Maths & Me Junior Infants Sample Teacher's Pack

Page 1

Teacher’s Pack

Teacher’sPlanningBook

Teacher’sResource Book

JuniorInfants

Teacher’sPlanningBook

JuniorInfants

Teacher’sResourcesBook

JuniorInfants

Teacher’s Pack

ExtractSample

Sample Teacher’sPack

JuniorInfants

ExtractSample TheEducationalCompanyofIreland ©TheEducationalCompanyofIreland
MiaJayLexiDara Monty

Notetoteachers: Thecontentsshownindicatewhatisincludedinthissampleextract. While we have combinedthe resourcesintoasinglebooklethere,therewillbetwoseparate booksprovidedtoteacherswhoadopttheprogramme–a Teacher’s PlanningBookanda

©TheEducationalCompanyofIreland

Contents
Teacher’s ResourcesBook.Thecontenthasbeensplit foreaseofuse. Introduction 1 How MathsandMe AlignstothePrimaryMathsCurriculum 1 YourGuideto MathsandMe 8 YearlyOverview 13 Unit8:Numbers6to8–Planning 16 Unit8:Short-TermPlan 16 Unit8:LessonPlans 19 Unit8:Numbers6to8– Resources 37 Unit8:SamplePCM1SmallNumerals0to8 37 Unit8:SamplePCM2 WritingNumeral6 38 Unit8:Let’sStrengthenPCM 39 Unit8:Let’sDeepenPCM 40 Unit8:Let’sStrengthenSuggestions for Teachers 41 Unit8:GamesBank 43 Unit8: FormativeAssessmentObservationsSheet 45

Introduction

How MathsandMe Alignstothe PrimaryMathsCurriculum(PMC)

StrandsandStrandUnits

ThePrimaryMathematicsCurriculum(PMC)hasfive Strands,whichare dividedinto StrandUnits:

Algebra DataandChanceMeasuresNumber ShapeandSpace

● Patterns, Rulesand Relationships

● Expressionsand Equations

©TheEducationalCompanyofIreland

● Data

● Chance

● Measuring

● Time

● Money

● UsesofNumber

● Numerationand Counting

● Place Valueand Base Ten

● Setsand Operations

● Fractions

● Spatial Awarenessand Location

● Shape

● Transformation

In MathsandMe,thecontentofeachunitisclearlyconnectedtooneormoreofthe Strands and StrandUnits.

LearningOutcomes

EachoftheStrandUnitscontainsasetofLearningOutcomes.Learningoutcomesareusedtodescribethe expectedmathematicallearninganddevelopment foralllearnersattheendofatwo-yearstage,whendue accountistakenofindividualabilitiesandvaryingcircumstances.

Eachofthelearningoutcomesbeginswiththestem,‘Throughappropriatelyplayfulandengaginglearning experiences,childrenshouldbeableto...’Thisstememphasisestheimportanceofprovidingrichand engaginglearningexperiences.

In MathsandMe alllearningoutcomesarecoveredindepth.Theprogrammehasbeendesignedto includeawide rangeofrich,appropriatelyplayfulandengagingactivitiesandtasks,whichdemonstrate keypedagogicalpractices,andsupportchildrentowardsachievingthelearningoutcomesanddeveloping theirmathematicalproficiency.

1 Introduction
Table1:OverviewoftheStrandsandStrandUnits

ProgressionContinua

The PMCissupported by thePrimaryMathematics Toolkit,whichincludestheProgressionContinua.The progressioncontinuaoutlineasamplelearningtrajectoryofMathematicsatprimarylevel.Theysuggest aseriesof learningexperiences whichchildrenmightengagewithastheydevelopanddeepentheir mathematicalknowledge,skillsanddispositions.Eachcontinuumdescribesthelearningjourneyacrosseleven ProgressionMilestones(a–k)intermsofmathematicalcontent(StrandUnits)andprocesses(Elements).

Takingintoconsiderationtheelevenprogressionmilestones(a–k),thevariousclasslevelsof MathsandMe have beendevelopedaroundcertainmilestones:

JuniorInfants ProgressionMilestonesbandc

©TheEducationalCompanyofIreland

SeniorInfants ProgressionMilestonescandd

FirstClass ProgressionMilestonee

SecondClass ProgressionMilestonef

Table2: MathsandMe ClassLevelsandtheProgressionContinua

Thatsaid, MathsandMe recognisesthatchildrenlearnanddevelopatdifferent rates.Therefore,whilethe contentoftheFirstClassbook, forexample,centresaroundsuggestedlearningfromProgressionMilestone e,itisalsoinfluenced by thestatementsinProgressionMilestonesdand f, tocater fortheneedsofallthe children. Teachersare recommendedtoexerciseprofessionaljudgementwhenmakingdecisionsastothe learningactivitiesandtaskswhicharemostappropriate forthechildrenintheirclassroom,andtoadapt accordingly.

MathematicalConcepts

ThePrimaryMathematics Toolkitoutlinesmathematicalconcepts.Theseareconsideredtobethe keyideas thatunderpineachlearningoutcome.Itisenvisagedthatchildrenwilldeveloptheirunderstandingofthese conceptsthroughengagingwiththemathematicalprocesses,asoutlinedintheelements.

In MathsandMe,mathematicalconceptsinformthedesignofunits,includingthemathslanguageto focus on,andinfluencetheprogressionofcontentfromoneclasstoanother.

2 Introduction

Focusoflearning

A FocusofLearningidentifiesthepurposeofalessonand/ortheintendedlearningthatwilltakeplace.

In MathsandMe,the FocusofLearningineachlessonechoesthesuggestedlearningexperienceslisted intheprogressioncontinua,i.e.each focusoflearningiseitheranexact replicaofastatement,oris derivedfromoneormorestatements.

The focusoflearningisalsoconnectedtooneofthe fourelementsusingtheabbreviatedtitles.

Focusoflearning(withElements)

● Exploreshowthelayoutoforsizeofelementsinasethasnoeffectonthe overalltotal(conservationof number)(U&C)

● Subitises(looksatagroupofobjectsand realiseshowmanythereare,withoutcounting)numberof objectsinaset(U&C)

Equipment

Digitalactivities:SubitisingandConservationof NumberA–E

MAM Routines: Reason& Respond/QuickImages

Concreteactivities:ConsolidationofNumber Pupil’sBookpage44:ConsolidationofNumber (0−8)

Elements

Childrendeveloptheirmathsskillsthroughprocessessuch asconnecting,communicating, reasoning,argumentation, justifying, representing,problem-solving,andgeneralising.The PMC(2023)uses fourelementstodefinetheseprocesses,and tocategorisethesuggestedlearningexperiencesgiveninthe progressioncontinua.

● Manipulatives (bears,counters, beads,links, interlocking cubes, 2-Dand3-Dshapes)

Learningexperiences

The PMCadvocatesthatteachers providechildrenwithrichmathematical learningexperiencesthatareplayfuland engaging,that reflect relevantpedagogical approachesandthatprovideopportunities forchildrentocollaborate,communicate mathematicalthinking,andexpresstheir understandinginmultiplewaysandin variouscontexts.

Table3:An overviewofelementsandabbreviations

In MathsandMe,the focusoflearningineachlessonisclearly connectedtooneoftheseelementsusingtheabbreviated title(seesecondcolumnof Table3).Andwhilethe focusof learningmayincorporatemorethanoneofthesecentral processes,itisthemostprominentelementthatisgiven. ©TheEducationalCompanyofIreland

Inlinewiththelearningoutcomes, mathematicalconceptsandsuggested learningexperiencesintheprogression continua, MathsandMe providesawide rangeofrichandmeaningfullearning experiences foreachlesson.Manyof thesearedesignedaroundthe Maths andMe Routines.

3 Introduction
Consolidationof Number(0−8)
Day4,Lesson4
D C
P Learningexperiences
UnderstandingandConnecting(U&C) Communicating (C)
(R) ApplyingandProblem-Solving(A&PS)
Elements Abbreviations
Reasoning

MathsandMe Routines areacollectionofplayful,engagingandinclusiveinteractionsthatpromote mathematicaltalk,thinkingandmodelingamongallchildren.These repeatable routineshave beenchosen astheyareproventoactivatepriorknowledge, fosterproductivedispositionsandprovidevaluable formativeassessmentopportunities forteachers.

Inadditiontosupportingthefive keypedagogicalpractices,whichwillbedescribedindetailinthenext section,the routinesalsosupport formativeassessmentandinclusivepracticesasdemonstratedin Table4.

Summaryofthe MathsandMeRoutines

©TheEducationalCompanyofIreland

Doesitsupport/promote…?

Sometimes,Never; TargetBoards

4 Introduction
Maths Ta lk Playfulness ProductiveDisposition CognitivelyChallenging Ta sks MathematicalModeling FormativeAssessment InclusivePractices MathsandMe Routines Think-Pair-Share ✔✔✔✔✔✔✔ Notice& Wonder ✔✔✔✔✔✔✔ Reason& Respond,e.g.WhatAmI?;
WhichOneDoesn’tBelong?;SameButDifferent;Always,
✔✔✔✔✔✔✔ Write-Hide-Show ✔✔✔✔✔✔✔ Number Talks:QuickImages ✔✔✔✔✔✔ Number Talks:NumberStrings ✔✔✔✔✔✔ BuildIt;SketchIt; WriteIt ✔✔✔✔✔✔✔ Three-Act Task ✔✔✔✔✔✔✔ WouldThis Work? ✔✔ ✔✔✔✔ ConceptCartoon ✔✔✔✔✔✔✔ ChoralCounting ✔✔✔ ✔✔ IDo, We Do, YouDo ✔✔✔ ✔✔ My FavouriteNo ✔✔✔✔✔
Would You Rather?;
Table4:Alignmentof MathsandMe Routineswiththefive key pedagogicalpractices, formativeassessment andinclusivepractices.

Keypedagogicalpractices

Chapter6ofthe PMCdescribesfive keypedagogicalpractices.Thesepracticesareacknowledgedasessential totheprovisionofqualitymathematicallearningexperiences.

FosteringProductiveDisposition

The PMCemphasisesthat‘Dispositionsarenotstaticandcanbenurturedorchanged overtime’andacknowledgesthat‘attitudestomathematicsandvalues,bothathome andintheclassroom,alsohave astrongimpactonthedevelopmentofthechild’s productivedisposition formathematics’(p.28).

©TheEducationalCompanyofIreland

Thefundamentalaimof MathsandMe is forthechildtocometoappreciatemathsassomething thatispositiveand relevanttothem.Ifthishappens,itismorelikelythattheywillengagewithmaths inameaningfulway. Thisseriesaimstoachievethis by:

● Highlightingthe worldofmathsaroundthechildren −intheirschools,intheirhomes,intheirlives

● Using real-lifeexamples ofmathsinactionandsituationsthatchildrencareabouttomakemaths meaningfuland relevant

● Actively encouragingthepositiveinvolvementof families intheirchild’slearningandmathematical experiences

● Incorporatingfunandentertainingactivities,includingplay, role-playscenariosandengaginggamesto boostenjoymentwhilealso emphasisingcollaborativetasks overindividual work

● Includingtasksthatencourage activeparticipation,exploration,investigation,productivestruggle, risk-taking,creativestrategiesandperseverance,whichwill resultin asenseofpersonalsatisfaction intheiraccomplishments

● Providing scaffolding,encouragementandsupport,includingtimetothinkand reflect

● Enabling childagencyandthechild’s voice.

EmphasisingMathematicalModeling

The PMCstatesthat‘MathematicalModelinginvolvesusingmathematicstodescribea problem-contextanddeterminemeaningfulsolutionstotheproblem.In formingmodels, childrenmightusephysicalactions,spoken words,objects,images(e.g.graphs,diagrams andpictures),symbolsorwritten words’(p.30).

MathsandMe enablesmathematicalmodelinginmanyways:

● Emphasisingthe importanceofthinkingtime toallowthechildrentomakesenseoftheirthinking

● Using speciallychosenquestionsandtasks toencouragethechildrentomodelmathematically

● Presentingmathsconceptsinmultipleways and/orusingmultiplevisual representationstointroduce thechildrentoawidervarietyofmodelsthantheymighthave encounteredorcreatediflefttotheir owndevices

● Encouragingthechildren tobeindividualandunique inhowtheyexpressand representtheirideasandthinking

● Promptingthechildrento challengeandtesttheir ownthinking andmodels,and thoseofothers

● Encouragingtheuseof physicalmodels (classroommaterialsandmanipulatives) tosupportmathematicalmodelingintheclassroom,andincluding representationsoftheseintheprintanddigitalmaterials

● Usingavarietyof conceptualandproceduralmodels todemonstrate differentapproachesandstrategiesandencouragechildrentodeveloptheir ownmodelsanduniquewaystoapproachcomputationsandtasks.

5 Introduction
productive disposition
Fostering
mathematical modeling
Emphasising

UsingCognitivelyChallenging Tasks

The PMCdescribesCognitivelyChallenging Tasks (CCTs)as‘richhigher-orderlearning opportunitiesthatshouldappropriatelystretchandchallengechildren’sconceptual understandingastheyencountersignificantmathematicalideasandsituations. Sometimes referredtoas low-thresholdhigh-ceilingtasks,thesetasksshouldprovide allchildrenwiththeopportunitytoaccessmathematics,whileofferingthepotential for deeperengagement’(p.31).

MathsandMe facilitatesCCTsintheclassroom by:

● Incorporatingchallengeslinkedtochildren’scurrentlevelofknowledgeandunderstanding,while providinganappropriatestretch

©TheEducationalCompanyofIreland

● Providingtaskswherethesolutionpathwayisnotimmediatelyobvioustothelearnerorwherethe solutionisnot reducedtoasetofstepsandprocedures

● Facilitatingchildrentocommunicateandexpresstheirideasopenly,allowingthemtodiscuss,compare, justifyandevaluatetheirideasorsolutions.

CCTshave beenincorporatedthroughouttheprogrammeanditscomponents.

PromotingMaths Talk

The PMCdescribesMaths Talkas‘acollaborativeprocesswherechildren’sthinking, strategiesandideasarediscussed,sharedand/orexchanged.Thisallowschildrento reflectontheir ownunderstanding;define,presentandjustifytheirideas;makesenseof andcritiquetheir ownideasandthoseofothers;anddeveloptheirabilitytoexpressand articulatetheirthinking’(p.32).

Ineverylesson, MathsandMe providesideas forMaths Talkactivities,whichbeginwithappropriately challengingandengagingtasks.Bytheir verynaturetheseMaths Talkactivitiesalsoproviderichassessment opportunities,i.e.elicitingcurrentknowledgeandunderstanding,identifyingemergingconcepts.These activitiesemphasisetheprobingand responsiveaspectsofMaths Talk.Allofthe MathsandMe Routines promoteand fosterMaths Talk.Theuseofthese routinessupportsacultureof respectandrisk-taking,where children feelsafetosharetheirthinkingandareencouragedtolistentoandvaluetheideasofothers.

Encouragingplayfulness

The PMCstatesthat‘Mathematicallearningcanbegreatlyenhancedinaplayenvironment thatisinteractive,engaging,inclusiveandsupportive;andthatprovidesopportunities for exploration,investigation,challenge,creativity,choiceandindependence.Playprovides acontext formathematicalthinkingandthedevelopmentofmathematicallanguageand concepts,withclearpotential forpromotingmathstalk’(p.29).

MathsandMe encouragesplayfulness by:

● Tappingintochildren’sinterestsandcuriositiesthroughengagingthemesand real-lifecontexts

● Suggestingideasandwaystointegratemathematicallearningwithplayfulactivitiesthroughouttheday

● SignallingopportunitieswherechildrenencounterMathematicsinspontaneousplayandexploration

● Emphasisingwaysto reinforcemathematicallanguageasitarisesthroughplay

● Facilitatingmultiplemeansofexpressionand representation

● Providingopportunities forchildrentoexploreandexperimentwithmathematicalideas

● Fosteringthecreationofasafespace forspontaneity,creativityandimaginativeplaywith mathematics

● Providingaccesstoawide rangeof resources,visualsupportsanddigital resources.

6 Introduction
Using cognitively challenging tasks Promoting maths talk Encouraging playfulness

AssessingPrimaryMaths

The PMCexplainsthat ‘Assessmentisanintegralpartoflearningandteaching.Itinvolvesteachersand children workingtogethertouseinformationtoinformandsupportlearningandteaching’(p.34).The PMC advocatesthreetypesofassessmentasbeingnecessary‘togainacomprehensivepictureofachild’sprogress andachievement’(p.35).Theseare:

● Intuitiveassessment:Unplanned,unrecorded,andongoing

● Plannedinteractions:Morevisible,maybe recorded,and relatedtolearningoutcomes/competencies

● Assessmentevents:Distinct,visible, recordedevents

©TheEducationalCompanyofIreland

Assessmentisintegratedthroughout MathsandMe.Thelearningexperiencesarestructuredinsuch awaythattheysimultaneouslypromotethedevelopmentofmathsskillsandfluency,andenablethe teachertogather, record,interpret,useand reportinformationaboutachild’sprogressandachievements. Theteachercanthen respondtotheinsightsgatheredfromtheassessmentsandadjusttheirteaching accordingly.

Theprogrammesupportsthethreetypesofassessmentoutlinedinthe PMCinthe followingways:

Intuitiveassessment Plannedinteractions Assessmentevents

● Unitplansprovide comprehensivebackground andrationale information forteachersonallthetopics covered,alongwith guidance andsupportsaroundcommon misconceptions,thus increasingteacherawareness andpreparednesstoobserve and respondtopupils.

● Lessonsaredesignedaround richlearningexperiences linkedtothe focusoflearning andlearningoutcomes.

● Lessonsuseanumberof MathsandMe Routineswhich posequestionsdesigned tostimulateclassroom conversations andtoscaffold learning.The regularityof theseensurethey become familiar,recognisable assessmentopportunities.

● Eachlessonplanhighlightsthe learningexperiencebest suitedtogenerating recordableassessmentdata.

● Pupil'sBooktasks provide furtherassessmentdata,as doesthe self-assessment feature.

● Mathsjournalling opportunitiesareoutlinedin thelessons.

● Eachunitcomeswitha FormativeAssessment ObservationsSheet for teachers.

● The ProgressAssessment Booklet providescheckupquestionslinkedtothe learningoutcomesofeach unit.Thesequestionscanbe usedasaplannedassessment and administeredasa traditionaltest,orusedasthe basisof agrouporwholeclass quiz

● A comprehensiverecord sheet enableseasyanalysisof assessmentdataatindividual, groupandclasslevel.

7 Introduction
Table5:Assessmentsupportsin MathsandMe

Thisguidewillwalk youthroughtheprogramme’s keycomponents,highlightingitsstructure,integrated approach,easeofuse,andthechoicesitofferstobothteachersandchildren.

Structureof MathsandMe

The MathsandMe yearly overviewisdividedintomonths,thensubdividedinto units.Eachunitiseitheroneortwo weekslongandcoversaspecificareaof learning.Thecontentofeachunitisclearlyconnectedtooneormoreofthe StrandsandStrandUnits.

Review Weeksarealsoincludedinthe yearly overview,providing regular opportunities forchildrento reviewand reflectontheirlearning.

Unitsarethebuildingblocksof MathsandMe.Eachunitisbrokendownintoa numberoflessonplans,and followsasimilarstructure.Theinitiallessonactivates andassesseschildren’spriorknowledge,thesubsequentlessonsdevelopand progressthelearning,whilethefinallessonofeachunitprovidesavaluable opportunityto reviewand reflectviaamenuofoptions.

Let’sStrengthensuggestionsandmaterialprovidesadditionalsupporttochildren,whileLet’sDeepen suggestionsandmaterialprovideadditionalchallengeandextensionopportunities.

StructureofaUnit

InitialLesson

SubsequentLessons

FinalLesson

Let’sdeepen

Eachlessonalso followsaclearstructure,whichisstraightforwardandeasyto follow, andprovidesflexibility andchoice forteachers.

StructureofaLesson

8 Introduction
MathsandMe
YourGuideto
● Activatesandassesses priorknowledge ● Introducesthetopic ● Buildsonpriorlearning
● Developsandprogresses thelearning
● Providesopportunities toreviewandreflecton learning FormativeAssessment Let’sstrengthen
Figure1:Structureofa MathsandMe Unit
Warm-up Mainevent Optionalconsolidation andextensionopportunities
13 YearlyOverview YearlyOverview TermOne Month WeekUnitNo.UnitTitle Strand(s):StrandUnit(s) September 11 Number Readiness Number:SetsandOperations Number:Fractions Measuring1 Measures:Measuring October 53 Numbers1to3 Number:UsesofNumber Number:SetsandOperations Number:NumerationandCounting Number:Place ValueandBase Ten Algebra: Patterns,Rulesand Relationships 74 Time1 Measures:Time Number:NumerationandCounting Number:SetsandOperations 8Review Number:UsesofNumber Number:SetsandOperations Number:NumerationandCounting Number:Place ValueandBase Ten Algebra: Patterns,Rulesand Relationships ShapeandSpace:Shape 10 11 6Shape ShapeandSpace:Shape Number:NumerationandCounting Algebra: Patterns,Rulesand Relationships 12 December13 7ConsolidatingNumbers 0to5 Number:UsesofNumber Number:NumerationandCounting Number:SetsandOperations Algebra: tterns,Rulesand lationships 14 15 Review Editableplanningdocument ©TheEducationalCompanyofIreland
Figure2:Structureofa MathsandMe Lesson

Warm-up

Eachlessonstartswithwarm-upsuggestionstogetthechildren readytolearn. Theyaretypicallywhole-classactivities,whosepurposemightbeto:

● Provideanintroductiontothemainlesson

● Revisitconceptsthatthecurrentlessonwillbuildupon

● Reviewcontentcoveredpreviously.

Mainevent

Themainpartofthelessonincludesanumberoftasks,throughwhichthe childrenwillachievethe focusoflearning forthelesson.

Thesetasksmaybeconcreteactivities C ,digitalactivities D oractivitiesbased onprinted resources P

Somepointstonoteabout MathsandMe lessons:

● Emphasisonplayfulandengaginglearningexperiences

● Useofdigital resourcestoenhancethelearning

● Useof MathsandMe Routines:see At-A-GlanceGuide

● Support foralllearnersthroughLet’sStrengthenandLet’sDeepen features

● Formativeassessmentopportunitiesthroughout.

Optionalconsolidationandextensionopportunities

Eachlessonendswithachoiceoffurtherlearningexperiencestoconsolidateandextendthechildren’slearning.

Componentsof MathsandMe

To supportteachersinimplementingthe PMC,thecomponentsof MathsandMe have beendevisedtoserve variouspurposesandenhancetheteachingandlearningofmathsintheclassroom,widerschoolandhome environments.

Pupil’sBook

The MathsandMe Pupil’sBookisdesigned foruseafterengagementwith thelearningexperiencesoutlinedinthelessonplans.Itspurposeistwofold: toprovideanopportunitytoconsolidatethenewlearning,andtoprovidea recordofchildren’s work.

The following featuresareincluded:

● TryThis:providesoptional,cognitivelychallengingtasks forpupils

● Let’sPlay:incorporatesplayfulnessintomathsthroughengaginggames andinteractiveactivities

● MathsEyes:encourageschildrentolookaroundthemand recognise mathsinthe real world.

ThePupil’sBookalsocomeswiththe followingadditional resourcesto supportlearning:a MWBwithbranchingbondtemplate,atenframe,anda choiceoftwospinners forusewithgames.

9 Introduction
23 Unit8: Numbers6to8 Warm-up D Animation:MontyNeedsHelp! spond Playtheanimation,inwhichMontyishavingtrouble countinghisbones,treatsandtoys,andthechildren musthelphim.Whentheyha helpedhimtocounta setcorrectly,theymusthelphimtoassignthe correctnumber. Mainevent Concreteactivity:MakingSetsandMatching Numerals(0−8) DistributemanipulativesandacopyofPCM1−Small Numerals0to8toeachchild.Thisactivitypr ides anopportunitytoassesseachchild’sunderstanding ofNumber(0−8).Askthechildrento: Matchonenumeral,e.g.6,toanothernumeral6, andsaythenumbername. Makeavarietyofsets(usingthesameor differentobjects,andarrangingthemindifferent ways) forthenumbers2,3,4,5,6, 7, Makesetswithdifferent-sizedobjects(e.g.aset ofsixsmalllea sandasetof fourlargelea s). (Assesswhetherthechildrenthinkthatthe‘large’ setof fourhas‘more’.) ● MatchthenumeralsfromPCM1tosets (0−8objects). Countasetofobjectsandchoosethecorrect numeral fortheset. Chooseanumberfrom0to8andmakethe equivalentsetofobjects.Can umakeasetof objects fo MatchingNumerals toSets(0−8) Day3,Lesson3 cognisesthatobjectsandsymbolscan presentnumbers(U&C) Matchesnumeralsandnumber rdstosetsandtoothernumeralsinavarietyofcontexts(A&PS) Selectsandusesappropriatematerialstomakeavarietyofsets foragivennumber(A&PS) Sorts,groupsandarrangesmaterialsaccordingtocriteria(R) Establishesthat zero,asanumeral, representsnothing/noneintermsofquantity(R) Focusoflearning(withElements) Animation:MontyNeedsHelp! ason& spond Concreteactivity:MakingSetsand MatchingNumerals(0−8) Game:NumberBingo Book: SuzietheEight-Legged Painter by BethanyGum D C P P Learningexperiences ● Manipulatives(bears,counters,beads,links, interlockingcubes,2-Dand3-Dshapes)andcollections ofsmallobjectsfromnaturewalks(lea s,twigs,pine cones,etc.) Stickynotes SuzietheEight-Legged by BethanyGum ● Playdough ● Eggcartons Pipecleaners PCM1 Equipment ● Thereisnonewmathslanguage forthislesson. Mathslanguage JuniorInfants Pupil’s Book
©TheEducationalCompanyofIreland

Home/SchoolLinksBook

The MathsandMe Home/SchoolLinksBook recognisestheimportanceofthe familyinthechild’slearning.Includedinthebookare‘Dear Family’notes for eachunit,whichprovidetipsonhowtosupportthechild,practicalactivitiesto becompletedathome,andQRcodesthatlinktodigital resourcessuitable for homeuse.Theactivitiesinthisbookhave beencreatedtobeapproachableand open-endedto facilitatechild-ledinvestigationandplayfullearning.

Teacher’sPack

The MathsandMe teacher’s resourcematerials have beensplitintotwobooks:the Teacher’s PlanningBookandthe Teacher’s ResourcesBook.

The Teacher’s PlanningBookprovides comprehensiveteachingandplanning supportmaterialsinlinewiththe PMC.A yearly overview,unitplanswithshort-term planningandlessonplansareallincluded.

● The YearlyOverviewmapsouttheunits andstrandunitscovered overthecourse ofthe year.

● TheUnitPlansincludetheshort-term plan(fortnightlyplan)andadditional informationuseful forplanning,suchas commonmisconceptionsandmodelsand representationsused.

Teacher’s Planning Book

©TheEducationalCompanyofIreland

● TheLessonPlansoutlinethe focusof learning,learningexperiences,equipment needed,andmathslanguagethatwillbe focusedon.Fromthere,eachlessonisbrokendowninto WarmUpactivities,theMainEventandOptionalConsolidationandExtension Possibilities.

The Teacher’s ResourcesBookincludesalladditionalmaterialsoutsideofplanning.A rangeofphotocopiable materials(PCMs)are featuredhere,includinggeneralPCMs,Let’sStrengthenSuggestions for Teachers,Let’s StrengthenPCMsandLet’sDeepenPCMs.

ProgressAssessmentBooklet

The MathsandMe ProgressAssessmentBooklet featuresassessmentsthat covereachunit.Assessmentscomeinthe formofcheck-upquestionswhichare linkedtothelearningoutcomesofeachunit.Thebookletisdesignedinsucha waythatitcanbeeasilyusedaftereachunit,orduringeach review week.

10 Introduction
Home/SchoolLinksBook Name: Class:
JuniorInfants JuniorInfants
sources
Teacher’s Resources Book R Teacher’sResourcesBook JuniorInfants Teacher’sPlanningBook
Name: Class: JuniorInfants ProgressAssessmentBooklet

Digital Resources

The MathsandMe digital resourceswillbringmathstolife forchildren,andenhanceclassroomlearning by encouragingparticipationandpositiveengagement.The resourcesaredesignedtocater fordifferentlearning stylesandcontributetothewide rangeofrichandplayfullearningexperiencesintheprogramme.

Innovative,intuitiveandeasytonavigate,the MathsandMe resourceshave primarilybeendeveloped asteachingtools fortheinteractivewhiteboard(IWB)andcanbeusedinconjunctionwiththechildren’s mini-whiteboards(MWBs)whereappropriate.

Supportingthepedagogicalpracticespromotedinthe PMCandproviding variedlearningopportunities forchildren,the resources reflectthelesson’s focusoflearning,promoteMaths Talk,incorporatemathematicalmodeling andallow for formativeassessment.Many resourceshave beenspecifically designedaroundthe MathsandMe Routines,suchasConceptCartoon, Three-Act TaskandQuickImages.

Digital resourcesaccompanymostlessons. To provideguidance fortheintegrationofdigital resourcesin theclassroom,theyare referencedindetailthroughoutthelessonplans foreachunit,withsuggestions for discussionanddifferentiation.The resourcesincludethe following:

Animations

Featuringtheprogrammecharacters–Mia,Jay, Lexi,DaraandMontythedog –theanimationsbringmathstolife withcolourfulstories,songsandfun scenarios relevanttochildren

©TheEducationalCompanyofIreland

Videos

Immersiveandinterestingvideoswithdetailedconceptexplanationsandmeaningfulexamplesofmaths inactioninthe real world

11 Introduction

Activities

Awide rangeofdigitalactivities–includingposters,slideshowsandinteractivegames–tosupport teachingandconsolidatelearning,encourageMaths Talkandpromoteactiveparticipation

©TheEducationalCompanyofIreland

Manipulativese-Toolkit

Acomprehensivesetofbespokeinteractivemathstoolsandmanipulatives,includingMoney,Shapes,Clock, NumberSquare,Place Value,Dice,Spinnerandlotsmore!

Howtoaccess

Teacherscanaccessthe MathsandMe digital resourcesvia www.edcolearning.ie,whereadedicated websitewillhosttheprogramme’s keycomponents.Witheasy-to-usefilteringtosupportclassroom teachingandlessonplanning, mathsandme.ie willincludeinteractivee-books,digital resources,editable planningdocumentsandprintables(suchasMathsLanguageCards,ManipulativesCut-OutsandAssessment RecordSheets).

Pupil/ParentApp

To supporthome/schoollinksandstationteachingintheclassroom,abankofdigital resources–suchas animationsandinteractivegames–willbemade availableviaafreePupil/ParentApp.

12 Introduction

YearlyOverview

TermOne

©TheEducationalCompanyofIreland

13 YearlyOverview
Month WeekUnitNo.UnitTitle Strand(s):StrandUnit(s) September 11 Number Readiness Number:SetsandOperations Number:Fractions 2 32 Measuring1 Measures:Measuring 4 October 53 Numbers1to3 Number:UsesofNumber Number:SetsandOperations Number:NumerationandCounting Number:Place ValueandBase Ten Algebra: Patterns,Rulesand Relationships 6 74 Time1 Measures:Time Number:NumerationandCounting Number:SetsandOperations 8Review November 95 Numbers4and5 Number:UsesofNumber Number:SetsandOperations Number:NumerationandCounting Number:Place ValueandBase Ten Algebra: Patterns,Rulesand Relationships ShapeandSpace:Shape 10 11 6Shape
Number:NumerationandCounting Algebra: Patterns,Rulesand Relationships 12 December13 7ConsolidatingNumbers 0to5 Number:UsesofNumber Number:NumerationandCounting Number:SetsandOperations Algebra: Patterns,Rulesand Relationships 14 15 Review Editableplanningdocument
ShapeandSpace:Shape

Term Two

©TheEducationalCompanyofIreland

14 YearlyOverview
Month WeekUnitNo.UnitTitle Strand(s):StrandUnit(s) January 16 8Numbers6to8 Number:UsesofNumber Number:NumerationandCounting Number:SetsandOperations Algebra: Patternsand Relationships 17 18 9Locationand Transformation ShapeandSpace:Spatial AwarenessandLocation ShapeandSpace: Transformation 19 February20 10 Numbers9and 10 Number:UsesofNumber Number:NumerationandCounting Number:SetsandOperations Algebra: Patternsand Relationships 21 22 Review March 2311Measuring2 Measures:Capacity Measures:Area Number:NumerationandCounting Number:SetsandOperations Number:Fractions 24 2512Operationswithin 10 Number:UsesofNumber Number:NumerationandCounting Number:Place ValueandBase Ten Number:SetsandOperations Number:Fractions 26 April* 2713 Patterns Algebra: Patterns,Rulesand Relationships Number:NumerationandCounting Number:SetsandOperations 28 Review *DependingonwhenEaster falls,Aprilmaybewhollyorpartlyin Term3.

TermThree

©TheEducationalCompanyofIreland

15 YearlyOverview
Month WeekUnitNo.UnitTitle
May2914 Money
30 3115Fractions Number:Fractions Number:SetsandOperations
Measures:Measuring 32 June 33 16 Time2 Measures:Time 34 35 17 Data DataandChance:Data Number:SetsandOperations Number:NumerationandCounting 36 Review
Strand(s):StrandUnit(s)
Measures:Money
ShapeandSpace:Shape

Unit8:

MathsandMe:JuniorInfants–Shor tTe rmPlanUnit8:Numbers6to8 (J anuary: We eks1&2)

Number>UsesofNumber;NumerationandCounting;SetsandOperations;Algebra> Pa ttern,Rulesand Re lationships

Strand(s)>Strandunit(s)

LearningOutcome ( s )T hroughappropriatelyplayfulandengaginglearningexperienceschildrenshouldbeabletodevelopan aw arenessthatnumbersha ve avarietyofuses;developan aw arenessthatthepurposeof countingistoquantify;usea ra ngeofcountingstrategies fo ra ra ngeofpurposes; re cogniseandunderstandwhathappenswhenquantities(sets)arepartitionedandcombined.

CMLearningExperiencesAssessment

IntuitiveAssessment: re sponding toemerging misconceptions

PlannedInteractions: re spondingto insightsgleanedfrom children’s re sponsesto learningexperiences

Fo cusofLearning(withElements)

D Re ason& Re spondL1,3–9

C CountingObjectsL1

C Number Ta bleL1

P Story:‘SnowWhite’L1

C SoundofaNumberL2

C MakingSetsL2 P Book: HowtoCatcha Ra inbow L2

C MakingSetsandMatchingNumerals (0−8)L3

P NumberBingo3L3

P Book: SuzietheEight-Legged Pa inter L3

D QuickImagesL4

C ConsolidationofNumberL4

C CompositionofNumberL5–6

C MakingEquivalentandNon-equivalent SetsL7

AssessmentEvents: informationgathered fromcompletionof theunitassessment intheProgress AssessmentBooklet pagexx

C OrderingNumeralsandSetsL8

D Ja y’ sSoccerPracticeGameL8

P Book: Six-DinnerSid L8

D Number Fo rmation0to8

C MakingNumeralsL9

P Book: OneMoleDiggingaHole L9

Print re sources

Pupil’sBookpages 43 –48

Home/SchoolLinksBookpagexx

PCMxx

Counting1to8: Re cites fo rwardtoatleast 10 (U&C); Re cognisesnumbers,initiallywithin 10 (U&C);Demonstratesan aw arenessof andusesnumeralsinpersonallymeaningfulcontexts (C ); At tendstonumeralsofsignificanceorimportancetothechild(U&C);Uses appropriatestrategiestofindouthowmany(A&PS)

MakingSets(0−8): Demonstratesan aw arenessofnumberandnumber wo rdsequencingthroughsong,stories,rhymesandgames (C ); Pa rt icipatesinactivitiesthatin vo lvecommunicatingaboutnumber(U&C);Usesideasaboutnumberandquantitytocommunicatewith others (C );Exploreshownumbersareused fo rcountingandthatthelastnumberinthecountindicatesthequantityofobjectsinaset(U&C)

MatchingNumeralstoSets(0−8): Re cognisesthatobjectsandsymbolscan re presentnumbers(U&C);Matchesnumeralsand number wo rdstosetsandtoothernumeralsinavarietyofcontexts(A&PS);Selectsandusesappropriatematerialstomakeavariety ofsets fo ragivennumber(A&PS);Sorts,groupsandarrangesmaterialsaccordingtocriteria(R);Establishesthat ze ro ,asanumeral, re presentsnothing/noneintermsofquantity(R)

ConsolidationofNumber(0−8): Exploreshowthela yo utoforsizeofelementsinasethasnoeffectonthe ove ra lltotal (conservationofnumber)(U&C);Subitises(looksatagroupofobjectsand re aliseshowmanythereare,withoutcounting)numberof objectsinaset(U&C)

CompositionofNumber(1−8): In ve stigatesvariousarrangementsofmanipulativestopromptdifferentmentalimagesofnumbers upto8,whiledevelopingasenseofeachnumber(R)

ExtendingCompositionofNumber(1−8): In ve stigatesvariousarrangementsofmanipulativestopromptdifferentmentalimagesof numbersupto 10 ,whiledevelopingasenseofeachnumber(R)

EquivalentandNon-equivalentSets(0−8): Showsanunderstandingofdifferencesinvalue(U&C);Usescomparativelanguage (more,less,same)tocomparesetstoatleast 10 (C );Usesappropriategesturesand wo rdstocon ve yandmakecomparisons (C ); Identifies, re cognisesandestimatesmoreorlessinthe re al-lifecontextand/orplay(R)

OrderingNumeralsandSets(1−8): Ordersnumeralsuptoatleast 10 (U&C);Orderssetswithoutcountingandchecks by counting (R);Explainsordinalityusingthelanguageofafter,beforeandin-between (C)

Wr itingNumbers0to8: Makesnumeralscreatively (C );Discusses,dr aw sandwrites re presentationsofnumbers1−8,using manipulatives (C );Explorestheuseofnumberandplaysgamesto ra ise aw arenessofnumberintheirenvironment(A&PS);Notices and re cognisestheuseofnumeralsaslabelsinthecontextofhome,theclassroomandtheschoolenvironment(U&C)

Re viewand Re flection: Re viewsand re flectsonlearning(U&C)

Ke y: Elements: (U&C)UnderstandingandCommunicating; (C )Communicating;(R) Re asoning;(A&PS)ApplyingandProblem-Solving.

LearningExperiences: C concreteactivity; D digitalactivity; P activitybasedonprintedmaterials, fo llo we d by lessonnumbers.

CM:CuntasMíosúil: pleasetickwhen yo u ha ve completedthe fo cusoflearning.

©TheEducationalCompanyofIreland

Lesson

1

2

3

4

5

6

7

8

9

10

16
itableplanningdocument
Ed
Numbers6to8

Additionalinformation forplanning

ProgressionContinua

MathsLanguage

Equipment

InclusivePractices

See‘JuniorInfants MathsandMe ProgressionContinuaOverview’ foradetailedbreakdownofhowall progressioncontinuaarecovered.

See‘JuniorInfants MathsandMe MathsLanguageOverview’andindividuallessonplans.

See‘JuniorInfants MathsandMe MathsEquipmentOverview’andindividuallessonplans.

● SeeLet’sStrengthenandLet’sDeepensuggestionsthroughoutlessonplans.

● SeeUnit8Let’sStrengthenSuggestions for Teachers.

● SeeUnit8Let’sStrengthenPCM.

©TheEducationalCompanyofIreland

Integration

● SeeUnit8Let’sDeepenPCM.

Seeindividuallessonplans.

Background and rationale

● Overthecourseofthe fortnight,thechildrenwillbecountingfrom1to 10,butthe focuswillbeonthe numbers6to8. Youwillbeassessingwhethertheyknowthesequenceinwhichtocount,areusingoneto-onecorrespondence(assigninganumbernametoeachobject,0−8),knowthatthelastnumberisthe totalcount,andunderstandconservationofnumber.

● Theywillbeintroducedtotheabstractprincipleofcounting(e.g.countingsounds),leadingtothembeing abletocreateamentalimageofanumberandmoreeasily‘counton’intheirhead.

● Itisof keyimportancethatchildrenseenumbersinthe‘real world’andthattheyapplytheirgrowing knowledgetoexperiencesoutsidetheclassroom.Theywilllistentostoriesaboutnumbertoextendtheir experience.

● Theywillbeginto recogniseandidentifythenewnumerals,andwritethenumerals1to8‘creatively’and onpaper,astheyconsolidatetheirexperienceofmatchingthenumeraltothecorrectnumberofobjects orsounds.

● Compositionofnumberallowsthechildrento‘breakup’anumberofobjects(1−8)andexplorethe differentcombinationstheycanmake.Seeingsmallernumberswithinthebiggernumbersolidifies comprehensionofthenumberitself,andwhatitis‘madeof’. Partitioningandcombiningbecomesa naturalprogressionwhenthechildrenhave already‘deconstructed’anumberofobjects.

Thethemeofthisunitis PictureBooksAboutNumber.Suggestions for relevantbooksareincluded inthelessonplans.

Commonmisconceptions anddifficulties

Thechildrenmay:

● Counttoomanyortoo fewobjects

● Countthesameobjectmorethanonce

● Repeatanumberwhilecountingobjectsormissanumber

● Not realise,whenusingthetenframe,thatthecounterscanbeinvaryingplacesintheframe,but canstillbesuccessfullycounted

● Becomeconfusedwith wordsthathave thesamesound,butdifferentmeanings(e.g. ate and eight)

● Mixuplettersymbolsandnumbersymbols(e.g.5andS,or8andB)

17 Unit8: Numbers6to8

● Strugglewithnew vocabulary,suchas: lot, some, onemore, oneless.(Itis veryhelpfultomakeup smallstories forthisagegroup,e.g.‘There were sixdwarfs out forawalk,butthenonemorejoined them.Howmany were therethen?’)

● Strugglewithmakingthelinkbetweenthenumeral,thenumber wordandtheobjects(concrete andpictorial).(Engaginginmultiplehands-onactivitieswill reinforcethisconcept.)

Mathematicalmodels and representations

● Numbershapes

● Fiveframes

● Tenframes

● Orderingframes

● Cuisenaire rods

● Sortingringsand/ordividers

● Two-sidedcounters

©TheEducationalCompanyofIreland

18 Unit8: Numbers6to8

Day1,Lesson1

Counting1to8

Focusoflearning(withElements)

● Recites forwardtoatleast 10 (U&C)

● Recognisesnumbers,initiallywithin 10 (U&C)

● Demonstratesanawarenessofandusesnumeralsinpersonallymeaningfulcontexts (C)

● Attendstonumeralsofsignificanceorimportancetothechild(U&C)

● Usesappropriatestrategiestofindouthowmany(A&PS)

Learningexperiences

Digitalactivity:CountwithMonty

MAM Routine: Reason& Respond

Concreteactivity:CountingObjects(1−8)

Concreteactivity:Number Table

Story:‘SnowWhiteandtheSevenDwarfs’

Pupil’sBookpage 43:Counting1to8

©TheEducationalCompanyofIreland

Equipment

● Manipulatives(bears, counters,beads,links, interlockingcubes,2-D and3-Dshapes)and collectionsofsmall objectsfromnaturewalks(leaves, twigs,pinecones,etc.)

● Story:‘SnowWhiteandtheSeven Dwarfs’

● Paintorplaydough

Mathslanguage

● six,seven,eight,in-between,next

Warm-up

D Digitalactivity:CountwithMonty

MAM Routine: Reason& Respond Usethedigitalcountingactivity. Tellthechildrento countwithMontyandhelphimnamethenumbers. Assessthe following:

● Aretheycountinginsequence(notmissingany number)?

● Aretheycountingeachnumber(oncenottwice)?

● Cantheystartatanumber(e.g.4)andcounton?

● Cantheystopatadesignatednumber(e.g. countto 7)?

● Canthey recogniseeachnumberanditsposition?

Theyarealsoansweringquestionssuchas:

● Isanyoneintheclassfive yearsold?Whereisthat numberonthesteppingstones?(in-between4 and6,after4,before6)

● Isanyone four/six yearsold?Whereisthat number?(in-between…and…,after…,before…)

● Whatagewill youbeon your next birthday?

● Doesanyonehave asister/brotherwhoisseven/ eight yearsold?

● Doesanyoneknowthenumberoftheirhouse?

● Isanyone’shousenumberbetween1and 10?

● Whatnumbercomes after 6?

● Whatnumbercomes before 8?

● Whatnumbercomes in-between 6and8?

Teachingtip:

Youcouldplaythisactivityeveryday over thecourseofthisunit.

19 Unit8: Numbers6to8
P P
D C C

Mainevent

C Concreteactivity:CountingObjects(1−8)

Thisactivityprovidesanopportunitytoassesseach child’sunderstandingofcountingobjects,as wellas thestrategiestheyareusing.Thechildrenarenot assigningatotalnumberinthisactivity, ratherthey are focusingonthecountandtheintroductionofthe numbers6,7and8.Distributemanipulativestoeach child,andtellthemtodothe following:

● Countasetof1,2,3,4,5objects(revision).

● Countasetof6,7and8objects.

Teachingtip:

Ensurethateachchildiscountingcorrectly (e.g.theymaybecountingintheirhead,but missinganobjectormissinganumberinthe sequence). At thisearlystageofcounting, mostchildrenwillbecountingaloud,pushing objectsawayfromthegroupofobjectsand assigninganumberastheypush/touch.

Assessthe following:

● Arethechildren repeatingone numberormissinganumberinthe sequence?

● Aretheysubitisingsmallernumbersofobjects, e.g. four.Whatistheirstrategy.Ask:Howdo you knowthereare fourobjects?(Dotheyseetwo andtwo?)

● Aretheytouchingeachobject once orarethey countingoneobjecttwice?

● Aretheyassigninganumbernameto eachobjectastheytouchit?

● Dotheyunderstandthatthe objectscanbemovedapart slightlyorcounted,e.g.topto bottom(inastackofcubes),andthey willstillgetthesamenumber?

● Aretheycountinginthecorrectsequence, includingthenumbers6, 7, 8?

● Dotheyunderstandthatthe final numberisthe total ofalloftheobjects?

Let’sstrengthen:

Placeeightobjectsonthetable. Tellthechildren tocountthem.Move threeawayandask:

● Howmanyareleft?

Aftertheyhave countedfive,placethethree missingobjectsbackonthetableagain,andask:

● Howmanyaretherenow?

Dothechildrenneedto recount?

©TheEducationalCompanyofIreland

● Cantheycountobjectsthatareinanirregular arrangement(e.g. by puttingtwoobjectsand threeobjectstogether,andcountingthetotal/ puttingoneobject,threeobjectsandtwoobjects together,andcountingthetotal)?Theyarenot adding,butassemblingandcountinga random groupofobjects.

Let’sdeepen:

Askthechildrentogive you, forexample, four cubesfromasetofsixcubes.Dotheyneedto recounttheamountwhenaskedhowmanycubes theyhave given you?Dotheyknowhowmany cubesareleft(aftergiving you four)?Dothey needtocountorcantheysubitise?Whenthe fourmissingcubesare returnedtotheset,dothe childrenknowthattherearestillsixcubes?

C Concreteactivity:Number Table

YoumightliketosetupaNumber Table forthethree‘newnumbers’ overthecoming fortnight.The number6could feature fora few days, followed by thenumber 7, andthenthenumber8.Boththe numeralandthe wordcouldbe shown(e.g.6and six).Setsofsix objects(e.g.counters)couldbeshowninvarious arrays.Thenumbercouldalsobeshownonpaper, andusingconcretematerials,itemsfromthenature tableanditemschosen by thechildren.Theycould help youtosetupthetable,oronegroupcouldbe assignedtosetitup.

P Story:‘SnowWhiteandtheSevenDwarfs’ Readthestory‘SnowWhiteandtheSevenDwarfs’. Thechildrencouldthendraw,paintormake(with playdough)thesevendwarfs.

P Pupil’sBookpage 43: Counting1to8

Distributeadicetoeachpair. Eachchildshouldcolourthe setsintheir ownPupil’sBook.

20 Unit8: Numbers6to8

Optionalconsolidation andextension possibilities

RolePlay If youhave ashopsetupinthe PlayArea,ingroups,thechildrencould role-play shopkeepersastheycountoutsmallitems fortheir customersandputtheminabag.Thecustomers should recounttheitems,tomakesurethattheygot theamounttheyasked for.

Story Read‘The WolfandtheSevenLittleKids’, andthenactouttheeventsfromthestoryinthePE hall.Therecouldbea fewgroupswitha wolfand sevenkids.

MathsEyes Whatnumberscanthechildren seeinside/outsidetheclassroom?Ifitissomeone’s birthday, youcoulddrawattentiontothisandask themtobringinoneoftheirbirthdaycardswith theirageonit.Drawattentiontoanycounting opportunities, by countingoutsixpaintbrushes, sevencopies,etc.Countirregulargroups(e.g.six childrenaroundthesandarea).

Song Thiscountingsonghasacatchytune forthechildrentosingalongto: edco.ie/npzc

Day2,Lesson2

MakingSets(0−8)

Focusoflearning(withElements)

● Demonstratesanawarenessofnumberandnumber wordsequencingthroughsong,stories,rhymes andgames (C)

● Participatesinactivitiesthatinvolvecommunicatingaboutnumber(U&C)

● Usesideasaboutnumberandquantitytocommunicatewithothers (C)

● Exploreshownumbersareused forcountingandthatthelastnumberinthecountindicatesthe quantityofobjectsinaset(U&C)

Learningexperiences

©TheEducationalCompanyofIreland

Concreteactivity:Soundofa Number

Concreteactivity:MakingSets

Book: HowtoCatcha Rainbow by

Equipment

● Cubesorbuttons

● Tinorjar

● Manipulatives(bears,counters, beads,links,interlockingcubes,2-D and3-Dshapes)andcollectionsof smallobjectsfromnaturewalks(leaves, twigs,pinecones,etc.)

● Book: Catcha Rainbow by NaomiJones

● Crayonsinthesevencoloursofthe rainbow

Mathslanguage

● Thereisnonewmathslanguage forthislesson.

Warm- p

C Concreteactivity:SoundofaNumber

Observethechildren’sunderstandingofthe abstractionprinciple(e.g.countingsounds).Ask themtocountalongwith youas youdropfivecubes orbuttons,one by one,intoatinorjar. Repeat,but

thistime,askthechildrentocountontheir own. Repeatagain,butthistime,stopatvariousnumbers andaskthechildrenhowmanytheyhave counted. Repeattheentiresequence,butwithdifferent sounds,suchasclapping,tappingorclicking. You

21 Unit8: Numbers6to8
C

mightaskindividualchildrentomakethesoundwhile theotherscount. Youcouldalsoholdupanumber andtellthechildrentochooseasoundandmakethat soundastheycount.

Tellthechildrentoclosetheireyesandcountwith you,andthenontheir own.Stopatvariousnumbers andaskhowmanysoundstheyhave heard.The childrenshouldthencountintheirhead.Ask individualchildrenhowmanysoundshave theyheard.

Let’sdeepen:

Numbertennis: Yousay, ‘one’,thechildrensay, ‘two’. Yousay, ‘three’,theysay ‘four’.Continueup toten.

Makeapattern: Yousay, ‘one,two’,thechildren say, ‘three four’.Continueuptoten.

Startatanumber: Yousay, ‘five’,thechildrensay, ‘six’.Continueuptoten.

Pair work–ask:

● Can youtapapattern/rhythm (e.g.1,2;1,2)?

● Can yourpartnercopy yourtapping?

● Can youshareitwiththeclass?

©TheEducationalCompanyofIreland

Mainevent

C Concreteactivity:MakingSets(0−8)

Thisisanopportunitytoassesseachchild’s understandingofthecardinalprinciple(assigninga ‘specialnumber’or‘totalnumber’toasetofobjects). Distributemanipulativestoeachchild.Say/ask:

● Makeasetwith yourobjects.

● Howmanyobjectsaretherein yourset?Howdo youknow?(Dothechildrenknowthatthelast numbertheysaywhencountingisthetotal quantity?)

● Can youshowandtelltheclasshow you found outhowmanyobjectsarein yourset?

● Caneveryonemakeasetofsix?Howdid you makeasetofsix?Howdo youknowthatthere aresixobjectsin yourset?

● Caneveryonemakeasetof four?Can youturnit intoasetoffive?(Doanychildrenaddanother objecttotheirsetof fourordotheymakeanew setoffive?)

● Whocanmakeasetofseven?Counttheobjects in yourset.Put yourobjectsinaline(horizontally andthen vertically).Howmanyarethere?

● Can youturn yoursetofsevenintoasetofsix? Howwill youdothat?Do youneedtocount your objectsagain?

● Can youmakeasetofsevenagain?Howwill you dothat?

● Can youmakeasetof zero objects?No!

Let’sstrengthen: Chooseanumber(from yourclass-sized numbers)anddrawthecorrectnumberofobjects on your MWB forthatnumber.Whatnumberdid youchoose?

Let’sdeepen:

Taponthetable.Howmanytapsdid youdo?Make asetthathasthisnumberofobjects.

P Book: HowtoCatcha Rainbow by NaomiJones

Read HowtoCatcha Rainbow by NaomiJones,in whichFreyadoesherbesttofindthesevencolours ofthe rainbow. Thechildrencoulddrawtheseven coloursofthe‘perfect’ rainbowthatFreyafinally finds,usingcrayons. Youcouldintegratethisactivity withLiteracyandVisualArts.

Teachingtip:

A readingofthisstoryis availableat: edco.ie/56tg

Optionalconsolidation andextension possibilities

GamesBank Play hopscotchfromthe GamesBank.

MathsEyes Say/ask:

● Lookaround/outsidetheclassroom.

● Whocanseeasetof…(e.g.4)?

● Are youcorrect? (Thechildshouldgoandcount thesetifitisinsidetheclassroom.)

● Cananyoneseeasetwithonemoreobject?

● Cananyoneseeasetof8?

● Let’sfindoutif you were correct.

22 Unit8: Numbers6to8

Day3,Lesson3

MatchingNumerals toSets(0−8)

Focusoflearning(withElements)

● Recognisesthatobjectsandsymbolscan representnumbers(U&C)

● Matchesnumeralsandnumber wordstosetsandtoothernumeralsinavarietyofcontexts(A&PS)

● Selectsandusesappropriatematerialstomakeavarietyofsets foragivennumber(A&PS)

● Sorts,groupsandarrangesmaterialsaccordingtocriteria(R)

● Establishesthat zero,asanumeral, representsnothing/noneintermsofquantity(R)

©TheEducationalCompanyofIreland

D C P P

Learningexperiences

Animation:MontyNeedsHelp!

MAM Routine: Reason& Respond

Concreteactivity:MakingSetsand MatchingNumerals(0−8)

Game:NumberBingo

Book: SuzietheEight-Legged Painter by BethanyGum

Equipment

● Manipulatives(bears,counters,beads,links, interlockingcubes,2-Dand3-Dshapes)andcollections ofsmallobjectsfromnaturewalks(leaves,twigs,pine cones,etc.)

● Stickynotes

● Book: SuzietheEight-Legged Painter by BethanyGum

● Playdough

● Eggcartons

● Pipecleaners

● PCM1

Mathslanguage

● Thereisnonewmathslanguage forthislesson.

Warm-up

D Animation:MontyNeedsHelp!

MAM Routine: Reason& Respond Playtheanimation,inwhichMontyishavingtrouble countinghisbones,treatsandtoys,andthechildren

musthelphim.Whentheyhave helpedhimtocounta setcorrectly,theymusthelphimtoassignthe correctnumber.

Mainevent

C Concreteactivity:MakingSetsandMatching Numerals(0−8)

DistributemanipulativesandacopyofPCM1−Small Numerals0to8toeachchild.Thisactivityprovides anopportunitytoassesseachchild’sunderstanding ofNumber(0−8).Askthechildrento:

● Matchonenumeral,e.g.6,toanothernumeral6, andsaythenumbername.

● Makeavarietyofsets(usingthesameor differentobjects,andarrangingthemindifferent ways) forthenumbers2,3,4,5,6, 7, 8.

● Makesetswithdifferent-sizedobjects(e.g.aset ofsixsmallleavesandasetof fourlargeleaves). (Assesswhetherthechildrenthinkthatthe‘large’ setof fourhas‘more’.)

● MatchthenumeralsfromPCM1tosets (0−8objects).

● Countasetofobjectsandchoosethecorrect numeral fortheset.

● Chooseanumberfrom0to8andmakethe equivalentsetofobjects.Can youmakeasetof objects for0?

23 Unit8: Numbers6to8

Unit8: Numbers6to8

● Exploreconservationofnumber(bycounting, for example,sixobjects,assigningthenumbername, andmovingtheobjects,butnot recounting).

Ask:

● Haseveryonegotacollectionof objects?

● Can youmakeasetwithoneobjectandasetof sixobjects? (Continuewithdifferentamounts for twosets.)

● Putthetwosetstogether.Howmanyobjects haveyougot?(Dothechildren counton or count all oftheobjects?)

Askthechildrentodrawasetofobjects forachosen number.

Let’sdeepen:

DistributesmallnumeralsfromPCM1andacopy eachofPCM2–Setsof1−5,andPCM3−Setsof 6−8toeachchild.Thechildrenshouldmatch numeralstothesets.

Let’sstrengthen:

UsingsmallnumeralsfromPCM1,canagroupof children(workinginpairs),matchnumeralsto makepairs(e.g.7matchedto 7)?Whichtwo childrenhave madethemostpairs?

P Game:NumberBingo

Thechildrenplaybingoingroupsofsix.Distributea bingocardfromPCMs4to6–NumberBingoCards andSmallNumeralsfromPCM1toeachplayer. The

numbersonthecardsareshownusingdifferent representations,includingdots,tallymarks,ten framesandfingers.When youcalloutanumber, e.g. 7, thechildrenshouldlook fora representation of7ontheircardandplacethecorrectnumeralon it.Thefirstplayertocovertheircardshouldshout, ‘Bingo!’If you wouldliketoinvolvethewholeclass, theothergroupsmaketheir ownnumber representationsontheirtable(usingmanipulatives).

©TheEducationalCompanyofIreland

P

Let’sstrengthen:

Aneasier version wouldinvolveusingcountersor stickynotestocoverthebingocard,insteadof numerals.

Book:

SuzietheEight-Legged Painter by BethanyGum

Read SuzietheEight-Legged Painter by Bethany Gum,inwhichSuziethespidermeetssomeinsects whoareafraidofherbecauseshehaseightlegs insteadofsix.Thisstorycouldleadtoadiscussion abouthowmanylegsdifferentanimalshave, for example:

● Howmanylegsdoesanant/agiraffe/abirdhave?

● Whichhasmorelegs:anantoraspider/anantor agiraffe?

● Doesanyanimalhave three/five/sevenlegs?

Whynot?

● Thechildrencouldthenmakeaspider,usingplay dough,aneggcartonandpipecleaners.

Optionalconsolidation andextension possibilities

RolePlay If youhave ashopsetupinthePlay Area,askthechildrentosubitiseandthencount amountsofitemsintheshop.

PizzaSlices Youwillneedtwopaperplatesper child,smallnumerals1to8(seePCM1),glue,and scissors.Beforedistributingtheequipment,draw eightequalsectorsoneachpaperplate,giving you two‘eight-slicepizzas’perchild. Tellthechildrento gluethesmallnumeralsontooneoftheir‘pizzas’ (onenumeralperslice).Next,theyshoulddrawdots (‘pepperonipieces’):onedotononeslice,twodots onanotherslice,threedotsonanotherslice…andso on,uptoeight.Theyshouldthencuttheirpepperoni pizzaintotheeightslices,andplaceeachslice over thecorrespondingnumeralontheirotherpizza.

Bingo PlaythedigitalBingogame fornumerals

0to8.Beforeplayingthegame,printthedigital bingocardsandgiveeachchildacard.ClicktheBingo buttonto releaseaballandcontinueto releaseballs untilachildfillstheircardtowinthegame.

24

Focusoflearning(withElements)

● Exploreshowthelayoutoforsizeofelementsinasethasnoeffectonthe overalltotal(conservationof number)(U&C)

● Subitises(looksatagroupofobjectsand realiseshowmanythereare,withoutcounting)numberof objectsinaset(U&C)

Learningexperiences

D C P

©TheEducationalCompanyofIreland

Digitalactivities:SubitisingandConservationof NumberA–E

MAM Routines: Reason& Respond/QuickImages

Concreteactivities:ConsolidationofNumber

Pupil’sBookpage44:ConsolidationofNumber (0−8)

● Manipulatives (bears,counters, beads,links, interlocking cubes, 2-Dand3-Dshapes)

● Thereisnonewmathslanguage forthislesson.

D Digitalactivities:SubitisingandConservation ofNumberA–E

MAM Routines: Reason& Respond/Quick Images

UsetheQuickImagesactivitiesandtheslideshows. Intheseactivities,thechildrenaresubitisingamounts onfiveframes,ontenframes,indifferentarraysand scatteredat random.Dothey realisethatitiseasier tosubitiseandcountwhentheobjectsareinlines (arrays)?Theywilllookattwodifferentsetsand respondtothequestion:‘Whatisthesameandwhat isdifferent?’

Teachingtip: Foreachslideorimage,ask:

● Doeseachsethave thesameamount?

Somechildrenmaythinkthatbecausethe objectsarespreadout,ortheobjectsare larger,thatthesethasagreater number ofobjects.

Mainevent

C Concreteactivities:ConsolidationofNumber Fortheseactivities,thechildrenshouldallhave the sametypeofmanipulative(e.g.counters).

Activity1:Subitising

DistributemanipulativesandafiveframefromPCM7 –FiveFramestoeachchild.Say/ask:

● Pickupahandfulofcounters.Can you guess how many youhave?

● Put yourcounterson yourfiveframe.

● Countthem.Howmanydo youhave?

● Howdid youshow yourset/countersonthefive frame?(e.g. for fourcounters,twocounters,then agap,thentwomorecounters)

● Can youpickup about fivecounters?Countthem.

● Putthemon yourfiveframe.Howmanydid you pickup?

25 Unit8: Numbers6to8
Day4,Lesson4
Consolidationof Number(0−8)
Equipment
Mathslanguage Warm-up

Unit8: Numbers6to8

● Whopickedupexactlyfive?

● Optionalquestion:Whopickedup‘more’than five?‘Less’thanfive?

Let’sdeepen:

Usealargernumberofmanipulativesalongwith thetenframes,ifthechildrenare ready.Ask/say:

● Can youpickupaboutsevencounters(etc.)? Countthem.Putthemon yourtenframe.

● Howmanydid youpickup?Whopickedup exactlyseven?

● Optionalquestion:Whopickedupmorethan seven?Lessthanseven?

● Putsomecounterson yourtenframe.Guess howmanythereare.

● Nowcountthem. Were youcorrect?

Activity2:ConservationofNumber Tellthechildrentoput some countersintheirfive frame.Ask:

● Howmanycountersarethereon yourfiveframe?

● Howdo youknow?

● Can youmove thecounterson yourfiveframe (i.e.tonewpositions)?

● Howmanycountershaveyougotnow?(Dothe childrenneedto recount?)

Youmightliketotrytheabove activities without the ‘scaffolding’ofthefive/ten

frames, by askingthechildrentosubitisea random numberofmanipulativesandthencountthem.They shouldthenarrangethemanipulativesindifferent ways(vertical,horizontal,straightline,crookedline, arraysand/orpatterns).Assesswhetherthechildren needto recounteachtime.

Let’sstrengthen:

Youmightliketodrawsomeoftheoptionsabove (verticalline,horizontalline,straightline, crookedline,arraysand/orpatterns)ontheIWB forchildrenwhomightneedinspirationorhelpin arrangingtheircounters.

Youmightliketotrytheseactivitiesusingmixed manipulatives(e.g.bigbearsandsmallbears,or largetrianglesandsmallsquares).Thechildren couldmake,e.g.asetoffivesmallbearsandaset offivebigbears.Askthemifthesetshave the samenumber.Spreadoutoneofthesetsandask thequestionagain.

P Pupil’sBookpage44:

Number(0−8)

©TheEducationalCompanyofIreland

26
Consolidationof
Optionalconsolidation andextension possibilities GamesBank Play‘CircleCounting’fromthe GamesBank. Read HowManyLegs? by KesGray andJim Field.Promptthechildrentosubitisethenumber oflegsthateachanimalhas.A readingofthis storyis availableat: edco.ie/qdu9 CompositionofNumber(1−8) Day5,Lesson5 ● Investigatesvariousarrangementsofmanipulativestopromptdifferentmentalimagesofnumbersup to8,whiledevelopingasenseofeachnumber(R) Focusoflearning(withElements)

D C

Learningexperiences

Animation:BirthdayCake

MAM Routine: Reason& Respond

MathsStations:CompositionofNumber(1−8)

Equipment

● Birthdaycandles (orcrayons)

● Manipulatives (bears,beads,links, interlockingcubes,2-D and3-Dshapes)

● Sortingringsordividers

Mathslanguage

● Thereisnonewmathslanguage forthislesson.

Warm-up

©TheEducationalCompanyofIreland

D Animation:BirthdayCake

MAM Routine: Reason& Respond

Teachingtip:

Understandingcompositionofnumbermeans thatthechildunderstandsthatnumbersare madeupofsmallernumbers.Theycan ‘seethe smallernumbers’insidethelargernumber.

Startwithsmallernumbers, forexample:1to5. Bringfivechildrentothefrontoftheclass.Ask:

● Howmanychildrenarehere?

Assesswhoneedstocountandwhocan subitise.Counteachchildandmove them aside,showingthatanumberismadeup of‘ones’.Thenshowthatthenumbers/childrencan jointogethertomakethesmallernumbersinthe biggernumber(e.g.1and1makes2;1and1and1 makes3. We putthe2and3togethertomake5.)

Ask:

● Howcould we breakupthisgroupoffive?(Start withmakingfiveseparate‘ones’ofthelineof children.)

● Let’sputthegroupoffivebacktogether.Could we breakthisgroupoffiveupinadifferentway? (Wecouldputthese fourchildrentogetherand move oneapart.)

● Isthereanotherway?(onefirstandthen four)

● Isthereanotherway?(twofirstandthenthree)

Continueuntilallthecombinationshave been explored.

Nowplaytheanimation.Promptthechildrento singalongwiththesong.Thecompositionofthe candlesonthebirthdaycake keepschanging;usethe animationtoexplorethebreak-up/compositionof numberswiththechildren.

Let’sdeepen:

Explorethecombinationof‘0and5’if appropriate for yourclass.

Mainevent

C MathsStations:CompositionofNumber(1−8)

Group1: Distributebirthdaycandles(orcrayons)and acopyofPCM9–BirthdayCaketoeachchild. Tell thechildrentousethePCMtomakecombinationsof sixonthecake.Allowthemtoengageinfreeplay first,makingtheir owncombinations.Next,askthem tomakesixofthesamecolourcandles/crayons. Then,askthemtousecandles/crayonsoftwo differentcolourstomakedifferentcombinations. (Alternatively,theycouldusecandles/crayonsoftwo differentsizes,oruseamixtureofcandles/crayons.) Theycould recordtheir favouritecombination by

drawingthecandles/crayonsonthePCM.

Groups2,3and4: Distributemanipulatives,sorting rings/dividersandsmallnumeralsfromPCM1toeach child.Allowthechildrentoengageinfreeplay, beforeaskingthemtomakecombinationsofthe numbers4to8,beginningwith4(3and1;2and2; 0and4;1and3;4and0).Theyshouldplacethe correctnumeralbesideeachsortingring,andexplain thecombinationstheyhave made.

Group5: Distributemanipulatives,small numeralsfromPCM1andacopyofthe tenframestoeachchild.Assesshowthe

27 Unit8: Numbers6to8

childreninteractwiththemanipulativesandten framesbeforegivingthemanydirection. Tellthemto placeasmallnumeral5infrontofthemontheir table,andmakedifferentcombinationsofthat number,usingtheirtenframesandmanipulatives. (Move ontonumerals6,7andthen8oncetheyhave completedtheactivity for5.)

Teachingtip:

Dothechildrenunderstandthatthe manipulativescanbepositionedondifferent areasofthetenframe,butstillmakeupthe samenumber?

Optionalconsolidation andextension possibilities

GamesBank Play‘HowManyBearsintheCave?’ fromtheGamesBank.

GamesBank PlaydominoesfromtheGames Bank.

FormtheNumber Thisactivityprovidesgood integrationwithPE.Dividetheclassintogroupsof one,two,threeand four.Calloutanumber(e.g.6). Thechildrenmust formthisnumber(twogroupsof three;agroupof fourandagroupoftwo,etc.).They shouldcount themselves toensurethatthetotalis correct.Willthey remembertocountthemselves?

GamesBank Play‘ShaketheCup’fromthe GamesBank.

NumberShapes Distributenumbershapes fornumbers1to8andsmallnumerals(seePCM 1)toeachgroup.Allowthechildrentoexplorethe equipment forthemselves(e.g.todiscoverhow differentnumbershapesfittogetherortwonumber shapesfitontopofone).Askthemtoplacethe numeral5infrontofthemandmakenumber-shape combinations forthisnumber.Theyshouldexplore the different combinationsthattheycanmake.They mightliketo recordtheirfindingsinamanneroftheir

©TheEducationalCompanyofIreland

choosing,butprovideguidanceifneeded.Continue withnumbers6,7andthen8.

Let’sdeepen:

Askthechildrentomakeasetofsixobjects.They shouldsubitiseandthencounttheobjects. Tell themtoputtwooftheobjectsinabowl.Ask:

● Howmanydid youputinthebowl?

● Howmanyareleft?

Arethechildrensubitisingtheamountcorrectly ordotheyneedtocount?

Ask:

● Can youmakeasetofeightobjectsquickly? Countandseeif youarecorrect.

● Can youmakesmalleramountswith yoursetof eightobjects?

● Can youmake another setofeightobjects? Makesmalleramountswiththissetofeight objects.

Didthechildrenmake thesame smallersets, e.g.2and2and2and2,ordidtheymake, e.g.4and4? Youcouldpromptthemtotry differentarrangements.

28 Unit8: Numbers6to8
ExtendingCompositionof Number(1−8) Day6,Lesson6 ● Investigatesvariousarrangementsofmanipulativestopromptdifferentmentalimagesofnumbersup to 10,whiledevelopingasenseofeachnumber(R) Focusoflearning(withElements)

Learningexperiences

Digitalactivity:CompositionofNumber–

TenFrames

MAM Routine: Reason& Respond

MathsStations:CompositionofNumber(1−8)

Pupil’sBookpage45:ExtendingComposition ofNumber(1−8)

Teachingtip:

Equipment

● Manipulatives(bears, beads,links,interlocking cubes,2-Dand3-Dshapes)

● Numbershapes

● Two-sidedcounters(redand yellow)

● Cuisenaire rods

©TheEducationalCompanyofIreland

If youdonothave NumberShapesin yourschool,afreeprintable versionis availableat: edco.ie/ynyv

Mathslanguage

● Thereisnonewmathslanguage forthislesson.

Warm-up

D Digitalactivity:CompositionofNumber–

TenFrames

MAM Routine: Reason& Respond Playtheslideshow, whichshowsdifferentcompositions ofthesamenumber.Thechildrenareasked:

● Whatisthesame?

● Whatisdifferent?

Thechildrenmustsubitiseandthencounteach number.Observewhetherthechildrencan voicethe difference, forexample:

● Thetoptenframehassixcounters.Ithasthree redcountersandthree yellowcounters.

● Thebottomtenframealsohassixcounters,butit has four redcountersandtwo yellowcounters.

Teachingtip:

Youmightliketo replaythisslideshow overa fewdays,asitwillbechallenging forsome childrenatfirst.

Mainevent

C MathsStations:CompositionofNumber1to8

Groups1and2*: Distributemanipulatives, smallnumerals(seePCM1)andten framestoeachchild.Allowthechildren toengagewiththeequipmentindependently. Dotheytryto replicatewhatwasontheIWB? Tell themtoplaceanumeral4infrontofthemontheir table,andmakedifferentcombinationsofthat number,usingthetenframesandmanipulatives. Continuewithnumbers5,6,7andthen8.Assess whetherthisgroupcan verbalisethedifference betweentwodifferentcombinations forthesame numbere.g. for6(2bluecountersand4 redcounters or3bluecountersand3 redcounters).

(* YoumightlikeGroup3todothisactivityas well,if numbershapesarenot available.)

C Group3: Distributenumbershapes fornumbers 1to8andsmallnumerals(seePCM1)toeach

child.Allowthechildrentoexplorethe equipment forthemselves(e.g.todiscoverhow differentnumbershapesfittogetherortwo numbershapesfitontopofone). Tellthemto placethenumeral5infrontofthemandmake number-shapecombinations forthisnumber. Theyshouldexplorethemany different combinationstheycanmake.Theymightliketo recordtheirfindingsinamanneroftheir choosing,butprovideguidanceifneeded. Continuewithnumbers6,7andthen8.

Group4: Distributetwo-sidedcountersandten framestoeachchild. Tellthechildrentomake numbersoftheirchoosing.Theycoulddraw/write eachnumbertheyaremakingonastickynoteor their MWB.Aftertheymakeacombination,they couldturn oversomeofthecountersandmakea differentcombination.

29 Unit8: Numbers6to8
D C P

Group5: DistributeCuisenaire rodsandsmall numerals(seePCM1)toeachchild.Allowthe childrentoexplorethepropertiesofthe rods for themselves.Ask:

● Whatcan youtellmeaboutthis rod(e.g.thesixunit rod)?(Itisthesameasonepurpleandone red rod.)

● Howmanyofthewhite rod(theone-unit rod)are inthe red/purple rod?

● Placethenumeral6on yourtable.Howmany wayscan youmakethis rod(thesix-unit rod)? (sixwhite rods;one red rodandonepurple rod,

etc.Theycould recorde.g.allthecombinations for6ontheir MWB.)

P Pupil’sBookpage45: ExtendingComposition ofNumber(1−8)

Optionalconsolidation andextension possibilities

EggCartons Distributeaneggcarton, beadsorplaydoughandsmallnumerals(seePCM1) toeachchild.Thechildrenshouldplaceanumeral besidetheeggcartonandmakecombinationsofthat numberusingbeadsorplaydoughoftwodifferent colourbeads.

Hangersand Pegs Thechildrencouldusea clotheshangerandclothespegsoftwodifferent colourstomaketheir own versionofa rekenrek.

©TheEducationalCompanyofIreland

GamesBank Play‘Throw theDice’fromthe GamesBank.

CompositionofNumber Thisdigital multiple-choiceactivitycanbeusedtoexplore differentcompositionsofnumber.

Day 7, Lesson7

Equivalentand Non-equivalentSets(0−8)

Focusoflearning(withElements)

● Showsanunderstandingofdifferencesinvalue(U&C)

● Usescomparativelanguage(more,less,same)tocomparesetstoatleast 10(C)

● Usesappropriategesturesand wordstoconveyandmakecomparisons (C)

● Identifies, recognisesandestimates‘more’or‘less’inthe real-lifecontextand/orplay(R)

Learningexperiences

D C P

Digitalactivities:More,Less,theSameA–C

MAM Routine: Reason& Respond

Concreteactivity:MakingEquivalentand Non-equivalentSets

Pupil’sBookpage46:EquivalentandNonequivalentSets(0−8)

● Manipulatives(bears, counters,beads,links, interlockingcubes,2-D and3-Dshapes)and collectionsofsmall objectsfromnaturewalks(leaves, twigs,pinecones,etc.)

30 Unit8: Numbers6to8
Equipment

● alot,some,onemore,oneless

Teachingtip:

Usethislanguageateveryopportunitythroughouttheday/week, forexample:

● Lilyhassixmarkersand youhave fivemarkers.Whohasmore?Howmanymore?Whohasless?

● Therearesixbuttonson Karim’scoatand fourbuttonsonJack’scoat.Whosecoathasmore buttons?Whosecoathasless?

Warm-up

D Digitalactivities:More,Less,theSameA–C MAM Routine: Reason& Respond

Playthemultiple-choicegames,whichinitially focus ontheconceptofequivalentandnon-equivalent sets.Insomecomparisonsitisvisuallyobviouswhich sethasmore.Thechildren’sattentionisdrawntothis aspectofcounting.Alsocovered:

● Whichsethasless?

● Whichtwosets(outofthreesets)have thesame amount?

©TheEducationalCompanyofIreland

Teachingtip:

Thegamesillustratethe needtocount when thedifferenceincardinalityisnotobvious,as opposedto,e.g.asetofeightobjectsanda setoftwoobjects,whereitis visuallyobvious toachildwhichsethasmore,andthatoneset has‘alot’more.

Mainevent

C Concreteactivity:MakingEquivalentand Non-equivalentSets

Distributemanipulatives,smallnumerals(seePCM1) andtenframestoeachchild. Tellthechildrento maketwosets:onewitheightobjectsandonewith twoobjects.Ask/say:

● Whichsethasmore?Howdo youknow?Do you need tocount?Countandcheckthat you were right.

● Whatcan yousayaboutthisset(thesetwith eight)?Doesthissethave ‘alot’morethanthe otherset?

● Whichsethasless?Howdo youknow?Do youneed tocount?Countandcheckthat you were right.

● Whatcan yousayaboutthisset(thesetwith two)?Doesonesethave ‘alot’lessthanthe other?Assesswhetherthechildren realisethereisnonecessitytocount whenthedifferenceintheamountis visuallyobvious.Canthey verbalisewhythereis noneedtocount? Forexample:‘Itlookslikethis sethasmore;Idon’tneedtocount;itlookslike thissethasless.’

Let’sstrengthen:

Manychildrencannotgrasptheconceptof‘less’ immediately.Theterms‘more’and ‘same’occur intheireverydaylife,sotheyunderstandthese concepts,but‘less’canbechallenging.Some explicitteachingtimemayneedtobespenton thisterm.

Tellthechildrentomaketwosets:onewithfive objectsandonewith fourobjects. Wouldthis work?

−Canthechildrenvisuallyseewhichsethasmore? (No,becausetheamountsaretoosimilar.)Ask:

● Whichsethasmore?Do youneedtocount? Countandcheckthat you were right.

● Whatcan yousayaboutthisset(thesetoffive)? Doesithave ‘alot’morethantheotherset,or just ‘some’more?

Let’sdeepen:

Howmanymoreobjectsdoestheothersethave?

● Whichsethasless?Do youneedtocount?Count andcheckthat you were right.

31 Unit8: Numbers6to8
Mathslanguage

Unit8:

● How would youmakethesetsthesame?(Add onemoretothesetof fourortakeawayonefrom thesetoffive.)

Tellthechildrentoplacethecorrectsmallnumeral besideeachsettheyaremaking,toconsolidate givingeachsetits‘numbername’.Theycouldthen usethetenframestoshowequivalentandnonequivalentamounts.

Pair work: Onechildshouldmakeanumberontheir tenframe.Theirpartnercanmakeanumberwithone more;thesamenumber;anumberwithoneless.

P Pupil’sBookpage46: Equivalentand Non-equivalentSets(0−8)

Optionalconsolidation andextension possibilities

Book Read More by EmmaChichesterClark, whichexplorestheconceptof‘more’.

GamesBank Play‘OneMore!’fromthe

GamesBank

Nature Walk Goonanaturewalk,if feasible. Collectpinecones, feathers,leaves,twigs,etc.,and usethesetomake ‘sets’backintheclassroom,.

NumberShapes Distributenumbershapes for numbers1to8andsmallnumerals(seePCM1)to eachgroup.Ask:

● Can youshowmeanumbershapewith four holes?Can youfindanothernumbershapethatis thesame?Can youfindnumber shapes thatwill ‘make four’?(e.g.twoshapeswithtwoholes)

● Can youshowmeanumbershapethathasmore holes/lessholes/onemorehole/onelesshole?

● Can youputthecorrectnumeralbesideeach numbershape?

Pair work Onechildhas,e.g.anumbershape withsixholes.Theirpartnermustswapthemthe equivalentamount,usingtwonumbershapes.

Let’sdeepen:

Onechildhas,e.g. two numbershapestotalling seven.Theirpartnermustswapthemthe equivalentamount,usingtwonumbershapes.

MoreorLess– TenFrames Playthisdigital multiple-choicegametocomparesetsusingtenframes.

Digitalactivity:OrderingNumeralswith

Book: Six-DinnerSid by

47:OrderingNumerals andSets(1−8)

32
Numbers6to8
OrderingNumeralsand Sets(1−8) Day8,Lesson8 ● Ordersnumeralsuptoatleast 10 (U&C) ● Orderssetswithoutcountingandchecks by counting(R)
Explainsordinalityusingthelanguageofafter,beforeandin-between (C) Focusoflearning(withElements)
Monty MAM Routine: Reason& Respond
Concreteactivity:OrderingNumerals andSets
IngaMoore Pupil’sBookpage
D C P P Learningexperiences
Manipulatives(bears,counters, beads,links,interlockingcubes,2-D and3-Dshapes)andcollections ofsmallobjectsfromnaturewalks (leaves,twigs,pinecones,etc.)
Cuisenaire
● Numbershapes ●
rods
by IngaMoore
● Book: Six-DinnerSid
Equipment ©TheEducationalCompanyofIreland

● Thereisnonewmathslanguage forthislesson.

D Digitalactivity:OrderingNumeralswithMonty MAM Routine: Reason& Respond

Playtheinteractivegame,inwhichthechildrenhave toarrangethecones(withthenumerals1to8)inthe

correctorder.Observewhetherthechildrencanput thenumeralsinthecorrectorder.Aresomechildren havingdifficulty?

©TheEducationalCompanyofIreland

Mainevent

C Concreteactivity:OrderingNumeralsandSets Distributemanipulatives,numbershapes, Cuisenaire rodsandsmallnumerals(see PCM1)toeachchild.Askthechildrento arrangethenumerals1to8inorder,horizontallyor vertically(oroneway, andthentheotherway),on theirtable.Next,tellthemto:

● Placethecorrectnumberofmanipulatives(e.g. links)besideeachnumber(countingcarefully).

● Subitiseamountsandputthesetsinorder,then counttocheckifthey were correct.

● Maketowersofinterlockingcubes,placingthe correctnumberofcubesbesideeachnumber.

● Placethecorrectnumbershapeabove each number.

● PlacethecorrectCuisenaire rodabove each number.

Askthechildrentoputtheirnumerals1to8inorder (withoutusingmanipulatives).Say/ask:

● Placeonenumeralonits own.Whatcomesnext/ before?Assesswhetherthechildrencanputthe numeralsandthenthesetsinthecorrectorder (andthenassignthecorrectnumbertoeachset) oraresomechildrenhavingdifficulty?

● Placetwonumerals(e.g.6and8)ontheir own. Whatnumeralcomesinbetween?

● Placethenumerals2and6onthetable.What numbersaremissing?Can youputtheminorder?

● Putthenumeral7onits own.Lineupallofthe numbersthatcomebeforethisnumber.

● Putthenumeral3onits own.Lineupallofthe numbersthatcomeafterthisnumber.

● Placethenumerals6and4onthetable.Putthem inorder:whichcomesfirst?Whichisthesmallest/ largestnumber?

● Placethenumerals6,4and8onthetable.Put theminorder:whichcomesfirst?Whichisthe smallest/largestnumber?

Promptthechildrentousethe followinglanguage: before,after,in-between.Ask:

● Whatcan youtellmeaboutthisnumber(e.g.6)? (Itcomesafter5,before 7, inbetween5and 7.)

● WherecouldIputthenumber7?

Let’sstrengthen:

Inpairs,thechildrenmixupthenumerals 1to8andthenarrangetheminthecorrectorder. ChildAclosestheireyeswhileChildBtakesaway anumeral.CanChildAsaywhichnumeralis missingwhentheyopentheireyes?

DistributemanipulativesandacopyofPCM 10 −OrderingFrametoeachchild.Theordering framehasthenumerals1to8alongthebottom. Thechildrenplacethecorrectnumberofobjects ineachcolumn.

Let’sdeepen:

Thechildrencouldmakeapatternusing interlockingcubes.Examples: forthenumber4− one red,onegreen,one red,onegreen; forthe number6−one red,oneblue,one red,oneblue, one red,oneblue.

Let’sDeepenPCM– WouldThis Work?The childrenusethePCMtopotentiallydiscoverthat ABpatternsonly‘work’ forevennumbers.Dothey realisethatthepatterndoesnot‘work’ for number 7, butit works fornumber8?

D Digitalactivity:Jay’sSoccerPractice

Playtheinteractivegameinwhichthechildrenfillin theblanktocompletealineofnumberedcones.

33 Unit8: Numbers6to8
Mathslanguage
Warm-up

P Book: Six-DinnerSid by IngaMoore Read Six-DinnerSid by IngaMoore,whichtellsthe storyofacatwhogoestosixdifferenthousesand eatssixdifferentdinnersaday.

Teachingtip:

A readingof Six-DinnerSid is available at: edco.ie/5ew4

P Pupil’sBookpage 47: OrderingNumerals andSets(1−8)

©TheEducationalCompanyofIreland

Optionalconsolidation andextension possibilities

GamesBank Play‘PiedPiper’fromthe GamesBank.

VisualArts Thechildrencoulddraw/paint/build thesixhousesthatSidthecatvisits.Theycoulduse

smallnumerals1to6(seePCM1)toputthecorrect numberoneachhouse.

Day9,Lesson9

WritingNumbers0to8

Focusoflearning(withElements)

● Makesnumeralscreatively (C)

● Discusses,drawsandwrites representationsofnumbers1−8,usingmanipulatives (C)

● Explorestheuseofnumberandplaysgamesto raiseawarenessofnumberintheirenvironment(A&PS)

● Noticesand recognisestheuseofnumeralsaslabelsinthecontextofhome,theclassroomandthe schoolenvironment(U&C)

Learningexperiences

Digitalactivity:WhichNumberAmI?

MAM Routine: Reason& Respond

Animations:Number Formation–0to8

Concreteactivities:MakingNumerals

Pupil’sBookpage48: WritingNumbers0to8

● Thereisnonewmathslanguage forthislesson.

Equipment

● Classroom-sizednumerals(oradisplayontheIWB)

● Playdough

● Sandarea

● Buttonsand/orpebbles

● Linksand/orinterlockingcubes

● Cordand/or wool

● Countersand/orbeads

Mathslanguage Warm-up

D Digitalactivity:WhichNumberAmI?

MAM Routine: Reason& Respond Playtheinteractivegame,whichslowly revealseach numeralfrom0to8.Thechildrenmustguesswhich

numberwillbe revealed.Askthechildrensaythe nameofthenumberassoonasthey recogniseit.

34
Numbers6to8
Unit8:
D D C P

D Animations:NumberFormation–0to8

Mainevent

Playthenumeral formationanimations foreach numeral.Theydescribethe formation veryclearly.

C Concreteactivities:MakingNumerals

Begin by tellingthechildrentotracethenumerals 0to8ontheirtableorintheairwiththeirfinger. Drawtheirattentiontotheclass-sizednumerals(or displayontheIWB),whichtheycanuse for reference. Describethe formofeachnumeral,oraskachildto describeit, forexample:

● Howdo we makea6?Startatthetop…

● Howdo we makea7?

● Howdo we makean8?

Teachingtip:

To bemathematicallycorrect,thechildrenare ‘forminganumeral’,butthephrase‘makea number’willbemore familiartothem.

Distributetheequipmentlistedbelowtoeachgroup.

● Group1:playdoughand/oraccesstothesand area(todrawnumeralsinthesandwiththeir finger)

● Group2:pebblesand/orbuttons

● Group3:linksand/orinterlockingcubes

● Group4:cordand/or wool

● Group5:countersand/orbeads

Instructthechildrentomakethenumbers0to8 innumericalorder,usingtheirequipment.Ask eachgroup:

● Whichnumbersareeasiesttomake?(Perhaps1,4 and7areeasiest,becauseofthestraightlines.)

Teachingtip:

Youmightliketomixuptheequipment, andaskthechildrentoseeiftheyfindit easierto formthenumeralswithdifferent combinationsofequipment. Forexample, ifusingcubesandcord,theycouldusethe cubes forthestraightpartsofanumeral andthecord forthecurvingparts. Forming numeralsinthiscreativewayhelpschildren tointernalisetheshapeand formofeach numeral.

Holduptheclass-sizednumeral6,andask:

● Can youuse your…(e.g.playdough)tomakethis number?

● Whatnumbercomesafter6?

Holduptheclass-sizednumeral 7, andsay:

● Use your…(e.g.playdough)tomakethisnumber.

Ask/say:

©TheEducationalCompanyofIreland

Holdupsixfingers,andask:

● Howmany?(6)

● Howmanychildrenarethereatthistable?(Hold uptheclass-sizednumeral.)Makethisnumber.

● Whatageare you?(Holduptheclass-sized numeral.)Makethisnumber.

● Howmanywindowsarethereintheclassroom? (Holduptheclass-sizednumeral.)Makethis number.

● Whatnumbercomesinbetween6and8?(Hold uptheclass-sizednumeral.)Makethisnumber.

● WhatnumberamImakingintheair/onthewall? (Holduptheclass-sizednumeral.)Makethis number.

● Whichnumberisbigger:3or6?(Holdupthe class-sizednumeral.)Makethisnumber.

● Whichnumberisless:8or4?(Holduptheclasssizednumeral.)Makethisnumber.

Let’sstrengthen:

DistributeacopyeachofPCMs11−13–Large DottedNumerals6to8toeachchild.The childrenshouldtrace overthenumeralsand practisewriting6,7and8.

Onechildinagroupshouldchooseanumeral andwriteitontheir MWB.Usingmanipulatives, everyotherchildmakesasetcontainingthat numberofobjects.

Let’sdeepen:

Thechildrenshouldwritethenumerals0to8 intheircopy.

P Pupil’sBookpage48: WritingNumbers0to8

35 Unit8: Numbers6to8

Optionalconsolidation andextension possibilities

MathsEyes Askthechildrenlook fornumerals 0to8insideandoutsidetheclassroom. Tellthemto beonthelook-out fornumeralsathomeandontheir waytoschool,and reportbacktotheclass.

GamesBank Play‘NumberWhisper’fromthe GamesBank.

BodyNumerals Thisactivityprovidesgood integrationwithPE. Tellthechildrentomakespecific numeralsonthefloorofthePEhall,usingtheirbody. Startwiththeeasiestone−thenumeral1.They couldalsodothisingroups.

Day 10,Lesson 10

Reviewand Reflect

©TheEducationalCompanyofIreland

Warm-up

Carryoutawarm-upactivityof yourchoicefromoneofthelessonsinthisunit.

Mainevent

Choosefromthismenuofactivityideas,orchoose your ownwaytobeststructurethislastlessontosuit your needsandtheneedsof yourclass.

Mathsstory

Readoneofthesuggestedstoriesthat youmaynot have hadtimeto read.

Mathslanguage

Askthechildrentousetheirfingersto formthe numerals6,7and8.Theymightneedhelpfroma partner.Promptthemtousethe followinglanguage: after,before,inbetween.Theycouldalsodrawthe numbersontheir MWB.

ProgressAssessmentBooklet

Completequestionsxx−xxonpagexx.Alternatively, thesecanbelefttodoaspartofabigger review duringthenext review week.

Let’sstrengthen

Identifychildrenwhomightbenefitfromextra practicewithsomeofthe keyconceptsorskills inthisunit.ConsulttheUnit8Let’sStrengthen Suggestions for TeachersortheLet’sStrengthen PCM forparalleltasks.

Let’splay!

PlayoneofthegamesorPEactivitiesthat youdid notgetachancetotryout.

Choralcounting

Chantthenumbers1to 10 or revisittheanimation titled‘CountwithMonty’.

Mathseyes

Tellthechildrentofindnumbersandquantitiesof objects(6−8)insideandoutsidetheclassroom.

Let’sdeepen

UsetheLet’sDeepenPCM.

36 Unit8: Numbers6to8
● Reviewsand reflectsonlearning(U&C)
Focusoflearning(withElements)
37 MathsandMe ©Edco Unit8:SamplePCM1 Smallnumerals0to8 0 I 2 3 4 5 678 0 I 2 3 4 5 678 0 I 2 3 4 5 678 0 I 2 3 4 5 678 0 I 2 3 4 5 678 0 I 2 3 4 5 678 0 I 2 3 4 5 678 0 I 2 3 4 5 678 0 I 2 3 4 5 678
©TheEducationalCompanyofIreland

WritingNumeral6

Tracethenumerals.Drawyourownseto

©TheEducationalCompanyofIreland

38 MathsandMe ©Edco Unit8:SamplePCM2
6
f 6.

Ordering Frame

Placethecorrectnumberof objectsormanipulativesinthe frames.

39 Unit8:Let’sStrengthenPCM MathsandMe ©Edco
0 I 23
©TheEducationalCompanyofIreland
4 5678

Make Patterns

Choose2colourstomakeapattern foreachnumber.Forexample,the dinosaurs fornumber 4 couldbecolouredred,blue,red,blue.Doesyour pattern‘work’ foreverynumber?Whichnumbersdoesit‘work’ for?

©TheEducationalCompanyofIreland

40 Unit8:Let’sDeepenPCM MathsandMe ©Edco
23
0 I
4 5678

Numbers6to8

Class Teachers: Usetheseactivitiesalongsidethespecifiedlessons,tostrengthentheunderstandingof children,as required.Manyoftheseactivitiescouldalsobeusedasastation.

SpecialEducation Teachers: Usetheseactivitiestosupportchildren(pre-teachingor re-teaching)inin-class and/orwithdrawalsessions.

Accuratecountingisa keyskill forchildrentolearnfromanearlyage.When youngchildrenbegincounting,they count‘byheart’or‘by rote’.Theycansaythenumbernamesinorderbecausetheyhave memorisedthe wordsand theirsequence.Childrenthenneedtoengagewiththefivecountingprinciples.Thefiveprinciplesare:

©TheEducationalCompanyofIreland

Stableorderprinciple

● Inordertomasterthisprinciplethechildrenneedtobeabletocountinthecorrectorder.Thechildrencanpractise by learning numberrhymesandsongs,andlisteningtonumberstories.Theycancountduringtheschooldayandathome.Theycanplay countinggamessuchasHopscotch.InUnit8,thechildrenneedtobeabletocountupto8.Iftheycancountupto8,theycan thentrytocount8objects.

One-to-oneprinciple

● Oncethechildcancountinthecorrectorder(andrealisethatthenumbersmuststayinthatorder),theyneedtobeableto assignanumber(verbally)toeachitem.Whencountingobjects,thechildrencouldfirstlineuptheobjects.Thiswillhelpthem toassignanumbertoeachobjectandkeeptrackoftheircount.‘Slowandsteady’isthekeyphrase;thechildrencarefullytouch eachobjectandsayitsnumbername.Theymightliketomovetheobjectaside.Ifthisprocessisnotpractised,thechildmay countoneobjecttwiceorusethesamenumberforafewobjects.

Cardinalprinciple

● Thisprincipleinvolvesthechildknowingthatthefinalnumberinthecountisa‘special’number.Thisspecialnumbertellsthem ‘howmany’objectsthereareintheset.Thechildcannowanswerthequestion:‘Howmany?’Encouragethemtoarticulatethe answerinfulle.g.‘Thereare5bears.’Plentyofcountingofconcretematerialsshouldbepractised,withthequestionbeing posed:Howmany?Andthefullanswerbeinggivenbythechild.

Abstractionprinciple

● Apre-requisiteformasteringthisprincipleisunderstandingthattheobjectsinasetcanbedifferentcolours,shapes,sizes. Forexample:Thechildcouldpractisecountingasetof6thatcontains:1yellowbear,2differentcolourcircles,1button,1cube, 1link.Cantheyanswerthequestion:Howmany?Thereare6objects.Theycanthenmoveontoabstractcounting,e.g.sounds (coinsbeingdroppedintoabowl);tappingonadesk;thenumberoftimesachildcanhopononefoot;thepostersonthewall, etc.Thechildrencouldpractisethisprinciplebycountingrandomobjects,e.g.theitemsontheirdesk(pencils,eraser,copy, twocrayons).InthePEhall,theycouldcounthowmanytimestheycanthrowandcatchabeanbag.Inpairs,onechildcloses theireyeswhiletheotherchilddropscubesintoabowl.

Orderirrelevanceprinciple

● Practiceactivitiescouldincludeinitiallycountingasetof concrete objects.Thechildrencounttheobjectsfromlefttoright, righttoleft.Theyarrangetheobjectsverticallyandcountfromthebottomup,thenfromthetopdown.Theycouldarrangethe objectsinaroughcircleandcountthem.

● Thisprincipleisalignedwithconservationofnumber.Thechildrenunderstandthatevenwhenthecountedobjectsaremoved, thetotalcountremainsthesame.Practisethisconceptbyaskingthechildrentocountasetofobjectsandgiveyouthefinal count.Movetheobjectsandaskhowmanytherearenow.Thechildrencouldthentrycountingobjectsthatcannotbetouched, e.g.chartsonthewall.Howmanyarethere?Whichwaydidyoucountthem?Canyoucounttheminadifferentway?Didyou getthesameanswer?

41 Unit8:Let’sStrengthenSuggestions for Teachers MathsandMe ©Edco

MatchingNumerals(0to8)toSets

● Havingconsolidatedthefiveprinciplesofcounting,thechildrencouldmoveontopractisingassigningnumeralstosetsof objects.Startwiththesmallernumbers(1to5).Thechildrencountouttwoobjects.Whichnumbermatchesthisset?Canthe childselectthecorrectnumberandmatchittotheset?Continueupto5.Showthechildanumber,e.g.5.Cantheyidentifythe numberandcountoutfiveobjectstomatchthenumber?Ifappropriate,continuewiththenumbers6,7,8.

CompositionofNumber(2to8)

● Useonlyonetypeofmanipulativeatfirst,e.g. redcubes.Givethechildrenasetof, forexample,3 redcubes.Howmany?Ask themto‘move/divide/separate’theobjects,e.g.2and1;1and2.Theycounttheindividualcubesorcubeandthenputthem all‘backtogetheragain’.Howmany?Continueupto8ifthatisappropriate for yourgroup. Trygivingthechildren5objects (youcouldusetheSmall World Farmanimals).Howmanyanimals?Thereare5animals.Can youmove/divide/separatethem? Howcould youdothat?(2sheepand3cows;Ibiganimaland4smallanimals). Trythiswithnumbers4to8(as youdeem appropriate).Usethetenframe,double-sidedcounters,andsmallnumerals(2to8)toshowcompositionifthechildrenare ready forthisstage.

EquivalentandNon-EquivalentSets

● Emphasisethemathslanguagehere,e.g.the words‘more’,‘less’,‘thesame’.Childrenfinditeasiertounderstandtheconcept of‘more’sobeginwithsetsthathave ‘more’. Trytousethelanguageduringtheday, e.g.‘Whohas more Lego/grapes/crayons?

Whohas less?’Intheseinstances,thechildrenwillbesubitisingandmakingavisualdecision. Forconcreteactivities,cubesand Cuisenaire rodsare verysimpleandclearintermsofequivalenceandnon-equivalence.‘More’,‘less’,and‘thesame’canbe determinedvisuallyandthenchecked by counting,e.g.thecubesintwotowersside by side.Thechildrencouldcountthecubes intwosetsfirst,thenmaketwotowerstocompare‘height’andcountagain.Ensuretheyusetheirmathslanguagetoanswer yourquestion:

—Whichtowerhasmorecubes?Thisonehasmorecubes.

—How do youknow? (Thisisa keyquestiontoascertainwhetherthechildrenunderstandtheconceptofonetowerhaving morecubesthantheothertower. Theyarenotcountingallthecubesinonetowerbutnoticingthedifferencebetween them.)

OrderingNumbersandSets

● Thechildrencouldstart by puttingajumbledupsetofnumbersinorder.Whichnumbergoesfirst?Next?Thenputsetsof2,3,4 objectsonthedesk.Canthechildputthesetsinorder?

WritingNumerals0to8

● Thechildrencouldfirst formthenumeralscreatively;theyuseplaydough,straws/piecesofstraws,beadsonstring.Inengaging intheseactivities,thechildrennoticetheshape(curves/lines)ofeachdifferentnumeral.Theycoulduselargenumeralsand coverthemwithcubes/smallmanipulatives.Theyusethe raisednumeralsintheirPupil’sBook(ordraw thenumeralsinthe sandbox,and youmayhave theMontessoriSandpaperNumbers).Whenthechildrenarecomfortablewritingthenumerals ‘creatively’,theycouldtrywritingthenumber1withacrayon,thenapencil.Move ontotheothernumbersas youseefit.Use Number FormationRhymestotakeany‘pressure’outofwritingthenumbers.

©TheEducationalCompanyofIreland

42 Unit8:Let’sStrengthenSuggestions for Teachers MathsandMe ©Edco

Notetoteachers:

Hopscotch

Numberof players: 2to10

Youneed: Hopscotchgrid,smallobjectperchild(e.g.small stone)

©TheEducationalCompanyofIreland

Howtoplay: Mark outahopscotchgridintheyardorPEhall (oruseacommercialversion).Thechildrenplay hopscotchandpractisetheircountingskills.Each childtakesaturntothrowasmallobject(e.g. astone)ontooneof thesquaresonthegrid.If theysucceed,theythenstartcountingasthey hopontoeachsquare.Theyhopoverthesquare withtheirobjectonit.Theymusthoptotheend of thegridandback againwithouthoppingon aline,missingasquareorlosingtheirbalance. If theydoso,theymustwaittheirturnagain (butthistimetheystartattheirobject).The childwholandstheirstoneback onthestarting squarewins.

Strengthen: Usenumbers1to8 forthegrid.

Deepen: Usenumbers1to10 forthegrid.

43 Unit8:GamesBank MathsandMe ©Edco
Anextensivegamesbankis available foreachclasslevelwithgames relatingtoallunits. Thegamesincludedinthisbookletareasampleofthegames available forUnit8:Numbers6to8. Title

Title Throw theDice (orSpintheSpinner)

Numberof players: Groupof children,e.g.6–8

Youneed: Diceorspinner,2-sidedcounters(8counters each),ten frame, five frame,smallsticker

Howtoplay: Onechildthrowsthedice.Theotherchildren eachmakethenumberthrown(ontheirten frameusingtwo-sidedcounters).The firstchild tomaketheirnumbercorrectlywins.Theyplay again.

Strengthen: Thechildrenusetheir five frametomakethe numbers(coverthenumber6onthedicewitha sticker).

Deepen:

Eachchildtakesaturntomakeanumberon theirten frame.Theotherchildrenclosetheir eyeswhilethenumberisbeingmade.Theyopen theireyesandthe firstchildtosaythenumber correctlywins.

Title OneMore!

Numberof players: Wholeclass

Youneed: PEhall

Howtoplay: BringthechildrentothePEhallandcallout anumber,e.g.sevenThechildrenmust form groupsof seven.Callout:‘Onemore!Make (eight!)’Thegroupsmustadd onemore totheirnumber.Childrenwhoareleftoverand cannotmakeupagroupof eightareout.The childrendispersearoundthehall.Keepcalling outdifferentnumbersuntilonlyonegroupisleft. Theyarethewinners!

Strengthen: Usesmallernumbers,e.g.6orless.

Deepen: Callout‘Oneless!’insteadof ‘Onemore!’

44 Unit8:GamesBank MathsandMe ©Edco
©TheEducationalCompanyofIreland

Numbers6to8

LessonFocusoflearning

Day1,Lesson1: Counting1to8

● Recites forwardtoatleast 10 (U&C)

● Recognisesnumbers,initiallywithin 10 (U&C)

● Demonstratesanawarenessofanduses numeralsinpersonallymeaningfulcontexts (C)

● Attendstonumeralsofsignificanceor importancetothechild(U&C)

● Usesappropriatestrategiestofindouthow many(A&PS)

Assessmentdatarelatingto individuals/groups

©TheEducationalCompanyofIreland

Day2,Lesson 2:MakingSets (0−8)

● Demonstratesanawarenessofnumberand number wordsequencingthroughsong, stories,rhymesandgames (C)

● Participatesinactivitiesthatinvolve communicatingaboutnumber(U&C)

● Usesideasaboutnumberandquantityto communicatewithothers (C)

● Exploreshownumbersareused forcounting andthatthelastnumberinthecount indicatesthequantityofobjectsinaset (U&C)

Day3,Lesson 3:Matching Numeralsto Sets(0−8)

● Recognisesthatobjectsandsymbolscan representnumbers(U&C)

● Matchesnumeralsandnumber wordstosets andtoothernumeralsinavarietyof contexts(A&PS)

● Selectsandusesappropriatematerialsto makeavarietyofsets foragivennumber (A&PS)

● Sorts,groupsandarrangesmaterials accordingtocriteria(R)

● Establishesthat zero,asanumeral, representsnothing/noneintermsof quantity(R)

Day4,Lesson4: Consolidation ofNumber (0−8)

● Exploreshowthelayoutoforsizeof elementsinasethasnoeffectonthe overall total(conservationofnumber)(U&C)

● Subitises(looksatagroupofobjectsand realiseshowmanythereare,without counting)numberofobjectsinaset(U&C)

45 Unit8:FormativeAssessmentObservationsSheet 45 MathsandMe ©Edco

LessonFocusoflearning

Day5,Lesson5: Compositionof Number(1−8)

Assessmentdatarelatingto individuals/groups

● Investigatesvariousarrangementsof manipulativestopromptdifferentmental imagesofnumbersupto8,whiledeveloping asenseofeachnumber(R)

©TheEducationalCompanyofIreland

Day6,Lesson

6:Extending Compositionof Number(1−8)

Day 7, Lesson7: Equivalentand Non-equivalent Sets(0−8)

● Investigatesvariousarrangementsof manipulativestopromptdifferentmental imagesofnumbersupto 10,while developingasenseofeachnumber(R)

Day8,Lesson

8:Ordering Numeralsand Sets(1−8)

● Showsanunderstandingofdifferencesin value(U&C)

● Usescomparativelanguage(more,less, same)tocomparesetstoatleast 10(C)

● Usesappropriategesturesand wordsto conveyandmakecomparisons (C)

● Identifies, recognisesandestimates‘more’or ‘less’inthe real-lifecontextand/orplay(R)

● Ordersnumeralsuptoatleast 10 (U&C)

● Orderssetswithoutcountingandchecks by counting(R)

● Explainsordinalityusingthelanguageof after,beforeandin-between (C)

Day9,Lesson 9: Writing Numbers0to8

● Makesnumeralscreatively (C)

● Discusses,drawsandwrites representations ofnumbers1−8,usingmanipulatives (C)

● Explorestheuseofnumberandplaysgames to raiseawarenessofnumberintheir environment(A&PS)

● Noticesand recognisestheuseofnumerals aslabelsinthecontextofhome,the classroomandtheschoolenvironment (U&C)

Day 10,Lesson 10: Reviewand Reflect

● Reviewsand reflectsonlearning(U&C)

46 46 Unit8:FormativeAssessmentObservationsSheet MathsandMe ©Edco

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.