ ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]‪Show[g,d‬‬

‫)‪(٢-١٤-٤‬ﻧﻣوذج اﻟﻘوى‬

‫‪Power Model‬‬

‫ﻣﻌﺎدﻟﺔ ﻧﻣوذج اﻟﻘوى ﺗﻛون ﻋﻠﻰ اﻟﺻورة اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪‬‬ ‫‪ Y|x  a 0 x a 0‬‬ ‫ﺣﯾث ‪ a 0 , a 0‬ﺛﺎﺑﺗﺎن واﻟﻣطﻠوب ﺗﻘدﯾرھﻣﺎ ﻣن اﻟﺑﯾﺎﻧﺎت ﺑﺎﻟﺗﻘدﯾرﯾن ‪ co , do‬ﻋﻠﻰ اﻟﺗ واﻟﻲ‪ .‬ﯾﻣﻛ ن ﺗﻘ دﯾر‬ ‫‪  Y|x‬ﺑﺎﻟﻘﯾﻣﺔ ‪ yˆx‬ﻣن ﻣﻧﺣﻧﻰ اﻻﻧﺣدار اﻟﻣﻘدر اﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪yˆ x  co x do .‬‬ ‫ﺑﺄﺧذ ﻟوﻏﺎرﯾﺗﻣﺎت اﻟطرﻓﯾن ) ﻟﻸﺳﺎس ‪ ( e‬ﻓﺈن ﻣﻧﺣﻧﻰ اﻻﻧﺣدار ﯾﻣﻛن ﻛﺗﺎﺑﺗﮫ ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫)‪ln yˆ x  ln co  d o (ln x‬‬ ‫ﻛل زوج ﻣن اﻟﻣﺷﺎھدات ﻓﻲ اﻟﻌﯾﻧﺔ ﯾﺣﻘق اﻟﻌﻼﻗﺔ ‪:‬‬ ‫‪ln yi  ln co  d o (ln x i )  ei‬‬

‫‪ bo  b1 (ln x i )  ei‬‬

‫ﺣﯾ ث ‪ . b1  d o , bo  ln co‬وﻋﻠ ﻰ ذﻟ ك ﯾﻣﻛ ن إﯾﺟ ﺎد ‪ b0 , b1‬ﺑﺎﻟﺻ ﯾﻎ اﻟﻣﺳ ﺗﺧدﻣﺔ ﻟﻧﻣ وذج‬ ‫اﻻﻧﺣدار اﻟﺧط ﻰ‪ ،‬اﻟﺗ ﻲ ﺳ ﺑق أن ﺗﻧﺎوﻟﺗﺎھ ﺎ ‪ ،‬ﺑﺎﺳ ﺗﺧدام اﻟﻧﻘ ﺎط ) ‪ (ln x i ,ln yi‬ﺛ م إﯾﺟ ﺎد ‪co , do‬‬ ‫ﺣﯾث ‪. b1  d o ,ln co  bo‬‬

‫ﻣﺛﺎل)‪(٢٦-٤‬‬ ‫ﻻزواج اﻟﻘﯾﺎﺳﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ أوﺟد ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺗﺣت ﻓرض ﻧﻣوذج اﻟﻘوى ‪.‬‬ ‫‪400‬‬ ‫‪33.0‬‬

‫‪400‬‬ ‫‪26.0‬‬

‫‪400‬‬ ‫‪24.5‬‬

‫‪400‬‬ ‫‪21.5‬‬

‫‪500‬‬ ‫‪16.5‬‬

‫‪500‬‬ ‫‪9.8‬‬

‫‪500‬‬ ‫‪7.8‬‬

‫‪500‬‬ ‫‪6.4‬‬

‫‪600‬‬ ‫‪3.6‬‬

‫‪600‬‬ ‫‪3.0‬‬

‫‪600‬‬ ‫‪2.65‬‬

‫اﻟﺣــل ‪:‬‬ ‫‪n  12 ,  ln x i  74.412 ,  ln yi  26.22601 ,‬‬ ‫‪ ln x i2  461.75874 , (ln x i )(ln yi )  160.84601 ,‬‬ ‫‪٢٨٤‬‬

‫‪600‬‬ ‫‪2.35‬‬

‫‪x‬‬ ‫‪y‬‬


‫‪ ln yi2  67.74609.‬‬ ‫)‪(74.412)(26.22601‬‬ ‫‪160.84601 ‬‬ ‫‪12‬‬ ‫‪b1 ‬‬ ‫‪(74.412) 2‬‬ ‫‪461.75874 ‬‬ ‫‪12‬‬ ‫‪= - 5.3996,‬‬ ‫)‪26.22061  ( 5.3996)(74.412‬‬ ‫‪b0 ‬‬ ‫‪12‬‬ ‫‪= 35.6684.‬‬ ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ ‪:‬‬ ‫‪yˆ x  35.6684  5.3996x.‬‬ ‫وﻋﻠﻰ ذﻟك ‪:‬‬ ‫‪ln co  b 0  35.6684‬‬ ‫أي أن ‪:‬‬ ‫‪15‬‬

‫‪c0  exp(b0 )  3.094491530.10‬‬ ‫‪d 0  b1  5.3996‬‬ ‫واﻟﻣﻌﺎدﻟﺔ اﻷﺳﺎﺳﯾﺔ اﻟﻣﻘدرة ھﻲ ‪:‬‬ ‫‪15‬‬

‫‪yˆ x  c0 x d0  (3.094491530 10)  x 5.3996 .‬‬ ‫واﻟﺗﻣﺛﯾل اﻟﺑﯾﺎﻧﻲ ﻟﮭﺎ ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪. (٤١-٤‬‬

‫ﺷﻛل )‪(٤١- ٤‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪xx3={600.0,600.0,600.,600.,500.,500.,500.,500.,400.,400.,400‬‬ ‫}‪.,400.‬‬

‫‪٢٨٥‬‬


{600.,600.,600.,600.,500.,500.,500.,500.,400.,400.,400.,400. } x1=Log[xx3] {6.39693,6.39693,6.39693,6.39693,6.21461,6.21461,6.21461,6.2 1461,5.99146,5.99146,5.99146,5.99146} yy3={2.35,2.65,3.,3.6,6.4,7.8,9.8,16.5,21.5,24.5,26.,33.} {2.35,2.65,3.,3.6,6.4,7.8,9.8,16.5,21.5,24.5,26.,33.} y1=Log[yy3] {0.854415,0.97456,1.09861,1.28093,1.8563,2.05412,2.28238,2.8 0336,3.06805,3.19867,3.2581,3.49651} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] k[x_]:=h[x]/l[x] xb=k[x1] 6.201 yb=k[y1] 2.1855 b1=c[x1,y1]/c[x1,x1] -5.39974 b0=yb-b1*xb 35.6693 c=Exp[b0] 3.09732  1015 t1=Transpose[{xx3,yy3}] {{600.,2.35},{600.,2.65},{600.,3.},{600.,3.6},{500.,6.4},{50 0.,7.8},{500.,9.8},{500.,16.5},{400.,21.5},{400.,24.5},{400. ,26.},{400.,33.}} a=PlotRange{{300,700},{0,40}} PlotRange{{300,700},{0,40}} a1=Prolog{PointSize[.03]} Prolog{PointSize[0.03]} g= ListPlot[t1,a,a1]

٢٨٦


40 35 30 25 20 15 10 5 350

400

450

500

550

600

650

700

Graphics d=Plot[c*x^b1,{x,300,700}] 120 100 80 60 40 20 400

500

600

700

Graphics Show[g,d] 40 35 30 25 20 15 10 5 350

400

450

500

550

600

Graphics

٢٨٧

650

700


‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﺑﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ yy3 .‬اﻟﻤﺴﻤﻰ ﺑﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪xx3‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ ‪:‬‬ ‫‪yˆ x  35.6684  5.3996x.‬‬ ‫ﺣﯾث ‪ b 0  35.6684‬ﺗم اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪b0=yb-b1*xb‬‬

‫وﺑﻣﺎ ان ‪:‬‬ ‫‪ln co  b 0  35.6684‬‬

‫أي أن ‪:‬‬ ‫‪15‬‬

‫‪c0  exp(b0 )  3.094491530.10‬‬ ‫وﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪c=Exp[b0‬‬

‫واﯾﺿﺎ‬ ‫‪d 0  b1  5.3996‬‬ ‫وﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪b1=c[x1,y1]/c[x1,x1‬‬

‫واﻟﻣﻌﺎدﻟﺔ اﻷﺳﺎﺳﯾﺔ اﻟﻣﻘدرة ھﻲ ‪:‬‬ ‫‪15‬‬

‫‪yˆ x  c0 x d0  (3.094491530 10)  x 5.3996 .‬‬ ‫واﻟﺗﻣﺛﯾل اﻟﺑﯾﺎﻧﻰ ﻟﻠﻣﻌﺎدﻟﺔ ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]‪Show[g,d‬‬

‫)‪ (٣-١٤-٤‬ﻧﻣوذج ﯾﻌطﻲ ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻋﻠﻰ اﻟﺷﻛل‬ ‫‪٢٨٨‬‬

‫‪yˆ  b 0  b1 x‬‬


‫ﻣﺛﺎل)‪٢٧-٤‬‬ ‫ﯾﻌطﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﻋدد اﻟﺳﺎﻋﺎت اﻟﺗﻲ ﯾﻘﺿﯾﮭﺎ ‪ 30‬طﺎﻟب ﻓﻲ اﻟدراﺳﺔ ﺧﺎرج‬ ‫اﻟﻣدرج ﻓﻲ اﻷﺳﺑوع ) ‪ ( x‬واﻟدرﺟﺎت اﻟﺗﻲ ﺣﺻﻠوا ﻋﻠﯾﮭﺎ ﻓﻲ ﻣﺎدة اﻹﺣﺻﺎء ) ‪ ( y‬ﺣﯾث‬ ‫اﻟدرﺟﺔ اﻟﻧﮭﺎﺋﯾﺔ ‪ . 200‬ھل ﯾﻣﻛن ﺗﻣﺛﯾل اﻟﺑﯾﺎﻧﺎت ﺑﻣﻌﺎدﻟﺔ ﺧط ﻣﺳﺗﻘﯾم ؟‬

‫‪xy‬‬ ‫‪20‬‬ ‫‪25‬‬ ‫‪75‬‬ ‫‪80‬‬ ‫‪120‬‬ ‫‪142.5‬‬ ‫‪200‬‬ ‫‪180‬‬ ‫‪285‬‬ ‫‪257.5‬‬ ‫‪252.5‬‬ ‫‪348‬‬ ‫‪360‬‬ ‫‪430.5‬‬ ‫‪552‬‬ ‫‪532‬‬ ‫‪657‬‬ ‫‪760‬‬ ‫‪735‬‬ ‫‪863.5‬‬ ‫‪902‬‬ ‫‪1002‬‬ ‫‪972‬‬ ‫‪1066‬‬ ‫‪1211‬‬ ‫‪1253‬‬ ‫‪1488‬‬ ‫‪1544‬‬ ‫‪1710‬‬ ‫‪1620‬‬ ‫‪19643.5‬‬

‫‪x2‬‬

‫‪x‬‬

‫‪y‬‬

‫‪0.25‬‬ ‫‪0.25‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪2.25‬‬ ‫‪2.25‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪6.25‬‬ ‫‪6.25‬‬ ‫‪6.25‬‬ ‫‪9‬‬ ‫‪9‬‬ ‫‪12.25‬‬ ‫‪16‬‬ ‫‪16‬‬ ‫‪20.25‬‬ ‫‪25‬‬ ‫‪25‬‬ ‫‪30.25‬‬ ‫‪30.25‬‬ ‫‪36‬‬ ‫‪36‬‬ ‫‪42.25‬‬ ‫‪49‬‬ ‫‪49‬‬ ‫‪64‬‬ ‫‪64‬‬ ‫‪81‬‬ ‫‪81‬‬ ‫‪729‬‬

‫‪٢٨٩‬‬

‫‪40‬‬ ‫‪50‬‬ ‫‪75‬‬ ‫‪80‬‬ ‫‪80‬‬ ‫‪95‬‬ ‫‪100‬‬ ‫‪90‬‬ ‫‪114‬‬ ‫‪103‬‬ ‫‪101‬‬ ‫‪116‬‬ ‫‪120‬‬ ‫‪123‬‬ ‫‪138‬‬ ‫‪133‬‬ ‫‪146‬‬ ‫‪152‬‬ ‫‪147‬‬ ‫‪157‬‬ ‫‪164‬‬ ‫‪167‬‬ ‫‪162‬‬ ‫‪164‬‬ ‫‪173‬‬ ‫‪179‬‬ ‫‪186‬‬ ‫‪193‬‬ ‫‪190‬‬ ‫‪180‬‬ ‫‪3918‬‬

‫‪0.5‬‬ ‫‪0 .5‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1.5‬‬ ‫‪1.5‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3.5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪4.5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5.5‬‬ ‫‪5.5‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪6.5‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪9‬‬ ‫‪127‬‬


‫اﻟﺣــل ‪:‬‬ ‫ﺷﻛل اﻻﻧﺗﺷﺎر ﻣوﺿﺢ ﻓﻲ ﺷﻛل)‪(٤٢-٤‬‬

‫ﺷﻛل)‪(٤٢-٤‬‬ ‫ﺑﻔرض أن ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻲ اﻟﺑﺳﯾط )‪ (١-٤‬ﯾﻣﺛل اﻟﺑﯾﺎﻧﺎت ﻓﯾﺎ ﻟﺟدول اﻟﺳﺎﺑق ﻓﺈن ‪:‬‬ ‫‪ x 127‬‬ ‫‪ y 3918‬‬ ‫‪n  30‬‬ ‫‪, x‬‬ ‫‪‬‬ ‫‪ 4.23333‬‬ ‫‪, y‬‬ ‫‪‬‬ ‫‪ 130.6‬‬ ‫‪n‬‬ ‫‪30‬‬ ‫‪n‬‬ ‫‪30‬‬ ‫)‪(127 )(3918‬‬ ‫‪30‬‬ ‫‪(127 ) 2‬‬ ‫‪729 ‬‬ ‫‪30‬‬

‫‪19643 .5 ‬‬

‫‪ x y‬‬

‫‪ xy ‬‬

‫‪n ‬‬ ‫‪2‬‬ ‫) ‪2 ( x‬‬ ‫‪x ‬‬ ‫‪n‬‬ ‫‪3057.3‬‬ ‫‪‬‬ ‫‪ 15.9761,‬‬ ‫‪191.367‬‬

‫‪SXY‬‬ ‫‪‬‬ ‫‪SXX‬‬

‫‪b1 ‬‬

‫‪b 0  y  b1x  130.6  (15.9761)(4.23333)  62.9677 .‬‬

‫ﻣﻌﺎدﻟﺔ ﺧط اﻻﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪y  62.9677  15.9761x .‬‬

‫وﻟﻣﻌرﻓﺔ ﻣدى ﺗوﻓر ﺷروط ﻓروض اﻟﺗﺣﻠﯾل ﻧﺗﺑﻊ ﻣﺎ ﯾﻠﻲ ‪:‬‬ ‫‪ -١‬ﻧﺤﺴﺐ ﻗﻴﻢ اﻟﺒﻮاﻗﻲ ‪ ei‬و اﻟﺒﻮاﻗﻲ اﻟﻤﻌﻴﺎرﻳﺔ ‪ d i‬وﺑﻮاﻗﻲ ﺳﺘﻴﻮدﻧﺖ ‪ ri‬واﻟﻨﺘﺎﺋﺞ ﻣﻌﻄﺎة ﻓﻲ‬ ‫اﻟﺠﺪول اﻟﺘﺎﻟﻰ ‪:‬‬ ‫‪٢٩٠‬‬


‫‪ri‬‬

‫‪di‬‬

‫‪ei‬‬

‫‪- 2.9048‬‬ ‫‪- 1.9664‬‬ ‫‪- 0.3663‬‬

‫‪- 2.7463‬‬ ‫‪- 1.8591‬‬ ‫‪- 0.3498‬‬

‫‪- 30.9557‬‬ ‫‪- 20.9557‬‬ ‫‪- 3.9438‬‬

‫‪0.0981‬‬ ‫‪- 0.6385‬‬ ‫‪0.7431‬‬ ‫‪0.4647‬‬ ‫‪- 0.4500‬‬ ‫‪1.0091‬‬ ‫‪0.0083‬‬ ‫‪- 0.1735‬‬ ‫‪0.4624‬‬ ‫‪0.8248‬‬ ‫‪0.3719‬‬ ‫‪1.0042‬‬ ‫‪0.5530‬‬ ‫‪1.0053‬‬ ‫‪0.8271‬‬ ‫‪0.3752‬‬ ‫‪0.5585‬‬ ‫‪1.1930‬‬ ‫‪0.7440‬‬ ‫‪0.2889‬‬ ‫‪- 0.2573‬‬ ‫‪- 0.1659‬‬ ‫‪0.3870‬‬ ‫‪- 0.4485‬‬ ‫‪0.2087‬‬ ‫‪- 1.6140‬‬ ‫‪- 2.5775‬‬

‫‪0.0937‬‬ ‫‪- 0.6149‬‬ ‫‪0.7157‬‬ ‫‪0.4506‬‬ ‫‪- 0.4364‬‬ ‫‪0.9840‬‬ ‫‪0.0081‬‬ ‫‪- 0.1692‬‬ ‫‪0.4528‬‬ ‫‪0.8076‬‬ ‫‪0.3651‬‬ ‫‪0.9872‬‬ ‫‪0.5436‬‬ ‫‪0.9882‬‬ ‫‪0.8119‬‬ ‫‪0.3683‬‬ ‫‪0.5468‬‬ ‫‪1.1678‬‬ ‫‪0.7253‬‬ ‫‪0.2817‬‬ ‫‪- 0.2495‬‬ ‫‪- 0.1597‬‬ ‫‪0.3725‬‬ ‫‪- 0.4237‬‬ ‫‪0.1972‬‬ ‫‪- 1.4862‬‬ ‫‪- 2.3734‬‬

‫‪1.0561‬‬ ‫‪- 6.9318‬‬ ‫‪8.0681‬‬ ‫‪5.0800‬‬ ‫‪- 4.9199‬‬ ‫‪11.0919‬‬ ‫‪0.0919‬‬ ‫‪- 1.9080‬‬ ‫‪5.1039‬‬ ‫‪9.1039‬‬ ‫‪4.1158‬‬ ‫‪11.1277‬‬ ‫‪6.1277‬‬ ‫‪11.1396‬‬ ‫‪9.1516‬‬ ‫‪4.1516‬‬ ‫‪6.1635‬‬ ‫‪13.1635‬‬ ‫‪8.1754‬‬ ‫‪3.1754‬‬ ‫‪- 2.8125‬‬ ‫‪- 1.8006‬‬ ‫‪4.1993‬‬ ‫‪- 4.7767‬‬ ‫‪2.2232‬‬ ‫‪- 16.7529‬‬ ‫‪- 26.7529‬‬

‫‪yˆ i‬‬ ‫‪70.9557‬‬ ‫‪70.9557‬‬ ‫‪78.9438‬‬ ‫‪78.9438‬‬ ‫‪86.9318‬‬ ‫‪86.9318‬‬ ‫‪94.9199‬‬ ‫‪94.91996‬‬ ‫‪102.9080‬‬ ‫‪102.9080‬‬ ‫‪102.9080‬‬ ‫‪110.8960‬‬ ‫‪110.8960‬‬ ‫‪118.8841‬‬ ‫‪126.8722‬‬ ‫‪126.8722‬‬ ‫‪134.8603‬‬ ‫‪142.8483‬‬ ‫‪142.8483‬‬ ‫‪150.8364‬‬ ‫‪150.8364‬‬ ‫‪158.8245‬‬ ‫‪158.8245‬‬ ‫‪166.8125‬‬ ‫‪174.8006‬‬ ‫‪174.8006‬‬ ‫‪190.7767‬‬ ‫‪190.7767‬‬ ‫‪206.7529‬‬ ‫‪206.7529‬‬

‫‪ -٢‬ﻧرﺳم اﻟﺑواﻗﻲ ‪ ei‬ﻣﻘﺎﺑل ‪ yˆ i‬واﻟﻧﺗﺎﺋﺞ ﻣﻌطﺎة ﻓﻲ ﺷﻛل)‪(٤٣-٤‬‬

‫‪٢٩١‬‬

‫‪yi‬‬ ‫‪40‬‬ ‫‪50‬‬ ‫‪75‬‬ ‫‪80‬‬ ‫‪80‬‬ ‫‪95‬‬ ‫‪100‬‬ ‫‪90‬‬ ‫‪114‬‬ ‫‪103‬‬ ‫‪101‬‬ ‫‪116‬‬ ‫‪120‬‬ ‫‪123‬‬ ‫‪138‬‬ ‫‪133‬‬ ‫‪146‬‬ ‫‪152‬‬ ‫‪147‬‬ ‫‪157‬‬ ‫‪164‬‬ ‫‪167‬‬ ‫‪162‬‬ ‫‪164‬‬ ‫‪173‬‬ ‫‪179‬‬ ‫‪186‬‬ ‫‪193‬‬ ‫‪190‬‬ ‫‪180‬‬

‫‪xi‬‬ ‫‪0.5‬‬ ‫‪0 .5‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1.5‬‬ ‫‪1.5‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3.5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪4.5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5.5‬‬ ‫‪5.5‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪6.5‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪9‬‬


‫ﺷﻛل)‪(٤٣-٤‬‬ ‫ﻣن ﻣﻼﺣظﺔ رﺳم اﻟﺑواﻗﻲ ﻓﻲ ﺷﻛل )‪ (٤٣-٤‬ﻧرى ﺑﺄﻧﮫ ﻋﻠﻰ ﺷﻛل ﻣﻧﺣﻧﻰ ‪ ‬ﻣﻣﺎ ﯾدل‬ ‫ﻋﻠﻰ أن اﻟﻧﻣوذج اﻟﺧطﻲ ﻻ ﯾﻼﺋم اﻟﺑﯾﺎﻧﺎت‪ .‬ﻧﻔس اﻟﺷﻲء ﻓﻲ ﺷﻛل)‪ (٤٤-٤‬ﻋﻧد رﺳم‬ ‫اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ ‪ d i‬ﻣﻘﺎﺑل ‪ . yˆ i‬أﻣﺎ ﺷﻛل )‪ (٤٥-٤‬ﻓﻧﺣﺻل ﻋﻠﯾﮫ ﻋﻧد رﺳم ﺑواﻗﻲ‬ ‫ﺳﺗﯾودﻧت ﻣﻘﺎﺑل رﺳم ‪. yˆ i‬‬

‫ﺷﻛل )‪(٤٤-٤‬‬

‫‪٢٩٢‬‬


(٤٥-٤) ‫ﺷﻛل‬ ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ p=1 1 x1={.5,.5,1.,1,1.5,1.5,2,2,2.5,2.5,2.5,3,3,3.5,4,4,4.5,5,5,5 .5,5.5,6,6,6.5,7,7,8,8,9,9} {0.5,0.5,1.,1,1.5,1.5,2,2,2.5,2.5,2.5,3,3,3.5,4,4,4.5,5,5,5. 5,5.5,6,6,6.5,7,7,8,8,9,9} y1={40,50,75,80,80,95.,100,90,114,103,101,116,120,123,138,13 3,146.,152,147,157,164,167,162,164,173,179,186,193,190,180} {40,50,75,80,80,95.,100,90,114,103,101,116,120,123,138,133,1 46.,152,147,157,164,167,162,164,173,179,186,193,190,180} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] sxx=c[x1,x1] 191.367 xb=h[x1]/l[x1] 4.23333 yb=h[y1]/l[y1] 130.6 b1=c[x1,y1]/c[x1,x1] 15.9761 b0=yb-b1*xb 62.9677 yy=b0+(b1*x1) ٢٩٣


{70.9558,70.9558,78.9438,78.9438,86.9319,86.9319,94.92,94.92 ,102.908,102.908,102.908,110.896,110.896,118.884,126.872,126 .872,134.86,142.848,142.848,150.836,150.836,158.825,158.825, 166.813,174.801,174.801,190.777,190.777,206.753,206.753} e=y1-yy {-30.9558,-20.9558,-3.94383,1.05617,6.93189,8.06811,5.08004,-4.91996,11.092,0.09197,1.90803,5.1039,9.1039,4.11583,11.1278,6.12777,11.1397,9.1516 3,4.15163,6.16356,13.1636,8.17549,3.17549,-2.81258,1.80064,4.19936,-4.77678,2.22322,-16.7529,-26.7529} t1=Transpose[{x1,y1}] {{0.5,40},{0.5,50},{1.,75},{1,80},{1.5,80},{1.5,95.},{2,100} ,{2,90},{2.5,114},{2.5,103},{2.5,101},{3,116},{3,120},{3.5,1 23},{4,138},{4,133},{4.5,146.},{5,152},{5,147},{5.5,157},{5. 5,164},{6,167},{6,162},{6.5,164},{7,173},{7,179},{8,186},{8, 193},{9,190},{9,180}} a=PlotRange{{0,10},{30,200}} PlotRange{{0,10},{30,200}} a1=Prolog{PointSize[.02]} Prolog{PointSize[0.02]} g= ListPlot[t1,a,a1,AxesLabel{"x","y"}] y 200 175 150 125 100 75 x 2

4

6

8

10

Graphics dd=Plot[b0+(b1*x),{x,30,65},AxesLabel{"x","y"}]

٢٩٤


y 1100 1000 900 800 700 x 35

40

45

50

55

60

65

Graphics Graphics n=l[x1] 30 ssto=c[y1,y1] 52401.2 ssr=c[x1,y1]^2/c[x1,x1] 48843.8 sse=ssto-ssr 3557.36 mse=sse/(n-2) 127.048  di  e  mse {-2.74636,-1.85917,-0.349891,0.0937025,0.614989,0.715792,0.450694,-0.436493,0.984065,0.00815946,0.169278,0.452812,0.807686,0.365151,0.987241,0.543647,0.9883 ,0.811921,0.368327,0.546823,1.16785,0.725319,0.281726,0.249528,-0.159751,0.372561,-0.42379,0.197241,-1.4863,2.37348}

1 x1  xb ^2  ri  e   mse1      N n sxx {-2.90488,-1.96648,-0.366376,0.0981172,0.638529,0.743191,0.464707,-0.450064,1.00912,0.00836718,0.173587,0.462458,0.824893,0.371935,1.00427,0.553023,1.00539 ,0.827116,0.37522,0.558599,1.193,0.744022,0.28899,0.257393,-0.165951,0.387022,-0.44858,0.208779,-1.61408,2.57754} pp1=Transpose[{yy,e}] {{70.9558,-30.9558},{70.9558,-20.9558},{78.9438,3.94383},{78.9438,1.05617},{86.9319,6.93189},{86.9319,8.06811},{94.92,5.08004},{94.92,4.91996},{102.908,11.092},{102.908,0.09197},{102.908,1.90803},{110.896,5.1039},{110.896,9.1039},{118.884,4.11583} ٢٩٥


,{126.872,11.1278},{126.872,6.12777},{134.86,11.1397},{142.8 48,9.15163},{142.848,4.15163},{150.836,6.16356},{150.836,13. 1636},{158.825,8.17549},{158.825,3.17549},{166.813,2.81258},{174.801,-1.80064},{174.801,4.19936},{190.777,4.77678},{190.777,2.22322},{206.753,-16.7529},{206.753,26.7529}} aa=PlotRange{{30,250},{-50,15}} PlotRange{{30,250},{-50,15}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlotpp1, aa, a2, AxesLabel  "y", "e " e 10  y

100

150

200

250

-10 -20 -30 -40 -50

Graphics pp2=Transpose[{yy,di}] {{70.9558,-2.74636},{70.9558,-1.85917},{78.9438,0.349891},{78.9438,0.0937025},{86.9319,0.614989},{86.9319,0.715792},{94.92,0.450694},{94.92,0.436493},{102.908,0.984065},{102.908,0.00815946},{102.908,0.169278},{110.896,0.452812},{110.896,0.807686},{118.884,0.3 65151},{126.872,0.987241},{126.872,0.543647},{134.86,0.9883} ,{142.848,0.811921},{142.848,0.368327},{150.836,0.546823},{1 50.836,1.16785},{158.825,0.725319},{158.825,0.281726},{166.8 13,-0.249528},{174.801,0.159751},{174.801,0.372561},{190.777,0.42379},{190.777,0.197241},{206.753,-1.4863},{206.753,2.37348}} aa=PlotRange{{30,250},{-5,5}} PlotRange{{30,250},{-5,5}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp2, aa, a2, AxesLabel  "y", "d"

٢٩٦


d 4 2  y

100

150

200

250

-2 -4

Graphics pp3=Transpose[{yy,ri}] {{70.9558,-2.90488},{70.9558,-1.96648},{78.9438,0.366376},{78.9438,0.0981172},{86.9319,0.638529},{86.9319,0.743191},{94.92,0.464707},{94.92,0.450064},{102.908,1.00912},{102.908,0.00836718},{102.908,0.173587},{110.896,0.462458},{110.896,0.824893},{118.884,0.3 71935},{126.872,1.00427},{126.872,0.553023},{134.86,1.00539} ,{142.848,0.827116},{142.848,0.37522},{150.836,0.558599},{15 0.836,1.193},{158.825,0.744022},{158.825,0.28899},{166.813,0.257393},{174.801,-0.165951},{174.801,0.387022},{190.777,0.44858},{190.777,0.208779},{206.753,-1.61408},{206.753,2.57754}} aa=PlotRange{{30,250},{-3,3}} PlotRange{{30,250},{-3,3}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp3, aa, a2, AxesLabel  "y", "r" r 3 2 1  y

100

150

200

-1 -2 -3

Graphics def=Transpose[{x1,y1,yy,e,di,ri}] ٢٩٧

250


{{0.5,40,70.9558,-30.9558,-2.74636,2.90488},{0.5,50,70.9558,-20.9558,-1.85917,1.96648},{1.,75,78.9438,-3.94383,-0.349891,0.366376},{1,80,78.9438,1.05617,0.0937025,0.0981172},{1.5,80 ,86.9319,-6.93189,-0.614989,0.638529},{1.5,95.,86.9319,8.06811,0.715792,0.743191},{2,100 ,94.92,5.08004,0.450694,0.464707},{2,90,94.92,-4.91996,0.436493,0.450064},{2.5,114,102.908,11.092,0.984065,1.00912},{2.5,103 ,102.908,0.09197,0.00815946,0.00836718},{2.5,101,102.908,1.90803,-0.169278,0.173587},{3,116,110.896,5.1039,0.452812,0.462458},{3,120,11 0.896,9.1039,0.807686,0.824893},{3.5,123,118.884,4.11583,0.3 65151,0.371935},{4,138,126.872,11.1278,0.987241,1.00427},{4, 133,126.872,6.12777,0.543647,0.553023},{4.5,146.,134.86,11.1 397,0.9883,1.00539},{5,152,142.848,9.15163,0.811921,0.827116 },{5,147,142.848,4.15163,0.368327,0.37522},{5.5,157,150.836, 6.16356,0.546823,0.558599},{5.5,164,150.836,13.1636,1.16785, 1.193},{6,167,158.825,8.17549,0.725319,0.744022},{6,162,158. 825,3.17549,0.281726,0.28899},{6.5,164,166.813,-2.81258,0.249528,-0.257393},{7,173,174.801,-1.80064,-0.159751,0.165951},{7,179,174.801,4.19936,0.372561,0.387022},{8,186,1 90.777,-4.77678,-0.42379,0.44858},{8,193,190.777,2.22322,0.197241,0.208779},{9,190,20 6.753,-16.7529,-1.4863,-1.61408},{9,180,206.753,-26.7529,2.37348,-2.57754}} TableForm[def]

٢٩٨


‫‪2.90488‬‬ ‫‪1.96648‬‬ ‫‪0.366376‬‬

‫‪2.74636‬‬ ‫‪1.85917‬‬ ‫‪0.349891‬‬

‫‪30.9558‬‬ ‫‪20.9558‬‬ ‫‪3.94383‬‬

‫‪0.0981172‬‬ ‫‪0.638529‬‬ ‫‪0.743191‬‬ ‫‪0.464707‬‬ ‫‪0.450064‬‬ ‫‪1.00912‬‬ ‫‪0.00836718‬‬ ‫‪0.173587‬‬ ‫‪0.462458‬‬ ‫‪0.824893‬‬ ‫‪0.371935‬‬ ‫‪1.00427‬‬ ‫‪0.553023‬‬ ‫‪1.00539‬‬ ‫‪0.827116‬‬ ‫‪0.37522‬‬ ‫‪0.558599‬‬ ‫‪1.193‬‬ ‫‪0.744022‬‬ ‫‪0.28899‬‬ ‫‪0.257393‬‬ ‫‪0.165951‬‬ ‫‪0.387022‬‬ ‫‪0.44858‬‬ ‫‪0.208779‬‬ ‫‪1.61408‬‬ ‫‪2.57754‬‬

‫‪0.0937025‬‬ ‫‪0.614989‬‬ ‫‪0.715792‬‬ ‫‪0.450694‬‬ ‫‪0.436493‬‬ ‫‪0.984065‬‬ ‫‪0.00815946‬‬ ‫‪0.169278‬‬ ‫‪0.452812‬‬ ‫‪0.807686‬‬ ‫‪0.365151‬‬ ‫‪0.987241‬‬ ‫‪0.543647‬‬ ‫‪0.9883‬‬ ‫‪0.811921‬‬ ‫‪0.368327‬‬ ‫‪0.546823‬‬ ‫‪1.16785‬‬ ‫‪0.725319‬‬ ‫‪0.281726‬‬ ‫‪0.249528‬‬ ‫‪0.159751‬‬ ‫‪0.372561‬‬ ‫‪0.42379‬‬ ‫‪0.197241‬‬ ‫‪1.4863‬‬ ‫‪2.37348‬‬

‫‪1.05617‬‬ ‫‪6.93189‬‬ ‫‪8.06811‬‬ ‫‪5.08004‬‬ ‫‪4.91996‬‬ ‫‪11.092‬‬ ‫‪0.09197‬‬ ‫‪1.90803‬‬ ‫‪5.1039‬‬ ‫‪9.1039‬‬ ‫‪4.11583‬‬ ‫‪11.1278‬‬ ‫‪6.12777‬‬ ‫‪11.1397‬‬ ‫‪9.15163‬‬ ‫‪4.15163‬‬ ‫‪6.16356‬‬ ‫‪13.1636‬‬ ‫‪8.17549‬‬ ‫‪3.17549‬‬ ‫‪2.81258‬‬ ‫‪1.80064‬‬ ‫‪4.19936‬‬ ‫‪4.77678‬‬ ‫‪2.22322‬‬ ‫‪16.7529‬‬ ‫‪26.7529‬‬

‫‪70.9558‬‬ ‫‪70.9558‬‬ ‫‪78.9438‬‬ ‫‪78.9438‬‬ ‫‪86.9319‬‬ ‫‪86.9319‬‬ ‫‪94.92‬‬ ‫‪94.92‬‬ ‫‪102.908‬‬ ‫‪102.908‬‬ ‫‪102.908‬‬ ‫‪110.896‬‬ ‫‪110.896‬‬ ‫‪118.884‬‬ ‫‪126.872‬‬ ‫‪126.872‬‬ ‫‪134.86‬‬ ‫‪142.848‬‬ ‫‪142.848‬‬ ‫‪150.836‬‬ ‫‪150.836‬‬ ‫‪158.825‬‬ ‫‪158.825‬‬ ‫‪166.813‬‬ ‫‪174.801‬‬ ‫‪174.801‬‬ ‫‪190.777‬‬ ‫‪190.777‬‬ ‫‪206.753‬‬ ‫‪206.753‬‬

‫‪40‬‬ ‫‪50‬‬ ‫‪75‬‬ ‫‪80‬‬ ‫‪80‬‬ ‫‪95.‬‬ ‫‪100‬‬ ‫‪90‬‬ ‫‪114‬‬ ‫‪103‬‬ ‫‪101‬‬ ‫‪116‬‬ ‫‪120‬‬ ‫‪123‬‬ ‫‪138‬‬ ‫‪133‬‬ ‫‪146.‬‬ ‫‪152‬‬ ‫‪147‬‬ ‫‪157‬‬ ‫‪164‬‬ ‫‪167‬‬ ‫‪162‬‬ ‫‪164‬‬ ‫‪173‬‬ ‫‪179‬‬ ‫‪186‬‬ ‫‪193‬‬ ‫‪190‬‬ ‫‪180‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ y1 .‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‪x1‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬ ‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬

‫ﺷﻛل اﻻﻧﺗﺷﺎر اﻟﻣوﺿﺢ ﻓﻲ ﺷﻛل)‪ (٤٢-٤‬ﻣﻌطﻰ ﻣن اﻻﻣر‬ ‫]}"‪g= ListPlot[t1,a,a1,AxesLabel{"x","y‬‬

‫‪٢٩٩‬‬

‫‪0.5‬‬ ‫‪0.5‬‬ ‫‪1.‬‬ ‫‪1‬‬ ‫‪1.5‬‬ ‫‪1.5‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3.5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪4.5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5.5‬‬ ‫‪5.5‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪6.5‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪9‬‬


‫ﻣﻌﺎدﻟﺔ ﺧط اﻻﻧﺣدار اﻟﻣﻘدرة‬ ‫‪y  62.9677  15.9761x‬‬

‫ﺣﯾث‬

‫‪b 0  62.9677‬‬

‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫‪b0=yb-b1*xb‬‬

‫و ‪ x b1  15.9761‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪b1=c[x1,y1]/c[x1,x1‬‬ ‫اﻟﺟدول اﻟﺳﺎﺑق ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬

‫]‪TableForm[def‬‬

‫رﺳم ‪ ei‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪g  ListPlotpp1, aa, a2, AxesLabel  "y", "e "‬‬

‫رﺳم ‪ d i‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪g  ListPlot pp2, aa, a2, AxesLabel  "y", "d"‬‬

‫رﺳم‬

‫‪ri‬‬

‫ﻣﻘﺎﺑل ‪ yˆ i‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪‬‬

‫‪g  ListPlot pp3, aa, a2, AxesLabel  "y", "r"‬‬

‫ﻣﺛﺎل)‪(٢٨-٤‬‬

‫ﻟﻠﻣﺛﺎل اﻟﺳﺎﺑق وﺑﻣﺎ أن ھﻧﺎك ﺗﻛرار ﻟﻘﯾم ‪ x‬ﻓﺈﻧﮫ ﯾﻣﻛن ﻋﻣل اﺧﺗﺑﺎر ﻟﻧﻘص اﻟﺗوﻓﯾق ﻛﻣﺎ‬ ‫ﯾﻠﻲ ‪ :‬ﯾﺗم ﺣﺳﺎب ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺧطﺄ اﻟﺧﺎﻟص ﻣن اﻟﺟدول اﻟﺗﺎﻟﻰ ‪.‬‬

‫‪٣٠٠‬‬


‫درﺟﺎت اﻟﺤﺮﯾﺔ‬

‫ﻣﺠﻤﻮع ﻣﺮﺑﻌﺎت‬ ‫اﻟﺨﻄﺄ اﻟﺨﺎﻟﺺ‬

‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪14‬‬

‫‪50‬‬ ‫‪12.5‬‬ ‫‪112.5‬‬ ‫‪50‬‬ ‫‪98‬‬ ‫‪8‬‬ ‫‪0‬‬ ‫‪12.5‬‬ ‫‪0‬‬ ‫‪12.5‬‬ ‫‪24.5‬‬ ‫‪12.5‬‬ ‫‪0‬‬ ‫‪18‬‬ ‫‪24.5‬‬ ‫‪50‬‬ ‫‪485.5‬‬

‫‪x‬‬ ‫‪0.5‬‬ ‫‪1‬‬ ‫‪1.5‬‬ ‫‪2‬‬ ‫‪2.5‬‬ ‫‪3‬‬ ‫‪3.5‬‬ ‫‪4‬‬ ‫‪4.5‬‬ ‫‪5‬‬ ‫‪5.5‬‬ ‫‪6‬‬ ‫‪6.5‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪9‬‬

‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪F‬‬

‫‪MS‬‬

‫‪SS‬‬

‫‪df‬‬

‫‪S.O.V.‬‬

‫‪384.45‬‬

‫‪48843.8‬‬

‫‪48843.8‬‬

‫‪1‬‬

‫اﻻﻧﺣدار‬

‫‪--‬‬

‫‪127.048‬‬

‫‪3557.36‬‬

‫‪28‬‬

‫اﻟﺧطﺄ‬

‫‪6.327‬‬

‫‪219.418‬‬

‫‪3071.86‬‬

‫‪14‬‬

‫ﻗﺻور اﻟﺗوﻓﯾق‬

‫‪34.6786‬‬

‫‪485.5‬‬

‫‪14‬‬

‫اﻟﺧطﺄ اﻟﺧﺎﻟص‬

‫وﺑﻣﺎ أن ﻗﯾﻣﻪ ‪ F‬اﻟﻣﺣﺳوﺑﺔ ﻟﻧﻘص اﻟﻣطﺎﺑﻘﺔ )‪ (6.327‬أﻛﺑر ﻣن اﻟﻘﯾﻣﺔ ‪ F‬اﻟﺟدوﻟﯾﺔ‬ ‫‪ F.05 [14,14]  2.53‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪   0.05‬ﻟذا ﻓﺈن اﻟﻧﻣوذج اﻟﺧطﻲ ﻻ ﯾﻼﺋم‬ ‫‪٣٠١‬‬


‫اﻟﺑﯾﺎﻧﺎت ﺑل أن ﻫﻧﺎك ﻣﻌﺎدﻟﺔ أﺧرى ﻗد ﺗﻼﺋم اﻟﺑﯾﺎﻧﺎت واﻟذى ﯾﺗﺿﺢ ﻣن ﺧﻼل ﺷﻛل‬

‫اﻻﻧﺗﺷﺎر )‪. (٤٢-٤‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬

‫‪x={.5,.5,1.,1,1.5,1.5,2,2,2.5,2.5,2.5,3,3,3.5,4,4,4.5,5,5,5.‬‬ ‫}‪5,5.5,6,6,6.5,7,7,8,8,9,9‬‬ ‫‪{0.5,0.5,1.,1,1.5,1.5,2,2,2.5,2.5,2.5,3,3,3.5,4,4,4.5,5,5,5.‬‬ ‫}‪5,5.5,6,6,6.5,7,7,8,8,9,9‬‬ ‫‪y={40.,50.,75,80,80,95.,100,90,114,103,101,116,120,123,138,1‬‬ ‫}‪33,146.,152,147,157,164,167,162,164,173,179,186,193,190,180‬‬ ‫‪{40.,50.,75,80,80,95.,100,90,114,103,101,116,120,123,138,133‬‬ ‫}‪,146.,152,147,157,164,167,162,164,173,179,186,193,190,180‬‬ ‫‪yy={{40.,50},{75.,80},{80,95},{100,90},{114,103,101},{116,12‬‬ ‫}‪0},{123},{138,133},{146},{152,147},{157,164},{167,162},{164‬‬ ‫}}‪,{173,179},{186,193},{190,180‬‬ ‫‪{{40.,50},{75.,80},{80,95},{100,90},{114,103,101},{116,120},‬‬ ‫‪{123},{138,133},{146},{152,147},{157,164},{167,162},{164},{1‬‬ ‫}}‪73,179},{186,193},{190,180‬‬ ‫]‪a[x_]:=Length[x‬‬ ‫]‪z[x_]:=Apply[Plus,x‬‬

‫‪zx2‬‬ ‫‪ax‬‬

‫‪cx_ : zx^2 ‬‬ ‫]‪h=Map[c,yy‬‬

‫‪225‬‬ ‫‪, 50, 98, 8, 0,‬‬ ‫‪2‬‬ ‫‪25‬‬ ‫‪25 49 25‬‬ ‫‪49‬‬ ‫‪, 0,‬‬ ‫‪,‬‬ ‫‪,‬‬ ‫‪, 0, 18,‬‬ ‫‪, 50‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪50., 12.5,‬‬

‫]‪ssp=z[h‬‬ ‫‪485.5‬‬ ‫]‪q=Map[a,yy‬‬ ‫‪٣٠٢‬‬


{2,2,2,2,3,2,1,2,1,2,2,2,1,2,2,2} qq=q-1 {1,1,1,1,2,1,0,1,0,1,1,1,0,1,1,1} ne=z[qq] 14

s2e 

ssp ne

34.6786 tx=Table[{1,x[[i]]},{i,1,a[x]}] {{1,0.5},{1,0.5},{1,1.},{1,1},{1,1.5},{1,1.5},{1,2},{1,2},{1 ,2.5},{1,2.5},{1,2.5},{1,3},{1,3},{1,3.5},{1,4},{1,4},{1,4.5 },{1,5},{1,5},{1,5.5},{1,5.5},{1,6},{1,6},{1,6.5},{1,7},{1,7 },{1,8},{1,8},{1,9},{1,9}} a[tx] 30 u=Transpose[tx] {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1},{0.5,0.5,1.,1,1.5,1.5,2,2,2.5,2.5,2.5,3,3,3.5,4,4,4.5,5,5 ,5.5,5.5,6,6,6.5,7,7,8,8,9,9}} t1=u.y {3918.,19643.5} t2=Inverse[u.tx] {{0.126981,-0.0221216},{-0.0221216,0.00522557}} b=t1.t2 {62.9677,15.9761} b0=b[[1]] 62.9677 b1=b[[2]] 15.9761 yb=b0+b1*x {70.9558,70.9558,78.9438,78.9438,86.9319,86.9319,94.92,94.92 ,102.908,102.908,102.908,110.896,110.896,118.884,126.872,126 .872,134.86,142.848,142.848,150.836,150.836,158.825,158.825, 166.813,174.801,174.801,190.777,190.777,206.753,206.753} e=y-yb {-30.9558,-20.9558,-3.94383,1.05617,6.93189,8.06811,5.08004,-4.91996,11.092,0.09197,1.90803,5.1039,9.1039,4.11583,11.1278,6.12777,11.1397,9.1516 3,4.15163,6.16356,13.1636,8.17549,3.17549,-2.81258,1.80064,4.19936,-4.77678,2.22322,-16.7529,-26.7529} sse=e.e 3557.36 ssto=c[y] 52401.2 ٣٠٣


ssl=sse-ssp 3071.86 ssr=ssto-sse 48843.8 dsr=1 1 n=a[x] 30 dse=n-2 28 dst=n-1 29 nl=dse-ne 14

msr 

ssr dsr

48843.8

mse 

sse dse

127.048

f

msr mse

384.45

msl 

ssl nl

219.418

ff 

msl s2e

6.3272

ww=Transpose[{x,y}] {{0.5,40.},{0.5,50.},{1.,75},{1,80},{1.5,80},{1.5,95.},{2,10 0},{2,90},{2.5,114},{2.5,103},{2.5,101},{3,116},{3,120},{3.5 ,123},{4,138},{4,133},{4.5,146.},{5,152},{5,147},{5.5,157},{ 5.5,164},{6,167},{6,162},{6.5,164},{7,173},{7,179},{8,186},{ 8,193},{9,190},{9,180}} ww1=PlotRange{{0,10},{30,200}} PlotRange{{0,10},{30,200}} ww2=Prolog{PointSize[0.03]} Prolog{PointSize[0.03]} ww3=ListPlot[ww,ww1,ww2]

٣٠٤


200 175 150 125 100 75 2

4

6

8

10

Graphics

th=TableHeadings{{soruse,redession,residual,ftt,total},{an ova}}

TableHeadings{{soruse,redession,residual,ftt,total},{anova }} tr1={"df","ss","ms","f"} {df,ss,ms,f} tr2={dsr,ssr,msr,f} {1,48843.8,48843.8,384.45} tr3={dse,sse,mse,"---"} {28,3557.36,127.048,---} tr4={nl,ssl,msl,ff} {14,3071.86,219.418,6.3272} tr5={ne,ssp,s2e,"---"} {14,485.5,34.6786,---} TableForm[{tr1,tr2,tr3,tr4,tr5},th]

soruse redession residual ftt total

anova df 1 28 14 14

ss 48843.8 3557.36 3071.86 485.5

ms 48843.8 127.048 219.418 34.6786

<<Statistics`ContinuousDistributions` =0.05; ff1=Quantile[FRatioDistribution[nl,ne],1-] 2.48373 ٣٠٥

f 384.45 

6.3272 


If[ff>ff1,Print["RjectHo"],Print["AccpetHo"]] RjectHo ff2=Quantile[FRatioDistribution[dsr,dse],1-] 4.19597 If[f>ff2,Print["RjectHo"],Print["AccpetHo"]] RjectHo

(٢٩-٤)‫ﻣﺛﺎل‬ : x   x ‫ ﺣﯾث‬x ‫اﻻن ﯾﻣﻛن اﻟﻣﺣﺎوﻟﺔ ﻣﻊ ﺗﺣوﯾﻠﺔ ﻋﻠﻰ‬ : ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺳﺗﺻﺑﺢ‬

y  b0  b1x

: ‫وﻣن اﻟﺟدول اﻟﺗﺎﻟﻰ ﯾﺗم ﺣﺳﺎب ﻛل ﻣن‬

x , y, x  2 , x y

٣٠٦


‫‪x y‬‬

‫‪x 2‬‬

‫‪28.2842‬‬ ‫‪35.3553‬‬ ‫‪75‬‬ ‫‪80‬‬ ‫‪97.9795‬‬ ‫‪116.3507‬‬ ‫‪141.4213‬‬ ‫‪127.2792‬‬ ‫‪180.2498‬‬ ‫‪162.8572‬‬ ‫‪159.6950‬‬ ‫‪200.9178‬‬ ‫‪207.8460‬‬ ‫‪230.1119‬‬ ‫‪276‬‬ ‫‪266‬‬ ‫‪309.7127‬‬ ‫‪339.8823‬‬ ‫‪328.7019‬‬ ‫‪368.1976‬‬ ‫‪384.6140‬‬ ‫‪409.0647‬‬ ‫‪396.8173‬‬ ‫‪418.1196‬‬ ‫‪457.7149‬‬ ‫‪473.5894‬‬ ‫‪526.0874‬‬ ‫‪545.8864‬‬ ‫‪570‬‬ ‫‪540‬‬

‫‪0.5000‬‬ ‫‪0.5000‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1.4999‬‬ ‫‪1.4999‬‬ ‫‪2.0000‬‬ ‫‪2.0000‬‬ ‫‪2.5000‬‬ ‫‪2.5000‬‬ ‫‪2.5000‬‬ ‫‪2.9999‬‬ ‫‪2.9999‬‬ ‫‪3.5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪4.4999‬‬ ‫‪5.0000‬‬ ‫‪5.0000‬‬ ‫‪5.5‬‬ ‫‪5.5‬‬ ‫‪5.9999‬‬ ‫‪5.9999‬‬ ‫‪6.4999‬‬ ‫‪7.0000‬‬ ‫‪7.0000‬‬ ‫‪8.0000‬‬ ‫‪8.0000‬‬ ‫‪9‬‬ ‫‪9‬‬

‫‪x‬‬ ‫‪0.7071‬‬ ‫‪0.7071‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1.2247‬‬ ‫‪1.2247‬‬ ‫‪1.4142‬‬ ‫‪1.4142‬‬ ‫‪1.5811‬‬ ‫‪1.5811‬‬ ‫‪1.5811‬‬ ‫‪1.7320‬‬ ‫‪1.7320‬‬ ‫‪1.8708‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2.1213‬‬ ‫‪2.2360‬‬ ‫‪2.2360‬‬ ‫‪2.3452‬‬ ‫‪2.3452‬‬ ‫‪2.4494‬‬ ‫‪2.4494‬‬ ‫‪2.5495‬‬ ‫‪2.6457‬‬ ‫‪2.6457‬‬ ‫‪2.8284‬‬ ‫‪2.8284‬‬ ‫‪3‬‬ ‫‪3‬‬

‫ﻻزواج اﻟﻘﯾم )‪ ( x , y‬ﻓﺈن ﺷﻛل اﻻﻧﺗﺷﺎر ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪.(٤٦-٤‬‬

‫‪٣٠٧‬‬

‫‪y‬‬ ‫‪40‬‬ ‫‪50‬‬ ‫‪75‬‬ ‫‪80‬‬ ‫‪80‬‬ ‫‪95‬‬ ‫‪100‬‬ ‫‪90‬‬ ‫‪114‬‬ ‫‪103‬‬ ‫‪101‬‬ ‫‪116‬‬ ‫‪120‬‬ ‫‪123‬‬ ‫‪138‬‬ ‫‪133‬‬ ‫‪146‬‬ ‫‪152‬‬ ‫‪147‬‬ ‫‪157‬‬ ‫‪164‬‬ ‫‪167‬‬ ‫‪162‬‬ ‫‪164‬‬ ‫‪173‬‬ ‫‪179‬‬ ‫‪186‬‬ ‫‪193‬‬ ‫‪190‬‬ ‫‪180‬‬

‫‪x‬‬ ‫‪0.5‬‬ ‫‪0.5‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1.5‬‬ ‫‪1.5‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪2.5‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3.5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪4.5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5.5‬‬ ‫‪5.5‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪6.5‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪9‬‬


‫ﺷﻛل )‪(٤٦-٤‬‬ ‫اﻵن ﯾﺗم ﺣﺳﺎب اﻟﻘﯾم اﻟﺗﺎﻟﯾﺔ واﻟﻼزﻣﺔ ﻹﯾﺟﺎد ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة‪:‬‬ ‫‪SXY  820 .011 ,‬‬ ‫‪SXX  13 .1153 ,‬‬

‫‪SXY 820.011‬‬ ‫‪‬‬ ‫‪ 62.5235 ,‬‬ ‫‪SXX 13.1153‬‬ ‫‪.‬‬

‫‪b1 ‬‬

‫‪b 0  y  b1 x  130.6  (62.5235)( 1.94837)  8.78096‬‬

‫ﻣﻌﺎدﻟﺔ اﻟﺧط اﻟﻣﺳﺗﻘﯾم اﻟﻣﻘدرة ھﻲ ‪:‬‬ ‫‪yˆ  8.78096  62 .5235 x ‬‬

‫واﻟﻣﻣﺛﻠﮫ ﺑﯾﺎﻧﯾﺎ ﻓﻲ ﺷﻛل )‪ (٤٧-٤‬ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻟﻠﺑﯾﺎﻧﺎت اﻷﺻﻠﯾﮫ‪.‬‬ ‫واﻟﺗﻲ ﺗﺻﺑﺢ ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬

‫‪yˆ  8.78096  62.5235 x‬‬

‫‪٣٠٨‬‬


‫ﺷﻛل )‪(٤٧-٤‬‬ ‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻟﻠﺑﯾﺎﻧﺎت اﻟﻣﺣوﻟﺔ ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪:‬‬

‫‪F‬‬

‫‪MS‬‬

‫‪SS‬‬

‫‪df‬‬

‫‪S.O.V‬‬

‫‪1269‬‬

‫‪51270‬‬

‫‪51270‬‬

‫‪1‬‬

‫اﻻﻧﺣدار‬

‫‪--‬‬

‫‪40.4017‬‬

‫‪1131.25‬‬

‫‪28‬‬

‫اﻟﺧطﺄ‬

‫‪--‬‬

‫‪--‬‬

‫‪52401.2‬‬

‫‪29‬‬

‫اﻟﻛﻠﻲ‬

‫ﺑﻣﺎ أن ﻗﯾﻣﺔ ‪ F‬اﻟﻣﺣﺳوﺑﮫ ﺗزﯾد ﻋن ﻗﯾﻣﺔ ‪ F‬اﻟﺟدوﻟﯾﮫ ‪ F.05 (1,28)  4.2‬ﻓﺈﻧﻧﺎ ﻧرﻓض‬ ‫ﻓرض اﻟﻌدم ‪ . H 0 : 1  0‬اﻟﺑواﻗﻲ ‪ ei‬واﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ ‪ d i‬وﺑواﻗﻲ ﺳﺗﯾودﻧت ‪ri‬‬ ‫ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪٣٠٩‬‬


yi

yˆi

ei

di

ri

xi 0.707107 0.707107 1. 1. 1.22474 1.22474 1.41421 1.41421 1.58114 1.58114 1.58114 1.73205 1.73205 1.87083 2. 2. 2.12132 2.23607 2.23607 2.34521 2.34521 2.44949 2.44949 2.54951 2.64575 2.64575 2.82843 2.82843 3. 3.

40. 50 75 80 80 95 100 90 114 103 101 116 120 123 138 133 146 152 147 157 164 167 162 164 173 179 186 193 190 180

52.9917 52.9917 71.3044 71.3044 85.3563 85.3563 97.2025 97.2025 107.639 107.639 107.639 117.075 117.075 125.752 133.828 133.828 141.413 148.588 148.588 155.411 155.411 161.932 161.932 168.185 174.202 174.202 185.624 185.624 196.351 196.351

12.9917 2.99173

2.04393 0.470676

2.21801 0.510763

3.69558 8.69558 5.35625 9.64375 2.79751 7.20249 6.36076 4.63924 6.63924 1.07478 2.92522 2.75165 4.17211 0.827888 4.58674 3.41233 1.58767 1.58852 8.58852 5.06846 0.0684572 4.18514 1.2025 4.7975 0.37598 7.37598 6.35135 16.3514

0.581409 1.36804 0.842677 1.51721 0.44012 1.13314 1.00071 0.729872 1.04452 0.16909 0.460213 0.432906 0.656381 0.130248 0.721613 0.536847 0.249782 0.249915 1.3512 0.797399 0.0107701 0.658431 0.189184 0.754771 0.0591513 1.16043 0.999231 2.57249

0.613511 1.44357 0.87535 1.57604 0.452768 1.1657 1.02328 0.746329 1.06808 0.172299 0.468947 0.440411 0.667672 0.132489 0.734817 0.547815 0.254886 0.255781 1.38291 0.819184 0.0110643 0.67944 0.196218 0.782836 0.0620889 1.21806 1.06377 2.73864

(٤٨-٤) ‫ ﻣﻌطﺎة ﻓﻲ ﺷﻛل‬yˆ i ‫ ﻣﻘﺎﺑل‬ei ‫رﺳم اﻟﺑواﻗﻲ‬ ٣١٠


‫ﺷﻛل )‪(٤٨-٤‬‬ ‫أﯾﺿﺎ رﺳم اﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ ‪ d i‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻣﻌطﻰ ﻓﻲ ﺷﻛل)‪. (٤٩-٤‬‬

‫ﺷﻛل)‪(٤٩-٤‬‬ ‫وأﺧﯾرا رﺳم ﺑواﻗﻲ ﺳﺗﯾودﻧت ‪ ri‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻣﻌطﻰ ﻓﻲ ﺷﻛل)‪(٥٠-٤‬‬

‫ﺷﻛل)‪(٥٠-٤‬‬ ‫‪٣١١‬‬


‫ﯾﺗﺿﺢ ﻣن ﺷﻛل)‪ (٤٨-٤٥‬ﺷﻛل )‪ (٤٩-٤‬وﺷﻛل )‪ (٥٠-٤‬أن اﻟﻧﻘﺎط ﺗﺗوزع ﺗوزﻋﺎ ً‬ ‫ﻋﺷواﺋﯾﺎ ً ﺣول اﻟﺻﻔر ﻣﻣﺎ ﯾدل ﻋﻠﻰ أن اﻟﻧﻣوذج اﻟﻣﺣول أﻛﺛر ﻣﻼءﻣﺔ ﻣن اﻟﻧﻣوذج‬ ‫‪2‬‬ ‫اﻷول ‪ .‬وﻣﻣﺎ ﯾؤﻛد ذﻟك أﯾﺿﺎ أن ‪ R‬ﻟﻠﻧﻣوذج اﻟﺛﺎﻧﻲ ‪  51270  .979 ‬أﻛﺑر ﻣن ‪R 2‬‬ ‫‪‬‬

‫‪ 52401 .2‬‬

‫‪ 48843.8‬‬ ‫‪‬‬ ‫ﻟﻠﻧﻣوذج اﻷول ‪ 0.932 ‬‬ ‫‪ ‬وان ‪ MSE‬ﻟﻠﻧﻣوذج اﻟﺛﺎﻧﻲ أﺻﻐر ﻣن ﻗﯾﻣﺗﮫ‬ ‫‪ 52401.16‬‬ ‫‪‬‬ ‫ﻓﻲ اﻟﻧﻣوذج اﻷول وﻋﻠﯾﮫ ﻓﺈن اﻟﺗﺣوﯾﻠﺔ ‪ x   x‬ﻣﻧﺎﺳﺑﺔ ‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=1‬‬ ‫‪1‬‬ ‫‪xx={.5,.5,1.,1,1.5,1.5,2,2,2.5,2.5,2.5,3,3,3.5,4,4,4.5,5,5,5‬‬ ‫}‪.5,5.5,6,6,6.5,7,7,8,8,9,9‬‬ ‫‪{0.5,0.5,1.,1,1.5,1.5,2,2,2.5,2.5,2.5,3,3,3.5,4,4,4.5,5,5,5.‬‬ ‫}‪5,5.5,6,6,6.5,7,7,8,8,9,9‬‬ ‫‪y1={40,50,75,80,80,95.,100,90,114,103,101,116,120,123,138,13‬‬ ‫}‪3,146.,152,147,157,164,167,162,164,173,179,186,193,190,180‬‬ ‫‪{40,50,75,80,80,95.,100,90,114,103,101,116,120,123,138,133,1‬‬ ‫}‪46.,152,147,157,164,167,162,164,173,179,186,193,190,180‬‬ ‫‪‬‬ ‫‪x1  N xx   N‬‬ ‫‪{0.707107,0.707107,1.,1.,1.22474,1.22474,1.41421,1.41421,1.5‬‬ ‫‪8114,1.58114,1.58114,1.73205,1.73205,1.87083,2.,2.,2.12132,2‬‬ ‫‪.23607,2.23607,2.34521,2.34521,2.44949,2.44949,2.54951,2.645‬‬ ‫}‪75,2.64575,2.82843,2.82843,3.,3.‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪h[x_]:=Apply[Plus,x‬‬ ‫]‪k[x_]:=h[x]/l[x‬‬ ‫]‪c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x‬‬ ‫]‪sxx=c[x1,x1‬‬ ‫‪13.1153‬‬ ‫]‪xb=h[x1]/l[x1‬‬ ‫‪1.94837‬‬ ‫]‪yb=h[y1]/l[y1‬‬ ‫‪130.6‬‬ ‫]‪b1=c[x1,y1]/c[x1,x1‬‬ ‫‪٣١٢‬‬


62.5235 b0=yb-b1*xb 8.78096 yy=b0+(b1*x1) {52.9917,52.9917,71.3044,71.3044,85.3563,85.3563,97.2025,97. 2025,107.639,107.639,107.639,117.075,117.075,125.752,133.828 ,133.828,141.413,148.588,148.588,155.411,155.411,161.932,161 .932,168.185,174.202,174.202,185.624,185.624,196.351,196.351 } e=y1-yy {-12.9917,-2.99173,3.69558,8.69558,5.35625,9.64375,2.79751,-7.20249,6.36076,-4.63924,-6.63924,1.07478,2.92522,-2.75165,4.17211,-0.827888,4.58674,3.41233,1.58767,1.58852,8.58852,5.06846,0.0684572,-4.18514,1.2025,4.7975,0.37598,7.37598,-6.35135,-16.3514} t1=Transpose[{x1,y1}] {{0.707107,40},{0.707107,50},{1.,75},{1.,80},{1.22474,80},{1 .22474,95.},{1.41421,100},{1.41421,90},{1.58114,114},{1.5811 4,103},{1.58114,101},{1.73205,116},{1.73205,120},{1.87083,12 3},{2.,138},{2.,133},{2.12132,146.},{2.23607,152},{2.23607,1 47},{2.34521,157},{2.34521,164},{2.44949,167},{2.44949,162}, {2.54951,164},{2.64575,173},{2.64575,179},{2.82843,186},{2.8 2843,193},{3.,190},{3.,180}} a=PlotRange{{0,4},{0,200}} PlotRange{{0,4},{0,200}} a1=Prolog{PointSize[.02]} Prolog{PointSize[0.02]} g= ListPlot[t1,a,a1,AxesLabel{"x","y"}] y 200 175 150 125 100 75 50 25 x 0.5

1

1.5

2

2.5

3

3.5

4

Graphics dd=Plot[b0+(b1*x),{x,0,8},AxesLabel{"x","y"}]

٣١٣


y 500 400 300 200 100 x 2

4

6

8

Graphics n=l[x1] 30 ssto=c[y1,y1] 52401.2 ssr=c[x1,y1]^2/c[x1,x1] 51270. sse=ssto-ssr 1131.25 mse=sse/(n-2) 40.4017

di  e 



mse

{-2.04393,-0.470676,0.581409,1.36804,0.842677,1.51721,0.44012,-1.13314,1.00071,-0.729872,1.04452,-0.16909,0.460213,-0.432906,0.656381,0.130248,0.721613,0.536847,0.249782,0.249915,1.3512,0.797399,0.0107701,-0.658431,0.189184,0.754771,0.0591513,1.16043,-0.999231,-2.57249}

1 x1  xb ^2  ri  e   mse1      N n sxx {-2.21801,-0.510763,0.613511,1.44357,0.87535,1.57604,0.452768,-1.1657,1.02328,-0.746329,1.06808,-0.172299,0.468947,-0.440411,0.667672,0.132489,0.734817,0.547815,0.254886,0.255781,1.38291,0.819184,0.0110643,-0.67944,0.196218,0.782836,0.0620889,1.21806,-1.06377,-2.73864} pp1=Transpose[{yy,e}] {{52.9917,-12.9917},{52.9917,2.99173},{71.3044,3.69558},{71.3044,8.69558},{85.3563,5.35625},{85.3563,9.64375},{97.2025,2.79751},{97.2025,7.20249},{107.639,6.36076},{107.639,-4.63924},{107.639,6.63924},{117.075,-1.07478},{117.075,2.92522},{125.752,2.75165},{133.828,4.17211},{133.828,٣١٤


0.827888},{141.413,4.58674},{148.588,3.41233},{148.588,1.58767},{155.411,1.58852},{155.411,8.58852},{161.932,5.0684 6},{161.932,0.0684572},{168.185,-4.18514},{174.202,1.2025},{174.202,4.7975},{185.624,0.37598},{185.624,7.37598} ,{196.351,-6.35135},{196.351,-16.3514}} aa=PlotRange{{30,250},{-50,15}} PlotRange{{30,250},{-50,15}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlotpp1, aa, a2, AxesLabel  "y", "e " e 10  y

100

150

200

250

-10 -20 -30 -40 -50

Graphics pp2=Transpose[{yy,di}] {{52.9917,-2.04393},{52.9917,0.470676},{71.3044,0.581409},{71.3044,1.36804},{85.3563,0.842677},{85.3563,1.51721},{97.2025,0.44012},{97.2025,1.13314},{107.639,1.00071},{107.639,-0.729872},{107.639,1.04452},{117.075,-0.16909},{117.075,0.460213},{125.752,0.432906},{133.828,0.656381},{133.828,0.130248},{141.413,0.721613},{148.588,0.536847},{148.588,0.249782},{155.411,0.249915},{155.411,1.3512},{161.932,0.797 399},{161.932,0.0107701},{168.185,-0.658431},{174.202,0.189184},{174.202,0.754771},{185.624,0.0591513},{185.624,1. 16043},{196.351,-0.999231},{196.351,-2.57249}} aa=PlotRange{{30,250},{-5,5}} PlotRange{{30,250},{-5,5}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp2, aa, a2, AxesLabel  "y", "d"

٣١٥


d 4 2  y

100

150

200

250

-2 -4

Graphics pp3=Transpose[{yy,ri}] {{52.9917,-2.21801},{52.9917,0.510763},{71.3044,0.613511},{71.3044,1.44357},{85.3563,0.87535},{85.3563,1.57604},{97.2025,0.452768},{97.2025,1.1657},{107.639,1.02328},{107.639,-0.746329},{107.639,1.06808},{117.075,-0.172299},{117.075,0.468947},{125.752,0.440411},{133.828,0.667672},{133.828,0.132489},{141.413,0.734817},{148.588,0.547815},{148.588,0.254886},{155.411,0.255781},{155.411,1.38291},{161.932,0.81 9184},{161.932,0.0110643},{168.185,-0.67944},{174.202,0.196218},{174.202,0.782836},{185.624,0.0620889},{185.624,1. 21806},{196.351,-1.06377},{196.351,-2.73864}} aa=PlotRange{{30,250},{-3,3}} PlotRange{{30,250},{-3,3}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp3, aa, a2, AxesLabel  "y", "r" r 3 2 1  y

100

150

200

-1 -2 -3

Graphics def=Transpose[{x1,y1,yy,e,di,ri}] ٣١٦

250


{{0.707107,40,52.9917,-12.9917,-2.04393,2.21801},{0.707107,50,52.9917,-2.99173,-0.470676,0.510763},{1.,75,71.3044,3.69558,0.581409,0.613511},{1.,80,7 1.3044,8.69558,1.36804,1.44357},{1.22474,80,85.3563,5.35625,-0.842677,0.87535},{1.22474,95.,85.3563,9.64375,1.51721,1.57604},{1.41 421,100,97.2025,2.79751,0.44012,0.452768},{1.41421,90,97.202 5,-7.20249,-1.13314,1.1657},{1.58114,114,107.639,6.36076,1.00071,1.02328},{1.581 14,103,107.639,-4.63924,-0.729872,0.746329},{1.58114,101,107.639,-6.63924,-1.04452,1.06808},{1.73205,116,117.075,-1.07478,-0.16909,0.172299},{1.73205,120,117.075,2.92522,0.460213,0.468947},{1 .87083,123,125.752,-2.75165,-0.432906,0.440411},{2.,138,133.828,4.17211,0.656381,0.667672},{2.,133 ,133.828,-0.827888,-0.130248,0.132489},{2.12132,146.,141.413,4.58674,0.721613,0.734817},{ 2.23607,152,148.588,3.41233,0.536847,0.547815},{2.23607,147, 148.588,-1.58767,-0.249782,0.254886},{2.34521,157,155.411,1.58852,0.249915,0.255781},{2 .34521,164,155.411,8.58852,1.3512,1.38291},{2.44949,167,161. 932,5.06846,0.797399,0.819184},{2.44949,162,161.932,0.068457 2,0.0107701,0.0110643},{2.54951,164,168.185,-4.18514,0.658431,-0.67944},{2.64575,173,174.202,-1.2025,-0.189184,0.196218},{2.64575,179,174.202,4.7975,0.754771,0.782836},{2. 82843,186,185.624,0.37598,0.0591513,0.0620889},{2.82843,193, 185.624,7.37598,1.16043,1.21806},{3.,190,196.351,-6.35135,0.999231,-1.06377},{3.,180,196.351,-16.3514,-2.57249,2.73864}} TableForm[def]

٣١٧


‫‪2.21801‬‬ ‫‪0.510763‬‬

‫‪2.04393‬‬ ‫‪0.470676‬‬

‫‪12.9917‬‬ ‫‪2.99173‬‬

‫‪0.613511‬‬ ‫‪1.44357‬‬ ‫‪0.87535‬‬ ‫‪1.57604‬‬ ‫‪0.452768‬‬ ‫‪1.1657‬‬ ‫‪1.02328‬‬ ‫‪0.746329‬‬ ‫‪1.06808‬‬ ‫‪0.172299‬‬ ‫‪0.468947‬‬ ‫‪0.440411‬‬ ‫‪0.667672‬‬ ‫‪0.132489‬‬ ‫‪0.734817‬‬ ‫‪0.547815‬‬ ‫‪0.254886‬‬ ‫‪0.255781‬‬ ‫‪1.38291‬‬ ‫‪0.819184‬‬ ‫‪0.0110643‬‬ ‫‪0.67944‬‬ ‫‪0.196218‬‬ ‫‪0.782836‬‬ ‫‪0.0620889‬‬ ‫‪1.21806‬‬ ‫‪1.06377‬‬ ‫‪2.73864‬‬

‫‪0.581409‬‬ ‫‪1.36804‬‬ ‫‪0.842677‬‬ ‫‪1.51721‬‬ ‫‪0.44012‬‬ ‫‪1.13314‬‬ ‫‪1.00071‬‬ ‫‪0.729872‬‬ ‫‪1.04452‬‬ ‫‪0.16909‬‬ ‫‪0.460213‬‬ ‫‪0.432906‬‬ ‫‪0.656381‬‬ ‫‪0.130248‬‬ ‫‪0.721613‬‬ ‫‪0.536847‬‬ ‫‪0.249782‬‬ ‫‪0.249915‬‬ ‫‪1.3512‬‬ ‫‪0.797399‬‬ ‫‪0.0107701‬‬ ‫‪0.658431‬‬ ‫‪0.189184‬‬ ‫‪0.754771‬‬ ‫‪0.0591513‬‬ ‫‪1.16043‬‬ ‫‪0.999231‬‬ ‫‪2.57249‬‬

‫‪3.69558‬‬ ‫‪8.69558‬‬ ‫‪5.35625‬‬ ‫‪9.64375‬‬ ‫‪2.79751‬‬ ‫‪7.20249‬‬ ‫‪6.36076‬‬ ‫‪4.63924‬‬ ‫‪6.63924‬‬ ‫‪1.07478‬‬ ‫‪2.92522‬‬ ‫‪2.75165‬‬ ‫‪4.17211‬‬ ‫‪0.827888‬‬ ‫‪4.58674‬‬ ‫‪3.41233‬‬ ‫‪1.58767‬‬ ‫‪1.58852‬‬ ‫‪8.58852‬‬ ‫‪5.06846‬‬ ‫‪0.0684572‬‬ ‫‪4.18514‬‬ ‫‪1.2025‬‬ ‫‪4.7975‬‬ ‫‪0.37598‬‬ ‫‪7.37598‬‬ ‫‪6.35135‬‬ ‫‪16.3514‬‬

‫‪52.9917‬‬ ‫‪52.9917‬‬ ‫‪71.3044‬‬ ‫‪71.3044‬‬ ‫‪85.3563‬‬ ‫‪85.3563‬‬ ‫‪97.2025‬‬ ‫‪97.2025‬‬ ‫‪107.639‬‬ ‫‪107.639‬‬ ‫‪107.639‬‬ ‫‪117.075‬‬ ‫‪117.075‬‬ ‫‪125.752‬‬ ‫‪133.828‬‬ ‫‪133.828‬‬ ‫‪141.413‬‬ ‫‪148.588‬‬ ‫‪148.588‬‬ ‫‪155.411‬‬ ‫‪155.411‬‬ ‫‪161.932‬‬ ‫‪161.932‬‬ ‫‪168.185‬‬ ‫‪174.202‬‬ ‫‪174.202‬‬ ‫‪185.624‬‬ ‫‪185.624‬‬ ‫‪196.351‬‬ ‫‪196.351‬‬

‫‪40‬‬ ‫‪50‬‬ ‫‪75‬‬ ‫‪80‬‬ ‫‪80‬‬ ‫‪95.‬‬ ‫‪100‬‬ ‫‪90‬‬ ‫‪114‬‬ ‫‪103‬‬ ‫‪101‬‬ ‫‪116‬‬ ‫‪120‬‬ ‫‪123‬‬ ‫‪138‬‬ ‫‪133‬‬ ‫‪146.‬‬ ‫‪152‬‬ ‫‪147‬‬ ‫‪157‬‬ ‫‪164‬‬ ‫‪167‬‬ ‫‪162‬‬ ‫‪164‬‬ ‫‪173‬‬ ‫‪179‬‬ ‫‪186‬‬ ‫‪193‬‬ ‫‪190‬‬ ‫‪180‬‬

‫وﻗﺪ ﺗﻢ ﺣﻞ ھﺬا اﻟﻤﺜﺎل ﺑﻨﻔﺲ طﺮﯾﻘﺔ ﺣﻞ اﻟﻤﺜﺎل اﻟﺴﺎﺑﻖ ﻓﻘﻂ ﺗﻢ اﺧﺬ اﻟﺠﺬر اﻟﺘﺮﺑﯿﻌﻰ‬ ‫ﻟﻠﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ‪.‬‬

‫‪٣١٨‬‬

‫‪0.707107‬‬ ‫‪0.707107‬‬ ‫‪1.‬‬ ‫‪1.‬‬ ‫‪1.22474‬‬ ‫‪1.22474‬‬ ‫‪1.41421‬‬ ‫‪1.41421‬‬ ‫‪1.58114‬‬ ‫‪1.58114‬‬ ‫‪1.58114‬‬ ‫‪1.73205‬‬ ‫‪1.73205‬‬ ‫‪1.87083‬‬ ‫‪2.‬‬ ‫‪2.‬‬ ‫‪2.12132‬‬ ‫‪2.23607‬‬ ‫‪2.23607‬‬ ‫‪2.34521‬‬ ‫‪2.34521‬‬ ‫‪2.44949‬‬ ‫‪2.44949‬‬ ‫‪2.54951‬‬ ‫‪2.64575‬‬ ‫‪2.64575‬‬ ‫‪2.82843‬‬ ‫‪2.82843‬‬ ‫‪3.‬‬ ‫‪3.‬‬


‫)‪ (١٤-٤‬اﻛﺗﺷﺎف و ﺗﺻﺣﯾﺢ ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن‬ ‫ﯾطﻠ ق ﻋﻠ ﻰ ﺗﺣﻘ ق اﻟﻔ رض ‪ Var ( i )  Var ( Yi )   2‬ﺛﺑ ﺎت اﻟﺗﺑ ﺎﯾن ﻟﺣ دود‬ ‫اﻻﺧط ﺎء ‪ ،‬أو اﺧﺗﺻ ﺎرا ﺛﺑ ﺎت اﻟﺗﺑ ﺎﯾن ‪ -‬ﺗﺟ ﺎﻧس اﻟﺗﺑ ﺎﯾن ‪ homoscedasticity ،‬ﺑﯾﻧﻣ ﺎ‬ ‫ﻣﺧﺎﻟﻔﺔ ھذا اﻟﻔرض ﯾﺳﻣﻰ ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن ‪ . heteroscedasticity‬ﯾﻌﺗﺑر ﺛﺑ ﺎت اﻟﺗﺑ ﺎﯾن‬ ‫اﻟﻣطﻠب اﻷﺳﺎﺳﻲ ﻟﺗﺣﻠﯾل اﻷﻧﺣدار ‪.‬‬ ‫ﯾوﺟد طرق ﻋدﯾدة ﻻﺧﺗﺑﺎر ﻋدم ﺗﺟﺎﻧس اﻟﺗﺑﺎﯾن‪ .‬ﺳ وف ﻧﻘ دم ﻓ ﻲ اﻟﺟ زء اﻟﺗ ﺎﻟﻲ اﻟطرﯾﻘ ﺔ‬ ‫اﻟﺗﺎﻟﯾﺔ‪:‬‬ ‫)‪ (١-١٤-٤‬طرﯾﻘﺔ ﺟوﻟد‪ -‬ﻛوادت ﻻﻛﺗﺷﺎف ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن‬ ‫ﯾﻣﻛن أﺳﺗﺧدام ھذه اﻟطرﯾﻘﺔ ﻓﻲ ﺣﺎﻟﺔ وﺟود ﻣﺗﻐﯾر ﻣﺳﺗﻘل )أو أﻛﺛر (ﺣﯾث ‪:‬‬ ‫ﺗرﺗب اﻟﻣﺷ ﺎھدات وﻓﻘ ﺎ ً ﻷﺣ د اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﺔ ﺗرﺗﯾ ب ﺗﺻ ﺎﻋدي أو ﺗﻧ ﺎزﻟﻲ ﺛ م ﯾﺣ ذف‬ ‫‪ %20‬ﻣ ن اﻟﻣﺷ ﺎھدات ﻣ ن ﻣرﻛ ز اﻟﺳﻠﺳ ﻠﺔ وﻟ ﯾﻛن )‪ (c‬وذﻟ ك ﯾﺟﻌ ل اﻻﺧﺗﺑ ﺎر أﻛﺛ ر‬ ‫)‪( n  c‬‬ ‫ﺣﺳﺎﺳ ﯾﺔ‪ .‬ﯾﺳ ﺗﺧدم اﻟﺟ زء اﻷول ﻣ ن اﻟﻣﺷ ﺎھدات‬ ‫‪2‬‬ ‫اﻟﻣطﻠوﺑ ﺔ واﻟﺣﺻ ول ﻋﻠ ﻰ ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت اﻟﺧط ﺄ ‪ SSE1‬ﻣ ن ﺟ دول ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن‪.‬‬

‫ﻓ ﻲ اﯾﺟ ﺎد ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار‬

‫ﺗﻛ رر ﻣ ﺎ ﺳ ﺑق ﻓ ﻲ اﻟﺧط وة اﻟﺗﺎﻟﯾ ﺔ وﻟﻛ ن ﺑﺎﺳ ﺗﺧدام اﻟﻣﺷ ﺎھدات اﻷﺧﯾ رة وﻋ ددھﺎ أﯾﺿ ﺎ ً‬ ‫)‪( n  c‬‬ ‫واﺟ راء اﻧﺣ دار واﻟﺣﺻ ول ﻋﻠ ﻰ ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت اﻟﺧط ﺄ ‪ . SSE 2‬ﯾﺳ ﺗﺧدم‬ ‫‪2‬‬ ‫اﺧﺗﺑﺎر ﺟوﻟد ﻓﯾﻠد – ﻛواﻧدت ﻟﻠﻛﺷف ﻋن ﻧوﻋﯾن ﻣن ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن وھﻣﺎ ‪:‬‬ ‫)أ(‬

‫ﻋﻧدﻣﺎ ﯾﻛون ﺗﺑﺎﯾن ﺣد اﻟﺧطﺄ داﻟﺔ ﺗﻧﺎﻗﺻﯾﺔ ﻓﻲ اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل ‪ x‬ﺣﯾث ﻓرض‬ ‫اﻟﻌدم ﺳوف ﯾﻛون ‪ : H 0‬ﺗﺑﺎﯾن ﺣد اﻟﺧطﺄ ﻣﺗﺟﺎﻧس ﺿد اﻟﻔرض اﻟﺑدﯾل ‪: H1‬‬ ‫ﺗﺑﺎﯾن ﺣد اﻟﺧطﺄ داﻟﺔ ﺗﻧﺎﻗﺻﯾﺔ ﻓﻲ اﻟﻣﺗﻐﯾر ‪ . x‬وﻓﻲ ھذا اﻻﺧﺗﺑﺎر ﯾﺳﺗﺧدم‬ ‫اﻷﺣﺻﺎء ‪ F‬اﻟذي ﯾﺄﺧذ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ‪:‬‬ ‫‪SSE1 (n  c) 2 MSE1‬‬ ‫‪‬‬ ‫‪.‬‬ ‫‪SSE 2 (n  c) 2 MSE 2‬‬

‫‪F‬‬

‫وﻣﻘﺎرﻧﺔ ﻗﯾﻣﺔ ‪ F‬اﻟﻣﺣﺳوﺑﺔ ﺑﻧظﯾرﺗﮭﺎ اﻟﺟدوﻟﯾﺔ ﺑ درﺟﺎت ﺣرﯾ ﺔ اﻟﺧط ﺄ ﻟﻠﻌﻣ ود‬ ‫واﻟﺻف وإذا ﻛﺎﻧت ﻗﯾﻣﺔ ‪ F‬أﻛﺑر ﻣن ﻧظﯾرﺗﮭﺎ اﻟﺟدوﻟﯾﺔ ﻧرﻓض ﻓرض اﻟﻌدم‪.‬‬ ‫)ب( ﻋﻧدﻣﺎ ﯾﻛون ﺗﺑﺎﯾن ﺣد اﻟﺧطﺄ داﻟﮫ ﺗزاﯾدﯾ ﮫ ﻟﻠﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل ‪ x‬ﻓ ﺈن ﻓ رض اﻟﻌ دم‬ ‫ﯾﻛ ون ‪ : H 0‬ﺗﺑ ﺎﯾن ﺣ د اﻟﺧط ﺄ ﻣﺗﺟ ﺎﻧس ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H1 :‬ﺗﺑ ﺎﯾن ﺣ د‬ ‫‪٣١٩‬‬


‫اﻟﺧط ﺄ داﻟ ﮫ ﺗزاﯾدﯾ ﮫ ﻓ ﻲ ‪ x‬و ﻓ ﻲ ھ ذا اﻻﺧﺗﺑ ﺎر ﯾﺳ ﺗﺧدم اﻻﺣﺻ ﺎء ‪ F‬ﻋﻠ ﻰ‬ ‫اﻟﺻورة اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪SSE 2 (n  c) 2‬‬ ‫‪.‬‬ ‫‪SSE1 ( n  c) 2‬‬

‫‪F‬‬

‫وﺑﻣﻘﺎرﻧ ﺔ ﻗﯾﻣ ﺔ ‪ F‬اﻟﻣﺣﺳ وﺑﺔ ﺑﻧظﯾرﺗﮭ ﺎ اﻟﺟدوﻟﯾ ﺔ ﺑ درﺟﺎت ﺣرﯾ ﺔ اﻟﺧط ﺄ ﻟﻠﻌﻣ ود‬ ‫واﻟﺻف وإذا ﻛﺎﻧت ﻗﯾﻣﺔ ‪ F‬أﻛﺑر ﻣن ﻧظﯾراﺗﮭﺎ اﻟﺟدوﻟﯾﺔ ﻧرﻓض ﻓرض اﻟﻌدم ‪.‬‬ ‫ﻣﺛﺎل)‪(٣٠-٤‬‬ ‫اﻟﺑﯾﺎﻧ ﺎت اﻟﻣﻌط ﺎة ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﺗﻣﺛ ل درﺟ ﺎت اﺧﺗﺑ ﺎر اﻟﻘﺑ ول ودرﺟ ﺎت اﺧﺗﺑ ﺎر‬ ‫اﻟﺗﻔﺎﺿ ل واﻟﺗﻛﺎﻣ ل ﻟﻌﺷ رة ﻣ ن طﻠﺑ ﺔ اﻟﺟﺎﻣﻌ ﺔ ‪ ،‬ﻣ ﻊ أﻣ ل أن ﯾﻛ ون ھ ؤﻻء اﻟﻌﺷ رة ﻋﯾﻧ ﺔ‬ ‫ﻋﺷواﺋﯾﺔ ﻣن ﻣﺟﺗﻣﻊ اﻟطﻠﺑﺔ ﻓﻲ اﻟﺟﺎﻣﻌﺔ واﻟﻣطﻠوب اﺧﺗﺑﺎر ﺗﺟﺎﻧس اﻟﺗﺑﺎﯾن‪.‬‬

‫اﻟطﺎﻟب‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪9‬‬ ‫‪10‬‬

‫اﻟدرﺟﺔ ﻓﻲ اﻣﺗﺣﺎن‬ ‫اﻟﻘﺑول ‪x‬‬ ‫‪39‬‬ ‫‪43‬‬ ‫‪21‬‬ ‫‪64‬‬ ‫‪57‬‬ ‫‪47‬‬ ‫‪28‬‬ ‫‪75‬‬ ‫‪34‬‬ ‫‪52‬‬

‫اﻟدرﺟﺔ ﻓﻲ اﻣﺗﺣﺎن‬ ‫اﻟﺗﻔﺎﺿل ‪y‬‬ ‫‪65‬‬ ‫‪74‬‬ ‫‪52‬‬ ‫‪82‬‬ ‫‪92‬‬ ‫‪74‬‬ ‫‪73‬‬ ‫‪98‬‬ ‫‪56‬‬ ‫‪75‬‬

‫اﻟﺣــل ‪:‬‬ ‫وﺣﯾ ث أن ﻋ دد أزواج اﻟﻣﺷ ﺎھدات ‪ n=10‬ﻓﺈﻧﻧ ﺎ ﻧﺄﺧ ذ اﻻرﺑﻌ ﺔ أزواج اﻻوﻟ ﻰ ﻣ ن‬ ‫اﻟﻣﺷﺎھدات اﻟﻣرﺗﺑﮫ وﻓﻘﺎ ً اﻟﻣﺗﻐﯾر ‪ x‬وﻧﺳﺗﺧدﻣﮭﺎ ﻓﻲ أﯾﺟﺎد ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن‬ ‫وذﻟك ﻟﻠﺣﺻول ﻋﻠ ﻰ ‪ SSE1‬وﺑ ﻧﻔس اﻟطرﯾﻘ ﺔ ﻧﺣﺻ ل ﻋﻠ ﻰ ‪ SSE 2‬ﻻزواج اﻟﻣﺷ ﺎھدات‬ ‫اﻻرﺑﻌﺔ اﻻﺧﯾرة اﻟﻣرﺗﺑﮫ وﻓﻘﺎ ً اﻟﻣﺗﻐﯾر ‪ x‬ﻛﻣﺎ ھو ﻣوﺿﺢ ﻓﻲ اﻟﺟ دوﻟﯾن اﻟﺗ ﺎﻟﯾﯾن ﺛ م ﻧﺣﺳ ب‬ ‫ﻗﯾﻣﺔ ‪.F‬‬ ‫‪٣٢٠‬‬


‫‪F‬‬ ‫‪0.242351‬‬ ‫‬‫‪-‬‬

‫‪MS‬‬ ‫‪28.6409‬‬ ‫‪118.18‬‬ ‫‪-‬‬

‫‪SS‬‬ ‫‪28.6409‬‬ ‫‪236.359‬‬ ‫‪265‬‬

‫‪df‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬

‫‪Source‬‬ ‫‪Regression‬‬ ‫‪Residual‬‬ ‫‪Total‬‬

‫وﻣن اﻟﺟدول اﻟﺳﺎﺑق ﻓﺈن ‪:‬‬ ‫‪SSE1  236.359‬‬

‫‪F‬‬ ‫‪2.486‬‬ ‫‬‫‪-‬‬

‫‪MS‬‬ ‫‪174.443‬‬ ‫‪70.1535‬‬ ‫‪-‬‬

‫‪SS‬‬ ‫‪174.443‬‬ ‫‪140.307‬‬ ‫‪314.75‬‬

‫‪df‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬

‫‪Source‬‬ ‫‪Regression‬‬ ‫‪Residual‬‬ ‫‪Total‬‬

‫وﻣن اﻟﺟدول اﻟﺳﺎﺑق ﻓﺈن ‪:‬‬ ‫‪SSE 2  140.307‬‬ ‫ﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﻣﻌﺎدﻟﺔ )‪ (٣-٤‬وﻋﻠﯾﺔ ﻓﻘﯾﻣﺔ ‪ F‬ﻟﻠﻣﺛﺎل )‪ (٣٠-٤‬ﺗﻛون‪:‬‬ ‫‪236.359 / 2‬‬ ‫‪F‬‬ ‫‪ 1.6845 .‬‬ ‫‪140.307 / 2‬‬ ‫وﺑﻣﺎ أن ﻗﯾﻣﺔ ‪ F‬اﻟﻣﺣﺳوﺑﮫ أﻗل ﻣن اﻟﻘﯾﻣﺔ اﻟﺟدوﻟﯾﺔ ‪ F0.05 ( 2,2)  19 ‬ﻓﺈﻧﻧﺎ ﻧﻘﺑ ل ﻓ رض‬ ‫اﻟﻌدم وھو ﺛﺑﺎت اﻟﺗﺑﺎﯾن ‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=1‬‬ ‫‪1‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫}‪x1={21.,28,34,39‬‬ ‫}‪{21.,28,34,39‬‬ ‫}‪y1={52.,73,56,65‬‬ ‫}‪{52.,73,56,65‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪h[x_]:=Apply[Plus,x‬‬ ‫]‪k[x_]:=h[x]/l[x‬‬ ‫]‪c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x‬‬ ‫]‪xb=h[x1]/l[x1‬‬ ‫‪30.5‬‬ ‫‪٣٢١‬‬


yb=h[y1]/l[y1] 61.5 b1=c[x1,y1]/c[x1,x1] 0.39779 b0=yb-b1*xb 49.3674 n=l[x1] 4 ssto=c[y1,y1] 265. ssr=c[x1,y1]^2/c[x1,x1] 28.6409 sse=ssto-ssr 236.359 dto=n-1 3 msr=ssr/1 28.6409 dse=n-2 2 mse=sse/(n-2) 118.18 f1=msr/mse 0.242351 th=TableHeadings{{source,regression,residual,total},{anova }} TableHeadings{{source,regression,residual,total},{anova}} rt1=List["df","SS","MS","F"] {df,SS,MS,F} rt2=List[p,ssr,msr,f1] {1,28.6409,28.6409,0.242351} rt3=List[dse,sse,mse,"---"] {2,236.359,118.18,---} rt4=List[dto,ssto,"---","---"] {3,265.,---,---} tf=TableForm[{rt1,rt2,rt3,rt4},th]

source regression residual total

anova df 1 2 3

SS 28.6409 236.359 265.

p=1 1 =.05 ٣٢٢

MS 28.6409 118.18 

F 0.242351  


0.05 x11={52.,57,64,75} {52.,57,64,75} y11={75.,92,82,98} {75.,92,82,98} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] xb=h[x11]/l[x11] 62. yb=h[y11]/l[y11] 86.75 b1=c[x11,y11]/c[x11,x11] 0.765101 b0=yb-b1*xb 39.3138 n=l[x11] 4 ssto=c[y11,y11] 314.75 ssr=c[x11,y11]^2/c[x11,x11] 174.443 sse=ssto-ssr 140.307 dto=n-1 3 msr=ssr/1 174.443 dse=n-2 2 mse1=sse/(n-2) 70.1535 f1=msr/mse1 2.48659 th=TableHeadings{{source,regression,residual,total},{anova }} TableHeadings{{source,regression,residual,total},{anova}} rt1=List["df","SS","MS","F"] {df,SS,MS,F} rt2=List[p,ssr,msr,f1] {1,174.443,174.443,2.48659} rt3=List[dse,sse,mse1,"---"] {2,140.307,70.1535,---} rt4=List[dto,ssto,"---","---"] {3,314.75,---,---} ٣٢٣


tf1=TableForm[{rt1,rt2,rt3,rt4},th]

source regression residual total

anova df 1 2 3

SS 174.443 140.307 314.75

MS 174.443 70.1535

F 2.48659  



Maxmse, mse1 ff  Minmse, mse1 1.68458 <<Statistics`ContinuousDistributions` ffee=Quantile[FRatioDistribution[n-2,n-2],1-] 19. If[ff>=ffee,Print["Reject Ho"],Print["Accept Ho"]] Accept Ho

: ‫ﻟﮭذا اﻟﻣﺛﺎل‬ ‫ و‬x1, y1 ‫ ﻣ ن اﻟﻘﺎﺋﻣﺗ ﺎن‬x ‫اﻻرﺑﻌ ﺔ أزواج اﻻوﻟ ﻰ ﻣ ن اﻟﻣﺷ ﺎھدات اﻟﻣرﺗﺑ ﮫ وﻓﻘ ﺎ ً اﻟﻣﺗﻐﯾ ر‬ ‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ tf=TableForm[{rt1,rt2,rt3,rt4},th]

‫ ﻻزواج اﻟﻣﺷ ﺎھدات‬SSE 2 ‫ وﺑ ﻧﻔس اﻟطرﯾﻘ ﺔ ﻧﺣﺻ ل ﻋﻠ ﻰ‬SSE1 ‫وذﻟ ك ﻟﻠﺣﺻ ول ﻋﻠ ﻰ‬ ‫ و ﺟ دول ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن‬x11, y11 ‫ ﻣ ن اﻟﻘﺎﺋﻣﺗ ﺎن‬x ‫اﻻرﺑﻌﺔ اﻻﺧﯾ رة اﻟﻣرﺗﺑ ﮫ وﻓﻘ ﺎ ً اﻟﻣﺗﻐﯾ ر‬ ‫ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ tf1=TableForm[{rt1,rt2,rt3,rt4},th]

‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬f ff 

Maxmse, mse1 Minmse, mse1

‫اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬f ffee=Quantile[FRatioDistribution[n-2,n-2],1-] ‫اﻟﻘﺮار اﻟﺬى ﯾﺘﺨﺬ ﻣﻦ اﻻﻣﺮ‬ If[ff>=ffee,Print["Reject Ho"],Print["Accept Ho"]]

‫وھﻮ ﻗﺒﻮل ﻓﺮض اﻟﻌﺪم ﻣﻦ اﻟﻤﺨﺮج‬ Accept Ho

‫( ﺗﺻﺣﯾﺢ ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن‬٢-١٥-٤) ٣٢٤


‫ﻋﻧدﻣﺎ ﻻ ﯾﺗﺣﻘق ﺛﺑﺎت اﻟﺗﺑﺎﯾن ﻟﺣدود اﻟﺧطﺄ ‪ i‬ﻓﻰ ﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻰ اﻟﺑﺳﯾط )‪ (١-٤‬ﻓﻼﺑد ﻣن اﺗﺧﺎذ اﺟ راء و‬ ‫ذﻟك ﻟﺟﻌل ﺗﺑﺎﯾﻧﺎت ‪) i‬أو ‪ ( Yi‬ﺗﻘرﯾﺑﺎ ﻣﺗﺳﺎوﯾﺔ‪ .‬ﯾﺗم ﺗﺻﺣﯾﺢ ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن ﺑطرﯾﻘﺗﯾن ‪:‬‬

‫ا‪ -‬اﻟطرﯾﻘﺔ اﻻوﻟﻰ ‪:‬ﻋﻣل ﺗﺣوﯾل ﻟﻘﯾم ‪. y‬‬ ‫ب‪ -‬اﻟطرﯾﻘ ﺔ اﻟﺛﺎﻧﯾ ﺔ ‪ :‬اﺳ ﺗﺧدام طرﯾﻘ ﺔ اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى اﻟﻣرﺟﺣ ﺔ ﺑ دﻻ ً ﻣ ن اﺳ ﺗﺧدام‬ ‫طرﯾﻘﺔ اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى اﻟﻌﺎدﯾ ﺔ وذﻟ ك ﺑﺈﺳ ﺗﺧدام وزن ﻣﻌ ﯾن ‪ w i‬ﻟﺟﻌ ل اﻟﺗﺑ ﺎﯾن‬ ‫ﻟﻼﺧطﺎء ﻣﺗﺟﺎﻧﺳﺔ‪ .‬ﺳوف ﻧﺗﻧﺎول اﻟطرﯾﻘﺗﯾن ﻓﻲ اﻟﺟزء اﻟﺗﺎﻟﻲ ‪:‬‬ ‫ا‪ -‬طرﯾﻘﺔ ﺗﺣوﯾل ﻗﯾم اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ‬ ‫ﺑﻔرض إﻧﻧﺎ ﻧرﻏب ﻓﻲ ﺗﺣوﯾ ل ﻗ ﯾم ‪ y‬ﻟﺗﺻ ﺣﯾﺢ ﻋ دم اﻻﻋﺗ دال أو ﻋ دم ﺛﺑ ﺎت اﻟﺗﺑ ﺎﯾن أو‬ ‫ﻋ دم ﺧطﯾ ﮫ داﻟ ﺔ اﻻﻧﺣ دار‪ .‬اﻟﻌﺎﺋﻠ ﺔ اﻟﻣﻔﯾ دة ﻣ ن اﻟﺗﺣ وﯾﻼت ھ ﻲ ﺗﺣوﯾﻠ ﺔ اﻟﻘ وى ‪power‬‬ ‫‪ y  transformation‬ﺣﯾث ‪ ‬ﻣﻌﻠﻣ ﮫ ﻣطﻠ وب إﯾﺟ ﺎد ﺗﻘ دﯾر ﻟﮭ ﺎ ‪ ،‬ﻓﻌﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل‬ ‫‪1‬‬ ‫‪  ‬ﺗﻌﻧﻲ اﺳﺗﺧدام ﺗﺣوﯾﻠﺔ اﻟﺟذر اﻟﺗرﺑﯾﻌﻲ ﺣﯾث ‪ y   y‬و ‪   0‬ﺗﻌﻧ ﻲ اﺳ ﺗﺧدام‬ ‫‪2‬‬ ‫اﻟﺗﺣوﯾﻠﺔ اﻟﻠوﻏﺎرﯾﺗﻣﯾﺔ ﺣﯾ ث )‪ . y   ln( y‬اﻟﻣﻌﯾ ﺎر ﻓ ﻰ ﺗﺣدﯾ د ﻗﯾﻣ ﺔ ‪ ‬اﻟﻣﻧﺎﺳ ﺑﺔ ﻟﺗﺣوﯾ ل‬ ‫ﻗ ﯾم ‪ y‬ھ ﻰ اﯾﺟ ﺎد ﻗﯾﻣ ﺔ ‪ ‬و اﻟﺗ ﻰ ﺗﺟﻌ ل ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت اﻟﺑ واﻗﻰ ‪ SSE‬ﻻﻧﺣ دار ﺧط ﻰ‬ ‫ﯾﺳﺗﻧد إﻟﻰ ذﻟك اﻟﺗﺣوﯾل اﺻﻐر ﻣﺎ ﯾﻣﻛن وﺳوف ﻧﺳﺗﺧدم طرﯾﻘﺔ ﺑوﻛس – ﻛ وﻛس ‪Box‬‬ ‫‪ and Cox‬ﻟﮭذا اﻟﻐرض وﺑدون اﻟدﺧول ﻓﻰ اﻟﺗﻔﺎﺻﯾل ﺳوف ﻧﺳﺗﺧدم ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻟﮭ ذا‬ ‫اﻟﻐرض وذﻟك ﻣن ﺧﻼل اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ ‪:‬‬ ‫ﻣﺛﺎل)‪(٣١-٤‬‬ ‫ﻻزواج ﻗ ﯾم ‪ x, y‬اﻟﻣﻌط ﺎه ﻓ ﻰ اﻟﻘﺎﺋﻣ ﺔ اﻟﻣﺳ ﻣﺎه ‪gradedata‬‬

‫ﻓ ﻰ اﻟﺑرﻧ ﺎﻣﺞ اﻟﺗ ﺎﻟﻰ اﻟﺟ ﺎھز‬

‫اﻟﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬ﺳوف ﻧﺳﺗﺧدم طرﯾﻘﺔ ﺑ وﻛس – ﻛ وﻛس ‪Box and Cox‬‬ ‫ﻟﺣﺳﺎب ﻗﯾﻣﺔ ‪ ‬اﻟﻣﻧﺎﺳﺑﺔ ﻟﺗﺣوﯾل ﻗﯾم ‪ y‬ﻣﻊ ﻓﺗرة ﺛﻘﺔ ل ‪‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫]‪Off[General::spell1‬‬ ‫`‪<<Statistics`LinearRegression‬‬ ‫`‪<<Statistics`ContinuousDistributions‬‬ ‫`‪<<Statistics`DescriptiveStatistics‬‬ ‫]‪Clear[yp‬‬ ‫‪yp[yij_,ytwiddle_,lambda_]:=(yij^lambda-1)/(lambda‬‬ ‫;‪ytwiddle^(lambda-1)) /;lambda !=0‬‬ ‫‪yp[yij_,ytwiddle_,lambda_]:=ytwiddle Log[yij] /; lambda‬‬ ‫;‪==0‬‬ ‫]‪Clear[sse‬‬ ‫‪sse[data_,predictors_,indepvars_,ytwiddle_,lambda_,p_]:‬‬ ‫‪=Module[{resvals,withwvals},‬‬ ‫‪٣٢٥‬‬


withwvals=Table[MapAt[yp[#,ytwiddle,lambda]&,data[[j]], p],{j,1,Length[data]}]; resvals=Regress[withwvals,predictors,indepvars,Regressi onReport->FitResiduals][[1,2]]; Sum[resvals[[i]]^2,{i,1,Length[resvals]}]] Options[boxCoxRegression]={limits->{-2,2},gridsize>20,confidence->0.95}; Clear[boxCoxRegression] boxCoxRegression[data_,pred_,indepvars_,opts___]:=Module[{la mbdaminmax,grid,lambdavals,n,p,depvars,ytwiddle,table2,minva l,lambdaposition,lambdahat,nu,ci,dist,chi2,var,table3,table4 ,table5,min,max,lambda1,lambda2}, lambdaminmax=limits /. {opts} /. Options[boxCoxRegression]; grid=gridsize/. {opts} /. Options[boxCoxRegression]; lambdavals=Table[lambdaminmax[[1]]+i(lambdaminmax[[2]]lambdaminmax[[1]])/(grid-1),{i,0,grid-1}]; n=Length[data]; p=Length[data[[1]]]; depvars=Table[data[[i,p]],{i,1,Length[data]}]; ytwiddle=GeometricMean[depvars]//N; table2=Table[sse[data,pred,indepvars,ytwiddle,lambdaval s[[i]],p],{i,1,Length[lambdavals]}]; minval=Min[table2]; lambdaposition=(Position[table2,minval]//Flatten)[[1]]; lambdahat=lambdavals[[lambdaposition]]; nu=n-p; ci=confidence /. {opts} /. Options[boxCoxRegression]; dist=ChiSquareDistribution[1]; chi2=Quantile[dist,ci]; var=-nu/2 Log[table2[[lambdaposition]]/nu]-1/2 chi2; table3=Map[-nu/2 Log[#/nu]&,table2]; table4=Map[#>var&,table3]; table5=Position[table4,True]//Flatten; min=Min[table5]; max=Max[table5]; lambda1=lambdavals[[min]]; lambda2=lambdavals[[max]]; Print["Box-Cox Transformation"]; {BoxCox->lambdahat//N,Confidence->100*ci"%" ,ConfidenceInterval->{lambda1//N,lambda2//N}} ٣٢٦


‫]‬ ‫}‪gradedata={{0.5,40},{0.5,50},{1,75},{1,80},{1.5,80},{1.5,95‬‬ ‫‪,{2,100},{2,90},{2.5,114},{2.5,103},{2.5,101},{3,116},{3,120‬‬ ‫‪},{3.5,123},{4,138},{4,133},{4.5,146},{5,152},{5,147},{5.5,1‬‬ ‫‪57},{5.5,164},{6,167},{6,162},{6.5,164},{7,173},{7,179},{8,1‬‬ ‫;}}‪86},{8,193},{9,190},{9,180‬‬ ‫]‪boxCoxRegression[gradedata,{1,x},x‬‬ ‫‪Box-Cox Transformation‬‬ ‫‪{BoxCox2.,Confidence95.‬‬ ‫}}‪%,ConfidenceInterval{1.78947,2.‬‬

‫ﻗﯾﻣﺔ ‪ ‬اﻟﻣﻧﺎﺳﺑﺔ ﻟﺗﺣوﯾل ﻗﯾم ‪ y‬ھﻰ‬

‫‪2‬‬

‫ﻣﻊ ﻓﺗرة ﺛﻘﺔ ل ‪ ‬ﻣن اﻻﻣر‬

‫]‪boxCoxRegression[gradedata,{1,x},x‬‬

‫و اﻟﻣﺧرج‬ ‫‪{BoxCox2.,Confidence95.‬‬ ‫}}‪%,ConfidenceInterval{1.78947,2.‬‬

‫ب‪ -‬طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى اﻟﻣرﺟﺣﺔ‬ ‫‪Weighted least squares:‬‬

‫ﺑﻔرض أن ‪ Var ( i )   i 2   2 w i‬ﺣﯾث ‪ w i‬أوزان ﻣﻌروﻓﺔ وﻟﻠﺣﺻ ول ﻋﻠ ﻰ‬ ‫ﺗﻘدﯾرات ﻟﻠﻣﻌﺎﻟم ‪  0 ,1‬ﯾﻣﻛن اﺳﺗﺧدام طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻ ﻐرى اﻟﻣرﺟﺣ ﺔ ‪Weight‬‬ ‫)‪ Least Squares (WLS‬ﺣﯾث ‪:‬‬ ‫‪ x i w i  yi w i‬‬

‫‪,‬‬

‫‪ wi‬‬

‫‪‬‬

‫‪ x i yi w i‬‬

‫‪b1 ‬‬

‫‪( x i w i )2‬‬ ‫‪2‬‬ ‫‪ xi wi‬‬ ‫‪ wi‬‬ ‫‪ yi w i‬‬ ‫‪xw‬‬ ‫‪b0 ‬‬ ‫‪ b1  wi i .‬‬ ‫‪ i‬‬ ‫‪ wi‬‬

‫ﻓ ﻲ ﻛﺛﯾ ر ﻣ ن اﻟﻣﺷ ﺎﻛل ﻓ ﺈن اﻷوزان ﯾﻣﻛ ن ﺗﻘ دﯾرھﺎ ﺑﺳ ﮭوﻟﺔ‪ .‬ﻋﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل إذا‬ ‫ﻛﺎﻧت ‪ y i‬ﻣﺷﺎھدة ﻓﻲ اﻟﺣﻘﯾﻘﺔ ﺗﻣﺛل ﻣﺗوﺳط ﻣﺷﺎھدات ﻣﺄﺧوذة ﻣن ﻋﯾﻧ ﺔ ﺣﺟﻣﮭ ﺎ ‪ n i‬ﻋﻧ د‬ ‫‪ x i‬وإذا ﻛﺎﻧ ت ﻛ ل اﻟﻣﺷ ﺎھدات اﻷﺻ ﻠﯾﺔ ﻟﮭ ﺎ ﺗﺑ ﺎﯾن ﺛﺎﺑ ت ‪  2‬ﻓ ﺈن ﺗﺑ ﺎﯾن ‪ Yi‬ھ و‬ ‫‪ Var Yi   Var ε i   σ 2 / n i‬وﻟ ذﻟك ﯾﻛ ون اﻟ وزن ھ و ‪ . n i‬ﻓ ﻲ ﺑﻌ ض اﻷﺣﯾ ﺎن ﺗﺑ ﺎﯾن‬ ‫‪ Y i‬ﯾﻛ ون داﻟ ﺔ ﻓ ﻲ اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل ‪ ، x‬ﻓﻌﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل‬ ‫‪1‬‬ ‫‪wi ‬‬ ‫‪ Var (Y i )  Var ( i )   2 x i‬ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﻓﺈﻧﻧ ﺎ ﯾﻣﻛﻧﻧ ﺎ اﺳ ﺗﺧدام‬ ‫‪xi‬‬ ‫‪٣٢٧‬‬


‫ﻛ وزن‪ .‬أﯾﺿ ﺎ ً ﻗ د ﯾﻛ ون ‪ VarYi    2 x i 2‬وﻋﻠ ﻰ ذﻟ ك‬

‫‪1‬‬

‫‪ w i ‬واﻟﺗ ﻰ ﺗظﮭ ر‬

‫‪xi2‬‬ ‫ﻛﺛﯾ را ً ﻓ ﻲ اﻟدراﺳ ﺎت اﻷﺑﺣ ﺎث اﻟﺗ ﻲ ﺗﻌﺗﻣ د ﻋﻠ ﻰ ﺑﯾﺎﻧ ﺎت إﺣﺻ ﺎﺋﯾﺔ ﺗﺄﺧ ذ ﺷ ﻛل اﻟﺑﯾﺎﻧ ﺎت‬ ‫اﻟﻣﻘطﻌﯾ ﺔ ‪ cross-section data‬ﺣﯾ ث ﺗﺷ ﺗت ﻣﺷ ﺎھدات اﻟﺑﯾﺎﻧ ﺎت اﻟﻣﻘطﻌﯾ ﺔ اﻟﺧﺎﺻ ﺔ‬ ‫ﺑﺎﻟﻣﺗﻐﯾر اﻟﺗ ﺎﺑﻊ ﻗ د ﺗﺧﺗﻠ ف اﺧﺗﻼﻓ ﺎ ً ﻛﺑﯾ را ﻣ ن ﻣﺳ ﺗوى اﻟ ﻰ أﺧ ر ﻣ ن ﻣﺳ ﺗوﯾﺎت اﻟﻣﺗﻐﯾ ر‬ ‫اﻟﻣﺳ ﺗﻘل ‪ .‬ﻓﻌﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل ﻓ ﻲ دراﺳ ﺔ اﻟﻌﻼﻗ ﺔ ﺑ ﯾن دﺧ ل وأﻧﻔ ﺎق اﻷﺳ ر ﻋﻠ ﻰ ﻣﺧﺗﻠ ف‬ ‫اﻟﺳﻠﻊ واﻟﺧدﻣﺎت ﻧﺟد أن اﻷﺳر ذات اﻟدﺧول اﻟﻣرﺗﻔﻌﺔ ﺗﺗﻣﺗﻊ ﺑﻣروﻧﺔ ﻛﺑﯾ رة ﻓ ﻲ اﻷﻧﻔ ﺎق ‪،‬‬ ‫ﻓﻲ ﺣ ﯾن أن أﻧﻔ ﺎق اﻷﺳ ر ذات اﻟ دﺧول اﻟﻣﻧﺧﻔﺿ ﺔ ﯾﻘ ﻊ ﻋ ﺎدة ﺿ ﻣن ﺣ دود ﺿ ﯾﻘﺔ وﻋﻠﯾ ﮫ‬ ‫ﻓﺈن اﻟﺗﺑﺎﯾن ﻋﻧد اﻟدﺧول اﻟﻛﺑﯾر ‪ ،‬ﯾﻛون أﻛﺑر ﻣن اﻟﺗﺑﺎﯾن ﻋﻧد ﻗﯾم اﻟدﺧول اﻟﺻ ﻐﯾرة وھﻛ ذا‬ ‫ﻧﺟ د أن ﻓرﺿ ﯾﺔ ﺛﺑ ﺎت اﻟﺗﺑ ﺎﯾن ﺗﺻ ﺑﺢ ﻋدﯾﻣ ﺔ اﻟﺟ دوى ﻓ ﻲ ﻣﺛ ل ھ ذة اﻟﺣ ﺎﻻت وﺑﺎﻟﺗ ﺎﻟﻲ‬ ‫ﯾواﺟﮫ اﻟﺑﺎﺣث ﻣﺷﻛﻠﺔ ﻋدم ﺛﺑﺎت اﻟﺗﺑﺎﯾن واﻟﺗﻰ ﺳوف ﻧﺻﺣﺣﮭﺎ ﻓﻲ اﻟﻣﺛﺎل اﻟﺗﺎﻟﻲ‬

‫ﻣﺛﺎل)‪(٣٢-٤‬‬ ‫ﯾﻌط ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﺑﯾﺎﻧ ﺎت ﻋ ن اﻟ دﺧل واﻹﻧﻔ ﺎق اﻟﺷ ﮭري ﻟﻌﯾﻧ ﺔ ﻣﻛوﻧ ﺔ ﻣ ن ‪20‬‬

‫ﻣﺷﺎھدة ﻣﻘﺳﻣﺔ إﻟﻰ أرﺑﻌ ﺔ ﻣﺟ ﺎﻣﯾﻊ وﻛ ل ﻣﺟﻣوﻋ ﺔ ﺑﮭ ﺎ ﺧﻣس ﻣﺷ ﺎھدات‪ .‬اﻟﻌﯾﻧ ﺔ ﻓ ﻲ ﻛ ل‬ ‫ﻣﺟﻣوﻋ ﺔ ﺗ م اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ ﺑﺗﻘ دﯾر اﻹﻧﻔ ﺎق اﻟﺷ ﮭري ‪ $1000‬ﻟﺧﻣ س أﺳ ر ﻋﻧ د ﻧﻔ س‬ ‫اﻟ دﺧل‪ .‬أوﺟ د ﺗﻘ دﯾرات ﻣﻌ ﺎﻟم ﻧﻣ وذج اﻻﻧﺣ دار اﻟﺧط ﻲ ﺗﺣ ت ﻓ رض أن‬ ‫‪. Vari    2 x i 2‬‬ ‫اﻟﺪﺧﻞ‬ ‫‪$1000‬‬ ‫‪5.0‬‬ ‫‪10.0‬‬ ‫‪15.0‬‬ ‫‪20.0‬‬

‫اﻻﻧﻔﺎق اﻟﺸﮭﺮي ‪$ 1000‬‬ ‫‪2.1‬‬ ‫‪3.6‬‬ ‫‪5.0‬‬ ‫‪6.2‬‬

‫‪2.0‬‬ ‫‪3.5‬‬ ‫‪4.8‬‬ ‫‪6.0‬‬

‫‪2.0‬‬ ‫‪3.5‬‬ ‫‪4.5‬‬ ‫‪5.7‬‬

‫‪2.0‬‬ ‫‪3.2‬‬ ‫‪4.2‬‬ ‫‪5.0‬‬

‫اﻟﻤﺠﻤﻮﻋﺔ‬ ‫‪1.8‬‬ ‫‪3.0‬‬ ‫‪4.2‬‬ ‫‪4.8‬‬

‫ﯾوﺿﺢ ﺷﻛل )‪ (٥١-٤‬أن اﻟﻌﻼﻗﺔ ﺑﯾن اﻹﻧﻔﺎق واﻟدﺧل اﻟﺷﮭري ﻋﻼﻗﺔ ﺧطﯾﺔ‪.‬‬

‫‪٣٢٨‬‬

‫‪1‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬


‫‪10‬‬ ‫‪8‬‬ ‫‪6‬‬ ‫‪4‬‬ ‫‪2‬‬

‫‪20‬‬

‫‪17.5‬‬

‫‪15‬‬

‫‪12.5‬‬

‫‪7.5‬‬

‫‪10‬‬

‫‪5‬‬

‫‪2.5‬‬

‫ﺷﻛل )‪(٥١-٤‬‬

‫اﻟﺑﯾﺎﻧﺎت اﻟﻼزﻣﺔ ﻟﺣﺳﺎب ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪:‬‬

‫‪٣٢٩‬‬


x 5 5 5 5 5 10 10 10 10 10 15 15 15 15 15 20 20 20 20 20

250

x2

y 1.8 2 2 2 2.1 3 3.2 3.5 3.5 3.6 4.2 4.2 4.5 4.8 5 4.8 5 5.7 6 6.2

25 25 25 25 25 100 100 100 100 100 225 225 225 225 225 400 400 400 400 400

77.1

3750

xy 9 10 10 10 10.5 30 32 35 35 36 63 63 67.5 72 75 96 100 114 120 124

1112

:‫ﺣﯾث‬ y

y

n

77.1 x 250  3.855 ، x    12.5 20 n 20  x i  yi SXY   x i y i  n 25077.1  1112  20

 148 .25, 2

SXX   x 

 xi

٣٣٠

n

2


‫‪‬‬ ‫‪2502‬‬ ‫‪ 3750 ‬‬

‫‪ 625,‬‬ ‫‪20‬‬ ‫‪SXY 148.25‬‬ ‫‪b1 ‬‬ ‫‪‬‬ ‫‪ 0.2372,‬‬ ‫‪SXX‬‬ ‫‪625‬‬ ‫‪b 0  y  b1x  3.855  0.237212.5‬‬ ‫‪ 0.89‬‬

‫وﻋﻠﻰ ذﻟك ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ‪:‬‬

‫‪yˆ  0.89  0.2372x‬‬

‫واﻟﻣﻣﺛﻠﺔ ﺑﯾﺎﻧﯾﺎ ً ﻓﻲ ﺷﻛل )‪ (٥٢-٤‬ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر‬ ‫‪10‬‬ ‫‪8‬‬ ‫‪6‬‬ ‫‪4‬‬ ‫‪2‬‬

‫‪20‬‬

‫‪17.5‬‬

‫‪15‬‬

‫‪12.5‬‬

‫‪10‬‬

‫‪7.5‬‬

‫‪5‬‬

‫‪2.5‬‬

‫ﺷﻛل )‪(٥٢-٤‬‬ ‫ﯾﻌطﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ اﻟﺑواﻗﻲ ‪ ei‬واﻟﺑواﻗﻲ اﻟﻘﯾﺎﺳﯾﺔ ‪ d i‬واﻟﺑواﻗﻲ اﻟﻣﻌﯾﺎرﯾﺔ ‪. ri‬‬ ‫‪٣٣١‬‬


‫‪di‬‬

‫‪ri‬‬ ‫‪-0.79786‬‬ ‫‪-0.219701‬‬ ‫‪-0.219701‬‬ ‫‪-0.219701‬‬ ‫‪0.0693792‬‬ ‫‪-0.724443‬‬ ‫‪-0.171433‬‬ ‫‪0.658082‬‬ ‫‪0.658082‬‬ ‫‪0.934587‬‬ ‫‪-0.685733‬‬ ‫‪-0.685733‬‬ ‫‪0.143783‬‬ ‫‪0.973298‬‬ ‫‪1.52631‬‬ ‫‪-2.41093‬‬ ‫‪-1.83277‬‬ ‫‪0.190793‬‬ ‫‪1.05803‬‬ ‫‪1.63619‬‬

‫‪yˆi‬‬

‫‪ei‬‬ ‫‪-0.276‬‬ ‫‪-0.076‬‬ ‫‪-0.076‬‬ ‫‪-0.076‬‬ ‫‪0.024‬‬ ‫‪-0.262‬‬ ‫‪-0.062‬‬ ‫‪0.238‬‬ ‫‪0.238‬‬ ‫‪0.338‬‬ ‫‪-0.248‬‬ ‫‪-0.248‬‬ ‫‪0.052‬‬ ‫‪0.352‬‬ ‫‪0.552‬‬ ‫‪-0.834‬‬ ‫‪-0.634‬‬ ‫‪0.066‬‬ ‫‪0.366‬‬ ‫‪0.566‬‬

‫‪-0.739905‬‬ ‫‪-0.203742‬‬ ‫‪-0.203742‬‬ ‫‪-0.203742‬‬ ‫‪0.0643396‬‬ ‫‪-0.702374‬‬ ‫‪-0.166211‬‬ ‫‪0.638034‬‬ ‫‪0.638034‬‬ ‫‪0.906116‬‬ ‫‪-0.664842‬‬ ‫‪-0.664842‬‬ ‫‪0.139402‬‬ ‫‪0.943647‬‬ ‫‪1.47981‬‬ ‫‪-2.2358‬‬ ‫‪-1.69964‬‬ ‫‪0.176934‬‬ ‫‪0.981179‬‬ ‫‪1.51734‬‬

‫‪2.076‬‬ ‫‪2.076‬‬ ‫‪2.076‬‬ ‫‪2.076‬‬ ‫‪2.076‬‬ ‫‪3.262‬‬ ‫‪3.262‬‬ ‫‪3.262‬‬ ‫‪3.262‬‬ ‫‪3.262‬‬ ‫‪4.448‬‬ ‫‪4.448‬‬ ‫‪4.448‬‬ ‫‪4.448‬‬ ‫‪4.448‬‬ ‫‪5.634‬‬ ‫‪5.634‬‬ ‫‪5.634‬‬ ‫‪5.634‬‬ ‫‪5.634‬‬

‫‪y‬‬ ‫‪1.8‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2.1‬‬ ‫‪3‬‬ ‫‪3.2‬‬ ‫‪3.5‬‬ ‫‪3.5‬‬ ‫‪3.6‬‬ ‫‪4.2‬‬ ‫‪4.2‬‬ ‫‪4.5‬‬ ‫‪4.8‬‬ ‫‪5‬‬ ‫‪4.8‬‬ ‫‪5‬‬ ‫‪5.7‬‬ ‫‪6‬‬ ‫‪6.2‬‬

‫‪x‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪10‬‬ ‫‪10‬‬ ‫‪10‬‬ ‫‪10‬‬ ‫‪10‬‬ ‫‪15‬‬ ‫‪15‬‬ ‫‪15‬‬ ‫‪15‬‬ ‫‪15‬‬ ‫‪20‬‬ ‫‪20‬‬ ‫‪20‬‬ ‫‪20‬‬ ‫‪20‬‬

‫واﻟﻣوﺿﺣﺔ ﺑﯾﺎﻧﯾﺎ ﻓﻲ ﺷﻛل )‪ (٥٣-٤‬وﺷﻛل )‪ (٥٤-٤‬وﺷﻛل )‪ (٥٥-٤‬ﻋﻠﻰ اﻟﺗواﻟﻲ‪.‬‬ ‫‪1‬‬ ‫‪0.75‬‬ ‫‪0.5‬‬ ‫‪0.25‬‬ ‫‪10‬‬

‫‪8‬‬

‫‪6‬‬

‫‪4‬‬

‫‪2‬‬ ‫‪-0.25‬‬ ‫‪-0.5‬‬ ‫‪-0.75‬‬ ‫‪-1‬‬

‫‪٣٣٢‬‬


‫ﺷﻛل )‪(٥٣-٤‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪10‬‬

‫‪6‬‬

‫‪8‬‬

‫‪2‬‬

‫‪4‬‬

‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫ﺷﻛل )‪(٥٤-٤‬‬ ‫‪2‬‬ ‫‪1.5‬‬ ‫‪1‬‬ ‫‪0.5‬‬ ‫‪10‬‬

‫‪8‬‬

‫‪4‬‬

‫‪6‬‬

‫‪2‬‬ ‫‪-0.5‬‬ ‫‪-1‬‬ ‫‪-1.5‬‬ ‫‪-2‬‬

‫ﺷﻛل )‪(٥٥-٤‬‬ ‫ﯾﺗﺿ ﺢ ﻣ ن رﺳ م اﻟﺑ واﻗﻲ ﻓ ﻲ ﺷ ﻛل )‪ (٥٣-٤‬وﺷ ﻛل )‪ (٥٤-٤‬وﺷ ﻛل )‪ (٥٥-٤‬أن‬ ‫ﺗﺑﺎﯾن اﻟﺑواﻗﻲ ﻏﯾر ﺛﺎﺑت وذﻟك ﻟظﮭور اﻟﺷﻛل اﻟﻘﻣﻌﻲ اﻟﻣﻔﺗوح ﻣن أﻋﻠﻲ‪.‬‬ ‫ﺳوف ﻧﺳﺗﺧدم ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻟﮭذا اﻟﻐرض وذﻟك ﻣن ﺧﻼل اﻟﻣﺛﺎل اﻟﺗﺎﻟﻰ ‪.:‬‬ ‫ﻣﺛﺎل)‪(٣٢-٤‬‬ ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬

‫‪٣٣٣‬‬


p=1 1 y1={1.8,2,2,2,2.1,3,3.2,3.5,3.5,3.6,4.2,4.2,4.5,4.8,5,4.8,5, 5.7,6,6.2} {1.8,2,2,2,2.1,3,3.2,3.5,3.5,3.6,4.2,4.2,4.5,4.8,5,4.8,5,5.7 ,6,6.2} {1.8,2,2,2,2.1,3,3.2,3.5,3.5,3.6,4.2,4.2,4.5,4.8,5,4.8,5,5.7 ,6,6.2} {1.8,2,2,2,2.1,3,3.2,3.5,3.5,3.6,4.2,4.2,4.5,4.8,5,4.8,5,5.7 ,6,6.2} x1={5.,5,5,5,5,10,10.,10,10,10.,15,15,15,15,15,20,20,20,20,2 0} {5.,5,5,5,5,10,10.,10,10,10.,15,15,15,15,15,20,20,20,20,20} {5.,5,5,5,5,10,10.,10,10,10.,15,15,15,15,15,20,20,20,20,20} {5.,5,5,5,5,10,10.,10,10,10.,15,15,15,15,15,20,20,20,20,20} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] sxx=c[x1,x1] 625. xb=h[x1]/l[x1] 12.5 yb=h[y1]/l[y1] 3.855 b1=c[x1,y1]/c[x1,x1] 0.2372 b0=yb-b1*xb 0.89 yy=b0+(b1*x1) {2.076,2.076,2.076,2.076,2.076,3.262,3.262,3.262,3.262,3.262 ,4.448,4.448,4.448,4.448,4.448,5.634,5.634,5.634,5.634,5.634 } e=y1-yy {-0.276,-0.076,-0.076,-0.076,0.024,-0.262,0.062,0.238,0.238,0.338,-0.248,-0.248,0.052,0.352,0.552,0.834,-0.634,0.066,0.366,0.566} t1=Transpose[{x1,y1}] {{5.,1.8},{5,2},{5,2},{5,2},{5,2.1},{10,3},{10.,3.2},{10,3.5

٣٣٤


},{10,3.5},{10.,3.6},{15,4.2},{15,4.2},{15,4.5},{15,4.8},{15 ,5},{20,4.8},{20,5},{20,5.7},{20,6},{20,6.2}} a=PlotRange{{0,20},{0,10}} PlotRange{{0,20},{0,10}} a1=Prolog{PointSize[.02]} Prolog{PointSize[0.02]} g= ListPlot[t1,a,a1,AxesLabel{"x","y"}] y 10 8 6 4 2 x 2.5

5

7.5

10

12.5

15

17.5

20

Graphics dd=Plot[b0+(b1*x),{x,0,20},AxesLabel{"x","y"}] y 5 4 3 2 1 x 5

10

15

20

Graphics Show[g,dd]

٣٣٥


y 10 8 6 4 2 x 2.5

5

7.5

10

12.5

15

17.5

20

Graphics n=l[x1] 20 ssto=c[y1,y1] 37.6695 ssr=c[x1,y1]^2/c[x1,x1] 35.1649 sse=ssto-ssr 2.5046 mse=sse/(n-2) 0.139144

di  e 



mse

{-0.739905,-0.203742,-0.203742,-0.203742,0.0643396,0.702374,-0.166211,0.638034,0.638034,0.906116,-0.664842,0.664842,0.139402,0.943647,1.47981,-2.2358,1.69964,0.176934,0.981179,1.51734}

1 x1  xb ^2  ri  e   mse1      N n sxx {-0.79786,-0.219701,-0.219701,-0.219701,0.0693792,0.724443,-0.171433,0.658082,0.658082,0.934587,-0.685733,0.685733,0.143783,0.973298,1.52631,-2.41093,1.83277,0.190793,1.05803,1.63619} pp1=Transpose[{yy,e}] {{2.076,-0.276},{2.076,-0.076},{2.076,-0.076},{2.076,0.076},{2.076,0.024},{3.262,-0.262},{3.262,0.062},{3.262,0.238},{3.262,0.238},{3.262,0.338},{4.448,0.248},{4.448,0.248},{4.448,0.052},{4.448,0.352},{4.448,0.552},{5.634,0.834},{5.634,0.634},{5.634,0.066},{5.634,0.366},{5.634,0.566}} aa=PlotRange{{0,8},{-1,1}} PlotRange{{0,8},{-1,1}} ٣٣٦


a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp1, aa, a2, AxesLabel  "y", "e" e 1 0.75 0.5 0.25  y

1

2

3

4

5

6

7

8

-0.25 -0.5 -0.75 -1

Graphics pp2=Transpose[{yy,di}]; aa=PlotRange{{0,8},{-3,3}} PlotRange{{0,8},{-3,3}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp2, aa, a2, AxesLabel  "y", "d" d 3 2 1  y

1

2

3

4

5

6

7

8

-1 -2 -3

Graphics pp3=Transpose[{yy,ri}]; aa=PlotRange{{0,10},{-2,2}} PlotRange{{0,10},{-2,2}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

g  ListPlot pp3, aa, a2, AxesLabel  "y", "r"

٣٣٧


‫‪r‬‬ ‫‪2‬‬ ‫‪1.5‬‬ ‫‪1‬‬ ‫‪0.5‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪10‬‬

‫‪8‬‬

‫‪6‬‬

‫‪4‬‬

‫‪2‬‬ ‫‪-0.5‬‬ ‫‪-1‬‬ ‫‪-1.5‬‬ ‫‪-2‬‬

‫‪Graphics‬‬ ‫;]}‪def=Transpose[{x1,y1,yy,e,di,ri‬‬ ‫;]‪TableForm[def‬‬

‫ﻣﺛﺎل)‪(٣٣-٤‬‬ ‫ﻟﻠﻣﺛﺎل اﻟﺳﺎﺑق وﻟﻠﺗﺣﻘق أﻛﺛر ﻣن وﺟود ﻋ دم ﺛﺑ ﺎت اﻟﺗﺑ ﺎﯾن ﻧﻘ وم ﺑ ﺈﺟراء اﺧﺗﺑ ﺎر ﺟوﻟ د ﻓﯾﻠ د‬ ‫– ﻛواﻧ دت‪ .‬وﻹﺟ راء ھ ذا اﻻﺧﺗﺑ ﺎر ﻧﻘ وم ﺑﺗﻘﺳ ﯾم اﻟﻣﺷ ﺎھدات إﻟ ﻰ ﻗﺳ ﻣﯾن‪ .‬اﻟﻘﺳ م اﻷول‬ ‫ﯾﺷﻣل اﻟدﺧول ﻓﻲ ‪ $5.000‬إﻟﻲ ‪ $10.000‬واﻟﻘﺳم اﻟﺛﺎﻧﻲ ﯾﺷ ﻣل اﻟ دﺧول اﻟﻌﺎﻟﯾ ﮫ ‪$15.000‬‬ ‫إﻟ ﻲ ‪ $20.000‬وﻻﯾﺳ ﺗﺑﻌد ھﻧ ﺎ ﻣﺷ ﺎھدات ﻣ ن اﻟوﺳ ط وﻣ ن ﺑﻌ د ذﻟ ك ﺗﻘ وم ﺑﺗﻘ دﯾر ﻣﻌﺎدﻟ ﺔ‬ ‫اﻻﻧﺣ دار ﻟﻠﻘ ﯾم اﻟﺻ ﻐﯾرة ﻣ ن ‪ x i‬وأﺧ رى ﻟﻠﻘ ﯾم اﻟﻛﺑﯾ رة ﻣ ن ‪ x i‬ﺣﯾ ث ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار‬ ‫اﻟﻣﻘدرة ﻟﻠﻘﯾم اﻟﺻﻐﯾرة ﻣن اﻟدﺧل ھﻲ‪:‬‬ ‫‪yˆ  .6  0.276x‬‬ ‫‪SSE 1  .3‬‬

‫وﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻟﻠﻘﯾم اﻟﻛﺑﯾرة ﻣن اﻟدﺧل ھﻲ‪:‬‬ ‫‪yˆ  1.54  0.20x‬‬ ‫‪SSE 2  2.024‬‬

‫وﺑﻣﻘﺎرﻧﺔ ﻗﯾﻣﺔ ‪ F‬اﻟﻣﺣﺳوﺑﺔ )‪ (6.7‬ﺑﺎﻟﻘﯾﻣﺔ اﻟﺟدوﻟﯾ ﺔ ‪ F0.01 8,8  6.03‬ﻧﺟ د أن ﻗﯾﻣ ﺔ ‪F‬‬

‫اﻟﻣﺣﺳوﺑﺔ أﻛﺑرﻣن اﻟﻘﯾﻣﺔ اﻟﺟدوﻟﯾﺔ وھذا ﯾﻌﻧﻲ رﻓض ﻓرض اﻟﻌ دم وﻗﺑ ول اﻟﻔ رض اﻟﺑ دﯾل‬ ‫ﺑﻌدم ﺗﺟﺎﻧس اﻟﺗﺑﺎﯾن‪.‬‬

‫‪٣٣٨‬‬


‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ p=1 1 =.01 0.01 y1={1.8,2,2,2,2.1,3,3.2,3.5,3.5,3.6} {1.8,2,2,2,2.1,3,3.2,3.5,3.5,3.6} x1={5.,5,5,5,5,10,10.,10,10,10.} {5.,5,5,5,5,10,10.,10,10,10.} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] xb=h[x1]/l[x1] 7.5 yb=h[y1]/l[y1] 2.67 b1=c[x1,y1]/c[x1,x1] 0.276 b0=yb-b1*xb 0.6 n=l[x1] 10 ssto=c[y1,y1] 5.061 ssr=c[x1,y1]^2/c[x1,x1] 4.761 sse=ssto-ssr 0.3 dto=n-1 9 msr=ssr/1 4.761 dse=n-2 8 mse=sse/(n-2) 0.0375 f1=msr/mse 126.96 th=TableHeadings{{source,regression,residual,total},{anova }} TableHeadings{{source,regression,residual,total},{anova}} ٣٣٩


rt1=List["df","SS","MS","F"] {df,SS,MS,F} rt2=List[p,ssr,msr,f1] {1,4.761,4.761,126.96} rt3=List[dse,sse,mse,"---"] {8,0.3,0.0375,---} rt4=List[dto,ssto,"---","---"] {9,5.061,---,---} tf=TableForm[{rt1,rt2,rt3,rt4},th]

source regression residual total

anova df 1 8 9

SS 4.761 0.3 5.061

MS 4.761 0.0375 

y11={4.2,4.2,4.5,4.8,5,4.8,5,5.7,6,6.2} {4.2,4.2,4.5,4.8,5,4.8,5,5.7,6,6.2} x11={15,15,15,15,15,20,20,20,20,20} {15,15,15,15,15,20,20,20,20,20} l[x_]:=Length[x] h[x_]:=Apply[Plus,x] k[x_]:=h[x]/l[x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] xb=h[x11]/l[x11]

35 2 yb=h[y11]/l[y11] 5.04 b1=c[x11,y11]/c[x11,x11] 0.2 b0=yb-b1*xb 1.54 n=l[x11] 10 ssto=c[y11,y11] 4.524 ssr=c[x11,y11]^2/c[x11,x11] 2.5 sse=ssto-ssr 2.024 dto=n-1 9 msr=ssr/1 2.5 ٣٤٠

F 126.96  


dse=n-2 8 mse1=sse/(n-2) 0.253 f1=msr/mse1 9.88142 th=TableHeadings{{source,regression,residual,total},{anova }} TableHeadings{{source,regression,residual,total},{anova}} rt1=List["df","SS","MS","F"] {df,SS,MS,F} rt2=List[p,ssr,msr,f1] {1,2.5,2.5,9.88142} rt3=List[dse,sse,mse1,"---"] {8,2.024,0.253,---} rt4=List[dto,ssto,"---","---"] {9,4.524,---,---} tf1=TableForm[{rt1,rt2,rt3,rt4},th]

anova source df regression 1 residual 8 total 9 Maxmse, mse1 ff  Minmse, mse1

SS 2.5 2.024 4.524

MS 2.5 0.253 

F 9.88142  

6.74667 <<Statistics`ContinuousDistributions` ffee=Quantile[FRatioDistribution[n-2,n-2],1-] 6.02887 If[ff>=ffee,Print["Reject Ho"],Print["Accept Ho"]] Reject Ho

(٣٤-٤)‫ﻣﺛﺎل‬

‫ﻟﻠﻣﺛ ﺎل اﻟﺳ ﺎﺑق وﺑﺈﺳ ﺗﺧدام طرﯾﻘ ﺔ اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى اﻟﻣرﺟﺣ ﺔ ﻓ ﺈن اﻟﺑﯾﺎﻧ ﺎت اﻟﻼزﻣ ﺔ‬ .‫ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‬1 , 0 ‫ﻟﺣﺳﺎب ﺗﻘدﯾرات اﻟﻣﻌﺎﻟم‬ ٣٤١


x

y

5 5

1.8 2

5

2

5

2

5

2.1

10

3

10 10

3.2 3.5

10

3.5

10 15

3.6 4.2

15

4.2

15

4.5

15

4.8

15

5

20

4.8

20

5

20

5.7

20

6

20

6.2

w

1 x2

xw

xyw

yw

0.04

0.2

0.36

0.072

1 25 1 25 1 25 1 25 1 100

1 5 1 5 1 5 1 5 1 10

2 5 2 5 2 5

2 25 2 25 2 25

0.42

0.084

3 10

3 100

0.01

0.1

1 100 1 100

1 10 1 10

0.32` 0.35

0.032` 0.035`

0.35

0.035`

0.01

0.1

1 225 1 225 1 225 1 225 1 225 1 400 1 400 1 400 1 400 1 400

1 15 1 15 1 15 1 15 1 15 1 20 1 20 1 20 1 20 1 20

0.36 0.28

0.036 0.0186667

0.28

0.018667

0.3

0.02

0.32

0.0213333

1 3

1 45

0.24

0.012

1 4

1 80

0.285

0.01425

3 10

3 200

0.31

0.0155

٣٤٢


‫وﻋﻠﻰ ذﻟك ‪:‬‬ ‫‪ w i x i  w i yi‬‬ ‫‪ wi‬‬

‫‪ w i x i 2‬‬ ‫‪ wi‬‬

‫‪ w i x i yi‬‬

‫‪‬‬

‫‪b1 ‬‬ ‫‪‬‬

‫‪2‬‬

‫‪ wixi‬‬

‫‪ 0 .249487 ,‬‬

‫‪ b1  w i x i‬‬ ‫‪ wi‬‬

‫‪ w i yi‬‬

‫‪b0 ‬‬

‫‪=0.752923‬‬

‫وﻋﻠﻰ ذﻟك ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون‪:‬‬

‫‪yˆ  0.752923  0.249487 x‬‬

‫ﯾﺗم ﺣﺳﺎب ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻰ ﻣن اﻟﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬

‫‪٣٤٣‬‬


‫‪w ( y  yˆ) 2‬‬

‫‪( y  yˆ ) 2‬‬

‫ˆ‪y‬‬

‫ˆ‪y  y‬‬

‫‪y‬‬

‫‪- 0.200359‬‬

‫‪2.00036‬‬ ‫‪2.00036‬‬

‫‪1.8‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪0.00160575‬‬ ‫‪5.1545 ´ 10- 9‬‬

‫‪0.0401437‬‬ ‫‪1.28863 ´ 10- 7‬‬

‫‪- 0.000358974‬‬

‫‪5.1545 ´ 10- 9‬‬

‫‪1.28863 ´ 10- 7‬‬

‫‪- 0.000358974‬‬

‫‪2.00036‬‬

‫‪5.1545 ´ 10- 9‬‬

‫‪1.28863 ´ 10- 7‬‬

‫‪- 0.000358974‬‬

‫‪2.00036‬‬

‫‪2‬‬

‫‪0.000397133‬‬

‫‪0.00992833‬‬

‫‪0.099641‬‬

‫‪2.00036‬‬

‫‪2.1‬‬

‫‪0.000614023‬‬

‫‪0.0614023‬‬

‫‪- 0.247795‬‬

‫‪3.24779‬‬

‫‪3‬‬

‫‪0.0000228435‬‬ ‫‪0.000636074‬‬

‫‪0.00228435‬‬ ‫‪0.0636074‬‬

‫‪- 0.0477949‬‬

‫‪0.252205‬‬

‫‪3.24779‬‬ ‫‪3.24779‬‬

‫‪3.2‬‬ ‫‪3.5‬‬

‫‪0.000636074‬‬

‫‪0.0636074‬‬

‫‪0.252205‬‬

‫‪3.24779‬‬

‫‪3.5‬‬

‫‪0.00124048‬‬ ‫‪0.000387383‬‬

‫‪0.124048‬‬ ‫‪0.0871612‬‬

‫‪0.352205‬‬ ‫‪- 0.295231‬‬

‫‪3.24779‬‬ ‫‪4.49523‬‬

‫‪3.6‬‬ ‫‪4.2‬‬

‫‪0.000387383‬‬

‫‪0.0871612‬‬

‫‪- 0.295231‬‬

‫‪4.49523‬‬

‫‪4.2‬‬

‫‪1.01091 ´ 10- 7‬‬

‫‪0.0000227456‬‬

‫‪0.00476923‬‬

‫‪4.49523‬‬

‫‪4.5‬‬

‫‪0.000412819‬‬

‫‪0.0928843‬‬

‫‪0.304769‬‬

‫‪4.49523‬‬

‫‪4.8‬‬

‫‪0.00113241‬‬

‫‪0.254792‬‬

‫‪0.504769‬‬

‫‪4.49523‬‬

‫‪5‬‬

‫‪0.00222155‬‬

‫‪0.88862‬‬

‫‪- 0.942667‬‬

‫‪5.74267‬‬

‫‪4.8‬‬

‫‪0.00137888‬‬

‫‪0.551554‬‬

‫‪- 0.742667‬‬

‫‪5.74267‬‬

‫‪5‬‬

‫‪4.55111 ´ 10- 6‬‬

‫‪0.00182044‬‬

‫‪- 0.0426667‬‬

‫‪5.74267‬‬

‫‪5.7‬‬

‫‪0.000165551‬‬

‫‪0.0662204‬‬

‫‪0.257333‬‬

‫‪5.74267‬‬

‫‪6‬‬

‫‪0.000522884‬‬

‫‪0.209154‬‬

‫‪0.457333‬‬

‫‪5.74267‬‬

‫‪6.2‬‬

‫ﺣﯾث ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﺑواﻗﻲ ﺳوف ﺗﻛون‪:‬‬ ‫‪SSE   w y i  yˆ i 2‬‬

‫ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠﻲ ﺳوف ﯾﻛون‪:‬‬ ‫‪٣٤٤‬‬

‫‪w‬‬ ‫‪0.04‬‬ ‫‪1‬‬ ‫‪25‬‬ ‫‪1‬‬ ‫‪25‬‬ ‫‪1‬‬ ‫‪25‬‬ ‫‪1‬‬ ‫‪25‬‬ ‫‪1‬‬ ‫‪100‬‬

‫‪0.01‬‬ ‫‪1‬‬ ‫‪100‬‬ ‫‪1‬‬ ‫‪100‬‬

‫‪0.01‬‬ ‫‪1‬‬ ‫‪225‬‬ ‫‪1‬‬ ‫‪225‬‬ ‫‪1‬‬ ‫‪225‬‬ ‫‪1‬‬ ‫‪225‬‬ ‫‪1‬‬ ‫‪225‬‬ ‫‪1‬‬ ‫‪400‬‬ ‫‪1‬‬ ‫‪400‬‬ ‫‪1‬‬ ‫‪400‬‬ ‫‪1‬‬ ‫‪400‬‬ ‫‪1‬‬ ‫‪400‬‬


‫‪2‬‬ ‫‪‬‬ ‫‪ w i yi ‬‬ ‫‪‬‬ ‫‪ wi‬‬

‫‪2‬‬

‫‪SSTO   y i w i‬‬

‫‪ 0.307804‬‬

‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬

‫ﻣ ن اﻟﺟ دول اﻟﺳ ﺎﺑق وﺑﻣ ﺎ أن ﻗﯾﻣ ﺔ ‪ F‬اﻟﻣﺣﺳ وﺑﺔ ﺗزﯾ د ﻋ ن اﻟﻘﯾﻣ ﺔ اﻟﺟدوﻟﯾ ﺔ‬ ‫‪ F0.05 1,18  4.413‬ﻓﺈﻧﻧﺎ ﻧﻘﺑل اﻟﻔرض اﻟﺑدﯾل أن ‪. H1 : 1  0‬‬ ‫ﯾﻌط ﻲ ﺷ ﻛل )‪ (٥٦-٤‬رﺳ م اﻟﺑ واﻗﻲ ‪ w y  yˆ ‬ﻣﻘﺎﺑ ل ‪ ، w i y i‬ﻛﻣ ﺎ ﯾﻌط ﻲ‬ ‫ﺷ ﻛل )‪ (٥٧-٤‬رﺳ م اﻟﺑ واﻗﻲ ‪ w y i  yˆ i ‬ﻣﻘﺎﺑ ل ‪ . w i x i‬ﯾﺗﺿ ﺢ ﻣ ن ﺷ ﻛل )‪-٤‬‬ ‫‪ (٥٦‬وﺷﻛل )‪ (٥٧-٤‬أن اﻟﺑواﻗﻲ ﺗﻧﺗﺷر ﺣول اﻟﺻﻔر وھذا ﯾﻌﻧﻲ ﺗﺟﺎﻧس اﻟﺗﺑﺎﯾن‪.‬‬ ‫ﺷﻛل )‪(٥٦-٤‬‬ ‫‪0.1‬‬

‫‪0.05‬‬

‫‪0.5‬‬

‫‪0.45‬‬

‫‪0.4‬‬

‫‪0.35‬‬

‫‪0.3‬‬

‫‪0.25‬‬ ‫‪-0.05‬‬

‫‪-0.1‬‬

‫‪٣٤٥‬‬


‫‪0.1‬‬

‫‪0.05‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬ ‫‪-0.05‬‬

‫‪-0.1‬‬

‫ﺷﻛل )‪(٥٧-٤‬‬ ‫ﺳوف ﯾﺗم ﺣل اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪ww={5.,5,5,5,5,10,10.,10,10,10.,15,15,15,15,15,20,20,20,20,2‬‬ ‫}‪0‬‬ ‫}‪{5.,5,5,5,5,10,10.,10,10,10.,15,15,15,15,15,20,20,20,20,20‬‬ ‫]‪w=N[1/ww^2‬‬ ‫‪{0.04,0.04,0.04,0.04,0.04,0.01,0.01,0.01,0.01,0.01,0.0044444‬‬ ‫‪4,0.00444444,0.00444444,0.00444444,0.00444444,0.0025,0.0025,‬‬ ‫}‪0.0025,0.0025,0.0025‬‬ ‫;‪p=1‬‬

‫‪y1={1.8,2,2,2,2.1,3,3.2,3.5,3.5,3.6,4.2,4.2,4.5,4.8,5,4.8,5,‬‬ ‫;}‪5.7,6,6.2‬‬ ‫‪x1={5.,5,5,5,5,10,10.,10,10,10.,15,15,15,15,15,20,20,20,20,2‬‬ ‫;}‪0‬‬ ‫]‪l[x_]:=Length[x‬‬ ‫]‪ff[x_]:=Apply[Plus,x‬‬ ‫]‪g[x_]:=((ff[x])^2)/l[x‬‬ ‫]‪h[x_]:=ff[x^2‬‬ ‫]‪rr[x_]:=h[x]-g[x‬‬ ‫‪٣٤٦‬‬


n=l[x1] 20

b1  ffx1  y1  w  ffx1  w  ffy1  w  ffw 

ffw  x1 ^2     ffx1^2  w   ffw   0.249487

b0 

ff y1  w  ffx1  w     b1   ffw ffw  

0.752923 yy=b0+b1*x1; err=ff[w*((y1-yy)^2)]; 0.0117659 0.0117659 ; ss=Transpose[{x1,y1,w,x1*w,x1*y1*w,y1*w}]; TableForm[ss]; yy=b0+b1*x1; sss=Transpose[{w,y1,yy,y1-yy,(y1-yy)^2,w*(y1-yy)^2}]; TableForm[sss]; ssr=ssto-err; 0.296038 mssrr=ssr/p; 0.296038 dfr=(n-p-1); 18 s2=err/dfr; 0.000653662 f=mssrr/s2; 452.891 th=TableHeadings->{{source,regression,residual, Total},{anova}} TableHeadings{{source,regression,residual,Total},{anova}}; rt1=List["df","SS","MS","F"]; {df,SS,MS,F} rt2=List[p,ssr,mssrr,f]; rt3=List[dfr,err,s2,"--"]; rt4=List[n-1,ssto,"--","--"]; tf=TableForm[{rt1,rt2,rt3,rt4},th] ٣٤٧


source regression residual Total

anova df 1 18 19

SS 0.296038 0.0117659 0.307804

MS 0.296038 0.000653662

 <<Statistics` ContinuousDistributions` ffee=Quantile[FRatioDistribution[p,n-p-1],.95] 4.41387 If[f>=ffee,Print["Reject Ho"],Print["Accept Ho"]] Reject Ho

F 452.891  

eefk=ListPlot[eede,Prolog{PointSize[.02]},PlotRange->{{.2,.5},{.1,.1}}]

0.1

0.05

0.25

0.3

0.35

0.4

0.45

0.5

-0.05

-0.1

Graphics

eefk=ListPlot[ee1,Prolog{PointSize[.02]},PlotRange->{{0,5},{.1,.1}}]

٣٤٨


‫‪0.1‬‬

‫‪0.05‬‬

‫‪5‬‬

‫‪3‬‬

‫‪4‬‬

‫‪2‬‬

‫‪1‬‬ ‫‪-0.05‬‬

‫‪-0.1‬‬

‫‪Graphics‬‬

‫)‪ (٣-١٥-٤‬طرﯾﻘﺔ ﻟﺣﺳﺎب اﻻوزان‬ ‫ﻓ ﻲ ﻛﺛﯾ ر ﻣ ن اﻟﻣﺷ ﺎﻛل ﻓ ﺈن اﻻوزان ﻻﺗﻛ ون ﻣﻌروﻓ ﮫ ﻓ ﻲ اﻟﺑداﯾ ﮫ وﻧﺣﺗ ﺎج إﻟ ﻰ ﺗﻘ دﯾرھﺎ‬ ‫ﺑﺎﻻﻋﺗﻣﺎد ﻋﻠﻰ ﻧﺗﺎﺋﺞ اﻟﻣرﺑﻌﺎت اﻟﺻ ﻐرى اﻟﻌﺎدﯾ ﮫ ﻓ ﻲ اﻟﺟ زء اﻟﺗ ﺎﻟﻲ ﺳ وف ﻧﺷ رح طرﯾﻘ ﺔ‬ ‫ﻹﯾﺟﺎد اﻻوزان ‪: w i‬‬ ‫ﻹﯾﺟﺎد اﻷوزان ‪ wi‬ﻧﺗﺑﻊ اﻟﺧطوات اﻟﺗﺎﻟﯾﺔ‪:‬‬ ‫‪ .١‬ﻧﺣﺳ ب ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار اﻟﻣﻘ درة ﺑﺎﺳ ﺗﺧدام طرﯾﻘ ﺔ اﻟﻣرﺑﻌ ﺎت اﻟﻌﺎدﯾ ﺔ وﺗرﺳ م‬ ‫اﻟﺑواﻗﻲ ﻣﻘﺎﺑل ‪ yˆ i‬أو ‪ xˆ i‬إذا ﻛﺎن اﻧﺗﺷ ﺎر اﻟﻧﻘ ﺎط ﻓ ﻲ رﺳ م اﻟﺑ واﻗﻲ ﻋﻠ ﻲ ﺷ ﻛل ﻗﻣ ﻊ‬ ‫ﻣﻔﺗ وح ﻣ ن أﻋﻠ ﻰ أو ﻣ ن أﺳ ﻔل ﻋﻠ ﻲ ﺷ ﻛل ﻗوﺳ ﯾن ﻓﮭ ذا ﯾ دل ﻋﻠ ﻲ ﻋ دم ﺗﺟ ﺎﻧس‬ ‫اﻟﺗﺑﺎﯾن‪.‬‬ ‫‪ .٢‬ﺑﺎﺳ ﺗﺧدام طرﯾﻘ ﺔ اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى اﻟﻌﺎدﯾ ﺔ ﻧﺣﺳ ب ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار اﻟﻣﻘ درة‬ ‫ﺑﺎﺳﺗﺧدام اﻟﻘﯾم اﻟﻣطﻠﻘﺔ ‪ e i‬ﻣﻘﺎﺑل ﻗﯾم ‪ xˆ i‬أو ﻗﯾم ‪. yˆ i‬‬ ‫ﻧﺳ ﺗﺧدم ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار اﻟﻣﻘ درة اﻟﻣﺣﺳ وﺑﺔ ﻣ ن اﻟﺧط وة اﻟﺛﺎﻧﯾ ﺔ ﻓ ﻲ ﺗﻘ دﯾر‬ ‫اﻷوزان ‪ wi‬اﻟﻼزﻣﺔ ﻟطرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى اﻟﻣرﺟﺣﺔ‪.‬‬ ‫ﻣﺛﺎل)‪(٣٥-٤‬‬ ‫ﺗﮭﺗم ﺑﺎﺣﺛﺔ ﺻﺣﯾﺔ ﺑدراﺳ ﺔ اﻟﻌﻼﻗ ﺔ ﺑ ﯾن ﺿ ﻐط اﻟ دم اﻻﻧﺑﺳ ﺎطﻲ واﻟﻌﻣ ر ﻋﻧ د اﻟﻧﺳ ﺎء‬ ‫اﻟﺑﺎﻟﻐ ﺎت اﻟﻠ واﺗﻲ ﯾﺗﻣ ﺗﻌن ﺑﺻ ﺣﺔ ﺟﯾ دة وﺗﺗ راوح أﻋﻣ ﺎرھم ﺑ ﯾن ‪ 20‬و ‪ 60‬ﻋﺎﻣ ﺎ ً‪ ،‬وﻗ د‬ ‫ﺟﻣﻌت ﺑﯾﺎﻧ ﺎت إﺣﺻ ﺎﺋﯾﺔ ﻋ ن ‪ 54‬أﻣ رأة واﻟﺑﯾﺎﻧ ﺎت ﻣﻌط ﺎه ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ‪ .‬ﯾوﺿ ﺢ‬ ‫ﺷﻛل اﻻﻧﺗﺷﺎر اﻟﻣﻌطﻲ ﻓﻲ ﺷﻛل)‪ (٥٨-٤‬ان اﻟﻌﻼﻗﺔ ﺑﯾن ‪ x , Y‬ﻋﻼﻗﮫ ﺧطﯾﮫ‪.‬‬ ‫‪٣٤٩‬‬


x 21. 22. 24 23 20 20 24 27 25 29 25 28 26 32 33 31 34 33 30 31 38 37 38 35 37 39 40 42 43 43 44 40 42 46 49 46 46 47 45 49 48 54 52 53 52 50 50 52 55 57 56 59 58 57

y 66. 63 75 70 65 70 72 73 71 79 68 67 79 76 69 66 73 76 73 80 91 78 87 79 68 75 70 72 80 75 71 90 85 89 101 83 80 96 92. 80 70 71 86 79 85 71 91 100 76 99 92 90 80 109

٣٥٠

x2 441. 484. 576 529 400 400 576 729 625 841 625 784 676 1024 1089 961 1156 1089 900 961 1444 1369 1444 1225 1369 1521 1600 1764 1849 1849 1936 1600 1764 2116 2401 2116 2116 2209 2025 2401 2304 2916 2704 2809 2704 2500 2500 2704 3025 3249 3136 3481 3364 3249

xy 1386. 1386. 1800 1610 1300 1400 1728 1971 1775 2291 1700 1876 2054 2432 2277 2046 2482 2508 2190 2480 3458 2886 3306 2765 2516 2925 2800 3024 3440 3225 3124 3600 3570 4094 4949 3818 3680 4512 4140. 3920 3360 3834 4472 4187 4420 3550 4550 5200 4180 5643 5152 5310 4640 6213


‫‪120‬‬ ‫‪100‬‬ ‫‪80‬‬ ‫‪60‬‬ ‫‪40‬‬ ‫‪20‬‬

‫‪70‬‬

‫‪50‬‬

‫‪60‬‬

‫‪40‬‬

‫‪20‬‬

‫‪30‬‬

‫‪10‬‬

‫ﺷﻛل )‪(٥٨-٤‬‬ ‫اﻵن ﻧﺣﺳب ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻛﺎﻟﺗﺎﻟﻲ‪:‬‬

‫‪ x y‬‬

‫‪ xy ‬‬

‫‪n‬‬ ‫‪2‬‬ ‫‪2  x ‬‬ ‫‪x ‬‬ ‫‪n‬‬

‫‪2137 4272 ‬‬ ‫‪4094 .56‬‬ ‫‪7059 .2‬‬

‫‪‬‬

‫‪b1 ‬‬

‫‪173155 ‬‬

‫‪54‬‬ ‫‪‬‬ ‫‪2137 2‬‬ ‫‪91629 ‬‬ ‫‪54‬‬

‫‪‬‬

‫‪ 0.580031 ,‬‬

‫‪٣٥١‬‬


‫‪b 0  y  b1x‬‬

‫‪ 79.1111  (0.580031)39.5741  56.1569 .‬‬

‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون‪:‬‬

‫‪yˆ  56.1569  0.580031x‬‬

‫اﻟﺑواﻗﻲ ‪ e i  y i  yˆ i‬ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪.‬‬

‫‪e‬‬

‫ˆ‪y‬‬

‫‪y‬‬

‫‪٣٥٢‬‬

‫‪x‬‬


21 22 24 23 20 20 24 27 25 29 25 28 26 32 33 31 34 33 30 31 38 37 38 35 37 39 40 42 43 43 44 40 42 46 49 46 46 47 45 49 48 54 52 53 52 50 50 52 55 57 56 59 58 57

66 63 75 70 65 70 72 73 71 79 68 67 79 76 69 66 73 76 73 80 91 78 87 79 68 75 70 72 80 75 71 90 85 89 101 83 80 96 92 80 70 71 86 79 85 71 91 100 76 99 92 90 80 109

68.3376 68.9176 70.0777 69.4976 67.7575 67.7575 70.0777 71.8178 70.6577 72.9778 70.6577 72.3978 71.2377 74.7179 75.2979 74.1379 75.878 75.2979 73.5579 74.1379 78.1981 77.6181 78.1981 76.458 77.6181 78.7781 79.3582 80.5182 81.0983 81.0983 81.6783 79.3582 80.5182 82.8383 84.5784 82.8383 82.8383 83.4184 82.2583 84.5784 83.9984 87.4786 86.3185 86.8986 86.3185 85.1585 85.1585 86.3185 88.0586 89.2187 88.6387 90.3787 89.7987 89.2187

٣٥٣

- 2.33758 - 5.91761

4.92233 0.502362 - 2.75755 2.24245 1.92233 1.18224 0.342301 6.02218 - 2.6577 - 5.39779 7.76227 1.28209 - 6.29795 - 8.13788 - 2.87798 0.702054 - 0.557853 5.86212 12.8019 0.381931 8.8019 2.54199 - 9.61807 - 3.77813 - 9.35816 - 8.51822 - 1.09825 - 6.09825 - 10.6783 10.6418 4.48178 6.16165 16.4216 0.161654 - 2.83835 12.5816 9.74168 - 4.57844 - 13.9984 - 16.4786 - 0.318531 - 7.89856 - 1.31853 - 14.1585 5.84153 13.6815 - 12.0586 9.78132 3.36135 - 0.378746 - 9.79872 19.7813


‫ﯾوﺿﺢ رﺳم اﻟﺑ واﻗﻲ ‪ ei‬ﻣﻘﺎﺑ ل ‪ x i‬واﻟﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل )‪ (٥٩-٤‬أن ﺗﺑ ﺎﯾن اﻟﺑ واﻗﻲ ﻏﯾ ر‬ ‫ﺛﺎﺑت ﺣﯾث ﺷﻛل اﻻﻧﺗﺷﺎر ﯾﺄﺧذ ﺷﻛل اﻟﻘﻣﻊ اﻟﻣﻔﺗوح ﻣن اﻷﻣﺎم‪.‬‬

‫‪30‬‬ ‫‪20‬‬ ‫‪10‬‬

‫‪95‬‬

‫‪90‬‬

‫‪85‬‬

‫‪80‬‬

‫‪75‬‬

‫‪70‬‬

‫‪65‬‬ ‫‪-10‬‬ ‫‪-20‬‬ ‫‪-30‬‬

‫ﺷﻜﻞ )‪(٥٩-٤‬‬

‫اﻵن ﻧﺳﺗﺧدم ﻗﯾم ‪ e i‬و ‪ x i‬ﻷﯾﺟﺎد ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘ درة وذﻟ ك ﻣ ن اﻟﺑﯾﺎﻧ ﺎت اﻟﻣﻌط ﺎة‬ ‫ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪:‬‬

‫‪٣٥٤‬‬


x 21 22 24 23 20 20 24 27 25 29 25 28 26 32 33 31 34 33 30 31 38 37 38 35 37 39 40 42 43 43 44 40 42 46 49 46 46 47 45 49 48 54 52 53 52 50 50 52 55 57 56 59 58 57

x2

e 2.33758 5.91761 4.92233 0.502362 2.75755 2.24245 1.92233 1.18224 0.342301 6.022178 2.657699 5.397792 7.76227 1.28209 6.29795 8.13788 2.87798 0.702054 0.557853 5.86212 12.8019 0.381931 8.8019 2.54199 9.61807 3.77813 9.35816 8.518222 1.09825 6.09825 10.67828 10.64183 4.48178 6.16165 16.4216 0.16165 2.83835 12.5816 9.74168 4.57844 13.9984 16.4786 0.318531 7.898561 1.31853 14.1585 5.84153 13.6815 12.0586 9.78132 3.36135 0.378746 9.79872 19.7813

441.` 484.` 576 529 400 400 576 729 625 841 625 784 676 1024 1089 961 1156 1089 900 961 1444 1369 1444 1225 1369 1521 1600 1764 1849 1849 1936 1600 1764 2116 2401 2116 2116 2209 2025 2401 2304 2916 2704 2809 2704 2500 2500 2704 3025 3249 3136 3481 3364 3249

٣٥٥

xe 49.0891 130.187` 118.136 11.5543 55.1509 44.8491 46.136 31.9205 8.55752 174.643 66.4425 151.138 201.819 41.0267 207.832 252.274 97.8512 23.1678 16.7356 181.726 486.472 14.1315 334.472 88.9697 355.869 147.347 374.326 357.765 47.2249 262.225 469.845 425.674 188.235 283.436 804.657 7.43608 130.564 591.336 438.376 224.343 671.924 889.844 16.5636 418.624 68.5636 707.923 292.077 711.436 663.224 557.535 188.235 22.346 568.326 1127.53


‫‪14847.1‬‬

‫‪339.822‬‬

‫‪91629‬‬

‫‪2137‬‬

‫‪ x  2137 ,  e  339.822‬‬ ‫‪ x 2  91629 , x e  14847‬‬

‫ﺣﯾث‪:‬‬ ‫‪e‬‬

‫‪ x‬‬

‫‪‬‬

‫‪xe‬‬

‫‪n‬‬ ‫‪2‬‬ ‫‪2  x ‬‬ ‫‪x ‬‬ ‫‪n‬‬

‫‪2137 339.822 ‬‬

‫‪b1 ‬‬

‫‪14847 .1 ‬‬

‫‪54‬‬ ‫‪‬‬ ‫‪2137 2‬‬ ‫‪91629 ‬‬ ‫‪54‬‬ ‫‪1398.94‬‬ ‫‪‬‬ ‫‪ 0.198172,‬‬ ‫‪7059.2‬‬ ‫‪ | e i |‬‬ ‫‪ xi‬‬ ‫‪b0 ‬‬ ‫‪ b1‬‬ ‫‪n‬‬ ‫‪n‬‬ ‫‪ 6.29301  0.198172 39.5741‬‬ ‫‪ 1.54998 .‬‬ ‫‪‬‬

‫وﻋﻠﻰ ذﻟك ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون‪:‬‬ ‫‪s  1.54948  0.198172 x‬‬

‫ﺣﯾث ‪ s‬ﺗﻣﺛل اﻻﻧﺣراﻓﺎت اﻟﻣﻌﯾﺎرﯾﺔ‪.‬‬ ‫واﻷن ﻷﯾﺟﺎد اﻷﻧﺣراف اﻟﻣﻌﯾﺎري ﻟﻛل ﻣﺷﺎھده ‪ yi‬ﻧﻌوض ﺑﻘﯾﻣﺔ ‪ xi‬ﻓ ﻲ اﻟﻣﻌﺎدﻟ ﮫ اﻟﺳ ﺎﺑﻘﮫ ‪.‬‬ ‫اﻟ وزن ‪ wi‬ﻟﻛ ل ﻣﺷ ﺎھده ‪ yi‬ھ و ﻣﻌﻛ وس ﻣرﺑ ﻊ اﻷﻧﺣ راف اﻟﻣﻌﯾ ﺎري واﻟﻣﺣﺳ وب ﻣ ن‬ ‫اﻟﻣﻌﺎدﻟﮫ اﻟﻣﻘدره اﻟﺳﺎﺑﻘﮫ واﻟﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪.‬‬

‫‪٣٥٦‬‬


s

1 s2  w

2.61214 2.81031 3.20666 3.00849 2.41397 2.41397 3.20666 3.80117 3.40483 4.19752 3.40483 3.99935 3.603 4.79204 4.99021 4.59386 5.18838 4.99021 4.39569 4.59386 5.98107 5.38655 5.7829 5.98107 5.38655 5.7829 6.17924 6.37741 6.77376 6.97193 6.97193 7.1701 6.37741 6.77376 7.56645 8.16097 7.56645 7.56645 7.76462 7.36828 8.16097

0.14657 0.126617 0.0972512 0.110485 0.171608 0.171608 0.0972512 0.0692093 0.0862599 0.0567564 0.0862599 0.0625204 0.077032 0.0435472 0.040157 0.0473853 0.0371481 0.0401571 0.0517542 0.0473853 0.0279539 0.0299026 0.0279539 0.034465 0.0299026 0.0261896 0.0245873 0.0217942 0.0205728 0.0205728 0.0194513 0.0245837 0.0217942 0.0174669 0.015047 0.0174669 0.0174669 0.0165867 0.0165867 0.0184191 0.0150147 ٣٥٧


‫‪7.96279‬‬ ‫‪9.151839‬‬ ‫‪8.75548‬‬ ‫‪8.95365‬‬ ‫‪8.75548‬‬ ‫‪8.35914‬‬ ‫‪8.35914‬‬ ‫‪8.75548‬‬ ‫‪9.35‬‬ ‫‪9.74634‬‬ ‫‪9.54817‬‬ ‫‪10.1427‬‬ ‫‪9.94452‬‬ ‫‪9.74634‬‬

‫‪0.0157714‬‬ ‫‪0.0119395‬‬ ‫‪0.0130449‬‬ ‫‪0.0124738‬‬ ‫‪0.0130449‬‬ ‫‪0.0143112‬‬ ‫‪0.0143112‬‬ ‫‪0.0130449‬‬ ‫‪0.0114387‬‬ ‫‪0.0105273‬‬ ‫‪0.0109688‬‬ ‫‪0.00972062‬‬ ‫‪0.0101119‬‬ ‫‪0.0105273‬‬

‫اﻵن ﻧوﺟد ﺗﻘدﯾرات ﻟﻠﻣﻌﺎﻟم ‪ 0 ,1‬ﻛﺎﻟﺗﺎﻟﻲ‪:‬‬

‫‪ x i w i  yi w i‬‬ ‫‪ wi‬‬

‫‪‬‬

‫‪2‬‬ ‫‪‬‬ ‫‪ xiwi ‬‬ ‫‪‬‬ ‫‪ wi‬‬

‫‪ x i yi w i‬‬

‫‪b1 ‬‬ ‫‪wi‬‬

‫‪2‬‬

‫‪ xi‬‬

‫‪ 0.596342 ,‬‬ ‫‪ xi w i‬‬

‫‪ b1‬‬

‫‪ yi w i‬‬

‫‪n‬‬ ‫‪n‬‬ ‫‪ 55.5658.‬‬

‫‪b0 ‬‬

‫‪ .‬ﻻﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم ‪ H 0 : 1  0‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H1 : 1  0‬ﻧﺣﺳ ب‬ ‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻲ اﻟﻣرﺟﺣﺔ ﻣن ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن اﻟﺗﺎﻟﻰ ﺣﯾث‪:‬‬ ‫‪SSE   w i ( y i  yˆ i ) 2‬‬

‫‪= 76.5135,‬‬ ‫‪٣٥٨‬‬


‫ﻣﺟﻣوع اﻟﻣرﺑﻌﺎت اﻟﻛﻠﯾﺔ ﺳوف ﺗﻛون‪:‬‬ ‫‪ y i w i 2‬‬ ‫‪2‬‬ ‫‪SYY   y w i ‬‬ ‫‪i‬‬ ‫‪ wi‬‬ ‫‪=159.854.‬‬

‫‪df‬‬

‫‪Source‬‬

‫‪F‬‬

‫‪MS‬‬

‫‪56.64‬‬

‫‪83.3408 83.3408‬‬

‫‪1‬‬

‫‪Regression‬‬

‫‪-‬‬

‫‪76.5135 1.47141‬‬

‫‪52‬‬

‫‪Residual‬‬

‫‪-‬‬

‫‪159.854‬‬

‫‪53‬‬

‫‪Total‬‬

‫‪-‬‬

‫‪SS‬‬

‫ﺑﻣ ﺎ أن ﻗﯾﻣ ﺔ ‪ F‬اﻟﻣﺣﺳ وﺑﺔ )‪ (56.64‬ﺗزﯾ د ﻋ ن ﻗﯾﻣ ﺔ ‪ F‬اﻟﺟدوﻟﯾ ﮫ‬ ‫‪ F0.05 [1,52]  4.08‬ﻓﺈﻧﻧﺎ ﻧرﻓض ﻓرض اﻟﻌدم ‪.H0‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺤﺰﻣﺔ اﻟﺠﺎھﺰة‪:‬‬ ‫‪Statistics LinearRegression‬‬ ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‪.‬‬

‫`‪<<Statistics`LinearRegression‬‬ ‫‪bpdata={{21,66},{22,63},{24,75},{23,70},{20,65},{20,70},{24,‬‬ ‫‪72},{27,73},{25,71},{29,79},{25,68},{28,67},{26,79},{32,76},‬‬ ‫‪{33,69},{31,80},{34,73},{33,76},{30,73},{31,66},{38,87},{37,‬‬ ‫‪78},{38,91},{35,79},{37,68},{39,75},{40,70},{42,72},{43,80},‬‬ ‫‪{43,75},{44,71},{40,90},{42,85},{46,89},{49,101},{46,83},{46‬‬ ‫}‪,80},{47,96},{45,92},{49,80},{48,70},{54,71},{52,86},{53,79‬‬ ‫‪,{52,85},{50,71},{50,91},{52,100},{55,76},{57,99},{56,92},{5‬‬ ‫;}}‪9,90},{58,80},{57,109‬‬ ‫]}}‪ListPlot[bpdata,PlotRange->{{0,70},{0,120‬‬

‫‪٣٥٩‬‬


120 100 80 60 40 20

10

20

30

40

50

60

70

Graphics rgbp=Regress[bpdata,{1,x},x,RegressionReport->BestFit] {BestFit56.1569 +0.580031 x} rs=Regress[bpdata,{1,x},x,RegressionReport>FitResiduals][[1,2]] {-2.33758,-5.91761,4.92233,0.502362,2.75755,2.24245,1.92233,1.18224,0.342301,6.02218,-2.6577,5.39779,7.76227,1.28209,-6.29795,5.86212,-2.87798,0.702054,0.557853,-8.13788,8.8019,0.381931,12.8019,2.54199,-9.61807,3.77813,-9.35816,-8.51822,-1.09825,-6.09825,10.6783,10.6418,4.48178,6.16165,16.4216,0.161654,2.83835,12.5816,9.74168,-4.57844,-13.9984,-16.4786,0.318531,-7.89856,-1.31853,-14.1585,5.84153,13.6815,12.0586,9.78132,3.36135,-0.378746,-9.79872,19.7813} ages=Transpose[bpdata][[1]]; respoints2=Table[{ages[[j]],rs[[j]]},{j,1,Length[ages]}] {{21,-2.33758},{22,5.91761},{24,4.92233},{23,0.502362},{20,2.75755},{20,2.24245},{24,1.92233},{27,1.18224},{25,0.342301 },{29,6.02218},{25,-2.6577},{28,5.39779},{26,7.76227},{32,1.28209},{33,6.29795},{31,5.86212},{34,-2.87798},{33,0.702054},{30,0.557853},{31,8.13788},{38,8.8019},{37,0.381931},{38,12.8019},{35,2.54199} ,{37,-9.61807},{39,-3.77813},{40,-9.35816},{42,8.51822},{43,-1.09825},{43,-6.09825},{44,10.6783},{40,10.6418},{42,4.48178},{46,6.16165},{49,16.4216} ,{46,0.161654},{46,-2.83835},{47,12.5816},{45,9.74168},{49,4.57844},{48,-13.9984},{54,-16.4786},{52,-0.318531},{53,7.89856},{52,-1.31853},{50,14.1585},{50,5.84153},{52,13.6815},{55,12.0586},{57,9.78132},{56,3.36135},{59,-0.378746},{58,9.79872},{57,19.7813}} ListPlot[respoints2,PlotRange->{{0,100},{-30,30}}] ٣٦٠


30 20 10 20

40

60

80

100

-10 -20 -30

Graphics sqres=Table[rs[[j]]^2,{j,1,Length[rs]}] {5.46426,35.0181,24.2293,0.252368,7.60406,5.0286,3.69536,1.3 9769,0.11717,36.2666,7.06337,29.1362,60.2528,1.64374,39.6641 ,34.3644,8.28275,0.49288,0.3112,66.2252,77.4734,0.145871,163 .889,6.46173,92.5072,14.2743,87.5752,72.5601,1.20616,37.1887 ,114.026,113.249,20.0863,37.966,269.668,0.026132,8.05621,158 .297,94.9004,20.9621,195.955,271.544,0.101462,62.3873,1.7385 2,200.462,34.1235,187.183,145.41,95.6741,11.2986,0.143449,96 .0148,391.3} absres=Table[Abs[rs[[j]]],{j,1,Length[rs]}]; absrespoints=Table[{ages[[j]],absres[[j]]},{j,1,Length[ages] }]; absregress=Regress[absrespoints,{1,x},x,RegressionReport>BestFit] {BestFit-1.54948+0.198172 x} pred=absregress=Regress[absrespoints,{1,x},x,RegressionRepor t->PredictedResponse] {PredictedResponse{2.61214,2.81031,3.20666,3.00849,2.41397 ,2.41397,3.20666,3.80117,3.40483,4.19752,3.40483,3.99935,3.6 03,4.79204,4.99021,4.59386,5.18838,4.99021,4.39569,4.59386,5 .98107,5.7829,5.98107,5.38655,5.7829,6.17924,6.37741,6.77376 ,6.97193,6.97193,7.1701,6.37741,6.77376,7.56645,8.16097,7.56 645,7.56645,7.76462,7.36828,8.16097,7.96279,9.15183,8.75548, 8.95365,8.75548,8.35914,8.35914,8.75548,9.35,9.74634,9.54817 ,10.1427,9.94452,9.74634}} f[x_]:=1/x^2 wghts1=Map[f,pred[[1,2]]] {0.146557,0.126617,0.0972512,0.110485,0.171608,0.171608,0.09 ٣٦١


72512,0.0692093,0.0862599,0.0567564,0.0862599,0.0625204,0.07 7032,0.0435472,0.0401571,0.0473853,0.0371481,0.0401571,0.051 7542,0.0473853,0.0279539,0.0299026,0.0279539,0.034465,0.0299 026,0.0261896,0.0245873,0.0217942,0.0205728,0.0205728,0.0194 513,0.0245873,0.0217942,0.0174669,0.0150147,0.0174669,0.0174 669,0.0165867,0.0184191,0.0150147,0.0157714,0.0119395,0.0130 449,0.0124738,0.0130449,0.0143112,0.0143112,0.0130449,0.0114 387,0.0105273,0.0109688,0.00972062,0.0101119,0.0105273} rg1=Regress[bpdata,{1,x},x,Weights>wghts1,RegressionReport->{BestFit,ANOVATable}]

BestFit55.56580.596342x,ANOVATable

Model Error Total

DF 1 52 53

SumOfSq 83.3408 76.5135 159.854

MeanSq 83.3408 1.47141

FRatio 56.64

PValue 7.186811010

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬: ‫اوﻻ‬ ‫اﻟﻘﺎﺋﻤﺔ‬bpdata.‫ﻻزواج ﻗﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ‬

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬

‫ﺷﻛل اﻻﻧﺗﺷﺎر ﻣﻌطﻰ ﻣن اﻻﻣر‬ ListPlot[bpdata,PlotRange->{{0,70},{0,120}}]

‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻣن اﻻﻣر‬ rgbp=Regress[bpdata,{1,x},x,RegressionReport->BestFit]

‫اﻟﺑواﻗﻰ ﻣن اﻻﻣر‬ rs=Regress[bpdata,{1,x},x,RegressionReport>FitResiduals][[1,2]]

‫ ﻣن اﻻﻣر‬x i ‫ ﻣﻘﺎﺑل‬ei ‫ﯾوﺿﺢ رﺳم اﻟﺑواﻗﻲ‬ [respoints2,PlotRange->{{0,100},{-30,30}}]

: ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة‬ s  1.54948  0.198172 x

‫ﻣن اﻻﻣر‬ absregress=Regress[absrespoints,{1,x},x,RegressionReport>BestFit]

‫واﻟﺗﻰ ﺗﻣﺛل اﻻﻧﺣراﻓﺎت اﻟﻣﻌﯾﺎرﯾﺔ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ٣٦٢

s


‫‪pred=absregress=Regress[absrespoints,{1,x},x,RegressionRepor‬‬ ‫]‪t->PredictedResponse‬‬

‫اﻟوزن ‪ wi‬ﻟﻛل ﻣﺷﺎھده ‪ yi‬ﻣﻌﻄﻰ ﻣﻦ اﻻﻣﺮ‬ ‫]]]‪wghts1=Map[f,pred[[1,2‬‬

‫ﺟﺪول ﺗﺤﻠﯿﻞ اﻟﺘﺒﺎﯾﻦ ﻣﻦ اﻻﻣﺮ‬ ‫‪rg1=Regress[bpdata,{1,x},x,Weights->wghts1,RegressionReport‬‬‫]}‪>{BestFit,ANOVATable‬‬

‫ﺣﯿﺚ ﯾﺤﺘﻮى اﻟﺠﺪول ﻋﻠﻰ ﻣﻌﺎدﻟﺔ اﻻﻧﺤﺪار اﻟﻘﺪرة‬ ‫ﺣﯿﺚ ﺗﻢ اﺳﺘﺨﺪام اﻟﺨﯿﺎر‬ ‫‪ Weights->wghts1‬ﻓﻰ اﻻﻣﺮ اﻟﺴﺎﺑﻖ ‪.‬‬

‫ﺑﺎﺳﺗﺧدام طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى اﻟﻣرﺟﺣﺔ‬

‫)‪ (١٦-٤‬ﻣﻌﺎﻣـل اﻻرﺗﺑـﺎط اﻟﺧطﻰ اﻟﺑﺳﯾـط‬ ‫‪The Simple Linear Correlation Coefficient‬‬ ‫ﻓﻲ ﻣﺷﻛﻠﺔ اﻻﻧﺣدار ﻛﺎن اھﺗﻣﺎﻣﻧﺎ ﺑﺎﻟﺗﻧﺑﺄ ﺑﻣﺗﻐﯾر وذﻟ ك ﻣ ن اﻟﻣﻌﻠوﻣ ﺎت ﻋ ن اﻟﻣﺗﻐﯾرات اﻟﻣﺳ ﺗﻘﻠﺔ ‪،‬‬ ‫ﺑﯾﻧﻣ ﺎ ﻓ ﻲ ﻣﺷ ﻛﻠﺔ اﻻرﺗﺑ ﺎط ﻓ ﺈن اھﺗﻣﺎﻣﻧ ﺎ ﺳ وف ﯾﻛ ون ﻓ ﻲ ﻗﯾ ﺎس اﻟﻌﻼﻗ ﺔ ﺑ ﯾن ﻣﺗﻐﯾ رﯾن أو أﻛﺛ ر‪ .‬ﻣ رة‬ ‫أﺧ رى ﻓ ﺈن ﻗ ﯾم اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﺔ ﻛﺎﻧ ت ﺛﺎﺑﺗ ﺔ ﻓ ﻲ ﻣﺷ ﻛﻠﺔ اﻻﻧﺣ دار ‪.‬اﻵن ﺳ وف ﯾﺧﺗﻠ ف اﻟوﺿ ﻊ‪.‬‬ ‫ﺳ وف ﻧﻌ رف ﻣﻌﺎﻣ ل اﻻرﺗﺑ ﺎط اﻟﺧط ﻰ ﺑﺄﻧ ﮫ ﻣﻘﯾ ﺎس ﻟﻠﻌﻼﻗ ﺔ ﺑ ﯾن ﻣﺗﻐﯾ رﯾن ﻋﺷ واﺋﯾﯾن ‪ .X,Y‬وﺳ وف‬ ‫ﻧرﻣز ﻟﮫ ﺑﺎﻟرﻣز‪ . r‬ﺳوف ﻧﻔﺗرض أن اﻟﻣﺗﻐﯾران ‪ X,Y‬ﻟﮭﻣﺎ ﺗوزﯾﻊ اﺣﺗﻣﺎﻟﻲ ﺛﻧﺎﺋﻲ‪.‬‬ ‫ﻟﺣﺳﺎب ﻣﻌﺎﻣ ل اﻻرﺗﺑ ﺎط اﻟﺧط ﻰ ﻧﺧﺗ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ﻣ ن أزواج اﻟﻣﺷ ﺎھدات ) ‪ . ( x , y‬إذا‬ ‫ﻛﺎﻧت ﻧﻘﺎط ﺷ ﻛل اﻻﻧﺗﺷ ﺎر ﺗﺗرﻛ ز ﻓ وق وﺣ ول ﺧ ط اﻧﺣ دار ﻟ ﮫ ﻣﯾ ل ﻣوﺟ ب ‪ ،‬ﻓﮭ ذا ﯾ دل ﻋﻠ ﻰ ارﺗﺑ ﺎط‬ ‫ﻣوﺟ ب ﻗ وى ﺑ ﯾن اﻟﻣﺗﻐﯾ رﯾن ) ارﺗﺑ ﺎط ط ردي ( ﻛﻣ ﺎ ھ و ﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل ) ‪ . (a) (٦٠-٤‬وﻣ ن‬ ‫ﻧﺎﺣﯾﺔ أﺧرى ‪ ،‬إذا ﻛﺎﻧت ﻧﻘﺎط ﺷﻛل اﻻﻧﺗﺷﺎر ﺗﺗرﻛز ﻓوق وﺣول ﺧ ط اﻧﺣ دار ﻟ ﮫ ﻣﯾ ل ﺳ ﺎﻟب ﻓﮭ ذا ﯾ دل‬ ‫ﻋﻠﻰ ارﺗﺑﺎط ﻗوى ﺳﺎﻟب ﺑﯾن اﻟﻣﺗﻐﯾرﯾن ) ارﺗﺑ ﺎط ﻋﻛﺳ ﻲ ( ﻛﻣ ﺎ ھ و ﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل ) ‪(b) (٦٠-٤‬‬ ‫ﻛﻠﻣ ﺎ زاد اﻧﺗﺷ ﺎر ﻧﻘ ﺎط ﺷ ﻛل اﻻﻧﺗﺷ ﺎر ﺣ ول وﻓ وق ﺧ ط اﻻﻧﺣ دار ﻓ ﺈن اﻻرﺗﺑ ﺎط ﯾﻘ ل ﻋ ددﯾﺎ ﺑ ﯾن‬ ‫اﻟﻣﺗﻐﯾرﯾن ‪ ،‬إذا ﻛﺎﻧت ﻧﻘﺎط ﺷﻛل اﻻﻧﺗﺷ ﺎر ﺗﻧﺗﺷ ر ﺑطرﯾﻘ ﺔ ﻋﺷ واﺋﯾﺔ ﻛﻣ ﺎ ﻓ ﻲ ﺷ ﻛل ) ‪( c ) (٦٠-٤‬‬ ‫ﻓﮭذا ﯾﻌﻧﻰ أن ‪ r  0‬وﻧﺳﺗﻧﺗﺞ ﻋدم وﺟود ﻋﻼﻗﺔ ﺑﯾن ‪ .X,Y‬وﻟﻣﺎ ﻛﺎن ﻣﻌﺎﻣل اﻻرﺗﺑﺎط ﺑ ﯾن ﻣﺗﻐﯾ رﯾن‬ ‫ﯾﻌﺗﺑر ﻣﻘﯾﺎس ﻟﻠﻌﻼﻗﺔ اﻟﺧطﯾﮫ ﺑﯾﻧﮭﻣﺎ وﻋﻠﻰ ذﻟك ﻓﺈن ‪ r  0‬ﺗﻌﻧ ﻰ ﻗﺻ ور ﻓ ﻲ اﻟﺧطﯾ ﺔ وﻟﯾﺳ ت ﻗﺻ ور‬ ‫ﻓﻲ اﻻرﺗﺑﺎط ‪ .‬ﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ﻗد ﺗﻛون ھﻧﺎك ﻋﻼﻗﺔ وﻟﻛﻧﮭﺎ ﻋﻼﻗﺔ ﻏﯾ ر ﺧطﯾ ﮫ ‪ .‬ﻓﻌﻠ ﻰ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل‬ ‫إذا وﺟدت ﻋﻼﻗﺔ ﻗوﯾﺔ ﻣ ن اﻟدرﺟ ﺔ اﻟﺛﺎﻧﯾ ﺔ ﺑ ﯾن اﻟﻣﺗﻐﯾ رﯾن ‪ X,Y‬ﻛﻣ ﺎ ھوﻣوﺿ ﺢ ﻓ ﻲ ﺷ ﻛل )‪( ٦٠-٤‬‬ ‫)‪ ( d‬ﻓﮭذا ﯾﻌﻧﻰ أن ‪. r  0‬‬

‫‪٣٦٣‬‬


‫ﺷﻛل )‪(٦٠- ٤‬‬ ‫ﯾﻌﺗﺑر ﻣﻌﺎﻣل اﻻرﺗﺑﺎط اﻟﺧطﻰ ) ﻣﻌﺎﻣل ﺑﯾرﺳون ﻟﻼرﺗﺑﺎط ( أو اﺧﺗﺻﺎرا ﻣﻌﺎﻣل اﻻرﺗﺑﺎط أﻛﺛر‬ ‫ﻣﻘﺎﯾﯾس اﻻرﺗﺑﺎط اﻟﺧطﻰ اﻧﺗﺷﺎرا‪.‬‬ ‫ﯾﺗم ﺣﺳﺎب ﻣﻌﺎﻣل اﻻرﺗﺑﺎط ﻣن اﻟﻣﻌﺎدﻟﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪x i y i‬‬ ‫‪n‬‬ ‫‪r‬‬ ‫‪ 2 (x i )2   2 (yi ) 2 ‬‬ ‫‪ x i ‬‬ ‫‪  yi ‬‬ ‫‪‬‬ ‫‪n‬‬ ‫‪n ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪x i y i ‬‬

‫‪SXY‬‬ ‫‪‬‬ ‫‪SXX.SYY‬‬

‫‪‬‬

‫ﺣﯾث ‪ r‬اﻟﻌﯾﻧﺔ ﻓﻲ اﻟﻣﺟﺗﻣﻊ‪.‬‬

‫ﻣﺛﺎل)‪(٣٦-٤‬‬ ‫ﻟدراﺳ ﺔ اﻟﻌﻼﻗ ﺔ ﺑ ﯾن ﺗرﻛﯾ ز اﻷوزون ‪) (X) Ozone‬ﻣﻘ ﺎس ‪ (PPM‬وﺗرﻛﯾ ز اﻟﻛرﺑ ون )‪(Y‬‬ ‫)ﻣﻘﺎس ‪ (  g / m3‬ﺗم اﻟﺣﺻول ﻋﻠﻰ اﻟﺑﯾﺎﻧﺎت اﻟﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪0.100‬‬ ‫‪11.8‬‬ ‫‪0.110‬‬ ‫‪13.0‬‬

‫‪0.057‬‬ ‫‪2.5‬‬ ‫‪0.071‬‬ ‫‪2.8‬‬

‫‪0.186‬‬ ‫‪15.4‬‬ ‫‪0.140‬‬ ‫‪17.9‬‬

‫‪0.162‬‬ ‫‪13.8‬‬ ‫‪0.111‬‬ ‫‪9.2‬‬

‫‪0.050‬‬ ‫‪6.3‬‬ ‫‪0.074‬‬ ‫‪16.6‬‬

‫‪0.120‬‬ ‫‪9.5‬‬ ‫‪0.154‬‬ ‫‪20.6‬‬

‫‪0.088‬‬ ‫‪11.6‬‬ ‫‪0.055‬‬ ‫‪7.0‬‬

‫أوﺟد ﻣﻌﺎﻣل اﻻرﺗﺑﺎط اﻟﺑﺳﯾط ‪.‬‬

‫اﻟﺣــل ‪:‬‬ ‫‪n  16 , x i  1.656 , yi  170.6 ,‬‬ ‫‪٣٦٤‬‬

‫‪0.066‬‬ ‫‪4.6‬‬ ‫‪0.112‬‬ ‫‪8.0‬‬

‫‪x‬‬ ‫‪y‬‬ ‫‪x‬‬ ‫‪y‬‬


‫‪x i2  0.196912 , x i yi  20.0397 ,‬‬ ‫‪yi2  2253.56.‬‬ ‫‪x i yi‬‬ ‫‪n‬‬ ‫)‪(1.656)(170.6‬‬ ‫‪ 20.0397 ‬‬ ‫‪16‬‬ ‫‪= 2.3826,‬‬ ‫‪(x i ) 2‬‬ ‫‪2‬‬ ‫‪SXX  x i ‬‬ ‫‪n‬‬ ‫‪2‬‬ ‫)‪(1.656‬‬ ‫‪ 0.196912 ‬‬ ‫‪ 0.025516,‬‬ ‫‪16‬‬ ‫‪( y i ) 2‬‬ ‫‪(170.6) 2‬‬ ‫‪SYY  yi2 ‬‬ ‫‪ 2253.56 ‬‬ ‫‪n‬‬ ‫‪16‬‬ ‫‪= 434.5375.‬‬ ‫‪SXY  x i yi ‬‬

‫وﻋﻠﻰ ذﻟك ‪:‬‬

‫‪SXY‬‬ ‫‪2.3826‬‬ ‫‪‬‬ ‫‪ 0.716.‬‬ ‫‪SXX.SYY‬‬ ‫)‪(0.025516)(434.5375‬‬

‫‪r‬‬

‫ﻓﻲ اﻟﻣﻧﺎﻗﺷ ﺔ اﻟﺳ ﺎﺑﻘﺔ ﻟ م ﻧﺿ ﻊ ﻓ روض ﻗوﯾ ﺔ ﻋﻠ ﻰ ﺗوزﯾ ﻊ اﻟﻣﺟﺗﻣ ﻊ اﻟ ذي اﺧﺗﺑ رت ﻣﻧ ﮫ اﻟﻌﯾﻧ ﺔ وذﻟ ك‬ ‫ﻟﻠﺣﺻ ول ﻋﻠ ﻰ ﺗﻘ دﯾر ﺑﻧﻘط ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ ‬واﻟﺗ ﻲ ﺗرﻣ ز إﻟ ﻰ ﻣﻌﺎﻣ ل ارﺗﺑ ﺎط اﻟﻣﺟﺗﻣ ﻊ‪ .‬ﻟﻠﺣﺻ ول ﻋﻠ ﻰ‬ ‫‪ (1   )100%‬ﻓﺗ رة ﺛﻘ ﺔ ﻟﻠﻣﻌﻠﻣ ﺔ ‪ ‬أو اﺧﺗﺑ ﺎرات ﻓ روض ﺗﺧ ص ‪ ‬ﻓﺈﻧﻧ ﺎ ﻧﻔﺗ رض أن اﻟﻌﯾﻧ ﺔ‬ ‫ﻣﺄﺧوذة ﻣن ﻣﺟﺗﻣﻊ ﯾﺗﺑﻊ اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﺛﻧ ﺎﺋﻲ ‪ the bivarate normal distribution‬أي‬ ‫أن ‪ X , Y‬ﻣﺗﻐﯾرﯾن ﻋﺷواﺋﯾﯾن ﺣﯾث داﻟﺔ اﻟﺗوزﯾﻊ اﻟﮭﺎﻣﺷﯾﺔ ﻟﻛل ﻣ ن ‪ Y , X‬ﺗﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ‬ ‫‪.‬‬ ‫‪‬‬

‫اﺧﺗﺑﺎرات ﻓروض وﻓﺗرات ﺛﻘﺔ ﺗﺧص‬ ‫‪Tests Hypotheses and Confidence Intervals Concerning ‬‬ ‫ﻻﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم ‪ H 0 :   0‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H1 :   0‬أو اﻟﻔ رض اﻟﺑ دﯾل‬ ‫‪ H1 :   0‬أو اﻟﻔرض اﻟﺑدﯾل ‪ H1 :   0‬وﺑﺎﻓﺗراض ﺻﺣﺔ ﻓرض اﻟﻌدم ﻓﺈن ‪:‬‬ ‫‪r n2‬‬

‫‪t‬‬

‫‪1  r2‬‬ ‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻲ ‪ T‬ﻟﮫ ﺗوزﯾﻊ ‪ t‬ﺑدرﺟﺎت ﺣرﯾ ﺔ ‪ .   n  2‬وﻋﻠ ﻰ ذﻟ ك ﻟﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ ‪‬‬ ‫وﻟﻠﻔ رض اﻟﺑ دﯾل ‪ ) H1 :   0‬اﺧﺗﺑ ﺎر ذي ﺟ ﺎﻧﺑﯾن ( ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض ﺳ وف ﺗﻛ ون‬ ‫‪ T  t  / 2 or T  t  / 2‬ﺣﯾ ث ‪ t  / 2‬ھ ﻲ ﻗﯾﻣ ﺔ ‪ t‬اﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ‪ t‬ﺑ درﺟﺎت ﺣرﯾ ﺔ‬ ‫‪٣٦٥‬‬


‫‪ .   n  2‬ﻟﻠﺑدﯾل ‪ H1 :   0‬ﻓﺈن ﻣﻧطﻘﺔ اﻟرﻓض ‪ T  t ‬وﻟﻠﺑ دﯾل ‪ H1 :   0‬ﻓ ﺈن ﻣﻧطﻘ ﺔ اﻟ رﻓض‬ ‫‪. T  t ‬‬

‫ﻣﺛﺎل )‪(٣٧-٤‬‬ ‫ﺑﻔرض أن اﻟﺑﯾﺎﻧ ﺎت ﻓ ﻲ اﻟﻣﺛ ﺎل اﻟﺳ ﺎﺑق ﻣ ﺄﺧوذة ﻣ ن ﻣﺟﺗﻣ ﻊ ﯾﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ اﻟﺛﻧ ﺎﺋﻲ اﻟطﺑﯾﻌ ﻲ‪ .‬اﻟﻣطﻠ وب‬ ‫اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم‪ H 0 :   0 :‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H1 :   0‬وذﻟ ك ﻋﻧ د ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ‬ ‫‪.   0.01‬‬

‫اﻟﺣــل ‪:‬‬

‫‪ 3.84.‬‬

‫‪0.716 14‬‬ ‫‪1  (0.716) 2‬‬

‫‪‬‬

‫‪r n2‬‬ ‫‪1  r2‬‬

‫‪t‬‬

‫‪t0.01= 2.624‬‬ ‫واﻟﻣﺳ ﺗﺧرﺟﺔ ﻣ ن ﺟ دول ﺗوزﯾ ﻊ ‪ t‬ﻓ ﻲ ﻣﻠﺣ ق )‪ (٢‬ﺑ درﺟﺎت ﺣرﯾ ﺔ ‪.   n  2  16  2  14‬‬ ‫ﻣﻧطﻘﺔ اﻟرﻓض ‪ . T > 2.624‬وﺑﻣﺎ أن ‪ t‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟرﻓض ‪ ،‬ﻧرﻓض ‪. H0‬‬ ‫وﺑﻣﺎ أن ‪ ‬ﯾﻘﯾس ﻗوة اﻻرﺗﺑﺎط اﻟﺧطﻰ ﺑﯾن ﻣﺗﻐﯾرﯾن ‪ X,Y‬ﻓﻲ اﻟﻣﺟﺗﻣﻊ ﻓ ﺈن ﻓ رض اﻟﻌ دم‬ ‫‪ H 0 :   0‬ﯾ دل ﻋﻠ ﻰ ﻋ دم وﺟ ود ارﺗﺑ ﺎط ﺑ ﯾن اﻟﻣﺗﻐﯾ رﯾن ﻓ ﻲ اﻟﻣﺟﺗﻣ ﻊ ‪ .‬ﯾﻣﻛ ن إﺛﺑ ﺎت أن‬ ‫‪ t  r n  2 / 1  r 2  b1 / s 2 / SXX‬وھ ذا ﯾﻌﻧ ﻰ أن اﻻﺧﺗﺑ ﺎرﯾن ﻣﺗﻛ ﺎﻓﺋﯾن ‪ .‬وﻋﻠ ﻰ ذﻟ ك‬ ‫إذا ﻛﺎن اﻻھﺗﻣﺎم ﻓﻘط ﺑﻘﯾﺎس ﻗوة اﻟﻌﻼﻗﺔ ﺑﯾن ﻣﺗﻐﯾرﯾن ‪ X , Y‬وﻟﯾس اﻟﺣﺻ ول ﻋﻠ ﻰ ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار‬ ‫اﻟﺧطﻰ ﻓﺈن اﺧﺗﺑﺎر ‪ H 0 :   0‬ﯾﻛون اﺳﮭل ﻣن اﺧﺗﺑﺎر ‪ t‬ﻷﻧﮫ ﯾﺗطﻠب ﻛﻣﯾﺔ ﻗﻠﯾﻠﺔ ﻣن اﻟﺣﺳﺎﺑﺎت‪.‬‬

‫اﻷﺳﻠوب اﻟﻣﺳﺗﺧدم ﻻﺧﺗﺑﺎر ‪ H 0 :   0‬ﻋﻧدﻣﺎ ‪ 0  0‬ﻻ ﯾﻛﺎﻓﺊ أي طرﯾﻘﺔ ﻣﺳ ﺗﺧدﻣﺔ ﻓ ﻲ ﺗﺣﻠﯾ ل‬ ‫اﻻﻧﺣ دار‪ .‬ﺑﻔ رض أن أزواج اﻟﻣﺷ ﺎھدات ) ‪ (x1 , y1), (x2 , y2 ),…,(xn , yn‬ﺗﻣﺛ ل ﻋﯾﻧ ﺔ‬ ‫ﻋﺷ واﺋﯾﺔ ﻣ ﺄﺧوذة ﻣ ن ﻣﺟﺗﻣ ﻊ ﯾﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ اﻟﺛﻧ ﺎﺋﻲ اﻟطﺑﯾﻌ ﻲ وإذا ﻛﺎﻧ ت ‪ n‬ﻛﺑﯾ رة وﺑ ﺎﻓﺗراض ﺻ ﺣﺔ‬ ‫ﻓرض اﻟﻌدم ﻓﺈن ‪:‬‬ ‫‪1 1 r ‬‬ ‫‪v  ln ‬‬ ‫‪‬‬ ‫‪2 1 r ‬‬

‫‪1  1  0 ‬‬ ‫‪ln ‬‬ ‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻲ ‪ V‬ﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ﺑﻣﺗوﺳط ‪‬‬ ‫‪2  1  0 ‬‬

‫‪٣٦٦‬‬

‫‪V ‬‬


‫‪1‬‬ ‫وﺗﺑﺎﯾن‬ ‫‪n 3‬‬

‫‪ ،  2V ‬ﺣﯾث اﻟﺗﺑﺎﯾن ﻻ ﯾﻌﺗﻣد ﻋﻠﻰ ‪ ، ‬وﻋﻠﻰ ذﻟك ﻓﺈن ‪:‬‬

‫‪1  1  0 ‬‬ ‫‪ln ‬‬ ‫‪‬‬ ‫‪2  1  0 ‬‬ ‫‪.‬‬ ‫‪1/ n  3‬‬

‫‪v‬‬ ‫‪z‬‬

‫ھﻲ ﻗﯾﻣﺔ ﻟﻣﺗﻐﯾر ﻋﺷواﺋﻲ ‪ Z‬ﺗﻘرﯾﺑﺎ ً ﯾﺗﺑﻊ اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ اﻟﻘﯾﺎﺳﻲ‪ .‬اﻟﺟدول اﻟﺗﺎﻟﻰ ﯾﻌطﻰ اﻟﻔروض‬ ‫اﻟﺑدﯾﻠﺔ وﻣﻧطﻘﺔ اﻟرﻓض ﻟﻛل ﻓرض ﺑدﯾل ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪.‬‬ ‫اﻟﻔروض اﻟﺑدﯾﻠﺔ‬

‫ﻣﻧطﻘﺔ اﻟرﻓض‬ ‫‪Z   z  / 2 or Z  z  / 2 .‬‬ ‫‪Z > z‬‬ ‫‪Z < - z‬‬

‫‪H1 :   0‬‬ ‫‪H1 :   0‬‬ ‫‪H1 :   0‬‬

‫ﻣﺛﺎل)‪(٣٨-٤‬‬ ‫إذا ﻛﺎن ﻟدﯾك اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ ‪:‬‬

‫‪n  20 , yi  690.30 , yi2  29040.29 ,‬‬ ‫‪x i yi  10818.56 , x i  285.90 x i2  4409.55,‬‬

‫أﺧﺗﺑر اﻟﻔرض ‪ 0.5  p  0.8‬ﻋﻧد ﻣﺳﺗوى ﻣﻌﻧوﯾﺔ ‪  = 0.05‬؟‬

‫اﻟﺣــل ‪:‬‬ ‫أي أﻧﻧﺎ ﻧرﻏب ﻓﻲ اﺧﺗﺑﺎر ‪:‬‬ ‫‪ =0.05.‬‬ ‫وﺣﯾث أن ‪ r  .733‬ﻓﺈن ‪:‬‬

‫‪,‬‬

‫‪H1 :   0.5‬‬

‫‪H 0 :   0.5 ,‬‬

‫‪1  1  .733 ‬‬ ‫‪v  ln ‬‬ ‫‪  .935,‬‬ ‫‪2  1  .733 ‬‬ ‫‪1  1  .5 ‬‬ ‫‪ V  ln ‬‬ ‫‪  .549.‬‬ ‫‪2  1  .5 ‬‬ ‫وﻋﻠﻰ ذﻟك ﻓﺈن ‪:‬‬

‫‪1‬‬ ‫‪v  ln (1  0 ) /(1  0 )‬‬ ‫‪2‬‬ ‫‪z‬‬ ‫‪1/ n  3‬‬ ‫‪ (.935  .549) 17  1.59.‬‬ ‫‪٣٦٧‬‬


‫‪ z0.05= 1.645‬واﻟﻣﺳﺗﺧرﺟﺔ ﻣن ﺟ دول اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ اﻟﻘﯾﺎﺳ ﻲ ﻓ ﻲ ﻣﻠﺣ ق )‪ . (١‬ﻣﻧطﻘ ﺔ اﻟ رﻓض‬ ‫‪ . Z > 1.645‬وﺑﻣﺎ أن ‪ z‬ﺗﻘﻊ ﻓﻲ ﻣﻧطﻘﺔ اﻟﻘﺑول ﻧﻘﺑل ‪. H0‬‬ ‫ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ‪ (1-)100%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ ‬ﻣن اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪e 2c 2  1‬‬ ‫‪e 2 c2  1‬‬

‫‪z / 2‬‬ ‫ﺣﯾث أن‬ ‫‪n 3‬‬ ‫ﻟﻠﺑﯾﺎﻧﺎت ﻓﻲ اﻟﻣﺛﺎل اﻟﺳﺎﺑق ﻓﺈن ‪:‬‬ ‫‪n  20,‬‬

‫‪,‬‬

‫‪c1  v ‬‬ ‫‪,‬‬

‫‪‬‬

‫‪e 2 c1  1‬‬ ‫‪e2 c1  1‬‬

‫‪z / 2‬‬ ‫‪n 3‬‬ ‫‪v  0.935‬‬

‫‪c2  v ‬‬ ‫‪,‬‬

‫‪r  0.733‬‬

‫‪c1  .935  1.96 / 17  .460,‬‬ ‫‪c 2  .935  1.96 / 17  1.410‬‬ ‫ﺑﺎﻟﺗﻌوﯾض ﻓﻲ اﻟﺻﯾﻐﺔ اﻟﺗﺎﻟﯾﺔ ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ‪ 95%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪ ‬ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬

‫‪e2(1.410)  1‬‬ ‫‪e2(1.410)  1‬‬

‫‪‬‬

‫‪e2(.460)  1‬‬ ‫‪e2(.460)  1‬‬

‫واﻟﺗﻲ ﺗﺧﺗزل إﻟﻰ ‪:‬‬ ‫‪0.43 <  < 0.89‬‬

‫ﻣﺛﺎل )‪(٣٩-٤‬‬ ‫ﻟﻠﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.274,0.264,0‬‬ ‫‪.280,0.266,0.268,0.286,‬‬ ‫‪Y‬‬ ‫‪0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.512,0.405,0‬‬ ‫‪.450,0.480,0.456,0.506.‬‬

‫اﻟﻤﻄﻠﻮب ‪:‬‬

‫)‪(١‬‬

‫‪ 95%‬و‪ 90%‬ﻓﺗرة ﺛﻘﺔ ﻟﻠﻣﻌﻠﻣﺔ ‪. ‬‬

‫‪٣٦٨‬‬


‫ وذﻟك ﻋﻧد ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ‬H1 :   0 ‫ ﺿد اﻟﻔرض اﻟﺑدﯾل‬H 0 :   0 :‫( اﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬٢) .   0.05 ‫ وذﻟك ﻋﻧد ﻣﺳ ﺗوى ﻣﻌﻧوﯾ ﺔ‬H1 :   0 ‫ ﺿد اﻟﻔرض اﻟﺑدﯾل‬H 0 :   0 :‫( اﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬٣) .   0.05

‫ وذﻟ ك ﻋﻧ د ﻣﺳ ﺗوى‬H1 :   .5 ‫ ﺿ د اﻟﻔ رض اﻟﺑ دﯾل‬H 0 :   .5 :‫( اﺧﺗﺑ ﺎر ﻓ رض اﻟﻌ دم‬٤) .   0.05 ‫ﻣﻌﻧوﯾﺔ‬ ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﺟﺎھز ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ Off[General::spell1] <<Statistics`MultiDescriptiveStatistics` <<Statistics`NormalDistribution` z[r_]:=0.5 Log[(1+r)/(1-r)] Options[singleCorrelationCI]={confidence->0.95}; singleCorrelationCI[data1_,data2_,opts___]:=Module[{c,alpha, r,n,zalpha,upperz,lowerz,upperr,lowerr}, c=confidence/. {opts} /. Options[singleCorrelationCI]; alpha=1-c; r=Correlation[data1,data2]; n=Length[data1]; zalpha=Quantile[NormalDistribution[0,1],1alpha/2]; upperz=z[r]+zalpha/Sqrt[n-3]; lowerz=z[r]-zalpha/Sqrt[n-3]; upperr=Tanh[upperz]; lowerr=Tanh[lowerz]; {lowerr,upperr}] Off[General::spell1] <<Statistics`MultiDescriptiveStatistics` <<Statistics`NormalDistribution` z[r_]:=0.5 Log[(1+r)/(1-r)] equalZero[r_,p0_,n_,tail_]:=Module[{p,teststat}, teststat=r*Sqrt[(n-2)/(1-r^2)]; If[tail==1,p=1-CDF[StudentTDistribution[n2],Abs[teststat]],p=2*(1-CDF[StudentTDistribution[n2],Abs[teststat]])]; ٣٦٩


Print["{Sample Correlation Coefficient -> ",r,","]; Print["Test Statistic -> ",teststat,","]; Print["Distribution -> StudentTDistribution[",n2,"],"]; Print[tail,"-sided p-value -> ",p,"}"]] notEqualZero[r_,p0_,n_,tail_]:=Module[{p,teststat}, teststat=(z[r]-z[p0])Sqrt[n-3]//N; If[tail==1,p=1CDF[NormalDistribution[0,1],Abs[teststat]],p=2*(1CDF[NormalDistribution[0,1],Abs[teststat]])]; Print["{Sample Correlation Coefficient -> ",r,","]; Print["Test Statistic -> ",teststat,","]; Print["Distribution -> NormalDistribution[0,1],"]; Print[tail,"-sided p-value -> ",p,"}"]] Options[singleCorrelationTest]={rhoZero->0,sided->2}; singleCorrelationTest[data1_,data2_,opts___]:=Module[{n,p0,r ,tail}, n=Length[data1]; r=Correlation[data1,data2]; p0=rhoZero/. {opts} /. Options[singleCorrelationTest]; tail=sided/. {opts} /. Options[singleCorrelationTest]; If[p0==0,equalZero[r,p0,n,tail],notEqualZero[r,p0,n,tai l]]]; oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; singleCorrelationCI[oppbavg,winpct] {-0.835107,-0.0228726} singleCorrelationCI[oppbavg,winpct,confidence->0.90] {-0.803981,-0.117343} singleCorrelationTest[oppbavg,winpct] {Sample Correlation Coefficient -> -0.546816 , Test Statistic -> -2.26243 , Distribution -> StudentTDistribution[ 12 ], 2 -sided p-value -> 0.0430218 } singleCorrelationTest[oppbavg,winpct,sided->1] {Sample Correlation Coefficient -> -0.546816 , Test Statistic -> -2.26243 , Distribution -> StudentTDistribution[ 12 ], 1 -sided p-value -> 0.0215109 } ٣٧٠


singleCorrelationTest[oppbavg,winpct,rhoZero->-0.5] {Sample Correlation Coefficient -> -0.546816 , Test Statistic -> -0.213995 , Distribution -> NormalDistribution[0,1], 2 -sided p-value -> 0.830551 }

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬: ‫اوﻻ‬ ‫اﻟﻘﺎﺋﻤﺔ‬oppbavg‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ و‬

winpct.‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ‬

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬

‫( ﻣﻦ اﻻﻣﺮﯾﯿﻦ اﻟﺘﺎﻟﯿﯿﻦ ﻣﻊ اﻟﻤﺨﺮج ﻟﻜﻞ اﻣﺮ‬١) ‫اﻟﻤﻄﻠﻮب‬ singleCorrelationCI[oppbavg,winpct] {-0.835107,-0.0228726} singleCorrelationCI[oppbavg,winpct,confidence->0.90] {-0.803981,-0.117343}

‫( ﻣﻦ اﻻﻣﺮ اﻟﺘﺎﻟﻰ ﻣﻊ اﻟﻤﺨﺮج‬٢) ‫واﻟﻤﻄﻠﻮب‬ singleCorrelationTest[oppbavg,winpct] {Sample Correlation Coefficient -> -0.546816 , Test Statistic -> -2.26243 , Distribution -> StudentTDistribution[ 12 ], 2 -sided p-value -> 0.0430218 }

‫وﺑﻤﺎ ان‬ p-value ->

0.0430218 }

H1 :   0 ‫ﻓﮭﺬا ﯾﻌﻨﻰ ﻗﺒﻮل ﻓﺮض اﻟﺒﺪﯾﻞ‬

‫( ﻣﻦ اﻻﻣﺮ اﻟﺘﺎﻟﻰ ﻣﻊ اﻟﻤﺨﺮج‬٣) ‫واﻟﻤﻄﻠﻮب‬ singleCorrelationTest[oppbavg,winpct,sided->1] {Sample Correlation Coefficient -> -0.546816 , Test Statistic -> -2.26243 , Distribution -> StudentTDistribution[ 12 ], 1 -sided p-value -> 0.0215109 }

‫وﺑﻤﺎ ان‬ p-value ->

0.0215109 }

.‫ ﻻن ﻗﯿﻤﺔ اﻻﺣﺼﺎء ﺳﺎﻟﺒﺔ‬H1 :   0 ‫ وﻟﯿﺲ‬H1 :   0 ‫ﻓﮭﺬا ﯾﻌﻨﻰ ﻗﺒﻮل ﻓﺮض اﻟﺒﺪﯾﻞ‬ ‫( ﻣﻦ اﻻﻣﺮ اﻟﺘﺎﻟﻰ ﻣﻊ اﻟﻤﺨﺮج‬٤) ‫واﻟﻤﻄﻠﻮب‬ singleCorrelationTest[oppbavg,winpct,rhoZero->-0.5] {Sample Correlation Coefficient -> -0.546816 , Test Statistic -> -0.213995 , ٣٧١


Distribution -> NormalDistribution[0,1], 2 -sided p-value ->

0.830551 }

‫وﺑﻤﺎ ان‬ p-value ->

0.830551 }

H1 :   .5 ‫ﻓﮭﺬا ﯾﻌﻨﻰ ﻗﺒﻮل ﻓﺮض‬

(٤٠-٤) ‫ﻣﺛﺎل‬ ‫ﺳوف ﯾﺗم اﯾﺟﺎد ﻣﻌﺎﻣل اﻻرﺗﺑﺎط اﻟﺧطﻰ اﻟﺑﺳﯾط ﻟﻠﻣﺛﺎل اﻟﺳﺎﺑق ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ . ‫ وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬Mathematica oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; l[x_]:=Length[x] h[x_]:=Apply[Plus,x] c[x_,y_]:=h[x*y]-((h[x]*h[y]))/l[x] ss1=c[oppbavg,winpct] -0.00545343 ss2=c[oppbavg,oppbavg] 0.00245971 ss3=c[winpct,winpct] 0.0404364

ss1 r   ss2 ss3 -0.546816

‫ﻟﮭذا اﻟﻣﺛﺎل ﻓﺈن ﻣﻌﺎﻣل اﻻرﺗﺑﺎط اﻟﺑﺳﯾط ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ss1 r   ss2 ss3

٣٧٢


‫اﻟﻔﺻل اﻟﺧﺎﻣس‬ ‫ﻧﻣﺎزج اﻻﻧﺣدار اﻟﺧطﻰ اﻟﻣﺗﻌدد و ﻧﻣﺎزج اﻻﻧﺣدار‬ ‫ﻣن اﻟدرﺟﺔ اﻟﺛﺎﻧﯾﺔ‬ ‫واﻟﻧﻣﺎزج اﻟﻐﯾر ﺧطﯾﺔ‬

‫‪٣٧٣‬‬


‫)‪ (١-٥‬اﻻﻧﺣدار اﻟﺧطﻰ اﻟﻣﺗﻌدد‬

‫‪Linear Multiple Regression‬‬

‫ﻓﻲ اﻟﻐﺎﻟب ﺗﻛون اﻟﻌﻼﻗﺎت اﻟﻔﻌﻠﯾﺔ ﺳواء اﻻﻗﺗﺻﺎدﯾﺔ أو اﻻﺟﺗﻣﺎﻋﯾﺔ أو اﻟﺳﯾﺎﺳ ﯾﺔ ﻣﻌﻘ دة ﯾﻣﺛ ل ﻓﯾﮭ ﺎ‬ ‫ﻣﺗﻐﯾر واﺣد ﺗﺎﺑﻊ وﻋدد ﻣن اﻟﻣﺗﻐﯾرات اﻷﺳﺎﺳ ﯾﺔ اﻟﻣﺳ ﺗﻘﻠﺔ وﻣ ن اﻷﻣﺛﻠ ﺔ اﻟﻌدﯾ دة ﻋﻠ ﻰ ذﻟ ك ﻓ ﻲ ﻣﺟ ﺎل‬ ‫اﻻﻗﺗﺻﺎد ﻧﺟد أن اﻟﻛﻣﯾﺔ اﻟﻣﺳﺗﮭﻠﻛﺔ ﻣن ﺳ ﻠﻌﺔ ﻣ ﺎ ﺗﺗ ﺄﺛر ﺑﺳ ﻌر اﻟﺳ ﻠﻌﺔ ذاﺗﮭ ﺎ ﻋ ﻼوة ﻋﻠ ﻰ أﺳ ﻌﺎر اﻟﺳ ﻠﻊ‬ ‫اﻟﺑدﯾﻠ ﺔ وأﯾﺿ ﺎ ﺑﺎﻹﺿ ﺎﻓﺔ إﻟ ﻰ ذوق اﻟﻣﺳ ﺗﮭﻠك‪ .‬ﻛ ذﻟك ﻛﻣﯾ ﺔ اﻹﻧﺗ ﺎج ﺗﺗ ﺄﺛر ﺑﺎﻟﻌﻣ ل ورأﺳ ﻲ اﻟﻣ ﺎل‬ ‫واﻟﻣوارد اﻟوﺳﯾطﯾﺔ وﻏﯾرھﺎ ﻣن ﻋﻧﺎﺻر اﻟﻌﻣﻠﯾﺔ اﻹﻧﺗﺎﺟﯾﺔ‪ .‬وﻓﻲ ﻣﺟﺎل اﻟﺗﺄﻣﯾن ﯾﺗوﻗ ف اﻟﻘﺳ ط اﻟﺗ ﺄﻣﯾﻧﻲ‬ ‫ﻋﻠﻰ ﻋﻣر اﻟﻣؤﻣن ودﺧﻠﮫ وﻗﯾﻣﺔ اﻟوﺛﯾﻘﺔ وطول ﻓﺗرات اﻟﺗﺄﻣﯾن ‪.‬‬ ‫‪Least Square Method‬‬ ‫طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى‬ ‫اﻵن ﺳوف ﻧﺗﻧﺎول ﻣﺷﻛﻠﺔ اﻟﺗﻘدﯾر واﻟﺗﻧﺑ ﺄ ﺑﻘﯾﻣ ﺔ ﻣﺗﻐﯾ ر ﺗ ﺎﺑﻊ ﺑﺎﻻﻋﺗﻣ ﺎد ﻋﻠ ﻰ ﻓﺋ ﺔ ﻣ ن اﻟﻣﺷ ﺎھدات‬ ‫اﻟﻣ ﺄﺧوذة ﻣ ن ﻋ دة ﻣﺗﻐﯾ رات ﻣﺳ ﺗﻘﻠﺔ ‪ . X1, X2, …,Xp‬ﻛﻣ ﺎ ﻓ ﻲ ﺣﺎﻟ ﺔ اﻻﻧﺣ دار اﻟﺧط ﻲ اﻟﺑﺳ ﯾط ‪،‬‬ ‫اﻟﻘﯾﻣﺔ ﻟﻛل ﻣﺗﻐﯾر ﻣﺳﺗﻘل واﻟﻣﺧﺗﺎرة ﺑواﺳطﺔ اﻟﺑﺎﺣث ﺳوف ﺗظل ﺛﺎﺑﺗﺔ ‪ .‬إذا ﺗم اﺧﺗﯾ ﺎر ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ‬ ‫ﻣن اﻟﺣﺟم ‪ n‬ﻣن اﻟﻣﺟﺗﻣﻊ ﻓﺈن ﺑﯾﺎﻧﺎت اﻟﻌﯾﻧﺔ ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪{x1i , x 2i ,...,x pi ;yi );i  1,2,...,n‬‬ ‫ﻣ رة أﺧ رى اﻟﻘﯾﻣ ﺔ ‪ yi‬ﺗﻣﺛ ل ﻗﯾﻣ ﺔ ﻟﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ ‪ . Yi‬ﻧﻣ وذج اﻻﻧﺣ دار اﻟﺧط ﻲ اﻟﻣﺗﻌ دد‬ ‫اﻟﻧظري ﺳوف ﯾﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪ Y|x1 ,x 2 ,...,x p   0  1 x 1   2 x 2  ...   p x p ,‬‬ ‫ﺣﯾ ث أن ‪ 0 , 1,..., p‬ﺗﻣﺛ ل اﻟﻣﻌ ﺎﻟم اﻟﻣطﻠ وب ﺗﻘ دﯾرھﺎ‪ .‬ﻧﻣ وذج اﻻﻧﺣ دار اﻟﺧط ﻲ اﻟﻣﺗﻌ دد اﻟﻣﻘ در‬ ‫ﺳوف ﯾﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪yˆ  b 0  b 1 x 1  ...  b p x p ,‬‬ ‫ﺣﯾ ث أن ‪ b0, b1, ….bp‬اﻟﺗﻘ دﯾرات اﻟﻣطﻠ وب اﻟﺣﺻ ول ﻋﻠﯾﮭ ﺎ ﻟﻠﻣﻌ ﺎﻟم ‪ . 0 , 1,..., p‬ﻓ ﻰ ﺣﺎﻟ ﺔ‬ ‫وﺟود ﻣﺗﻐﯾرﯾن ﻣﺳﺗﻘﻠﯾن ‪. (p=2) X1 , X2‬‬ ‫وﻧﻣوذج اﻻﻧﺣدار اﻟﺧطﻲ اﻟﻣﻘدر ﺳوف ﯾﻛون ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬

‫‪yˆ  b 0  b1 x 1  b 2 x 2 ,‬‬ ‫ﻣﻌرﻓﺗﻧﺎ ﻟﻧظرﯾﺔ اﻟﻣﺻﻔوﻓﺎت ﺳوف ﯾﺳﺎﻋدﻧﺎ ﻓﻲ اﻟﺣﺻول ﻋﻠﻰ ﺗﻘدﯾرات اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى ‪b0, b1,‬‬ ‫‪ .b2‬اﻟﻧﺗﺎﺋﺞ ﯾﻣﻛن ﺗﻌﻣﯾﻣﮭﺎ إﻟﻰ ﻋدة ﻣﺗﻐﯾرات ﻣﺳﺗﻘﻠﺔ ‪.‬‬ ‫وﯾﻣﻛن ﺣل اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام اﻟﻣﺻﻔوﻓﺎت ﻛﻣﺎ ھو ﻣوﺿﺢ ﻓﻲ اﻟﻣﺛﺎل اﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪٣٧٤‬‬


‫ﻣﺛﺎل)‪(١-٥‬‬ ‫ﯾﺗﺄﺛر ﻣﺣﺻول اﻟﻔراوﻟﺔ ﺑﻛﻣﯾﺔ اﻷﻣطﺎر ‪ x1‬وﻛﻣﯾﺔ اﻟﺳﻣﺎد اﻟﻣﺳﺗﺧدم ‪ . x 2‬إﺳﺗﺧدم اﻟﺑﯾﺎﻧﺎت ﻓﻲ‬ ‫اﻟﺟدول اﻟﺗﺎﻟﻰ ﻟﺗوﻓﯾق ﻣﻌﺎدﻟﺔ إﻧﺣدار ﺧطﻲ ﻣﺗﻌدد ﺑﺈﺳﺗﺧدام ﻛﻣﯾﺔ اﻷﻣطﺎر وﻛﻣﯾﺔ اﻟﺳﻣﺎد‬ ‫ﻛﻣﺗﻐﯾرات ﻣﺳﺗﻘﻠﺔ‪.‬‬ ‫‪y‬‬

‫‪1000‬‬ ‫‪450‬‬ ‫‪1200‬‬ ‫‪700‬‬ ‫‪800‬‬ ‫‪1100‬‬ ‫‪1050‬‬ ‫‪1150‬‬ ‫‪1000‬‬ ‫‪950‬‬ ‫‪1300.‬‬

‫‪x2‬‬

‫‪510‬‬ ‫‪450‬‬ ‫‪500‬‬ ‫‪425‬‬ ‫‪450‬‬ ‫‪475‬‬ ‫‪515‬‬ ‫‪500‬‬ ‫‪490‬‬ ‫‪510‬‬ ‫‪525‬‬

‫‪x1‬‬

‫‪16‬‬ ‫‪22‬‬ ‫‪23‬‬ ‫‪13‬‬ ‫‪17‬‬ ‫‪25‬‬ ‫‪18‬‬ ‫‪20‬‬ ‫‪21‬‬ ‫‪19‬‬ ‫‪22.‬‬

‫اﻟﺣــل ‪:‬‬ ‫ﻹﯾﺟﺎد ﻣﻌﺎدﻟﺔ اﻹﻧﺣدار اﻟﻣﻘدرة‬ ‫‪yˆ  b 0  b1x1  b 2 x 2 , .‬‬

‫وﺑﺈﺳﺗﺧدام اﻟﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق ﻓﺈن اﻟﻣﺻﻔوﻓﺔ ‪ X‬واﻟﻣﺗﺟﮫ ‪ y‬ﯾﻛوﻧﺎن ﻋﻠﻰ اﻟﺷﻛل اﻟﺗﺎﻟﻲ‪:‬‬

‫‪٣٧٥‬‬


1 1  1  1 1  X  1 1  1 1  1 1 

16 510  22 450   23 500   13 425  17 450   25 475  18 515   20 500  21 490   19 510  22 525 

1000  450    1200   700  800    , y  1100 1050   1150   1000   950   1300   :‫ ﺳﺗﻛون ﻋﻠﻰ اﻟﺷﻛل اﻟﺗﺎﻟﻲ‬XX ‫اﻟﻣﺻﻔوﻓﺔ‬ 1 16 510   10700   1 1  1    1 22 450  , X 'y   213250  XX   16 22  22            6 510 450525   5.26525  10   1 22 525  :‫ﺗﻘدﯾرات اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى ﺳوف ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻛﺎﻟﺗﺎﻟﻲ‬ 1 b   XX  Xy . :‫أي‬ 1

  10700  216 5350  b0   11      b   216 4362 105410   213250  1     b 2  5350 105410 2.6124  106  5.26525  106    1928.24  0.0271387 0.0460394   10700  23.0157     0.0271387 0.00922992 0.000316848  213250    9.61221        0.0460394 0.000316848 0.000107453  5026525  106   5.57653  :‫وﻋﻠﻰ ذﻟك ﻣﻌﺎدﻟﺔ اﻹﻧﺣدار اﻟﻣﺗﻌدد اﻟﻣﻘدرة ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل‬

٣٧٦


‫‪yˆ  1928.24  9.61221x1  5.57653x 2 .‬‬ ‫ﯾﻌطﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ اﻟﻣﺷﺎھدات‪ y‬واﻟﻘﯾم اﻟﻣﻘدرة ˆ‪ y‬واﻟﺑواﻗﻰ ‪:e‬‬ ‫ˆ‪y‬‬ ‫‪69.5826‬‬ ‫‪342.664‬‬

‫‪118.897‬‬ ‫‪133.259‬‬ ‫‪55.3967‬‬ ‫‪139.086‬‬ ‫‪66.6896‬‬ ‫‪97.7338‬‬ ‫‪6.1131‬‬ ‫‪148.419‬‬ ‫‪89.0963‬‬

‫ˆ‪e  y  y‬‬

‫‪1069.58‬‬ ‫‪792.664‬‬ ‫‪1081.1‬‬ ‫‪566.741‬‬ ‫‪744.603‬‬ ‫‪960.914‬‬ ‫‪1116.69‬‬ ‫‪1052.27‬‬ ‫‪1006.11‬‬ ‫‪1098.42‬‬ ‫‪1210.9‬‬

‫‪y‬‬

‫‪1000‬‬ ‫‪450‬‬ ‫‪1200‬‬ ‫‪700‬‬ ‫‪800‬‬ ‫‪1100‬‬ ‫‪1050‬‬ ‫‪1150‬‬ ‫‪1000‬‬ ‫‪950‬‬ ‫‪1300.‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=2‬‬ ‫‪2‬‬ ‫}‪y={1000,450,1200,700,800,1100,1050,1150,1000,950,1300.‬‬ ‫}‪{1000,450,1200,700,800,1100,1050,1150,1000,950,1300.‬‬ ‫}‪x1={16,22,23,13,17,25,18,20,21,19,22.‬‬ ‫}‪{16,22,23,13,17,25,18,20,21,19,22.‬‬ ‫}‪x2={510,450,500,425,450,475,515,500,490,510,525‬‬ ‫}‪{510,450,500,425,450,475,515,500,490,510,525‬‬ ‫]}‪ss=Transpose[{x1,x2,y‬‬ ‫‪{{16,510,1000},{22,450,450},{23,500,1200},{13,425,700},{17,4‬‬ ‫‪50,800},{25,475,1100},{18,515,1050},{20,500,1150},{21,490,10‬‬ ‫}}‪00},{19,510,950},{22.,525,1300.‬‬ ‫]‪TableForm[ss‬‬

‫‪٣٧٧‬‬


16 22 23 13 17 25 18 20 21 19 22.

510 450 500 425 450 475 515 500 490 510 525

1000 450 1200 700 800 1100 1050 1150 1000 950 1300.

l[x_]:=Length[x] xx=Table[{1,x1[[i]],x2[[i]]},{i,1,l[x1]}] {{1,16,510},{1,22,450},{1,23,500},{1,13,425},{1,17,450},{1,2 5,475},{1,18,515},{1,20,500},{1,21,490},{1,19,510},{1,22.,52 5}} xpr=Transpose[xx] {{1,1,1,1,1,1,1,1,1,1,1},{16,22,23,13,17,25,18,20,21,19,22.} ,{510,450,500,425,450,475,515,500,490,510,525}} w=xpr.xx 6

11., 216., 5350., 216., 4362., 105410., 5350., 105410., 2.6124  10  v=Inverse[w] {{23.0157,-0.0271387,-0.0460394},{-0.0271387,0.00922992,0.000316848},{-0.0460394,-0.000316848,0.000107453}} xpy=xpr.y 6 10700., 213250., 5.26525  10  bb=v.xpy {-1928.24,9.61221,5.57653} yy =bb[[1]]+bb[[2]]*x1+bb[[3]]*x2 {1069.58,792.664,1081.1,566.741,744.603,960.914,1116.69,1052 .27,1006.11,1098.42,1210.9} e=y-yy {-69.5826,-342.664,118.897,133.259,55.3967,139.086,66.6896,97.7338,-6.1131,-148.419,89.0963} ss22=Transpose[{y,yy,e}] {{1000,1069.58,-69.5826},{450,792.664,342.664},{1200,1081.1,118.897},{700,566.741,133.259},{800,74 4.603,55.3967},{1100,960.914,139.086},{1050,1116.69,66.6896},{1150,1052.27,97.7338},{1000,1006.11,6.1131},{950,1098.42,-148.419},{1300.,1210.9,89.0963}} TableForm[ss22] ٣٧٨


‫‪69.5826‬‬ ‫‪342.664‬‬

‫‪118.897‬‬ ‫‪133.259‬‬ ‫‪55.3967‬‬ ‫‪139.086‬‬ ‫‪66.6896‬‬ ‫‪97.7338‬‬ ‫‪6.1131‬‬ ‫‪148.419‬‬ ‫‪89.0963‬‬

‫‪1069.58‬‬ ‫‪792.664‬‬ ‫‪1081.1‬‬ ‫‪566.741‬‬ ‫‪744.603‬‬ ‫‪960.914‬‬ ‫‪1116.69‬‬ ‫‪1052.27‬‬ ‫‪1006.11‬‬ ‫‪1098.42‬‬ ‫‪1210.9‬‬

‫‪1000‬‬ ‫‪450‬‬ ‫‪1200‬‬ ‫‪700‬‬ ‫‪800‬‬ ‫‪1100‬‬ ‫‪1050‬‬ ‫‪1150‬‬ ‫‪1000‬‬ ‫‪950‬‬ ‫‪1300.‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻋﺪد اﻟﻤﺘﻐﯿﺮات ﻣﻦ اﻻﻣﺮ‬ ‫‪p=2‬‬ ‫‪ y‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻟﺜﺎﻧﻰ واﻟﻘﺎﺋﻤﺔ‪ x2‬ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻻول و اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه ‪x1‬واﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪.‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ﻣﻌﺎدﻟﺔ اﻹﻧﺣدار اﻟﻣﺗﻌدد اﻟﻣﻘدرة‪:‬‬ ‫‪yˆ  1928.24  9.61221x1  5.57653x 2 .‬‬

‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر ‪ bb‬واﻟﻣﺧرج ھو‬ ‫}‪{-1928.24,9.61221,5.57653‬‬

‫واﻟﺟدول اﻟﺳﺎﺑق ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‪:‬‬ ‫]‪TableForm[ss22‬‬

‫)‪ (٢-٥‬ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﻣﺗﻌدد‪oefficient of Multiple Determination‬‬ ‫ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﻣﺗﻌدد ‪ ،‬ﯾرﻣز ﻟﮫ ﺑﺎﻟرﻣز ‪ R2‬ھو ‪:‬‬ ‫‪SSR‬‬ ‫‪SSE‬‬ ‫‪R2 ‬‬ ‫‪1‬‬ ‫‪.‬‬ ‫‪SSTO‬‬ ‫‪SSTO‬‬ ‫ﻓﻲ ﺣﺎﻟﺔ وﺟود ﻣﺗﻐﯾر ﻣﺳﺗﻘل واﺣد ﻓ ﺈن ‪ R2‬ﯾﺻ ﺑﺢ ﻣﻌﺎﻣ ل اﻟﺗﺣدﯾ د اﻟﺑﺳ ﯾط ‪ . r2‬ﯾﺗ راوح ﻗﯾﻣ ﺔ ‪ R2‬ﻣ ن‬ ‫اﻟﺻﻔر إﻟﻰ اﻟواﺣد اﻟﺻﺣﯾﺢ ‪ ،‬أي أن ‪:‬‬ ‫‪2‬‬ ‫‪0 < R < 1‬‬ ‫‪2‬‬ ‫ﻋﻧدﻣﺎ ‪ R2 = 0‬ﻓﮭذا ﯾﻌﻧﻰ أن ‪ b1 = b2 = 0‬وﻋﻧ دﻣﺎ ‪ R = 1‬ﻓﮭ ذا ﯾﻌﻧ ﻰ أن ﺟﻣﯾ ﻊ اﻟﻘ ﯾم اﻟﻣﺷ ﺎھدة ‪yi‬‬ ‫ﺗﻘﻊ ﻋﻠﻰ اﻟﻣﺳﺗوى اﻟﻣﻘدر‪.‬‬ ‫وﯾﻣﻛن ﺣل اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام اﻟﻣﺻﻔوﻓﺎت ﻛﻣﺎ ھو ﻣوﺿﺢ ﻓﻲ اﻟﻣﺛﺎل اﻟﺗﺎﻟﻲ ‪:‬‬

‫‪٣٧٩‬‬


‫ﻣﺛﺎل)‪(٢-٥‬‬ ‫ﻟﻠﻣﺛﺎل )‪(١-٥‬‬ ‫ﻓﺈن ﻣﻌﺎﻣل ﻗﯾﻣﺔ ﻣﻌﺎﻣل اﻟﺗﺣدﯾد ﺗﺣﺳب ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪( y j )2‬‬

‫‪SYY  yy ‬‬

‫‪n‬‬ ‫‪(10700)2‬‬ ‫‪ 11000000 ‬‬ ‫‪11‬‬ ‫‪ 591818 ,‬‬ ‫‪(  y j )2‬‬ ‫‪n‬‬

‫‪SSR  bX'y ‬‬

‫‪ 10779427.8  10408181.8‬‬

‫‪ 371246 ,‬‬ ‫‪SSE  yy  bX ' y‬‬ ‫‪ SYY  SSR‬‬ ‫‪ 591818  371246‬‬ ‫‪ 220572 .‬‬ ‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬

‫‪F‬‬ ‫‪6.73243‬‬ ‫‬‫‪-‬‬

‫‪MS‬‬ ‫‪185623‬‬ ‫‪27571.5‬‬ ‫‪-‬‬

‫‪SS‬‬ ‫‪371246‬‬ ‫‪220572‬‬ ‫‪591818‬‬

‫‪SSR 371246‬‬ ‫‪‬‬ ‫‪ .627.‬‬ ‫‪SYY 591818‬‬

‫‪df‬‬ ‫‪2‬‬ ‫‪8‬‬ ‫‪10‬‬

‫‪S.O.V‬‬ ‫اﻹﻧﺣدار‬ ‫اﻟﺧطﺄ‬ ‫اﻟﻛﻠﻲ‬

‫‪R2 ‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬ﻻﯾﺟﺎد ﻗﯾﻣﺔ ‪ R 2‬واﯾﺿﺎ‬ ‫ﻻﺟراء اﺧﺗﺑﺎرات ﺗﺧص ‪ i  0,i  0,1, 2‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوا اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪=.05‬‬ ‫‪0.05‬‬ ‫‪p=2‬‬ ‫‪2‬‬ ‫}‪y={1000.,450,1200,700,800,1100,1050,1150,1000,950,1300.‬‬ ‫}‪{1000.,450,1200,700,800,1100,1050,1150,1000,950,1300.‬‬ ‫‪٣٨٠‬‬


x1={16,22.,23,13,17,25,18,20,21,19,22.} {16,22.,23,13,17,25,18,20,21,19,22.} x2={510,450,500,425,450,475,515,500,490,510,525} {510,450,500,425,450,475,515,500,490,510,525} ss=Transpose[{x1,x2,y}] {{16,510,1000.},{22.,450,450},{23,500,1200},{13,425,700},{17 ,450,800},{25,475,1100},{18,515,1050},{20,500,1150},{21,490, 1000},{19,510,950},{22.,525,1300.}} TableForm[ss]

16 22. 23 13 17 25 18 20 21 19 22.

510 450 500 425 450 475 515 500 490 510 525

1000. 450 1200 700 800 1100 1050 1150 1000 950 1300.

l[x_]:=Length[x] xx=Table[{1,x1[[i]],x2[[i]]},{i,1,l[x1]}] {{1,16,510},{1,22.,450},{1,23,500},{1,13,425},{1,17,450},{1, 25,475},{1,18,515},{1,20,500},{1,21,490},{1,19,510},{1,22.,5 25}} xpr=Transpose[xx] {{1,1,1,1,1,1,1,1,1,1,1},{16,22.,23,13,17,25,18,20,21,19,22. },{510,450,500,425,450,475,515,500,490,510,525}} w=xpr.xx 11., 216., 5350., 216., 4362., 105410.,

5350., 105410., 2.6124  106 v=Inverse[w] {{23.0157,-0.0271387,-0.0460394},{-0.0271387,0.00922992,0.000316848},{-0.0460394,-0.000316848,0.000107453}} xpy=xpr.y 6 10700., 213250., 5.26525  10  bb=v.xpy {-1928.24,9.61221,5.57653} yy =bb[[1]]+bb[[2]]*x1+bb[[3]]*x2

٣٨١


{1069.58,792.664,1081.1,566.741,744.603,960.914,1116.69,1052 .27,1006.11,1098.42,1210.9} e=y-yy {-69.5826,-342.664,118.897,133.259,55.3967,139.086,66.6896,97.7338,-6.1131,-148.419,89.0963} ss22=Transpose[{y,yy,e}] {{1000.,1069.58,-69.5826},{450,792.664,342.664},{1200,1081.1,118.897},{700,566.741,133.259},{800,74 4.603,55.3967},{1100,960.914,139.086},{1050,1116.69,66.6896},{1150,1052.27,97.7338},{1000,1006.11,6.1131},{950,1098.42,-148.419},{1300.,1210.9,89.0963}} TableForm[ss22] 1000. 1069.58 69.5826 450 792.664 342.664

1200 700 800 1100 1050 1150 1000 950 1300.

1081.1 566.741 744.603 960.914 1116.69 1052.27 1006.11 1098.42 1210.9

118.897 133.259 55.3967 139.086 66.6896 97.7338 6.1131 148.419 89.0963

err=e.e 220572. h[x_]:=Apply[Plus,x] c[x_]:=h[x^2]-(h[x]^2)/l[x] ssto=c[y] 591818. ssr=ssto-err 371246. mssr=ssr/p 185623. dfr=(l[x1]-p-1) 8 mmerr=err/dfr 27571.5 f=mssr/mmerr 6.73243 th=TableHeadings->{{source,regression,residual, Total},{anova}} TableHeadings{{source,regression,residual,Total},{anova}} rt1=List["df","SS","MS","F"] {df,SS,MS,F} ٣٨٢


rt2=List[p,ssr,mssr,f] rt3=List[dfr,err,mmerr,"--"] rt4=List[l[x1]-1,ssto,"--","--"] tf=TableForm[{rt1,rt2,rt3,rt4},th] {2,371246.,185623.,6.73243} {8,220572.,27571.5,--} {10,591818.,--,--}

source regression residual Total

anova df 2 8 10

SS 371246. 220572. 591818.

MS 185623. 27571.5

F 6.73243  

 R2=ssr/ssto 0.627298 errorm=mmerr*v {{634577.,-748.255,-1269.37},{-748.255,254.483,-8.73597},{1269.37,-8.73597,2.96263}} ggg[x_]:=Sqrt[x] nn=Map[ggg,errorm] {{796.604,0. +27.3542 ,0. +35.6283 },{0. +27.3542 ,15.9525,0. +2.95567 },{0. +35.6283 ,0. +2.95567 ,1.72123}} standbo=nn[[1,1]] 796.604 standb1=nn[[2,2]] 15.9525 standb3=nn[[3,3]] 1.72123 t11=bb[[1]]/standbo -2.42058 t22=bb[[2]]/standb1 0.602551 t33=bb[[3]]/standb3 3.23985 <<Statistics`ContinuousDistributions` TT=Quantile[StudentTDistribution[l[x1]-p-1],1-(/2)] 2.306 ww=bb[[1]]+TT*standbo -91.2698 uu=bb[[1]]-TT*standbo -3765.21 jj=bb[[2]]+TT*standb1 46.3988 qq=bb[[2]]-TT*standb1 -27.1744 aa=bb[[3]]+TT*standb3 ٣٨٣


9.54569 pp=bb[[3]]-TT*standb3 1.60736 ffee=Quantile[FRatioDistribution[p,l[x1]-p-1],1-] 4.45897 If[f>=ffee,Print["Reject Ho"],Print["Accept Ho"]] Reject Ho If[Abs[t11]>=TT,Print["Reject Ho"],Print["Accept Ho"]] Reject Ho If[Abs[t22]>=TT,Print["Reject Ho"],Print["Accept Ho"]] Accept Ho If[Abs[t33]>=TT,Print["Reject Ho"],Print["Accept Ho"]] Reject Ho

R 2 ‫ اﯾﺿ ﺎ‬.v ‫ ﻧﺣﺻ ل ﻋﻠﯾﮭ ﺎ ﻣ ن اﻻﻣ ر‬ XX 

1

‫ واﻟﻣﺻ ﻔوﻓﺔ‬  .05 ‫ﻣﺳ ﺗوى اﻟﻣﻌﻧوﯾ ﺔ ﻣ ن اﻻﻣ ر‬ ‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ R2=ssr/ssto

‫واﻟﻣﺧرج ھو‬ 0.627298 ‫ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬s 2  XX 

1

‫ﻣﺻﻔوﻓﺔ اﻟﺗﻐﺎﯾر واﻟﺗﺑﺎﯾن‬ errorm=mmerr*v

H 0 : 1  2  0 ‫ﻻﺧﺗﺑﺎر ﻣﻌﻧوﯾﺔ ﻣﻌﺎﻣﻼت اﻻﻧﺣدار أي اﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫ﻧﺣﺻ ل ﻋﻠ ﻰ ﺟ دول ﺗﺣﻠﯾ ل‬. i  0,i  1, 2 ‫ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ان واﺣ د ﻋﻠ ﻰ اﻻﻗ ل ﻣ ن‬ ‫اﻟﺗﺑﺎﯾن ﻣن اﻻﻣر‬ tf=TableForm[{rt1,rt2,rt3,rt4},th]

‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬f f=mssr/mmerr

‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬f ffee=Quantile[FRatioDistribution[p,l[x1]-p-1],1-] ‫اﻟﻘرار اﻟذي ﯾﺗﺧذ ﻣن اﻻﻣر‬ If[f>=ffee,Print["Reject Ho"],Print["Accept Ho"]]

‫واﻟﻣﺧرج ھو‬ Reject Ho

‫ ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬.‫اى رﻓض ﻓرض اﻟﻌدم‬ H 0 : 0  0

‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ H1 : 0  0

‫اﻟﻘرار اﻟذي ﯾﺗﺧذ ﻣن اﻻﻣر‬ If[Abs[t11]>=TT,Print["Reject Ho"],Print["Accept Ho"]]

‫واﻟﻣﺧرج ھو‬ ٣٨٤


‫‪Reject Ho‬‬

‫اى رﻓض ﻓرض اﻟﻌدم‪ .‬ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫‪H 0 : 1  0‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪H1 : 1  0‬‬

‫اﻟﻘرار اﻟذي ﯾﺗﺧذ ﻣن اﻻﻣر‬ ‫]]"‪If[Abs[t22]>=TT,Print["Reject Ho"],Print["Accept Ho‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪Accept Ho‬‬

‫اى ﻗﺑول ﻓرض اﻟﻌدم‪ .‬ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫‪H 0 : 2  0‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪H1 : 2  0‬‬

‫اﻟﻘرار اﻟذي ﯾﺗﺧذ ﻣن اﻻﻣر‬ ‫]]"‪If[Abs[t33]>=TT,Print["Reject Ho"],Print["Accept Ho‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬

‫اى رﻓض ﻓرض اﻟﻌدم‪.‬‬ ‫‪95%‬ﻓﺗرة ﺛﻘﺔ ل ‪ 0‬ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن‬ ‫‪ww=bb[[1]]+TT*standbo‬‬ ‫‪uu=bb[[1]]-TT*standbo‬‬

‫‪95%‬ﻓﺗرة ﺛﻘﺔ ل ‪ 1‬ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن‬ ‫‪jj=bb[[2]]+TT*standb1‬‬ ‫‪qq=bb[[2]]-TT*standb1‬‬

‫‪95%‬ﻓﺗرة ﺛﻘﺔ ل ‪ 2‬ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن‬ ‫‪aa=bb[[3]]+TT*standb3‬‬ ‫‪pp=bb[[3]]-TT*standb3‬‬

‫ﻣﺛﺎل )‪(٣-٥‬‬

‫‪٣٨٥‬‬


‫إﺳﺗﺧدم اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ ﻟﺗوﻓﯾق ﻣﻌﺎدﻟﺔ إﻧﺣدار ﺧطﻲ ﻣﺗﻌدد‬ X1={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4.53,4.5 5,4.62,5.86}; X2={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.270,0.24 0,0.259,0.252,0.258,0.293}; X3={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.274,0.26 4,0.280,0.266,0.268,0.286}; y={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.512,0.405 ,0.450,0.480,0.456,0.506};

: ‫اﻟﺣل‬ ‫ وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺣزﻣﺔ‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ ‫اﻟﺟﺎھزة‬ Statistics`LinearRegression`

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`LinearRegression` teamera={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4 .53,4.55,4.62,5.86}; ownbavg={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.2 70,0.240,0.259,0.252,0.258,0.293}; oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; Clear[dpoints] dpoints=Table[{teamera[[i]],ownbavg[[i]],oppbavg[[i]],w inpct[[i]]},{i,1,Length[winpct]}] {{3.33,0.276,0.24,0.625},{3.51,0.249,0.254,0.512},{3.55,0.24 9,0.249,0.488},{3.65,0.26,0.245,0.524},{3.8,0.271,0.25,0.588 },{4.2,0.241,0.252,0.475},{4.22,0.269,0.254,0.513},{4.27,0.2 64,0.27,0.463},{4.31,0.27,0.274,0.512},{4.48,0.24,0.264,0.40 5},{4.53,0.259,0.28,0.45},{4.55,0.252,0.266,0.48},{4.62,0.25 8,0.268,0.456},{5.86,0.293,0.286,0.506}} ListPlot[Transpose[{teamera,winpct}],Prolog>{PointSize[0.02]},AxesOrigin>{Min[teamera],Min[winpct]},PlotLabel->"Team ERA vs. Winning Percentage"]

٣٨٦


Team ERA vs. Winning

Percentage

0.6 0.55 0.5 0.45 0.4

3.5

4

4.5

5

5.5

Graphics ListPlot[Transpose[{ownbavg,winpct}],Prolog>{PointSize[0.02]},AxesOrigin>{Min[ownbavg],Min[winpct]},PlotLabel->"Own Batting Average vs. Winning Percentage"] Own Batting

Average

vs. Winning

Percentage

0.6 0.55 0.5 0.45 0.4

0.25

0.26

0.27

0.28

0.29

Graphics ListPlot[Transpose[{oppbavg,winpct}],Prolog>{PointSize[0.02]},AxesOrigin>{Min[oppbavg],Min[winpct]},PlotLabel->"Opponent Batting Average vs. Winning Percentage"]

٣٨٧


Opponent

Batting

Average

vs. Winning

Percentage

0.6 0.55 0.5 0.45 0.4

0.25

0.26

0.27

0.28

Graphics Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>BestFit] {BestFit0.302668 -0.0303858 x1+3.16123 x2-1.91482 x3} Fit[dpoints,{1,x1,x2,x3},{x1,x2,x3}] 0.302668 -0.0303858 x1+3.16123 x2-1.91482 x3 Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3}] 1 ParameterTable  x1 x2 x3

Estimate 0.302668  0.0303858 3.16123  1.91482

SE 0.196793 0.0190012 0.442659 0.864137

TStat 1.538  1.59915 7.14147  2.21587

PValue 0.155066 0.14087 , RSquared  0.885111, 0.0000313646 0.0510505

AdjustedRSquared  0.850644, Model EstimatedVariance  0.00046457, ANOVATable  Error Total

DF 3 10 13

SumOfSq 0.0357907 0.0046457 0.0404364

MeanSq 0.0119302 0.00046457

FRatio 25.6801

Regress[dpoints,{1,x1,x2,x3,x1 x2,x2 x3,x1 x3},{x1,x2,x3}]

٣٨٨

PValue 0.000051525


1 x1 x2 ParameterTable  x3 x1x2 x2x3 x1x3

Estimate 4.3393 0.146461 8.45276 24.2133 1.64926 70.7988 0.959189

SE 6.70683 0.528633 23.6866 35.3193 2.42043 126.636 1.41262

TStat 0.646997 0.277055 0.356858 0.685554 0.68139 0.559074 0.679013

PValue 0.538264 0.789741 0.731713 , RSquared  0.894145, 0.515049 0.517525 0.593538 0.518942

AdjustedRSquared  0.803413, DF 6 7 13

Model EstimatedVariance  0.000611483, ANOVATable Error Total

SumOfSq 0.036156 0.00428038 0.0404364

MeanSq 0.006026 0.000611483

FRatio 9.85473

PValue 0.00402332

cov=Regress[dpoints,{1,x1,x2,x3,x1 x2,x2 x3,x1 x3},{x1,x2,x3},RegressionReport->CovarianceMatrix] 2.73914  44.9816    2.73914 0.279453      155.174  10.5961    CovarianceMatrix    234.987  15.0672      14.7961  1.03209     836.777 58.082    4.13907  0.0360002

 155.174  234.987  14.7961  10.5961  15.0672  1.03209

561.055 804.323 49.0586  2961.71  7.89514

804.323 1247.45 81.6642  4420.59  23.2543

836.777 4.13907    58.082  0.0360002     49.0586  2961.71  7.89514     81.6642  4420.59  23.2543      5.8585  283.878  1.88114      283.878 16036.7 58.7984     1.88114 58.7984 1.9955 

corr=Regress[dpoints,{1,x1,x2,x3,x1 x2,x2 x3,x1 x3},{x1,x2,x3},RegressionReport->CorrelationMatrix]; corr[[1,2]] 1. 0.772577  0.976785     0.772577 1.  0.84623      0.976785  0.84623 1.      0.992006  0.806985 0.961426      0.911457  0.806625 0.855696     0.867621  0.987375   0.985224  0.436877  0.0482087  0.235956

 0.992006  0.911457  0.806985  0.806625

0.961426 1. 0.955271  0.988351  0.466086

0.855696 0.955271 1.  0.926149  0.550177

0.985224 0.867621  0.987375  0.988351  0.926149 1. 0.328687

0.436877     0.0482087      0.235956      0.466086      0.550177     0.328687    1. 

corrmat=corr[[1,2,1]] {{1.,0.772577,-0.976785,-0.992006,0.911457,0.985224,0.436877},{0.772577,1.,-0.84623,0.806985,-0.806625,0.867621,-0.0482087},{-0.976785,0.84623,1.,0.961426,0.855696,-0.987375,-0.235956},{0.992006,-0.806985,0.961426,1.,0.955271,-0.988351,0.466086},{-0.911457,-0.806625,0.855696,0.955271,1.,0.926149,-0.550177},{0.985224,0.867621,-0.987375,-0.988351,0.926149,1.,0.328687},{0.436877,-0.0482087,-0.235956,0.466086,-0.550177,0.328687,1.}} corrmat[[1,3]] -0.976785

٣٨٩


‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ ‪:‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻟﺜﺎﻧﻰ و ‪ ownbavg‬ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻻول و اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه ‪teamera‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ winpct .‬اﻟﻤﺴﻤﺎه ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻟﺜﺎﻟﺚ واﻟﻘﺎﺋﻤﺔ‪oppbavg‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ﺷﻛل اﻻﻧﺗﺷﺎر ﺑﯾن اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل اﻻول واﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﺗﻌطﻰ ﻣن اﻻﻣر‬ ‫‪ListPlot[Transpose[{teamera,winpct}],Prolog‬‬‫‪>{PointSize[0.02]},AxesOrigin‬‬‫‪>{Min[teamera],Min[winpct]},PlotLabel->"Team ERA vs. Winning‬‬ ‫]"‪Percentage‬‬

‫ﺷﻛل اﻻﻧﺗﺷﺎر ﺑﯾن اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل اﻟﺛﺎﻧﻰ واﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﺗﻌطﻰ ﻣن اﻻﻣر‬ ‫‪ListPlot[Transpose[{ownbavg,winpct}],Prolog‬‬‫‪>{PointSize[0.02]},AxesOrigin‬‬‫‪>{Min[ownbavg],Min[winpct]},PlotLabel->"Own Batting Average‬‬ ‫]"‪vs. Winning Percentage‬‬

‫ﺷﻛل اﻻﻧﺗﺷﺎر ﺑﯾن اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل اﻟﺛﺎﻟث واﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﺗﻌطﻰ ﻣن اﻻﻣر‬ ‫‪ListPlot[Transpose[{oppbavg,winpct}],Prolog‬‬‫‪>{PointSize[0.02]},AxesOrigin‬‬‫‪>{Min[oppbavg],Min[winpct]},PlotLabel->"Opponent Batting‬‬ ‫]"‪Average vs. Winning Percentage‬‬

‫ﻣﻌﺎدﻟﺔ اﻹﻧﺣدار اﻟﻣﺗﻌدد اﻟﻣﻘدرة ﺳوف ﺗﻛون ﻋﻠﻰ اﻟﺷﻛل‪:‬‬ ‫‪.‬‬ ‫‪yˆ  .302668  .0303858x1  3.16123x 2  1.91482x 3‬‬ ‫وﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport‬‬‫]‪>BestFit‬‬ ‫واﻟﻤﺨﺮج ھﻮ‬ ‫}‪{BestFit0.302668 -0.0303858 x1+3.16123 x2-1.91482 x3‬‬ ‫او ﻣﻦ اﻻﻣﺮ‬ ‫]}‪Fit[dpoints,{1,x1,x2,x3},{x1,x2,x3‬‬ ‫واﻟﻣﺧرج ھو‪:‬‬ ‫‪0.302668 -0.0303858 x1+3.16123 x2-1.91482 x3‬‬ ‫ﻣﻦ اﻻﻣﺮ‬ ‫]}‪Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3‬‬

‫ﻧﺣﺻل ﻋﻠﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ‪:‬‬

‫‪٣٩٠‬‬


‫‪PValue‬‬ ‫‪0.155066‬‬ ‫‪0.14087‬‬ ‫‪, RSquared  0.885111,‬‬ ‫‪0.0000313646‬‬ ‫‪0.0510505‬‬

‫‪TStat‬‬ ‫‪1.538‬‬ ‫‪1.59915‬‬ ‫‪7.14147‬‬ ‫‪2.21587‬‬

‫‪SE‬‬ ‫‪0.196793‬‬ ‫‪0.0190012‬‬ ‫‪0.442659‬‬ ‫‪0.864137‬‬

‫‪Estimate‬‬ ‫‪0.302668‬‬ ‫‪0.0303858‬‬ ‫‪3.16123‬‬ ‫‪1.91482‬‬

‫‪1‬‬ ‫‪ParameterTable  x1‬‬ ‫‪x2‬‬ ‫‪x3‬‬

‫‪AdjustedRSquared  0.850644,‬‬ ‫‪PValue‬‬ ‫‪0.000051525‬‬

‫‪‬‬

‫‪FRatio‬‬ ‫‪25.6801‬‬

‫‪MeanSq‬‬ ‫‪0.0119302‬‬ ‫‪0.00046457‬‬

‫‪DF‬‬ ‫‪3‬‬ ‫‪10‬‬ ‫‪13‬‬

‫‪SumOfSq‬‬ ‫‪0.0357907‬‬ ‫‪0.0046457‬‬ ‫‪0.0404364‬‬

‫‪Model‬‬ ‫‪Error‬‬ ‫‪Total‬‬

‫‪EstimatedVariance  0.00046457, ANOVATable ‬‬

‫ﻻﺧﺗﺑﺎر ﻣﻌﻧوﯾﺔ ﻣﻌﺎﻣﻼت اﻻﻧﺣدار أي اﺧﺗﺑﺎر ﻓرض اﻟﻌدم ‪H 0 : 1  2  3  0‬‬ ‫ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ان واﺣ د ﻋﻠ ﻰ اﻻﻗ ل ﻣ ن ‪ i  0,i  1, 2,3‬ﻧﺣﺻ ل ﻋﻠ ﻰ ﺟ دول ﺗﺣﻠﯾ ل‬ ‫اﻟﺗﺑ ﺎﯾن اﻟﺳ ﺎﺑق ﺣﯾ ث ﻗﯾﻣ ﺔ ‪ f‬اﻟﻣﺣﺳ وﺑﺔ ھ ﻰ ‪ 25.6801‬وﺑﻣ ﺎ ا ن ﻗﯾﻣ ﺔ ‪ p‬اﻗ ل ﻣ ن ‪   .01‬ﻓﺈﻧﻧ ﺎ‬ ‫ﻧرﻓض ﻓرض اﻟﻌدم ‪.‬ﻗﯾﻣﺔ ﻣﻌﺎﻣل اﻟﺗﺣدﯾد اﻟﻣﻌ دل )‪ (.850644‬واﻟﺗ ﻰ ﺗﻌﻧ ﻰ ان ‪85%‬ﻣ ﻦ اﻟﺘﻐﯿ ﺮ ﻓ ﻰ‬ ‫اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ﯾﻌود اﻟﻰ اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﺔ‪.‬اﯾﺿ ﺎ ﻣ ن ﺟ دول اﻟﻣﻌﻠﻣ ﺔ ﻧﺟ د ان ﻗﯾﻣ ﺔ ‪0000313646‬‬ ‫=‪ p‬ﻟﻠﻣﺗﻐﯾر ‪ x2‬واﻟﺗﻰ ﺗﻌﻧﻰ ﻣﻌﻧوﯾﺔ ھذا اﻟﻣﺗﻐﯾر ‪.‬‬ ‫ﺗﺣت ﻓرض ﻣﺗﻐﯾرات ﺟدﯾدة ﻣﺛل ‪ x1x 2 , x1x 3 , x 2 x 3‬وﺑﺎﺳﺗﺧدام اﻻﻣر‬ ‫]}‪Regress[dpoints,{1,x1,x2,x3,x1 x2,x2 x3,x1 x3},{x1,x2,x3‬‬ ‫ﻧﺣﺻل ﻋﻠﻰ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪PValue‬‬ ‫‪0.538264‬‬ ‫‪0.789741‬‬ ‫‪0.731713‬‬ ‫‪, RSquared 0.894145,‬‬ ‫‪0.515049‬‬ ‫‪0.517525‬‬ ‫‪0.593538‬‬ ‫‪0.518942‬‬

‫‪TStat‬‬ ‫‪0.646997‬‬ ‫‪0.277055‬‬ ‫‪0.356858‬‬ ‫‪0.685554‬‬ ‫‪0.68139‬‬ ‫‪0.559074‬‬ ‫‪0.679013‬‬

‫‪SE‬‬ ‫‪6.70683‬‬ ‫‪0.528633‬‬ ‫‪23.6866‬‬ ‫‪35.3193‬‬ ‫‪2.42043‬‬ ‫‪126.636‬‬ ‫‪1.41262‬‬

‫‪Estimate‬‬ ‫‪4.3393‬‬ ‫‪0.146461‬‬ ‫‪8.45276‬‬ ‫‪24.2133‬‬ ‫‪1.64926‬‬ ‫‪70.7988‬‬ ‫‪0.959189‬‬

‫‪1‬‬ ‫‪x1‬‬ ‫‪x2‬‬ ‫‪ParameterTable‬‬ ‫‪x3‬‬ ‫‪x1x2‬‬ ‫‪x2x3‬‬ ‫‪x1x3‬‬

‫‪AdjustedRSquared 0.803413,‬‬ ‫‪PValue‬‬ ‫‪0.00402332‬‬

‫‪‬‬

‫‪FRatio‬‬ ‫‪9.85473‬‬

‫‪MeanSq‬‬ ‫‪0.006026‬‬ ‫‪0.000611483‬‬

‫‪SumOfSq‬‬ ‫‪0.036156‬‬ ‫‪0.00428038‬‬ ‫‪0.0404364‬‬

‫‪DF‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪13‬‬

‫‪Model‬‬ ‫‪EstimatedVariance 0.000611483,ANOVATable‬‬ ‫‪Error‬‬ ‫‪Total‬‬

‫ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم ﺿد اﻟﻔرض اﻟﺑدﯾل ان واﺣ د ﻋﻠ ﻰ اﻻﻗل ﻣ ن ‪ i  0,i  1, 2,...7‬ﻧﺣﺻ ل‬ ‫ﻋﻠﻰ ﺟ دول ﺗﺣﻠﯾ ل اﻟﺗﺑ ﺎﯾن اﻟﺳ ﺎﺑق ﺣﯾ ث ﻗﯾﻣ ﺔ ‪ f‬اﻟﺟدوﻟﯾ ﺔ ھ ﻰ ‪ .9.85473‬وﺑﻣ ﺎ ان ﻗﯾﻣ ﺔ ‪ p‬اﻗ ل ﻣ ن‬ ‫‪   .01‬ﻓﺈﻧﻧ ﺎ ﻧ رﻓض ﻓ رض اﻟﻌ دم ‪.‬ﻗﯾﻣ ﺔ ﻣﻌﺎﻣ ل اﻟﺗﺣدﯾ د اﻟﻣﻌ دل )‪ (.803413‬واﻟﺗ ﻰ ﺗﻌﻧ ﻰ ان‬ ‫‪80.3%‬ﻣﻦ اﻟﺘﻐﯿﺮ ﻓﻰ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ﯾﻌود اﻟ ﻰ اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﺔ‪.‬اﯾﺿ ﺎ ﻣ ن ﺟ دول اﻟﻣﻌ ﺎﻟم ﻧﺟ د ان‬ ‫ﻗﯾﻣﺔ ‪ p‬ﻏﯾر ﻣﻌﻧوﯾﺔ ﻟﺟﻣﯾﻊ اﻟﻣﺗﻐﯾرات ‪.‬‬ ‫ﻣﺻﻔوﻓﺔ اﻟﺗﻐﺎﯾر واﻟﺗﺑﺎﯾن ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪cov=Regress[dpoints,{1,x1,x2,x3,x1 x2,x2 x3,x1‬‬ ‫]‪x3},{x1,x2,x3},RegressionReport->CovarianceMatrix‬‬

‫واﻟﻣﺧرج ھو ‪:‬‬

‫‪٣٩١‬‬


‫‪ 155.174  234.987  14.7961‬‬ ‫‪ 10.5961  15.0672  1.03209‬‬

‫‪836.777‬‬ ‫‪4.13907 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪58.082  0.0360002 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪49.0586  2961.71  7.89514 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪81.6642  4420.59  23.2543 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪5.8585  283.878  1.88114 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 283.878 16036.7‬‬ ‫‪58.7984 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 1.88114 58.7984‬‬ ‫‪1.9955 ‬‬

‫‪804.323‬‬ ‫‪1247.45‬‬ ‫‪81.6642‬‬ ‫‪ 4420.59‬‬ ‫‪ 23.2543‬‬

‫‪561.055‬‬ ‫‪804.323‬‬ ‫‪49.0586‬‬ ‫‪ 2961.71‬‬ ‫‪ 7.89514‬‬

‫‪44.9816‬‬ ‫‪2.73914‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2.73914‬‬ ‫‪0.279453‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 155.174  10.5961‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪CovarianceMatrix  ‬‬ ‫‪  234.987  15.0672‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 14.7961  1.03209‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪836.777‬‬ ‫‪58.082‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 4.13907  0.0360002‬‬

‫ﻣﺻﻔوﻓﺔ اﻻرﺗﺑﺎط ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪corr=Regress[dpoints,{1,x1,x2,x3,x1 x2,x2 x3,x1‬‬ ‫;]‪x3},{x1,x2,x3},RegressionReport->CorrelationMatrix‬‬ ‫]]‪corr[[1,2‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪0.985224‬‬ ‫‪0.436877 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0.867621  0.0482087 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 0.987375  0.235956 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 0.988351  0.466086 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 0.926149  0.550177 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪1.‬‬ ‫‪0.328687 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0.328687‬‬ ‫‪1.‬‬ ‫‪‬‬

‫‪ 0.992006  0.911457‬‬ ‫‪ 0.806985  0.806625‬‬

‫‪0.855696‬‬ ‫‪0.955271‬‬ ‫‪1.‬‬ ‫‪ 0.926149‬‬ ‫‪ 0.550177‬‬

‫‪0.961426‬‬ ‫‪1.‬‬ ‫‪0.955271‬‬ ‫‪ 0.988351‬‬ ‫‪ 0.466086‬‬

‫‪1.‬‬ ‫‪0.772577  0.976785‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0.772577‬‬ ‫‪1.‬‬ ‫‪ 0.84623‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0.976785‬‬ ‫‪‬‬ ‫‪0.84623‬‬ ‫‪1.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪  0.992006  0.806985 0.961426‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 0.911457  0.806625 0.855696‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0.867621  0.987375‬‬ ‫‪‬‬ ‫‪ 0.985224‬‬ ‫‪0.436877‬‬ ‫‪‬‬ ‫‪0.0482087  0.235956‬‬ ‫‪‬‬

‫ﻣﺻﻔوﻓﺔ اﻻرﺗﺑﺎط ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻋﻠﻰ ﺷﻛل ﻗﺎﺋﻣﺔ ﻣن اﻻﻣر‬ ‫]]‪corrmat=corr[[1,2,1‬‬ ‫واﻟﻣﺧرج ھو‬ ‫‪{{1.,0.772577,-0.976785,-0.992006,‬‬‫‪0.911457,0.985224,0.436877},{0.772577,1.,-0.84623,‬‬‫‪0.806985,-0.806625,0.867621,-0.0482087},{-0.976785,‬‬‫{‪0.84623,1.,0.961426,0.855696,-0.987375,-0.235956},‬‬‫‪0.992006,-0.806985,0.961426,1.,0.955271,-0.988351,‬‬‫‪0.466086},{-0.911457,-0.806625,0.855696,0.955271,1.,‬‬‫‪0.926149,-0.550177},{0.985224,0.867621,-0.987375,-0.988351,‬‬‫‪0.926149,1.,0.328687},{0.436877,-0.0482087,‬‬‫}}‪0.235956,-0.466086,-0.550177,0.328687,1.‬‬ ‫ﻟﻠﺣﺻول ﻋل ﻣﻌﺎﻣل اﻻرﺗﺑﺎط ﺑﯾن اﻟﻣﺗﻐﯾر اﻻول واﻟﻣﺗﻐﯾر اﻟﺛﺎﻟث )ﻋﻠﻰ ﺳﺑﯾل اﻟﻣﺛﺎل ( ﻧﺳﺗﺧدم اﻻﻣر‬ ‫]]‪corrmat[[1,3‬‬

‫)‪ (٣-٥‬اﻻﻧﺣدار ﻣن اﻟدرﺟﺔ اﻟﺛﺎﻧﯾﺔ‬

‫‪Quadratic Regression‬‬

‫ﻓ ﻲ ﺑﻌ ض اﻷﺣﯾ ﺎن ﺗﻛ ون اﻟﻌﻼﻗ ﺔ ﺑ ﯾن ﻣﺗﻐﯾ رﯾن ﻋﻠ ﻰ ﺷ ﻛل ﻣﻧﺣﻧ ﻰ ﻣ ن اﻟدرﺟ ﺔ اﻟﺛﺎﻧﯾ ﺔ ﻓﻌﻠ ﻰ ﺳ ﺑﯾل‬ ‫اﻟﻣﺛﺎل ﺑﻔرض أﻧﻧﺎ ﻧرﻏب ﻓﻲ ﺗﻘدﯾر ﻣﻌﺎﻟم اﻟﻧﻣوذج ‪:‬‬ ‫‪ Y|x  0  1x   2 x 2‬‬ ‫‪٣٩٢‬‬


‫ﻓﻲ اﻟﺣﻘﯾﻘﺔ ﻧرﻏب ﻓﻲ ﺗﻘدﯾر ﻣﻌﺎﻟم اﻟﻧﻣوذج اﻧﺣدار ﺧطﻰ ﻣﺗﻌدد ﻋﻠﻰ اﻟﺷﻛل ‪:‬‬ ‫‪Y|x  b0  b1x1  b2 x 2‬‬ ‫وذﻟك ﺑوﺿﻊ ‪ x2 = x2 , x1 = x‬ﻓﻲ اﻟﻣﻌﺎدﻟﺔ اﻟﺳﺎﺑﻘﺔ ‪.‬‬

‫ﻣﺛﺎل)‪(٤-٥‬‬ ‫ﻷزواج اﻟﻘﯾﺎﺳﺎت اﻟﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗ ﺎﻟﻰ أوﺟ د اﻻﻧﺣ دار اﻟﻣﻘ درة ﻟﻧﻣ وذج اﻧﺣ دار ﻣ ن اﻟدرﺟ ﺔ‬ ‫اﻟﺛﺎﻧﯾﺔ‪.‬‬ ‫‪9‬‬ ‫‪10‬‬ ‫‪53.80 62.00‬‬

‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪8‬‬ ‫‪10.20 15.35 20.50 25.95 32.20 38.50 46.00‬‬

‫‪1‬‬ ‫‪5.0‬‬

‫‪x‬‬ ‫‪y‬‬

‫اﻟﺣــل ‪:‬‬ ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ ‪:‬‬

‫‪yˆ x  1.48083  3.792313x  0.223674x2 .‬‬ ‫واﻟﺗﻣﺛﯾل اﻟﺑﯾﺎﻧﻲ ﻟﮭﺎ ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪.(١-٥‬‬ ‫ﺷﻛل )‪(١- ٥‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ . Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=2‬‬ ‫‪٣٩٣‬‬


2 x1={1.,2,3,4,5,6,7,8,9,10} {1.,2,3,4,5,6,7,8,9,10} y={5.,10.2,15.35,20.5,25.95,32.2,38.5,46,53.8,62} {5.,10.2,15.35,20.5,25.95,32.2,38.5,46,53.8,62} x2=x1^2 {1.,4,9,16,25,36,49,64,81,100} ss=Transpose[{x1,x2,y}] {{1.,1.,5.},{2,4,10.2},{3,9,15.35},{4,16,20.5},{5,25,25.95}, {6,36,32.2},{7,49,38.5},{8,64,46},{9,81,53.8},{10,100,62}} l[x_]:=Length[x] xx=Table[{1,x1[[i]],x2[[i]]},{i,1,l[x1]}] {{1,1.,1.},{1,2,4},{1,3,9},{1,4,16},{1,5,25},{1,6,36},{1,7,4 9},{1,8,64},{1,9,81},{1,10,100}} xpr=Transpose[xx] {{1,1,1,1,1,1,1,1,1,1},{1.,2,3,4,5,6,7,8,9,10},{1.,4,9,16,25 ,36,49,64,81,100}} w=xpr.xx {{10.,55.,385.},{55.,385.,3025.},{385.,3025.,25333.}} v=Inverse[w] {{1.38333,-0.525,0.0416667},{-0.525,0.241288,0.0208333},{0.0416667,-0.0208333,0.00189394}} xpy=xpr.y {309.5,2218.1,17708.2} bb=v.xpy {1.48083,3.79231,0.223674} yy =bb[[1]]+bb[[2]]*x1+bb[[3]]*x2 {5.49682,9.96015,14.8708,20.2289,26.0342,32.287,38.987,46.13 45,53.7292,61.7714} t1=Transpose[{x1,y}] {{1.,5.},{2,10.2},{3,15.35},{4,20.5},{5,25.95},{6,32.2},{7,3 8.5},{8,46},{9,53.8},{10,62}} a=PlotRange{{0,15},{0,70}} PlotRange{{0,15},{0,70}} a1=Prolog{PointSize[.02]} Prolog{PointSize[0.02]} g= ListPlot[t1,a,a1,AxesLabel{"x","y"}]

٣٩٤


y 70 60 50 40 30 20 10 x 2

4

6

8

10

12

14

Graphics dd=Plot[bb[[1]]+bb[[2]]*x+bb[[3]]*x^2,{x,0,15},AxesLabel{" x","y"}] y 100 80 60 40 20 x 2

4

6

8

10

12

14

4

6

8

10

12

14

Graphics Show[g,dd] y 70 60 50 40 30 20 10 x 2

Graphics ٣٩٥


(٥-٥) ‫ﻣﺛﺎل‬ .‫ﻟﻠﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ أوﺟد ﻣﻌﺎدﻟﺔاﻻﻧﺣدار اﻟﻣﻘدرة ﻟﻧﻣوذج اﻧﺣدار ﻣن اﻟدرﺟﺔ اﻟﺛﺎﻧﯾﺔ‬ X 0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.274,0.264,0 .280,0.266,0.268,0.286, Y 0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.512,0.405,0 .450,0.480,0.456,0.506.

: ‫اﻟﺣل‬ ‫ وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺣزﻣﺔ‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ ‫اﻟﺟﺎھزة‬ Statistics`LinearRegression`

. ‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`LinearRegression` oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; dpoints=Table[{oppbavg[[i]],winpct[[i]]},{i,1,Length[winpct] }]; Regress[dpoints,{1,x,x^2},x] 1 ParameterTable  x x2

Estimate 12.9504  92.8343 172.464

SE 4.17042 31.8034 60.5108

TStat 3.10529  2.91901 2.85014

PValue 0.0100092 , RSquared  0.59678, 0.0139622 0.0157927

AdjustedRSquared  0.523467, EstimatedVariance  0.00148225, ANOVATable 

Model Error Total

DF 2 11 13

Regress[dpoints,{1,x,x^2,x^3},x]

٣٩٦

SumOfSq 0.0241316 0.0163048 0.0404364

MeanSq 0.0120658 0.00148225

FRatio 8.14018

PValue 0.00676837


1 ParameterTable  x x2 x3

Estimate 48.0489  494.226 1700.06  1934.66

SE 82.9408 947.803 3605.45 4565.52

TStat 0.579316  0.521444 0.471525  0.423755

PValue 0.575193 0.613409, RSquared  0.603892, 0.647385 0.680715

AdjustedRSquared  0.48506, EstimatedVariance  0.00160171, ANOVATable 

DF 3 10 13

Model Error Total

SumOfSq 0.0244192 0.0160171 0.0404364

MeanSq 0.00813974 0.00160171

FRatio 5.08189

PValue 0.0215877

‫ﻣﻦ اﻻﻣﺮ‬ Regress[dpoints,{1,x,x^2},x] ‫اﻟﻤﺨﺮج ﻟﮭﺬا‬.‫ﻧﺤﺼﻞ ﻋﻠﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ واﻟﺬى ﻧﺘﻌﺎﻣﻞ ﻣﻌﮫ ﻛﻤﺎ ﻓﻰ اﻟﺠﺪاول اﻟﻤﺨﺮﺟﺔ ﻓﻰ ﺣﺎﻟﺔ اﻻﻧﺤﺪار اﻟﻤﺘﻌﺪد‬ : ‫اﻻﻣﺮ ھﻮ‬

1 ParameterTable  x x2

Estimate 12.9504  92.8343 172.464

SE 4.17042 31.8034 60.5108

TStat 3.10529  2.91901 2.85014

PValue 0.0100092 , RSquared  0.59678, 0.0139622 0.0157927

AdjustedRSquared  0.523467, EstimatedVariance  0.00148225, ANOVATable 

Model Error Total

DF 2 11 13

SumOfSq 0.0241316 0.0163048 0.0404364

MeanSq 0.0120658 0.00148225

FRatio 8.14018

PValue 0.00676837

: ‫ﻟﻠﺣﺻول ﻋﻠﻰ ﻣﻌﺎدﻟﺔ ﻣن اﻟدرﺟﺔ اﻟﺛﺎﻟﺛﺔ ﻧﺳﺗﺧدم اﻻﻣر اﻟﺗﺎﻟﻰ‬

Regress[dpoints,{1,x,x^2,x^3},x]

:‫ﺣﯿﺚ ﻧﺤﺼﻞ ﻋﻠﻰ اﻟﺠﺪول اﻟﺘﺎﻟﻰ‬

1 ParameterTable  x x2 x3

Estimate 48.0489  494.226 1700.06  1934.66

SE 82.9408 947.803 3605.45 4565.52

TStat 0.579316  0.521444 0.471525  0.423755

PValue 0.575193 0.613409, RSquared  0.603892, 0.647385 0.680715

AdjustedRSquared  0.48506, EstimatedVariance  0.00160171, ANOVATable 

Model Error Total

DF 3 10 13

SumOfSq 0.0244192 0.0160171 0.0404364

MeanSq 0.00813974 0.00160171

FRatio 5.08189

PValue 0.0215877

.‫واﻟﺬى ﻧﺘﻌﺎﻣﻞ ﻣﻌﮫ ﻛﻤﺎ ﻓﻰ اﻟﺠﺪاول اﻟﻤﺨﺮﺟﺔ ﻓﻰ ﺣﺎﻟﺔ اﻻﻧﺤﺪار اﻟﻤﺘﻌﺪد‬ ٣٩٧


‫ﻣﺛﺎل)‪(٦-٥‬‬ ‫ﻷزواج اﻟﻣﺷﺎھدات اﻟﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﺣﯾث ‪ x‬ﺗﻣﺛل ﻋ دد اﻷﯾ ﺎم ﺑﻌ د اﻹزھ ﺎر و ‪(Kg/ha) y‬‬ ‫اﻟﻣﺣﺻول اﻟﻧﺎﺗﺞ ﻣن ﻧﺑ ﺎت ﻣ ﺎ ﻓ ﻲ اﻟﮭﻧ د‪ ،‬أوﺟ د ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار اﻟﻣﻘ دره ﻣ ن اﻟدرﺟ ﺔ اﻟﺛﺎﻧﯾ ﺔ واﺧﺗﺑ ر‬ ‫ﻓرض اﻟﻌدم‪:‬‬ ‫‪H 0 : 1  2  0 .‬‬ ‫‪30‬‬

‫‪28‬‬

‫‪26‬‬

‫‪24‬‬

‫‪22‬‬

‫‪20‬‬

‫‪18‬‬

‫‪16‬‬

‫‪x‬‬

‫‪3883‬‬

‫‪3500‬‬

‫‪3190‬‬

‫‪3057‬‬

‫‪3423‬‬

‫‪3304‬‬

‫‪2518‬‬

‫‪2508‬‬

‫‪y‬‬

‫‪46‬‬

‫‪44‬‬

‫‪42‬‬

‫‪40‬‬

‫‪38‬‬

‫‪36‬‬

‫‪34‬‬

‫‪32‬‬

‫‪x‬‬

‫‪2776‬‬

‫‪3103‬‬

‫‪3241‬‬

‫‪3517‬‬

‫‪3333‬‬

‫‪3708‬‬

‫‪3646‬‬

‫‪3823‬‬

‫‪y‬‬

‫اﻟﺣــل ‪:‬‬ ‫ﺷﻛل اﻻﻧﺗﺷﺎر ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪.(٢- ٥‬‬

‫ﺷﻛل )‪(٢- ٥‬‬ ‫واﻟذي ﯾوﺿﺢ ﻋﻼﻗﺔ ﻣن اﻟدرﺟﺔ اﻟﺛﺎﻧﯾﺔ‪ .‬ﻧﻣوذج اﻹﻧﺣدار اﻟﻣﻘدر ھو‪:‬‬

‫‪yˆ  1070.4  293.48x  4  5358x2.‬‬ ‫واﻟﻣوﺿﺢ ﺑﯾﺎﻧﯾﺎ ﻓﻲ ﺷﻛل )‪ (٣- ٥‬ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر‪.‬‬ ‫ﺷﻛل )‪(٣- ٥‬‬ ‫‪٣٩٨‬‬


‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻰ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬ ‫‪SS‬‬ ‫‪MS‬‬ ‫‪F‬‬ ‫‪2084779.4‬‬ ‫‪1042389.691‬‬ ‫‪25.077‬‬

‫‪df‬‬ ‫‪2‬‬

‫‪S.O.V‬‬

‫‪1, 2 0‬‬ ‫‪13‬‬ ‫‪540388.37‬‬ ‫‪41568.336‬‬ ‫اﻟﺧطﺄ‬ ‫‪15‬‬ ‫‪2625167.8‬‬ ‫اﻟﻛﻠﻲ‬ ‫ﺑﻣﺎ أن ﻗﯾﻣﺔ‪ F‬اﻟﻣﺣﺳوﺑﺔ ﻣن ا ﻟﺟدول اﻟﺳﺎﺑق ﺗﺳﺎوي )‪ (25.077‬ﺗزﯾد ﻋن ﻗﯾﻣﺔ ‪ F‬اﻟﺟد وﻟﯾﺔ ﻋﻧد‬ ‫درﺟﺗﻲ ﺣرﯾﺔ )‪ (2, 13‬و ‪  F0.05 (2,13)  3.81),   0.05‬ﻓﺈﻧﻧﺎ ﻧرﻓض ﻓرض اﻟﻌدم‪.‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات‬ ‫اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫‪p=2‬‬ ‫‪2‬‬ ‫‪y={2508.,2518,3304,3423,3057,3190,3500,3883,3823,3646,3708,‬‬ ‫}‪3333,3517,3241,3103,2776‬‬ ‫‪{2508.,2518,3304,3423,3057,3190,3500,3883,3823,3646,3708,333‬‬ ‫}‪3,3517,3241,3103,2776‬‬ ‫}‪x1={16,18,20.,22,24,26,28,30,32,34,36,38,40,42,44,46‬‬ ‫}‪{16,18,20.,22,24,26,28,30,32,34,36,38,40,42,44,46‬‬ ‫‪x2=x1^2‬‬ ‫‪{256,324,400.,484,576,676,784,900,1024,1156,1296,1444,1600,1‬‬ ‫}‪764,1936,2116‬‬

‫]}‪ss=Transpose[{x1,x2,y‬‬ ‫‪{{16,256,2508.},{18,324,2518},{20.,400.,3304},{22,484,3423},‬‬ ‫‪{24,576,3057},{26,676,3190},{28,784,3500},{30,900,3883},{32,‬‬

‫‪٣٩٩‬‬


1024,3823},{34,1156,3646},{36,1296,3708},{38,1444,3333},{40, 1600,3517},{42,1764,3241},{44,1936,3103},{46,2116,2776}} TableForm[ss]

16 18 20. 22 24 26 28 30 32 34 36 38 40 42 44 46

256 324 400. 484 576 676 784 900 1024 1156 1296 1444 1600 1764 1936 2116

2508. 2518 3304 3423 3057 3190 3500 3883 3823 3646 3708 3333 3517 3241 3103 2776

l[x_]:=Length[x] xx=Table[{1,x1[[i]],x2[[i]]},{i,1,l[x1]}] {{1,16,256},{1,18,324},{1,20.,400.},{1,22,484},{1,24,576},{1 ,26,676},{1,28,784},{1,30,900},{1,32,1024},{1,34,1156},{1,36 ,1296},{1,38,1444},{1,40,1600},{1,42,1764},{1,44,1936},{1,46 ,2116}} xpr=Transpose[xx] {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},{16,18,20.,22,24,26,28,30 ,32,34,36,38,40,42,44,46},{256,324,400.,484,576,676,784,900, 1024,1156,1296,1444,1600,1764,1936,2116}} w=xpr.xx 7

16., 496., 16736., 496., 16736., 603136., 16736., 603136., 2.28251  10  v=Inverse[w] {{9.16565,-0.617069,0.00958508},{-0.617069,0.0427959,0.000678396},{0.00958508,-0.000678396,0.0000109419}} xpy=xpr.y 6 7 52530., 1.64511  10 , 5.55659  10  bb=v.xpy {-1070.4,293.483,-4.5358} yy =bb[[1]]+bb[[2]]*x1+bb[[3]]*x2 {2464.16,2742.7,2984.94,3190.9,3360.57,3493.96,3591.06,3651. ٤٠٠


87,3676.4,3664.64,3616.59,3532.26,3411.64,3254.73,3061.54,28 32.06} e=y-yy {43.8358,-224.696,319.059,232.101,-303.571,-303.957,91.0562,231.131,146.604,-18.6356,91.4107,-199.257,105.363,13.7317,41.4603,-56.0613} ss22=Transpose[{y,yy,e}] {{2508.,2464.16,43.8358},{2518,2742.7,224.696},{3304,2984.94,319.059},{3423,3190.9,232.101},{3057, 3360.57,-303.571},{3190,3493.96,-303.957},{3500,3591.06,91.0562},{3883,3651.87,231.131},{3823,3676.4,146.604},{3646, 3664.64,-18.6356},{3708,3616.59,91.4107},{3333,3532.26,199.257},{3517,3411.64,105.363},{3241,3254.73,13.7317},{3103,3061.54,41.4603},{2776,2832.06,-56.0613}} TableForm[ss22]

2508. 2518 3304 3423 3057 3190 3500 3883 3823 3646 3708 3333 3517 3241 3103 2776

2464.16 2742.7 2984.94 3190.9 3360.57 3493.96 3591.06 3651.87 3676.4 3664.64 3616.59 3532.26 3411.64 3254.73 3061.54 2832.06

43.8358 224.696 319.059 232.101 303.571 303.957 91.0562 231.131 146.604 18.6356 91.4107 199.257 105.363 13.7317 41.4603 56.0613

err=e.e 540388. h[x_]:=Apply[Plus,x] c[x_]:=h[x^2]-(h[x]^2)/l[x] ssto=c[y] 2.62517  106 ssr=ssto-err 2.08478  106 mssr=ssr/p 1.04239  106 dfr=(l[x1]-p-1) 13 mmerr=err/dfr ٤٠١


41568.3 f=mssr/mmerr 25.0765 th=TableHeadings->{{source,regression,residual, Total},{anova}} TableHeadings{{source,regression,residual,Total},{anova}} rt1=List["df","SS","MS","F"] {df,SS,MS,F} rt2=List[p,ssr,mssr,f] rt3=List[dfr,err,mmerr,"--"] rt4=List[l[x1]-1,ssto,"--","--"] tf=TableForm[{rt1,rt2,rt3,rt4},th] 6 6 2, 2.08478  10 , 1.04239  10 , 25.0765 {13,540388.,41568.3,--} 6 15, 2.62517  10 , , 

source regression residual Total

anova df 2 13 15

SS 2.08478  106 540388. 2.62517  106

MS 1.04239  106 41568.3

F 25.0765 

  errorm=v*mmerr {{381001.,-25650.5,398.436},{-25650.5,1778.95,28.1998},{398.436,-28.1998,0.454836}} g[x_]:=Sqrt[x] nn=Map[g,errorm] {{617.253,0. +160.158 ,19.9609},{0. +160.158 ,42.1776,0. +5.31035 },{19.9609,0. +5.31035 ,0.674415}} standbo=nn[[1,1]] 617.253 standb1=nn[[2,2]] 42.1776 standb3=nn[[3,3]] 0.674415 t11=bb[[1]]/standbo -1.73413 t22=bb[[2]]/standb1 6.95826 t33=bb[[3]]/standb3 -6.72554 <<Statistics`ContinuousDistributions` TT=Quantile[StudentTDistribution[l[x1]-p-1],.975] 2.16037 ww=bb[[1]]+TT*standbo 263.096 ٤٠٢


uu=bb[[1]]-TT*standbo -2403.89 jj=bb[[2]]+TT*standb1 384.602 qq=bb[[2]]-TT*standb1 202.364 aa=bb[[3]]+TT*standb3 -3.07882 pp=bb[[3]]-TT*standb3 -5.99279 TTa=N[%,5] -5.99279 ffee=Quantile[FRatioDistribution[p,l[x1]-p-1],.95] 3.80557 If[f>=ffee,Print["Reject Ho"],Print["Accept Ho"]] Reject Ho If[Abs[t11]>=TT,Print["Reject Ho"],Print["Accept Ho"]] Accept Ho If[Abs[t22]>=TT,Print["Reject Ho"],Print["Accept Ho"]] Reject Ho If[Abs[t33]>=TT,Print["Reject Ho"],Print["Accept Ho"]] Reject Ho

: ‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت و اﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ‬ ‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ ‫اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﻰ‬x1‫ اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ واﻟﻘﺎﺋﻤﺔ‬y . ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ‬ ‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬ :‫ﻣﻌﺎدﻟﺔ اﻹﻧﺣدار اﻟﻣﺗﻌدد اﻟﻣﻘدرة‬

yˆ  1070.4  293.483x  4.5358x2 .

‫ ﺣﯿﺚ اﻟﻤﺨﺮج ھﻮ‬bb ‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ {-1070.4,293.483,-4.5358}

H 0 : 1   2  0 ‫ﻻﺧﺗﺑﺎر ﻣﻌﻧوﯾﺔ ﻣﻌﺎﻣﻼت اﻻﻧﺣدار أي اﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫ﻧﺣﺻ ل ﻋﻠ ﻰ ﺟ دول ﺗﺣﻠﯾ ل‬. i  0,i  1, 2 ‫ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ان واﺣ د ﻋﻠ ﻰ اﻻﻗ ل ﻣ ن‬ ‫اﻟﺗﺑﺎﯾن ﻣن اﻻﻣر‬ (tf=TableForm[{rt1,rt2,rt3,rt4},th]

‫ اﻟﻣﺣﺳوﺑﺔ ﻣن اﻻﻣر‬f f=mssr/mmerr

‫ اﻟﺟدوﻟﯾﺔ ﻣن اﻻﻣر‬f ffee=Quantile[FRatioDistribution[p,l[x1]-p-1],.95]

‫اﻟﻘرار اﻟذي ﯾﺗﺧذ ﻣن اﻻﻣر‬ If[f>=ffee,Print["Reject Ho"],Print["Accept Ho"]] ٤٠٣


‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬

‫اى رﻓض ﻓرض اﻟﻌدم‪ .‬ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫‪H 0 : 0  0‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪H1 : 0  0‬‬

‫اﻟﻘرار اﻟذي ﯾﺗﺧذ ﻣن اﻻﻣر‬ ‫]]"‪If[Abs[t11]>=TT,Print["Reject Ho"],Print["Accept Ho‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪Accept Ho‬‬

‫اى ﻗﺑول ﻓرض اﻟﻌدم‪ .‬ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫‪H 0 : 1  0‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪H1 : 1  0‬‬

‫اﻟﻘرار اﻟذي ﯾﺗﺧذ ﻣن اﻻﻣر‬ ‫]]"‪If[Abs[t22]>=TT,Print["Reject Ho"],Print["Accept Ho‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬

‫اى رﻓض ﻓرض اﻟﻌدم‪ .‬ﻻﺧﺗﺑﺎر ﻓرض اﻟﻌدم‬ ‫‪H 0 : 2  0‬‬ ‫ﺿد اﻟﻔرض اﻟﺑدﯾل‬ ‫‪H1 : 2  0‬‬

‫اﻟﻘرار اﻟذي ﯾﺗﺧذ ﻣن اﻻﻣر‬ ‫]]"‪If[Abs[t33]>=TT,Print["Reject Ho"],Print["Accept Ho‬‬

‫واﻟﻣﺧرج ھو‬ ‫‪Reject Ho‬‬

‫اى رﻓض ﻓرض اﻟﻌدم‪.‬‬ ‫‪٤٠٤‬‬


‫‪95%‬ﻓﺗرة ﺛﻘﺔ ل ‪ 0‬ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن‬ ‫‪ww=bb[[1]]+TT*standbo‬‬

‫‪uu=bb[[1]]-TT*standbo‬‬

‫‪95%‬ﻓﺗرة ﺛﻘﺔ ل ‪ 1‬ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن‬ ‫‪jj=bb[[2]]+TT*standb1‬‬ ‫‪qq=bb[[2]]-TT*standb1‬‬

‫‪95%‬ﻓﺗرة ﺛﻘﺔ ل ‪ 2‬ﻣن اﻻﻣرﯾﯾن اﻟﺗﺎﻟﯾﯾن‬ ‫‪aa=bb[[3]]+TT*standb3‬‬

‫‪pp=bb[[3]]-TT*standb3‬‬

‫)‪ (٤-٥‬اﻛﺗﺷﺎف ﻣﺧﺎﻟﻔﺎت ﻓروض اﻟﺗﺣﻠﯾل ﻓﻰ اﻻﻧﺣداراﻟﻣﺗﻌدد‬ ‫ذﻛرﻧ ﺎ ﻋﻧ د ﺗﻧﺎوﻟﻧ ﺎ ﻟﻧﻣ وذج اﻻﻧﺣ دار اﻟﺑﺳ ﯾط أﻧ ﮫ ﻣ ن اﻟﻣﺳﺗﺣﺳ ن اﻟﻛﺷ ف ﻋ ن ﻣﺧﺎﻟﻔ ﺎت‬ ‫ﻓ روض اﻟﻧﻣ وذج وذﻟ ك ﺑﺈﺳ ﺗﺧدام ﺗﺣﻠﯾ ل اﻟﺑ واﻗﻲ أو أﺧﺗﺑ ﺎرات إﺣﺻ ﺎﺋﯾﺔ ﻣﻌﯾﻧ ﺔ‪ .‬اﯾﺿ ﺎ ً‬ ‫ﻧﺎﻗﺷ ﻧﺎ اﻟط رق اﻟﻌﻼﺟﯾ ﮫ ﻟﺗﺻ ﺣﯾﺢ ھ ذه اﻟﻣﺧﺎﻟﻔ ﺎت ‪.‬ﻧﻔ س اﻟﺷ ﻲء ﯾﻣﻛ ن ﺗطﺑﯾﻘ ﮫ ﻓ ﻲ ﺣﺎﻟ ﺔ‬ ‫اﻻﻧﺣدار اﻟﺧطﻰ اﻟﻣﺗﻌدد ﻣﻊ إﺟراء ﺗﻌدﯾﻼت ﺻﻐﯾره‪.‬‬ ‫ان ط رق اﻟﻛﺷ ف ﻋ ن اﻟﻣﺧﺎﻟﻔ ﺎت ﻟﻔ روض ﻧﻣ وذج اﻻﻧﺣ دار اﻟﺧط ﻲ اﻟﻣﺗﻌ دد ﺗﺷ ﻣل‬ ‫اﻟﻛﺷف ﻋن اﻟﻣﺧﺎﻟﻔﺎت اﻟﺗﺎﻟﯾﺔ ‪:‬‬ ‫‪ .١‬داﻟﺔ اﻻﻧﺣدار ﻟﯾﺳت ﺧطﯾﺔ ‪٠‬‬ ‫‪ .٢‬ﺣدود اﻟﺧطﺄ ﻟﯾﺳت ﻣرﺗﺑطﮫ‪٠‬‬ ‫‪ .٣‬اﻟﻧﻣوذج ﻣﻼﺋم ﻟﺟﻣﯾﻊ اﻟﻣﺷﺎھدات ﺑﺎﺳﺗﺛﻧﺎء ﻣﺷ ﺎھدة واﺣ دة او ﻗﻠﯾ ل ﻣ ن اﻟﻣﺷ ﺎھدات‬ ‫اﻟﻘﺎﺻﯾﺔ ‪٠‬‬ ‫‪ .٤‬ﺣدود اﻟﺧطﺄ ﻟﯾﺳت طﺑﯾﻌﯾﺔ ‪٠‬‬ ‫‪ .٥‬ﺣدود اﻟﺧطﺄ ﻟﯾس ﻟﮭﺎ ﺗﺑﺎﯾن ﺛﺎﺑت ‪٠‬‬ ‫‪٤٠٥‬‬


‫‪ .٦‬ﻣﺗﻐﯾ ر ﻣﺳ ﺗﻘل ﻣﮭ م واﺣ د او ﻋ دد ﻣ ن اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﺔ اﻟﻣﮭﻣ ﺔ ﻗ د ﺣ ذﻓت ﻣ ن‬ ‫اﻟﻧﻣوذج ‪٠‬‬ ‫)‪ (١-٤-٥‬رﺳوم اﻟﺑواﻗﻰ‬ ‫اﻟﺑ واﻗﻲ ‪ e j‬ﻣ ن ﻧﻣ وذج اﻻﻧﺣ دار اﻟﻣﺗﻌ دد ﺗﻠﻌ ب دور ﻣﮭ م ﻓ ﻲ اﻟﺣﻛ م ﻋﻠ ﻰ ﺻ ﻼﺣﯾﺔ‬ ‫اﻟﻧﻣ وذج ﻛﻣ ﺎ ھ و اﻟﺣ ﺎل ﻓ ﻲ ﻧﻣ وذج اﻻﻧﺣ دار اﻟﺧط ﻲ اﻟﺑﺳ ﯾط‪ ٠‬رﺳ وم اﻟﺑ واﻗﻲ ﻓ ﻲ ﺣﺎﻟ ﺔ‬ ‫اﻻﻧﺣدار اﻟﺧط ﻲ اﻟﺑﺳ ﯾط ﯾﻣﻛ ن ﺗطﺑﯾﻘﮭ ﺎ ﻣﺑﺎﺷ رة ﻓ ﻲ اﻻﻧﺣ دار اﻟﻣﺗﻌ دد‪ ٠‬ھ ذا وھﻧ ﺎك ﻋ دة‬ ‫رﺳوم ﻣﮭﻣﺔ ﻟﻠﺑواﻗﻲ ﻓﻲ ﺗﺣﻠﯾل اﻻﻧﺣدار اﻟﻣﺗﻌدد وھﻲ ‪:‬‬ ‫‪ -١‬رﺳم اﻟﺑواﻗﻲ ﻋﻠﻰ ورق اﻻﺣﺗﻣﺎل اﻟطﺑﯾﻌ ﻲ واﻟ ذي ﯾﻔﯾ د ﻓ ﻲ اﻟﻛﺷف ﻋﻣ ﺎ اذا ﻛﺎﻧ ت‬ ‫ﺣدود اﻟﺧطﺄ ﺗﺗوزع ﺑﺻورة طﺑﯾﻌﯾﺔ وﻓق اﻟﺗوزﯾﻊ اﻟطﺑﯾﻌﻲ ‪٠‬‬ ‫‪ -٢‬رﺳم اﻟﺑواﻗﻲ ﻣﻘﺎﺑل اﻟﻘﯾم اﻟﻣﻘ درة ﻟﻺﺳ ﺗﺟﺎﺑﺔ ‪ yˆ j‬ﺣﯾ ث ‪ j  1, 2, , n‬واﻟ ذي ﯾﻔﯾ د‬ ‫ﻓ ﻲ ﺗﻘﯾ ﯾم ﺻ ﻼﺣﯾﺔ داﻟ ﺔ اﻻﻧﺣ دار وﺛﺑ ﺎت ﺗﺑ ﺎﯾن ﺣ دود اﻟﺧط ﺄ ﺑﺎﻻﺿ ﺎﻓﺔ اﻟ ﻰ ﺗﻘ دﯾم‬ ‫ﻣﻌﻠوﻣﺎت ﻋن اﻟﻣﺷﺎھدات اﻟﻘﺎﺻﯾﺔ )اﻟﺧوارج( ‪.‬‬ ‫‪ -٣‬رﺳ م اﻟﺑ واﻗﻲ ﻓ ﻲ اﻟﺗﺗ ﺎﺑﻊ اﻟزﻣﻧ ﻲ ان وﺟ د واﻟ ذي ﯾﻣﻛ ن ان ﯾﻘ دم ﻣﻌﻠوﻣ ﺎت ﺣ ول‬ ‫ارﺗﺑﺎطﺎت ﻣﻣﻛﻧﺔ ﺑﯾن ﺣدود اﻟﺧطﺄ ‪.‬‬ ‫‪ -٤‬رﺳم اﻟﺑواﻗﻲ ﻣﻘﺎﺑل ﻛ ل ﻣﺗﻐﯾ ر ﻣﺳ ﺗﻘل ‪ x i‬ﺣﯾ ث ‪ j  1,2,  , k‬واﻟ ذي ﯾﻣﻛ ن ان‬ ‫ﯾﻘ دم ﻣﻌﻠوﻣ ﺎت اﺿ ﺎﻓﯾﺔ ﺣ ول ﺻ ﻼﺣﯾﺔ ﻧﻣ وذج اﻻﻧﺣ دار ﺑﺎﻟﻧﺳ ﺑﺔ ﻟ ذﻟك اﻟﻣﺗﻐﯾ ر‬ ‫اﻟﻣﺳﺗﻘل ) ﻣﺛﻼ ﻗد ﻧﺣﺗﺎج اﻟﻰ ﺗﻣﺛﯾ ل ﻣﻧﺣﻧ ﻰ ﻟﺗ ﺄﺛﯾر ذﻟ ك اﻟﻣﺗﻐﯾ ر ( وﺣ ول ﺗﻐﯾ رات‬ ‫ﻣﻣﻛﻧﺔ ﻓﻲ ﻣﻘدار ﺗﺑﺎﯾن اﻟﺧطﺄ ﻓﯾﻣﺎ ﯾﺗﻌﻠق ﺑذﻟك اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل‪٠‬‬ ‫‪ -٥‬رﺳم اﻟﺑواﻗﻲ ﻣﻘﺎﺑل ﻣﺗﻐﯾرات ﻣﺳﺗﻘﻠﺔ ﻣﮭﻣﺔ ﺣ ذﻓت ﻣ ن اﻟﻧﻣ وذج ﻟرؤﯾ ﺔ ﻣ ﺎ اذا ﻛ ﺎن‬ ‫ﻟﮭذه اﻟﻣﺗﻐﯾرات اﻟﻣﺣذوﻓﺔ ﺗﺎﺛﯾرات ﻣﮭﻣﺔ ﻋﻠﻰ اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﻟ م ﻧﺗﻌ رف ﻋﻠﯾﮭ ﺎ ﺑﻌ د‬ ‫ﻣن ﺧﻼل ﻧﻣ وذج اﻻﻧﺣ دار‪ ٠‬إن ﺷ ﻛل اﻻﻧﺗﺷ ﺎر ﻋﻧ د رﺳ م اﻟﺑ واﻗﻲ ﻣﻘﺎﺑ ل اﻟﻣﺗﻐﯾ ر‬ ‫اﻟﻣﺣ ذوف ﻗ د ﯾﺷ ﯾر إﻟ ﻰ أن ﻧﻣ وذج اﻻﻧﺣ دار اﻟﻣﺗﻌ دد ﻻﺑ د أن ﯾﺣﺗ وي ﻋﻠ ﻰ ھ ذا‬ ‫اﻟﻣﺗﻐﯾر‪.‬‬ ‫‪ -٦‬رﺳم اﻟﺑواﻗﻲ ﻣﻘﺎﺑل ﺣدود اﻟﺗﻔﺎﻋل اﻟﺗﻲ ﻟم ﯾﺷﻣﻠﮭﺎ اﻟﻧﻣ وذج ﻣﺛ ل ‪ x1x 2‬و ‪ x 1 x 3‬و‬ ‫‪ x 2 x 3‬وذﻟك ﻟرؤﯾﺔ ﻣﺎ اذا ﻛﻧﺎ ﻧﺣﺗﺎج ‪ ،‬ﻓ ﻲ اﻟﻧﻣ وذج ‪ ،‬ﻟ ﺑﻌض ﺣ دود اﻟﺗﻔﺎﻋ ل ھ ذه‬ ‫او ﻟﮭﺎ ﺟﻣﯾﻌﺎ ‪٠‬‬ ‫‪ -٧‬رﺳ م اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل ‪ x i‬ﻣﻘﺎﺑ ل اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل ‪ x i‬و) ‪ ( i   i‬ھ ذا اﻟرﺳ م‬ ‫ﻣﻔﯾد ﻓ ﻲ دراﺳ ﺔ اﻟﻌﻼﻗ ﺔ ﺑ ﯾن اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﺔ وﺗﺷ ﺗت اﻟﺑﯾﺎﻧ ﺎت‪ ٠‬ﻋﻧ دﻣﺎ ﯾﻛ ون‬ ‫ھﻧﺎك ارﺗﺑﺎط ﻗ وي ﺑ ﯾن ‪ x i , x i‬ﻋﻠ ﻰ اﻟرﺳ م ﻓ ﺎن ھ ذا ﯾﻌﻧ ﻲ ﻋ دم ﺿ رورة وﺟ ود‬ ‫‪٤٠٦‬‬


‫اﻟﻣﺗﻐﯾرﯾن ‪ x i , x i‬ﻣﻌﺎ ﻓﻲ اﻟﻧﻣوذج ‪٠‬ﻋﻧدﻣﺎ ﯾوﺟد ﻣﺗﻐﯾرﯾن ﻣﺳﺗﻘﻠﯾن ﺑﯾﻧﮭﻣﺎ ﻋﻼﻗ ﺔ‬ ‫ﻗوﯾﺔ ﻓﺎﻧﻧﺎ ﻧﻘول ان ھﻧﺎك ﻣﺷﻛﻠﺔ ﺗﻌدد اﻟﻌﻼﻗﺎت اﻟﺧطﯾ ﺔ ‪ multicollinearity‬ﻓ ﻲ‬ ‫اﻟﺑﯾﺎﻧﺎت ھذه اﻟﻣﺷﻛﻠﺔ ﺗؤﺛر ﻋﻠﻰ ﺗﻘدﯾرات اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى وﺗﺟﻌﻠﮭ ﺎ ﻟﯾﺳ ت ذات‬ ‫ﻓﺎﺋدة ‪ ٠‬رﺳم ‪ x i‬ﻣﻘﺎﺑل ‪ x i‬ﻣﻔﯾد اﯾﺿﺎ ﻓﻲ اﻛﺗﺷﺎف اﻟﻧﻘﺎط اﻟﺑﻌﯾ دة ﻋ ن ﺑﻘﯾ ﺔ اﻟﻧﻘ ﺎط‬ ‫واﻟﺗﻲ ﺗؤﺛر ﻋﻠﻰ ﺧواص اﻟﻧﻣوذج ‪٠‬‬ ‫وﺑﺎﻹﺿ ﺎﻓﺔ إﻟ ﻲ اﻟرﺳ وم اﻟﺳ ﺎﺑﻘﮫ ھﻧ ﺎك رﺳ وم أﺧ رى ﻟﻠﺑ واﻗﻰ ﺳ وف ﻧﻧﺎﻗﺷ ﮭﺎ‬ ‫ﺑﺈﺧﺗﺻﺎر‪.‬‬

‫ﻣﺛﺎل)‪(٧-٥‬‬

‫ﻓ ﻲ دراﺳ ﺔ ﻋ ن اﻟﻌﻼﻗ ﺔ ﺑ ﯾن اﻣﺗﺻ ﺎص اﻟﻣ ﺎء ﻓ ﻲ دﻗﯾ ق اﻟﻘﻣ ﺢ و اﻟﺧ واص اﻟﻣﺧﺗﻠﻔ ﺔ‬ ‫ﻟﻠ دﻗﯾق وﺗﺣ ت ﻓ رض ﻧﻣ وذج اﻧﺣ دار ﺧط ﻲ ﻣﺗﻌ دد ﺗ م اﻟﺣﺻ ول ﻋﻠ ﻰ اﻟﺑﯾﺎﻧ ﺎت ﻓ ﻲ‬ ‫اﻟﺟدول اﻟﺗﺎﻟﻰ ﺣﯾث )‪ Y (%‬ﺗﻣﺛل ﻛﻣﯾﺔ اﻣﺗﺻ ﺎص اﻟﻣ ﺎء و )‪ x1 (%‬ﻛﻣﯾ ﺔ اﻟﺑ روﺗﯾن و‬ ‫)‪ x 2 (%‬ﻛﻣﯾ ﺔ اﻟﻧﺷ ﺎ اﻟ ذي ﯾﺗﻌ رض ﻟﻠﻔﻘ د )اﻟ ﺗﺣطم ﻣﻘ ﺎس ﺑوﺣ دات ‪( Farrand‬‬ ‫واﻟﻣطﻠوب إﯾﺟﺎد ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ‪ ،‬ورﺳم ‪:‬‬ ‫)ب( رﺳم اﻟﺑواﻗﻲ ‪ ei‬ﻣﻘﺎﺑل ‪yˆ i‬‬ ‫)أ( رﺳم ‪ x1‬ﻣﻘﺎﺑل ‪x 2‬‬ ‫)ج( رﺳم اﻟﺑواﻗﻲ ‪ ei‬ﻣﻘﺎﺑل ‪ x1‬و ‪x 2‬‬

‫‪٤٠٧‬‬


x1 8 8 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . 0 0 . 0 1 2 2 0 . 1 1 3 2 2 2 3 1 3

5 9 . . 8 . . . . 2 . .

6 2 8 6 5 4 9 3

. 9 . . . .

9 1 4 2

x2 2 3 3 2 2 2 3 3 3 2 3 2 3 2 2 2 2 2 3 2

y 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

0 2 0 1 2 1 8 6 8 0 7 4 5 8 8 2 8 .

0 2 6 1 0 2 6 7 4 7 3 6 6 7 6 5 8 6 7 9

. . . . . . . .

9 7 7 9 9 9 3 2

. . . .

7 9 8 2

. . . . . .

8 9 8 2 8 2

: ‫اﻟﺣــل‬ : ‫ ھﻣﺎ‬y ‫ و‬X ‫اﻟﻣﺻﻔوﻓﺗﺎن‬ 1 1  X     1

8.5

2  8.9 3          13.2 28

30.9 32.7   y        49.2

: ‫ ھﻲ‬X  X ‫اﻟﻣﺻﻔوﻓﺔ‬

٤٠٨


1 8.5 2  1   1  1 8.9 3  1      X X  8.5 8.9   13.2 .         2 3   28     1 13.2 28 218.2 478   20  218.2 2515.88 5271.8 .    478 5271.8 13322 

: ‫ ھو‬X  y ‫واﻟﻣﺗﺟﮫ‬ 30.9 1   1  32.7 1     X  y  8.5 8.9   13.2 .         2 3   28     49.2  879.8   9710.06 .   21894.8

: ‫ ﺗﻌطﻰ ﻣن اﻟﻌﻼﻗﺔ اﻟﺗﺎﻟﯾﺔ‬b ‫ﻗﯾم‬ b  ( X  X) -1 X  y

:‫ﺣﯾث‬

٤٠٩


1

218.2 478   879.8  b 0   20  b   218.2 2515.88 5271.8 9710.06  1     b 2   478 5271.8 13322  21894.8 - 0.0762961 - 0.0103092   1.12878   - 0.0762961 0.00748409 - 0.000224073   - 0.0103092 - 0.000224073 0.000533635 

 879.8  9710.06   21894.8

 26.5433  0.63964 .    0.438 

: ‫إذن ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ‬ yˆ  26.5433  0.63964x 1  0.438x 2 : ‫ ﺗﺣﺳ ب ﻣ ن اﻟﻌﻼﻗ ﺔ اﻟﺗﺎﻟﯾ ﺔ‬e j ‫ ﻣﻌط ﺎة ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﺣﯾ ث‬e j ‫اﻟﺑ واﻗﻲ‬

. e j  y j  yˆ j yj 30.9 32.7 36.7 41.9 40.9 42.9 46.3 47.2 44 47.7 43.9 46.8 46.2 47 46.8 45.9 48.8 46.2 47.8 49.2

yˆ j

ej

32.8563 33.5501 34.6375 41.8277 42.4478 42.2114 47.5411 48.235 48.1168 45.4596 43.0789 46.419 46.9113 46.6846 45.3067 45.169 47.0587 47.1866 47.8512 47.2506

٤١٠

- 1.95628 - 0.850131

2.06248 0.0723431 - 1.5478 0.688559 - 1.24115 - 1.035 - 4.11683 2.24042 0.821113 0.380958 - 0.711257 0.315353 1.49332 0.730992 1.74132 - 0.986611 - 0.0512205 1.94943


‫)أ( رﺳم ‪ x 2‬ﻣﻘﺎﺑل ‪ x1‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪: (٤-٥‬‬ ‫‪x2‬‬ ‫‪50‬‬ ‫‪40‬‬ ‫‪30‬‬ ‫‪20‬‬ ‫‪10‬‬

‫‪x1‬‬

‫‪17.5‬‬

‫‪20‬‬

‫‪15‬‬

‫‪12.5‬‬

‫‪10‬‬

‫‪7.5‬‬

‫‪2.5‬‬

‫‪5‬‬

‫ﺷﻛل )‪(٤-٥‬‬ ‫ﯾﺗﺿﺢ ﻣن ﺷﻛل )‪ (٤-٥‬وﺟود ﺑﻌض اﻟﻣﺷﺎھدات اﻟﻘﺎﺻﯾﺔ‪.‬‬ ‫)ب( رﺳم اﻟﺑواﻗﻲ ‪ ei‬ﻣﻘﺎﺑل ‪ yˆ i‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪: (٥-٥‬‬ ‫‪ei‬‬ ‫‪e‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪y‬‬ ‫‪50‬‬

‫‪40‬‬

‫‪20‬‬

‫‪30‬‬

‫‪10‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫ﺷﻛل )‪(٥-٥‬‬

‫)ج( رﺳم اﻟﺑواﻗﻲ ‪ ei‬ﻣﻘﺎﺑل ‪ x1‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪: (٦-٥‬‬

‫‪٤١١‬‬


‫‪e‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪x1‬‬

‫‪17.5‬‬

‫‪20‬‬

‫‪15‬‬

‫‪12.5‬‬

‫‪10‬‬

‫‪7.5‬‬

‫‪2.5‬‬

‫‪5‬‬

‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫ﺷﻛل )‪(٦-٥‬‬ ‫رﺳم اﻟﺑواﻗﻲ ‪ ei‬ﻣﻘﺎﺑل ‪ x 2‬ﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪: (٧-٥‬‬

‫‪e‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪x2‬‬ ‫‪40‬‬

‫‪35‬‬

‫‪30‬‬

‫‪25‬‬

‫‪20‬‬

‫‪15‬‬

‫‪10‬‬

‫‪5‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫ﺷﻛل )‪(٧-٥‬‬ ‫‪٤١٢‬‬


‫)‪ (٢-٤-٥‬اﻟﺑواﻗﻰ اﻟﻣﻌﯾﺎرﯾﺔ وﺑواﻗﻰ ﺳﺗﯾودﻧت‬ ‫ﻓ ﻲ اﻟﻔﺻ ل اﻟﺳ ﺎﺑق ﺗﻧﺎوﻟﻧ ﺎ ﻧ وﻋﯾن ﻣ ن اﻟﺑ واﻗﻲ ھﻣ ﺎ اﻟﺑ واﻗﻲ اﻟﻣﻌﯾﺎرﯾ ﺔ وﺑ واﻗﻲ‬ ‫ﺳ ﺗﯾودﻧت وذﻟ ك ﻟﻠﻛﺷ ف ﻋ ن ﻣﺷ ﺎھدات ﻗﺎﺻ ﯾﺔ ﻓ ﻲ ‪ ٠ Y‬ﺗﻌ رف اﻟﺑ واﻗﻲ اﻟﻣﻌﯾﺎرﯾ ﺔ‬ ‫ﻛﺎﻟﺗﺎﻟﻲ‪.‬‬ ‫‪, j  1,2, , n‬‬

‫‪ej‬‬

‫‪dj ‬‬

‫‪MSE‬‬ ‫ﻟﻠﻣﺛ ﺎل )‪ (٧-٥‬ﻓ ﺎن رﺳ م اﻟﺑ واﻗﻲ اﻟﻣﻌﯾﺎرﯾ ﺔ ‪ d j‬ﻣﻘﺎﺑ ل ˆ‪ y‬ﻣﻌط ﺎة ﻓ ﻲ ﺷ ﻛل )‪( ٨-٥‬‬

‫وذﻟك ﻣن اﻟﺑﯾﺎﻧﺎت اﻟﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ‪٠‬‬ ‫‪yˆ j‬‬

‫‪dj‬‬ ‫‪- 1.12646‬‬ ‫‪- 0.489522‬‬

‫‪32.8563‬‬ ‫‪33.5501‬‬ ‫‪34.6375‬‬ ‫‪41.8277‬‬ ‫‪42.4478‬‬ ‫‪42.2114‬‬ ‫‪47.5411‬‬ ‫‪48.235‬‬ ‫‪48.1168‬‬ ‫‪45.4596‬‬ ‫‪43.0789‬‬ ‫‪46.419‬‬ ‫‪46.9113‬‬ ‫‪46.6846‬‬ ‫‪45.3067‬‬ ‫‪45.169‬‬ ‫‪47.0587‬‬ ‫‪47.1866‬‬ ‫‪47.8512‬‬ ‫‪47.2506‬‬

‫‪1.18762‬‬ ‫‪0.0416566‬‬ ‫‪- 0.891254‬‬ ‫‪0.396486‬‬ ‫‪- 0.714678‬‬ ‫‪- 0.595976‬‬ ‫‪- 2.37055‬‬ ‫‪1.29008‬‬ ‫‪0.472813‬‬ ‫‪0.219363‬‬ ‫‪- 0.409556‬‬ ‫‪0.181586‬‬ ‫‪0.859881‬‬ ‫‪0.42092‬‬ ‫‪1.00268‬‬ ‫‪- 0.56811‬‬ ‫‪- 0.0294938‬‬ ‫‪1.12252‬‬

‫‪٤١٣‬‬


‫‪d‬‬ ‫‪2‬‬ ‫‪1.5‬‬ ‫‪1‬‬ ‫‪0.5‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪50‬‬

‫‪47.5‬‬

‫‪45‬‬

‫‪42.5‬‬

‫‪37.5‬‬

‫‪40‬‬

‫‪35‬‬

‫‪32.5‬‬ ‫‪-0.5‬‬ ‫‪-1‬‬ ‫‪-1.5‬‬ ‫‪-2‬‬

‫ﺷﻛل )‪(٨-٥‬‬

‫ﯾﻣﻛن ﺗﻌرﯾف ﺑواﻗﻲ ﺳﺗﯾودﻧت ﻛﺎﻟﺗﺎﻟﻲ ‪:‬‬ ‫‪j  1,2,, n‬‬

‫‪,‬‬

‫‪ej‬‬ ‫) ‪MSE(1  h jj‬‬

‫‪rj ‬‬

‫ﺣﯾث ‪ h jj‬ھ و اﻟﻌﻧﺻ ر ﻋﻠ ﻰ اﻟﻘط ر اﻟرﺋﯾﺳ ﻲ ﻟﻠﻣﺻ ﻔوﻓﺔ ‪ H  X ( X X ) 1 X‬واﻟﻣﺳ ﻣﺎه‬ ‫ﺑﻣﺻﻔوﻓﺔ اﻟﻘﺑﻌﺔ و ‪. 0  h jj  1‬‬

‫ﻟﻠﻣﺛﺎل )‪ (٧-٥‬ﻗﯾم ﻛل ﻣن ‪ h jj‬واﻟﺑواﻗﻲ ‪ r j‬ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪٠‬‬

‫‪٤١٤‬‬


‫‪h jj‬‬

‫‪rj‬‬ ‫‪- 1.37185‬‬ ‫‪- 0.582809‬‬

‫‪e‬‬ ‫‪- 1.95628‬‬ ‫‪- 0.850131‬‬

‫‪0.325752‬‬ ‫‪0.294507‬‬ ‫‪0.280913‬‬ ‫‪0.0606484‬‬ ‫‪0.0602024‬‬ ‫‪0.0580149‬‬ ‫‪0.0782682‬‬ ‫‪0.0899469‬‬ ‫‪0.0907619‬‬ ‫‪0.0618541‬‬ ‫‪0.886413‬‬ ‫‪0.0644865‬‬ ‫‪0.0699287‬‬ ‫‪0.0849159‬‬ ‫‪0.0795539‬‬ ‫‪0.0590002‬‬ ‫‪0.0849517‬‬ ‫‪0.0908409‬‬ ‫‪0.08503‬‬ ‫‪0.0940101‬‬

‫‪1.40051‬‬ ‫‪0.0429803‬‬ ‫‪- 0.919357‬‬ ‫‪0.408513‬‬ ‫‪- 0.744403‬‬ ‫‪- 0.624735‬‬ ‫‪- 2.48605‬‬ ‫‪1.33193‬‬ ‫‪1.4029‬‬ ‫‪0.226797‬‬ ‫‪- 0.424674‬‬ ‫‪0.189825‬‬ ‫‪0.89627‬‬ ‫‪0.433915‬‬ ‫‪1.0482‬‬ ‫‪- 0.595816‬‬ ‫‪- 0.0308338‬‬ ‫‪1.17932‬‬

‫‪2.06248‬‬ ‫‪0.0723431‬‬ ‫‪- 1.5478‬‬ ‫‪0.688559‬‬ ‫‪- 1.24115‬‬ ‫‪- 1.035‬‬ ‫‪- 4.11683‬‬ ‫‪2.24042‬‬ ‫‪0.821113‬‬ ‫‪0.380958‬‬ ‫‪- 0.711257‬‬ ‫‪0.315353‬‬ ‫‪1.49332‬‬ ‫‪0.730992‬‬ ‫‪1.74132‬‬ ‫‪- 0.986611‬‬ ‫‪- 0.0512205‬‬ ‫‪1.94943‬‬

‫رﺳم اﻟﺑواﻗﻲ ‪ r j‬ﻣﻘﺎﺑل ‪ yˆ j‬ﻣﻌطﺎة ﻓﻲ ﺷﻛل )‪.(٩-٥‬‬ ‫ﺷﻛل )‪(٩-٥‬‬ ‫‪r‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪50‬‬

‫‪47.5‬‬

‫‪45‬‬

‫‪42.5‬‬

‫‪40‬‬

‫‪37.5‬‬

‫‪35‬‬

‫‪32.5‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫‪٤١٥‬‬


‫)‪ (٣-٤-٥‬اﺳﺗﺧدم ﻣﺻﻔوﻓﺔ اﻟﻘﺑﻌﺔ ﻟﻠﺗﻌرف ﻋﻠﻰ ﻣﺷﺎھدات ﻗﺎﺻﯾﺔ ﻓﻰ ﻗﯾم‪x‬‬ ‫اﻟﻌﻧﺻ ر اﻟﻘط ري ‪ h jj‬ﻓ ﻲ ﻣﺻ ﻔوﻓﺔ اﻟﻘﺑﻌ ﺔ ‪ H‬ﯾﻌﺗﺑ ر ﻣؤﺷ ر ﻣﻔﯾ د ﻟﻣ ﺎ إذا ﻛﺎﻧ ت‬ ‫اﻟﻣﺷﺎھدة ﻗﺎﺻﯾﺔ أم ﻻ ﺑﺎﻟﻧﺳﺑﺔ ﻟﻘﯾم ‪ x‬وذﻟك ﻓﻲ دراﺳﺔ ﻣﺗﻌددة اﻟﻣﺗﻐﯾ رات‪ .‬وھ و ﯾﺷ ﯾر إﻟ ﻰ‬ ‫ﻣﺎ إذا ﻛﺎﻧت اﻟﻘﯾم ‪ x‬ﻟﻠﻣﺷﺎھدة ‪ j‬ﻗﺎﺻﯾﺔ أم ﻻ وذﻟك ﻷن ‪ h jj‬ﯾﺷﯾر إﻟﻰ اﻟﻣﺳ ﺎﻓﺔ ﺑ ﯾن ﻗ ﯾم ‪x‬‬ ‫ﻟﻠﻣﺷﺎھدة ‪ j‬وﻣﺗوﺳط اﻟﻘﯾم ‪ x‬ﻟﻠﻣﺷﺎھدات ‪ n‬ﺟﻣﯾﻌﺎ‪ .‬وھﻛذا ﯾﺷﯾر ﻛﺑر ﻗﯾﻣﺔ اﻟﻌ زم ‪ h jj‬إﻟ ﻰ‬ ‫أن اﻟﻣﺷ ﺎھدة ‪ j‬ﺑﻌﯾ دة ﻋ ن ﻣرﻛ ز اﻟﻣﺷ ﺎھدات ﺟﻣﯾﻌ ﺎ‪.‬وﻋ ﺎدة ﺗﻌﺗﺑ ر ﻗﯾﻣ ﺔ ‪ h jj‬ﻛﺑﯾ رة إذا‬ ‫ﺗﺟﺎوزت ﺿﻌف ﻣﺗوﺳط ﻗﯾم ‪] h jj‬وﻧرﻣز ﻟﮫ ﺑﺎﻟرﻣز ‪ h‬ﺣﯾث‪:‬‬ ‫‪p 1‬‬ ‫‪n‬‬

‫‪‬‬

‫‪ h jj‬‬ ‫‪n‬‬

‫‪h‬‬

‫وذﻟ ك ﻷن ﻣﺟﻣ وع ﻗ ﯾم اﻟﻌﻧﺎﺻ ر اﻟﻘطرﯾ ﺔ ﯾﺳ ﺎوى ﻋ دد ﻣﻌ ﺎﻟم ﻧﻣ وذج اﻻﻧﺣ در اﻟﺧط ﻲ ‪.‬‬ ‫وﺑﺎﻟﺗ ﺎﻟﻲ ﻓ ﺈن ﻗ ﯾم ‪ h jj‬اﻟﺗ ﻲ ﺗزﯾ د ﻋ ن )‪ 2(p  1‬ﺗﻌﺗﺑ ر وﻓﻘ ﺎ ﻟﮭ ذه اﻟﻘﺎﻋ دة ﻣؤﺷ را ﻟوﺟ ود‬ ‫‪2‬‬

‫ﻣؤﺷرات ﻗﺎﺻﯾﺔ ﻣن ﺣﯾث ﻗﯾم ‪ x‬ﻟﮭذه اﻟﻣﺷﺎھدات‪ .‬اﯾﺿ ﺎ ھﻧ ﺎك اﻗﺗ راح ﺛ ﺎﻧﻰ أن اﻟراﻓﻌ ﮫ‬ ‫اﻟﺗﻰ ﺗزﯾ د ﻗﯾﻣﺗ ﮫ ﻋ ن ‪ 0.5‬ﻛﺑﯾ ره وﺗﺷ ﯾر إﻟ ﻰ أن اﻟﺣﺎﻟ ﺔ ﺷ ﺎذه وﺗﺳ ﺗدﻋﻲ دراﺳ ﺗﮭﺎ‪ .‬وﻷﻧ ﮫ‬ ‫ﻓﻲ اﻟﻌﯾﻧﺎت اﻟﺻﻐﯾرة ﯾﺗوﻗﻊ ﺗرﺷﯾﺢ ﻋدد ﻛﺑﯾر ﻣن اﻟﺣ ﺎﻻت اﻟﺷ ﺎذة ﻟﻔﺣﺻ ﮭﺎ ﻓﮭﻧﺎك اﻗﺗ راح‬ ‫ﺛﺎﻟث ﺑدراﺳﺔ ﻛل اﻟﺣﺎﻻت اﻟﺗﻰ ﺗزﯾد ﻗﯾم راﻓﻌﺗﮭﺎ ) ‪ ( h jj‬ﻋ ن ﺛﻼﺛ ﮫ أﺿ ﻌﺎف ﻣﺗوﺳ ط ﻗﯾﻣ ﺔ‬ ‫اﻟراﻓﻌ ﺎت‬

‫‪3(p  1) ‬‬ ‫‪‬‬ ‫‪ h jj ‬‬ ‫‪‬‬ ‫‪n ‬‬ ‫‪‬‬

‫ﺑ دﻻ ﻣ ن دراﺳ ﺔ اﻟﺣ ﺎﻻت اﻟﺗ ﻰ ﺗزﯾ د ﻗ ﯾم راﻓﻌﺗﮭ ﺎ ‪ h jj‬ﻋ ن‬

‫ﺿﻌف ﻣﺗوﺳط ﻗﯾم اﻟراﻓﻌﺎت ‪.  h jj  2(p  1) ‬‬ ‫‪‬‬

‫‪n‬‬

‫‪‬‬

‫ﻟﻠﻣﺛﺎل )‪ (٧-٥‬ﯾﺗﺿﺢ ﻣن ﺟ دول ﻗ ﯾم اﻟراﻓﻌ ﺔ ان ھﻧ ﺎك ﺣ ﺎﻟﺗﯾن ﺗزﯾ د ﻗ ﯾم راﻓﻌﺗﮭ ﺎ ﻋ ن‬ ‫ﺿﻌف ﻣﺗوﺳط ﻗﯾم اﻟراﻓﻌ ﺎت ‪  2(p  1)  2(3)  0.3 ‬وھ ﻲ )‪ (1‬و )‪ .(11‬ھ ذا وﻗ د ﺑﻠﻐ ت‬ ‫‪‬‬

‫‪2‬‬

‫‪20‬‬

‫‪‬‬

‫ﻗ ﯾم اﻟراﻓﻌ ﺎت اﻟﻣﻧ ﺎظرة ﻟﮭ ذه اﻟﺣ ﺎﻻت ﻋﻠ ﻲ اﻟﺗ واﻟﻲ ‪ .0.886413 , 0.325752‬وإذا‬ ‫اﺧ ذﻧﺎ ﺑ ﺎﻻﻗﺗراح اﻟﺛ ﺎﻧﻰ ﻓﻧﺟ د أن اﻟﺣﺎﻟ ﺔ رﻗ م )‪ (11‬ھ ﻰ اﻟﺣﺎﻟ ﺔ اﻟوﺣﯾ دة اﻟﺗ ﻰ ﺗزﯾ د ﻗﯾﻣ ﺔ‬ ‫راﻓﻌﺗﮭ ﺎ ﻋ ن ﺛﻼﺛ ﺔ اﺿ ﻌﺎف ﻣﺗوﺳ ط ﻗ ﯾم اﻟراﻓﻌ ﺎت )‪ .(0.45‬واذا اﺧ ذﻧﺎ ﺑ ﺎﻻﻗﺗراح اﻟﺛﺎﻟ ث‬ ‫ﻧﻼﺣظ وﺟود ﺣﺎﻟﺔ ﻗﺎﺻﯾﮫ واﺣدة وھﻲ اﻟﺣﺎﻟﺔ رﻗم )‪ (11‬واﻟﺗﻰ ﺗزﯾد ﻋن ‪.0.5‬‬

‫)‪ (٤-٤-٥‬اﺳﺗﺧدم ﺑواﻗﻰ ﺳﺗﯾودﻧت اﻟﻣﺣذوﻓﺔ ﻟﻠﺗﻌرف ﻋﻠﻰ ﻗﯾم ﻗﺎﺻﯾﺔ ﻟﻠﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ‬

‫‪٤١٦‬‬


‫ﺑﺎﻗﻲ ﯾﺳﻣﻰ ﺑﺎﻗﻲ ﺳﺗﯾودﻧت اﻟﻣﺣذوف ﯾﻌرف ﻛﺎﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪,j  1,2, ,n .‬‬

‫‪ej‬‬ ‫) ‪s 2(j) (1  h jj‬‬

‫‪tj ‬‬

‫ﺣﯾث ‪:‬‬ ‫]) ‪(n  p  1)MSE  [e j2 (1  h jj‬‬ ‫‪np2‬‬

‫‪s(2j) ‬‬

‫ﻓﺈﻧ ﮫ ﺗﺣ ت اﻟﻔ روض اﻟﻘﯾﺎﺳ ﯾﮫ ﻓ ﺎن ‪ t j‬ﯾﺗﺑ ﻊ ﺗوزﯾ ﻊ ‪ t‬ﺑ درﺟﺎت ﺣرﯾ ﮫ ‪ ٠ n  p  2‬ﺗﻌﺗﺑ ر‬ ‫ﺑ واﻗﻲ ﺳ ﺗﯾودﻧت اﻟﻣﺣذوﻓ ﺔ طرﯾﻘ ﺔ ﻣﻧﺎﺳ ﺑﺔ ﻷﻛﺗﺷ ﺎف اﻟﻘ ﯾم اﻟﻘﺎﺻ ﯾﮫ‪ ٠‬ﺑ واﻗﻲ ﺳ ﺗﯾودﻧت‬ ‫اﻟﻣﺣذوﻓﮫ ﻣﻌطﺎة ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪٠‬‬

‫وﯾ ﺗم ﻣﻘﺎرﻧ ﺔ ﻗ ﯾم ‪ t j‬ﺑﺎﻟﻘﯾﻣ ﺔ اﻟﺟدوﻟﯾ ﺔ‬

‫)‪(n  p  2‬‬

‫‪‬‬ ‫‪2‬‬

‫‪1‬‬

‫‪t‬‬

‫ﻋﻧ د درﺟ ﺎت‬

‫ﺣرﯾ ﺔ ‪n  p  2‬‬

‫و‬

‫ذﻟ ك ﻟﺗﺣدﯾ د ﻣﺷ ﺎھدات اﻟﻣﺗﻐﯾ ر اﻟﺗ ﺎﺑﻊ اﻟﻘﺎﺻ ﯾﮫ ﻟﻠﻣﺛ ﺎل )‪ .(٧-٥‬وﺑﻣ ﺎ ان‬ ‫ﺣﯾث ‪   .1‬وﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ھذه اﻟﻘﯾﻣﺔ ﻣن ﺑرﻧﺎﻣﺞ ‪Mathematica‬‬ ‫وﺑﻣ ﺎ أن اﻟﻣﺷ ﺎھدة ‪ y9  44‬ﻟﮭ ﺎ ﺑ ﺎﻗﻲ ﺳ ﺗودﻧت اﻟﻣﺣ ذوف ‪ t9  2.56256‬وﺑﻣ ﺎ أن‬ ‫‪ t 9  2.56256  1.746‬ﻓﺈﻧﻧﺎ ﻧﻌﺗﺑر أن اﻟﻣﺷﺎھدة ‪ y9‬ﻣﺷﺎھدة ﻗﺎﺻﯾﮫ‪.‬‬ ‫‪t 0.05 (16)  1.746‬‬

‫‪٤١٧‬‬


‫‪h jj‬‬

‫‪tj‬‬ ‫‪1.41407‬‬ ‫‪0.600746‬‬

‫‪1.44361‬‬ ‫‪0.0443031‬‬ ‫‪0.947652‬‬ ‫‪0.421085‬‬ ‫‪0.767313‬‬ ‫‪0.643962‬‬ ‫‪2.56256‬‬ ‫‪1.37292‬‬ ‫‪1.44607‬‬ ‫‪0.233777‬‬ ‫‪0.437743‬‬ ‫‪0.195667‬‬ ‫‪0.923854‬‬ ‫‪0.447269‬‬ ‫‪1.08046‬‬ ‫‪0.614154‬‬ ‫‪0.0317828‬‬ ‫‪1.21561‬‬

‫‪1.95628‬‬ ‫‪0.850131‬‬

‫‪0.325752‬‬ ‫‪0.294507‬‬ ‫‪0.280913‬‬ ‫‪0.0606484‬‬ ‫‪0.0602024‬‬ ‫‪0.0580149‬‬ ‫‪0.0782682‬‬ ‫‪0.0899469‬‬ ‫‪0.0907619‬‬ ‫‪0.0618541‬‬ ‫‪0.886413‬‬ ‫‪0.0644865‬‬ ‫‪0.0699287‬‬ ‫‪0.0849159‬‬ ‫‪0.0795539‬‬ ‫‪0.0590002‬‬ ‫‪0.0849517‬‬ ‫‪0.0908409‬‬ ‫‪0.08503‬‬ ‫‪0.0940101‬‬

‫‪2.06248‬‬ ‫‪0.0723431‬‬ ‫‪1.5478‬‬ ‫‪0.688559‬‬ ‫‪1.24115‬‬ ‫‪1.035‬‬ ‫‪4.11683‬‬ ‫‪2.24042‬‬ ‫‪0.821113‬‬ ‫‪0.380958‬‬ ‫‪0.711257‬‬ ‫‪0.315353‬‬ ‫‪1.49332‬‬ ‫‪0.730992‬‬ ‫‪1.74132‬‬ ‫‪0.986611‬‬ ‫‪0.0512205‬‬ ‫‪1.94943‬‬

‫رﺳم ﺑواﻗﻲ ﺳﺗﯾودﻧت اﻟﻣﺣذوﻓﺔ ﻣﻘﺎﺑل ‪ yˆ j‬ﻣﻌطﺎة ﻓﻲ ﺷﻛل )‪٠ (١٠-٥‬‬ ‫‪t‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪y‬‬

‫‪50‬‬

‫‪47.5‬‬

‫‪45‬‬

‫‪42.5‬‬

‫‪40‬‬

‫‪37.5‬‬

‫‪35‬‬

‫‪32.5‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬

‫‪٤١٨‬‬


(١٠-٥) ‫ﺷﻛل‬

(٨-٥)‫ﻣﺛﺎل‬ ‫ وﻓﯾﻣﺎ ﯾﻠﻰ‬Mathematica ‫( ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬٧- ٥) ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل‬ . ‫ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ p=2 2 y={30.9,32.7,36.7,41.9,40.9,42.9,46.3,47.2,44,47.7,43.9, 46.8,46.2,47,46.8,45.9,48.8,46.2,47.8,49.2}; x1={8.5,8.9,10.6,10.2,9.8,10.8,11.6,12,12.5,10.4,1.2,11.9,11 .3,13,12.9,12,12.9,13.1,11.4,13.2};

x2={2,3,3,20,22,20,31,32,31,28,36,28,30,27,24,25,28,28,32,28 } {2,3,3,20,22,20,31,32,31,28,36,28,30,27,24,25,28,28,32,28} ss=Transpose[{x1,x2,y}]; TableForm[ss]; l[x_]:=Length[x] xx=Table[{1,x1[[i]],x2[[i]]},{i,1,l[x1]}]; xpr=Transpose[xx]; w=xpr.xx; v=Inverse[w]; xpy=xpr.y {879.8,9710.06,21894.8} {879.8`,9710.06`,21894.8`}; bb=v.xpy {26.5433,0.63964,0.438} yy =bb[[1]]+bb[[2]]*x1+bb[[3]]*x2 ; e=y-yy; ss22=Transpose[{y,yy,e}]; TableForm[ss22]; t=Transpose[{x1,x2}]; c=PlotRange{{0,20},{0,50}} PlotRange{{0,20},{0,50}} c2=Prolog{PointSize[0.03]} Prolog{PointSize[0.03]} g= ListPlot[t,c,c2,AxesLabel{"x1","x2"}] ٤١٩


x2 50 40 30 20 10 x1 2.5

5

7.5

10

12.5

15

17.5

20

Graphics t=Transpose[{y,e}]; c=PlotRange{{0,50},{-3,3}} PlotRange{{0,50},{-3,3}} c2=Prolog{PointSize[0.03]} Prolog{PointSize[0.03]} g1= ListPlot[t,c,c2,AxesLabel{"y","e"}] e 3 2 1 y 10

20

30

40

50

-1 -2 -3

Graphics t=Transpose[{x1,e}]; c=PlotRange{{0,20},{-3,3}} PlotRange{{0,20},{-3,3}} c2=Prolog{PointSize[0.03]} Prolog{PointSize[0.03]} g2= ListPlot[t,c,c2,AxesLabel{"x1","e"}]

٤٢٠


e 3 2 1 x1 2.5

5

7.5

10

12.5

15

17.5

20

-1 -2 -3

Graphics t=Transpose[{x2,e}]; c=PlotRange{{0,40},{-3,3}} PlotRange{{0,40},{-3,3}} c2=Prolog{PointSize[0.03]} Prolog{PointSize[0.03]} g2= ListPlot[t,c,c2,AxesLabel{"x2","e"}] e 3 2 1 x2 5

10

15

20

25

30

-1 -2 -3

Graphics

٤٢١

35

40


n=l[x1] 20 k[x_]:=Apply[Plus,x] mse=k[e^2]/(n-p-1) 2.83856

di  e 



mse

{-1.16113,-0.504588,1.22417,0.0429386,-0.918683,0.408688,0.736673,-0.614318,-2.44351,1.32978,0.487365,0.226114,0.422161,0.187175,0.886345,0.433874,1.03354,-0.585594,0.0304015,1.15706} pp3=Transpose[{yy,di}]; TableForm[pp3]; aa=PlotRange{{30,50},{-2,2}} PlotRange{{30,50},{-2,2}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

 g  ListPlotpp3, aa, a2, AxesLabel  "y ", "d" d 2

1.5 1 0.5  y

32.5

35

37.5

40

42.5

45

-0.5 -1 -1.5 -2

Graphics

hjj=xx.v.xpr;

٤٢٢

47.5

50


hii={hjj[[1,1]],hjj[[2,2]],hjj[[3,3]],hjj[[4,4]],hjj[[5,5]], hjj[[6,6]],hjj[[7,7]],hjj[[8,8]],hjj[[9,9]],hjj[[10,10]],hjj [[11,11]],hjj[[12,12]],hjj[[13,13]],hjj[[14,14]],hjj[[15,15] ],hjj[[16,16]],hjj[[17,17]],hjj[[18,18]],hjj[[19,19]],hjj[[2 0,20]]} {0.325752,0.294507,0.280913,0.0606484,0.0602024,0.0580149,0. 0782682,0.0899469,0.0907619,0.0618541,0.886413,0.0644865,0.0 699287,0.0849159,0.0795539,0.0590002,0.0849517,0.0908409,0.0 8503,0.0940101}

e ri    N mse1  hii

{-1.41407,-0.600746,1.44361,0.0443031,-0.947652,0.421085,0.767313,-0.643962,-2.56256,1.37292,1.44607,0.233777,0.437743,0.195667,0.923854,0.447269,1.08046,-0.614154,0.0317828,1.21561} pp4=Transpose[{e,hii,ri}]; TableForm[pp4]; pp5=Transpose[{yy,ri}]; aa=PlotRange{{30,50},{-3,3}} PlotRange{{30,50},{-3,3}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

 g  ListPlotpp5, aa, a2, AxesLabel  "y ", "r" r 3 2 1  y

32.5

35

37.5

40

42.5

45

47.5

50

-1 -2 -3

Graphics kk=3 3

s2j 

n  kk mse  e2  1  hii

n  kk  1

{2.66122,2.95194,2.64624,3.01562,2.85665,2.98451,2.91152,2. 9424,1.85097,2.68157,2.64498,3.00627,2.98197,3.00918,2.86455 ,2.98048,2.80886,2.94905,3.01579,2.75381} ٤٢٣


e tj    N s2j1  hii {-1.46043,-0.589096,1.49515,0.0429828,-0.944647,0.41066,0.757639,-0.632497,-3.1734,1.41254,1.49805,0.227163,0.427087,0.190039,0.919654,0.436491,1.08615,-0.602538,0.0308347,1.23418} pp7=Transpose[{e,hii,tj}]; TableForm[pp7]; pp9=Transpose[{yy,tj}]; aa=PlotRange{{30,50},{-3,3}} PlotRange{{30,50},{-3,3}} a2=Prolog{PointSize[.02]} Prolog{PointSize[0.02]}

 g33  ListPlotpp9, aa, a2, AxesLabel  "y ", "t" t 3 2 1  y

32.5

35

37.5

40

42.5

45

47.5

50

-1 -2 -3

Graphics <<Statistics`ContinuousDistributions` =.1 0.1 TT=Quantile[StudentTDistribution[n-kk-1],1-(/2)] 1.74588

‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ ‫اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬x1 ‫ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻻول و اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬x2‫ اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻟﺜﺎﻧﻰ واﻟﻘﺎﺋﻤﺔ‬y . ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ‬

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬

: ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ھﻲ‬ yˆ  26.5433  0.63964x 1  0.438x 2 ‫وﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ bb=v.xpy ٤٢٤


‫واﻟﻣﺧرج ھو‬ ‫}‪{26.5433,0.63964,0.438‬‬

‫اﻟﺑواﻗﻲ ‪ e j‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪e=y-yy‬‬

‫ﺟدول ‪ y j , yˆ j , e j‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]‪TableForm[ss22‬‬

‫رﺳم ‪ x 2‬ﻣﻘﺎﺑل ‪ x1‬اﻟﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪ (٤-٥‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]}"‪g= ListPlot[t,c,c2,AxesLabel{"x1","x2‬‬

‫رﺳم اﻟﺑواﻗﻲ‬

‫‪e‬‬

‫ﻣﻘﺎﺑل‬

‫ˆ‪y‬‬

‫اﻟﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪ (٥-٥‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]}"‪g1= ListPlot[t,c,c2,AxesLabel{"y","e‬‬

‫رﺳم اﻟﺑواﻗﻲ ‪ e‬ﻣﻘﺎﺑل ‪ x1‬اﻟﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪ (٦-٥‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]}"‪g2= ListPlot[t,c,c2,AxesLabel{"x1","e‬‬

‫رﺳم اﻟﺑواﻗﻲ ‪ e‬ﻣﻘﺎﺑل ‪ x 2‬اﻟﻣوﺿﺢ ﻓﻲ ﺷﻛل )‪ (٧-٥‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]}"‪g2= ListPlot[t,c,c2,AxesLabel{"x2","e‬‬

‫ﺟدول اﻟﺑواﻗﻰ اﻟﻣﻌﯾﺎرﯾﺔ‬

‫‪yˆ j , d j‬‬

‫ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]‪TableForm[pp3‬‬

‫رﺳ م اﻟﺑ واﻗﻲ اﻟﻣﻌﯾﺎرﯾ ﺔ‬ ‫اﻻﻣر‬

‫‪d‬‬

‫ﻣﻘﺎﺑ ل ˆ‪ y‬اﻟﻣﻌط ﺎة ﻓ ﻲ ﺷ ﻛل )‪ ( ٨-٥‬ﻧﺣﺻ ل ﻋﻠﯾﮭ ﺎ ﻣ ن‬

‫‪‬‬ ‫‪g  ListPlotpp3, aa, a2, AxesLabel  "y‬‬ ‫‪", "d"‬‬

‫ﺟدول‬

‫‪h j , e j , rj‬‬

‫واﻟﺑواﻗﻲ ‪ r‬ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫]‪TableForm[pp4‬‬

‫‪٤٢٥‬‬


‫رﺳم اﻟﺑواﻗﻲ‬

‫‪ri‬‬

‫ﻣﻘﺎﺑل ˆ‪ y‬اﻟﻣﻌطﺎة ﻓﻲ ﺷﻛل )‪ ( ٩-٥‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫‪‬‬ ‫‪g  ListPlotpp5, aa, a2, AxesLabel  "y‬‬ ‫‪", "r"‬‬

‫ﺟدول ﻗﯾم ﻛل ﻣن‬

‫‪h, e‬‬

‫واﻟﺑواﻗﻲ‬

‫‪tj‬‬

‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]‪TableForm[pp7‬‬

‫رﺳم اﻟﺑواﻗﻲ‬

‫‪tj‬‬

‫ﻣﻘﺎﺑل ˆ‪ y‬اﻟﻣﻌطﺎة ﻓﻲ ﺷﻛل )‪ ( ١٠-٥‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬

‫‪‬‬ ‫‪g33  ListPlotpp9, aa, a2, AxesLabel  "y‬‬ ‫‪", "t"‬‬

‫ﻣﺛﺎل)‪(٩-٥‬‬ ‫إﺳﺗﺧدم اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ ﻟﻠﺘﻌﺮف ﻋﻠﻰ ﻣﺸﺎھﺪات ﻗﺎﺻﯿﺔ ﻟﻠﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪:‬‬ ‫‪X1={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4.53,4.5‬‬ ‫;}‪5,4.62,5.86‬‬ ‫‪X2={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.270,0.24‬‬ ‫;}‪0,0.259,0.252,0.258,0.293‬‬ ‫‪X3={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.274,0.26‬‬ ‫;}‪4,0.280,0.266,0.268,0.286‬‬ ‫‪y={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.512,0.405‬‬ ‫;}‪,0.450,0.480,0.456,0.506‬‬

‫اﻟﺣل ‪:‬‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺣزﻣﺔ‬ ‫اﻟﺟﺎھزة‬ ‫`‪Statistics`LinearRegression‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`LinearRegression‬‬ ‫‪teamera={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4‬‬ ‫;}‪.53,4.55,4.62,5.86‬‬ ‫‪٤٢٦‬‬


‫‪ownbavg={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.2‬‬ ‫;}‪70,0.240,0.259,0.252,0.258,0.293‬‬ ‫‪oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2‬‬ ‫;}‪74,0.264,0.280,0.266,0.268,0.286‬‬ ‫‪winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51‬‬ ‫;}‪2,0.405,0.450,0.480,0.456,0.506‬‬ ‫]‪Clear[dpoints‬‬ ‫‪dpoints=Table[{teamera[[i]],ownbavg[[i]],oppbavg[[i]],w‬‬ ‫;]}]‪inpct[[i]]},{i,1,Length[winpct‬‬ ‫‪Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport‬‬‫]‪>StudentizedResiduals‬‬ ‫‪{StudentizedResiduals{0.639771,0.789271,-0.862064,‬‬‫‪1.06129,1.20324,1.24538,-1.35245,-1.49127,0.620229,‬‬‫}}‪0.813636,0.131561,1.51698,-0.412657,0.25586‬‬ ‫`‪<<Statistics`NormalDistribution‬‬ ‫;‪n=14‬‬ ‫;‪kk=4‬‬ ‫;‪=0.05‬‬ ‫])‪Quantile[StudentTDistribution[n-kk-1],1-(/2‬‬ ‫‪2.26216‬‬

‫اوﻻ ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻟﺜﺎﻧﻰ و ‪ ownbavg‬ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻻول و اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه ‪teamera‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪.‬اﯾﻀﺎ ‪ winpct‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻟﺜﺎﻟﺚ واﻟﻘﺎﺋﻤﺔ‪oppbavg‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬

‫ﺣﺠﻢ اﻟﻌﯿﻨﺔ ﻣﻦ اﻻﻣﺮ‬ ‫‪ n=14‬وﻋﺪد اﻟﻤﻌﺎﻟﻢ ﻣﻦ اﻻﻣﺮ‬ ‫‪kk=4‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬

‫ﻣن اﻻﻣر‬

‫ﻗﯾم اﻟﺑواﻗﻲ ‪t j‬‬ ‫‪Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport‬‬‫]‪>StudentizedResiduals‬‬

‫وﯾ ﺗم ﻣﻘﺎرﻧ ﺔ ﻗ ﯾم ‪ t j‬ﺑﺎﻟﻘﯾﻣ ﺔ اﻟﺟدوﻟﯾ ﺔ‬

‫)‪(n  p  2‬‬

‫‪‬‬ ‫‪2‬‬

‫‪1‬‬

‫‪t‬‬

‫ﻋﻧ د درﺟ ﺎت‬

‫ﺣرﯾ ﺔ ‪n  p  2‬‬

‫و‬

‫ذﻟ ك ﻟﺗﺣدﯾ د ﻣﺷ ﺎھدات اﻟﻣﺗﻐﯾ ر اﻟﺗ ﺎﺑﻊ اﻟﻘﺎﺻ ﯾﮫ ﻟﻠﻣﺛ ﺎل )‪ (٩-٥‬وﺑﻣ ﺎ ان‬ ‫ﺣﯾث ‪   .05‬وﯾﻣﻛن اﻟﺣﺻول ﻋﻠﻰ ھذه اﻟﻘﯾﻣﺔ ﻣن اﻟﺑرﻧﺎﻣﺞ اﻟﺗﺎﻟﻰ وﺑﺎﺳﺗﺧدام اﻻﻣر‬

‫‪t 0.05 (9)  2.26216‬‬

‫])‪Quantile[StudentTDistribution[n-kk-1],1-(/2‬‬

‫ﯾﻼﺣظ ﻋدم وﺟود اى ﻣﺷﺎھدات ﻗﺎﺻﯾﺔ‪.‬‬ ‫)‪ (٥-٤-٥‬ﺗﺣدﯾد اﻟﻣﺷﺎھدات اﻟﻣؤﺛرة‬ ‫‪٤٢٧‬‬


‫ﺑﻌ د ﺗﺣدﯾ د اﻟﻣﺷ ﺎھدات اﻟﻘﺎﺻ ﯾﮫ ﺑﺎﻟﻧﺳ ﺑﺔ ﻟﻘﯾﻣﮭ ﺎ ﻓ ﻲ ‪ x‬و )او( ﻗﯾﻣﺗﮭ ﺎ ﻓ ﻲ ‪ y‬ﺗﻛ ون‬ ‫ﻟﺧطوه اﻟﺗﺎﻟﯾﮫ ھو ﺗﺣدﯾد ﻣﺎ إذا ﻛﺎﻧت ھﻲ اﻟﻣﺷﺎھدات ﻣؤﺛرة )‪ (in fluential‬ام ﻻ؟‬ ‫وﺗﻌﺗﺑ ر اﻟﻣﺷ ﺎھدة ﻣ ؤﺛرة إذا ﻛ ﺎن اﺳ ﺗﺑﻌﺎدھﺎ ﯾﺣ دث ﺗﻐﯾ را ﻣﻠﺣوظ ﺎ ﻓ ﻲ ﻗ ﯾم ﻧﻣ وذج‬ ‫اﻻﻧﺣ دار واﻹﺣﺻ ﺎءات اﻟﻣرﺗﺑط ﺔ ﺑﮭ ﺎ‪ .‬وﺳ وف ﻧﻧ ﺎﻗش ھﻧ ﺎ ﻣﻘﯾ ﺎس ﻟﻠﺗ ﺄﺛﯾر وھ ﻲ ﻣﻘ ﺎﯾﯾس‬ ‫ﻣﺳﺗﺧدﻣﺔ ﻋﻠﻰ ﻧطﺎق واﺳﻊ ﻓﻲ اﻟﺗطﺑﯾ ق اﻟﻌﻣﻠ ﻲ وﯾﻌﺗﻣ د ﻛ ل ﻣﻘ ﺎﯾﯾس ﻋﻠ ﻲ ﺣ ذف ﻣﺷ ﺎھدة‬ ‫واﺣدة ﻟﻘﯾﺎس ﺗﺄﺛﯾرھﺎ‪.‬‬ ‫)ا( اﻟﺗﺎﺛﯾر ﻋﻠﻰ اﻟﻘﯾم اﻟﻣﻘدرة‬ ‫ﻟﻘﯾﺎس ﺗﺄﺛﯾر اﻟﻣﺷﺎھدة ‪ j‬ﻋﻠﻲ اﻟﻘﯾﻣﺔ اﻟﻣﻘدرة ﺳوف ﺗﺳﺗﺧدم اﻟﻣﻘﯾﺎس اﻟﺗﺎﻟﻲ‪:‬‬ ‫‪, j  1,2,...,n.‬‬

‫)‪yˆ j  yˆ ( j‬‬ ‫‪s(2j) h jj‬‬

‫‪DFFITS j ‬‬

‫وﯾرﻣ ز اﻟﺣرﻓ ﺎن ‪ DF‬ﻟﻠﻔ رق ﺑ ﯾن اﻟﻘﯾﻣ ﺔ اﻟﻣﻘ دره ‪ yˆ j‬ﻟﻠﻣﺷ ﺎھدة ‪ y j‬ﻋﻧ د اﺳ ﺗﺧدام‬ ‫ﺟﻣﯾ ﻊ اﻟﻣﺷ ﺎھدات ‪ n‬ﻓ ﻲ إﯾﺟ ﺎد ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار اﻟﻣﻘ درة وﺑ ﯾن اﻟﻘﯾﻣ ﺔ اﻟﻣﻘ درة )‪ yˆ ( j‬اﻟﺗ ﻲ‬ ‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻋﻧد ﺣذف اﻟﻣﺷﺎھدة ‪ j‬ﻓﻲ ﻋﻣﻠﯾﺔ ﺗﻘدﯾر ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة‪ .‬وﻋﻠﻲ ذﻟ ك‬ ‫‪ DFFITS j‬ﯾﻣﺛ ل ﻋ دد اﻻﻧﺣراﻓ ﺎت اﻟﻣﻌﯾﺎرﯾ ﺔ واﻟﺗ ﻰ ﺗﺗﻐﯾرھ ﺎ اﻟﻘ ﯾم اﻟﻣﻘ دره ‪ yˆ j‬ﻋﻧ د ﺣ ذف‬ ‫اﻟﻣﺷﺎھدة ‪ .j‬وﯾﻣﻛن ﺣﺳﺎب ‪ DFFITS j‬ﻣﺳﺗﺧدﻣﯾن ﻓﻘط اﻟﻧﺗﺎﺋﺞ اﻟﻣﺗ وﻓره ﻣ ن ﺗﻘ دﯾر ﻣﺟﻣ وع‬ ‫اﻟﺑﯾﺎﻧﺎت ﺑﻛﺎﻣﻠﮭﺎ وذﻟك ﺗﺑﻌﺎ ً ﻟﻠﻌﻼﻗﺔ اﻟﺗﺎﻟﯾﺔ‪:‬‬ ‫‪1‬‬

‫‪1‬‬

‫‪ h jj  2‬‬ ‫‪ h jj  2‬‬ ‫‪DFFITS j  ‬‬ ‫‪‬‬ ‫‪t‬‬ ‫‪ 1  h ‬‬ ‫‪ 1  h  j‬‬ ‫‪jj ‬‬ ‫‪jj ‬‬ ‫‪‬‬ ‫‪‬‬

‫ﺣﯾ ث ‪ t j‬ﺗﻣﺛ ل ﺑ ﺎﻗﻲ ﺳ ﺗﯾودﻧت اﻟﻣﺣ ذوف‪ .‬ﻋﻣوﻣ ﺎ ً ﻓ ﻰ اﻟﻌﯾﻧ ﺎت اﻟﻛﺑﯾ رة أى ﻣﺷ ﺎھدة‬ ‫ﺗﻛون ﻟﮭﺎ‬

‫‪p 1‬‬ ‫‪n‬‬

‫‪DFFITS j  2‬‬

‫أى ﻣﺷﺎھدة ﺗﻛون ﻟﮭﺎ‬

‫ﺗﻌﺗﺑر ﻣؤﺛرة‪ .‬اﻣﺎ ﻓ ﻰ اﻟﻌﯾﻧ ﺎت اﻟﺻ ﻐﯾرة واﻟﻣﺗوﺳ طﺔ ﻓ ﺈن‬

‫‪DFFITSj  1‬‬

‫ﺗﻌﺗﺑر ﻣؤﺛرة ‪.‬‬

‫)ب( اﻟﺗﺎﺛﯾر ﻋﻠﻰ ﻣﻌﺎﻣﻼت اﻻﻧﺣدار‬ ‫ﻣﻘﯾﺎس اﻻﺛر ﻋﻠﻲ ﻛل ﻣﻌﺎﻣﻼت اﻻﻧﺣدار)ﻣﻘﯾﺎس ﻛوك(‬

‫‪٤٢٨‬‬


‫ﻟﻘد اﻗﺗرح )‪ (cook 1979‬ﻣﻘﯾﺎس )ﻣﺳﺎﻓﺔ ﻛوك( ﻟﻣرﺑﻊ اﻟﻣﺳ ﺎﻓﺔ ﺑ ﯾن ﺗﻘ دﯾر اﻟﻣرﺑﻌ ﺎت‬ ‫اﻟﺻﻐرى اﻟﻣﺑﻧﻰ ﻋﻠﻰ ﻛل اﻟﻣﺷﺎھدات اﻟﺗﻰ ﻋددھﺎ ‪ n‬واﻟﺗﻘدﯾر )‪ b ( j‬اﻟذى ﻧﺣﺻ ل ﻋﻠﯾ ﮫ ﺑﻌ د‬ ‫ﺣذف اﻟﻣﺷﺎھدة رﻗم ‪.j‬‬ ‫وﯾﻣﻛن ﺣﺳ ﺎب ﻣﻘﯾ ﺎس ﻣﺳ ﺎﻓﺔ ﻛ وك ‪ D j‬ﺑ دون ﺗﻘ دﯾر ﻧﻣ وذج اﻧﺣ دار ﺟدﯾ د ﻓ ﻲ ﻛ ل‬ ‫ﻣرة ﺗﺣذف ﻓﯾﮭﺎ ﻣﺷﺎھدة ﻣﺧﺗﻠﻔﺔ واﻟﺻﯾﻐﺔ اﻟﻣﻛﺎﻓﺋﮫ ﺟﺑرﯾﺎ ھﻲ‪:‬‬ ‫‪e 2j‬‬

‫‪ h jj ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪(p  1) MSE 1  h jj ‬‬

‫‪Dj ‬‬

‫وﻟﺗﺣدﯾد أﺛر اﻟﻣﺷﺎھدة رﻗم ‪ j‬ﻋﻠﻲ ﻣﻌﺎﻣﻼت اﻻﻧﺣدار ﺗﻘﺎرن ﻗﯾﻣﺔ ‪ D j‬ﺑ ﺎﻟﻣﺋﯾن اﻟﻌﺷ رﯾن‬ ‫ﻟﺗوزﯾﻊ ‪ F‬ﺑدرﺟﺎت ﺣرﯾﺔ )‪ (p+1, n-p-2‬و اﻟﻣﺷﺎھدة رﻗ م ‪ j‬ﺗﻌﺗﺑ ر ﻣ ؤﺛرة إذا ﻛﺎﻧ ت ﻗﯾﻣ ﺔ‬ ‫‪ D j‬اﻛﺑر ﻣن اﻟﻣﺋﯾن اﻟﻌﺷ رﯾن ‪ .‬و اﻟﻣﺷ ﺎھدة رﻗ م ‪ j‬ﺗﻌﺗﺑ ر ﻣ ؤﺛرة ﺟ دا إذا ﻛﺎﻧ ت ﻗﯾﻣ ﺔ‬ ‫‪ D j‬اﻛﺑر ﻣن اﻟﻣﺋﯾن اﻟﺧﻣﺳﯾن‪.‬‬ ‫ﻣﻘﯾﺎس اﻻﺛر ﻋﻠﻲ ﻣﻌﺎﻣﻼت اﻻﻧﺣدار‬ ‫ﻟﻘد اﻗﺗرح إﺣﺻ ﺎء ﻟﻘﯾ ﺎس اﻟﻔ رق ﺑ ﯾن ﻗ ﯾم ﻣﻌ ﺎﻣﻼت اﻻﻧﺣ دار اﻟﻣﻘ دره ﺑﺈﺳ ﺗﺧدام ﻛ ل‬ ‫اﻟﻣﺷﺎھدات اﻟﺗﻰ ﻋ ددھﺎ ‪ n‬وﻗ ﯾم ﻣﻌ ﺎﻣﻼت اﻻﻧﺣ دار اﻟﻣﻘ دره ﺑﻌ د ﺣ ذف اﻟﻣﺷ ﺎھده رﻗ م )‪(j‬‬ ‫أي ﺑﺈﺳﺗﺧدام )‪ (n-1‬ﻣن اﻟﻣﺷﺎھدات ھذا اﻹﺣﺻﺎء ﯾﺄﺧذ اﻟﺷﻛل اﻟﺗﺎﻟﻲ‪:‬‬ ‫)‪b i  b i( j‬‬ ‫‪s (2j) c ii‬‬

‫‪DFBETASi, j ‬‬

‫ﺣﯾث ‪ c ii‬ھو اﻟﻌﻧﺻر رﻗم ‪ i‬ﻟﻠﻣﺻﻔوﻓﺔ ‪ b i( j) , (X' X) -1‬ھ ﻲ ﻣﻌﺎﻣ ل اﻻﻧﺣ دار رﻗ م ‪i‬‬

‫اﻟﻣﺣﺳوﺑﺔ ﺑدون اﺳﺗﺧدام اﻟﻣﺷﺎھدة رﻗم ‪ . j‬اﻟﻌﯾﻧﺎت اﻟﺻﻐﯾرةﺗﻌﺗﺑر اﻟﺣﺎﻟﺔ ﻣ ؤﺛرة اي ﺗﻌﺗﺑ ر‬ ‫اﻟﺣﺎﻟﺔ رﻗم ‪ j‬ﻣؤﺛرة إذا ﺗﺣﻘق اﻟﺷرط اﻟﺗﺎﻟﻲ‪:‬‬ ‫‪DFBETASi, j  1‬‬

‫ﻓﻲ ﺣﺎﻟﺔ اﻟﻌﯾﻧﺎت اﻟﻛﺑﯾرة ﺗﻛون‬ ‫‪DFBETAS i, j  2 / n‬‬

‫‪٤٢٩‬‬


‫وﯾﻼﺣظ أﻧﮫ ﻟﺣﺳﺎب ‪ DFBETASi, j‬ﺗﺣﺗﺎج ﻟﺗﻘدﯾر )‪ (n‬ﻧﻣوذج اﻧﺣدار‪.‬‬ ‫ﻣﺛﺎل)‪(١٠-٥‬‬ ‫اﻟﺑﯾﺎﻧﺎت ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﺗﻣﺛل ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ ذات ﺣﺟ م )‪ (n = 14‬ﻣﺷ ﺎھدات ﻟﻛ ل‬ ‫ﻣن اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ‪ Y‬واﻟﻣﺗﻐﯾرات اﻟﻣﺳﺗﻘﻠﮫ ‪. x 1 , x 2 , x 3‬‬

‫أوﺟ د ﻗ ﯾم‬ ‫اﻟﻘﯾم؟‬

‫‪x3‬‬

‫‪x2‬‬

‫‪x1‬‬

‫‪y‬‬

‫‪0.625‬‬

‫‪0.24‬‬

‫‪0.276‬‬

‫‪3.33‬‬

‫‪0.512‬‬

‫‪0.254‬‬

‫‪0.249‬‬

‫‪3.51‬‬

‫‪0.488‬‬

‫‪0.249‬‬

‫‪0.249‬‬

‫‪3.55‬‬

‫‪0.524‬‬

‫‪0.245‬‬

‫‪0.26‬‬

‫‪3.65‬‬

‫‪0.588‬‬

‫‪0.25‬‬

‫‪0.271‬‬

‫‪3.8‬‬

‫‪0.475‬‬

‫‪0.252‬‬

‫‪0.241‬‬

‫‪4.2‬‬

‫‪0.513‬‬

‫‪0.254‬‬

‫‪0.269‬‬

‫‪4.22‬‬

‫‪0.463‬‬

‫‪0.27‬‬

‫‪0.264‬‬

‫‪4.27‬‬

‫‪0.512‬‬

‫‪0.274‬‬

‫‪0.27‬‬

‫‪4.31‬‬

‫‪0.405‬‬

‫‪0.264‬‬

‫‪0.24‬‬

‫‪4.48‬‬

‫‪0.45‬‬

‫‪0.28‬‬

‫‪0.259‬‬

‫‪4.53‬‬

‫‪0.48‬‬

‫‪0.266‬‬

‫‪0.252‬‬

‫‪4.55‬‬

‫‪0.456‬‬

‫‪0.268‬‬

‫‪0.258‬‬

‫‪4.62‬‬

‫‪0.506‬‬

‫‪0.268‬‬

‫‪0.293‬‬

‫‪5.86‬‬

‫‪DFFITS j‬‬

‫و ‪ DFBETASi,j‬وﻣﺳ ﺎﻓﺔ ﻛ وك ﻟﻠﻣﺷ ﺎھدات وﻣ ﺎذا ﺗﺳ ﺗﻧﺗﺞ ﻣ ن ﺗﻠ ك‬

‫اﻟﺣــل ‪:‬‬ ‫ﯾﻌط ﻰ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﻗﺎﺋﻣ ﺔ ﺑﻘ ﯾم ‪ DFFITS j , D j , h j‬ﺑﺎﻟﻧﺳ ﺑﺔ ﻟ ـ ‪ D j‬اﻟﻣﺋ ﯾن‬ ‫اﻟﻌﺷرﯾن ﻟﺗوزﯾ ﻊ ‪ F‬ﺑ درﺟﺎت ﺣرﯾ ﺔ )‪ (4, 10‬درﺟ ﺎت ﺣرﯾ ﺔ )ﻣ ﺄﺧوذ ﻣ ن اﻟﺣ زم اﻟﺟ ﺎھزة‬ ‫‪٤٣٠‬‬


‫اﻟﺧﺎﺻﺔ ﺑﺎﻹﺣﺻﺎء ﻟﺑرﻧﺎﻣﺞ ‪ (Mathematic‬ﯾﺳﺎوى ‪ 0.406574‬ﯾﻼﺣ ظ أن ﻛ ل ﻗ ﯾم ﻣﺳ ﺎﻓﮫ‬ ‫ﻛ وك أﻗ ل ﻣ ن ھ ذه اﻟﻘﯾﻣ ﺔ‪ .‬وﻋﻠ ﻲ ذﻟ ك ﻻﯾوﺟ د اى ﺣﺎﻟ ﺔ ﻣ ؤﺛرة ﻓ ﻲ اﻟﺣﻘﯾﻘ ﺔ ﻓ ﺈن اﻟﻣﺋ ﯾن‬ ‫اﻟﺧﻣﺳ ﯾن ھ و ‪ 0.898817‬وﻋﻠ ﻲ ذﻟ ك ﻻ ﺗوﺟ د أي ﻗﯾﻣ ﺔ ﻟ ـ ‪ D j‬ﺗﻘﺗ رب ﻣ ن اﻟﻣﺳ ﺗوى‬ ‫اﻟﺿرورى ﻟوﺟود ﺣﺎﻟﺔ ﻣؤﺛرة ﻋﻠﻰ ﻧﻣوذج اﻻﻧﺣدار‪.‬‬ ‫‪DFFITSj‬‬

‫‪Dj‬‬

‫‪hj‬‬

‫‪0.575188‬‬

‫‪0.0879027‬‬

‫‪0.446993‬‬

‫‪0.433307‬‬

‫‪0.0487779‬‬

‫‪0.231595‬‬

‫‪-0.389163‬‬

‫‪0.0388601‬‬

‫‪0.169291‬‬

‫‪-0.501698‬‬

‫‪0.0621402‬‬

‫‪0.182651‬‬

‫‪0.586544‬‬

‫‪0.0823222‬‬

‫‪0.192002‬‬

‫‪0.96858‬‬

‫‪0.222289‬‬

‫‪0.3769‬‬

‫‪-0.622104‬‬

‫‪0.0893455‬‬

‫‪0.174635‬‬

‫‪-0.696866‬‬

‫‪0.18167‬‬

‫‪0.179229‬‬

‫‪0.420653‬‬

‫‪0.0471378‬‬

‫‪0.315062‬‬

‫‪-0.556649‬‬

‫‪0.0801743‬‬

‫‪0.318829‬‬

‫‪0.101065‬‬

‫‪0.00283181‬‬

‫‪0.3171122‬‬

‫‪0.646137‬‬

‫‪0.0923556‬‬

‫‪0.153562‬‬

‫‪-0.152264‬‬

‫‪0.00632049‬‬

‫‪0.119834‬‬

‫‪0.465906‬‬

‫‪0.059614‬‬

‫‪0.768295‬‬

‫اﻵن ﺑﺎﻟﻧﺳﺑﺔ ﻟﻘﯾم ‪ DFFITS j‬ﻻﯾوﺟد أي ﻗﯾم ﻣؤﺛره وذﻟ ك ﻟﻌ دم وﺟ ود أى ﻗ ﯾم ﻟ ـ ‪DFFIT j‬‬

‫ﺗزﯾ د ﻋ ن ‪ .1‬اﻟﻘﯾﻣ ﺔ اﻟﻘرﯾﺑ ﺔ ﻣ ن ‪ 1‬ﻓ ﻲ اﻟﺟ دول اﻟﺳ ﺎﺑق ھ ﻲ ‪ 96858‬واﻟﻣﻘﺎﺑﻠ ﺔ ﻟﻠﻣﺷ ﺎھدة‬ ‫اﻟﺳﺎدﺳﺔ‪.‬‬ ‫ث‬ ‫ﯾم ‪ DFBETASi,j‬ﺣﯾ‬ ‫ﺔ ﺑﻘ‬ ‫ﺎﻟﻰ ﻗﺎﺋﻣ‬ ‫دول اﻟﺗ‬ ‫ﻰ اﻟﺟ‬ ‫ﯾﻌط‬ ‫‪ . j  1,2,...,14 , i  0.1.2.3‬ﻟﻠﻣﺷ ﺎھدات ﻣ ن ‪ 1‬اﻟ ﻰ ‪ 14‬ﻓ ﻰ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﯾﺗﺿ ﺢ‬ ‫ﻋدم وﺟود ﻗﯾم ﻣطﻠﻘﮫ ﻟ ـ ‪ DFBETASi,j‬ﺗزﯾ د ﻋ ن اﻟواﺣ د اﻟﺻ ﺣﯾﺢ‪ .‬وﻋﻠ ﻲ ذﻟ ك ﻻﯾوﺟ د‬ ‫أي ﺣﺎﻻت ﻟﮭﺎ ﺗﺎﺛﯾر ﻣﻌﻧوي ﻋﻠﻲ ﻧﻣوذج اﻻﻧﺣدار‪.‬‬ ‫‪٤٣١‬‬


‫‪b3‬‬

‫‪b1‬‬

‫‪b2‬‬

‫‪b0‬‬

‫‪-0.136519‬‬

‫‪0.382709‬‬

‫‪-0.115759‬‬

‫‪-0.0143844‬‬

‫‪0.209172‬‬

‫‪-0.101049‬‬

‫‪-0.289016‬‬

‫‪-0.0559135‬‬

‫‪-0.00171137‬‬

‫‪0.126155‬‬

‫‪0.108709‬‬

‫‪-0.123586‬‬

‫‪0.257519‬‬

‫‪-0.0718679‬‬

‫‪-0.0653034‬‬

‫‪-0.235483‬‬

‫‪-0.156987‬‬

‫‪0.358846‬‬

‫‪-0.0497338‬‬

‫‪-0.0000106592‬‬

‫‪-0.59404‬‬

‫‪-0.674636‬‬

‫‪0.62326‬‬

‫‪0.835436‬‬

‫‪0.409338‬‬

‫‪-0.220736‬‬

‫‪-0.307155‬‬

‫‪-0.226309‬‬

‫‪-0.530767‬‬

‫‪-0.124454‬‬

‫‪0.446869‬‬

‫‪0.486631‬‬

‫‪0.345162‬‬

‫‪0.150272‬‬

‫‪-0.301588‬‬

‫‪-0.355183‬‬

‫‪0.105511‬‬

‫‪0.470109‬‬

‫‪-0.233555‬‬

‫‪-0.309542‬‬

‫‪0.0865301‬‬

‫‪-0.00941033‬‬

‫‪-0.059592‬‬

‫‪-0.0680988‬‬

‫‪-0.105235‬‬

‫‪-0.396119‬‬

‫‪0.2822‬‬

‫‪0.25121‬‬

‫‪0.0124995‬‬

‫‪0.0557525‬‬

‫‪-0.0593643‬‬

‫‪-0.0263566‬‬

‫‪-0.10239‬‬

‫‪0.199504‬‬

‫‪-0.234257‬‬

‫‪-0.0907156‬‬

‫ﻟﻠﻣﺛﺎل )‪ (١٠-٥‬اﻟﻣطﻠوب اﺳﺗﺧدام ﻣﺻ ﻔوﻓﺔ اﻟﻘﺑﻌ ﺔ ‪ H‬ﻟﻠﺗﻌ رف ﻋﻠ ﻲ ﻣﺷ ﺎھدات‬ ‫ﻗﺎﺻﯾﺔ ﻓﻲ ﻗﯾم ‪ x‬وﺗﺣدﯾد اﻟﻣﺷﺎھدات اﻟﻣؤﺛرة‪.‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ﻣﻛﺗ وب ﺑﻠﻐ ﺔ ‪ Mathematica‬وذﻟ ك ﺑﺎﺳ ﺗﺧدام اﻟﺣزﻣ ﺔ‬ ‫اﻟﺟﺎھزة‬ ‫`‪Statistics`LinearRegression‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`LinearRegression‬‬ ‫‪teamera={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4‬‬ ‫;}‪.53,4.55,4.62,5.86‬‬ ‫‪ownbavg={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.2‬‬ ‫;}‪70,0.240,0.259,0.252,0.258,0.293‬‬ ‫‪oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2‬‬ ‫;}‪74,0.264,0.280,0.266,0.268,0.286‬‬ ‫‪winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51‬‬ ‫;}‪2,0.405,0.450,0.480,0.456,0.506‬‬

‫‪٤٣٢‬‬


Clear[dpoints] dpoints=Table[{teamera[[i]],ownbavg[[i]],oppbavg[[i]],w inpct[[i]]},{i,1,Length[winpct]}]; hd=Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>HatDiagonal] {HatDiagonal{0.446993,0.231595,0.169291,0.182651,0.192002, 0.3769,0.174635,0.179229,0.315062,0.318829,0.371122,0.153562 ,0.119834,0.768295}} hdlist=hd[[1,2]] {0.446993,0.231595,0.169291,0.182651,0.192002,0.3769,0.17463 5,0.179229,0.315062,0.318829,0.371122,0.153562,0.119834,0.76 8295} hdlist[[1]] 0.446993 Sum[hdlist[[i]],{i,1,Length[hdlist]}] 4. kk=4; n=14; 2kk/n//N 0.571429 Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>CookD] {CookD{0.0879027,0.0487779,0.0388601,0.0621402,0.0823222,0 .222289,0.0893455,0.108167,0.0471378,0.0801743,0.00283181,0. 0923556,0.00632049,0.0598614}} <<Statistics`NormalDistribution` n=14; kk=4; Quantile[FRatioDistribution[p,n-kk],0.2] 0.406574 Quantile[FRatioDistribution[p,n-kk],0.50] 0.898817 Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>PredictedResponseDelta] {PredictedResponseDelta{0.575188,0.433307,-0.389163,0.501698,0.586544,0.96858,-0.622104,-0.696866,0.420653,0.556649,0.101065,0.646137,-0.152264,0.465906}} Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>BestFitParametersDelta] {BestFitParametersDelta{{-0.0143844,-0.115759,0.382709,0.136519},{-0.0559135,-0.289016,-0.101049,0.209172},{0.123586,0.108709,0.126155,-0.00171137},{-0.235483,0.0653034,-0.0718679,0.257519},{-0.0000106592,٤٣٣


‫‪0.0497338,0.358846,-0.156987},{0.835436,0.62326,-0.674636,‬‬‫‪0.59404},{-0.226309,-0.307155,‬‬‫‪0.220736,0.409338},{0.486631,0.446869,-0.124454,‬‬‫{‪0.530767},{-0.355183,-0.301588,0.150272,0.345162},‬‬‫‪0.309542,-0.233555,0.47019,0.105511},{-0.0680988,-0.059592,‬‬‫‪0.00941033,0.0865301},{0.25121,0.2822,-0.396119,‬‬‫{‪0.105235},{-0.0263566,-0.0593643,0.0557525,0.0124995},‬‬‫}}}‪0.0907156,0.234257,0.199504,-0.10239‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ اﻟﻣدﺧﻼت واﻟﻣﺧرﺟﺎت ﻟﮭذا اﻟﺑرﻧﺎﻣﺞ ‪:‬‬ ‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻟﺜﺎﻧﻰ و ‪ ownbavg‬ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻻول و اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه ‪teamera‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬ ‫ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪.‬اﯾﻀﺎ ‪ winpct‬اﻟﻤﺴﻤﻰ ﻟﻘﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ اﻟﺜﺎﻟﺚ واﻟﻘﺎﺋﻤﺔ‪oppbavg‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬

‫ﺣﺠﻢ اﻟﻌﯿﻨﺔ ﻣﻦ اﻻﻣﺮ‬ ‫‪ n=14‬وﻋﺪد اﻟﻤﻌﺎﻟﻢ ﻣﻦ اﻻﻣﺮ‬ ‫‪kk=4‬‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬ ‫ﻋﻨﺎﺻﺮ اﻟﻘﻄﺮ ﻟﻣﺻﻔوﻓﺔ اﻟﻘﺑﻌﺔ ﯾﻣﻛن اﻟﺣﺻول ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫]]‪hdlist=hd[[1,2‬‬

‫)‪2(p  1‬‬ ‫ﻧﺤﺼﻞ ﻋﻠﻰ ‪ .571429‬‬ ‫‪n‬‬ ‫‪2kk/n//N‬‬

‫‪‬‬

‫‪2  h jj‬‬ ‫‪n‬‬

‫ﻣﻦ اﻻﻣﺮ‬

‫وﺑﻤﺎ ان اﻟﻤﺸﺎﻫﺪة اﻻﺧﻴﺮة ﻫﻰ اﻟﻮﺣﻴﺪة اﻟﺘﻰ اﻛﺒﺮ ﻣﻦ اﻟﻘﻴﻤﺔ اﻟﺴﺎﺑﻘﺔ‬

‫ﻓﺗﻌﺗﺑر ﻣﺷﺎھدة ﻗﺎﺻﯾﺔ‪.‬‬

‫ﯾﻌطﻰ اﻻﻣر‬ ‫‪Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport‬‬‫]‪>CookD‬‬

‫ﻗﺎﺋﻣﺔ ﺑﻘﯾم ‪D j‬‬ ‫اﻟﻣﺋﯾن اﻟﻌﺷرﯾن ﻟﺗوزﯾﻊ ‪ F‬ﺑدرﺟﺎت ﺣرﯾﺔ )‪ (4, 10‬درﺟﺎت ﺣرﯾﺔ ﯾﺳﺎوى ‪0.406574‬‬

‫ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]‪Quantile[FRatioDistribution[kk,n-kk],0.2‬‬

‫ﯾﻼﺣظ أن ﻛل ﻗﯾم ﻣﺳﺎﻓﮫ ﻛوك أﻗ ل ﻣ ن ھ ذه اﻟﻘﯾﻣ ﺔ‪ .‬وﻋﻠ ﻲ ذﻟ ك ﻻﯾوﺟ د اى ﺣﺎﻟ ﺔ ﻣ ؤﺛرة‪.‬‬ ‫ﻓﻲ اﻟﺣﻘﯾﻘﺔ ﻓﺈن اﻟﻣﺋﯾن اﻟﺧﻣﺳﯾن ھو ‪0.898817‬‬ ‫ﯾﺗم اﻟﺣﺻول ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]‪Quantile[FRatioDistribution[kk,n-kk],0.50‬‬ ‫‪٤٣٤‬‬


‫وﻋﻠﻲ ذﻟك ﻻ ﺗوﺟد أي ﻗﯾﻣﺔ ﻟـ ‪ D j‬ﺗﻘﺗرب ﻣن اﻟﻣﺳﺗوى اﻟﺿرورى ﻟوﺟود ﺣﺎﻟ ﺔ ﻣ ؤﺛرة‬ ‫ﻋﻠﻰ ﻧﻣوذج اﻻﻧﺣدار‪.‬‬ ‫و ﯾﻌطﻰ اﻻﻣر‬ ‫‪Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport‬‬‫]‪>PredictedResponseDelta‬‬

‫ﻗﺎﺋﻣﺔ ﺑﻘﯾم‬

‫‪DFFITS j‬‬

‫ﺣﯾث‬

‫‪j  1, 2,...,14‬‬

‫ﯾﻼﺣ ظ ﻣ ن ﻣﺧ رج اﻻﻣ ر اﻟﺳ ﺎﺑق ﻋ دم وﺟ ود ﻗ ﯾم ﻣطﻠﻘ ﮫ ﻟ ـ ‪ DFFITS j‬ﺗزﯾ د ﻋ ن اﻟواﺣ د‬ ‫اﻟﺻﺣﯾﺢ‪ .‬وﻋﻠﻲ ذﻟك ﻻﯾوﺟد أي ﺣﺎﻻت ﻟﮭﺎ ﺗﺎﺛﯾر ﻣﻌﻧوي ﻋﻠﻲ ﻧﻣوذج اﻻﻧﺣدار‪.‬‬ ‫ﯾﻌطﻰ اﻻﻣر‬ ‫‪Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport‬‬‫]‪>BestFitParametersDelta‬‬

‫ﻗﺎﺋﻣﺔ ﺑﻘﯾم اﻟـ ‪ DFFITSi,j‬ﺣﯾ ث ‪ j  1,2,...,14 , i  0.1.2.3‬ﻟﻠﻣﺷ ﺎھدات ﻣ ن ‪ 1‬اﻟ ﻰ ‪14‬‬ ‫‪ .‬ﯾﻼﺣظ ﻣن ﻣﺧرﺟﺎت ھذا اﻻﻣر ﻋ دم وﺟ ود ﻗ ﯾم ﻣطﻠﻘ ﮫ ﻟ ـ ‪ DFFITSi,j‬ﺗزﯾ د ﻋ ن اﻟواﺣ د‬

‫اﻟﺻﺣﯾﺢ‪ .‬وﻋﻠﻲ ذﻟك ﻻﯾوﺟد أي ﺣﺎﻻت ﻟﮭﺎ ﺗﺎﺛﯾر ﻣﻌﻧوي ﻋﻠﻲ ﻧﻣوذج اﻻﻧﺣدار‪.‬‬ ‫)‪ (٦-٤-٥‬اﻻرﺗﺑﺎط اﻟذاﺗﻰ‪Autocorrelation‬‬ ‫ﻋﻠﻣﻧﺎ ﻓﯾﻣﺎ ﺳﺑق أﻧﮫ ﻟﺗﻘدﯾر ﻣﻌ ﺎﻟم ﻧﻣ وذج اﻹﻧﺣ دار اﻟﺧط ﻲ ﻓﯾﺟ ب ﺗﺣﻘ ق اﻟﻔ روض‬ ‫اﻟﺗﺎﻟﯾﺔ ﻟﺣدود اﻟﺧطﺄ ‪:‬‬ ‫‪E( i  j )  0 , i  j‬‬

‫‪Var( i )   2‬‬

‫‪E ( i )  0‬‬

‫ﻟﻐرض إﺧﺗﺑﺎرات اﻟﻔروض واﻟﺣﺻول ﻋﻠﻰ ﻓﺗرات ﺛﻘﺔ ﻋﺎدة ﯾﺿ ﺎف ﻓ رض اﻹﻋﺗ دال إي‬ ‫أن ‪ .  i ~ NID(0,  2 ) :‬ﺑﻌ ض ﺗطﺑﯾﻘ ﺎت اﻹﻧﺣ دار ﺗﺷ ﺗﻣل ﻋﻠ ﻰ ﻣﺗﻐﯾ رات ﻣﺳ ﺗﻘﻠﺔ‬ ‫وﻣﺗﻐﯾ ر إﺳ ﺗﺟﺎﺑﺔ ﯾﻛ ون ﻟ ﮫ طﺑﯾﻌ ﺔ اﻟﺗﺗ ﺎﺑﻊ ﻣ ﻊ اﻟ زﻣن و اﻟﺑﯾﺎﻧ ﺎت ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ ﺗﺳ ﻣﻰ‬ ‫اﻟﺳﻼﺳل اﻟزﻣﻧﯾﺔ ‪ .‬ﻣﻌظم اﻟﻣﺳﺎﺋل اﻹﻗﺗﺻﺎدﯾﺔ ﺗﻛون ﻋﻠﻰ ﺷﻛل ﺳﻼﺳ ل زﻣﻧﯾ ﺔ ﻣﻣ ﺎ ﯾ ؤدي‬ ‫إﻟﻰ أن اﻟﺧطﺄ ﻓﻲ ﻓﺗرة زﻣﻧﯾﺔ ‪ i‬ﯾﻛون ﻣرﺗﺑطﺎ ﻣ ﻊ اﻟﺧط ﺄ ‪  j‬ﻓ ﻲ ﻓﺗ رة زﻣﻧﯾ ﺔ أﺧ رى )‪j‬‬ ‫‪ (i ‬وھذا ﯾﺧﺎﻟف إﺣدى ﻓروض ﻧﻣوذج اﻹﻧﺣدار اﻟﺧط ﻲ وھ و ﻋ دم إرﺗﺑ ﺎط ﻗﯾﻣ ﺔ ‪ ‬ﻓ ﻲ‬ ‫ﻓﺗرة زﻣﻧﯾﺔ ﻣﺎ ﻋن ﻗﯾﻣﺗﮭﺎ ﻓﻲ ﻓﺗرة زﻣﻧﯾﺔ ﺳ ﺎﺑﻘﺔ ‪ ،‬إي أن اﻹرﺗﺑ ﺎط ﺑ ﯾن ‪  i ,  j‬ﻻ ﯾﺳ ﺎوي‬ ‫‪٤٣٥‬‬


‫اﻟﺻ ﻔر )‪ . (E ( i  j )  0‬وﻣﻌﻧ ﻰ ذﻟ ك وﺟ ود اﻹرﺗﺑ ﺎط اﻟ ذاﺗﻲ أو اﻹرﺗﺑ ﺎط اﻟﺗﺳﻠﺳ ﻠﻲ ‪.‬‬ ‫واﻹرﺗﺑﺎط اﻟذاﺗﻲ ﺣﺎﻟﺔ ﺧﺎﺻﺔ ﻣن اﻹرﺗﺑﺎط إذ ﯾﻘﯾس ﻟﻧﺎ درﺟﺔ اﻹرﺗﺑ ﺎط ﺑ ﯾن اﻟﻘ ﯾم اﻟﻣﺗﺗﺎﻟﯾ ﺔ‬ ‫ﻟﻧﻔس اﻟﻣﺗﻐﯾر ﺧﻼل ﻓﺗرة زﻣﻧﯾﺔ ﻣﺣددة وﻟﯾس ﺑﯾن ﻣﺗﻐﯾ رﯾن أو أﻛﺛ ر ‪ .‬وﺳﺗﻘﺗﺻ ر دراﺳ ﺗﻧﺎ‬ ‫ھﻧﺎ ﻓﻘط ﻋﻠﻰ اﻟﺣﺎﻟﺔ اﻟﺑﺳﯾطﺔ وھﻲ ﺣﺎﻟﺔ اﻟﻌﻼﻗ ﺔ اﻟﺧطﯾ ﺔ ﺑ ﯾن إي ﻗﯾﻣﺗ ﯾن ﻣﺗﺗ ﺎﻟﯾﺗﯾن ﻣ ن ﻗ ﯾم‬ ‫‪‬‬

‫وﺗﺗﺣدد إﺷﺎرة ﻣﻌﺎﻣل اﻹرﺗﺑﺎط اﻟذاﺗﻲ ﺣﺳب ﺗﻐﯾر إﺷﺎرة ﻗﯾم اﻟﺑ واﻗﻲ ‪ ،‬ﻓ ﺈذا ﺗﻐﯾ رت إﺷ ﺎرة‬ ‫اﻟﻘ ﯾم اﻟﻣﺗﺗﺎﻟﯾ ﺔ ﺑﺈﺳ ﺗﻣرار ﻓﯾﺄﺧ ذ اﻟﻣﻧﺣﻧ ﻰ اﻟﺗ ﺎرﯾﺧﻲ ﺷ ﻛل اﻷﺳ ﻧﺎن ﻛ ﺎن اﻹرﺗﺑ ﺎط ﺳ ﺎﻟﺑﺎ ‪،‬‬ ‫واﻟﻌﻛس إذا ﺣدث اﻟﺗﻐﯾر ﺑﺄن ﯾﺗﻠو ﻋددا ﻣن اﻟﻘﯾم اﻟﻣوﺟﺑﺔ ﻋددا أﺧر ﻣ ن اﻟﻘ ﯾم اﻟﺳ ﺎﻟﺑﺔ ﻛ ﺎن‬ ‫اﻹرﺗﺑﺎط ﻣوﺟﺑﺎ ‪.‬‬ ‫إذا ﻛﺎﻧ ت ﺣ دود اﻟﺧط ﺄ ﻓ ﻲ ﻧﻣ وذج اﻹﻧﺣ دار ﻣرﺗﺑط ﺔ إرﺗﺑ ﺎط ذاﺗ ﻲ ﻣوﺟ ب ‪ ،‬ﻓ ﺈن‬ ‫إﺳﺗﺧدام طرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى ﯾﺗرﺗب ﻋﻠﯾﮫ ﻋدد ﻣن اﻟﻌواﻗب اﻟﻣﮭﻣﺔ وھﻲ ‪:‬‬ ‫‪ -١‬ﻻ ﺗزال ﻣﻌﺎﻣﻼت اﻹﻧﺣدار اﻟﻣﻘدرة ﻏﯾر ﻣﺗﺣﯾزة إﻻ أﻧﮭﺎ ﻻ ﺗﻣﺗﻠك ﺧﺎﺻﯾﺔ أﻗل ﺗﺑﺎﯾن ‪.‬‬ ‫‪ -٢‬ﻣﺗوﺳط ﻣرﺑﻌﺎت اﻟﺧطﺄ ﯾﻣﻛن أن ﯾﺷﻛل ﺗﻘدﯾرا ﺑﺎﻟﻧﻘﺻﺎن ﻟﺗﺑﺎﯾن ﺣدود اﻟﺧطﺄ ‪.‬‬ ‫‪ -٣‬ﺗﻌطﻰ اﻟﺗﻘدﯾرات ﻟﻸﺧطﺎء اﻟﻣﻌﯾﺎرﯾﺔ ﻟﻣﻘدرات ﻣﻌﺎﻣﻼت اﻹﻧﺣدار‪،‬‬ ‫‪ ، s  e (Bi ) , i  0,1,2,...,k‬واﻟﻣﺣﺳ وﺑﺔ ﺑطرﯾﻘ ﺔ اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى ﺗﻘ دﯾرا‬ ‫‪.‬‬ ‫ﺑﺎﻟﻧﻘﺻﺎن ﻟﻺﻧﺣراف اﻟﻣﻌﯾﺎري اﻟﺣﻘﯾﻘﻲ ﻟﻠﻣﻘدر ‪B i‬‬ ‫‪ -٤‬ﻟم ﺗﻌد ﻓﺗرات اﻟﺛﻘﺔ واﻹﺧﺗﺑﺎرات اﻟﺗﻲ ﺗﺳﺗﺧدم ﺗوزﯾﻌﺎت ‪ t‬أو ‪ F‬ﻗﺎﺑﻠﺔ ﻟﻠﺗطﺑﯾق ‪.‬‬ ‫ﺗوﺟد طرق ﻛﺛﯾرة ﻻﻛﺗﺷﺎف ﻋدم اﺳﺗﻘﻼل اﻷﺧطﺎء وﺳ وف ﺗﻘﺗﺻ ر دراﺳ ﺗﻧﺎ ﻋﻠ ﻰ اﺧﺗﺑ ﺎر‬ ‫درﺑن ‪ -‬واﺗﺳون‪.‬‬ ‫اﺧﺗﺑﺎر درﺑن ‪ -‬واﺗﺳون‬ ‫إن اﻟﻧﻣوذج اﻟﺧطﻰ )‪ (١-٤‬ﻓﻲ وﺟود ارﺗﺑﺎط ذاﺗﻲ ﻣن اﻟرﺗﺑﮫ اﻷوﻟﻰ‬ ‫ھو‪:‬‬ ‫‪Yi   0  1x i   i‬‬

‫ﺣﯾث‪:‬‬ ‫‪ i   i 1  u i‬‬

‫ﺣﯾ ث ‪ ‬ﻣﻌﺎﻣ ل اﻻرﺗﺑ ﺎط اﻟ ذاﺗﻰ ﺑﺣﯾ ث ‪   1‬و ‪ u i‬ﻣﺗﻐﯾ ر ﻋﺷ واﺋﻲ ﯾﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ‬ ‫اﻟطﺑﯾﻌﻲ ﺑﻣﺗوﺳط ﯾﺳﺎوي ﺻﻔر وﺗﺑﺎﯾن ﺛﺎﺑت ‪  2u‬و ‪. E(u i u j )  0, i  j‬‬ ‫‪٤٣٦‬‬


‫ﯾﺳﺗﺧدم اﺧﺗﺑﺎر درﺑن‪ -‬واﺗﺳون ﻻﺧﺗﺑﺎر ﺛﻼﺛﺔ ﻓروض وھﻲ ‪:‬‬ ‫‪ -١‬وﺟود ارﺗﺑﺎط ذاﺗﻲ ﻣوﺟب ‪:‬‬ ‫ﻓرض اﻟﻌدم ‪H 0 :   0‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪. H0 :   0‬‬ ‫‪ -٢‬وﺟود ارﺗﺑﺎط ذاﺗﻲ ﺳﺎﻟب ‪:‬‬ ‫ﻓرض اﻟﻌدم ‪H 0 :   0‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪. H0 :   0‬‬ ‫‪ -٣‬وﺟود ارﺗﺑﺎط ذاﺗﻲ ﺳﺎﻟب أو ﻣوﺟب )اﺧﺗﺑﺎر ذو ﺟﺎﻧﺑﯾن ( ‪:‬‬ ‫ﻓرض اﻟﻌدم ‪H 0 :   0‬‬

‫ﺿد اﻟﻔرض اﻟﺑدﯾل ‪:‬‬ ‫‪. H1 :   0‬‬ ‫وﯾﻧﺣﺻر اﻻﺧﺗﺑﺎر ﺑﺎﻟﺧطوات اﻟﺗﺎﻟﯾﺔ‪:‬‬ ‫أ ‪ -‬ﺗﻘ دﯾر ﻣﻌ ﺎﻟم اﻻﻧﺣ دار ﺑﺎﺳ ﺗﺧدام أﺳ ﻠوب اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى ﻟﻠﺣﺻ ول ﻋﻠ ﻰ‬ ‫ﻣﻌﺎﻣﻼت اﻻﻧﺣدار‪.‬‬ ‫ب ‪ -‬طرح ﻗﯾم اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ ﻣن اﻟﻘﯾم اﻟﻣﺷﺎھدة ﻟﻠﺣﺻول ﻋﻠﻰ اﻟﺑواﻗﻲ‪:‬‬ ‫‪e i  y i  yˆ i .‬‬

‫ج‪ -‬ﺣﺳﺎب ﻗﯾﻣﺔ إﺣﺻﺎﺋﯾﺔ ﻣﻘدرة ﻧرﻣز ﻟﮭﺎ ﺑﺎﻟرﻣز ‪ DW‬ﻋﻠﻰ اﻟﻧﺣو اﻟﺗﺎﻟﻲ‪:‬‬ ‫‪(e i  e i 1 ) 2‬‬ ‫‪.‬‬

‫‪n 2‬‬ ‫‪ ei‬‬ ‫‪i 1‬‬

‫ﻣﻊ ﻣﻼﺣظﺔ أن‪:‬‬

‫‪٤٣٧‬‬

‫‪n‬‬ ‫‪‬‬ ‫‪i 2‬‬

‫‪DW ‬‬


‫‪0  DW  4.‬‬

‫د‪ -‬اﺳﺗﺧدام ﺟداول درﺑن ‪ -‬واﺗﺳون ﻓ ﻲ اﻟﻣﻠﺣ ق )‪) (٨‬ﻓ ﻰ ﻛﺗ ﺎب اﻻﻧﺣ دار ﻟﻠ دﻛﺗورة‬ ‫ﺛ روت (ﻹﺟ راء اﻻﺧﺗﺑ ﺎر وﻣ ن اﻟﻣﻼﺣ ظ أن ﺟ داول درﺑ ن ‪ -‬واﺗﺳ ون ﺗﺄﺧ ذ ﻓ ﻲ‬ ‫اﻻﻋﺗﺑ ﺎر ﻛ ل ﻣ ن ﻋ دد اﻟﻣﺷ ﺎھدات ‪ n‬وﻋ دد اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﺔ) ‪ ( k‬وﻣﺳ ﺗوى‬ ‫اﻟﻣﻌﻧوﯾﺔ ‪ ‬ﻓﻲ ﺣﺎﻟﺔ اﺧﺗﺑﺎر ﻣن ﺟﺎﻧب واﺣد و ‪ 2‬ﻓ ﻲ ﺣﺎﻟ ﺔ اﺧﺗﺑ ﺎر ذو ﺟ ﺎﻧﺑﯾن ‪.‬‬ ‫وﻣﻣ ﺎ ھ و ﺟ دﯾر ﺑﺎﻟ ذﻛر أن اﻟﻔ رض اﻷﻛﺛ ر ﺷ ﯾوﻋﺎ ھ و اﻟﻔ رض اﻟﺑ دﯾل ‪:‬‬ ‫‪ H1 :   0‬وﯾﺣﺗوي اﻟﺟدول ﻋﻠﻰ ﻗﯾﻣﺗﯾن إﺣ داھﻣﺎ ‪ dL‬وھ ﻲ اﻟﻘﯾﻣ ﺔ اﻟﺻ ﻐرى و‬ ‫‪ d U‬اﻟﻌﻠﯾﺎ ﺛم ﺗﺗم اﻟﻣﻘﺎرﻧﺔ ﻋﻠﻰ اﻟﻧﺣو اﻟﺗﺎﻟﻲ اﻟﻣوﺿﺢ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬ ‫اﻟﻘرار‬

‫ﻗﯾﻣﺔ ‪ DW‬اﻟﻣﻘدره‬

‫اﻟﺣﺎﻟﺔ‬

‫ارﺗﺑﺎط ذاﺗﻲ ﺳﺎﻟب‬

‫‪4-dL < DW < 4‬‬

‫‪1‬‬

‫ﻗرار ﻏﯾر ﻣﺣدد‬

‫‪4-dU<DW<4-dL‬‬

‫‪2‬‬

‫ﻻﯾوﺟد ارﺗﺑﺎط ذاﺗﻲ‬

‫‪2 < DW < 4-dU‬‬

‫‪3‬‬

‫ﻻﯾوﺟد ارﺗﺑﺎط ذاﺗﻲ‬

‫‪dU < DW < 2‬‬

‫‪4‬‬

‫ﻗرار ﻏﯾر ﻣﺣدد‬

‫‪d L < DW < dU‬‬

‫‪5‬‬

‫ارﺗﺑﺎط ذاﺗﻲ ﻣوﺟب‬

‫‪0 < DW < dL‬‬

‫‪6‬‬

‫ﻣﻣﺎ ﺗﻘدم ﻧﺟد أن ھﻧﺎك ﺛﻼث ﻧﺗﺎﺋﺞ ﻟﻼﺧﺗﺑﺎر‪:‬‬ ‫‪ .١‬ﻻ ﯾوﺟد ارﺗﺑﺎط ذاﺗﻲ ﻓﻲ اﻟﺣﺎﻟﺗﯾن ‪. 3 ,4‬‬ ‫‪ .٢‬ﻗ رار ﻏﯾ ر ﻣﺣ دد أي ﻻﯾﻣﻛ ن اﻟﺟ زم ﺑوﺟ ود أو ﻋ دم وﺟ ود ارﺗﺑ ﺎط ذاﺗ ﻲ وذﻟ ك‬ ‫ﯾﺳﺗﻠزم إﺿﺎﻓﺔ ﺑﯾﺎﻧﺎت إﻟﻰ اﻟﺳﻠﺳﻠﺔ اﻟزﻣﻧﯾﺔ إن أﻣﻛن ﻛﻣﺎ ﻓﻲ اﻟﺣﺎﻟﺗﯾن ‪.2,5‬‬ ‫‪ .٣‬وﺟود ارﺗﺑﺎط ذاﺗﻲ ﺳ ﺎﻟب ﻛﻣ ﺎ ﻓ ﻲ اﻟﺣﺎﻟ ﺔ اﻻوﻟ ﻰ أو وﺟ ود ارﺗﺑ ﺎط ذاﺗ ﻲ ﻣوﺟ ب‬ ‫ﻛﻣﺎ ﻓﻲ اﻟﺣﺎﻟﺔ اﻟﺳﺎدﺳﺔ‪.‬‬ ‫ﻣﺛﺎل)‪(١١-٥‬‬ ‫ﺗﺑ ﯾن اﻟﺑﯾﺎﻧ ﺎت ﻓ ﻲ اﻟﺟ دول اﻟﺗ ﺎﻟﻰ ﻗ ﯾم ﻟﻣﺗﻐﯾ رﯾن ‪ x, Y‬ﻧﺎﺗﺟ ﮫ ﻣ ن ﻋﯾﻧ ﺔ ﻋﺷ واﺋﯾﺔ‪.‬‬ ‫اﻟﻣطﻠ وب إﺟ راء اﺧﺗﺑ ﺎر ﻟﻼرﺗﺑ ﺎط اﻟ ذاﺗﻲ ﻣﺳ ﺗﺧدﻣﺎ ً ﻣﺳ ﺗوي ﻣﻌﻧوﯾ ﺔ ‪   0.05‬وأذﻛ ر‬ ‫اﻟﻔرﺿﯾﺎت اﻟﺑدﯾﻠﺔ وﻗﺎﻋدة اﻟﻘرار واﻟﻧﺗﯾﺟﺔ‪.‬‬ ‫‪٤٣٨‬‬


‫‪12‬‬

‫‪15‬‬

‫‪17‬‬

‫‪9‬‬

‫‪8‬‬

‫‪13‬‬

‫‪12‬‬

‫‪7‬‬

‫‪15‬‬

‫‪10‬‬

‫‪14‬‬

‫‪18‬‬

‫‪x‬‬

‫‪12‬‬

‫‪18‬‬

‫‪20‬‬

‫‪12‬‬

‫‪11‬‬

‫‪17‬‬

‫‪10‬‬

‫‪10‬‬

‫‪16‬‬

‫‪14‬‬

‫‪11‬‬

‫‪20‬‬

‫‪y‬‬

‫اﻟﺣــل ‪:‬‬ ‫أوﻻ‪ :‬ﻹﺧﺗﺑ ﺎرﻓرض اﻟﻌ دم ‪ H 0 :   0‬ﺿ د اﻟﻔ رض اﻟﺑ دﯾل ‪ H1 :   0 :‬ﯾ ﺗم إﯾﺟ ﺎد‬ ‫ﺗﻘدﯾرات ﻣﻌﺎﻟم ﻧﻣوذج اﻻﻧﺣدار اﻟﺑﺳﯾط ﺑطرﯾﻘﺔ اﻟﻣرﺑﻌﺎت اﻟﺻﻐرى ﺣﯾث‪:‬‬ ‫‪y i 171‬‬ ‫‪‬‬ ‫‪ 14.25‬‬ ‫‪n‬‬ ‫‪12‬‬ ‫‪x i 150‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪ 12.5‬‬ ‫‪n‬‬ ‫‪12‬‬ ‫‪ x i  yi‬‬ ‫)‪(171)(150‬‬ ‫‪ x i yi ‬‬ ‫‪2255 ‬‬ ‫‪n‬‬ ‫‪12‬‬ ‫‪b1 ‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪(171) 2‬‬ ‫) ‪2 ( x i‬‬ ‫‪2010 ‬‬ ‫‪ xi ‬‬ ‫‪12‬‬ ‫‪n‬‬ ‫‪117.5‬‬ ‫‪‬‬ ‫‪ 0.87037 ,‬‬ ‫‪135‬‬ ‫‪b 0  y  b1 x  3.37037‬‬ ‫‪y‬‬

‫وﺑﺎﻟﺗﺎﻟﻲ ﻓﺈن ﻣﻌﺎدﻟﺔ اﻹﻧﺣدار اﻟﻣﻘدرة ﺳوف ﺗﻛون ‪:‬‬ ‫‪yˆ  3.37037  0.87037 x.‬‬

‫ﯾﻌطﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ اﻟﻘ ﯾم اﻟﻼزﻣ ﺔ ﻟﺣﺳ ﺎب ﻗﯾﻣ ﺔ ﻻﺣﺻ ﺎء درﺑ ن ‪ -‬واﺗﺳ ون ‪ .‬وﻣ ن اﻟﻘ ﯾم‬ ‫اﻟواردة ﺑﺎﻟﺟدول ﯾﺗم ﺣﺳﺎب ‪ DW‬ﻋﻠﻰ اﻟﻧﺣو اﻟﺗﺎﻟﻲ ‪:‬‬

‫‪150.794‬‬ ‫‪ 2.69363‬‬ ‫‪55.9815‬‬

‫‪(e i  e i1 ) 2‬‬ ‫‪‬‬

‫‪٤٣٩‬‬

‫‪n 2‬‬ ‫‪ ei‬‬ ‫‪i 1‬‬

‫‪n‬‬ ‫‪‬‬ ‫‪i 2‬‬

‫‪DW ‬‬


‫ﻗﯾﻣﺗﻲ ‪ d U , d L‬ﻣن ﺟدول درﺑن‪ -‬واﺗﺳون ﻓﻲ ﻣﻠﺣق )‪) (٨‬ﻓﻰ ﻛﺗﺎب اﻻﻧﺣدار ﻟﻠ دﻛﺗورة‬ ‫ﺛ روت (ﻋﻧ د ﻣﺳ ﺗوي ﻣﻌﻧوﯾ ﺔ ‪   0.05‬و ‪ ) k  1 , n  15‬ﻟﻌ دم وﺟ ود ﻗﯾﻣ ﺔ ﻋﻧ د‬ ‫‪(n=12‬ھﻲ‪d L  1.08 , d U  1.36 :‬‬ ‫ﻧﻼﺣ ظ أن ﻗﯾﻣ ﺔ ‪ DW‬ﺗﻘ ـﻊ ﺑ ﯾن ‪ 4  d L‬و ‪ 4  d U‬أي ﺑ ﯾن ‪ , 4  1.36 4  1.08‬أي‬ ‫ﺑ ﯾن ‪ 2.92‬و ‪ 2.64‬ﻓ ﻲ ﻣﻧطﻘ ﺔ ﻗ رار ﻏﯾ ر ﻣﺣ دد أي أﻧ ﮫ ﻻ ﯾﻣﻛ ن اﻟﺣﻛ م ﻋﻠ ﻰ ﻗﯾﻣ ﺔ‬ ‫‪ .DW‬ﻓﻲ ھذه اﻟﺣﺎﻟ ﺔ ﻓﺈﻧﻧ ﺎ ﻧﺣﺗ ﺎج اﻟ ﻰ ﻣزﯾ د ﻣ ن اﻟﻣﺷ ﺎھدات‪ .‬وﻓ ﻰ ﺣﺎﻟ ﺔ ﺑﯾﺎﻧ ﺎت ﺳﻼﺳ ل‬ ‫زﻣﻧﯾﺔ ﻗد ﯾﻛون ﻣن اﻟﻣﺳﺗﺣﯾل‪ ،‬ﺑﺎﻟطﺑﻊ ‪ ،‬اﻟﺣﺻول ﻋﻠﻰ ﻣزﯾد ﻣ ن اﻟﺑﯾﺎﻧ ﺎت او ﻣ ن اﻟﻣﻣﻛ ن‬ ‫أن ﺗﺗ واﻓر اﻟﻣﺷ ﺎھدات اﻟﻣطﻠوﺑ ﺔ ﻓ ﻲ اﻟﻣﺳ ﺗﻘﺑل ﻣﻣ ﺎ ﯾ ؤدي إﻟ ﻰ ﺗ ﺎﺧﯾر ﻛﺑﯾ ر ﻋﻧ د اﻻﻧﺗظ ﺎر‬ ‫ﻟﻠﺣﺻول ﻋﻠﯾﮭﺎ‪.‬‬ ‫‪e i2‬‬

‫‪(e i  e i 1 ) 2‬‬

‫‪e i 1‬‬

‫‪0.9273‬‬

‫‪-‬‬

‫‪-‬‬

‫‪20.757‬‬

‫‪30.4527‬‬

‫‪0.9624‬‬

‫‪-4.556‬‬

‫‪3.7079‬‬

‫‪42.0111‬‬

‫‪-4.556‬‬

‫‪12.0744 1.9256‬‬

‫‪10‬‬

‫‪0.1818‬‬

‫‪5.5319‬‬

‫‪16.426 -0.4264 1.9256‬‬

‫‪15‬‬

‫‪16‬‬

‫‪0.2882‬‬

‫‪0.9278‬‬

‫‪0.5360 -0.4264‬‬

‫‪9.4632‬‬

‫‪7‬‬

‫‪10‬‬

‫‪14.5558‬‬

‫‪18.7379‬‬

‫‪13.8152 -3.8152 0.5368‬‬

‫‪12‬‬

‫‪10‬‬

‫‪5.3564‬‬

‫‪37.5770‬‬

‫‪14.6856 2.3144 -3.8152‬‬

‫‪13‬‬

‫‪17‬‬

‫‪0.4409‬‬

‫‪2.7238‬‬

‫‪2.3144‬‬

‫‪0.664‬‬

‫‪10.336‬‬

‫‪8‬‬

‫‪11‬‬

‫‪0.6336‬‬

‫‪0.0174‬‬

‫‪0.664‬‬

‫‪0.796‬‬

‫‪11.204‬‬

‫‪9‬‬

‫‪12‬‬

‫‪3.3592‬‬

‫‪1.0750‬‬

‫‪0.796‬‬

‫‪18.1672 1.8328‬‬

‫‪17‬‬

‫‪20‬‬

‫‪2.4762‬‬

‫‪0.0672‬‬

‫‪1.832‬‬

‫‪16.4264 1.5736‬‬

‫‪15‬‬

‫‪18‬‬

‫‪3.2950‬‬

‫‪11.4840‬‬

‫‪13.8152 -1.8252 1.5736‬‬

‫‪12‬‬

‫‪12‬‬

‫‪ei‬‬

‫ﻣﺛﺎل )‪(١٢-٥‬‬ ‫‪٤٤٠‬‬

‫‪yˆ i‬‬

‫‪xi‬‬

‫‪yi‬‬

‫‪19.0376 0.9624‬‬

‫‪18‬‬

‫‪20‬‬

‫‪15.556‬‬

‫‪14‬‬

‫‪11‬‬ ‫‪14‬‬


( ٣-٥ ‫ واﺗﺴﻮن ﻟﻼرﺗﺒﺎط اﻟﺬاﺗﻰ ﻟﻠﺒﻮاﻗﻰ )ﻣﺜﺎل‬- ‫إﺳﺗﺧدم اﻟﺑﯾﺎﻧﺎت اﻟﺗﺎﻟﯾﺔ ﻻﺧﺘﺒﺎر درﺑﻦ‬ X1={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4.53,4.5 5,4.62,5.86}; X2={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.270,0.24 0,0.259,0.252,0.258,0.293}; X3={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.274,0.26 4,0.280,0.266,0.268,0.286}; y={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.512,0.405 ,0.450,0.480,0.456,0.506};

: ‫اﻟﺣل‬ ‫ وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺣزﻣﺔ‬Mathematica ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ‬ ‫اﻟﺟﺎھزة‬ Statistics`LinearRegression`

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ <<Statistics`LinearRegression` teamera={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4 .53,4.55,4.62,5.86}; ownbavg={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.2 70,0.240,0.259,0.252,0.258,0.293}; oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2 74,0.264,0.280,0.266,0.268,0.286}; winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51 2,0.405,0.450,0.480,0.456,0.506}; Clear[dpoints] dpoints=Table[{teamera[[i]],ownbavg[[i]],oppbavg[[i]],w inpct[[i]]},{i,1,Length[winpct]}]; Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>DurbinWatsonD] {DurbinWatsonD2.09999}

‫ﻣن ھذا اﻟﻣﺛﺎل ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬

‫ واﺗﺳون‬-‫ﻗﯾﻣﺔ دارﺑن‬

dpoints=Table[{teamera[[i]],ownbavg[[i]],oppbavg[[i]],winpct [[i]]},{i,1,Length[winpct]}]; Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>DurbinWatsonD] ‫واﻟﻤﺨﺮج ھو‬ {DurbinWatsonD2.09999} ٤٤١


‫واﻟﻣطﻠوب اﺳﺗﺧدام ﻟﺟداول دارﺑن‪ -‬واﺗﺳون ﻛﻣﺎ ذﻛرﻧﺎ ﺳﺎﺑﻘﺎ ﻻﺧﺗﺑﺎر ‪ :‬ﻹﺧﺗﺑﺎرﻓرض اﻟﻌدم‬ ‫‪ H 0 :   0‬ﺿد اﻟﻔرض اﻟﺑدﯾل ‪H1 :   0 :‬‬ ‫)‪ (٧-٤-٥‬ﻣﺷﻛﻠﺔ ﻋدم اﻟﺧطﯾﺔ‬ ‫رﺳم اﻟﺑواﻗﻲ ﻣﻘﺎﺑل ﻛل ﻣﺗﻐﯾر ﻣﺳﺗﻘل ‪ x i‬ﺣﯾث ‪ j  1, 2,  , k‬واﻟ ذي ﯾﻣﻛ ن ان ﯾﻘ دم‬ ‫ﻣﻌﻠوﻣﺎت اﺿﺎﻓﯾﺔ ﺣول ﺻﻼﺣﯾﺔ ﻧﻣوذج اﻻﻧﺣدار ﺑﺎﻟﻧﺳﺑﺔ ﻟذﻟك اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل )‬ ‫ﻣﺛﻼ ﻗد ﻧﺣﺗﺎج اﻟﻰ ﺗﻣﺛﯾل ﻣﻧﺣﻧﻰ ﻟﺗ ﺄﺛﯾر ذﻟ ك اﻟﻣﺗﻐﯾ ر ( وﺣ ول ﺗﻐﯾ رات ﻣﻣﻛﻧ ﺔ ﻓ ﻲ‬ ‫ﻣﻘدار ﺗﺑﺎﯾن اﻟﺧطﺄ ﻓﯾﻣﺎ ﯾﺗﻌﻠق ﺑذﻟك اﻟﻣﺗﻐﯾر اﻟﻣﺳﺗﻘل‪٠‬‬ ‫ﻣﺛﺎل)‪(١٣-٥‬‬ ‫ﻟﮭذا اﻻﺧﺗﺑﺎر ﺳوف ﻧﺳﺗﺧدم اﻟﻣﺛﺎل )‪(١٢-٥‬‬ ‫ﺳوف ﯾﺗم ﺣ ل ھ ذا اﻟﻣﺛ ﺎل ﺑﺈﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ﻣﻛﺗ وب ﺑﻠﻐ ﺔ ‪ Mathematica‬وذﻟ ك ﺑﺎﺳ ﺗﺧدام اﻟﺣزﻣ ﺔ‬ ‫اﻟﺟﺎھزة‬ ‫`‪Statistics`LinearRegression‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت ‪.‬‬ ‫`‪<<Statistics`LinearRegression‬‬ ‫‪teamera={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4‬‬ ‫;}‪.53,4.55,4.62,5.86‬‬ ‫‪ownbavg={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.2‬‬ ‫;}‪70,0.240,0.259,0.252,0.258,0.293‬‬ ‫‪oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2‬‬ ‫;}‪74,0.264,0.280,0.266,0.268,0.286‬‬ ‫‪winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51‬‬ ‫;}‪2,0.405,0.450,0.480,0.456,0.506‬‬ ‫]‪Clear[dpoints‬‬ ‫‪dpoints=Table[{teamera[[i]],ownbavg[[i]],oppbavg[[i]],w‬‬ ‫;]}]‪inpct[[i]]},{i,1,Length[winpct‬‬ ‫‪multiSTerr=Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},‬‬ ‫]]‪RegressionReport->StandardizedResiduals][[1,2‬‬ ‫‪{0.659547,0.804585,-0.873353,-1.05465,1.17717,1.21243,‬‬‫‪1.29964,-1.40762,0.64024,-0.827745,0.138544,1.42698,‬‬‫}‪0.430921,0.268724‬‬ ‫]‪eps=(Max[teamera‬‬‫‪Min[teamera])/Length[teamera];ListPlot[Transpose[{teamera,mu‬‬ ‫‪ltiSTerr}],Prolog->{PointSize[0.02]},AxesOrigin‬‬‫]‪>{Min[teamera]-eps,0},PlotRange->{{Min[teamera‬‬‫]‪eps,Max[teamera]+eps},{Min[multiSTerr‬‬‫]}}‪eps,Max[multiSTerr]+eps‬‬

‫‪٤٤٢‬‬


1.5 1 0.5

3.5

4

4.5

5

5.5

6

-0.5 -1 -1.5

Graphics eps=(Max[ownbavg]-Min[ownbavg])/Length[ownbavg]; ListPlot[Transpose[{ownbavg,multiSTerr}],Prolog>{PointSize[0.02]},AxesOrigin->{Min[ownbavg]eps,0},PlotRange->{{Min[ownbavg]eps,Max[ownbavg]+eps},{Min[multiSTerr]eps,Max[multiSTerr]+eps}}]

1 0.5

0.24

0.25

0.26

0.27

0.28

0.29

-0.5 -1

Graphics eps=(Max[oppbavg]-Min[oppbavg])/Length[oppbavg]; ListPlot[Transpose[{oppbavg,multiSTerr}],Prolog>{PointSize[0.02]},AxesOrigin->{Min[oppbavg]eps,0},PlotRange->{{Min[oppbavg]eps,Max[oppbavg]+eps},{Min[multiSTerr]eps,Max[multiSTerr]+eps}}]

٤٤٣


1 0.5

0.24

0.25

0.26

0.27

0.28

-0.5 -1

Graphics  

‫ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬r ‫ ﻣﻘﺎﺑل‬x1 ‫رﺳم‬ eps=(Max[teamera]Min[teamera])/Length[teamera];ListPlot[Transpose[{teamera,mu ltiSTerr} ],Prolog->{PointSize[0.02]},AxesOrigin->{Min[teamera]eps,0},PlotRange->{{Min[teamera]eps,Max[teamera]+eps},{Min[multiSTerr]eps,Max[multiSTerr]+eps}}]

‫ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬

r eps=(Max[ownbavg]-Min[ownbavg])/Length[ownbavg]; ListPlot[Transpose[{ownbavg,multiSTerr}],Prolog>{PointSize[0.02]},AxesOrigin->{Min[ownbavg]eps,0},PlotRange->{{Min[ownbavg]eps,Max[ownbavg]+eps},{Min[multiSTerr]eps,Max[multiSTerr]+eps}}]

‫ ﻣﻘﺎﺑل‬x2 ‫رﺳم‬

‫ ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬r ‫ ﻣﻘﺎﺑل‬x3 ‫رﺳم‬ eps=(Max[oppbavg]-Min[oppbavg])/Length[oppbavg]; ListPlot[Transpose[{oppbavg,multiSTerr}],Prolog>{PointSize[0.02]},AxesOrigin->{Min[oppbavg]eps,0},PlotRange->{{Min[oppbavg]eps,Max[oppbavg]+eps},{Min[multiSTerr]eps,Max[multiSTerr]+eps}}]

٤٤٤


‫ﻣن اﻟرﺳوم اﻟﺳ ﺎﺑﻘﺔ ﯾﺗﺿ ﺢ ﻋ دم وﺟ ود ﻣﺷ ﻛﻠﺔ اﻻرﺗﺑ ﺎط وذﻟ ك ﻻن ﺷ ﻛل اﻻﻧﺗﺷ ﺎر‬ ‫ﻋﺷواﺋﻰ ﻓﻰ ﺟﻣﯾﻊ اﻟرﺳوم‪.‬‬ ‫)‪ (٨-٤-٥‬اﻻرﺗﺑﺎط اﻟﺧطﻰ اﻟﻣﺗﻌدد وطرق اﻟﻛﺷف ﻋﻠﯾﮫ‬ ‫ﺗﻣﯾل اﻟﻣﺗﻐﯾرات اﻟﻣﺳﺗﻘﻠﺔ ﻓﻲ اﻟﻌدﯾد ﻣن اﻟدراﺳﺎت ﻓﻲ ﻣﺟ ﺎل اﻻﻋﻣ ﺎل ‪ ،‬اﻻﻗﺗﺻ ﺎد ‪،‬‬ ‫واﻟﻌﻠ وم اﻻﺟﺗﻣﺎﻋﯾ ﺔ واﻟﺑﯾوﻟوﺟﯾ ﺔ ‪ ،‬اﻟ ﻲ ان ﺗﻛ ون ﻣرﺗﺑط ﺔ ﻓﯾﻣ ﺎ ﺑﯾﻧﮭ ﺎ وﻣرﺗﺑط ﺔ ﻣ ﻊ‬ ‫ﻣﺗﻐﯾرات اﺧرى ذات ﺻﻠﺔ ﺑﺎﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ وﻏﯾر ﻣوﺟوده ﻓﻲ اﻟﻧﻣوذج‪ .‬ﻋﻠ ﻲ ﺳ ﺑﯾل اﻟﻣﺛ ﺎل‬ ‫‪ ،‬ﻓ ﻲ إﻧﺣ دار ﻧﻔﻘ ﺎت اﻟطﻌ ﺎم ﻟﻼﺳ ره ﻋﻠ ﻲ اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﮫ‪ :‬دﺧ ل اﻻﺳ ره ‪ ،‬ﺗ وﻓﯾرات‬ ‫اﻻﺳره ‪ ،‬وﻋﻣر رب اﻷﺳره ‪ ،‬ﺳﺗﻛون اﻟﻣﺗﻐﯾرات اﻟﻣﺳﺗﻘﻠﮫ ﻣرﺗﺑطﮫ ﻓﯾﻣﺎ ﺑﯾﻧﮭﺎ‪ .‬وأﻛﺛ ر ﻣ ن‬ ‫ذﻟ ك ﺳ ﺗﻛون اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﮫ ﻣرﺗﺑط ﮫ اﯾﺿ ﺎ ﺑﻣﺗﻐﯾ رات اﺟﺗﻣﺎﻋﯾ ﺔ – اﻗﺗﺻ ﺎدﯾﺔ ﻏﯾ ر‬ ‫ﻣوﺟوده ﻓﻲ اﻟﻧﻣوذج وﻟﮭﺎ ﺗﺎﺛﯾرھﺎ ﻋﻠﻲ ﻧﻔﻘﺎت طﻌﺎم اﻻﺳره ‪ ،‬ﻣﺛل ﺣﺟم اﻻﺳ ره‪ .‬وﻋﻧ دﻣﺎ‬ ‫ﺗﻛ ون اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﮫ ﻣرﺗﺑط ﺔ ﻓﯾﻣ ﺎ ﺑﯾﻧﮭ ﺎ ﯾﻘ ﺎل اﻧ ﮫ ﯾوﺟ د ارﺗﺑ ﺎط ﺧط ﻲ ﻣﺗﻌ دد ﻓﯾﻣ ﺎ‬ ‫ﺑﯾﻧﮭﺎ‪.‬‬ ‫)ا(ﻋواﻣل اﻟﺗﺿﺧم‬ ‫ﺗﺳ ﻣﻲ اﻟﻌﻧﺎﺻ ر اﻟﻘطرﯾ ﺔ ﻓ ﻲ اﻟﻣﺻ ﻔوﻓﺔ ‪) X'X-1‬واﻟﺗ ﻲ ﻋﻠ ﻲ ﺷ ﻛل ﻣﺻ ﻔوﻓﺔ‬ ‫اﻻرﺗﺑﺎط( ﻋواﻣل ﺗﺿﺧم اﻟﺗﺑ ﺎﯾن )‪ (VIFi‬ﺣﯾ ث ﯾﻣﻛ ن اﻋﺗﺑ ﺎرھم ﻣﻘﯾ ﺎس ھ ﺎم ﻟﻠﻛﺷ ف ﻋ ن‬ ‫اﻻرﺗﺑﺎط اﻟﺧطﻲ‪ .‬وﻋﻠﻰ ذﻟك اﻟﻌﻧﺻر‪ cii‬رﻗم ‪ i‬ﻋﻠ ﻲ اﻟﻘط ر ﻟﻠﻣﺻ ﻔوﻓﺔ ‪ C‬ﯾﻣﻛ ن ﻛﺗﺎﺑﺗ ﮫ‬ ‫ﻋﻠ ﻲ اﻟﺷ ﻛل ‪ ، c ii  (1  R i2 ) 1‬ﺣﯾ ث ‪ R i2‬ھ و ﻣﻌﺎﻣ ل اﻟﺗﺣدﯾ د اﻟ ذي ﻧﺣﺻ ل ﻋﻠﯾ ﮫ‬ ‫ﻟﻧﻣ وذج اﻧﺣ دار اﻟﻣﺗﻐﯾ ر اﻟﻣﺳ ﺗﻘل رﻗ م ‪ i‬ﻋﻠ ﻲ ﺑﻘﯾ ﺔ اﻟﻣﺗﻐﯾ رات اﻟﻣﺳ ﺗﻘﻠﮫ وﻋ ددھﺎ ‪.k-1‬‬ ‫ﯾﻣﻛن ﺗﻌرﯾف ﻣﻌﺎﻣل ﺗﺿﺧم اﻟﺗﺑﺎﯾن ﻛﺎﻟﺗﺎﻟﻲ‪:‬‬ ‫‪VIFi  c ii  (1  R i2 ) 1‬‬

‫ﻛﺑ ر واﺣ د أو اﻛﺛ ر ﻣ ن ‪ VIF‬ﯾ دل ﻋﻠ ﻲ وﺟ ود اﻻرﺗﺑ ﺎط اﻟﺧط ﻲ‪ .‬ﺗ دل اﻟﺧﺑ ره اﻟﺗﺟرﯾﺑﯾ ﺔ‬ ‫ﻋﻠ ﻲ أن أي واﺣ د ﻣ ن ‪ VIF‬ﯾزﯾ د ﻋ ن ‪ 10‬ﯾﻛ ون ﻣؤﺷ ر ﻋﻠ ﻲ أن ﻣﻌ ﺎﻣﻼت اﻻﻧﺣ دار‬ ‫ﺗﻘدﯾرھﺎ ﻏﯾر دﻗﯾق ﺑﺳ ﺑب وﺟ ود اﻻرﺗﺑ ﺎط اﻟﺧط ﻲ‪ .‬ﯾﺄﺧ ذ ﻋﺎﻣ ل اﻟﺗﺿ ﺧم ﻗﯾﻣ ﺎ ﻏﯾ ر ﺳ ﺎﻟﺑﮫ‬ ‫أى ان ‪VIF  0‬‬ ‫)ب(ﺗﺣﻠﯾل اﻟﻘﯾم اﻟﻣﻣﯾزة‬ ‫ﯾﻣﻛ ن اﺳ ﺗﺧدام اﻟﻘ ﯾم اﻟﻣﻣﯾ زه ﻟﻠﻣﺻ ﻔوﻓﺔ ‪ ، 1 ,  2 ,...,  k , X' X‬ﻛﻣﻘﯾ ﺎس ﻟوﺟ ود‬ ‫اﻻرﺗﺑ ﺎط اﻟﺧط ﻲ ﻓ ﻲ اﻟﺑﯾﺎﻧﺎت ‪ .‬ﻋﻧ د وﺟ ود واﺣ د أو اﻛﺛ ر ﻣ ن اﻟﻣﺗﻐﯾ رات ﺑﯾﻧﮭﻣ ﺎ ارﺗﺑ ﺎط‬ ‫ﺧطﻲ ﻗوي ﻓﺈن واﺣ د أو اﻛﺛ ر ﻣ ن اﻟﻘ ﯾم اﻟﻣﻣﯾ زة ﺳ وف ﺗﻛ ون ﺻ ﻐﯾرة‪ .‬ﺑﻌ ض اﻟﻣﺣﻠﻠ ﯾن‬ ‫ﯾﻔﺿﻠون اﺧﺗﺑﺎر رﻗم اﻟﺣﺎﻟﺔ ‪ condition number‬ﻟﻠﻣﺻﻔوﻓﺔ ‪ X'X‬واﻟﻣﻌرف ﻛﺎﻟﺗﺎﻟﻲ‪:‬‬

‫‪٤٤٥‬‬


‫‪ max‬‬ ‫‪ min‬‬

‫‪w‬‬

‫ﺣﯾ ث ‪  max‬اﻛﺑ ر ﻗﯾﻣ ﺔ ﻣﻣﯾ زة و ‪  min‬اﺻ ﻐر ﻗﯾﻣ ﺔ ﻣﻣﯾ زة ‪.‬ﻋﻣوﻣ ﺎ إذا ﻛ ﺎن رﻗ م‬ ‫اﻟﺣﺎﻟﺔ اﻗل ﻣن ‪ 100‬ﻓﮭ ذا ﯾ دل ﻋﻠ ﻲ ﻋ دم وﺟ ود ﻣﺷ ﻛﻠﺔ اﻻرﺗﺑ ﺎط اﻟﺧط ﻲ‪ .‬ارﻗ ﺎم اﻟﺣﺎﻟ ﺔ‬ ‫ﺑﯾن ‪ 1000 , 100‬ﺗ دل ﻋﻠ ﻲ ارﺗﺑ ﺎط ﺧط ﻲ ﻗ وى وﻋﻧ دﻣﺎ ﺗزﯾ د ‪ w‬ﻋ ن ‪ 1000‬ﻓﮭ ذا ﯾ دل‬ ‫ﻋﻠﻲ وﺟود ارﺗﺑﺎط ﺧطﻲ ﻗوي ﺟدا‪ ،‬وﻗد ﯾﺳﺗﺧدم ﺟذر اﻟرﻗم اﻟﺳﺎﺑق اى ‪:‬‬ ‫‪ max‬‬ ‫‪ min‬‬

‫وھﻧﺎك ﻣﻘﯾﺎس آﺧر ﯾﺳﻣﻰ ﻣؤﺷر اﻟﺣﺎﻟﺔ ‪ condition index‬واﻟذى ﯾﺗم ﺣﺳﺎﺑﮫ ﻛﻣﺎﯾﻠﻰ‪:‬‬ ‫‪ max‬‬ ‫‪i‬‬

‫‪w *i ‬‬

‫وﻗد ﯾﺳﺗﺧدم ﺟذر اﻟرﻗم اﻟﺳﺎﺑق اى ‪:‬‬ ‫‪ max‬‬ ‫‪i‬‬

‫واى رﻗم ﯾزﯾد ﻋﻠﻰ ‪ 30‬ﯾدل ﻋﻠﻰ وﺟود ارﺗﺑﺎط ﺧطﻲ‪.‬‬ ‫ﻣﺛﺎل)‪(١٤-٥‬‬ ‫ﻟﮭذا اﻻﺧﺗﺑﺎر ﺳوف ﻧﺳﺗﺧدم اﻟﻣﺛﺎل اﻟﺳﺎﺑق‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺣزﻣﺔ‬ ‫اﻟﺟﺎھزة‬ ‫`‪Statistics`LinearRegression‬‬

‫وﻓﯾﻣﺎ ﯾﻠﻰ ﺧطوات اﻟﺑرﻧﺎﻣﺞ واﻟﻣﺧرﺟﺎت‬ ‫`‪<<Statistics`LinearRegression‬‬ ‫‪teamera={3.33,3.51,3.55,3.65,3.80,4.20,4.22,4.27,4.31,4.48,4‬‬ ‫;}‪.53,4.55,4.62,5.86‬‬ ‫‪ownbavg={0.276,0.249,0.249,0.260,0.271,0.241,0.269,0.264,0.2‬‬ ‫;}‪70,0.240,0.259,0.252,0.258,0.293‬‬ ‫‪oppbavg={0.240,0.254,0.249,0.245,0.250,0.252,0.254,0.270,0.2‬‬ ‫;}‪74,0.264,0.280,0.266,0.268,0.286‬‬ ‫‪winpct={0.625,0.512,0.488,0.524,0.588,0.475,0.513,0.463,0.51‬‬ ‫;}‪2,0.405,0.450,0.480,0.456,0.506‬‬ ‫]‪Clear[dpoints‬‬ ‫‪dpoints=Table[{teamera[[i]],ownbavg[[i]],oppbavg[[i]],w‬‬ ‫;]}]‪inpct[[i]]},{i,1,Length[winpct‬‬ ‫‪٤٤٦‬‬


Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>VarianceInflation] {VarianceInflation{0.,4.17858,1.14993,3.95366}} Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>EigenstructureTable]

EigenV 2.05464 EigenstructureTable 0.813183 0.132175

Index 1. 1.58955 3.9427

x1 0.0505137 0.0147281 0.934758

x2 0.0649444 0.899539 0.035517

x3 0.0508254  0.0338397 0.915335

‫ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬VIF ‫ﻗﯾم‬ Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>VarianceInflation]

‫ ﻓﮭذا ﯾﻌﻧ ﻰ ﻋ دم وﺟ ود ﻣﺷ ﻛﻠﺔ ارﺗﺑ ﺎط ﺧط ﻰ ﺑ ﯾن‬10 ‫ ﻻ ﺗزﯾد ﻋن‬VIF ‫وﺑﻣﺎ ان ﻛل ﻗﯾم‬ .‫اﻟﻣﺗﻐﯾرات اﻟﻣﺳﺗﻘﻠﺔ‬

‫اﻻﻣر‬ Regress[dpoints,{1,x1,x2,x3},{x1,x2,x3},RegressionReport>EigenstructureTable]

1, 2 , 3

‫ﯾؤدى إﻟﻰ اﻟﺣﺻول ﻋﻠﻰ ﺟدول ﯾﺣﺗوى اﻟﻌﻣود اﻻول ﻟﮫ ﻋﻠﻰ اﻟﻘﯾم اﻟﻣﻣﯾزة‬  max i

‫و ﻗﯾم‬

‫ ﻓﮭذا ﯾﻌﻧ ﻰ‬30 30 ‫ﻻ ﺗزﯾد ﻋن‬

 max i

‫اﻟﻣﻘﺎﺑﻠ ﺔ ﻟﮭ ﺎ ﻓ ﻰ اﻟﻌﻣ ود‬

1  2.05464,  2  .813183,  3  .132175

‫ﺣﯾث‬

‫ وﺑﻣﺎ ان اﻛﺑر ﻗﯾﻣﺔ ل‬1,1.58955, 3.9427 ‫اﻟﺛﺎﻧﻰ‬

.‫ﻋدم وﺟود ﻣﺷﻛﻠﺔ ارﺗﺑﺎط ﺧطﻰ ﺑﯾن اﻟﻣﺗﻐﯾرات اﻟﻣﺳﺗﻘﻠﺔ‬

٤٤٧


‫)‪ (٥-٥‬ﻧﻣﺎزج اﻻﻧﺣدار اﻟﻐﯾر ﺧطﯾﺔ‬ ‫ﯾﺗﻧﺎول ھ ذا اﻟﻔﺻ ل ﻣﻘدﻣ ﮫ ﻣﺧﺗﺻ ره ﻋ ن ﻣﺷﺎﻛل اﻟﺗﻘ دﯾر ﻟﻠﻧﻣ ﺎذج اﻟﻐﯾ ر ﺧطﯾ ﮫ ‪.‬ﻓ ﻲ‬ ‫اﻟﻔﺻ ل اﻟﺳ ﺎﺑق ﻛ ﺎن اھﺗﻣﺎﻣﻧ ﺎ ﺑﺗوﻓﯾ ق ﻧﻣ ﺎذج اﻻﻧﺣ دار ‪ ،‬ﺑﺈﺳ ﺗﺧدام طرﯾﻘ ﺔ اﻟﻣرﺑﻌ ﺎت‬ ‫اﻟﺻﻐري ‪ ،‬واﻟﺗﻰ ﺗﻛون ﺧطﯾﮫ ﻓﻲ اﻟﻣﻌﺎﻟم وﻋﻠﻲ اﻟﺷﻛل‪:‬‬ ‫‪Y  0  0 X1  2 X 2  ...   p X p   .‬‬

‫وﺑﺎﻟرﻏم ﻣن أن اﻟﻧﻣوذج اﻟﺳﺎﺑق ﯾﻣﺛل أﻧواع ﻋدﯾده ﻣن اﻟﻌﻼﻗ ﺎت ﻓ ﺈن ھﻧ ﺎك ﺣ ﺎﻻت ﯾﻛ ون‬ ‫ﻓﯾﮭﺎ ھذا اﻟﻧﻣوذج ﻏﯾر ﻣﻧﺎﺳب‪ .‬ﻋﻠﻲ ﺳﺑﯾل اﻟﻣﺛﺎل ‪ ،‬إذا ﻛﺎﻧت ھﻧﺎك ﻣﻌﻠوﻣ ﺎت ﻣﺗ وﻓره ﻋ ن‬ ‫ﺷﻛل اﻟﻌﻼﻗﺔ ﺑﯾن اﻟﻣﺗﻐﯾر اﻟﺗﺎﺑﻊ واﻟﻣﺗﻐﯾرات اﻟﻣﺳﺗﻘﻠﮫ ﻻ ﺗﻣﺛل ﺑﮭذا اﻟﻧﻣوذج‪.‬‬ ‫ﯾﻛﺗب ﻧﻣوذج اﻻﻧﺣدار اﻟﻐﯾر ﺧطﻲ ﻋﻠﻲ اﻟﺻورة اﻟﺗﺎﻟﯾﮫ‪:‬‬ ‫‪Y j  f ( x j , )  j , j ,2,..., n.‬‬ ‫ﺣﯾ ث ﺣ د اﻟﺧط ﺄ اﻟﻌﺷ واﺋﻲ ﻟ ﮫ ‪ . Var ( j )   2 , E( j )  0‬ﻋ ﺎدة ﯾﻔﺗ رض أن ‪ j‬‬

‫ﯾﺗﺑ ﻊ اﻟﺗوزﯾ ﻊ اﻟطﺑﯾﻌ ﻲ‪ .‬اﻟداﻟ ﮫ ‪ f‬ھ ﻲ داﻟ ﮫ اﻟﺗوﻗ ﻊ او ﻧﻣ وذج اﻧﺣ دار اﻟﻣﺟﺗﻣ ﻊ ﺣﯾ ث ‪x j‬‬

‫ﻗﯾﻣﺔ ﻣن ﻣﺗﻐﯾرات اﻻﻧﺣدار و ‪ ‬ﻣﺗﺟﮫ ﻣن اﻟدرﺟﺔ )‪ (k x 1‬ﻣ ن اﻟﻣﻌ ﺎﻟم اﻟﻐﯾ ر ﻣﻌﻠوﻣ ﮫ‪.‬‬ ‫اﯾﺿ ﺎ ﯾﻼﺣ ظ أن ﺣ د اﻟﺧط ﺄ ﺗﺟﻣﯾﻌ ﻲ ‪ .additive‬ﯾﻼﺣ ظ أن ھﻧ ﺎك ﺗﺷ ﺎﺑﮫ ﻛﺑﯾ ر ﺑ ﯾن ھ ذا‬ ‫اﻟﻧﻣوذج واﻟﻧﻣوذج اﻟﺧطﻲ ﻓﯾﻣﺎ ﻋدا أن ) ‪ E(Yj‬داﻟﮫ ﻏﯾر ﺧطﯾﮫ ﻓﻲ اﻟﻣﻌﺎﻟم‪.‬‬ ‫اﻵن ﻓﻲ ﻧﻣﺎذج اﻻﻧﺣدار اﻟﻐﯾر ﺧطﻲ ﻓﺈن واﺣد ﻋﻠ ﻲ اﻷﻗ ل ﻣ ن ﻣﺷ ﺗﻘﺎت داﻟ ﮫ اﻟﺗوﻗ ﻊ‬ ‫ﺑﺎﻟﻧﺳﺑﺔ ﻟﻠﻣﻌﺎﻟم ﺗﻌﺗﻣد ﻋﻠﻲ واﺣد ﻋﻠﻲ اﻻﻗ ل ﻣ ن اﻟﻣﻌ ﺎﻟم اﻣ ﺎ ﻓ ﻰ ﻧﻣ ﺎذج اﻻﻧﺣ دار اﻟﺧطﯾ ﮫ‬ ‫ﻓﺈن اﻟﻣﺷﺗﻘﺎت ﻻ ﺗﻛون دوال ﻓﻲ ‪. ' s‬‬ ‫ان اﺳﺗﺧدام طرﯾﻘ ﺔ اﻟﻣرﺑﻌ ﺎت اﻟﺻ ﻐرى ﻟﺗﻘ دﯾر ﻣﻌ ﺎﻟم اﻟﻧﻣ وزج اﻟﻐﯾ ر ﺧط ﻰ ﺗﺣﺗ ﺎج اﻟ ﻰ‬ ‫ﻋﻣﻠﯾﺎت ﻛﺛﯾرة وﻟﮭ ﺎ ﺑﻌ ض اﻟﻌﯾ وب‪ .‬اﻟطرﯾﻘ ﺔ اﻻﻛﺛ ر اﻧﺗﺷ ﺎرا ﻓ ﻲ اﻟﺑ راﻣﺞ اﻟﺟ ﺎھزه ﻋﻠ ﻲ‬ ‫اﻟﺣﺎﺳب اﻵﻟﻲ واﻟﻣﺗﺧﺻﺻﮫ ﻓﻲ اﻻﻧﺣ دار اﻟﻐﯾ ر ﺧط ﻲ ھ ﻲ طرﯾﻘ ﺔ اﻟﺗﻛ رارات ﻟ ـ ﺟ ﺎوس‬ ‫– ﯾﻧ وﺗن ‪ . Gauss-Newlon‬وھﻧ ﺎك ﺑﻌ ض اﻟﺗﺣﺳ ﯾﻧﺎت ﻟﮭ ذه اﻟطرﯾﻘ ﺔ ‪.‬ودون اﻟ دﺧول‬ ‫ﻓ ﻰ اﻟﺗﻔﺎﺻ ﯾل ﺳ وف ﻧوﺿ ﺢ ﻛﯾﻔﯾ ﺔ ﺗﻘ دﯾر ﻣﻌ ﺎﻟم اﻟﻧﻣ وزج اﻟﻐﯾ ر ﺧط ﻰ ﺑﺑرﻧ ﺎﻣﺞ ﺟ ﺎھز‬ ‫ﺑﺎﺳ ﺗﺧدام ‪ Mathematica‬ﻣ ن ﺧ ﻼل اﻟﻣﺛ ﺎﻟﯾﯾن اﻟﺗ ﺎﻟﯾﯾن ‪.‬وﻟﻠﺣﺻ ول ﻋﻠ ﻰ ﺗﻔﺎﺻ ﯾل اﻛﺛ ر‬ ‫ﯾﻣﻛن اﻟرﺟوع اﻟﻰ ﻛﺗﺎب اﻻﻧﺣدار ﻟﻠدﻛﺗورة ﺛروت‪.‬‬ ‫ﻣﺛﺎل)‪(١٥-٥‬‬ ‫‪٤٤٨‬‬


‫ﻓ ﻰ ﺗﺟرﺑ ﮫ ﻟﻘﯾ ﺎس درﺟ ﺔ ﺣ راره ﻛ وب ﻣ ن اﻟﺷ ﺎي )‪ (y‬ﻋﻧ د ازﻣ ﮫ ﻣﺧﺗﻠﻔ ﮫ )‪ (x‬ﺗ م‬ ‫اﻟﺣﺻول ﻋﻠﻲ اﻟﺑﯾﺎﻧﺎت اﻟﻣﻌطﺎه ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬ ‫‪y‬‬

‫‪x‬‬

‫‪y‬‬

‫‪x‬‬

‫‪y‬‬

‫‪x‬‬

‫‪y‬‬

‫‪x‬‬

‫‪64.73‬‬

‫‪3‬‬

‫‪66.67‬‬

‫‪2‬‬

‫‪68.71‬‬

‫‪1‬‬

‫‪70.86‬‬

‫‪0‬‬

‫‪58.74‬‬

‫‪7‬‬

‫‪60.25‬‬

‫‪6‬‬

‫‪61.57‬‬

‫‪5‬‬

‫‪63.25‬‬

‫‪4‬‬

‫‪53.82‬‬

‫‪11‬‬

‫‪54.94‬‬

‫‪10‬‬

‫‪56.17‬‬

‫‪9‬‬

‫‪57.6‬‬

‫‪8‬‬

‫‪49.81‬‬

‫‪15‬‬

‫‪50.64‬‬

‫‪14‬‬

‫‪51.7‬‬

‫‪13‬‬

‫‪52.64‬‬

‫‪12‬‬

‫‪46.45‬‬

‫‪19‬‬

‫‪47.24‬‬

‫‪18‬‬

‫‪48.04‬‬

‫‪17‬‬

‫‪48.85‬‬

‫‪16‬‬

‫‪43.64‬‬

‫‪23‬‬

‫‪44.27‬‬

‫‪22‬‬

‫‪45.03‬‬

‫‪21‬‬

‫‪45.8‬‬

‫‪20‬‬

‫‪41.05‬‬

‫‪27‬‬

‫‪41.78‬‬

‫‪26‬‬

‫‪42.27‬‬

‫‪25‬‬

‫‪43.01‬‬

‫‪24‬‬

‫‪38.9‬‬

‫‪31‬‬

‫‪39.37‬‬

‫‪30‬‬

‫‪39.97‬‬

‫‪29‬‬

‫‪40.57‬‬

‫‪28‬‬

‫‪36.71‬‬

‫‪35‬‬

‫‪37.37‬‬

‫‪34‬‬

‫‪37.84‬‬

‫‪33‬‬

‫‪38.31‬‬

‫‪32‬‬

‫‪34.98‬‬

‫‪39‬‬

‫‪35.41‬‬

‫‪38‬‬

‫‪35.79‬‬

‫‪37‬‬

‫‪36.33‬‬

‫‪36‬‬

‫‪33.39‬‬

‫‪43‬‬

‫‪33.81‬‬

‫‪42‬‬

‫‪34.18‬‬

‫‪41‬‬

‫‪34.53‬‬

‫‪40‬‬

‫‪32.04‬‬

‫‪47‬‬

‫‪32.38‬‬

‫‪46‬‬

‫‪32.72‬‬

‫‪45‬‬

‫‪33.05‬‬

‫‪44‬‬

‫‪30.92‬‬

‫‪51‬‬

‫‪31.15‬‬

‫‪50‬‬

‫‪31.48‬‬

‫‪49‬‬

‫‪31.82‬‬

‫‪48‬‬

‫‪29.81‬‬

‫‪55‬‬

‫‪30.03‬‬

‫‪54‬‬

‫‪30.63‬‬

‫‪53‬‬

‫‪30.59‬‬

‫‪52‬‬

‫‪28.81‬‬

‫‪59‬‬

‫‪29.14‬‬

‫‪58‬‬

‫‪29.36‬‬

‫‪57‬‬

‫‪29.59‬‬

‫‪56‬‬

‫‪28.81‬‬

‫‪59‬‬

‫‪29.14‬‬

‫‪58‬‬

‫‪29.36‬‬

‫‪57‬‬

‫‪28.59‬‬

‫‪60‬‬

‫‪28.03‬‬

‫‪63‬‬

‫‪28.25‬‬

‫‪62‬‬

‫‪28.09‬‬

‫‪61‬‬

‫‪28.59‬‬

‫‪60‬‬

‫‪27.37‬‬

‫‪67‬‬

‫‪27.48‬‬

‫‪66‬‬

‫‪27.7‬‬

‫‪65‬‬

‫‪27.81‬‬

‫‪64‬‬

‫‪26.7‬‬

‫‪71‬‬

‫‪26.82‬‬

‫‪70‬‬

‫‪27.04‬‬

‫‪69‬‬

‫‪27.15‬‬

‫‪68‬‬

‫‪26.15‬‬

‫‪75‬‬

‫‪26.26‬‬

‫‪74‬‬

‫‪26.37‬‬

‫‪73‬‬

‫‪26.69‬‬

‫‪72‬‬

‫‪25.71‬‬

‫‪79‬‬

‫‪25.71‬‬

‫‪78‬‬

‫‪25.82‬‬

‫‪77‬‬

‫‪26.04‬‬

‫‪76‬‬

‫‪25.16‬‬

‫‪83‬‬

‫‪25.27‬‬

‫‪82‬‬

‫‪25.38‬‬

‫‪81‬‬

‫‪25.49‬‬

‫‪80‬‬

‫‪24.73‬‬

‫‪87‬‬

‫‪24.94‬‬

‫‪86‬‬

‫‪24.95‬‬

‫‪85‬‬

‫‪24.59‬‬

‫‪84‬‬

‫‪24.28‬‬

‫‪91‬‬

‫‪24.39‬‬

‫‪90‬‬

‫‪24.51‬‬

‫‪89‬‬

‫‪24.62‬‬

‫‪88‬‬

‫‪٤٤٩‬‬


‫‪23.95‬‬

‫‪95‬‬

‫‪24.06‬‬

‫‪94‬‬

‫‪24.17‬‬

‫‪93‬‬

‫‪24.17‬‬

‫‪92‬‬

‫‪23.73‬‬

‫‪98‬‬

‫‪23.73‬‬

‫‪97‬‬

‫‪23.84‬‬

‫‪96‬‬

‫واﻟﻣطﻠوب ﺗوﻓﯾق اﻟﻧﻣوذج‪:‬‬ ‫‪x‬‬

‫‪y j  1e 3 j  2  j‬‬

‫اﻟﺣــل ‪:‬‬ ‫ﺷ ﻛل اﻻﻧﺗﺷ ﺎر ﻟﻠﺑﯾﺎﻧ ﺎت ﻣﻌط ﺎه ﻓ ﻲ اﻟﺟ دول اﻟﺳ ﺎﺑق ﻣﻌط ﺎه ﻓ ﻲ ﺷ ﻛل )‪.(١١-٥‬‬ ‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدره ھﻲ‪:‬‬ ‫‪yˆ  21.978  47.0884 e 0.033242‬‬

‫واﻟﻣﻣﺛﻠﮫ ﺑﯾﺎﻧﯾﺎ ﻓﻲ ﺷﻛل )‪ .(١٢-٥‬ﺷﻛل اﻻﻧﺗﺷ ﺎر ﻟﻠﺑﯾﺎﻧ ﺎت ﻣ ﻊ ﻣﻌﺎدﻟ ﮫ اﻻﻧﺣ دار اﻟﻣﻘ دره‬ ‫ﻣﻌطﻲ ﻓﻲ ﺷﻛل )‪.(١٣-٥‬‬ ‫‪70‬‬ ‫‪60‬‬ ‫‪50‬‬ ‫‪40‬‬ ‫‪30‬‬ ‫‪20‬‬ ‫‪10‬‬ ‫‪100‬‬

‫‪80‬‬

‫‪40‬‬

‫‪60‬‬

‫ﺷﻛل )‪(١١-٥‬‬

‫‪٤٥٠‬‬

‫‪20‬‬


‫‪70‬‬ ‫‪60‬‬ ‫‪50‬‬ ‫‪40‬‬ ‫‪30‬‬ ‫‪20‬‬ ‫‪10‬‬ ‫‪100‬‬

‫‪80‬‬

‫‪40‬‬

‫‪60‬‬

‫‪20‬‬

‫ﺷﻛل )‪(١٢-٥‬‬ ‫‪70‬‬ ‫‪60‬‬ ‫‪50‬‬ ‫‪40‬‬ ‫‪30‬‬ ‫‪20‬‬ ‫‪10‬‬ ‫‪100‬‬

‫‪80‬‬

‫‪40‬‬

‫‪60‬‬

‫‪20‬‬

‫ﺷﻛل )‪(١٣-٥‬‬ ‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺣزﻣﺔ‬ ‫اﻟﺟﺎھزة‬ ‫`‪Statistics`NonlinearFit‬‬ ‫وﻓﯿﻤﺎ ﯾﻠﻰ ﺧﻄﻮات اﻟﺒﺮﻧﺎﻣﺞ و اﻟﻤﺨﺮﺟﺎت‪.‬‬ ‫`‪<<Statistics`NonlinearFit‬‬ ‫‪temps={{0,70.86},{1,68.71},{2,66.67},‬‬ ‫‪{3,64.73},{4,63.25},{5,61.57},{6,60.25},‬‬ ‫‪{7,58.74},{8,57.6},{9,56.17},{10,54.94},‬‬ ‫‪{11,53.82},{12,52.64},{13,51.7},{14,50.64},‬‬ ‫‪{15,49.81},{16,48.85},{17,48.04},{18,47.24},‬‬ ‫‪{19,46.45},{20,45.8},{21,45.03},{22,44.27},‬‬ ‫‪{23,43.64},{24,43.01},{25,42.27},{26,41.78},‬‬ ‫‪٤٥١‬‬


{27,41.05},{28,40.57},{29,39.97},{30,39.37}, {31,38.9},{32,38.31},{33,37.84},{34,37.37}, {35,36.71},{36,36.33},{37,35.79},{38,35.41}, {39,34.98},{40,34.53},{41,34.18},{42,33.81}, {43,33.39},{44,33.05},{45,32.72},{46,32.38}, {47,32.04},{48,31.82},{49,31.48},{50,31.15}, {51,30.92},{52,30.59},{53,30.63},{54,30.03}, {55,29.81},{56,29.59},{57,29.36},{58,29.14}, {59,28.81},{60,28.59},{61,28.09},{62,28.25}, {63,28.03},{64,27.81},{65,27.7},{66,27.48}, {67,27.37},{68,27.15},{69,27.04},{70,26.82}, {71,26.7},{72,26.69},{73,26.37},{74,26.26}, {75,26.15},{76,26.04},{77,25.82},{78,25.71}, {79,25.71},{80,25.49},{81,25.38},{82,25.27}, {83,25.16},{84,24.95},{85,24.95},{86,24.94}, {87,24.73},{88,24.62},{89,24.51},{90,24.39}, {91,24.28},{92,24.17},{93,24.17},{94,24.06}, {95,23.95},{96,23.84},{97,23.73},{98,23.73}}; everyOtherTemps=Table[temps[[j]],{j,1,99,2}]; dots=ListPlot[everyOtherTemps,PlotRange>{0,70},PlotStylePointSize[0.015]] 70 60 50 40 30 20 10 20

40

60

80

100

Graphics NonlinearFit[temps,beta0 Exp[beta1*t]+eps,t,{beta0,beta1,eps}] NonlinearFit::lmpnocon: Warning: The sum of squares has achieved a minimum, but at least one parameter estimate fails to satisfy either an accuracy goal of 1 digit(s) or a precision goal of 1 digit(s). These goals are less strict than those for the sum of squares, specified by AccuracyGoal->6 and PrecisionGoal->6. NonlinearFit::lmcv: NonlinearFit failed to converge to the requested accuracy or precision for the sum of squares within 30 iterations. 1.  9.55394  1023 E1.t ٤٥٢


NonlinearFit[temps,beta0 Exp[beta1*t]+eps,t,{beta0,beta1,eps},MaxIterations->40] NonlinearFit::lmpnocon: Warning: The sum of squares has achieved a minimum, but at least one parameter estimate fails to satisfy either an accuracy goal of 1 digit(s) or a precision goal of 1 digit(s). These goals are less strict than those for the sum of squares, specified by AccuracyGoal->6 and PrecisionGoal->6. NonlinearFit::lmcv: NonlinearFit failed to converge to the requested accuracy or precision for the sum of squares within 40 iterations. 1.  9.33002  1026 E1.t NonlinearFit[temps,beta0 Exp[beta1*t]+eps,t,{beta0,beta1,eps},Method->FindMinimum] FindMinimum::fmmp: Machine precision is insufficient to achieve the requested accuracy or precision. 21.978  47.0884 E0.0332431t

Tt_ : 21.9779835282673641` 47.0883658406797778`E0.0332431321361424636`t approx=Plot[T[t],{t,0,100},PlotRange->{0,70}] 70 60 50 40 30 20 10 20

40

Graphics Show[approx,dots]

60

80

٤٥٣

100


70 60 50 40 30 20 10 20

Graphics

40

60

80

100

‫ اﻟﻣدﺧﻼت‬:‫اوﻻ‬ ‫اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬temps. ‫ﻻزواج ﻗﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ و اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ‬

‫ اﻟﻣﺧرﺟﺎت‬: ‫ﺛﺎﻧﯾﺎ‬

‫( ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬١١-٥) ‫ﺷﻛل‬ everyOtherTemps=Table[temps[[j]],{j,1,99,2}]; dots=ListPlot[everyOtherTemps,PlotRange>{0,70},PlotStylePointSize[0.015]]

.‫وﻗد ﻓﺷل اﻻﻣر اﻟﺗﺎﻟﻰ ﻓﻰ اﻟﺣﺻول ﻋﻠﻰ ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة‬ NonlinearFit[temps,beta0 Exp[beta1*t]+eps,t,{beta0,beta1,eps}]

‫ اﻻن اﻟﻣﺣﺎوﻟﺔ اﻟﺛﺎﻧﯾﺔ ﻣﻊ اﻻﻣر اﻟﺗﺎﻟﻰ‬. beta0  1, beta1  3 ,eps  2 ‫ﺣﻴﺚ‬ NonlinearFit[temps,beta0 Exp[beta1*t]+eps,t,{beta0,beta1,eps},MaxIterations->40] ‫ﺣﯾث اﺿﯾف إﻟﯾﮫ اﻟﺧﯾﺎر اﻟﺗﺎﻟﻰ‬ MaxIterations->40

.‫اى ان ﻋدد اﻟﺗﻛرارات ارﺑﻌﯾن وﻗد ﻓﺷل اﯾﺿﺎ ھذا اﻻﻣر‬ ‫اﻻن اﻟﻣﺣﺎوﻟﺔ اﻟﺛﺎﻟﺛﺔ ﻣﻊ اﻻﻣر اﻟﺗﺎﻟﻰ‬ NonlinearFit[temps,beta0 Exp[beta1*t]+eps,t,{beta0,beta1,eps},Method->FindMinimum] FindMinimum::fmmp: Machine precision is insufficient to achieve the requested accuracy or precision. ‫ﺣﯾث اﺿﯾف إﻟﯾﮫ اﻟﺧﯾﺎر اﻟﺗﺎﻟﻰ‬ ٤٥٤


‫‪Method->FindMinimum‬‬

‫ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻣن اﻟﻣﺧرج‬ ‫‪21.978  47.0884 E0.0332431t‬‬

‫ﺷﻛل )‪ (١٢-٥‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬ ‫]}‪approx=Plot[T[t],{t,0,100},PlotRange->{0,70‬‬

‫ﺷﻛل )‪ (١٣-٥‬ﻧﺣﺻل ﻋﻠﯾﮫ ﻣن اﻻﻣر‬

‫]‪Show[approx,dots‬‬ ‫واﻟﺬى ﯾﺘﻀﺢ ﻣﻨﮫ ﺗﻄﺎﺑﻖ اﻟﺒﯿﺎﻧﺎت ﻣﻎ ﻣﻌﺎدﻟﺔ اﻻﻧﺤﺪار اﻟﻤﻘﺪرة‪.‬‬

‫ﻣﺛﺎل)‪(١٥-٥‬‬ ‫ﺑﻔرض اﻟﻧﻣوزج اﻟﻐﯾر ﺧطﻰ اﻟﺗﺎﻟﻰ ‪:‬‬ ‫‪1‬‬ ‫‪ j‬‬ ‫‪2  x j‬‬

‫‪yj ‬‬

‫واﻟﻣﺳ ﻣﻰ ﻣﻌﺎدﻟ ﺔ ‪ (1913) Michaelis-Menten‬واﻟﺗ ﻲ اﺳ ﺗﺧدﻣت ﻟوﺻ ف اﻟﻌﻼﻗ ﺔ‬ ‫اﻟﻌﻼﻗﺔ ﺑﯾن ﻣﺗﻐﯾرﯾن‪.‬‬

‫ﯾﻌطﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ ﺑﯾﺎﻧﺎت ﻟﻘﯾم ‪ x, y‬واﻟﻣطﻠوب اﯾﺟﺎد ﺗﻘدﯾر ﻟﻛل ﻣن ‪. 1 ,  2‬‬

‫‪٤٥٥‬‬


‫‪y‬‬

‫‪x‬‬ ‫‪0. 4 1 7‬‬ ‫‪0. 4 1 7‬‬ ‫‪0. 4 1 7‬‬ ‫‪0. 8 3 3‬‬ ‫‪0. 8 3 3‬‬ ‫‪0. 8 3 3‬‬ ‫‪1. 6 7‬‬ ‫‪1. 6 7‬‬ ‫‪3. 7 5‬‬ ‫‪3. 7 5‬‬ ‫‪6. 2 5‬‬ ‫‪6. 2 5‬‬ ‫‪6. 2 5‬‬

‫‪0. 0 7 73 8 9 5‬‬ ‫‪0. 0 6 88 7 1 4‬‬ ‫‪0. 0 8 19 3 5 1‬‬ ‫‪0. 0 7 37 0 3 4‬‬ ‫‪0. 0 7 38 7 5 3‬‬ ‫‪0. 0 7 12 3 9 6‬‬ ‫‪0. 0 6 50 4 2‬‬ ‫‪0. 0 5 47 6 6 7‬‬ ‫‪0. 0 4 97 1 2 8‬‬ ‫‪0. 0 6 42 7 2 7‬‬ ‫‪0. 0 6 13 0 0 5‬‬ ‫‪0. 0 6 43 5 7 6‬‬ ‫‪0. 0 3 93 8 9 2‬‬

‫ﺷﻛل اﻻﻧﺗﺷﺎر ﻟﻠﺑﯾﺎﻧﺎت اﻟﻣﻌطﺎه ﻓﻲ اﻟﺟدول اﻟﺳﺎﺑق ﻣﻌطﺎه ﻓﻲ ﺷﻛل )‪.(١٤-٥‬‬ ‫‪0.1‬‬ ‫‪0.08‬‬ ‫‪0.06‬‬ ‫‪0.04‬‬ ‫‪0.02‬‬

‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫ﺷﻛل )‪(١٤-٥‬‬ ‫ﻟﮭ ذا اﻟﻣﺛ ﺎل ﺗ م اﺳ ﺗﺧدام ﺑرﻧ ﺎﻣﺞ ﺟ ﺎھز ﺧ ﺎص ﺑﺎﻻﻧﺣ دار واﻟﻣﺳ ﻣﻲ ‪Levenberg‬‬ ‫‪ Marquardt‬واﻟذي ﯾرﺑط ﺑﯾن طرﯾﻘﺔ ‪ Steepest‬و طرﯾﻘﺔ ﺟﺎوس – ﻣﺎرﻛوف‪.‬‬ ‫ﯾﺗطﻠب ﺗوﻓﯾق ﻧﻣﺎذج اﻻﻧﺣدار اﻟﻐﯾر ﺧطﻲ ﺑﮭذه اﻟطرﯾﻘﺔ اﻟﺣﺻ ول ﻋﻠ ﻰ ﻗ ﯾم ﻣﺑدﺋﯾ ﮫ‬ ‫ﻟﻣﻌﺎﻟم اﻟﻧﻣوذج‪ .‬اﻟﻘﯾم اﻟﺟﯾدة ‪ ،‬أي ان اﻟﻘﯾم اﻟﻣﺑدﺋﯾ ﺔ واﻟﺗ ﻲ ﺗﻘﺗ رب ﻣ ن ﻗ ﯾم اﻟﻣﻌ ﺎﻟم اﻟﺣﻘﯾﻘﯾ ﺔ‬ ‫ﺳوف ﺗؤدي اﻟ ﻰ ﺗﺻ ﻐﯾر ﺻ ﻌوﺑﺎت اﻟﺗﻘ ﺎرب‪ .‬داﺋﻣﺎ اﻻﺧﺗﯾ ﺎر اﻟﺟﯾ د ﻟﻠﻘ ﯾم اﻟﻣﺑدﺋﯾ ﮫ ﯾﻛ ون‬ ‫ﻣﻔﯾد‪ .‬ﻓﻲ ﻧﻣﺎذج اﻻﻧﺣ دار اﻟﻐﯾ ر ﺧطﯾ ﮫ ﻓ ﺈن اﻟﻣﻌ ﺎﻟم ﻏﺎﻟﺑ ﺎ ﯾﻛ ون ﻟﮭ ﺎ ﻣﻌﻧ ﻲ ﻓﯾزﯾ ﺎﺋﻲ وھ ذا‬ ‫ﯾﺳﺎﻋد ﻓﻲ اﺧﺗﯾﺎر اﻟﻘﯾم اﻟﻣﺑدﺋﯾﮫ ﻟﻠﻣﻌﺎﻟم‪.‬‬ ‫ﻓﻲ ھذا اﻟﻣﺛﺎل ﺳوف ﻧوﺿﺢ ﻛﯾ ف أن ﻣﻌرﻓ ﺔ اﻟﻘ ﯾم اﻟﻣﺑدﺋﯾ ﮫ ﻟﻣﻌ ﺎﻟم اﻟﻧﻣ وزج ﺳ وف‬ ‫ﺗﺳﺎﻋدﻧﺎ ﻓﻲ اﻟوﺻول اﻟﻰ اﻟﻘﯾﻣﺔ اﻟﻧﮭﺎﺋﯾ ﺔ ﻟﺗﻘ دﯾر اﻟﻣﻌ ﺎﻟم ﻛﻣ ﺎ أن ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت اﻟﺑ واﻗﻲ‬ ‫‪٤٥٦‬‬


‫ﺳوف ﯾﻛون أﻗل ﻣن ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑ واﻗﻲ وذﻟ ك ﻓ ﻲ ﺣﺎﻟ ﺔ ﻋ دم ﻣﻌرﻓ ﺔ اﻟﻘ ﯾم اﻟﻣﺑدﺋﯾ ﮫ‬ ‫ﻟﻣﻌﺎﻟم اﻟﻧﻣوزج‪.‬‬ ‫ﺑﺈﺳﺗﺧدام ‪  2  1 , 1  1‬ﻛﻘﯾم ﻣﺑدﺋﯾﮫ ﻓﺈن ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدره ھﻲ‪:‬‬ ‫‪0.421171‬‬ ‫‪4.40374  4‬‬

‫‪yˆ ‬‬

‫واﻟﻣﻣﺛﻠﮫ ﺑﯾﺎﻧﯾﺎ ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻓﻲ ﺷﻛل )‪.(١٥-٥‬‬

‫‪0.09‬‬ ‫‪0.08‬‬ ‫‪0.07‬‬ ‫‪0.06‬‬ ‫‪0.05‬‬

‫‪7‬‬

‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪2‬‬

‫‪3‬‬

‫‪1‬‬

‫ﺷﻛل )‪(١٥-٥‬‬ ‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻲ ﻛﺎﻧت ‪ .0.00212771‬اﻵن ﺑﻔ رض أن ھﻧ ﺎك ﻣﻌﻠوﻣ ﺎت ﻣﺑدﺋﯾ ﮫ‬ ‫ﻋن ‪ 1 ,  2‬ﺣﯾث ‪ 1  0.5,  2  17‬ﻓﺈن ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدره ھﻲ‪:‬‬ ‫‪0.875918‬‬ ‫‪10.838  x‬‬

‫‪٤٥٧‬‬

‫‪yˆ ‬‬


‫واﻟﻣﻣﺛﻠﮫ ﺑﯾﺎﻧﯾﺎ ﻣﻊ ﺷﻛل اﻻﻧﺗﺷﺎر ﻣوﺿﺣﮫ ﻓﻲ ﺷﻛل )‪.(١٦-٥‬‬

‫‪0.08‬‬

‫‪0.07‬‬

‫‪0.06‬‬

‫‪0.05‬‬

‫‪7‬‬

‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪2‬‬

‫‪3‬‬

‫‪1‬‬

‫ﺷﻛل )‪(١٦-٥‬‬ ‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻲ ﻛﺎﻧت ‪ .000910677‬واﻟﺗﻰ أﻗل ﻣ ن ﻣﺟﻣ وع ﻣرﺑﻌ ﺎت اﻟﺑ واﻗﻲ‬ ‫ﻓ ﻲ ﺣﺎﻟ ﺔ ﻋ دم ﻣﻌرﻓ ﺔ اﻟﻘ ﯾم اﻟﻣﺑدﺋﯾ ﮫ‪ .‬وھ ذا ﯾﻌﻧ ﻲ أن اﻟﺣ ل ﺑﺎﺳ ﺗﺧدام اﻟﻘ ﯾم اﻟﻣﺑدﺋﯾ ﮫ‬ ‫‪ 1  0.5,  2  17‬ﻛﺎﻧ ت أﻛﺛ ر دﻗ ﮫ ‪ .‬ﻋ دد اﻟﺗﻛ رارات ﻟﻠوﺻ ول اﻟ ﻰ اﻟﺣ ل اﻟﻧﮭ ﺎﺋﻲ‬ ‫ﻣﻌطﺎه ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬ ‫‪ˆ 2‬‬

‫‪ˆ 1‬‬

‫اﻟﺧطوه‬

‫‪17‬‬ ‫‪7.1388‬‬ ‫‪8.25897‬‬ ‫‪9.47141‬‬ ‫‪10.3259‬‬ ‫‪10.6872‬‬ ‫‪10.8141‬‬ ‫‪10.8354‬‬

‫‪0.5‬‬ ‫‪0.997294‬‬ ‫‪0.924735‬‬ ‫‪0.9117‬‬ ‫‪0.90256‬‬ ‫‪0.885534‬‬ ‫‪0.877484‬‬ ‫‪0.876086‬‬

‫‪1‬‬ ‫‪2‬‬

‫‪٤٥٨‬‬


‫‪0.875935‬‬ ‫‪0.87592‬‬ ‫‪0.785918‬‬

‫‪10.8377‬‬ ‫‪108379‬‬ ‫‪10.838‬‬

‫وﺑﻣﺎ أن ‪ s2= 0.00008279‬ﻓﺈن ﻣﺻﻔوﻓﮫ اﻟﺗﻐﺎﯾر ﻟﻠﻣﺗﺟﮫ ˆ‪ ‬ﺳوف‬

‫ﺗﻛون‪:‬‬

‫‪0.0632335 0.886452‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 0.886452 12.6386 ‬‬

‫وﻋﻠﻲ ذﻟك ﺧطﺎ ﻣﻌﯾﺎري ﻣﻘرب ﻟﻠﻣﻌﺎﻟم ﺳوف ﯾﻛون‬ ‫‪0.0632335  0.251463,‬‬ ‫‪12.6386  3.55508.‬‬

‫ﻣﺻﻔوﻓﺔ ﻣﻌﺎﻣﻼت اﻻرﺗﺑﺎط ھﻲ‪:‬‬ ‫‪1‬‬ ‫‪0.991589 ‬‬ ‫‪‬‬ ‫‪0.991589‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪‬‬

‫ﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن ﻣﻌطﻲ ﻓﻲ اﻟﺟدول اﻟﺗﺎﻟﻰ‪.‬‬ ‫‪F‬‬

‫‪MS‬‬

‫‪SS‬‬

‫‪df‬‬

‫‪S.O.V‬‬

‫‪336.9‬‬

‫‪0.02789‬‬

‫‪0.0557833‬‬

‫‪2‬‬

‫اﻻﻧﺣدار‬

‫‪0.0009107 0.00008279‬‬

‫‪11‬‬

‫اﻟﺧطﺄ‬

‫‪0.056694‬‬

‫‪13‬‬

‫اﻟﻛﻠﻲ‬

‫ﺳوف ﯾﺗم ﺣل ھذا اﻟﻣﺛﺎل ﺑﺈﺳﺗﺧدام ﺑرﻧﺎﻣﺞ ﻣﻛﺗوب ﺑﻠﻐﺔ ‪ Mathematica‬وذﻟك ﺑﺎﺳﺗﺧدام اﻟﺣزﻣﺔ‬ ‫اﻟﺟﺎھزة‬ ‫`‪Statistics`NonlinearFit‬‬ ‫وﻓﯿﻤﺎ ﯾﻠﻰ ﺧﻄﻮات اﻟﺒﺮﻧﺎﻣﺞ و اﻟﻤﺨﺮﺟﺎت‪.‬‬ ‫`‪<<Statistics`NonlinearFit‬‬ ‫‪ecology={{0.417,0.0773895},{0.417,0.0688714},{0.417,0.081935‬‬ ‫‪1},{0.833,0.0737034},{0.833,0.0738753},{0.833,0.0712396},{1.‬‬ ‫‪670,0.0650420},{1.670,0.0547667},{3.750,0.0497128},{3.750,0.‬‬

‫‪٤٥٩‬‬


0642727},{6.250,0.0613005},{6.250,0.0643576},{6.250,0.039389 2}}; NonlinearFit[ecology,v/(k+x),x,{v,k}]

0.421171 4.40374  x NonlinearFit[ecology,v/(k+x),x,{{v,0.5},{k,17}}]

0.875918 10.838  x ecoplot=ListPlot[ecology,DisplayFunction->Identity];

appx_ :

0.875917980809416363` 10.8379705459261256`  x

aplot=Plot[app[x],{x,0,7},DisplayFunction->Identity]; Show[ecoplot,aplot,DisplayFunction->$DisplayFunction] 0.08

0.07

0.06

0.05

1

2

3

4

5

6

7

Graphics

app2x_ :

0.421171044208916445` 4.4037426263852204`  x

aplot2=Plot[app2[x],{x,0,7},DisplayFunction->Identity]; Show[ecoplot,aplot2,DisplayFunction->$DisplayFunction] 0.09 0.08 0.07 0.06 0.05

1

2

3

4

5

Graphics

٤٦٠

6

7


nrg1=NonlinearRegress[ecology,v/(k+x),x,{v,k},RegressionRepo rt->FitResiduals] {FitResiduals{-0.00997692,-0.018495,-0.00543132,0.00672275,-0.00655085,-0.00918655,-0.00430092,-0.0145762,0.00194091,0.012619,0.0217678,0.0248249,-0.000143484}} err1=nrg1[[1,2]]; sumsq1=Sum[err1[[j]]^2,{j,1,Length[err1]}] 0.00212771 nrg1=NonlinearRegress[ecology,v/(k+x),x,{v,k},RegressionRepo rt->StartingParameters] {StartingParameters{v1,k1}} nrg2=NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}},Reg ressionReport->FitResiduals]

{FitResiduals{-0.000435491,-0.00895359,0.00411011,0.0013476,-0.0011757,-0.0038114,-0.00498679,-0.0152621,0.0103311,0.00422885,0.0100412,0.0130983,-0.0118701}} err2=nrg2[[1,2]]; sumsq2=Sum[err2[[j]]^2,{j,1,Length[err2]}] 0.000910677

NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}},ShowProg ress->True] Iteration:1 Iteration:2 Iteration:3 Iteration:4 Iteration:5 Iteration:6 Iteration:7 Iteration:8 Iteration:9 Iteration:10

ChiSquared:0.0211263 Parameters:{0.5,17.} ChiSquared:0.0273833 Parameters:{0.997294,7.1388} ChiSquared:0.00913711 Parameters:{0.924735,8.25897} ChiSquared:0.00340141 Parameters:{0.9117,9.47141} ChiSquared:0.0015738 Parameters:{0.90256,10.3259} ChiSquared:0.00104566 Parameters:{0.885534,10.6872} ChiSquared:0.000927715 Parameters:{0.877484,10.8141} ChiSquared:0.000912423 Parameters:{0.876086,10.8354} ChiSquared:0.000910851 Parameters:{0.875935,10.8377} ChiSquared:0.000910693 Parameters:{0.87592,10.8379}

٤٦١


Iteration:11

ChiSquared:0.000910677

Parameters:{0.875918,10.838}

NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}}] BestFitParametersv0.875918,k10.838,

ParameterCITablev k

Estimate 0.875918 10.838

AsymptoticSE 0.251463 3.55508

CI 0.322452,1.42938, 3.01329,18.6627

Model EstimatedVariance0.000082789,ANOVATableError UncorrectedTotal CorrectedTotal

DF 2 11 13 12

SumOfSq 0.0557833 0.00091068 0.056694 0.00165764

MeanSq 0.0278916 0.000082789,

1. 0.991589 AsymptoticCorrelationMatrix , 0.991589 1. FitCurvatureTable MaxIntrinsic MaxParameterEffects 95.%ConfidenceRegion

Curvature 0.0771249  0.734794 0.50111

NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}},Regressi onReport->AsymptoticCovarianceMatrix] AsymptoticCovarianceMatrix  

0.0632335 0.886452  0.886452 12.6386

NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}},Regressi onReport->HatDiagonal] {HatDiagonal{0.172201,0.172201,0.172201,0.120973,0.120973, 0.120973,0.0817874,0.0817874,0.133218,0.133218,0.230156,0.23 0156,0.230156}} p=2; n=Length[ecology]; 2 p/n//N 0.307692 NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}},Regressi onReport->StandardizedResiduals] {StandardizedResiduals{-0.0526054,-1.08156,0.496484,0.157969,-0.137819,-0.446784,-0.571957,-1.75048,1.21956,0.499207,1.25776,1.64069,-1.48685}} .‫وﻓﯿﻤﺎ ﯾﻠﻰ ﺧﻄﻮات اﻟﺒﺮﻧﺎﻣﺞ و اﻟﻤﺨﺮﺟﺎت‬ ٤٦٢


‫اوﻻ‪ :‬اﻟﻣدﺧﻼت‬ ‫ﻻزواج ﻗﯿﻢ اﻟﻤﺘﻐﯿﺮ اﻟﻤﺴﺘﻘﻞ و اﻟﻤﺘﻐﯿﺮ اﻟﺘﺎﺑﻊ ‪ecology.‬اﻟﻘﺎﺋﻤﺔ اﻟﻤﺴﻤﺎه‬

‫ﺛﺎﻧﯾﺎ ‪ :‬اﻟﻣﺧرﺟﺎت‬

‫ﺑﺈﺳﺗﺧدام ‪  2  1 , 1  1‬ﻛﻘﯾم ﻣﺑدﺋﯾﮫ ﻓﺈن ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدره ھﻲ‪:‬‬ ‫‪0.421171‬‬ ‫‪4.40374  4‬‬

‫‪yˆ ‬‬

‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ‪:‬‬ ‫]}‪NonlinearFit[ecology,v/(k+x),x,{v,k‬‬ ‫‪ v  1 , k  2‬ﺣﯿﺚ‬

‫ﺷﻛل اﻻﻧﺗﺷﺎر ﻣﻊ ﻣﻌﺎدﻟﺔ اﻻﻧﺣدار اﻟﻣﻘدرة ﻓﻲ ھذه اﻟﺣﺎﻟ ﺔ )ﺷ ﻛل )‪ ((١٥-٥‬ﻧﺣﺻ ل ﻋﻠﯾ ﮫ‬ ‫ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ‪:‬‬ ‫]‪Show[ecoplot,aplot2,DisplayFunction->$DisplayFunction‬‬

‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻲ ﻛﺎﻧت ‪ 0.00212771‬ﻣن اﻻﻣر‬ ‫]}]‪sumsq1=Sum[err1[[j]]^2,{j,1,Length[err1‬‬

‫ﺑﻔرض أن ھﻧﺎك ﻣﻌﻠوﻣﺎت ﻣﺑدﺋﯾ ﮫ ﻋ ن ‪ 1 ,  2‬ﺣﯾ ث ‪ 1  0.5,  2  17‬ﻓ ﺈن ﻣﻌﺎدﻟ ﺔ‬ ‫اﻻﻧﺣدار اﻟﻣﻘدره ھﻲ‪:‬‬ ‫‪0.875918‬‬ ‫‪10.838  x‬‬

‫‪yˆ ‬‬

‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ‪:‬‬ ‫]}}‪NonlinearFit[ecology,v/(k+x),x,{{v,0.5},{k,17‬‬

‫ﻣﺟﻣوع ﻣرﺑﻌﺎت اﻟﺑواﻗﻲ ﻛﺎﻧت‬

‫‪0.000910677‬‬

‫ﻣن اﻻﻣر‬

‫]}]‪sumsq2=Sum[err2[[j]]^2,{j,1,Length[err2‬‬

‫ﺷ ﻛل اﻻﻧﺗﺷ ﺎر ﻣ ﻊ ﻣﻌﺎدﻟ ﺔ اﻻﻧﺣ دار اﻟﻣﻘ درة ﻓ ﻲ ھ ذه اﻟﺣﺎﻟ ﺔ )ﺷ ﻛل )‪ ((١٦-٥‬ﻧﺣﺻ ل‬ ‫ﻋﻠﯾﮫ ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ‪:‬‬ ‫]‪Show[ecoplot,aplot,DisplayFunction->$DisplayFunction‬‬

‫ﻋدد اﻟﺗﻛرارات ﻟﻠوﺻول اﻟﻰ اﻟﺣل اﻟﻧﮭﺎﺋﻲ ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ ‫‪٤٦٣‬‬


NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}},ShowProg ress->True]

: ‫ و ﺧطﺎ ﻣﻌﯾﺎري ﻣﻘرب ﻟﻠﻣﻌﺎﻟم‬s2= 0.00008279 0.0632335  0.251463, 12.6386  3.55508.

:‫وﻣﺻﻔوﻓﺔ ﻣﻌﺎﻣﻼت اﻻرﺗﺑﺎط‬ 1 0.991589   0.991589  1  

: 1 ,  2 ‫ ﻓﺗرة ﺛﻘﺔ ﻟـ‬95%‫وﺟدول ﺗﺣﻠﯾل اﻟﺗﺑﺎﯾن و‬ ‫( ﻋﻠﻲ اﻟﺗواﻟﻲ ﻧﺣﺻل ﻋﻠ ﯾﮭم ﻓ ﻰ‬322452 , 142938) , (3.01329 , 18.6628) ‫اﻟﺟدول ﻣن اﻻﻣر اﻟﺗﺎﻟﻰ‬ NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}}]

‫و ﻣﺻﻔوﻓﮫ اﻟﺗﻐﺎﯾر ﻟﻠﺗﻘدﯾرات‬ 0.0632335 0.886452    0.886452 12.6386 

‫ﻧﺣﺻل ﻋﻠﯾﮭﺎ ﻣن اﻻﻣر‬ NonlinearRegress[ecology,v/(k+x),x,{{v,0.5},{k,17}},Regressi onReport->AsymptoticCovarianceMatrix]

٤٦٤


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.