3 minute read

”Vi kan fremstille alt” PRÆCISIONSFERMENTERING

Mikroorganismer i store ståltanke kan hjælpe os med at producere fødevarer, kemikalier, medicin og brændstof helt uden brug af fossile ressourcer eller dyrehold.

Teknologien hedder præcisionsfermentering og spås at blive en af de vigtigste brikker i den grønne omstilling.

“Jeg har fødevarevirksomheder, der spørger mig: Hvad kan du fremstille? Mit svar lyder: Hvad ønsker du, at jeg fremstiller? Vi kan fremstille alt.”

Ordene kommer fra lektor José L. Martinez, der til daglig forsker og underviser på DTU i præcisionsfermentering. Hans ord opsummerer det seneste årtis hæsblæsende udvikling inden for en teknologi, der kan hjælpe verden til en mere bæredygtig produktion af stort set alt.

Æggehvider, ost, yoghurt, mælk, vitaminer, duft­, farve­ og smagsstoffer, vacciner samt kræft­ og malariamedicin er blot nogle af de ting, som i dag fremstilles ved hjælp af komponenter, som er produceret gennem præcisionsfermentering.

Fermentering er et ord, som de fleste formentlig forbinder med gæring, hvad enten vi udnytter det til øl, brød, sauerkraut eller østens mere ’hippe’ pendant, kimchi. Ved fermentering udnyttes mikroorganismer som f.eks. bakterier og gær, der allerede findes i naturen.

Og netop her adskiller fermentering sig fra præcisionsfermentering. For mikroorganismer, der indgår i præcisionsfermentering, bliver designet til formålet, fortæller José L. Martinez: “Ved præcisionsfermentering udnyttes mikroorganismer som bakterier, svampe, mikroalger eller gærceller til at fremstille de stoffer, vi har brug for. Men for at få organismerne til at producere stofferne skal de først igennem et par års udviklingsarbejde i et laboratorium, hvor de specialdesignes ved hjælp af genteknologi.”

CRISPR forandrede alt Et af de vigtigste redskaber til dette redesign er CRISPR. Lidt forenklet fortalt er det muligt ved hjælp af CRISPR at ’klippe’ gener ud af en plante eller en anden levende organisme og sætte det ind i en ny celle. Det indsatte gen indeholder koden for det stof, man ønsker at få fremstillet.

Præcisionsfermentering har været kendt i årtier, og Novo Nordisk har længe udnyttet den til at fremstille insulin. Men feltet er nærmest eksploderet i det seneste årti, og det skyldes CRISPR­teknologien, som blev tilgængelig i 2012.

“Med CRISPR blev det pludselig nemmere at sætte gener ind i mange flere forskellige mikroorganismer,” siger José L. Martinez, der før CRISPRteknologiens fødsel selv måtte opgive at modificere en type gærcelle trods fire års ihærdig indsats. Med CRISPR lykkedes det Martinez sammen med sin kollega ved DTU Bioengineering, professor Uffe Hasbro Mortensen, at modificere cellen på to år.

Teknologiens akilleshæl Selvom det teknologisk set er muligt at få mikroorganismer til at fremstille hvad som helst i et laboratorium, så er præcisionsfermenteringens akilleshæl at få det skaleret op. Opskalering handler om at få produktionen af det ønskede stof fra få milligram i laboratoriet op til et udbytte på flere ton i et fabriksanlæg.

“Vi kan lave alt i laboratoriet, men så snart vi skalerer op, får vi problemer. Når mikroorganismerne går fra at klare sig i en 1­litersfermenteringstank til at skulle klare sig i en større tank, så reagerer de ofte på forandringer i f.eks. temperaturen, det osmotiske tryk, ilt­ og saltindhold osv. Måske går produktionen af det ønskede stof ned eller ligefrem i stå. I værste fald må vi starte forfra og ud at finde en ny mikroorganisme,” siger José L. Martinez, der fortæller, at det i dag bliver stadig nemmere at lede efter naturens eget svar på mikroorganismer, der er robuste nok til at klare opskalering.

“Takket være den teknologiske udvikling inden for bl.a. robotter, kunstig intelligens og håndtering af big data kan vi nu screene tusinder af mikroorganismer på en uge, modsat de måske et hundrede styk, vi kun kunne nå for bare ti år siden,” siger José L. Martinez, der tilføjer:

“Porteføljen af potentielle mikroorganismer, vi kan udnytte, er vokset helt enormt, fordi vi kan finde frem til dem nu. Naturen har sådan set allerede opfundet alle løsninger. Vi skal bare finde dem.”

Stor markedsvækst på vej Trods udfordringerne med opskalering, så vurderes præcisionsfermentering at nå nye højder i løbet af de kommende år. Ifølge det Wall Street­baserede analysefirma Polaris Market Research lå det globale marked for præcisionsfermentering i 2021 på en værdi på 1,3 mia. dollar og vil herfra vækste med 48 pct. årligt frem til 2030.

I markedsanalysen forudses det, at alternativer, der kan føre til erstat­ ninger for kød, fisk og æg, vil drive væksten på markedet for præcisionsfermentering. En vækst, som analysefirmaet tilskriver den stigende efterspørgsel efter fødevarer, der ikke belaster miljø og klima, men i stedet produceres med et lavere energiforbrug, en lavere CO2­udledning, et lavere vandforbrug og uden brug af enorme arealer af landbrugsjord. Sidst, men ikke mindst vil produktionen kunne rykke geografisk tættere på forbrugerne, og dermed undgår man også det energiforbrug og den CO2­udledning, der er forbundet med transport af produkterne over længere afstande.

Med præcisionsfermentering kan man fremstille medicin, vitaminer, vacciner og fødevarer.

Vigtig brik i grøn omstilling

Disse perspektiver har ført til, at præcisionsfermentering er udråbt til at være en af de allervigtigste teknologier i den grønne omstilling. Men endnu vildere potentiale ligger forude, fortæller José

L. Martinez:

“I de kommende år vil der ske en ændring i den måde, vi fodrer vores mikroorganismer på. De skal leve af noget inde i deres ståltanke, og i dag fodrer vi dem med bl.a. sukker. Men vi er ved at udvikle nye foderløsninger, fordi vi finder mikroorganismer, der kan leve af affalds­ og sidestrømme fra virksomheder. Eller de kan leve af drivhusgasser og endda af plastik. Der er fundet enzymer, som kan nedbryde plastik til forbindelser, som vi kan bruge som foder til mikroorganismerne. Det er ret vildt. Tænk, en dag kan vi lave medicin eller mad med hjælp fra vores plastikaffald. Det er revolutionerende. Det er i sandhed grøn omstilling.”

This article is from: