Maths & Me 2nd Class Sample Teacher's Pack

Page 1

Teacher’s Pack

Teacher’sPlanningBook

Teacher’sResource Book

SecondClass Teacher’sPlanningBook

SecondClass Teacher’sResourcesBook

SecondClass Teacher’s Pack

ExtractSample

Sample Teacher’sPack

SecondClass

Introduction
ExtractSample TheEducationalCompanyofIreland ©TheEducationalCompanyofIreland
MiaJayLexiDara Monty

©TheEducationalCompanyofIreland

Notetoteachers: Thecontentsshownindicatewhatisincludedinthissampleextract. While we have combinedthe resourcesintoasinglebooklethere,therewillbetwoseparate booksprovidedtoteacherswhoadopttheprogramme–a Teacher’s PlanningBookanda

©TheEducationalCompanyofIreland

Contents
Teacher’s ResourcesBook.Thecontenthasbeensplit foreaseofuse. Introduction 1 How MathsandMe AlignstothePrimaryMathsCurriculum 1 YourGuideto MathsandMe 8 YearlyOverview 13 Unit9:Locationand Transformation–Planning 16 Unit9:Short-TermPlan 16 Unit9:LessonPlans 19 Unit9:Locationand Transformation– Resources 35 Unit9:SamplePCM1LocationGrid&Spinners 35 Unit9:SamplePCM2DirectionCards 36 Unit9:SamplePCM3ShapeAnimals 37 Unit9:SamplePCM4 SymmetryStations 38 Unit9:Let’sStrengthenPCM 39 Unit9:Let’sDeepenPCM 40 Unit9:Let’sStrengthenSuggestions for Teachers 41 Unit9:GamesBank 42 Unit9: FormativeAssessmentObservationsSheet 45

Introduction

How MathsandMe Alignstothe PrimaryMathsCurriculum(PMC)

StrandsandStrandUnits

ThePrimaryMathematicsCurriculum(PMC)hasfive Strands,whichare dividedinto StrandUnits:

Algebra DataandChanceMeasuresNumber ShapeandSpace

● Patterns, Rulesand Relationships

● Expressionsand Equations

©TheEducationalCompanyofIreland

● Data

● Chance

● Measuring

● Time

● Money

● UsesofNumber

● Numerationand Counting

● Place Valueand Base Ten

● Setsand Operations

● Fractions

● Spatial Awarenessand Location

● Shape

● Transformation

In MathsandMe,thecontentofeachunitisclearlyconnectedtooneormoreofthe Strands and StrandUnits.

LearningOutcomes

EachoftheStrandUnitscontainsasetofLearningOutcomes.Learningoutcomesareusedtodescribethe expectedmathematicallearninganddevelopment foralllearnersattheendofatwo-yearstage,whendue accountistakenofindividualabilitiesandvaryingcircumstances.

Eachofthelearningoutcomesbeginswiththestem,‘Throughappropriatelyplayfulandengaginglearning experiences,childrenshouldbeableto...’Thisstememphasisestheimportanceofprovidingrichand engaginglearningexperiences.

In MathsandMe alllearningoutcomesarecoveredindepth.Theprogrammehasbeendesignedto includeawide rangeofrich,appropriatelyplayfulandengagingactivitiesandtasks,whichdemonstrate keypedagogicalpractices,andsupportchildrentowardsachievingthelearningoutcomesanddeveloping theirmathematicalproficiency.

1 Introduction
Table1:OverviewoftheStrandsandStrandUnits

ProgressionContinua

The PMCissupported by thePrimaryMathematics Toolkit,whichincludestheProgressionContinua.The progressioncontinuaoutlineasamplelearningtrajectoryofMathematicsatprimarylevel.Theysuggest aseriesof learningexperiences whichchildrenmightengagewithastheydevelopanddeepentheir mathematicalknowledge,skillsanddispositions.Eachcontinuumdescribesthelearningjourneyacrosseleven ProgressionMilestones(a–k)intermsofmathematicalcontent(StrandUnits)andprocesses(Elements).

Takingintoconsiderationtheelevenprogressionmilestones(a–k),thevariousclasslevelsof MathsandMe have beendevelopedaroundcertainmilestones:

JuniorInfants ProgressionMilestonesbandc

©TheEducationalCompanyofIreland

SeniorInfants ProgressionMilestonescandd

FirstClass ProgressionMilestonee

SecondClass ProgressionMilestonef

Table2: MathsandMe ClassLevelsandtheProgressionContinua

Thatsaid, MathsandMe recognisesthatchildrenlearnanddevelopatdifferent rates.Therefore,whilethe contentoftheFirstClassbook, forexample,centresaroundsuggestedlearningfromProgressionMilestone e,itisalsoinfluenced by thestatementsinProgressionMilestonesdand f, tocater fortheneedsofallthe children. Teachersare recommendedtoexerciseprofessionaljudgementwhenmakingdecisionsastothe learningactivitiesandtaskswhicharemostappropriate forthechildrenintheirclassroom,andtoadapt accordingly.

MathematicalConcepts

ThePrimaryMathematics Toolkitoutlinesmathematicalconcepts.Theseareconsideredtobethe keyideas thatunderpineachlearningoutcome.Itisenvisagedthatchildrenwilldeveloptheirunderstandingofthese conceptsthroughengagingwiththemathematicalprocesses,asoutlinedintheelements.

In MathsandMe,mathematicalconceptsinformthedesignofunits,includingthemathslanguageto focus on,andinfluencetheprogressionofcontentfromoneclasstoanother.

2 Introduction

Focusoflearning

A FocusofLearningidentifiesthepurposeofalessonand/ortheintendedlearningthatwilltakeplace.

In MathsandMe,the FocusofLearningineachlessonechoesthesuggestedlearningexperienceslisted intheprogressioncontinua,i.e.each focusoflearningiseitheranexact replicaofastatement,oris derivedfromoneormorestatements.

The focusoflearningisalsoconnectedtooneofthe fourelementsusingtheabbreviatedtitles.

Day3,Lesson3

Turns

● Givesand followsdirectionsinvolvinghalfandquarterturns (C)

● Discusses,models,visualisesandpredictshowanobjectwilllookwhen rotatedthroughahalfor quarterturn(R)

● Reasonsaboutalternativewaystoperformthesame rotation(R)

Digitalactivity:Grid References MAM Routines: Reason& Respondwith Write-Hide-Show

Digitalactivity: Turtle Turns MAM Routine: Reason& Respond

Concreteactivity:Predicting Turns MAMRoutine: WriteHide-Show

Pupil’sBookpage62: Turns

Elements

Childrendeveloptheirmathsskillsthroughprocessessuch asconnecting,communicating, reasoning,argumentation, justifying, representing,problem-solving,andgeneralising.The PMC(2023)uses fourelementstodefinetheseprocesses,and tocategorisethesuggestedlearningexperiencesgiveninthe progressioncontinua.

● Scissors

Equipment

● Programmablebottoys, e.g.Bee-Botsorsimilar, andbotmats

Learningexperiences

The PMCadvocatesthatteachers providechildrenwithrichmathematical learningexperiencesthatareplayfuland engaging,that reflect relevantpedagogical approachesandthatprovideopportunities forchildrentocollaborate,communicate mathematicalthinking,andexpresstheir understandinginmultiplewaysandin variouscontexts.

Table3:An overviewofelementsandabbreviations

In MathsandMe,the focusoflearningineachlessonisclearly connectedtooneoftheseelementsusingtheabbreviated title(seesecondcolumnof Table3).Andwhilethe focusof learningmayincorporatemorethanoneofthesecentral processes,itisthemostprominentelementthatisgiven. ©TheEducationalCompanyofIreland

Inlinewiththelearningoutcomes, mathematicalconceptsandsuggested learningexperiencesintheprogression continua, MathsandMe providesawide rangeofrichandmeaningfullearning experiences foreachlesson.Manyof thesearedesignedaroundthe Maths andMe Routines.

3 Introduction
Focusoflearning(withElements)
D D C
Learningexperiences
P
Abbreviations UnderstandingandConnecting(U&C)
(C)
(R) ApplyingandProblem-Solving(A&PS)
Elements
Communicating
Reasoning

MathsandMe Routines areacollectionofplayful,engagingandinclusiveinteractionsthatpromote mathematicaltalk,thinkingandmodelingamongallchildren.These repeatable routineshave beenchosen astheyareproventoactivatepriorknowledge, fosterproductivedispositionsandprovidevaluable formativeassessmentopportunities forteachers.

Inadditiontosupportingthefive keypedagogicalpractices,whichwillbedescribedindetailinthenext section,the routinesalsosupport formativeassessmentandinclusivepracticesasdemonstratedin Table4.

Summaryofthe MathsandMeRoutines

©TheEducationalCompanyofIreland

Doesitsupport/promote…?

Sometimes,Never; TargetBoards

4 Introduction
Maths Ta lk Playfulness ProductiveDisposition CognitivelyChallenging Ta sks MathematicalModeling FormativeAssessment InclusivePractices MathsandMe Routines Think-Pair-Share ✔✔✔✔✔✔✔ Notice& Wonder ✔✔✔✔✔✔✔ Reason& Respond,e.g.WhatAmI?;
WhichOneDoesn’tBelong?;SameButDifferent;Always,
✔✔✔✔✔✔✔ Write-Hide-Show ✔✔✔✔✔✔✔ Number Talks:QuickImages ✔✔✔✔✔✔ Number Talks:NumberStrings ✔✔✔✔✔✔ BuildIt;SketchIt; WriteIt ✔✔✔✔✔✔✔ Three-Act Task ✔✔✔✔✔✔✔ WouldThis Work? ✔✔ ✔✔✔✔ ConceptCartoon ✔✔✔✔✔✔✔ ChoralCounting ✔✔✔ ✔✔ IDo, We Do, YouDo ✔✔✔ ✔✔ My FavouriteNo ✔✔✔✔✔
Would You Rather?;
Table4:Alignmentof MathsandMe Routineswiththefive key pedagogicalpractices, formativeassessment andinclusivepractices.

Keypedagogicalpractices

Chapter6ofthe PMCdescribesfive keypedagogicalpractices.Thesepracticesareacknowledgedasessential totheprovisionofqualitymathematicallearningexperiences.

FosteringProductiveDisposition

The PMCemphasisesthat‘Dispositionsarenotstaticandcanbenurturedorchanged overtime’andacknowledgesthat‘attitudestoMathematicsandvalues,bothathome andintheclassroom,alsohave astrongimpactonthedevelopmentofthechild’s productivedisposition forMathematics’(p.28).

Thefundamentalaimof MathsandMe is forthechildtocometoappreciatemathsassomething thatispositiveand relevanttothem.Ifthishappens,itismorelikelythattheywillengagewithmaths inameaningfulway. Thisseriesaimstoachievethis by:

● Highlightingthe worldofmathsaroundthechildren −intheirschools,intheirhomes,intheirlives

● Using real-lifeexamples ofmathsinactionandsituationsthatchildrencareabouttomakemaths meaningfuland relevant

● Actively encouragingthepositiveinvolvementof families intheirchild’slearningandmathematical experiences

● Incorporatingfunandentertainingactivities,includingplay, role-playscenariosandengaginggamesto boostenjoymentwhilealso emphasisingcollaborativetasks overindividual work

● Includingtasksthatencourage activeparticipation,exploration,investigation,productivestruggle, risk-taking,creativestrategiesandperseverance,whichwill resultin asenseofpersonalsatisfaction intheiraccomplishments

● Providing scaffolding,encouragementandsupport,includingtimetothinkand reflect

● Enabling childagencyandthechild’s voice.

EmphasisingMathematicalModeling

The PMCstatesthat‘MathematicalmodelinginvolvesusingMathematicstodescribe aproblem-contextanddeterminemeaningfulsolutionstotheproblem…In forming models,childrenmightusephysicalactions,spoken words,objects,images(e.g.graphs, diagramsandpictures),symbolsorwritten words’(p.30).

MathsandMe enablesmathematicalmodelinginmanyways:

● Emphasisingthe importanceofthinkingtime toallowthechildrentomakesenseoftheirthinking

● Using speciallychosenquestionsandtasks toencouragethechildrentomodelmathematically

● Presentingmathsconceptsinmultipleways and/orusingmultiplevisual representationstointroduce thechildrentoawidervarietyofmodelsthantheymighthave encounteredorcreatediflefttotheir owndevices

12 3 9

©TheEducationalCompanyofIreland

● Encouragingthechildren tobeindividualandunique inhowthey expressand representtheirideasandthinking

● Promptingthechildrento challengeandtesttheir ownthinking andmodels,and thoseofothers

● Encouragingtheuseof physicalmodels (classroommaterialsandmanipulatives) tosupportmathematicalmodelingintheclassroom,andincluding representationsoftheseintheprintanddigitalmaterials

● Usingavarietyof conceptualandproceduralmodels todemonstratedifferent approachesandstrategiesandencouragechildrentodeveloptheir ownmodels anduniquewaystoapproachcomputationsandtasks.

5 Introduction
Fostering productive disposition Emphasising mathematical modeling

UsingCognitivelyChallenging Tasks

The PMCdescribesCognitivelyChallenging Tasks (CCTs)as‘richhigher-orderlearning opportunitiesthatshouldappropriatelystretchandchallengechildren’sconceptual understandingastheyencountersignificantmathematicalideasandsituations. Sometimes referredtoas low-thresholdhigh-ceilingtasks,thesetasksshouldprovide allchildrenwiththeopportunitytoaccessMathematics,whileofferingthepotential for deeperengagement’(p.31).

MathsandMe facilitatesCCTsintheclassroom by:

● Incorporatingchallengeslinkedtochildren’scurrentlevelofknowledgeandunderstanding,while providinganappropriatestretch

©TheEducationalCompanyofIreland

● Providingtaskswherethesolutionpathwayisnotimmediatelyobvioustothelearnerorwherethe solutionisnot reducedtoasetofstepsandprocedures

● Facilitatingchildrentocommunicateandexpresstheirideasopenly,allowingthemtodiscuss,compare, justifyandevaluatetheirideasorsolutions.

CCTshave beenincorporatedthroughouttheprogrammeanditscomponents.

PromotingMaths Talk

The PMCdescribesMaths Talkas‘acollaborativeprocesswherechildren’sthinking, strategiesandideasareexpressed,sharedand/orexchanged.Thisallowschildrento reflectontheir ownunderstanding;define,presentandjustifytheirideas;makesenseof andcritiquetheir ownideasandthoseofothers;anddeveloptheirabilitytoexpressand articulatetheirthinking’(p.32).

Ineverylesson, MathsandMe providesideas forMaths Talkactivities,whichbeginwithappropriately challengingandengagingtasks.Bytheir verynaturetheseMaths Talkactivitiesalsoproviderichassessment opportunities,i.e.elicitingcurrentknowledgeandunderstanding,identifyingemergingconcepts.These activitiesemphasisetheprobingand responsiveaspectsofMaths Talk.Allofthe MathsandMe Routines promoteand fosterMaths Talk.Theuseofthese routinessupportsacultureof respectandrisk-taking,where children feelsafetosharetheirthinkingandareencouragedtolistentoandvaluetheideasofothers.

Encouragingplayfulness

The PMCstatesthat‘Mathematicallearningcanbegreatlyenhancedinaplayenvironment thatisinteractive,engaging,inclusiveandsupportive;andthatprovidesopportunities for exploration,investigation,challenge,creativity,choiceandindependence.Playprovides acontext formathematicalthinkingandthedevelopmentofmathematicallanguageand concepts,withclearpotential forpromotingmathstalk’(p.29).

MathsandMe encouragesplayfulness by:

● Tappingintochildren’sinterestsandcuriositiesthroughengagingthemesand real-lifecontexts

● Suggestingideasandwaystointegratemathematicallearningwithplayfulactivitiesthroughouttheday

● Facilitatingmultiplemeansofexpressionand representation

● Providingopportunities forchildrentoexploreandexperimentwithmathematicalideas

● Fosteringthecreationofasafespace forspontaneity,creativityandimaginativeplaywithmathematics

● Providingaccesstoawide rangeof resources,visualsupportsanddigital resources.

6 Introduction
Using cognitively challenging tasks Promoting maths talk Encouraging playfulness

AssessingPrimaryMaths

The PMCexplainsthat ‘Assessmentisanintegralpartoflearningandteaching.Itinvolvesteachersand children workingtogethertouseinformationtoinformandsupportlearningandteaching’(p.34).The PMC advocatesthreetypesofassessmentasbeingnecessary‘togainacomprehensivepictureofachild’sprogress andachievement’(p.35).Theseare:

● Intuitiveassessment:Unplanned,unrecorded,andongoing

● Plannedinteractions:Morevisible,maybe recorded,and relatedtolearningoutcomes/competencies

● Assessmentevents:Distinct,visible, recordedevents.

©TheEducationalCompanyofIreland

Assessmentisintegratedthroughout MathsandMe.Thelearningexperiencesarestructuredinsuch awaythattheysimultaneouslypromotethedevelopmentofmathsskillsandfluency,andenablethe teachertogather, record,interpret,useand reportinformationaboutachild’sprogressandachievements. Theteachercanthen respondtotheinsightsgatheredfromtheassessmentsandadjusttheirteaching accordingly.

Theprogrammesupportsthethreetypesofassessmentoutlinedinthe PMCinthe followingways:

Intuitiveassessment

● Unitplansprovide comprehensivebackground andrationale information forteachersonallthetopics covered,alongwith guidance andsupportsaroundcommon misconceptions,thus increasingteacherawareness andpreparednesstoobserve and respondtopupils.

Plannedinteractions

● Lessonsaredesignedaround richlearningexperiences linkedtothe focusoflearning andlearningoutcomes.

● Lessonsuseanumberof MathsandMe Routineswhich posequestionsdesigned tostimulateclassroom conversations andtoscaffold learning.The regularityof theseensurethey become familiar,recognisable assessmentopportunities

● Eachlessonplanhighlightsthe learningexperiencebest suitedtogenerating recordableassessmentdata

● Pupil’sBooktasks provide furtherassessmentdata,as doesthe self-assessment feature.

● Mathsjournalling opportunitiesareoutlinedin thelessons.

● Eachunitcomeswitha FormativeAssessment ObservationsSheet for teachers.

Assessmentevents

● The ProgressAssessment Booklet providescheckupquestionslinkedtothe learningoutcomesofeach unit.Thesequestionscanbe usedasaplannedassessment and administeredasa traditionaltest,orusedasthe basisof agrouporwholeclass quiz.

● A comprehensiverecord sheet enableseasyanalysisof assessmentdataatindividual, groupandclasslevel.

7 Introduction
Table5:Assessmentsupportsin MathsandMe

Thisguidewillwalk youthroughtheprogramme’s keycomponents,highlightingitsstructure,integrated approach,easeofuse,andthechoicesitofferstobothteachersandchildren.

Structureof MathsandMe

The MathsandMe yearly overviewisdividedintomonths,thensubdividedinto units.Eachunitiseitheroneortwo weekslongandcoversaspecificareaof learning.Thecontentofeachunitisclearlyconnectedtooneormoreofthe StrandsandStrandUnits.

Review Weeksarealsoincludedinthe yearly overview,providing regular opportunities forchildrento reviewand reflectontheirlearning.

Unitsarethebuildingblocksof MathsandMe.Eachunitisbrokendownintoa numberoflessonplans,and followsasimilarstructure.Theinitiallessonactivates andassesseschildren’spriorknowledge,thesubsequentlessonsdevelopand progressthelearning,whilethefinallessonofeachunitprovidesavaluable opportunityto reviewand reflectviaamenuofoptions.

Let’sStrengthensuggestionsandmaterialprovidesadditionalsupporttochildren,whileLet’sDeepen suggestionsandmaterialprovideadditionalchallengeandextensionopportunities.

StructureofaUnit

InitialLesson

©TheEducationalCompanyofIreland

SubsequentLessons

● Developsandprogresses thelearning

FinalLesson

● Providesopportunities toreviewandreflecton learning FormativeAssessment

Let’sStrengthen

Let’sDeepen

Eachlessonalso followsaclearstructure,whichisstraightforwardandeasyto follow, andprovidesflexibility andchoice forteachers.

StructureofaLesson

8 Introduction
MathsandMe
YourGuideto
● Activatesandassesses priorknowledge ● Introducesthetopic ● Buildsonpriorlearning
Figure1:Structureofa MathsandMe Unit
p Mainevent Optionalconsolidation andextensionopportunities
Warm-
13 YearlyOverview YearlyOverview TermOne Month WeekUnitNo.UnitTitle Strand(s):StrandUnit(s) September 11 Numbersto 100 Number:NumerationandCounting Number:SetsandOperations 2 32 AdditionandSubtraction1 Number:SetsandOperations Number:NumerationandCounting Algebra:ExpressionsandEquations Algebra: Patterns,Rulesand Relationships Number:Place ValueandBase Ten 4 October Number:Fractions Number:NumerationandCounting 6 74 Data1 DataandChance:Data Number:NumerationandCounting Number:SetsandOperations Algebra:ExpressionsandEquations 8Review November 95 Time1 Measures:Time 10 hapes ShapeandSpace:Shape 12 December13 7Numbersto200 Number:NumerationandCounting Number:Place ValueandBase Ten Number:SetsandOperations 14 view Editableplanningdocument
Figure2:Structureofa MathsandMe lesson

Warm-up

Eachlessonstartswithwarm-upsuggestionstogetthechildren readytolearn. Theyaretypicallywhole-classactivities,whosepurposemightbeto:

● Provideanintroductiontothemainlesson

● Revisitconceptsthatthecurrentlessonwillbuildupon

● Reviewcontentcoveredpreviously.

Mainevent

Themainpartofthelessonincludesanumberoftasks,throughwhichthe childrenwillachievethe focusoflearning forthelesson.

Thesetasksmaybeconcreteactivities C ,digitalactivities D oractivitiesbased onprinted resources P

Somepointstonoteabout MathsandMe lessons:

● Emphasisonplayfulandengaginglearningexperiences

● Useofdigital resourcestoenhancethelearning

● Useof MathsandMe Routines:see At-A-GlanceGuide

● Support foralllearnersthroughLet’sStrengthenandLet’sDeepen features

● Formativeassessmentopportunitiesthroughout.

Optionalconsolidationandextensionopportunities

Eachlessonendswithachoiceoffurtherlearningexperiencestoconsolidateandextendthechildren’slearning.

Componentsof MathsandMe

To supportteachersinimplementingthe PMC,thecomponentsof MathsandMe have beendevisedtoserve variouspurposesandenhancetheteachingandlearningofmathsintheclassroom,widerschoolandhome environments.

Pupil’sBook

The MathsandMe Pupil’sBookisdesigned foruseafterengagementwith thelearningexperiencesoutlinedinthelessonplans.Itspurposeistwofold: toprovideanopportunitytoconsolidatethenewlearning,andtoprovidea recordofchildren’s work.

The following featuresareincluded:

● TryThis:providesoptional,cognitivelychallengingtasks forpupils

● Let’sPlay:incorporatesplayfulnessintomathsthroughengaginggames andinteractiveactivities

● MathsEyes:encourageschildrentolookaroundthemand recognise mathsinthe real world

● Let’s Talk:providesopportunities forchildrentosharetheirstrategiesand ideas

● Let’sInvestigate:encourageschildrentodevelopcreativestrategies throughactiveparticipationandexploration.

ThePupil’sBookalsocomeswiththe followingadditional resourcestosupportlearning:a MWBwithan opennumberlinetemplate,adoubletenframe,achoiceoftwospinners forusewithgames,placevalue arrow cardsandplacevaluecut-outcounters.

9 Introduction
25 Unit9: Locationand Transformation Directions Day4,Lesson4 Givesand followsdirectionsinvolvingsimpledistancesorlandmarksinthecontextofsimpleplans/ gridsmaps/aerialphotosof familiarenvironments (C) ● Recordsdirectionsasaseriesofsimplesteps (C) Devisesandanalyses utesonmaps,plansorgridsthatsatisfycertainconstraints(e.g.theshortest route,nocrossing roads, avoidingobstacles)(A&PS) Focusoflearning(withElements) Digitalactivities:SameButDifferent– rns/ TurningShapes MAM Routine: Reason& Respond Digitalactivity: Zo Routes MAM Routines: Reason& RespondwithBuildit!Sketchit! Writeit! Pupil’sBookpage63:Directions P Learningexperiences Programmablebottoys,e.g.Bee-Bots orsimilar,andbotmats Equipment journey, ute Mathslanguage Warm-up D Digitalactivities:SameButDifferent–Turns/TurningShapes MAM Routine: Reason& Respond Playthetwoslideshowsandaskthechildrento propose reasons forwhytheimagesarethesameand whytheyaredifferent. Mainevent Digitalactivity:Zoo MAM Routines: Reason& Respond DistributeacopyofPCM7–DirectionCards toeachchild.Displaytheimageandsay: ImagineMiaisattheentranceandwantstovisit thelionsfirst.Use urDirectionCardsor MWBtoshowthedirections. ImagineJayisattheentranceandwantstovisit thepenguins,buthealsowantstogotothecafé onthewaytothepenguins.Use urDirection Cardsor yo Btoshowthedirections. ImagineLexiisattheentranceandwantsto visittheelephants,butshealsowantstogo tothetoiletonthewaytotheelephants.Use yo directions. ● Chooseananimalbutdon’tsayit aloud.Use yourDirectionCardsor your MWBtoshowthedirectionstogetto your chosenanimalfromtheentrance.Ask partnerto follow yourdirections−didtheygetto thecorrectanimal? SecondClass Pupil’s Book ©TheEducationalCompanyofIreland

Home/SchoolLinksBook

The MathsandMe Home/SchoolLinksBook recognisestheimportanceofthe familyinthechild’slearning.Includedinthebookare‘Dear Family’notes for eachunit,whichprovidetipsonhowtosupportthechild,practicalactivitiesto becompletedathome,andQRcodesthatlinktodigital resourcessuitable for homeuse.Theactivitiesinthisbookhave beencreatedtobeapproachableand open-endedto facilitatechild-ledinvestigationandplayfullearning.

Teacher’sPack

The MathsandMe teacher’s resourcematerials have beensplitintotwobooks:the Teacher’s PlanningBookandthe Teacher’s ResourcesBook.

The Teacher’s PlanningBookprovides comprehensiveteachingandplanning supportmaterialsinlinewiththe PMC.A yearly overview,unitplanswithshort-term planningandlessonplansareallincluded.

● The YearlyOverviewmapsouttheunits andstrandunitscovered overthecourse ofthe year.

● TheUnitPlansincludetheshort-term plan(fortnightlyplan)andadditional informationuseful forplanning,suchas commonmisconceptionsandmodelsand representationsused.

Teacher’s Planning Book

©TheEducationalCompanyofIreland

● TheLessonPlansoutlinethe focusof learning,learningexperiences,equipment needed,andmathslanguagethatwillbe focusedon.Fromthere,eachlessonisbrokendowninto WarmUpactivities,theMainEventandOptionalConsolidationandExtension Possibilities.

The Teacher’s ResourcesBookincludesalladditionalmaterialsoutsideofplanning.A rangeofphotocopiable materials(PCMs)are featuredhere,includinggeneralPCMs,Let’sStrengthenSuggestions for Teachers,Let’s StrengthenPCMsandLet’sDeepenPCMs.

ProgressAssessmentBooklet

The MathsandMe ProgressAssessmentBooklet featuresassessmentsthat covereachunit.Assessmentscomeinthe formofcheck-upquestionswhichare linkedtothelearningoutcomesofeachunit.Thebookletisdesignedinsucha waythatitcanbeeasilyusedaftereachunit,orduringeach review week.

10 Introduction
Home/SchoolLinksBook Name: Class:
SecondClass SecondClass
Teacher’sResourcesBook
Teacher’s ResourcesBook SecondClass Teacher’sPlanningBook
Name: Class: SecondClass ProgressAssessmentBooklet

Digital Resources

The MathsandMe digital resourceswillbringmathstolife forchildren,andenhanceclassroomlearning by encouragingparticipationandpositiveengagement.The resourcesaredesignedtocater fordifferentlearning stylesandcontributetothewide rangeofrichandplayfullearningexperiencesintheprogramme.

Innovative,intuitiveandeasytonavigate,the MathsandMe resourceshave primarilybeendeveloped asteachingtools fortheinteractivewhiteboard(IWB)andcanbeusedinconjunctionwiththechildren’s mini-whiteboards(MWBs)whereappropriate.

Supportingthepedagogicalpracticespromotedinthe PMCandproviding variedlearningopportunities forchildren,the resources reflectthelesson’s focusoflearning,promoteMaths Talk,incorporatemathematicalmodeling andallow for formativeassessment.Many resourceshave beenspecifically designedaroundthe MathsandMe Routines,suchasConceptCartoon, Three-Act TaskandQuickImages.

©TheEducationalCompanyofIreland

Digital resourcesaccompanymostlessons. To provideguidance fortheintegrationofdigital resourcesin theclassroom,theyare referencedindetailthroughoutthelessonplans foreachunit,withsuggestions for discussionanddifferentiation.The resourcesincludethe following:

Animations

Featuringtheprogrammecharacters–Mia,Jay, Lexi,DaraandMontythedog –theanimationsbringmathstolife withcolourfulstories,songsandfun scenarios relevanttochildren.

Videos

Immersiveandinterestingvideoswithdetailedconceptexplanationsandmeaningfulexamplesofmaths inactioninthe real world.

11 Introduction

Activities

Awide rangeofdigitalactivities–includingposters,slideshowsandinteractivegames–tosupport teachingandconsolidatelearning,encourageMaths Talkandpromoteactiveparticipation.

©TheEducationalCompanyofIreland

Manipulativese-Toolkit

Acomprehensivesetofbespokeinteractivemathstoolsandmanipulatives,includingMoney,Shapes,Clock, NumberSquare,Place Value,Dice,Spinnerandlotsmore!

Howtoaccess

Teacherscanaccessthe MathsandMe digital resourcesvia www.edcolearning.ie,whereadedicated websitewillhosttheprogramme’s keycomponents.Witheasy-to-usefilteringtosupportclassroom teachingandlessonplanning, mathsandme.ie willincludeinteractivee-books,digital resources,editable planningdocumentsandprintables(suchasMathsLanguageCards,ManipulativesCut-OutsandAssessment RecordSheets).

Pupil/ParentApp

To supporthome/schoollinksandstationteachingintheclassroom,abankofdigital resources–suchas animationsandinteractivegames–willbemade availableviaafreePupil/ParentApp.

12 Introduction

YearlyOverview

TermOne

©TheEducationalCompanyofIreland

13 YearlyOverview
Month WeekUnitNo.UnitTitle Strand(s):StrandUnit(s) September 11 Numbersto 100 Number:NumerationandCounting Number:Place ValueandBase Ten Number:SetsandOperations 2 32 AdditionandSubtraction1 Number:SetsandOperations Number:NumerationandCounting Algebra:ExpressionsandEquations Algebra: Patterns,Rulesand Relationships Number:Place ValueandBase Ten 4 October 53 Fractions Number:Fractions Number:NumerationandCounting 6 74 Data1 DataandChance:Data Number:NumerationandCounting Number:SetsandOperations Algebra:ExpressionsandEquations 8Review November 95 Time1 Measures:Time 10 11 6Shapes ShapeandSpace:Shape 12 December13 7Numbersto200 Number:NumerationandCounting Number:Place ValueandBase Ten Number:SetsandOperations 14 15 Review Editableplanningdocument

Term Two

©TheEducationalCompanyofIreland

14 YearlyOverview
Month WeekUnitNo.UnitTitle Strand(s):StrandUnit(s) January 16 8AdditionandSubtraction2 Number:SetsandOperations Algebra:ExpressionsandEquations; Patterns,Rulesand Relationships Number:NumerationandCounting 17 18 9Locationand Transformation ShapeandSpace:Spatial AwarenessandLocation ShapeandSpace: Transformation 19 February20 10 Measuring1 Measures:Measuring 2111 Patterns Algebra: Patterns,Rulesand Relationships Algebra:ExpressionsandEquations 22 Review March 2312AdditionandSubtraction3 Number:SetsandOperations Number:NumerationandCounting Algebra:ExpressionsandEquations Algebra: Patterns,Rulesand Relationships 24 2513Measuring2 Measures:Measuring 26 April* 27 14 Time2 Measures:Time 28 Review
*DependingonwhenEaster falls,Aprilmaybewhollyorpartlyin TermThree.

©TheEducationalCompanyofIreland

15 YearlyOverview
Month WeekUnitNo.UnitTitle Strand(s):StrandUnit(s) May2915Money Measures:Money Number:SetsandOperations 30 31 16 Data2 DataandChance:Data Number:NumerationandCounting Number:SetsandOperations Algebra:ExpressionsandEquations 32 17 Measuring3 Measures:Measuring June 3318NumberSentences Algebra:ExpressionsandEquations Number:SetsandOperations 34 19 AdditionandSubtraction4 Number:SetsandOperations Number:NumerationandCounting Algebra:ExpressionsandEquations 35 Review 36 Review
TermThree

Unit9: Locationand

rmPlanUnit9:Locationand Tr ansformation (J anuary: We eks1&2)

MathsandMe:2ndClass–Shor tTe

Aw arenessandLocation; Tr ansformation;Shape

ShapeandSpace>Spatial

Ed

CMLearningExperiencesAssessment

IntuitiveAssessment: re spondingtoemerging misconceptions

Assessment Interactions: re spondingtoinsights gleanedfromchildren’s re sponsestolearning experiences

AssessmentEvents: informationgathered fromcompletionofthe unitassessmentinthe ProgressAssessment Bookletpagexx

Strand(s)>Strandunit(s)

LearningOutcome ( s )T hroughappropriatelyplayfulandengaginglearningexperienceschildrenshouldbeabletousespatialknowledge fo rthepurposesoforientationandnavigation;visualiseandmodellocation usingsymbolicco-ordinates;understandthatshapesandlinesegmentscanbe re flected, ro tatedandtranslated.

Fo cusofLearning(withElements)

D Notice& Wo nderL1,6

D Think-Pair-ShareL1,7–8

D Re ason& Re spondL1–8

C P CapturetheCountersL2

D Wr ite-Hide-ShowL2,3

C BuildIt!SketchIt! Wr iteIt!L1,4

C Predicting Tu rnsL3

C MakingRightAnglesL5

C Sy mmetryStationsL6

D ConceptCartoonL7

C MovingShapesL7

C ExploringandCreating Te ssellationsL8

C Solving Te ssellatingPuzzlesL8

Print re sources Pupil’sBookpages61–67 Home/SchoolLinksBookpages23–24 PCMxx

DifferentViews: Re cognisesthe re lationshipbetweendifferentmodesof re presentingpositionandlocation(bird’s-eyeview ve rsus streetview)(R)

Location: Identifiesanddescribesthegenerallocationofanobjectusingagridsystem(U&C);Exploresgrid re fe re ncesinthe contextofbarriergames,orotherplayfulactivities(A&PS)

Tu rns: Givesand fo llowsdirectionsin vo lvinghalfandquarterturns (C );Visualisesandpredictshowanobjectwilllookwhen ro tated throughahalforquarterturn(R); Re asonsaboutalternativewaystoper fo rmthesametransformation(R)

Directions: Givesand fo llowsdirectionsin vo lvingturnsandsimpledistancesorlandmarksinthecontextofsimpleplans/grid maps/aerialphotosof fa miliarenvironments (C ); Re cordsdirectionsasaseriesofsimplesteps (C );Devisesandanalyses ro uteson maps,plansorgridsthatsatisfycertainconstraints(A&PS)

RightAngles: Exploressquareandnon-squarecornersintheenvironment,identifyingsquarecornersasrightangles(U&C)

Re flections: Discusses,modelsandvisualises re flectionofshapes(U&C);Completesmissing re flections,ofshapesorimages (C)

WhatMo ve ?: Discusses,models,visualisesandpredicts re flection, ro tationandtranslationofobjects,imagesandshapes(U&C); Re asonsaboutalternativewaystoper fo rmthesametransformation(R)

Te ssellations: Exploresandcreatessimpletessellations(U&C);Explorestessellationswhereasingleshapeis re peated(A&PS); Examinestessellationsandidentifiesifshapesha ve been re flected, ro tatedand/ortranslated(U&C)

Re viewand Re flection: Re viewsand re flectsonlearning(U&C)

Ke y: Elements: (U&C)UnderstandingandCommunicating; (C )Communicating;(R) Re asoning;(A&PS)ApplyingandProblem-Solving.

LearningExperiences: C concreteactivity; D digitalactivity; P activitybasedonprintedmaterials, fo llo we d by lessonnumbers.

CM:CuntasMíosúil: pleasetickwhen yo u ha ve completedthe fo cusoflearning.

©TheEducationalCompanyofIreland

Lesson

1

2

3

4

5

6

7

8

9

16
itableplanningdocument
Tr ansformation

Additionalinformation forplanning

ProgressionContinua

MathsLanguage

Equipment

InclusivePractices

See‘SecondClass MathsandMe ProgressionContinuaOverview’ foradetailedbreakdownofhowallprogression continuaarecovered.

See‘SecondClass MathsandMe MathsLanguageOverview’andindividuallessonplans.

See‘SecondClass MathsandMe MathsEquipmentOverview’andindividuallessonplans.

● SeeLet’sStrengthenandLet’sDeepensuggestionsthroughoutlessonplans.

● SeeUnit9Let’sStrengthenSuggestions for Teachers.

● SeeUnit9Let’sStrengthenPCM.

©TheEducationalCompanyofIreland

Integration

● SeeUnit9Let’sDeepenPCM.

Seeindividuallessonplans.

Background and rationale

● Locationand TransformationisthesecondShapeandSpaceunitin MathsandMe.Itisacombinedunit, exploringthetopicsofSpatial AwarenessandLocationand Transformation.

● Whilethechildrenhave exploredsimplemapsandgridspreviously,thisisthefirsttimethattheyare introducedtousingagridsystemandgrid references,i.e.lettersalongthehorizontal,numbersalong the verticaland referenceswhichareexpressedasanorderedpair(e.g.F2).Ingridsystemsandgrid references,theobjectislocatedintheareaorspacecreated by theintersectinglines.

● Inlaterclasses,theywillbeintroducedtopairsofcoordinates,e.g.(6,4),asanotherwayto representlocation. Inthecoordinatesystem,thelocationoftheobjectisaspecificpointattheintersectionofthelines.

● Turns:Whiletheprimary focusofthisunitisonfull,halfandquarterturns,ifappropriate,challengesome childrentoalsoexploretheeffectsofthreequarterturns.

● Theprogressioncontinua forlevelsd,e, f, g,andh refertotwospecifictypesofsymmetry:linesymmetry, introducedatleveld,and rotationalsymmetry,not formallyexploreduntillevelg.Therefore,in Maths andMe forSeniorInfantsto2ndClass,thechildrenwillonlybeexploringlinesymmetry.Aslinesymmetry isalso referredtoas reflectiveormirrorsymmetry, MathsandMe usestheterm‘mirrorsymmetry’,both tohelpcreateadistinctionbetweenthechildren’sunderstandingofthistypeofsymmetryandtheirlater understandingof rotationalsymmetry,andtoemphasisetheimportanceofincorporatingtheuseof mirrorsasanessentialpieceofequipmentwhenexploringthisconcept.

● Whilethecardinalpoints(north,south,eastand west)arenotexplicitiytaughtinthisunit,ifthese directionsariseorganicallyfromthepupils’ owndiscussionanddirections,theyshouldbeacknowledged andincorporated.

● Patterns:Thisunitalsoprovidesopportunitiestodevelopunderstandingofsomepatterntypes, e.g.symmetrical,tessellating,inpreparation forUnit11 Patterns.(Seealsointhesameunit: Patterns: SupportingLearning).

The overarchingthemeofthisunitis TheZoo.Thisthemeprovidesa real-lifecontextthechildrencan identify(i.e.triptothe zoooranother family-friendlydestination)andusesimplemapstonavigate.

17 Unit9: Locationand Transformation

Commonmisconceptions anddifficulties

Forachildtobeabletoflexiblyvisualiseposition,directionandtheeffectsofmovementand transformationonshapesandobjects,theymusthave ampleexperienceofmanipulatingthephysical representations.Therefore,experienceswithconcretematerialsandequipmentarevitalandshouldbe enabledasmuchandasoftenaspossible.

Thechildrenmay:

● Confuserightandleft(eveniftheyhave beenusingthesedirectionssinceSeniorInfants), particularlywhentheorientationoftheobjectisdifferenttotheir ownorientationandclockwise/ anti-clockwise.*

● Struggleto rememberthatinagrid reference,thelettercomesfirst.

● Struggletovisualiseandidentifyhalfandquarterturns.(Makingaturn yourself requirestheability tovisualise yourselffromabove as youturnafractionofacircle,clockwiseoranti-clockwise.It mayhelp forthechildrentoinitiallyuseacut-out,withobviousfront,backandsides,thatcanbe physicallyturned).*

● Struggletoidentifyrightanglesifthelinesmakingtheangleareorientatedanyotherwaythan horizontaland vertical.

● Incorrectlyassumethatwhereashapeishalved,thatthisisalsoalineofsymmetry.*

● Createaduplicate/repeatimage(seebelow)whentryingtocreateamirrorimage.*

©TheEducationalCompanyofIreland

*SeetheUnit9–Let’sStrengthenSuggestions for Teachers forspecificinterventionstoaddressthese misconceptions.

Mathematicalmodels and representations

● 3-Dandaerial representationsofvariousobjectsandshapes

● Gridsandgrid referencestoaidlocation

● Physicalandpictorial representationsofobjectsthatcanbeturned

● Circlesdividedintohalvesandquartersto representturns

● Curvedandstraightarrowsgoing/turningbothleftandright

● Physicalandpictorial representationsof2-Dand3-Dshapes

● Physicalandpictorial representationsofobjectswithrightangles

● Physicalandpictorial representationsofshapesthatcantessellate

18 Unit9: Locationand Transformation
3 2 1 AB CD EF

Day1,Lesson1

DifferentViews

Focusoflearning(withElements)

● Recognisesthe relationshipbetweendifferentmodesof representingpositionandlocation(bird’s-eye view versusstreetview)(R)

Learningexperiences

Digitalactivity:The Zoo(1)

MAM Routines:Notice& Wonderwith

Think-Pair-Share/Reason& Respond

Digitalactivity:DifferentViews

MAM Routine: Write-Hide-Show

Concreteactivity:CubeConstructions

MAM Routine:Buildit!Sketchit! Writeit!

Pupil’sBookpage61:DifferentViews

©TheEducationalCompanyofIreland

● bird’s-eye/aerialview,streetview

D Digitalactivity:TheZoo(1)

MAM Routines:Notice& Wonderwith

Think-Pair-Share

Equipment

● Lotsofcubesandcuboids,bothconnecting (interlockingcubes,magneticblocks, polydrons,megablocks,Lego,etc.)and notconnecting(baseten, woodenbuilding blocksandnumber rods)

● Geometricsolids

Mathslanguage

Warm-up

Recordthechildren’s responsestobothquestionson theboard.

Displaytheposterand,usingThink-Pair-Share,ask:

● Whatdo younotice?Whatdo you wonder?

Mainevent

D Digitalactivity:TheZoo(1)

MAM Routine: Reason& Respond Displaytheposterandaskorclicktoplay thequestionsbelow. Whenever appropriate,askthechildrentogive reasons fortheir responses(s), forexample, toexplainwhyorhowtheythinkthis.

● Whatdoesthispostershow?

● Thisisa zoo;whatcluestellusthis?

● Namesomethings youthink you recognise.

● Whereisthisviewfrom?

● Whydo youthinkthisissometimescalledan aerialview?

● Whydo youthinkthisissometimescalleda bird’s-eyeview?

● Whatistheoppositetoanaerialorabird’s-eye view?(astreetview)

● If we couldseethisasastreetview,what would youexpecttosee?

● Whenmightabird’s-eyeoranaerialviewbe better?

● Whenmightastreetviewbebetter?

19 Unit9: Locationand Transformation
D D C P

Optional:UsingGoogleMaps,locatetheschoolusing itseircode.Lookattheschoolfromthedifferent availableviewpoints(aerialview,streetviewfront, streetviewbehind,etc.).Thechildrencouldalsodo somethingsimilarwiththeir ownhomes(whenat homeorinschooliftherearesufficientdevices available).

D Digitalactivity:DifferentViews

MAM Routine: Write-Hide-Show Playtheinteractivegame,inwhichthechildren mustmatchtheaerialimageswithcorresponding street-viewimages.

C Concreteactivity:CubeConstructions

MAM Routine:Buildit!Sketchit! Writeit! Distributethecubesandcuboidstotheclass.The childrenshouldusethesetoconstructsmallmodels ofvariouscolours.Theyshouldthensketchand colourbothabird’s-eye/aerialviewandastreetview oftheirmodel.

Optional:

● Thechildrencouldphotographtheirmodelsfrom thetwodifferentviewpoints.Thephotoscould thenbeusedasamatchingactivity forothers.

● Groupscouldswaptheirsketchesandbuildeach other’s models.Cantheymatchthesketchtoits 3-Dmodel?

P Pupil’sBookpage61: DifferentViews

Let’sStrengthen:

Thechildrenmay benefitfromthe additionalsupportof the3-Dgeometric solidstocomplete activityC.

Trythis! Forthebird’s-eyeviewoftheclassroom,the childrencoulduseasquaredcopypage,PCM1− 1cmSquareGrid,PCM2−2cmSquareGridand/or PCM3−ClassroomCut-outs.

Let’sStrengthen:

Thechildrenmaybenefitfromtheadditional supportofthePCMslistedabove.

Let’sDeepen: Challengethechildrentodrawtheclassroommap withoutanyextrasupport.

Optionalconsolidation andextension possibilities

Integration Giventhatthe overarchingtheme forthisunitisThe Zoo,therearelotsofopportunities forcross-curricularintegration,e.g.Language English:languageand vocabularydevelopmentusing thethemeofthe Zoo;LanguageGaeilge:Ainmhí; Science TechnologyandEngineering:animallife; Geography:animalconservation,animals/habitats aroundthe world;Music:listeningand respondingto TheCarnivaloftheAnimals.

©TheEducationalCompanyofIreland

MathsJournal Thechildrencouldchooseother objectsintheclassroomtosketchinaerialandstreet view.

Locationand TransformationDisplay Setupa displayintheclassroom,towhichthechildrencan contributelabelledexamplesoftheir own work/ constructionsfromthisunit.

GamesBank Play‘DirectionsTic-Tac-Toe’.

20 Unit9: Locationand
Transformation
Location Day2,Lesson2 ● Identifiesanddescribesthegenerallocationofanobjectusingagridsystem(U&C) ● Exploresgrid referencesinthecontextofbarriergames,orotherplayfulactivities(A&PS) Focusoflearning(withElements) 61 Unit9: Locationand Transformation.Day1, Lesson Unit9Digital Resources Different Views Whichaerial-viewobjectshaveamatchingstreetview?Matchthem. Whichonesabovehadnomatch?Drawthecorrect aerialview fortheseinyourcopy. Let’stalk! What3-Dshapescouldthesebe? Ithinktherecouldbemorethanone correctanswertosomeofthese. Trythis! Inyourcopy,drawanaerialviewo UsethePCM(1cmSquareGrid)tohelpyou.yourclassroom. X Imaginethatyouarefloatingabovetheclassroom, lookingdown.Drawthedoorsandwindowsfirst.Draw thebigthingslikedesksnext,andthenthesmallthings.

Learningexperiences

Digitalactivity:Grids MAM Routines: Reason&

Respondwith Write-Hide-Show

Digitalactivity:The Zoo(2) MAM Routine:

Reason& Respond

Digitalactivity:WhereAmI? MAM Routines:

Reason& Respondwith Write-Hide-Show

Game:CapturetheCounters

Mathslanguage

Warm-up

Unit9:

D Digitalactivity:Grids

MAM Routines: Reason& Respondwith

Write-Hide-Show

Lookattheimage,whichshowsagridof2-Dshapes.

©TheEducationalCompanyofIreland

Ask:

● Whatshapecan youseeat/inthetop/bottom/ middle/left/right/centre?

Thechildrenshould recordtheir responsesontheir MWBs.

Mainevent

Teachingtip:

Whilethechildrenhave exploredsimplemaps andgridspreviously,thisisthefirsttimethat theyareintroducedtousingagridsystemand grid referencesasawayto representlocation, e.g.F2,A3.

D Digitalactivity:TheZoo(2)

MAM Routine: Reason& Respond Displaytheposterandaskorclicktoplaythe questionsbelow. Wheneverappropriate, askthechildrentogive reasons fortheir response(s),e.g.toexplainwhyorhow theythinkthis.

● Whatisthiscalled?(amap)

● Whatisthisamapof?(the zoo)

● Whereistheentrance?Can youdescribeits locationanotherway?

● Whereisthegiraffe?Can youdescribeitslocation anotherway?

● Pickananimal. Tell yourpartnerwhereitis. Swap and repeat.

● Whydoesthemaphave gridlinesonit?

● Howcould youusethisgridtodescribethe

locationoftheentrance?

● Inwhichcolumnistheentrance?(column C)

● Inwhich rowistheentrance?(row 1)

● Howmight we usethisletterandthisnumberto describetheentrance?(grid referenceC1)

● Doesthegridmakeiteasierormoredifficultto explainthelocation?

Let’sStrengthen:

Thechildrenmaybenefitfromusingamnemonic tohelpthem rememberthatingrid references thelettercomesfirst,e.g.LcomesbeforeNin thealphabet,soletterbeforenumber;Ccomes beforeRinthealphabet,socolumnbefore row.

Forextrapracticeusinggrids,seeLet’s StrengthenPCM.

D Digitalactivity:WhereAmI?

MAM Routines: Reason& Respondwith

Write-Hide-Show

Displaytheimage.Chooseananimalor featureon thegrid.Thechildrenshouldwritethegrid reference forthisontheir MWBsto recordthelocation.

21
Locationand Transformation
D
D C P
D
● Counters
Equipment
● top,bottom,middle,left,right,centre,between,map,location,grid,column, row, grid reference

Let’sStrengthen:

Thechildrenmaybenefitfromtheadditional supportofPCM4–Mapofthe Zoo,onwhich theycan‘draw’theirindex(‘pointing’)finger alongthecolumnsand rowstoidentifythegrid reference.

C P Game:CapturetheCounters! Play‘CapturetheCounters!’fromtheGamesBank. DistributecopiesofPCM5–LocationGridand Spinnersandcounterstotheclass.

Optionalconsolidation andextension possibilities

Locationand TransformationDisplay Whatnew examplescouldbeadded?

MathsJournal Thechildrencould recordintheir mathsjournalwhattheydidinthemainpartofthis lesson.

©TheEducationalCompanyofIreland

Read TreasureMap by StuartJ.Murphyisabout agroupofchildrentryingtofindhiddentreasure.

GamesBank Playadifferentgridgame,e.g. ‘Line’emUp!’

Integration Geography:map workandmapping skills;PE:orienteering.

Day3,Lesson3

Turns

Focusoflearning(withElements)

● Givesand followsdirectionsinvolvinghalfandquarterturns (C)

● Discusses,models,visualisesandpredictshowanobjectwilllookwhen rotatedthroughahalfor quarterturn(R)

● Reasonsaboutalternativewaystoperformthesame rotation(R)

Learningexperiences

D

D C P

Digitalactivity:Grid References MAM Routines: Reason& Respondwith Write-Hide-Show

Digitalactivity: Turtle Turns MAM Routine: Reason& Respond

Concreteactivity:Predicting Turns MAMRoutine: WriteHide-Show

Pupil’sBookpage62: Turns

Mathslanguage

Equipment

● Scissors

● Programmablebottoys, e.g.Bee-Botsorsimilar, andbotmats

22
Locationand Transformation
Unit9:
● fullturn,halfturn,quarterturn,threequarterturns,clockwise,anti-clockwise,opposite

Warm-up

D Digitalactivity:Grid References MAM Routines: Reason& Respondwith Write-Hide-Show Lookattheimage,whichshowsagridof3-Dshapes withgrid references.Ask/say:

● WhatshapeislocatedinA1?B3?,etc.

● Writethelocationof…(specifyoneofthe shapes)on your MWB.

Assesswhetherthechildrencancorrectlyuseand interpretgrid references.

Mainevent

©TheEducationalCompanyofIreland

D Digitalactivity: Turtle Turns MAM Routine: Reason& Respond Usetheinteractivetooltoturntheturtleandask thequestionsbelow. Wheneverappropriate,askthe childrentogive reasons fortheir response(s), for example,toexplainwhyorhowtheythinkthis.

● Whatanimalisthis?(turtle)

● Whatviewoftheturtleisthis?(aerialor bird’s-eyeview)

● Watchcarefully.Describewhathappensnext.

Usethecontrolpaneltomaketheturtledoahalf turn,clockwise/totheright.Ask:

● Theturtleisnow facingtheoppositedirection. Hedidahalfturntohisright.Anotherwaytosay thisisthathedidahalfturnclockwise.Whatdoes clockwisemean?

● Can yousketchhowhemovedon your MWB?

● Watchcarefullyagain.Describewhathappens thistime.

Usethecontrolpaneltomaketheturtledoahalf turn,anti-clockwise/totheleft.Ask:

● Theturtleisbackwherehestarted.Hedida halfturntohisleft.Anotherwaytosaythisis thathedidahalfturn,anti-clockwise.Whatdoes anti-clockwisemean?

● Can yousketchhowhemovedon your MWB?

● Watchcarefullyagain.Describewhathappens thistime.

Usethecontrolpaneltomaketheturtledoaquarter turn,anti-clockwise/totheleft.Ask:

● Theturtledidaquarterturntohisleft.Another waytosaythisisthathedidaquarterturn, anti-clockwise.

● Can yousketchhowhemovedon your MWB?

● Iftheturtlewantsto returntowherehestarted, howmusthemove?Can yousketchiton your MWB?

● Whatotherturnscouldtheturtledo?

C Concreteactivity:Predicting Turns

MAM Routine: Write-Hide-Show

Thepurposeofthe followingactivities is forthechildrentovisualiseandpredict theendpointsofturns,andtothenmake theturntochecktheirpredictions.Itisnotnecessary todoallofthelistedactivities,sochooseoneor morethatbestsuittheneedsof yourclass, dependingonthe resources available.

Predicting Turns1

Placea MWBoneachofthe foursidesofthe classroom,eachwithadifferentshapedrawnon it, forexample, oval,parallelogram,hexagonand rectangle.Say/ask:

● Makeaprediction:If youstand facingthe hexagonandthenmakeaquarterturn,clockwise, whatshapewill youbelookingatthen? Writeit on your MWB.

● Showme.

● Nowdoit:Standup.Holdbothhandsstraightout infrontof you,pointingtowardsthehexagon. Makeaquarterturn,clockwise.Whatshapeare youlookingat?

Repeatwithotherdirections,includinghalfturns andthreequarterturns,bothclockwiseandanticlockwise.Ask:

● IfIstart facingthehexagonandIfinish facing the oval,howmightIhave turned?

● Istheremorethanonewaytodothis? Explainwhy.

Forvariety,thisactivitycouldalsobedoneinanother space(e.g.theyardorthePEhall).Identify fourmain features.Thechildrencouldwritetheinitialletterof these featurestoindicatewheretheypredictthey will faceafterturning.

Let’sDeepen:

Challengethechildrentomakeand/orvisualise threequarterturns.

23
Locationand Transformation
Unit9:

Transformation

Predicting Turns2

Thechildrenshouldcutoutananimal(e.g.the turtle)fromPCM6–AerialViewof ZooAnimalsand placeitonPCM4–Mapofthe Zoo. Youcangive theinstructionsornominatechildrentodoso, for example:

● Makeaprediction:If youturntheturtleahalf turn,anti-clockwise,whatwillitbe facing? Write iton your MWB.

● Showme.

● Nowdoit: Turntheturtleahalfturn,anticlockwise.Whatisit facing?

Repeatwithotheranimal representationsandother instructions.

Let’sDeepen:

Challengethechildrentomakeand/orvisualise three-quarterturns.

Describing Turns

Workinginpairs,onechilddescribestotheotherhow toturnananimalandtheycheckthatitwasdone correctly. Swap roles.

ProgrammingaBot

Ifaprogrammablebottoyis available,ask:

● Howdo we programmethebottodoaquarter turn,clockwise/anti-clockwise? Writethe instructionson your MWB.Checktoseeif you were correct.

● Howdo we programmethebottodoahalfturn, clockwise/anti-clockwise? Writetheinstructions on your MWB.Checktoseeif you were correct.

● Howdo we programmethebottodoafullturn, clockwise/anti-clockwise? Writetheinstructions on your MWB.Checktoseeif you were correct.

Placethebotinaparticularpositiononthebotmat. Ask:

● Howdo we programmethebottoturnto face…(namea featureonthemat)? Writethe instructionson your MWB.Checktoseeif you were correct.

Writesometurninputsontheboard.Ask:

● Whatwillthebotbe facingif we inputthese instructions? Writetheansweron your MWB. Checktoseeif you were correct.

Repeatwithother features.

Let’sDeepen:

Challengethechildrentosuggestalternative waystoperformthesameturns,e.g.threequarter turnsclockwiseisthesameasaquarterturnanticlockwise;twohalfturnsclockwiseisthesameas afullturnanti-clockwise,etc.

P Pupil’sBookpage62: Turns

©TheEducationalCompanyofIreland

StartEndStartEndStartEnd Inwhatdirection,andbyhowmuch,mightIhaveturnedeach shape,ifitlooksthesameattheendasitlookedatthestart?

Furtherconsolidation andextension possibilities

Integration Science, Technologyand Engineering:computationalthinking,codingand programming;energyand forces,turninggearsand cogwheels.

Locationand TransformationDisplay Whatnew examplescouldbeadded?

GamesBank Playadifferentgridgame,e.g. ‘Towerof3’.

24
Unit9: Locationand
62 Unit9: Locationand ansformation.Day3, Lesson 3 Turns Mathseyes Ringthecorrectinstructions.Whatisneeded… 1. 2. 3. toturnto60? fortheorangehandto turnto9? forredtobe pointingright? ullturn hal turn quarterturn clockwise anti-clockwise ullturn hal turn quarterturn cloc wise anti-cloc wise ullturn hal quarterturn clock anti-clock toturnto30? orthegreenhand toturnto3? oryellowtobe pointingleft? ullturn hal turn quarterturn cloc wise anti-cloc wise ullturn hal turn quarterturn clockwise anti-clockwise ullturn hal quarterturn clockwise anti-clockwise Match.Whatisneededtohavethestick pointing… left? hal turn,anti-clockwise right? ullturn,clockwise up? quarterturn,anti-clockwise down? quarterturn,clockwise Let’stalk

Day4,Lesson4

Directions

Focusoflearning(withElements)

● Givesand followsdirectionsinvolvingsimpledistancesorlandmarksinthecontextofsimpleplans/ gridsmaps/aerialphotosof familiarenvironments (C)

● Recordsdirectionsasaseriesofsimplesteps (C)

● Devisesandanalyses routesonmaps,plansorgridsthatsatisfycertainconstraints(e.g.theshortest route,nocrossing roads, avoidingobstacles)(A&PS)

Learningexperiences

Digitalactivities:SameButDifferent– Turns/ TurningShapes MAM Routine: Reason& Respond

Digitalactivity: Zoo Routes MAM Routines: Reason& RespondwithBuildit!Sketchit!

Writeit!

Pupil’sBookpage63:Directions

©TheEducationalCompanyofIreland

Equipment

● Programmablebottoys,e.g.Bee-Bots orsimilar,andbotmats

Mathslanguage

● journey, route

D Digitalactivities:SameButDifferent–

Turns/TurningShapes

MAM Routine: Reason& Respond

Warm-up

Playthetwoslideshowsandaskthechildrento propose reasons forwhytheimagesarethesameand whytheyaredifferent.

Mainevent

D Digitalactivity:Zoo Routes

MAM Routines: Reason& RespondwithBuildit!

Sketchit! Writeit!

DistributeacopyofPCM7–DirectionCards toeachchild.Displaytheimageandsay:

● ImagineMiaisattheentranceandwantstovisit thelionsfirst.Use yourDirectionCardsor your MWBtoshowthedirections.

● ImagineJayisattheentranceandwantstovisit thepenguins,buthealsowantstogotothecafé onthewaytothepenguins.Use yourDirection Cardsor your MWBtoshowthedirections.

● ImagineLexiisattheentranceandwantsto visittheelephants,butshealsowantstogo tothetoiletonthewaytotheelephants.Use theDirectionCardsor your MWBtoshowthe directions.

● Chooseananimalbutdon’tsayit aloud.Use yourDirectionCardsor your MWBtoshowthedirectionsto getto yourchosenanimalfromtheentrance.Ask yourpartnerto follow yourdirections−didthey gettothecorrectanimal?

25 Unit9: Locationand Transformation
D D P

Let’sStrengthen:

Thechildrenmaybenefitfromadditional supportssuchasprogrammablebottoysif available,and/orPCM4−Mapofthe Zoo.

Let’sDeepen:

Challengethechildrentocompare routesandto identifythemostefficient routearoundthe zooto seeasmanyanimalsaspossible.

P Pupil’sBookpage63: Directions

Pleasenotethatabottoyis not requiredtocomplete thepage.Thegoalis forthe childrentointerpretthe directionstoidentifywhere thebotwillendup.

Let’sStrengthen:

Thechildrenmaybenefitfromadditional supports,suchasusingtheirfingertomove along thegridasdirected,usingasmallitem(e.g.a sharpenerorrubber)tophysicallymove alongthe gridorthebotcut-outfromPCM6.

Let’sDeepen:

Challengethechildrentouseinstructionsthat includethreequarterturns.

Teachingtip:

Bottoys workonthepremisethatthe directions/commandsareinputtedfirst andthena‘go/play’ buttonispressed toexecutethedirectionsasinputted. If available,thechildrencouldexplore aprogrammablebottoy, e.g.Bee-Bot inadvance,butthisisnot required.

Alternatively,onlineinteractivetoolscan alsobeused forthechildrentovirtually explorehowbottoys work. Forexample, thisonlineBee-BotEmulatorlets you programmeavirtualBee-Botandcould bedisplayedontheIWB: edco.ie/55ma

ThereisalsoaBee-Botapp, availableto downloadfreefromtheAppleAppStoreor GooglePlayStore,withseveraloptionsand levelsofdifficulty.

Anotheroptionistocreate‘kid-bots’!Achild inthegroupassumesthe roleofabotand thereforecanonlymove asdirected by their group.Theotherchildreninthegrouphave to ‘programme’thekid-bot by providingalistof directions(e.g. forwards, forwards,turnright, forwards,etc.)togetthemsafelyfromwhere theyare,totheirseat.This works really well onatiledfloor.

Optionalconsolidation andextension possibilities

Botplay Ifaprogrammablebottoyis available:

● Childrencouldusethebottodeviseandsolve their ownproblems.

● Design your ownclassbotmat(seePCMs8and9

−Blank 14 cmSquareGrids).Usingalargesheet ofpaper,drawhorizontaland verticallinesto createagridwith15×15cmspaces.Using PCMs8and9,thechildrencancreatetheir own 14 × 14 cmscenethatcanbegluedorattached withstickytapetoasquareontheclassgrid.

©TheEducationalCompanyofIreland

● Workingindividuallyoringroups,thechildren couldchooseatheme(e.g. zoo,pet farm, farm, treasureisland)anddesignahuntwithobstacles tobe avoided.Otherchildren/groupscouldbe askedto workoutpossible routes.

● Thedesignsand/or routescouldbe recordedin theirmathsjournals.

Locationand TransformationDisplay Whatnew examplescouldbeadded?

GamesBank Chooseagridgametoplay.

26 Unit9: Locationand Transformation
63 Unit9: Locationand ansformation.Day4, Lesson 4 Directions 3 2 1 AB CD EF Look atthegridabove.ThebotalwaysstartsatA1.If Daraenters thedirectionsbelow,wheredoesthebotendup? Directions: Endsupat: 1 2 3 4 5 Showdirectionstobringthebot fromA1toF3 Trythis! Findaroute forthebottoget romA1toF3without touchinganyblueshapes. GO GO GO GO

Day5,Lesson5

RightAngles

Focusoflearning(withElements)

● Exploressquareandnon-squarecornersintheenvironment,identifyingsquarecornersasrightangles (U&C)

©TheEducationalCompanyofIreland

D D C P

Learningexperiences

Digitalactivity:SameButDifferent–Corners

(1) MAM Routine: Reason& Respond

Video:SquareCorners MAM Routine:

Reason& Respond

Concreteactivity:MakingRightAngles

Pupil’sBookpage64:RightAngles

● squarecorner,rightangle

Equipment

● Teachingclocks

● Geoboards

● Programmablebottoys,e.g.Bee-Bots orsimilar

● Stickytape

● Markers

Mathslanguage

Warm-up

D Digitalactivity:SameButDifferent–Corners(1)

MAM Routine: Reason& Respond

Playtheslideshowandaskthechildrentopropose reasons forwhytheimagesarethesameandwhy

theyaredifferent.Ifnotsuggested,promptthe childrento refertothenumberandtypeofcorners (i.e.squarecornersornot)oneachshape.

Mainevent

D Video:SquareCorners

MAM Routine: Reason& Respond

Playthevideo.Wheneverappropriate,allowthe childrentoanswerthequestionsposedandgive reasons fortheir response(s), forexample,explain whyorhowtheythinkthis.Thechildrenshould maketheir ownsquarecorner/rightanglealong withthevideoandusethistofindrightanglesinthe classroom,onshapes,etc.

C Concreteactivity:MakingRightAngles

Thepurposeofthe followingactivitiesis forthe childrentoexploreandcreaterightanglesusingthe available resources.Itisnotnecessarytodoallofthe listedactivities,sochooseoneormorethatbestsuit theneedsof yourclass,dependingonthe resources

available. Youwillneedteachingclocks,geoboards andelasticbands,abottoy, stickytapeandamarker.

TeachingClocks: Challengethechildrentousea teachingclocktomakerightangles. Relatethese dynamicangles(changing/movingasopposedtothe staticanglesof2-Dshapes)tomakingquarter,half andfullturns.

Teachingtip:

Otherthan3o’clockand9o’clock,thetimes thatmakerightanglesontheclockmay notbeonesthechildrencaneasilyidentify. Therefore,the focusshouldbeoncreating whatlookslikearightangleandthen checkingitwiththeirsquarecornerfinder.

27
Locationand Transformation
Unit9:

Let’sDeepen:

Challengethechildrentoexplainthe relationship betweenmakingthreerightanglesontheclock andthefractionofaturnthatthismakes.

Geoboards: Useageoboardandelasticbandsora geoboardapptomakeshapeswithrightangles.Isit possibletomakeashapewithone/two/three/four/ fiveormorerightangles?

Bot Toy: Ifaprogrammablebottoyis available, attachamarkertoitwithstickytape.Ask:

● Howcan youprogrammethebottodrawaright angle?

● Whatabouttworightangles?

● Whataboutashapewith fourrightangles?

Allowthechildrentimetoexploreandinvestigate theshapestheycanprogrammethebottoytodraw.

P Pupil’sBookpage64: RightAngles

©TheEducationalCompanyofIreland

Optionalconsolidation andextension possibilities

Locationand TransformationDisplay Whatnew examplescouldbeadded?

Play Searchonlinetoplayinteractivegames, suchas Tetris.

Mathseyes Identifyexamplesofrightangles intheclassroomorlocalenvironment. Recordthe examples foundinthemathsjournals.

GamesBank Chooseagridgametoplay.

Focusoflearning(withElements)

● Discusses,modelsandvisualises reflectionofshapes(U&C)

● Completesmissing reflectionsofshapesorimages (C)

Learningexperiences

D D C P

Digitalactivity:SameButDifferent–Corners(2)

MAM Routine: Reason& Respond

Digitalactivity: Reflections

MAM Routines:Notice& Wonder withThink-Pair-Share/Reason& Respond

Concreteactivity: SymmetryStations Pupil’sBookpage65: Reflections

Equipment

● Plasticmirrors(oneperpair)

● Tangrams(onesetperpair)

● Pentominoes,patternblocks,andanyother available 2-Dshapes(bothsymmetricalandnon-symmetrical)

● Pegboardsandpegs

● Geoboardsandelasticbands

● Scissors

● Paintandpaintbrushes

● Cubes(e.g.interlockingcubes)

● reflection,mirrorsymmetry,linesofsymmetry,flip

28
Unit9: Locationand Transformation
Days6and 7, Lesson6
Reflections
Mathslanguage 64 Unit9: Locationand ansformation.Day5, Lesson RightAnglesDotheseshapeshaverightangles? Drawa inanycornerthatisarightangle. Drawan ✗ if itisnotarightangle.The irstonehasbeendone oryou. 1. 2. 3. 4 5. 6. 7. Mathseyes 1. Drawa inanycornerthatisrightangle. 2. Find f yourcopy.iveitemswithrightanglesinyourclassroom.Drawthemin Trythis! 1. Howmanyrightanglesaretherein… (a) aquarterturn? (b) ahal turn? (c) a ullturn? (d) threequarterturns? 2. Jaydrewthishouse. Howmanyrightanglesarethere? 3. Inyourcopy,drawyourownpicturewith morethan20rightangles. 6

Warm-up

D Digitalactivity:SameButDifferent–Corners

(2) MAM Routine: Reason& Respond

Playtheslideshowandaskthechildrentopropose reasons forwhytheimagesarethesameandwhy theyaredifferent.Whilethisisasimilar resourceto

theoneusedinthepreviouslesson,onthisoccasion, ifnotsuggested,promptthechildrento refertothe cornersasanglesandtoidentifytheanglesasright angles,ornot.

Mainevent

D Digitalactivity: Reflections

MAM Routines:Notice& Wonderwith Think-Pair-Share/Reason& Respond

Displaytheposter.UsingThink-Pair-Share,ask:

● Whatdo younotice?Whatdo you wonder?

Recordthechildren’s responsestobothquestions ontheboard.Allowthechildrentheopportunityto respondto(agree/disagreewithorquery)others’ responses,butdon’tconfirmor rejectanyofthe ideas.Noteany‘wonderings’thatcouldbecomethe basis forasubsequentmathsinvestigation.

Distributeatangramsetandamirrortoeachpair. Displaytheposterandaskorclicktoplaythe questionsbelow. Wheneverappropriate,askthe childrentogive reasons fortheir response(s), for example,toexplainwhyorhowtheythinkthis.

● Whatisthesameaboutalloftheseimages?

● Whatisdifferent?

● Whatdo we calltheimageoftheshapeseenin themirror?(reflection)

● Whattangrampieceslooksimilartothisone when reflectedinamirror?

● Whatpieces wouldlookdifferent?

● Ifthesideofthesquarewastouchingthemirror, whatshapemightbevisible?(rectangle)

● Tryit. Were youcorrect?Explainwhy.

● Iftheparallelogramwastouchingthemirror, whatshapemightbevisible?(irregularhexagon)

● Tryit. Were youcorrect?Explainwhy.

● Whatothershapepiecescould youexplorewitha mirror? Trythem.

Distributepentominoes,patternblocksoranyother available2-Dshapes available(bothsymmetricaland non-symmetrical)toeachpair/group.Ask/say:

● Usingonlyoneshapeandthemirror,can you maketwoshapesappear?How?

● Can youmakeonlyoneshapeappear?How?

©TheEducationalCompanyofIreland

● Can youmakethemappearadifferentway?

● Isitadifferentshape?If yes,whatshapehas nowappeared?

● Can youplacethemirrorontheshapesothatthe reflectionmatchestheotherhalfoftheshape?

● If youcandothis, we cansaythatthisshapehas alineofsymmetry.Whichshapeshave linesof symmetry?

● Arethereanyshapesthathave morethanone lineofsymmetry?Whichones?Wherearethe linesofsymmetry?

C Concreteactivity: SymmetryStations

Organisetheclassinto fourorfivegroups,depending onnumbers.Choose fourorfiveoftheactivities below, dependingonthechildren’sneedsandthe available resources,andallocateanactivityto eachgroup.Afteranappropriateamountoftime (e.g. 10−20minutes),thegroupsshould rotateto anewstation.Thesestationscouldbeusedonjust onedayor overbothdays.Thefullinstructions for eachactivityare availableonPCMXX− Symmetry Stations.ThePCMcanalsobeprintedandcutupso thattheinstructions foreachactivityare available attheappropriatestation.(Ifsettingupstationsis not feasible, youcouldchoosetodooneormore activitieswiththewholeclassatthesametime.)

● Station1−Cuttingand Folding2-DShapes. Equipmentneeded:2-Dshapes,paper,scissors andruler foreachchild.

● Station2− PentominoesPieces.Equipment needed:pentominopieces,paper/copyandruler foreachchild.

● Station3– Pegboard Symmetry.Equipment needed:mirror,pegboardandpegs foreachpair.

● Station4– PatternBlocks Symmetry.Equipment needed:mirror,patternblocksand MWBperpair.

● Station5–Geoboard Symmetry.Equipment needed:mirror,geoboardandelasticbands perpair.

29 Unit9: Locationand Transformation

Unit9: Locationand Transformation

● Station6– SymmetricalArt.Equipmentneeded: paper,paintandpaintbrush foreachchild.

P Pupil’sBookpage65: Reflections

Let’sStrengthen: Thechildrenmay benefitfromthe ongoingsupportof mirrors forallofthese activities.

Let’sDeepen:

Challengethechildrentojustifyhowtheyknow theirmirrorimageisaccuratewithoutusinga mirror.

©TheEducationalCompanyofIreland

Optionalconsolidation andextension possibilities

Locationand TransformationDisplay Whatnew examplescouldbeadded?

Read Read Let’sFlyaKite by StuartJ.Murphy, whichisabouttwosquabblingsiblingslearningabout symmetrywhentheirbabysitterhelpsthembuildand flyakite.

Play Playorusesomeonlineinteractive resources,includingpatternblockorgeoboardapps, tocreateasymmetricalpattern:

edco.ie/33xy edco.ie/9a6p

Integration Art:construction,print,painting, drawingvarioussymmetricalshapes,completing reflectionimages;History: feastsand festivals, looking forlinesofsymmetryinart,imagesand patternsassociatedwithvariouscultural feasts, e.g.Hanukkahandthemenorah,Diwaliand rangoli patterns.

GamesBank Play‘Mirror Patterns’.

● Reasonsaboutalternativewaystoperformthesametransformation(R)

Learningexperiences

Digitalactivity:How WasItMoved?

MathsandMe Routines:ConceptCartoon withThink-Pair-Share

Video: Transformation MathsandMe Routine: Reason& Respond

Concreteactivity:MovingShapes

Pupil’sBookpage66:WhatMove?

30
WhatMove? Day8,Lesson7 ● Discusses,models,visualisesandpredicts reflection, rotationandtranslationofobjects,imagesand
shapes(U&C)
Focusoflearning(withElements)
D D C P
● Pentominoes,tangrams,patternblocks, andanyother available2-Dshapes Equipment 65 Unit9: Locationand ansformation.Days 6and7, Lesson Reflections Completetheseshapes.Useyourmirrortocheck 1. 2. 3. 4 Let’stalk Nametheshapesyoumadeabove,i youcan. Ineachshape,drawa Whichshapehasthemostrightangles?toshowanyrightangles. Completetheanimal faces.Useyourmirrortocheck 1. 2. 3. 4. D Completethese. Mathseyes Findthingsthathavelineso Drawtheminyourcopyoronyourminiwhite-board.symmetryinyourclassroom.

● slide/translation,turn/rotation,flip/reflection

D Digitalactivity:How WasItMoved?

MathsandMe Routines:ConceptCartoon withThink-Pair-Share

DisplaytheConceptCartoonand,usingThink-PairShare,askthechildrenthe followingquestions,and togive reasons fortheiranswerswhereappropriate:

● Whatdo younotice?Whatdo you wonder?

Clicktohearthecharactersproposetheirideasand, usingThink-Pair-Share,ask:

● Whatdo youthink?

● (Pointingataspecificcharacter)Do youagree withtheiridea?Explainwhy?

● Do youthinksomethingdifferent?Whatdo you think?Whydo youthinkthis?

Ifappropriate, recordthechildren’s responses tothesequestionsontheclassboard.Allowthe childrentheopportunityto respondto(agree/ disagreewithorquery)others’ responses,butdon’t confirmor rejectanyoftheideas.

Mainevent

D Video: Transformation MathsandMe Routine: Reason& Respond

Playthevideo,pausingwhensuitabletoallow childrento respond,giving reasons fortheiranswers asappropriate.

C Concreteactivity:Modeling Turns,Flipsand Slides

Distributethe availableshapestothe children,includingpentominoes, tangrams,patternblocks,if available.Instructthe childrentotracearoundashape,move it,andthen tracearounditagain,fillingintheshapeinits‘after position’.

If required,PCMXXMovingShapescouldalsobe usedtoaddstructuretothisactivity.

Let’sDeepen:

IfusingPCM,pairsofchildrencould work togetherwherethefirstchildmovesashapeand recordsitonthePCMandthesecondchildtriesto workouthowtheshapewasmoved.

©TheEducationalCompanyofIreland

Afterwards,askthechildren:

● Wasiteasyto workouthowtheshapes were moved?

● Were thereanyshapesthatmadeiteasieror moredifficultto workouthowtheshapes were moved?Whichones?

● Whatisitabouttheseshapesthatmadethem easier/difficult?

Teachingtip:

Itcanbemoredifficulttoidentifyhowa regularshape(e.g.circle,equilateraltriangle, square, regularhexagon)wasmovedthanan irregularshape.

P Pupil’sBookpage66: WhatMove?

31 Unit9: Locationand Transformation
Mathslanguage Warm-up
Optionalconsolidation andextension possibilities Locationand TransformationDisplay Whatnew examplescouldbeadded? Play Useanyoftheseonlineinteractive resourcestoexperimentwithcreating, rotating, flippingandslidingdigitalshapes: edco.ie/33xy edco.ie/9a6p GamesBank Play‘Mirror Patterns’. 66 Unit9: Locationand Transformation.Day8, Lesson WhatMove? Howwaseachpentominomoved?Writethecorrectletter foreach. S=SlideT=TurnF=Flip 1. 2. 4.3 5. 6. Let’stalk Canyoudescribeeachmovein inmoredetail? Usesomeof these wordsi youcan: clockwiseanticlockwiseup down Arethereanyshapesthatcouldhavebeenmovedinmorethanoneway?

Day9,Lesson8

Tessellations

Focusoflearning(withElements)

● Exploresandcreatessimpletessellations(U&C)

● Explorestessellationswhereasingleshapeis repeated(A&PS)

● Examinestessellationsandidentifiesifshapeshave been reflected, rotatedand/ortranslated(U&C)

Learningexperiences

Digitalactivity:SameButDifferent–MovingShapes MathsandMe Routine: Reason& Respond withThink-Pair-Share

Concreteactivity:ExploringandCreating Tessellations

Concreteactivity:Solving TessellatingPuzzles Pupil’sBookpage67: Tessellations

©TheEducationalCompanyofIreland

Equipment

● Pentominoes,tangrams,patternblocks, andanyother available2-Dshapes(both tessellatingandnon-tessellating)

● tessellate,tessellations,cover, withoutgaps, repeat

Mathslanguage Warm-up

D Digitalactivity:SameButDifferent–Moving Shapes MAM Routine: Reason& Respondwith Think-Pair-Share

Playtheslideshowandaskthechildrentopropose reasons forwhytheimagesarethesameandwhy theyaredifferent.

Mainevent

C Concreteactivity:ExploringandCreating Tessellations

Thepurposeofthe followingactivities is forthechildrentoexploreandcreate tessellationsusingthe available resources.Distribute pentominoes,tangrams,patternblocksand/or assorted2-Dshapestotheclass.

ShapesthatDo/DoNot Tessellate: Tellthechildren tousepatternblocks,pentominoes,tangramsor2-D shapestocoverthesurfaceofacopyorbook.Ask:

● (Usingseveralshapesofthesametypeandsize) Whichoftheseshapestessellate?Explainwhy.

● Whatshapesdonottessellate?Explainwhy.

● Isthereanyshapethatdoesnottessellatewith itselfbutdoestessellatewithadifferentshape?

● Putsomeidenticalshapesina rowall facingthe samedirection.Dotheytessellateif youslide themintogether?(Forexample:Inpatternblocks thesquares,hexagons,parallelogramscanallbe slidintogethertotessellate.)

● Ifnot,cantheybeturned/rotatedorflippedto tessellate?(Forexample:Inpatternblocksthe halfhexagons/trapezoidsandtrianglesmust be rotatedahalfturnorflippedup/downto tessellate.)

Thechildrencouldalsocreatedrawntessellations intheirmathsjournals by tracingaroundshapes, movingthemand re-tracingthem.Askthechildren toidentifywhichdrawnshapesareexamplesofa slide,flipor rotation/turn.

32 Unit9: Locationand Transformation
D C C P

C Concreteactivity:Solving TessellatingPuzzles Itisnotnecessarytodoallofthelistedactivities,so chooseoneormorethatbestsuittheneedsof your class,dependingonthe resources available.

ZooAnimals: Thechildrenshouldusethetangrams, pentominoesand/orpatternblockstocomplete puzzlesof zooanimal representationsand/orto createtheir own representationsof zooanimals. PCMs 10 and11–ShapeAnimalscontainvarious puzzlesthatcanbecompleted.

Let’sStrengthen:

ThechildrenmaybenefitfromusingthePCMs12 and13−ShapeAnimals,whichhave internallines as wellastheoutline.

Let’sDeepen:

Challengethechildrentocreatetheir own puzzles,i.e.tomakeapicture,tracetheoutline onlyandchallengeanotherchildtocomplete theirpuzzle.

DigitalZooAnimals: Therearemanyfreeonline gamesandpuzzlesthatcanalsobeused.

Fortangrams,gotothe followinglinksbelowand choosetocompleteanyoneofthegivenpuzzles, someofwhichinclude zooanimals:

● (Chooseanimaloptionsatthebottomof thescreen.) edco.ie/fyha

● Forpentominoes,goto: edco.ie/fr2r

Forpatternblocks,gotothelinksbelowandchoose tocompleteanyoneofthegiventemplates,someof whichinclude zooanimals:

● edco.ie/y8hb

● edco.ie/498h

● edco.ie/w5tk

©TheEducationalCompanyofIreland

P Pupil’sBookpage67: Tessellations

33 Unit9: Locationand Transformation
Optionalconsolidation andextension possibilities Locationand TransformationDisplay Whatnew examplescouldbeadded? Integration
Play Playorusesomeonlineinteractive resources,suchas Tetris. GamesBank Chooseagametoplay. Reviewand Reflect Day 10,Lesson9 ● Reviewsand reflectsonlearning(U&C) Focusoflearning(withElements) 67 Unit9: Locationand Transformation.Day9, Lesson 8 TessellationsDotheseshapestessellate? ✓ ✗ Buildit!Sketchit!Doyouthink theseshapestessellate? ✓or ✗ Buildorsketchtoproveyouranswer. 1. square 2. semi-circle 3. rectangle 4 parallelogram Completethesetessellations. D Howmanyrightanglesarethereinsideeachpentominopiece?1. Drawa toshoweachrightangle. 2. Writethetotalnumbero right anglesineachpiece. 3. Write‘M’inthepiecewiththe mostrightangles. 4 Write‘L’inthepiecewiththe leastrightangles. Trythis! Coveracopyusingtheleastnumbero patternblocks. 1. Whatshape(s)didyouuse? 2. Howmanydidyouuse? 5
Art:creatingtessellationsand tessellatingimages,lookingand respondingtothe artofM.C.Escher.

Warm-up

Teacher’s ownchoicefromanyofthelessonwarm-ups.

Mainevent

Usethismenuofactivityideastochoosehowbesttostructurethislastlessonoftheunittosuit yourneeds andtheneedsof yourclass.

Let’s Talk!

Classroomposter: Reviewand Reflect UseThink-Pair-Sharealongsidetheprompt questionsto reviewtheunit.

Individualchildrencouldpresentexamplesoftheir owndrawings/work/constructionstotheclass,and talkaboutwhattheyhave learned.

MathsLanguage

Askthechildrentoexplainthe following words, perhapsusingexamplesordrawingsontheir MWB: bird’s-eye(aerial)view,streetview,journey, route, fullturn,halfturn,quarterturn,clockwise,anticlockwise, rotation, rotate,squarecorner,right angle,tessellate, reflection/flip,mirrorsymmetry, linesofsymmetry,flip,slide/translation.

ProgressAssessmentBooklet

CompletequestionsXXonpageXX.Alternatively, thesecanbelefttodoaspartofabigger review duringthenext review week.

Let’sPlay!

● Playorusesomeoftheonlinedigital resources referencedintheunit,including Tetris.

● PlayagamefromtheGamesBank.

©TheEducationalCompanyofIreland

Let’sStrengthen

Identifychildrenwhomightbenefitfromextra practicewithsomeofthe keyconceptsorskills inthisunit.ConsulttheUnit9Let’sStrengthen Suggestions for TeachersandLet’sStrengthenPCM.

Let’sCreate!

STEAMactivitiescombiningmathsandart:There arelotsofvisualartsactivitiesthatexplorethese concepts, forexample:

● Symmetricalart:Provideeachchildwithhalfa pictureoftheir own face(oracelebrity’s face) andaskthemtodrawtheotherhalf.

● Tessellations:Createatessellatingpicture,using geometricshapes.

Searchonline forotheractivitiesthat wouldsuit your class.

MathsEyes

● Go forawalkaroundtheschool.Wherecan youseeexamplesofrightangles,tessellations, reflections/mirrorsymmetry? Take photos to record.

● Makeamapoftheyard/playgroundorschool. YoucoulduseGoogleMapsandstreetviewto help you.

Let’sDeepen

SelectoneoftheCCTsontheLet’sDeepen PCM.Displaythetaskontheclassboard.Encourage thechildrento worktogetheringroups.

34 Unit9: Locationand Transformation

6 5 4 3 2

35 MathsandMe ©Edco Unit9:SamplePCM1 LocationGrid&Spinners
I 5 2 4 63 A E B D FC
I AB CD EF
©TheEducationalCompanyofIreland

forwards

©TheEducationalCompanyofIreland

backwards

quarterturnleft quarterturnright

36 MathsandMe ©Edco Unit9:SamplePCM2
DirectionCards

ShapeAnimals

k angaroo

©TheEducationalCompanyofIreland

elephant

polarbear

k angaroo

polarbear elephant

37 MathsandMe ©Edco Unit9:SamplePCM3

SymmetryStations

Cuttingand Folding2-Dshapes

Needed:2-Dshapes,paper,scissors, ruler

1. Tracearoundthe2-Dshapes.Cut themoutand foldtheshapes.Draw theline(s)of symmetryalongthe fold lineusingaruler.

2. Sorttheshapesinto:

● nolinesof symmetry

● 1lineof symmetry

● 2ormorelinesof symmetry

Whatcouldyouusetocheck thatyou arecorrect?

PentominoesPieces

Needed:pentominopieces,paper/ copy,ruler

1. Usingonly1pieceeachtimeandthe mirror,make2pentominoesappear. Whichpieceslook exactlythesamein themirror?

3. Foldagainandpresscarefullytoprint thedesignontheoppositehalf.Open back up. ©TheEducationalCompanyofIreland

Pegboard Symmetry

Needed:mirror,pegboard,pegs,per pair

1. Startbyputtingalineof pegsdown alongthecentreof thepegboard.

2. The firstchildmakesapatternwith thepegsontheirsideof thecentre line.

3. Thesecondchildmakesthemirror imageontheirside.Usethemirrorto check.

4. Swapandrepeat.

Geoboard Symmetry

Needed:mirror,geoboard,elastic bands,perpair

1. Startbyputtinganelasticbanddown alongthecentreof thegeoboard.

2. The firstchildmakesashapewiththe bandsontheirsideof thecentreline.

3. Thesecondchildmakesthemirror imageontheirside.Usethemirrorto check

4. Swapandrepeat.

2. Placethemirroracrossthemiddle of eachpentominopiece,bothways. Whatpiecesappear‘whole’again? Whatdoesthattellusaboutthose pieces?

3. Tracearoundthepentominopieces thathavelinesof symmetry.Drawthe line(s)of symmetryusingaruler. Whichpieceshavemorethanonelineof symmetry?

PatternBlocks Symmetry

Needed:mirror,patternblocks, MWB,perpair

1. Startbydrawingalinedownalong thecentreof theMWB.

2. The firstchildmakesapatternwith thepatternblocksonthetheirsideof thecentreline.

3. Thesecondchildmakesthemirror imageontheirside.Usethemirrorto check.

4. Swapandrepeat.

SymmetricalArt

Needed:paper,paint,paintbrush, perchild

1. Foldthepaperinhalf andopen back up.

2. Paintadesignononehalf only.

38 MathsandMe ©Edco Unit9:SamplePCM4

4 3 2 I

AB

Writethelocationof eachshape:

CD EF

39 Unit9:Let’sStrengthenPCM MathsandMe ©Edco Locatetheshapes
= = = = = = = = = = = = = = = = ©TheEducationalCompanyofIreland

Locationand Transformation

Pick:Whatyouwanttodo,whatyouwanttouse,andwhoyou’dliketo dothesewith!

Aerialviews:

Jaystackedsomeshapepieces. Colourthepicturetoshowthattherewas abluetriangleatthebottom, withayellowsquareontopof that andaredcircleontopof theyellowsquare.

TurningCogwheels:

If themedium-sizedcogwheelisturnedclockwise, thesmallestcogwheelwillturn__________ andthelargestcogwheelwillturn_________________. If themedium-sizedcogwheelisturnedanti-clockwise, thesmallestcogwheelwillturn__________ andthelargestcogwheelwillturn_________________.

Makeasetof Tetrominoes:

Tetrominoesarelikepentominoesexceptthateachoneismadeupof 4squares connectedalongatleastoneside.Thereare5differenttetrominoesinaset.

UsePCMXXBlank 2cmSquareGridstomakeasetof tetrominoes.

Ask yourself:

● Howcanyoutellthatyoumadeatetromino?

● Howdoyou knowthateachoneisdifferent?

● Howwillyoucheck thatonetetrominoisnotthesameasanother?

● The5tetrominoshoesareoftengivenletternameslikethepentominoes;what letternameswouldyougiveyourtetrominoes?

Box Symmetry:

Use2mirrorsandstandthemup,atright anglestoeachother,onyourdesk. (Think:Whatcouldyouuseto keepthem uprightandtogetheronyourdesk?)

Place1shapeclosetothemirrors;whatdo younotice?Howmanyshapesdoyousee? Nowuse2shapes.Howmanyshapescan yousee?

Completethetableopposite. Whatpattern(s)doyouspot?

40 Unit9:Let’sDeepenPCM MathsandMe ©Edco
ShapesusedShapesvisible I 2 3 4 5 I0 20 ©TheEducationalCompanyofIreland

Locationand Transformation

Class Teachers: Usetheseactivitiesalongsidethespecifiedlessons,tostrengthentheunderstandingof children,as required.Manyoftheseactivitiescouldalsobeusedasastation.

SpecialEducation Teachers: Usetheseactivitiestosupportchildren(pre-teachingor re-teaching)inin-class and/orwithdrawalsessions.

Left&Right

Somechildrenmaystillconfuserightandleft,particularlywhentheorientationoftheobjectisdifferenttotheir ownorientation.

Assesstheirunderstandingwithavarietyofquestions:Put yourlefthandup,Put yourright footout,etc.Ifthereisconfusion, explorevariousrightandleftmnemonics,andencouragethechildrentochooseastrategythat works forthem.

©TheEducationalCompanyofIreland

Arrangethechildreninpairsto faceeachother.Askthemto raisetheirrighthand,touchtheirleftear,etc.Ask:

● Whatdo younotice?

● Can youexplainthis?

Clockwise&Anti-clockwise

Somechildrenmaystillconfuseclockwiseandanti-clockwise.

Provideeachchildwithapaperplatewiththecentremarkedandtwocurvedarrowsindicatingtheturndirections.Elicitfromthe childrenthedirectionindicated by eacharrow andlabelthemaccordingly.

Ask/say:

● Hold yourplateasifitisasteeringwheel. Turnitclockwise.

● Now returntocentre. Turnitanti-clockwise.

Repeatasnecessary,checking forcorrectmovements.

Use/reusethesuggestedactivitiesinLesson3as reinforcement.

Turns

Somechildrenwillbenefitfromtheadditionalsupportofa referencecircle.

Useormakeapapercircle, foldinhalfandhalfagaintodivideitintoquarters.Askthechildrentocolourineachquarterina differentcolour.Thiscirclecouldbeplacedundertheanimalcut-outs(fromthePCM)astheyarebeingturned.

Reflections(Symmetry)

Somechildrenmayincorrectlyassumethatwhereashapeishalved,thatthisisalsoalineofsymmetry.

Explorethisfurtherusingirregularshapes.

Usingapaper rectangle,draw alinetodivideitinhalfthroughitsdiagonal.Ask:

● Howhave Idividedthe rectangle?(inhalf)

● Isthisalineofsymmetry?Explainwhy.

Checktoseeifthechildrencan foldit overexactly,and/or by placingamirroralongthesupposedlineofsymmetry.Doesthe createdimagemirrorormatchtheoriginalshapeused?Ifnot,thenthislineisnotalineofsymmetry.

Somechildrenmaycreateaduplicate/repeatimagewhenaskedtocreateamirrorimage.

Encouragethechildrento recognisethatthecolourandtypeofobjectthatisclosesttothelineofsymmetryononesideshouldalso beclosesttothelineofsymmetryontheotherside,i.e.thatthingsthat were ‘totheleftof’inthefirsthalfwillnowbe‘totheright of’inthesecondhalf,andvice versa.

41 Unit9:Let’sStrengthenSuggestions for Teachers MathsandMe ©Edco

Title

Numberof players: 4

Youneed:

Howtoplay:

Variation:

MWB,marker

©TheEducationalCompanyofIreland

Deepen:

Playaspairs,2against2.Ineachpair,one personisthewriterandtheotheristhe describer.

OntheMWBawriterdrawsa3 × 3grid.

The firstdescriberwilldescribetothe firstwriter wheretowritetheir firstX.

Theseconddescriberwilldescribetothesecond writerwheretowritetheir firstO.

Playcontinuesuntilonepairhaswritten3ina row.

For2players:Player1describestoPlayer2 wheretoplacePlayer1’sX.Player1describes toPlayer1wheretoplacePlayer2’sO.

Thecentrespacecannotbeuseduntilboth writershavewritten2XsorOs.

Usealargergrid(e.g. 4 × 4).

Thedescriberswearblindfoldsandhavetotryto visualisethemoves.

42 Unit9:GamesBank MathsandMe ©Edco
Anextensivegamesbankis available foreachclasslevelwithgames relating toallunits.Thegamesincludedinthisbookletareasampleofthegames available for Unit9:Locationand Transformation.
DirectionsTic-Tac-Toe
Notetoteachers:

Title

Numberof players: 2–6

Youneed: PCMXXLocationGrid&SpinnerTemplates, paperclip,pencil,36counters

Howtoplay: Layacounteroneachof thespacesof the locationgrid.Eachplayerinturnspinsboth spinnersandusestheletterandnumbertotake acounter fromthatsquareof thegrid.If the counterisalreadytaken,thatplayermissesago. Continueplayinguntiltimeisuporallthe countershavebeentaken.

Thepersonwiththemostcountersattheend winsthegame.

Variation: The firstpersonwith10counterswinsthegame.

Deepen: CapturetheCoins!Placeamixtureof 36coins onthegrid.Thepersonwiththemostmoney(in cents)attheendwinsthegame.

43 Unit9:GamesBank MathsandMe ©Edco
CapturetheCounters!
©TheEducationalCompanyofIreland

Numberof players: 2

Youneed:

Howtoplay:

Strengthen:

Deepen:

Selectionof differentcolouredcubes,MWB,mirror

Tostart,drawastraightlinedownthroughthe middleof theMWB,whichwillbecalledthe ‘mirrorline’.

Eachplayer,inturn,sticks5differentcoloured cubestogetherandlaysthemdownonthe MWB,touchingthemirrorline.Player2makesa mirrorimageof Player1’spatternandlaysthat downontheothersideof themirrorline.

Theplayerscheck thatthesecondpatternis correctbyplacingamirroronthemirrorline facingthe firstpattern.

If correct,Player2scoresapoint.If notcorrect, nopointsarescored.Keepswappingrolesuntil thetimeisup.

Thepersonwiththemostpointsattheendwins thegame.

Startwithonly3or 4 cubes.

Use2ten frames,bothvertical.The firstplayer laysouttheirownchosenpatternof cubesand cubecoloursintheten frame.Thesecondplayer createsasecondpatternthatmirrorsthe first.

44 Unit9:GamesBank MathsandMe ©Edco
Title Mirror Patterns
©TheEducationalCompanyofIreland

Locationand Transformation

LessonFocusoflearning

Day1,Lesson1: DifferentViews

● Recognisesthe relationshipbetween differentmodesof representingposition andlocation(bird’s-eyeview versusstreet view)(R)

Assessmentdatarelatingto individuals/groups

©TheEducationalCompanyofIreland

Day2,Lesson2: Location

● Identifiesanddescribesthegenerallocation ofanobjectusingagridsystem(U&C)

● Exploresgrid referencesinthecontextof barriergames,orotherplayfulactivities (A&PS).

Day3,Lesson3: Turns

● Givesand followsdirectionsinvolvinghalf andquarterturns (C)

● Discusses,models,visualisesandpredicts howanobjectwilllookwhen rotated throughahalforquarterturn(R)

● Reasonsaboutalternativewaystoperform thesame rotation(R)

Day4,Lesson4: Directions

Day5,Lesson5: RightAngles

● Givesand followsdirectionsinvolving simpledistancesorlandmarksinthecontext ofsimpleplans/gridsmaps/aerialphotosof familiarenvironments (C)

● Recordsdirectionsasaseriesofsimple steps (C)

● Devisesandanalyses routesonmaps,plans orgridsthatsatisfycertainconstraints(e.g. theshortest route,nocrossing roads, avoidingobstacles)(A&PS)

● Exploressquareandnon-squarecornersin theenvironment,identifyingsquarecorners asrightangles(U&C)

45 Unit9:FormativeAssessmentObservationsSheet MathsandMe ©Edco 45

LessonFocusoflearning

Days6and 7, Lesson6: Reflections

● Discusses,modelsandvisualises reflection ofshapes(U&C)

● Completesmissing reflectionsofshapesor images (C)

Assessmentdatarelatingto individuals/groups

©TheEducationalCompanyofIreland

Day8,Lesson7: Whatmove?

● Discusses,models,visalisesandpredicts reflection, rotationandtranslationof objects,imagesandshapes(U&C)

● Reasonsaboutalternativewaystoperform thesametransformation(R)

Day9,Lesson8: Tessellations

● Exploresandcreatessimpletessellations (U&C)

● Explorestessellationswhereasingleshape is repeated(A&PS)

● Examinestessellationsandidentifiesif shapeshave been reflected, rotatedand/or translated(U&C)

Day 10,Lesson 9: Reviewand Reflect

● Reviewsand reflectsonlearning(U&C)

46 MathsandMe ©Edco 46 Unit9:FormativeAssessmentObservationsSheet

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.